Selected topics in Planck-scale physics
Y. Jack Ng
2003-05-15
We review a few topics in Planck-scale physics, with emphasis on possible manifestations in relatively low energy. The selected topics include quantum fluctuations of spacetime, their cumulative effects, uncertainties in energy-momentum measurements, and low energy quantum-gravity phenomenology. The focus is on quantum-gravity-induced uncertainties in some observable quantities. We consider four possible ways to probe Planck-scale physics experimentally: 1. looking for energy-dependent spreads in the arrival time of photons of the same energy from GRBs; 2. examining spacetime fluctuation-induced phase incoherence of light from extragalactic sources; 3. detecting spacetime foam with laser-based interferometry techniques; 4. understanding the threshold anomalies in high energy cosmic ray and gamma ray events. Some other experiments are briefly discussed. We show how some physics behind black holes, simple clocks, simple computers, and the holographic principle is related to Planck-scale physics. We also discuss a formulation of the Dirac equation as a difference equation on a discrete Planck-scale spacetime lattice, and a possible interplay between Planck-scale and Hubble-scale physics encoded in the cosmological constant (dark energy).
Gaillard, M.K. California Univ., Berkeley, CA . Dept. of Physics)
1990-12-06
Effective supergravity theories suggested by superstrings can be explored to determine their potential for successfully describing both observed physics at zero temperature and an inflationary cosmology. An important ingredient in this study is the dynamics of gaugino condensation, which has been the subject of recent activity. 33 refs., 2 figs.
Planck scale effects in neutrino physics
Akhmedov, E.K. (International Centre for Theoretical Physics, I-34100 Trieste (Italy) Scuola Internazionale Superiore di Studi Avanzati, I-34014 Trieste (Italy) Kurchatov Institute of Atomic Energy, Moscow 123182 (Russian Federation)); Berezhiani, Z.G. (Sektion Physik der Universitaet Muenchen, D-8000 Munich-2 (Germany) Institute of Physics, Georgian Academy of Sciences, Tbilisi 380077 (Georgia)); Senjanovic, G.; Tao, Z. (International Centre for Theoretical Physics, I-34100 Trieste (Italy))
1993-04-15
We study the phenomenology and cosmology of the Majoron (flavon) models of three active and one inert neutrino paying special attention to the possible (almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton charge. Using Planck scale physics effects which provide the breaking of the lepton charge, we show how in this picture one can incorporate the solutions to some of the central issues in neutrino physics such as the solar and atmospheric neutrino puzzles and the dark matter problem with the possible existence of a heavy (1--10 keV) neutrino. These gravitational effects induce tiny Majorana mass terms for neutrinos and considerable masses for flavons. The cosmological demand for the sufficiently fast decay of flavons implies a lower limit on the electron-neutrino mass in the range of 0.1--1 eV.
Planck scale effects in neutrino physics
Eugeni Akhmedov; Zurab Berezhiani Goran Senjanovic; Zhijian Tao
1992-08-18
We study the phenomenology and cosmology of the Majoron (flavon) models of three active and one inert neutrino paying special attention to the possible (almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton charge. Using Planck scale physics effects which provide the breaking of the lepton charge, we show how in this picture one can incorporate the solutions to some of the central issues in neutrino physics such as the solar and atmospheric neutrino puzzles, dark matter and a 17 keV neutrino. These gravitational effects induce tiny Majorana mass terms for neutrinos and considerable masses for flavons. The cosmological demand for the sufficiently fast decay of flavons implies a lower limit on the electron neutrino mass in the range of 0.1-1 eV.
Planck scale effects in neutrino physics
NASA Astrophysics Data System (ADS)
Akhmedov, E. K.; Senjanovic, G.; Tao, Zhi-Jan; Berezhiani, Z. G.
1992-08-01
We study the phenomenology and cosmology of the Majoron (flavon) models of one inert neutrino and three active ones. We pay special attention to the possible (almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton charge. Using Planck scale physics effects, which provide the breaking of the lepton charge, we show how, in this picture, one can incorporate the solutions to some of the central issues in neutrino physics, such as the solar and atmospheric neutrino puzzles, dark matter, and a 17 keV neutrino. These gravitation effects induce tiny Majorana mass terms for neutrinos and considerable masses for flavons. The cosmological demand for the sufficiently fast decay of flavons implies a lower limit on the electron neutrino mass in the range of 0.1-1 eV.
Planck scale effects in neutrino physics
NASA Astrophysics Data System (ADS)
Akhmedov, Eugeni Kh.; Berezhiani, Zurab G.; Senjanovi?, Goran; Tao, Zhijian
1993-04-01
We study the phenomenology and cosmology of the Majoron (flavon) models of three active and one inert neutrino paying special attention to the possible (almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton charge. Using Planck scale physics effects which provide the breaking of the lepton charge, we show how in this picture one can incorporate the solutions to some of the central issues in neutrino physics such as the solar and atmospheric neutrino puzzles and the dark matter problem with the possible existence of a heavy (1-10 keV) neutrino. These gravitational effects induce tiny Majorana mass terms for neutrinos and considerable masses for flavons. The cosmological demand for the sufficiently fast decay of flavons implies a lower limit on the electron-neutrino mass in the range of 0.1-1 eV.
Physics Meets Philosophy at the Planck Scale
NASA Astrophysics Data System (ADS)
Callender, Craig; Huggett, Nick
2001-04-01
Preface; 1. Introduction Craig Callendar and Nick Huggett; Part I. Theories of Quantum Gravity and their Philosophical Dimensions: 2. Spacetime and the philosophical challenge of quantum gravity Jeremy Butterfield and Christopher Isham; 3. Naive quantum gravity Steven Weinstein; 4. Quantum spacetime: what do we know? Carlo Rovelli; Part II. Strings: 5. Reflections on the fate of spacetime Edward Witten; 6. A philosopher looks at string theory Robert Weingard; 7. Black holes, dumb holes, and entropy William G. Unruh; Part III. Topological Quantum Field Theory: 8. Higher-dimensional algebra and Planck scale physics John C. Baez; Part IV. Quantum Gravity and the Interpretation of General Relativity: 9. On general covariance and best matching Julian B. Barbour; 10. Pre-Socratic quantum gravity Gordon Belot and John Earman; 11. The origin of the spacetime metric: Bell's 'Lorentzian Pedagogy' and its significance in general relativity Harvey R. Brown and Oliver Pooley; Part IV. Quantum Gravity and the Interpretation of Quantum Mechanics: 12. Quantum spacetime without observers: ontological clarity and the conceptual foundations of quantum gravity Sheldon Goldstein and Stefan Teufel; 13. On gravity's role in quantum state reduction Roger Penrose; 14. Why the quantum must yield to gravity Joy Christian.
Cosmological texture is incompatible with Planck-scale physics
NASA Technical Reports Server (NTRS)
Holman, Richard; Hsu, Stephen D. H.; Kolb, Edward W.; Watkins, Richard; Widrow, Lawrence M.
1992-01-01
Nambu-Goldstone modes are sensitive to the effects of physics at energies comparable to the scale of spontaneous symmetry breaking. We show that as a consequence of this the global texture proposal for structure formation requires rather severe assumptions about the nature of physics at the Planck scale.
Cellular networks as models for Planck-scale physics
Manfred Requardt; Gottingen Bunsenstrasse
1998-01-01
Starting from the working hypothesis that both physics and the corresponding mathematics have to be described by means of discrete concepts on the Planck scale, one of the many problems one has to face in this enterprise is to find the discrete protoforms of the building blocks of our ordinary continuum physics and mathematics. We base our own approach on
Burra G. Sidharth
2006-08-23
The Planck scale is considered to be a natural minimum scale, made up as it is solely of fundamental constants. However the Planck scale is well beyond the scales encountered in real life, these latter being at least of the order of the Compton scale. The Compton scale too is fundamental in the same sense -- it is made up of fundamental micro physical constants, though it is $10^{20}$ orders higher than the Planck scale. We discuss here a mechanism by which the Planck scale manifests itself at the real life Compton scale, this happening due to processes within the Planck time. Related issues are also discussed.
Cellular Networks as Models for Planck-Scale Physics
Manfred Requardt
1998-06-17
Starting from the working hypothesis that both physics and the corresponding mathematics have to be described by means of discrete concepts on the Planck scale, one of the many problems one has to face in this enterprise is to find the discrete protoforms of the building blocks of our ordinary continuum physics and mathematics. We base our own approach on what we call `cellular networks', consisting of cells (nodes) interacting with each other via bonds (figuring as elementary interactions) according to a certain `local law'. Geometrically our dynamical networks are living on graphs. Hence a substantial amount of the investigation is devoted to the developement of various versions of discrete (functional) analysis and geometry on such (almost random) webs. Another important topic we address is a suitable concept of intrinsic (fractal) dimension on erratic structures of this kind. In the course of the investigation we make comments concerning both different and related approaches to quantum gravity as, say, the spin network framework. It may perhaps be said that certain parts of our programme seem to be a realisation of ideas sketched by Smolin some time ago (see the introduction).
Steven B. Giddings
2009-10-16
I outline motivations for believing that important quantum gravity effects lie beyond the Planck scale at both higher energies and longer distances and times. These motivations arise in part from the study of ultra-high energy scattering, and also from considerations in cosmology. I briefly summarize some inferences about such ultra-planckian physics, and clues we might pursue towards the principles of a more fundamental theory addressing the known puzzles and paradoxes of quantum gravity.
Discrete Mathematics and Physics on the PlanckScale
. The point of view held by the majority is however, at least as far as we can see, that quantum theory as we radical and heretical attempt, on the other side, is it to try to generate both gravity and quantum theory the hypothesis that both physics, in particular spaceÂtime and the physical vacuum, and the corresponding
HigherDimensional Algebra and PlanckScale Physics
Baez, John
schizophrenic. We have, not one, but two fundamental theories of the physical universe: general relativity general relativity and quantum field theory? Or is this a technical business best left to the experts? I would argue for the former. General relativity and quantum field theory are based on some profound
Searching for Traces of Planck-Scale Physics with High Energy Neutrinos
Floyd W. Stecker; Sean T. Scully; Stefano Liberati; David Mattingly
2015-02-09
High energy cosmic neutrino observations provide a sensitive test of Lorentz invariance violation, which may be a consequence of quantum gravity theories. We consider a class of non-renormalizable, Lorentz invariance violating operators that arise in an effective field theory description of Lorentz invariance violation in the neutrino sector inspired by Planck-scale physics and quantum gravity models. We assume a conservative generic scenario for the redshift distribution of extragalactic neutrino sources and employ Monte Carlo techniques to describe superluminal neutrino propagation, treating kinematically allowed energy losses of superluminal neutrinos caused by both vacuum pair emission and neutrino splitting. We consider EFTs with both non-renormalizable CPT-odd and non-renormalizable CPT-even operator dominance. We then compare the spectra derived using our Monte Carlo calculations in both cases with the spectrum observed by IceCube in order to determine the implications of our results regarding Planck-scale physics. We find that if the drop off in the neutrino flux above ~2 PeV is caused by Planck scale physics, rather than by a limiting energy in the source emission, a potentially significant pileup effect would be produced just below the drop off energy in the case of CPT-even operator dominance. However, such a clear drop off effect would not be observed if the CPT-odd, CPT-violating term dominates.
Searching for traces of Planck-scale physics with high energy neutrinos
NASA Astrophysics Data System (ADS)
Stecker, Floyd W.; Scully, Sean T.; Liberati, Stefano; Mattingly, David
2015-02-01
High-energy cosmic neutrino observations provide a sensitive test of Lorentz invariance violation (LIV), which may be a consequence of quantum gravity theories. We consider a class of nonrenormalizable, Lorentz invariance violating operators that arise in an effective field theory (EFT) description of Lorentz invariance violation in the neutrino sector inspired by Planck-scale physics and quantum gravity models. We assume a conservative generic scenario for the redshift distribution of extragalactic neutrino sources and employ Monte Carlo techniques to describe superluminal neutrino propagation, treating kinematically allowed energy losses of superluminal neutrinos caused by both vacuum pair emission (VPE) and neutrino splitting. We consider EFTs with both nonrenormalizable C P T -odd and nonrenormalizable C P T -even operator dominance. We then compare the spectra derived using our Monte Carlo calculations in both cases with the spectrum observed by IceCube in order to determine the implications of our results regarding Planck-scale physics. We find that if the dropoff in the neutrino flux above ˜2 PeV is caused by Planck-scale physics, rather than by a limiting energy in the source emission, a potentially significant pileup effect would be produced just below the dropoff energy in the case of C P T -even operator dominance. However, such a clear dropoff effect would not be observed if the C P T -odd, C P T -violating term dominates.
Loss, Daniel
Brukner2,4 One of the main challenges in physics today is to merge quantum theory and the theory for a quantum theory of gravity is therefore one of the main challenges in modern physics. A major difficultyARTICLES PUBLISHED ONLINE: 18 MARCH 2012 | DOI: 10.1038/NPHYS2262 Probing Planck-scale physics
B. G. Sidharth
1998-09-11
Within the context of the usual semi classical investigation of Planck scale Schwarzchild Black Holes, as in Quantum Gravity, and later attempts at a full Quantum Mechanical description in terms of a Kerr-Newman metric including the spinorial behaviour, we attempt to present a formulation that extends from the Planck scale to the Hubble scale. In the process the so called large number coincidences as also the hitherto inexplicable relations between the pion mass and the Hubble Constant, pointed out by Weinberg, turn out to be natural consequences in a consistent description.
F. I. Cooperstock; V. Faraoni
2003-02-12
Traditional derivations of the Planck mass ignore the role of charge and spin in general relativity. From the Kerr-Newman null surface and horizon radii, quantized charge and spin dependence are introduced in an extended Planck scale of mass. Spectra emerge with selection rules dependent upon the choice of Kerr-Newman radius to link with the Compton wavelength. The appearance of the fine structure constant suggests the possibility of a variation in time of the extended Planck mass, which may be much larger than the variation in the traditional one. There is a suggestion of a connection with the $\\alpha$ value governing high-energy radiation in Z-boson production and decay.
Searching for Traces of Planck-Scale Physics with High Energy Neutrinos
NASA Astrophysics Data System (ADS)
Stecker, Floyd; Scully, Sean; Liberati, Stefano; Mattingly, David
2015-04-01
High energy cosmic neutrinos provide a sensitive test of Lorentz invariance violation (LIV) as may be a consequence of quantum gravity theories. We consider the effects of LIV on the propagation of high energy neutrinos over cosmological distances using a class of non-renormalizable, Lorentz violating operators in an effective field theory description of LIV. We assume a generic scenario for the redshift distribution of extragalactic neutrino sources and employ Monte Carlo techniques to follow superluminal neutrino propagation. We include kinematically allowed energy losses of superluminal neutrinos caused by both vacuum pair emission (VPE) and neutrino splitting. We compare the spectra that we derive with that obtained by IceCube in order to determine the implications of our results regarding Planck-scale physics. We find that if the drop off in the neutrino flux above ~ 2 PeV is caused by LIV a potentially significant pileup effect would be produced just below the drop-off energy in the case of CPT-even operator dominance. However, a clear drop off effect would not be observed if the CPT-odd, CPT-violating term dominates.
Acceleration radiation and the Planck scale
I. Agullo; J. Navarro-Salas; G. J. Olmo; L. Parker
2008-02-27
A uniformly accelerating observer perceives the Minkowski vacuum state as a thermal bath of radiation. We point out that this field-theory effect can be derived, for any dimension higher than two, without actually invoking very high energy physics. This supports the view that this phenomenon is robust against Planck-scale physics and, therefore, should be compatible with any underlying microscopic theory.
Six easy roads to the Planck scale
Ronald J. Adler
2010-01-08
We give six arguments that the Planck scale should be viewed as a fundamental minimum or boundary for the classical concept of spacetime, beyond which quantum effects cannot be neglected and the basic nature of spacetime must be reconsidered. The arguments are elementary, heuristic, and plausible, and as much as possible rely on only general principles of quantum theory and gravity theory. The paper is primarily pedagogical, and its main goal is to give physics students, non-specialists, engineers etc. an awareness and appreciation of the Planck scale and the role it should play in present and future theories of quantum spacetime and quantum gravity.
Constraining fundamental physics with Planck
NASA Astrophysics Data System (ADS)
Rocha, Graca
2015-08-01
The ? CDM model assumes the validity of General Relativity on cosmological scales,as well as the physics of the standard model of particle physics. One possible extension, which mayhave motivations in fundamental physics, is to consider variations of dimensionless constants.Such variations can be constrained through tests on astrophysical scales.A number of physical systems have been used, spanning different time scales, to set constraints on variations of the fundamental constants.These range from atomic clocks in the laboratory at a redshift z = 0 to BBN at z ?10^8 . However,apart from the claims of varying based on high resolution quasar absorption-line spectra,there is no other evidence for time-variable fundamental constants.CMB temperature anisotropies have been used extensively to constrain the variation of fundamental constants over cosmictimescales. In this talk I will present constraints on the temporal and spatial variation of fundamental constants such as fine structure constant, $\\alpha$, mass of the electron, $m_{e }$. etc. using CMB data with special focus on Planck data. I will also investigate the degeneracies with other cosmological parameters such as $H_{0}$ .
Discrete Mathematics and Physics on the PlanckScale exemplified by means of a
can see, that quantum theory as we know it holds sway down to arbitrarily small scales side, is it to try to generate both gravity and quantum theory as secondary and derived concepts (inÂ¨ottingen Bunsenstrasse 9 37073 GÂ¨ottingen Germany Abstract Starting from the hypothesis that both physics, in particular
Probing the Planck Scale with Proton Decay
Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi; Thormeier, Marc
2004-04-28
We advocate the idea that proton decay may probe physics at the Planck scale instead of the GUT scale. This is possible because supersymmetric theories have dimension-5 operators that can induce proton decay at dangerous rates, even with R-parity conservation. These operators are expected to be suppressed by the same physics that explains the fermion masses and mixings. We present a thorough analysis of nucleon partial lifetimes in models with a string-inspired anomalous U(1)_X family symmetry which is responsible for the fermionic mass spectrum as well as forbidding R-parity violating interactions. Protons and neutrons can decay via R-parity conserving non-renormalizable superpotential terms that are suppressed by the Planck scale and powers of the Cabibbo angle. Many of the models naturally lead to nucleon decay near present limits without any reference to grand unification.
T. Jacobson; S. Liberati; D. Mattingly
2003-01-01
Recent work has shown that dispersion relations with Planck scale Lorentz violation can produce observable effects at energies many orders of magnitude below the Planck energy M. This opens a window on physics that may reveal quantum gravity phenomena. It has already constrained the possibility of Planck scale Lorentz violation, which is suggested by some approaches to quantum gravity. In
Proton Decay and the Planck Scale
Larson, Daniel T.
2004-10-02
Even without grand unification, proton decay can be a powerful probe of physics at the highest energy scales. Supersymmetric theories with conserved R-parity contain Planck-suppressed dimension 5 operators that give important contributions tonucleon decay. These operators are likely controlled by flavor physics, which means current and near future proton decay experiments might yield clues about the fermion mass spectrum. I present a thorough analysis of nucleon partial lifetimes in supersymmetric one-flavon Froggatt-Nielsen models with a single U(1)_X family symmetry which is responsible for the fermionic mass spectrum as well as forbidding R-parity violating interactions. Many of the models naturally lead to nucleon decay near present limits without any reference to grand unification.
From the Planck to the Photon Scale
Burra G. Sidharth
2007-08-28
Using considerations from the Quantum Zero Point Field and Thermodynamics, we show that the Planck Scale is the minimum (maximum mass) and the Photon Scale is the maximum (minimum mass) Scale in the universe. The arguments also deduce the residual cosmic energy of $10^{-33}eV$ observed lately.
Planck-scale corrections to Friedmann equation
NASA Astrophysics Data System (ADS)
Awad, Adel; Ali, Ahmed Farag
2014-04-01
Recently, Verlinde proposed that gravity is an emergent phenomenon which originates from an entropic force. In this work, we extend Verlinde's proposal to accommodate generalized uncertainty principles (GUP), which are suggested by some approaches to quantum gravity such as string theory, black hole physics and doubly special relativity (DSR). Using Verlinde's proposal and two known models of GUPs, we obtain modifications to Newton's law of gravitation as well as the Friedmann equation. Our modification to the Friedmann equation includes higher powers of the Hubble parameter which is used to obtain a corresponding Raychaudhuri equation. Solving this equation, we obtain a leading Planck-scale correction to Friedmann-Robertson-Walker (FRW) solutions for the p = ?p equation of state.
Standard supersymmetry from a Planck-scale statistical theory
Roland E. Allen; Zorawar Wadiasingh; Seiichirou Yokoo
2007-11-24
We outline three new ideas in a program to obtain standard physics, including standard supersymmetry, from a Planck-scale statistical theory: (1) The initial spin 1/2 bosonic fields are transformed to spin 0 fields together with their auxiliary fields. (2) Time is defined by the progression of 3-geometries, just as originally proposed by DeWitt. (3) The initial (D-1)-dimensional "path integral" is converted from Euclidean to Lorentzian form by transformation of the fields in the integrand.
A probe of Planck energy physics
NASA Astrophysics Data System (ADS)
Occhionero, F.
Large scale voids are a very prominent feature in recent redshift surveys: here we attempt an explanation in terms of a first order phase transition occurring during the slow roll epoch of a two field inflation, a process where one field, omega, drives the slow rolling while the other, psi, undergoes quantum tunneling through a potential barrier. The ensuing bubble like perturbations are thought to be the precursors of the voids we observe today, while the zero-point fluctuations of the inflaton are the small, Gaussian perturbations seen by COBE on the large angular scales. The underlying physics is here assumed to be fourth order gravity (FOG, a theory derived from quadratic corrections to the Hilbert--Einstein Lagrangian) for different reasons, foremost among which the simplicity of the (conformal) potential which governs the tunneling and the slow rolling: another advantage of this theory is that one need not postulate an omega to drive inflation because gravity itself takes care of it; in fact, omega, the conformal factor which casts the theory in Einstein's form, is simply related to Ricci's scalar, R. Of course, one can obtain the same results in canonical general relativity by postulating ad hoc fields and potential. Bubbles grow to astrophysically interesting sizes only if they are nucleated a sufficient number of e-folds N before of the end of inflation: FOG can be tuned to achieve an N ~50 (unlike extended inflation, where N ~0). We display bubble spectra that generate the observed large scale structure and yet pass the constraints set by COBE. In fact, we use a toy model of bubbles in the MDE to show that caustics may be easily produced at any given redshift z_*: this may signal the formation of the first generation of galactic objects and the onset of reionization of the cosmic medium. A cosmogony where galaxies are born on spherical shells explains easily the claims of fractality (with D ~2), but only up to a maximal scale (of the order of 100 h^{-1} Mpc), homogeneity being restored thereabove. Another application of primordial bubbles is that they explain why, in apparent conflict with inflation, several authors claim that the Universe is open: it is sufficient that we live in a superhorizon bubble enucleated around N ~60 and that the Universe itself be a collection of such bubbles. Again a model based on FOG can be tuned to yield bubble spectra sharply peaked at Omega_0 .2, so that our probability of living in the right bubble is close to one. By unleashing one's fantasy, one can even envision a sequence of two phase transitions, at N ~60 and N ~50, where bubbles are born within bubbles and the bubbly topology and cosmogony are assigned to the open Universe. In conclusion, the study of the large scale structure may turn out to be a powerful probe -- and most likely the only one -- of Planck scale physics.
Revisiting neutrino masses from Planck scale operators
NASA Astrophysics Data System (ADS)
Iyer, Abhishek M.
2014-06-01
Planck scale lepton number violation is an interesting and natural possibility to explain nonzero neutrino masses. We consider such operators in the context of Randall-Sundrum (RS1) scenarios. Implementation of this scenario with a single Higgs localized on the IR brane (standard RS1) is not phenomenologically viable as they lead to inconsistencies in the charged lepton mass fits. In this paper we propose a setup with two Higgs doublets. We present a detailed numerical analysis of the fits to fermion masses and mixing angles. This model solves the issues regarding the fermion mass fits but solutions with consistent electroweak symmetry breaking are highly fine-tuned. A simple resolution is to consider supersymmetry in the bulk and a detailed discussion of which is provided. Constraints from flavor are found to be strong and minimal flavor violation (MFV) is imposed to alleviate them.
Renormalized spacetime is two-dimensional at the Planck scale
T. Padmanabhan; Sumanta Chakraborty; Dawood Kothawala
2015-08-03
Quantum field theory distinguishes between the bare variables -- which we introduce in the Lagrangian -- and the renormalized variables which incorporate the effects of interactions. This suggests that the renormalized, physical, metric tensor of spacetime (and all the geometrical quantities derived from it) will also be different from the bare, classical, metric tensor in terms of which the bare gravitational Lagrangian is expressed. We provide a physical ansatz to relate the renormalized metric tensor to the bare metric tensor such that the spacetime acquires a zero-point-length $\\ell _{0}$ of the order of the Planck length $L_{P}$. This prescription leads to several remarkable consequences. In particular, the Euclidean volume $V_D(\\ell,\\ell _{0})$ in a $D$-dimensional spacetime of a region of size $\\ell $ scales as $V_D(\\ell, \\ell_{0}) \\propto \\ell _{0}^{D-2} \\ell^2$ when $\\ell \\sim \\ell _{0}$, while it reduces to the standard result $V_D(\\ell,\\ell _{0}) \\propto \\ell^D$ at large scales ($\\ell \\gg \\ell _{0}$). The appropriately defined effective dimension, $D_{\\rm eff} $, decreases continuously from $D_{\\rm eff}=D$ (at $\\ell \\gg \\ell _{0}$) to $D_{\\rm eff}=2$ (at $\\ell \\sim \\ell _{0}$). This suggests that the physical spacetime becomes essentially 2-dimensional near Planck scale.
Hogan, Craig
2010-01-08
Classical spacetime and quantum mass-energy form the basis of all of physics. They become inconsistent at the Planck scale, 5.4 times 10^{-44} seconds, which may signify a need for reconciliation in a unified theory. Although proposals for unified theories exist, a direct experimental probe of this scale, 16 orders of magnitude above Tevatron energy, has seemed hopelessly out of reach. However in a particular interpretation of holographic unified theories, derived from black hole evaporation physics, a world assembled out of Planck-scale waves displays effects of unification with a new kind of uncertainty in position at the Planck diffraction scale, the geometric mean of the Planck length and the apparatus size. In this case a new phenomenon may measurable, an indeterminacy of spacetime position that appears as noise in interferometers. The colloquium will discuss the theory of the effect, and our plans to build a holographic interferometer at Fermilab to measure it.
Dynamically Induced Planck Scale and Inflation
Kannike, Kristjan; Pizza, Liberato; Racioppi, Antonio; Raidal, Martti; Salvio, Alberto; Strumia, Alessandro
2015-01-01
Theories where the Planck scale is dynamically generated from dimensionless interactions provide predictive inflationary potentials and super-Planckian field variations. We first study the minimal single-field realisation in the low-energy effective field theory limit, finding the predictions $n_s \\approx 0.96$ for the spectral index and $r \\approx 0.13$ for the tensor-to-scalar ratio, close to those of a quadratic potential. Next we consider agravity as a dimensionless quantum gravity theory finding a multi-field inflation that converges towards an attractor trajectory that predicts $n_s\\approx 0.96$ and $0.003
Dynamically Induced Planck Scale and Inflation
Kristjan Kannike; Gert Hütsi; Liberato Pizza; Antonio Racioppi; Martti Raidal; Alberto Salvio; Alessandro Strumia
2015-05-20
Theories where the Planck scale is dynamically generated from dimensionless interactions provide predictive inflationary potentials and super-Planckian field variations. We first study the minimal single-field realisation in the low-energy effective field theory limit, finding the predictions $n_s \\approx 0.96$ for the spectral index and $r \\approx 0.13$ for the tensor-to-scalar ratio, which can be reduced down to $\\approx 0.04$ in presence of large couplings. Next we consider agravity as a dimensionless quantum gravity theory finding a multi-field inflation that converges towards an attractor trajectory that predicts $n_s\\approx 0.96$ and $0.003
Max Planck Institute for the Physics of Complex Systems
Prentiss, Mara
Max Planck Institute for the Physics of Complex Systems The Max Planck Institute for the Physics theory. The Institute (http://www.pks.mpg.de) provides a stimulating environment due to an active in-house workshop program and a broad range of other research activities. Strong experimental groups are nearby
Cosmological constant in SUGRA models with Planck scale SUSY breaking and degenerate vacua
C. D. Froggatt; R. Nevzorov; H. B. Nielsen; A. W. Thomas
2014-10-08
The empirical mass of the Higgs boson suggests small to vanishing values of the quartic Higgs self--coupling and the corresponding beta function at the Planck scale, leading to degenerate vacua. This leads us to suggest that the measured value of the cosmological constant can originate from supergravity (SUGRA) models with degenerate vacua. This scenario is realised if there are at least three exactly degenerate vacua. In the first vacuum, associated with the physical one, local supersymmetry (SUSY) is broken near the Planck scale while the breakdown of the SU(2)_W\\times U(1)_Y symmetry takes place at the electroweak (EW) scale. In the second vacuum local SUSY breaking is induced by gaugino condensation at a scale which is just slightly lower than \\Lambda_{QCD} in the physical vacuum. Finally, in the third vacuum local SUSY and EW symmetry are broken near the Planck scale.
Ideal Quantum Gases with Planck Scale Limitations
Rainer Collier
2015-03-14
A thermodynamic system of non-interacting quantum particles changes its statistical distribution formulas if there is a universal limitation for the size of energetic quantum leaps (magnitude of quantum leaps smaller than Planck energy). By means of a restriction of the a priori equiprobability postulate one can reach a thermodynamic foundation of these corrected distribution formulas. The number of microstates is determined by means of a suitable counting method and combined with thermodynamics via the Boltzmann principle. The result is that, for particle energies that come close to the Planck energy, the thermodynamic difference between fermion and boson distribution vanishes. Both distributions then approximate a Boltzmann distribution. The wave and particle character of the quantum particles, too, can be influenced by choosing the size of the temperature and particle energy parameters relative to the Planck energy, as you can see from the associated fluctuation formulas. In the case of non-relativistic degeneration, the critical parameters Fermi momentum (fermions) and Einstein temperature (bosons) vanish as soon as the rest energy of the quantum particles reaches the Planck energy. For the Bose-Einstein condensation there exists, in the condensation range, a finite upper limit for the number of particles in the ground state, which is determined by the ratio of Planck mass to the rest mass of the quantum particles. In the relativistic high-temperature range, the energy densities of photon and neutrino radiation have finite limit values, which is of interest with regard to the start of cosmic expansion.
The Effective Planck Mass and the Scale of Inflation
Ignatios Antoniadis; Subodh P. Patil
2015-04-23
Observable quantities in cosmology are dimensionless, and therefore independent of the units in which they are measured. This is true of all physical quantities associated with the primordial perturbations that source cosmic microwave background anisotropies such as their amplitude and spectral properties. However, if one were to try and infer an absolute energy scale for inflation-- a priori, one of the more immediate corollaries of detecting primordial tensor modes-- one necessarily makes reference to a particular choice of units, the natural choice for which is Planck units. In this note, we discuss various aspects of how inferring the energy scale of inflation is complicated by the fact that the effective strength of gravity as seen by inflationary quanta necessarily differs from that seen by gravitational experiments at presently accessible scales. The uncertainty in the former relative to the latter has to do with the unknown spectrum of universally coupled particles between laboratory scales and the putative scale of inflation. These intermediate particles could be in hidden as well as visible sectors or could also be associated with Kaluza-Klein resonances associated with a compactification scale below the scale of inflation. We discuss various implications for cosmological observables.
Ideal Quantum Gases with Planck Scale Limitations
Collier, Rainer
2015-01-01
A thermodynamic system of non-interacting quantum particles changes its statistical distribution formulas if there is a universal limitation for the size of energetic quantum leaps (magnitude of quantum leaps smaller than Planck energy). By means of a restriction of the a priori equiprobability postulate one can reach a thermodynamic foundation of these corrected distribution formulas. The number of microstates is determined by means of a suitable counting method and combined with thermodynamics via the Boltzmann principle. The result is that, for particle energies that come close to the Planck energy, the thermodynamic difference between fermion and boson distribution vanishes. Both distributions then approximate a Boltzmann distribution. The wave and particle character of the quantum particles, too, can be influenced by choosing the size of the temperature and particle energy parameters relative to the Planck energy, as you can see from the associated fluctuation formulas. In the case of non-relativistic de...
Longitudinal and transverse relativity of spacetime locality in Planck-scale-deformed phase spaces
Loret, Niccoló; Rosati, Giacomo; 10.1088/1742-6596/360/1/012060
2012-01-01
We summarize some of the results we obtained in arXiv:1006.2126 (Physical Review Letters 106, 071301), arXiv:1102.4637 (Physics Letters B 700, 150-156) and in arXiv:1107.3334, giving complementary characterizations of the relativity of spacetime locality that affects certain Planck-scale-deformed phase-space descriptions of free particles.
Does Planck mass run on the cosmological horizon scale?
Georg Robbers; Niayesh Afshordi; Michael Doran
2007-08-23
Einstein's theory of general relativity, which contains a universal value of the Planck mass, has been so far successfully invoked to explain gravitational dynamics from sub-millimeter scales to the scale of the cosmological horizon. However, one may envisage that in alternative theories of gravity, the effective value of the Planck mass (or Newton's constant), which quantifies the coupling of matter to metric perturbations, can run on the cosmological horizon scale. In this letter, we study the consequences of a glitch in the Planck mass from sub-horizon to super-horizon scales. We first give three examples of models that naturally exhibit this feature, and then show that current cosmological observations severely constrain this glitch to less than 1.2%. This is the strongest constraint to date, on natural (i.e. non-fine-tuned) deviations from Einstein gravity on the cosmological horizon scale.
Gravitational four-fermion interaction on the Planck scale
I. B. Khriplovich
2012-02-01
The four-fermion gravitational interaction is induced by torsion, and gets essential on the Planck scale. On this scale, the axial-axial contribution dominates strongly in the discussed interaction. The energy-momentum tensor, generated by this contribution, is analyzed, as well as stability of the problem with respect to compression. The trace of this energy-momentum tensor can be negative.
Statistical Measures of Planck Scale Signal Correlations in Interferometers
Craig J. Hogan; Ohkyung Kwon
2015-08-30
A model-independent statistical framework is presented to interpret data from systems where the mean time derivative of positional cross correlation between world lines, a measure of spreading in a quantum geometrical wave function, is measured with a precision smaller than the Planck time. The framework provides a general way to constrain possible departures from perfect independence of classical world lines, associated with Planck scale bounds on positional information. A parametrized candidate set of possible correlation functions is shown to be consistent with the known causal structure of the classical geometry measured by an apparatus, and the holographic scaling of information suggested by gravity. Frequency-domain power spectra are derived that can be compared with interferometer data. Simple projections of sensitivity for specific experimental set-ups suggests that measurements will directly yield constraints on a universal time derivative of the correlation function, and thereby confirm or rule out a class of Planck scale departures from classical geometry.
Statistical Measures of Planck Scale Signal Correlations in Interferometers
Craig J. Hogan; Ohkyung Kwon
2015-08-04
A model-independent statistical framework is presented to interpret data from systems where the mean time derivative of positional cross correlation between world lines, a measure of spreading in a quantum geometrical wave function, is measured with a precision smaller than the Planck time. The framework provides a general way to constrain possible departures from perfect independence of classical world lines, associated with Planck scale bounds on positional information. A parametrized candidate set of possible correlation functions is shown to be consistent with the known causal structure of the classical geometry measured by an apparatus, and the holographic scaling of information suggested by gravity. Frequency-domain power spectra are derived that can be compared with interferometer data. Simple projections of sensitivity for specific experimental set-ups suggests that measurements will directly yield constraints on a universal time derivative of the correlation function, and thereby confirm or rule out a class of Planck scale departures from classical geometry.
Hubble and Planck scale limits on the determination of orbital angular momentum states of light
F. Tamburini; B. Thidé; A. Sponselli
2012-01-16
We review Heisenberg's uncertainty principle for the orbital angular momentum (OAM) of light. By taking into account the largest and smallest scales present in nature, such as the the Hubble radius and the Planck length, we have found that there exist upper and lower physical limits to the determination of the OAM of a photon.
Gravitational effects on vanishing Higgs potential at the Planck scale
NASA Astrophysics Data System (ADS)
Haba, Naoyuki; Kaneta, Kunio; Takahashi, Ryo; Yamaguchi, Yuya
2015-01-01
We investigate gravitational effects on the so-called multiple point criticality principle (MPCP) at the Planck scale. The MPCP requires two degenerate vacua, whose necessary conditions are expressed by vanishing Higgs quartic coupling [? (MPl)=0 ] and vanishing its ? function [??(MPl)=0 ]. We discuss a case that a specific form of gravitational corrections are assumed to contribute to ? functions of coupling constants [although it is accepted that gravitational corrections do not alter the running of the standard model (SM) couplings]. To satisfy the above two boundary conditions at the Planck scale, we find that the top pole mass and the Higgs mass should be 170.8 GeV ?Mt?171.7 GeV and Mh=125.7 ±0.4 GeV , respectively, as well as include suitable magnitude of gravitational effects (a coefficient of gravitational contribution as |a?|>2 ). In this case, however, since the Higgs quartic coupling ? becomes negative below the Planck scale, two vacua are not degenerate. We find that Mh?131.5 GeV with Mt?174 GeV is required by the realization of the MPCP. Therefore, the MPCP at the Planck scale cannot be realized in the SM, and also the SM with gravity since Mh?131.5 GeV is experimentally ruled out.
NASA Technical Reports Server (NTRS)
Blackwell, William C., Jr.
2004-01-01
In this paper space is modeled as a lattice of Compton wave oscillators (CWOs) of near- Planck size. It is shown that gravitation and special relativity emerge from the interaction between particles Compton waves. To develop this CWO model an algorithmic approach was taken, incorporating simple rules of interaction at the Planck-scale developed using well known physical laws. This technique naturally leads to Newton s law of gravitation and a new form of doubly special relativity. The model is in apparent agreement with the holographic principle, and it predicts a cutoff energy for ultrahigh-energy cosmic rays that is consistent with observational data.
Possible cosmogenic neutrino constraints on Planck-scale Lorentz violation
Mattingly, David M. [University of New Hampshire, Library Way 9, Durham, NH 03824 (United States); Maccione, Luca [DESY, Theory Group, Notkestraße 85, D-22607 Hamburg (Germany); Galaverni, Matteo [INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Liberati, Stefano [SISSA, Via Beirut, 2–4, I-34151, Trieste (Italy); Sigl, Günter, E-mail: davidmmattingly@comcast.net, E-mail: luca.maccione@desy.de, E-mail: galaverni@iasfbo.inaf.it, E-mail: liberati@sissa.it, E-mail: guenter.sigl@desy.de [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany)
2010-02-01
We study, within an effective field theory framework, O(E{sup 2}M{sub Pl}{sup 2}) Planck-scale suppressed Lorentz invariance violation (LV) effects in the neutrino sector, whose size we parameterize by a dimensionless parameter ?{sub ?}. We find deviations from predictions of Lorentz invariant physics in the cosmogenic neutrino spectrum. For positive O(1) coefficients no neutrino will survive above 10{sup 19}eV. The existence of this cutoff generates a bump in the neutrino spectrum at energies of 10{sup 17}eV. Although at present no constraint can be cast, as current experiments do not have enough sensitivity to detect ultra-high-energy neutrinos, we show that experiments in construction or being planned have the potential to cast limits as strong as ?{sub ?}?<10{sup ?4} on the neutrino LV parameter, depending on how LV is distributed among neutrino mass states. Constraints on ?{sub ?} < 0 can in principle be obtained with this strategy, but they require a more detailed modeling of how LV affects the neutrino sector.
Reconciliation of high energy scale models of inflation with Planck
Ashoorioon, Amjad; Dimopoulos, Konstantinos; Sheikh-Jabbari, M.M.; Shiu, Gary E-mail: konst.dimopoulos@lancaster.ac.uk E-mail: shiu@physics.wisc.edu
2014-02-01
The inflationary cosmology paradigm is very successful in explaining the CMB anisotropy to the percent level. Besides the dependence on the inflationary model, the power spectra, spectral tilt and non-Gaussianity of the CMB temperature fluctuations also depend on the initial state of inflation. Here, we examine to what extent these observables are affected by our ignorance in the initial condition for inflationary perturbations, due to unknown new physics at a high scale M. For initial states that satisfy constraints from backreaction, we find that the amplitude of the power spectra could still be significantly altered, while the modification in bispectrum remains small. For such initial states, M has an upper bound of a few tens of H, with H being the Hubble parameter during inflation. We show that for M ? 20H, such initial states always (substantially) suppress the tensor to scalar ratio. In particular we show that such a choice of initial conditions can satisfactorily reconcile the simple ½m{sup 2}?{sup 2} chaotic model with the Planck data [1-3].
Effect of CP-odd Planck-scale-induced operators on the Majoron scale
NASA Astrophysics Data System (ADS)
Mohapatra, R. N.; Zhang, X.
1993-09-01
We extend a recent work on the effect of nonperturbative Planck scale effects on models with spontaneously broken global B-L symmetry, where it was shown that the scale VBL of this symmetry must be less than 10 TeV. We show that, if the Planck scale effects break CP invariance, an allowed window for VBL appears where 108 GeV<=VBL<=5×1010 GeV.
Planck scale effects on the majoron
NASA Astrophysics Data System (ADS)
Akhmedov, E. Kh.; Berezhiani, Z. G.; Mohapatra, R. N.; Senjanovi?, G.
1993-01-01
The hypothesis that non-perturbative gravitational effects lead to explicit breaking of global symmetries is considered in the context of majoron models. We find that the nonvanishing majoron mass generated by these effects can overclose the universe unless the massive majoron is unstable. The cosmological mass density constraints can then be satisfied only if VBL < 10 TeV, where VBL is the scale of B - L symmetry breaking.
Large-scale alignments from WMAP and Planck
NASA Astrophysics Data System (ADS)
Copi, Craig J.; Huterer, Dragan; Schwarz, Dominik J.; Starkman, Glenn D.
2015-06-01
We revisit the alignments of the largest structures observed in the cosmic microwave background (CMB) using the seven and nine-year Wilkinson Microwave Anisotropy Probe (WMAP) and first-year Planck data releases. The observed alignments - the quadrupole with the octopole and their joint alignment with the direction of our motion with respect to the CMB (the dipole direction) and the geometry of the Solar system (defined by the Ecliptic plane) - are generally in good agreement with results from the previous WMAP data releases. However, a closer look at full-sky data on the largest scales reveals discrepancies between the earlier WMAP data releases (three to seven-year) and the final, nine-year release. There are also discrepancies between all the WMAP data releases and the first-year Planck release. Nevertheless, both the WMAP and Planck data confirm the alignments of the largest observable CMB modes in the Universe. In particular, the p-values for the mutual alignment between the quadrupole and octopole, and the alignment of the plane defined by the two with the dipole direction, are both at the greater than 3-sigma level for all three Planck maps studied. We also calculate conditional statistics on the various alignments and find that it is currently difficult to unambiguously identify a leading anomaly that causes the others or even to distinguish correlation from causation.
Gravitational effects on vanishing Higgs potential at the Planck scale
Naoyuki Haba; Kunio Kaneta; Ryo Takahashi; Yuya Yamaguchi
2015-04-01
We investigate gravitational effects on the so-called multiple point criticality principle (MPCP) at the Planck scale. The MPCP requires two degenerate vacua, whose necessary conditions are expressed by vanishing Higgs quartic coupling $\\lambda(M_{\\rm Pl})=0$ and vanishing its $\\beta$ function $\\beta_\\lambda(M_{\\rm Pl})=0$. We discuss a case that a specific form of gravitational corrections are assumed to contribute to $\\beta$ functions of coupling constants although it is accepted that gravitational corrections do not alter the running of the standard model (SM) couplings. To satisfy the above two boundary conditions at the Planck scale, we find that the top pole mass and the Higgs mass should be $170.8\\,{\\rm GeV} \\lesssim M_t\\lesssim 171.7\\,{\\rm GeV}$ and $M_h=125.7\\pm0.4\\,{\\rm GeV}$, respectively, as well as include suitable magnitude of gravitational effects (a coefficient of gravitational contribution as $|a_\\lambda| > 2$). In this case, however, since the Higgs quartic coupling $\\lambda$ becomes negative below the Planck scale, two vacua are not degenerate. We find that $M_h \\gtrsim 131.5\\,{\\rm GeV}$ with $M_t \\gtrsim 174\\,{\\rm GeV}$ is required by the realization of the MPCP. Therefore, the MPCP at the Planck scale cannot be realized in the SM and also the SM with gravity since $M_h \\gtrsim 131.5\\,{\\rm GeV}$ is experimentally ruled out.
Astrophysical constraints on Planck scale dissipative phenomena.
Liberati, Stefano; Maccione, Luca
2014-04-18
The emergence of a classical spacetime from any quantum gravity model is still a subtle and only partially understood issue. If indeed spacetime is arising as some sort of large scale condensate of more fundamental objects, then it is natural to expect that matter, being a collective excitation of the spacetime constituents, will present modified kinematics at sufficiently high energies. We consider here the phenomenology of the dissipative effects necessarily arising in such a picture. Adopting dissipative hydrodynamics as a general framework for the description of the energy exchange between collective excitations and the spacetime fundamental degrees of freedom, we discuss how rates of energy loss for elementary particles can be derived from dispersion relations and used to provide strong constraints on the base of current astrophysical observations of high-energy particles. PMID:24785026
Do we have unitary and (super)renormalizable quantum gravity below the Planck scale?
NASA Astrophysics Data System (ADS)
Salles, Filipe de O.; Shapiro, Ilya L.
2014-04-01
We explore how the stability of metric perturbations in higher-derivative theories of gravity depends on the energy scale of the initial seeds of such perturbations and on a typical energy scale of the gravitational vacuum background. It is shown that, at least in the cases of specific cosmological backgrounds, the unphysical massive ghost which is present in the spectrum of such theories is not growing up as a physical excitation and remains in the vacuum state until the initial frequency of the perturbation is close to the Planck order of magnitude. In this situation, the existing versions of renormalizable and super-renormalizable theories can be seen as very satisfactory effective theories of quantum gravity below the Planck scale.
Planck measurements of the isotropy and statistics of the large scale structure of the universe.
NASA Astrophysics Data System (ADS)
Gorski, Krzysztof M.
2015-08-01
Planck was originally proposed to deliver definitive measurements of the temperature anisotropy of the cosmic microwave background on angular scales larger than ~5 arcmin. This goal has been met with the 2015 release of the legacy data set comprising full sky maps of the microwave sky at multiple frequencies. One of the fundamental aspects of cosmology is the precision with which we understand the universe itself, and in particular the nature of the structure-seeding primordial perturbations. More specifically, what do their statistical properties and consistency or otherwise with isotropy reveal about early universe physics?I will discuss the phenomenological determination of the isotropy and statistics of the large scale structure of the universe from Planck data. This is likely to remain unsurpassed in the foreseeable future.
Braneflamagnetogenesis from cosmoparticle physics after Planck
Choudhury, Sayantan
2015-01-01
In this article, I have studied the cosmoparticle constraints on a generic class of large field ($|\\Delta\\phi|>M_{p}$) and small field ($|\\Delta\\phi|non-vanishing CP asymmetry ($\\epsilon_{CP}$) in leptogenesis and baryon asymmetry ($\\eta_{B}$) in baryogenesis scenario respectively. Further assuming the conformal invariance to be restored after inflation in the framework of RSII, I have explicitly shown that the requirement of the sub-dominant feature of large scale coherent magnetic field after inflation gives two fold non-trivial characteristic constraints- on equation of state parameter ($w$) and the c...
Tera Scale Remnants of Unification and Supersymmetry at Planck Scale
Kawamura, Yoshiharu
2013-01-01
We predict new particles at the Tera scale based on the assumptions that the standard model gauge interactions are unified around the gravitational scale with a big desert and new particles originate from hypermultiplets as remnants of supersymmetry, and propose a theoretical framework at the Tera scale and beyond, that has predictability.
Tera Scale Remnants of Unification and Supersymmetry at Planck Scale
Yoshiharu Kawamura
2013-05-06
We predict new particles at the Tera scale based on the assumptions that the standard model gauge interactions are unified around the gravitational scale with a big desert and new particles originate from hypermultiplets as remnants of supersymmetry, and propose a theoretical framework at the Tera scale and beyond, that has predictability.
Max Planck Institute for Extraterrestrial Physics: X-Ray Astronomy
NSDL National Science Digital Library
This website features the latest space science news, research activities, projects, and laboratories of the Max Planck Institute for Extraterrestrial Physics' X-Ray Astronomy group. Visitors can view images and read clear summaries of its research in the areas of galactic and extragalactic astronomy. Researchers can learn about the group's instrumental techniques using soft and hard X-rays such as imaging with Wolter telescopes and multi-wire proportional counters. In the Data Center, visitors can explore the group's data analysis software and user data archives. The site provides links to its innumerable collaborators.
Planck-scale dimensional reduction without a preferred frame
NASA Astrophysics Data System (ADS)
Amelino-Camelia, Giovanni; Arzano, Michele; Gubitosi, Giulia; Magueijo, João
2014-09-01
Several approaches to quantum gravity suggest that the standard description of spacetime as probed at low-energy, with four dimensions, is replaced in the Planckian regime by a spacetime with a spectral dimension of two. The implications for relativistic symmetries can be momentous, and indeed the most tangible picture for “running” of the spectral dimension, found within Horava-Lifshitz gravity, requires the breakdown of relativity of inertial frames. In this Letter we incorporate running spectral dimensions in a scenario that does not require the emergence of a preferred frame. We consider the best studied mechanism for deforming relativistic symmetries whilst preserving the relativity of inertial frames, based on a momentum space with curvature at the Planck scale. We show explicitly how running of the spectral dimension can be derived from these models.
Physical Dust Models in the Light of Planck
NASA Astrophysics Data System (ADS)
Draine, Bruce T.
2015-08-01
The Spitzer, Herschel, and Planck missions have provided observational data that challenge existing models of interstellar dust, and will guide us in the development of a new generation of dust models. The spectacular data from Planck now enable us to characterize the intensity of dust emission at wavelengths from 350um to 3mm, with invaluable measurements of polarized dust emission from 850um to 4mm. Models for interstellar dust are constrained by these new data, and also by many other observational constraints, such as infrared emission at shorter wavelengths, wavelength-dependent extinction and polarization of starlight, scattering of starlight, scattering and extinction of X-rays by dust, and ground-based studies of anomalous microwave emission.A physical dust model consists of dust grains with specified compositions, geometries, and sizes. The assumed physical properties of the dust should be consistent with the laws of physics, our understanding of candidate materials, and interstellar abundance constraints. I will review some contemporary dust models, and discuss how they fare when confronted with available data.
The Fractal Universe: From the Planck to the Hubble Scale
B. G. Sidharth
1999-07-17
We examine the fractal structure of the physical universe from the large scale to the smallest scale, including the phenomenon of fractal scaling. This is explained in terms of a stochastic underpinning for the laws of physics. A picture in pleasing agreement with experiment and observation at all scales emerges, very much in the spirit of Wheeler's "Law Without Law". It is argued that our depiction of the universe is akin to a broad brush delineation of a jagged coastline, the Compton wavelength being comparable to the thickness of the brush strokes.
Phenomenological scaling laws relating the observed galactic dimensions to Planck action constant
Salvatore Capozziello; Salvatore De Martino; Silvio De Siena; Fabrizio Illuminati
1999-03-30
It is shown that the characteristic observed radius, velocity, and temperature of a typical galaxy can be inferred from Planck action constant through a phenomenological scaling law on all cosmological scales.
Hierarchy problem, gauge coupling unification at the Planck scale, and vacuum stability
Yuya Yamaguchi
2015-04-27
To solve the hierarchy problem of the Higgs mass, it may be suggested that there are no an intermediate scale up to the Planck scale except for the TeV scale. For this motivation, we investigate possibilities of gauge coupling unification (GCU) at the Planck scale ($M_{Pl} = 2.4 \\times 10^{18}\\,{\\rm GeV}$) by adding extra particles with the TeV scale mass into the standard model. We find that the GCU at the Planck scale can be realized by extra particles including some relevant scalars, while it cannot be realized only by extra fermions with the same masses. On the other hand, when extra fermions have different masses, the GCU can be realized around $\\sqrt{8 \\pi} M_{Pl}$. By this extension, the vacuum can become stable up to the Planck scale.
Ultra-high energy physics and standard basic principles. Do Planck units really make sense?
NASA Astrophysics Data System (ADS)
Gonzalez-Mestres, Luis
2014-04-01
It has not yet been elucidated whether the observed flux suppression for ultra-high energy cosmic rays (UHECR) at energies above ? 4 x 1019 eV is a signature of the Greisen-Zatsepin-Kuzmin (GZK) cutoff or a consequence of other phenomena. In both cases, violations of the standard fundamental principles of Physics can be present and play a significant role. They can in particular modify cosmic-ray interactions, propagation or acceleration at very high energy. Thus, in a long-term program, UHECR data can hopefully be used to test relativity, quantum mechanics, energy and momentum conservation, vacuum properties... as well as the elementariness of standard particles. Data on cosmic rays at energies ? 1020 eV may also be sensitive to new physics generated well beyond Planck scale. A typical example is provided by the search for possible signatures of a Lorentz symmetry violation (LSV) associated to a privileged local reference frame (the "vacuum rest frame", VRF). If a VRF exists, the internal structure of standard particles at ultra-high energy can undergo substantial modifications. Similarly, the conventional particle symmetries may cease to be valid at such energies instead of heading to a grand unification and the structure of vacuum may no longer be governed by standard quantum field theory. Then, the question whether the notion of Planck scale still makes sense clearly becomes relevant and the very grounds of Cosmology can undergo essential modifications. UHECR studies naturally interact with the interpretation of WMAP and Planck observations. Recent Planck data analyses tend to confirm the possible existence of a privileged space direction. If the observed phenomenon turns out to be a signature of the spinorial space-time (SST) we suggested in 1996-97, then conventional Particle Physics may correspond to the local properties of standard matter at low enough energy and large enough distances. This would clearly strengthen the cosmological relevance of UHECR phenomenology and weaken the status of the Planck scale hypothesis. Another crucial observation is that, already before incorporating standard matter and relativity, the SST geometry naturally yields a H t = 1 law where t is the age of the Universe and H the ratio between relative speeds and distances at cosmic scale. As standard cosmology is not required to get such a fundamental result, the need for a conventional Planck scale is far from obvious and the study of UHECR can potentially yield evidence for an alternative approach including new physics and new ultimate constituents of matter. UHECR may in particular allow to explore the possible indications of the existence of a transition scale at very high energy where the standard laws would start becoming less and less dominant and new physics would replace the conventional fundamental principles. We discuss prospects of searches for potential signatures of such a phenomenon.
Loss, Daniel
, LPl 1.62 × 10-33 cm, the inverse (in natural units) of the Planck energy, EPl 1.22 × 1019 Ge deviation. Such a systematic deviation, on which observations by the Fermi satellite set Planck-scale limits
Does the planck mass run on the cosmological-horizon scale?
Robbers, Georg; Afshordi, Niayesh; Doran, Michael
2008-03-21
Einstein's theory of general relativity contains a universal value of the Planck mass. However, one may envisage that in alternative theories of gravity the effective value of the Planck mass (or Newton's constant), which quantifies the coupling of matter to metric perturbations, can run on the cosmological-horizon scale. In this Letter, we study the consequences of a glitch in the Planck mass from subhorizon to superhorizon scales. We show that current cosmological observations severely constrain this glitch to less than 1.2%. PMID:18517773
Interplay between curvature and Planck-scale effects in astrophysics and cosmology
Marcianò, Antonino; Amelino-Camelia, Giovanni; Gubitosi, Giulia; Mandanici, Gianluca; Melchiorri, Alessandro [Dipartimento di Fisica, Università di Roma ''La Sapienza'', and sez. Roma1 INFN, P.le A. Moro 2, 00185 Roma (Italy); Bruno, Nicola Rossano, E-mail: antonino.marciano@cpt.univ-mrs.fr, E-mail: giovanni.amelino-camelia@roma1.infn.it, E-mail: r.bruno@bnrenergia.it, E-mail: giulia.gubitosi@roma1.infn.it, E-mail: gianluca.mandanici@istruzione.it, E-mail: alessandro.melchiorri@roma1.infn.it [Centro Studi e Formazione sulle Energie Rinnovabili, BNR Energia Srl, Via Costabella 34/36, 00195 Roma (Italy)
2010-06-01
Several recent studies have considered the implications for astrophysics and cosmology of some possible nonclassical properties of spacetime at the Planck scale. The new effects, such as a Planck-scale-modified energy-momentum (dispersion) relation, are often inferred from the analysis of some quantum versions of Minkowski spacetime, and therefore the relevant estimates depend heavily on the assumption that there could not be significant interplay between Planck-scale and curvature effects. We here scrutinize this assumption, using as guidance a quantum version of de Sitter spacetime with known Inönü-Wigner contraction to a quantum Minkowski spacetime. And we show that, contrary to common (but unsupported) beliefs, the interplay between Planck-scale and curvature effects can be significant. Within our illustrative example, in the Minkowski limit the quantum-geometry deformation parameter is indeed given by the Planck scale, while in the de Sitter picture the parameter of quantization of geometry depends both on the Planck scale and the curvature scalar. For the much-studied case of Planck-scale effects that intervene in the observation of gamma-ray bursts we can estimate the implications of ''quantum spacetime curvature'' within robust simplifying assumptions. For cosmology at the present stage of the development of the relevant mathematics one cannot go beyond semiheuristic reasoning, and we here propose a candidate approximate description of a quantum FRW geometry, obtained by patching together pieces (with different spacetime curvature) of our quantum de Sitter. This semiheuristic picture, in spite of its limitations, provides rather robust evidence that in the early Universe the interplay between Planck-scale and curvature effects could have been particularly significant.
A Planck-scale limit on spacetime fuzziness and stochastic Lorentz invariance violation
NASA Astrophysics Data System (ADS)
Vasileiou, Vlasios; Granot, Jonathan; Piran, Tsvi; Amelino-Camelia, Giovanni
2015-04-01
Wheeler’s `spacetime-foam’ picture of quantum gravity (QG) suggests spacetime fuzziness (fluctuations leading to non-deterministic effects) at distances comparable to the Planck length, LPl ~ 1.62 × 10-33 cm, the inverse (in natural units) of the Planck energy, EPl ~ 1.22 × 1019 GeV. The resulting non-deterministic motion of photons on the Planck scale is expected to produce energy-dependent stochastic fluctuations in their speed. Such a stochastic deviation from the well-measured speed of light at low photon energies, c, should be contrasted with the possibility of an energy-dependent systematic, deterministic deviation. Such a systematic deviation, on which observations by the Fermi satellite set Planck-scale limits for linear energy dependence, is more easily searched for than stochastic deviations. Here, for the first time, we place Planck-scale limits on the more generic spacetime-foam prediction of energy-dependent fuzziness in the speed of photons. Using high-energy observations from the Fermi Large Area Telescope (LAT) of gamma-ray burst GRB090510, we test a model in which photon speeds are distributed normally around c with a standard deviation proportional to the photon energy. We constrain the model’s characteristic energy scale beyond the Planck scale at >2.8EPl(>1.6EPl), at 95% (99%) confidence. Our results set a benchmark constraint to be reckoned with by any QG model that features spacetime quantization.
TeV Astrophysics Constraints on Planck Scale Lorentz Violation
Ted Jacobson; Stefano Liberati; David Mattingly
2005-01-01
Cerenkov radiation, photon decay and photo-production of electron-positron pairs. We show that the parameter plane for cubic momentum terms in the dispersion relations is constrained to an order unity region in Planck units. We find that the threshold configuration can occur with an asymmetric distribution of momentum for pair creation, and with a hard photon for vacuum ÿ Cerenkov radiation.
Preserving the validity of the two-Higgs-doublet model up to the Planck scale
NASA Astrophysics Data System (ADS)
Ferreira, P. M.; Haber, Howard E.; Santos, Edward
2015-08-01
We examine the constraints on the two-Higgs-doublet model (2HDM) due to the stability of the scalar potential and absence of Landau poles at energy scales below the Planck scale. We employ the most general 2HDM that incorporates an approximately Standard Model (SM) Higgs boson with a flavor aligned Yukawa sector to eliminate potential tree-level Higgs-mediated flavor changing neutral currents. Using basis independent techniques, we exhibit regimes of the 2HDM parameter space with a 125 GeV SM-like Higgs boson that is stable and perturbative up to the Planck scale. Implications for the heavy scalar spectrum are exhibited.
Conjecture on the physical implications of the scale anomaly
Hill, Christopher T.; /Fermilab
2005-10-01
Murray Gell-Mann, after co-inventing QCD, recognized the interplay of the scale anomaly, the renormalization group, and the origin of the strong scale, {Lambda}{sub QCD}. I tell a story, then elaborate this concept, and for the sake of discussion, propose a conjecture that the physical world is scale invariant in the classical, {h_bar}, limit. This principle has implications for the dimensionality of space-time, the cosmological constant, the weak scale, and Planck scale.
Satoshi Iso; Yuta Orikasa
2015-05-26
The recent discovery of the Higgs-like particle at around 126 GeV has given us a big hint towards the origin of the Higgs potential. Especially the running quartic coupling vanishes near the Planck scale, which indicates a possible link between the physics in the electroweak and the Planck scales. Motivated by this and the hierarchy problem, we investigate a possibility that the Higgs has a flat potential at the Planck scale. In particular, we study the RG analysis of the B-L extension of the standard model with a classical conformality. The B-L symmetry is radiatively broken at the TeV scale via the Coleman-Weinberg mechanism. The electroweak symmetry breaking is triggered by a radiatively generated scalar mixing so that its scale 246 GeV is dynamically related with the B-L breaking scale at TeV. The Higgs boson mass is given at the border of the stability bound,which is lowered by a few GeV from the SM by the effect of the B-L gauge interaction.
None
2011-10-06
Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by ° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, ° the ERC Advanced Grant "MassTeV" 226371, ° and the CERN-TH unit.
2010-06-02
Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by ° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, ° the ERC Advanced Grant "MassTeV" 226371, ° and the CERN-TH unit.
Planck-scale Lorentz violation constrained by Ultra-High-Energy Cosmic Rays
Maccione, Luca [DESY, Theory Group, Notkestrasse 85, D-22607 Hamburg (Germany)] [DESY, Theory Group, Notkestrasse 85, D-22607 Hamburg (Germany); Taylor, Andrew M. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)] [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Liberati, Stefano [SISSA, Via Beirut 2-4, I-34014 Trieste (Italy)] [SISSA, Via Beirut 2-4, I-34014 Trieste (Italy); Mattingly, David M., E-mail: luca.maccione@desy.de, E-mail: andrew.taylor@mpi-hd.mpg.de, E-mail: davidmmattingly@comcast.net, E-mail: liberati@sissa.it
2009-04-15
We investigate the consequences of higher dimension Lorentz violating, CPT even kinetic operators that couple standard model fields to a non-zero vector field in an Effective Field Theory framework. Comparing the ultra-high energy cosmic ray spectrum reconstructed in the presence of such terms with data from the Pierre Auger observatory allows us to establish two sided bounds on the coefficients of the mass dimension five and six operators for the proton and pion. Our bounds imply that for both protons and pions, the energy scale of Lorentz symmetry breaking must be well above the Planck scale. In particular, the dimension five operators are constrained at the level of 10{sup -3}M{sub Planck}{sup -1}. The magnitude of the dimension six proton coefficient is bounded at the level of 10{sup -6}M{sub Planck}{sup -2} except in a narrow range where the pion and proton coefficients are both negative and nearly equal. In this small area, the magnitude of the dimension six proton coefficient must only be below 10{sup -3}M{sub Planck}{sup -2}. Constraints on the dimension six pion coefficient are found to be much weaker, but still below M{sub Planck}{sup -2}.
Quantum Mechanics on a Planck Lattice and Black Hole Physics
NASA Astrophysics Data System (ADS)
Jizba, Petr; Kleinert, Hagen; Scardigli, Fabio
2011-07-01
We study uncertainty relations as formulated in a crystal-like universe, whose lattice spacing is of order of Planck length. For Planck energies, the uncertainty relation for position and momenta has a lower bound equal to zero. Connections of this result with double special relativity, and with 't Hooft's deterministic quantization proposal, are briefly pointed out. We then apply our formulae to micro black holes, and we derive a new mass-temperature relation for Schwarzschild (micro) black holes. In contrast to standard results based on Heisen-berg and stringy uncertainty relations, we obtain both a finite Hawking's temperature and a zero rest-mass remnant at the end of the micro black hole evaporation.
Hierarchy problem, gauge coupling unification at the Planck scale, and vacuum stability
Naoyuki Haba; Hiroyuki Ishida; Ryo Takahashi; Yuya Yamaguchi
2015-01-06
Regarding to the gauge hierarchy problem, an intermediate scale, such as a grand unification scale of ${\\cal O}(10^{16})\\,{\\rm GeV}$, is disfavored, and allowed mass scale is only TeV scale. For this motivation, we explore possibilities of gauge coupling unification (GCU) at the Planck scale ($M_{Pl} = 2.4 \\times 10^{18}\\,{\\rm GeV}$) by adding a few extra particles with TeV scale mass into the standard model. We find that, when all extra particles have the same mass, the GCU at the Planck scale cannot be realized only by extra fermions, but can be done by extra particles including some scalars. On the other hand, when extra fermions have different masses, the GCU can be realized around $\\sqrt{8 \\pi} M_{Pl}$ only by themselves. By this extension, a vacuum becomes stable up to the Planck scale as well as a proton lifetime is much longer than an experimental lower bound.
Absolute Calibration of the Radio Astronomy Flux Density Scale from 22 to 43 GHz using Planck
NASA Astrophysics Data System (ADS)
Butler, Bryan J.; Partridge, R. Bruce; Perley, Richard A.; Stevens, Jamie B.; Lopez-Caniego, Marcos; Rocha, Graca; Walter, Ben Z.; Zacchei, Andrea
2015-01-01
The Planck mission detected hundreds of extragalactic radio sources at frequencies from 28 to 857 GHz. Since Planck's calibration is absolute, based on the satellite's annual motion around the Sun, and since its beams are well-characterized at the sub-percent levels, Planck's flux density measurements are absolute to percent-level accuracy. We have made coordinated Planck, VLA and ATCA observations of ~60 strong, unresolved sources in order to compare Planck's absolute calibration to that used by these two interferometers at 22, 28 and 43 GHz. The flux densities of the sources used to calibrate the VLA observations are taken from Perley and Butler (2013), which is fundamentally based on models of the planet Mars calibrated via WMAP observations. The flux densities of the sources used to calibrate the ATCA observations are based on models of the planet Uranus. Despite the scatter introduced by the variability of many of the sources, the three flux density scales are determined to agree to 1-2% accuracy.
Quantum dynamics via Planck-scale-stepped action-carrying 'Graph Paths'
Chew, Geoffrey F.
2003-05-05
A divergence-free, parameter-free, path-based discrete-time quantum dynamics is designed to not only enlarge the achievements of general relativity and the standard particle model, by approximations at spacetime scales far above Planck scale while far below Hubble scale, but to allow tackling of hitherto inaccessible questions. ''Path space'' is larger than and precursor to Hilbert-space basis. The wave-function-propagating paths are action-carrying structured graphs-cubic and quartic structured vertices connected by structured ''fermionic'' or ''bosonic'' ''particle'' and ''nonparticle'' arcs. A Planck-scale path step determines the gravitational constant while controlling all graph structure. The basis of the theory's (zero-rest-mass) elementary-particle Hilbert space (which includes neither gravitons nor scalar bosons) resides in particle arcs. Nonparticle arcs within a path are responsible for energy and rest mass.
Planck 2014 and beyond: the CMB polarization at large angular scales
NASA Astrophysics Data System (ADS)
Mangilli, Anna
2015-08-01
One of the main challenge left for the present and the future CMB experiments is the high precision measurement of the CMB polarization at large angular scales. The reionization bump in the CMB polarization EE and BB power spectra encodes unique informations about the reionization history of the Universe and the inflationary epoch. Such valuable information can be accessed only with an unprecedented accuracy and care on each step of the data analysis and its interpretation. The Planck 2014 release represents a first step towards the accurate characterization of the CMB polarization on the full sky. In this talk I will go through a brief introduction about the CMB polarization mainly focusing on the large angular scales. I will show how the EE and BB spectra at low-l can be used to improve the constraints on the cosmological parameters, in particular those related to the reionization history (?) and the amount of tensor modes (r). As a Planck Scientist I will present, on behalf of the Planck collaboration, the status of the CMB analysis at large scales after the 2014 release. I will present different methods that can be used for the low-l analysis, focusing on a spectral based approach (Mangilli et al. in preparation). Finally I will present the theoretical implications of the results and the future prospects in view of the Planck release at the end of 2015 and future CMB experiments.
Effective Planck Mass and the Scale of Inflation
Kleban, Matthew; Porrati, Massimo
2015-01-01
A recent paper argued that it is not possible to infer the energy scale of inflation from the amplitude of tensor fluctuations in the Cosmic Microwave Background, because the usual connection is substantially altered if there are a large number of universally coupled fields present during inflation, with mass less than the inflationary Hubble scale. We give a simple argument demonstrating that this is incorrect.
Physical Properties of Planck Cold Cores in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Hughes, Annie
2015-08-01
We present an analysis of 51 cold dust clouds in the Large Magellanic Cloud (LMC) that were identified in the Planck all-sky survey data and included in the recently released Planck Catalogue of Galactic Cold Clumps. As a sample of cold, dense, well-shielded regions that were identified independently of their HI and CO emission, these clouds are of considerable interest for studying the early phases of star formation in the LMC. Here we present an overview of their unusual spatial distribution within the LMC, and compare their basic physical properties as derived from CO and dust emission measurements.
Inflation from radion gauge-Higgs potential at Planck scale
NASA Astrophysics Data System (ADS)
Abe, Yugo; Inami, Takeo; Kawamura, Yoshiharu; Koyama, Yoji
2015-09-01
We study whether inflation is realized based on the radion gauge-Higgs potential obtained from the one-loop calculation in five-dimensional gravity coupled to a U(1) gauge theory. We show that the gauge-Higgs can give rise to inflation in accord with the astrophysical data and the radion plays a role in fixing the values of physical parameters. We clarify the reason why the radion dominated inflation and the hybrid inflation cannot occur in our framework.
Inflation from radion gauge-Higgs potential at Planck scale
Abe, Yugo; Kawamura, Yoshiharu; Koyama, Yoji
2015-01-01
We study whether the inflation is realized based on the radion gauge-Higgs potential obtained from the one-loop calculation in the 5-dimensional gravity coupled to a $U(1)$ gauge theory. We show that the gauge-Higgs can give rise to inflation in accord with the astrophysical data and the radion plays a role in fixing the values of physical parameters. We clarify the reason why the radion dominated inflation and the hybrid inflation cannot occur in our framework.
Constraining the energy-momentum dispersion relation with Planck-scale sensitivity using cold atoms.
Amelino-Camelia, Giovanni; Lämmerzahl, Claus; Laemmerzahl, Claus; Mercati, Flavio; Tino, Guglielmo M
2009-10-23
We use the results of ultraprecise cold-atom-recoil experiments to constrain the form of the energy-momentum dispersion relation, a structure that is expected to be modified in several quantum-gravity approaches. Our strategy of analysis applies to the nonrelativistic (small speeds) limit of the dispersion relation, and is therefore complementary to an analogous ongoing effort of investigation of the dispersion relation in the ultrarelativistic regime using observations in astrophysics. For the leading correction in the nonrelativistic limit the exceptional sensitivity of cold-atom-recoil experiments remarkably allows us to set a limit within a single order of magnitude of the desired Planck-scale level, thereby providing the first example of Planck-scale sensitivity in the study of the dispersion relation in controlled laboratory experiments. PMID:19905745
Planck-Scale Traces from the Interference Pattern of two Bose-Einstein Condensates
E. Castellanos; J. I. Rivas
2014-11-24
We analyze the possible effects arising from Planck scale regime upon the interference pattern of two non-interacting Bose-Einstein condensates. We start with the analysis of the free expansion of a condensate, taken into account the effects produced by a deformed dispersion relation, suggested in several quantum-gravity models. The analysis of the condensate free expansion, in particular, the modified free velocity expansion, suggests in a natural way, a modified uncertainty principle that could leads to new phenomenological implications related to the quantum structure of space time. Finally, we analyze the corresponding separation between the interference fringes after the two condensates overlap, in order to explore the sensitivity of the system to possible signals caused by the Planck scale regime.
Biological scaling and physics.
Rau, A R P
2002-09-01
Kleiber's law in biology states that the specific metabolic rate (metabolic rate per unit mass) scales as M- 1/4 in terms of the mass M of the organism. A long-standing puzzle is the (- 1/4) power in place of the usual expectation of (- 1/3) based on the surface to volume ratio in three-dimensions. While recent papers by physicists have focused exclusively on geometry in attempting to explain the puzzle, we consider here a specific law of physics that governs fluid flow to show how the (- 1/4) power arises under certain conditions. More generally, such a line of approach that identifies a specific physical law as involved and then examines the implications of a power law may illuminate better the role of physics in biology. PMID:12381870
Passage of Time in a Planck Scale Rooted Local Inertial Structure
Joy Christian
2006-06-05
It is argued that the `problem of time' in quantum gravity necessitates a refinement of the local inertial structure of the world, demanding a replacement of the usual Minkowski line element by a 4+2n dimensional pseudo-Euclidean line element, with the extra 2n being the number of internal phase space dimensions of the observed system. In the refined structure, the inverse of the Planck time takes over the role of observer-independent conversion factor usually played by the speed of light, which now emerges as an invariant but derivative quantity. In the relativistic theory based on the refined structure, energies and momenta turn out to be invariantly bounded from above, and lengths and durations similarly bounded from below, by their respective Planck scale values. Along the external timelike world-lines, the theory naturally captures the `flow of time' as a genuinely structural attribute of the world. The theory also predicts expected deviations--suppressed quadratically by the Planck energy--from the dispersion relations for free fields in the vacuum. The deviations from the special relativistic Doppler shifts predicted by the theory are also suppressed quadratically by the Planck energy. Nonetheless, in order to estimate the precision required to distinguish the theory from special relativity, an experiment with a binary pulsar emitting TeV range gamma-rays is considered in the context of the predicted deviations from the second-order shifts.
Straube, Arthur V.
2011-01-01
THE JOURNAL OF CHEMICAL PHYSICS 135, 084103 (2011) How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? Ramon Grima,1,a) Philipp Thomas,1,2 and Arthur V. Straube2 1 School August 2011) The chemical Fokker-Planck equation and the corresponding chemical Langevin equation are com
Production and Evaporation of Planck Scale Black Holes at the Lhc
NASA Astrophysics Data System (ADS)
Nicolini, P.; Mureika, J.; Spallucci, E.; Winstanley, E.; Bleicher, M.
2015-01-01
We review the phenomenology of mini black holes at colliders in light of the latest data from the LHC. By improving the conventional production cross-section, we show that the current non-observation of black hole signals can be explained in terms of quantum gravity effects. In the most optimistic case, black hole production could take place at a scale slightly above the LHC design energy. We also analyse possible new signatures of quantum-corrected Planck-scale black holes: in contrast to the semiclassical scenario the emission would take place in terms of soft particles mostly on the brane.
Vladimir B. Yurchenko; John Anthony Murphy; Jean-Michel Lamarre
2004-11-23
We present the latest results of our fast physical optics simulations of the ESA PLANCK HFI beams. The main beams of both polarized and non-polarized channels have been computed with account of broad frequency bands for the final design and positions of the HFI horns. Gaussian fitting parameters of the broadband beams have been presented. Beam polarization characteristics and horn defocusing effects have been studied.
On the significance of power asymmetries in Planck CMB data at all scales
Quartin, Miguel; Notari, Alessio E-mail: notari@ffn.ub.es
2015-01-01
We perform an analysis of the CMB temperature data taken by the Planck satellite investigating if there is any significant deviation from cosmological isotropy. We look for differences in the spectrum between two opposite hemispheres and also for dipolar modulations. We propose a new way to avoid biases due to partial-sky coverage by producing a mask symmetrized in antipodal directions, in addition to the standard smoothing procedure. We also properly take into account both Doppler and aberration effects due to our peculiar velocity and the anisotropy of the noise, since these effects induce a significant hemispherical asymmetry. We are thus able to probe scales all the way to ? = 2000. After such treatment we find no evidence for significant hemispherical anomalies along any of the analyzed directions (i.e. deviations are less than 1.5? when summing over all scales). Although among the larger scales there are sometimes higher discrepancies, these are always less than 3?. We also find results on a dipolar modulation of the power spectrum. Along the hemispheres aligned with the most asymmetric direction for 2 ? ? ? 2000 we find a 3.3? discrepancy when comparing to simulations. However, if we do not restrict ourselves to Planck's maximal asymmetry axis, which can only be known a posteriori, and compare Planck data with the modulation of simulations along their respective maximal asymmetry directions, the discrepancy goes down to less than 1? (with, again, almost 3? discrepancies in some low-? modes). We thus conclude that no significant power asymmetries seem to be present in the full data set. Interestingly, without proper removal of Doppler and aberration effects one would find spurious anomalies at high ?, between 3? and 5?. Even when considering only ? < 600 we find that the boost is non-negligible and alleviates the discrepancy by roughly half-?.
Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale
D. S. Gorbunov; S. M. Sibiryakov
2005-06-08
We present an extension of the Randall--Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam--Veltman--Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances.
Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale
NASA Astrophysics Data System (ADS)
Gorbunov, Dmitry S.; Sibiryakov, Sergei M.
2005-09-01
We present an extension of the Randall-Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam-Veltman-Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances.
The Y SZ-YX Scaling Relation as Determined from Planck and Chandra
NASA Astrophysics Data System (ADS)
Rozo, Eduardo; Vikhlinin, Alexey; More, Surhud
2012-11-01
Sunyaev-Zeldovich (SZ) clusters surveys, such as Planck, the South Pole Telescope, and the Atacama Cosmology Telescope, will soon be publishing several hundred SZ-selected systems. The key ingredient required to transport the mass calibration from current X-ray-selected cluster samples to these SZ systems is the Y SZ-YX scaling relation. We constrain the amplitude, slope, and scatter of the Y SZ-YX scaling relation using SZ data from Planck and X-ray data from Chandra. We find a best-fit amplitude of ln (D 2 A Y SZ/CYX ) = -0.202 ± 0.024 at the pivot point CYX = 8 × 10-5 Mpc2. This corresponds to a Y SZ/YX ratio of 0.82 ± 0.024, in good agreement with X-ray expectations after including the effects of gas clumping. The slope of the relation is ? = 0.916 ± 0.032, consistent with unity at ?2.3?. We are unable to detect intrinsic scatter, and find no evidence that the scaling relation depends on cluster dynamical state.
Planck 2013 results. XVII. Gravitational lensing by large-scale structure
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Déchelette, T.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lavabre, A.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Pullen, A. R.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Smith, K.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
On the arcminute angular scales probed by Planck, the cosmic microwave background (CMB) anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217 GHz frequency bands with an overall significance of greater than 25?. We use thetemperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting ?CDM model for the Planck temperature power spectrum, showing that this measurement at z = 1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy-breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the root-mean-squared amplitude of matter fluctuations at z ~ 2.
NASA Astrophysics Data System (ADS)
Diósi, Lajos; Elze, Hans-Thomas; Fronzoni, Leone; Halliwell, Jonathan; Prati, Enrico; Vitiello, Giuseppe; Yearsley, James
2013-06-01
Presented in this volume are the Invited Lectures and the Contributed Papers of the Sixth International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2012, held at Castello Pasquini, Castiglioncello (Tuscany), 17-21 September 2012. These proceedings may document to the interested public and to the wider scientific community the stimulating exchange of ideas at the meeting. The number of participants has been steadily growing over the years, reflecting an increasing attraction, if not need, of such conference. Our very intention has always been to bring together leading researchers, advanced students, and renowned scholars from various areas, in order to stimulate new ideas and their exchange across the borders of specialization. In this way, the series of meetings successfully continued from the beginning with DICE 20021, followed by DICE 20042, DICE 20063, DICE 20084, and DICE 20105, Most recently, DICE 2012 brought together more than 120 participants representing more than 30 countries worldwide. It has been a great honour and inspiration to have Professor Yakir Aharonov (Tel Aviv) with us, who presented the opening Keynote Lecture 'The two-vector quantum formalism'. With the overarching theme 'Spacetime - Matter - Quantum Mechanics - from the Planck scale to emergent phenomena', the conference took place in the very pleasant and inspiring atmosphere of Castello Pasquini - in beautiful surroundings, overlooking a piece of Tuscany's coast. The 5-day program covered these major topics: Quantum Mechanics, Foundations and Quantum-Classical Border Quantum-Classical Hybrids and Many-Body Systems Spectral Geometry, Path Integrals and Experiments Quantum -/- Gravity -/- Spacetime Quantum Mechanics on all Scales? A Roundtable Discussion under the theme 'Nuovi orizzonti nella ricerca scientifica. Ci troviamo di fronte ad una rivoluzione scientifica?' formed an integral part of the program. With participation of E Del Giudice (INFN & Università di Milano), F Guerra (Università 'La Sapienza', Roma) and G Vitiello (Università di Salerno), this event traditionally dedicated to the public drew a large audience involved in lively discussions until late. The workshop was organized by L Diósi (Budapest), H-T Elze (Pisa, chair), L Fronzoni (Pisa), J J Halliwell (London), E Prati (Milano) and G Vitiello (Salerno), with most essential help from our conference secretaries L Fratino, N Lampo, I Pozzana, and A Sonnellini, all students from Pisa, and from our former secretaries M Pesce-Rollins and L Baldini. Several institutions and sponsors supported the workshop and their representatives and, in particular, the citizens of Rosignano/Castiglioncello are deeply thanked for the generous help and kind hospitality: Comune di Rosignano - A Franchi (Sindaco di Rosignano), S Scarpellini (Segreteria sindaco), L Benini (Assessore ai lavori pubblici), M Pia (Assessore all' urbanistica) REA Rosignano Energia Ambiente s.p.a. - F Ghelardini (Presidente della REA), E Salvadori and C Peccianti (Segreteria) Associazione Armunia - A Nanni (Direttore), G Mannari (Programmazione), C Perna, F Bellini, M Nannerini, P Bruni and L Meucci (Tecnici). Special thanks go to G Mannari and her collaborators for advice and great help in all the practical matters that had to be dealt with, in order to run the meeting at Castello Pasquini smoothly Funds made available by Università di Pisa, Domus Galilaeana (Pisa), Centro Interdisciplinare per lo Studio dei Sistemi Complessi - CISSC (Pisa), Dipartimento di Ingegneria Industriale (Università di Salerno), Istituto Italiano per gli Studi Filosofici - IISF (Napoli), Solvay Italia SA (Rosignano), Institute of Physics Publishing - IOP (Bristol), Springer Verlag (Heidelberg), and Hungarian Scientific Research Fund OTKA are gratefully acknowledged. Last, but not least, special thanks are due to Laura Pesce (Vitrium Galleria, San Vincenzo) for the exposition of her artwork 'arte e scienza' at Castello Pasquini during the conference. The papers submitted in the wake of the conference have been edited by
Roee Amit
2008-02-14
I assume a universe whereby the speed of light and the planck constant are not constants but instead parameters that vary locally in time-and space. When describing motion, I am able to derive a modified path integral description at the quantum level, which offers a natural extension of quantum mechanics. At the microscopic level, this path integral intuitively describes a physics with many quantum realities thus leading to a novel concept of manifold of physics, which can be looked at as a novel action principle. This paradigm reflects the notion that the observed laws of physics on any given scale are determined by the underlying distribution of the fundamental parameters (i.e Quantum Mechanics is just one point on this manifold), thus leading to many possible physical-law based behaviors. By choosing a Gaussian distribution of the parameters, a quadratic action term appears in the path-integral, which in turns leads to a complex classical action (and by continuation a new description for inertia) at the classical level. In the accompanying manuscript the classical doublet equation of motion is applied to the Newtonian gravitation field, and a MOND-like, dark-energy-like, and pioneer-anomaly-like solutions are derived.
SCALING METHODS IN SOIL PHYSICS
Technology Transfer Automated Retrieval System (TEKTRAN)
Soil physical properties are needed to understand and manage natural systems spanning an extremely wide range of scales. Much of soil data are obtained from small soil samples and cores, monoliths, or small field plots, yet the goal is to reconstruct soil physical properties across fields, watershed...
Vacuum stability in the U(1)? extended model with vanishing scalar potential at the Planck scale
NASA Astrophysics Data System (ADS)
Haba, Naoyuki; Yamaguchi, Yuya
2015-09-01
We investigate the vacuum stability in a scale invariant local {U}(1)_? model with vanishing scalar potential at the Planck scale. We find that it is impossible to realize the Higgs mass of 125 GeV while keeping the Higgs quartic coupling ? _H positive in all energy scales, that is, the same as the standard model. Once one allows ? _H<0, the lower bounds of the Z' boson mass ares obtained through the positive definiteness of the scalar mass squared eigenvalues, while the bounds are smaller than the LHC bounds. On the other hand, the upper bounds strongly depend on the number of relevant Majorana Yukawa couplings of the right-handed neutrinos N_? . Considering decoupling effects of the Z' boson and the right-handed neutrinos, the condition of the singlet scalar quartic coupling ? _? >0 gives the upper bound in the N_? =1 case, while it does not constrain the N_? =2 and 3 cases. In particular, we find that the Z' boson mass is tightly restricted for the N_? =1 case as M_{Z'} &lsim 3.7 TeV.
Cooling, Physical Scales and Topology
García-Pérez, M; Stamatescu, I O; Perez, Margarita Garcia; Philipsen, Owe; Stamatescu, Ion Olimpiu
1999-01-01
We develop a cooling method controlled by a physical cooling radius that defines a scale below which fluctuations are smoothed out while leaving physics unchanged at all larger scales. We apply this method to study topological properties of lattice gauge theories, in particular the behavior of instantons, dislocations and instanton - anti-instanton pairs. Monte Carlo results for the SU(2) topology are presented. We find that the method provides a means to prevent instanton anti-instanton annihilation under cooling. While the instanton sizes are largely independent from the smoothing scale, the density and pair separations are determined by the particular choice made for this quantity. We discuss the questions this raises for the "physicality" of these concepts.
NASA Astrophysics Data System (ADS)
Gooch, C.; Garbini, L.; Abt, I.; Schulz, O.; Palermo, M.; Majorovits, B.; Liao, H.-Y.; Liu, X.; Seitz, H.
2015-05-01
The GeDetgroup at the Max Planck Institute for Physics in Munich, Germany, operates a number of test stands in order to conduct research on novel germanium detectors. The test stands are of a unique design and construction that provide the ability to probe the properties of new detector types. The GALATEA test stand was especially designed for surface scans, specifically a-induced surface events, a problem faced in low background experiments due to unavoidable surface contamination of detectors. A special 19-fold segmented coaxial prototype detector has already been investigated inside GALATEA with an a-source. A top surface scan provided insight into the physics underneath the passivation layer. Detector segmentation provides a direct path towards background identification and characterisation. With this in mind, a 4-fold segmentation scheme was implemented on a broad-energy point-contact detector and is being investigated inside the groups K1 test stand. A cryogenic test-stand where detectors can be submerged directly in liquid nitrogen or argon is also available. The goal is to establish segmentation as a viable option to reduce background in future large scale experiments.
Planck-scale modifications to electrodynamics characterized by a spacelike symmetry-breaking vector
Gubitosi, Giulia; Amelino-Camelia, Giovanni; Melchiorri, Alessandro [Dipartimento di Fisica, Universita di Roma 'La Sapienza' and Sezione Roma1 INFN, Piazzale Aldo Moro 2, 00185 Roma (Italy); Genovese, Giuseppe [Dipartimento di Matematica, Universita di Roma 'La Sapienza' and Sezione Roma1 INFN, Piazzale Aldo Moro 2, 00185 Roma (Italy)
2010-07-15
In the study of Planck-scale ('quantum-gravity-induced') violations of Lorentz symmetry, an important role was played by the deformed-electrodynamics model introduced by Myers and Pospelov. Its reliance on conventional effective quantum field theory, and its description of symmetry-violation effects simply in terms of a four-vector with a nonzero component only in the time direction, rendered it an ideal target for experimentalists and a natural concept-testing ground for many theorists. At this point however the experimental limits on the single Myers-Pospelov parameter, after improving steadily over these past few years, are 'super-Planckian'; i.e. they take the model out of actual interest from a conventional quantum-gravity perspective. In light of this we here argue that it may be appropriate to move on to the next level of complexity, still with vectorial symmetry violation but adopting a generic four-vector. We also offer a preliminary characterization of the phenomenology of this more general framework, sufficient to expose a rather significant increase in complexity with respect to the original Myers-Pospelov setup. Most of these novel features are linked to the presence of spatial anisotropy, which is particularly pronounced when the symmetry-breaking vector is spacelike, and they are such that they reduce the bound-setting power of certain types of observations in astrophysics.
Planck intermediate results. X. Physics of the hot gas in the Coma cluster
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bourdin, H.; Brown, M. L.; Brown, S. D.; Burenin, R.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Cayón, L.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colafrancesco, S.; Colombo, L. P. L.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Démoclès, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Gilfanov, M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, T. R.; Jagemann, T.; Jones, W. C.; Juvela, M.; Keihänen, E.; Khamitov, I.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marleau, F.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paoletti, D.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Piffaretti, R.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Rubiño-Martín, J. A.; Rudnick, L.; Rusholme, B.; Sandri, M.; Savini, G.; Schaefer, B. M.; Scott, D.; Smoot, G. F.; Stivoli, F.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Welikala, N.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zaroubi, S.; Zonca, A.
2013-06-01
We present an analysis of Planck satellite data on the Coma cluster observed via the Sunyaev-Zeldovich effect. Thanks to its great sensitivity, Planck is able, for the first time, to detect SZ emission up to r ? 3 × R500. We test previously proposed spherically symmetric models for the pressure distribution in clusters against the azimuthally averaged data. In particular, we find that the Arnaud et al. (2010, A&A, 517, A92) "universal" pressure profile does not fit Coma, and that their pressure profile for merging systems provides a reasonable fit to the data only at r < R500; by r = 2 × R500 it underestimates the observed y profile by a factor of ?2. This may indicate that at these larger radii either: i) the cluster SZ emission is contaminated by unresolved SZ sources along the line of sight; or ii) the pressure profile of Coma is higher at r > R500 than the mean pressure profile predicted by the simulations used to constrain the models. The Planck image shows significant local steepening of the y profile in two regions about half a degree to the west and to the south-east of the cluster centre. These features are consistent with the presence of shock fronts at these radii, and indeed the western feature was previously noticed in the ROSAT PSPC mosaic as well as in the radio. Using Plancky profiles extracted from corresponding sectors we find pressure jumps of 4.9-0.2+0.4 and 5.0-0.1+1.3 in the west and south-east, respectively. Assuming Rankine-Hugoniot pressure jump conditions, we deduce that the shock waves should propagate with Mach number Mw = 2.03-0.04+0.09 and Mse = 2.05-0.02+0.25 in the west and south-east, respectively. Finally, we find that the y and radio-synchrotron signals are quasi-linearly correlated on Mpc scales, with small intrinsic scatter. This implies either that the energy density of cosmic-ray electrons is relatively constant throughout the cluster, or that the magnetic fields fall off much more slowly with radius than previously thought.
Characterization and Physical Explanation of Energetic Particles on Planck HFI Instrument
NASA Astrophysics Data System (ADS)
Catalano, A.; Ade, P.; Atik, Y.; Benoit, A.; Bréele, E.; Bock, J. J.; Camus, P.; Charra, M.; Crill, B. P.; Coron, N.; Coulais, A.; Désert, F.-X.; Fauvet, L.; Giraud-Héraud, Y.; Guillaudin, O.; Holmes, W.; Jones, W. C.; Lamarre, J.-M.; Macías-Pérez, J.; Martinez, M.; Miniussi, A.; Monfardini, A.; Pajot, F.; Patanchon, G.; Pelissier, A.; Piat, M.; Puget, J.-L.; Renault, C.; Rosset, C.; Santos, D.; Sauvé, A.; Spencer, L.; Sudiwala, R.
2014-09-01
The Planck High Frequency Instrument (HFI) has been surveying the sky continuously from the second Lagrangian point (L2) between August 2009 and January 2012. It operates with 52 high impedance bolometers cooled at 100 mK in a range of frequency between 100 GHz and 1 THz with unprecedented sensitivity, but strong coupling with cosmic radiation. At L2, the particle flux is about 5 and is dominated by protons incident on the spacecraft. Protons with an energy above 40 MeV can penetrate the focal plane unit box causing two different effects: glitches in the raw data from direct interaction of cosmic rays with detectors (producing a data loss of about 15 % at the end of the mission) and thermal drifts in the bolometer plate at 100 mK adding non-Gaussian noise at frequencies below 0.1 Hz. The HFI consortium has made strong efforts in order to correct for this effect on the time ordered data and final Planck maps. This work intends to give a view of the physical explanation of the glitches observed in the HFI instrument in-flight. To reach this goal, we performed several ground-based experiments using protons and particles to test the impact of particles on the HFI spare bolometers with a better control of the environmental conditions with respect to the in-flight data. We have shown that the dominant part of glitches observed in the data comes from the impact of cosmic rays in the silicon die frame supporting the micro-machined bolometric detectors propagating energy mainly by ballistic phonons and by thermal diffusion. The implications of these results for future satellite missions will be discussed.
The Emergence of a Root Metaphor in Modern Physics: Max Planck's "Quantum" Metaphor.
ERIC Educational Resources Information Center
Johnson-Sheehan, Richard D.
1997-01-01
Uses metaphorical analysis to determine whether or not Max Planck invented the quantum postulate. Demonstrates how metaphorical analysis can be used to analyze the rhetoric of revolutionary texts in science. Concludes that, in his original 1900 quantum paper, Planck considered the quantum postulate to be important, but not revolutionary. (PA)
Planck’s constant as a natural unit of measurement
NASA Astrophysics Data System (ADS)
Quincey, Paul
2013-09-01
The proposed revision of SI units would embed Planck’s constant into the definition of the kilogram, as a fixed constant of nature. Traditionally, Planck’s constant is not readily interpreted as the size of something physical, and it is generally only encountered by students in the mathematics of quantum physics. Richard Feynman’s path integral formulation of quantum mechanics allows a neat visualization of the constant as the circumference of a surveyor’s wheel for measuring action along each path, making Planck’s constant a natural yardstick, almost literally. This approach is shown to have other benefits in the presentation of other basic quantum phenomena.
NASA Astrophysics Data System (ADS)
Catalano, A.; Ade, P.; Atik, Y.; Benoit, A.; Bréele, E.; Bock, J. J.; Camus, P.; Chabot, M.; Charra, M.; Crill, B. P.; Coron, N.; Coulais, A.; Désert, F.-X.; Fauvet, L.; Giraud-Héraud, Y.; Guillaudin, O.; Holmes, W.; Jones, W. C.; Lamarre, J.-M.; Macías-Pérez, J.; Martinez, M.; Miniussi, A.; Monfardini, A.; Pajot, F.; Patanchon, G.; Pelissier, A.; Piat, M.; Puget, J.-L.; Renault, C.; Rosset, C.; Santos, D.; Sauvé, A.; Spencer, L. D.; Sudiwala, R.
2014-09-01
The Planck High Frequency Instrument (HFI) surveyed the sky continuously from August 2009 to January 2012. Its noise and sensitivity performance were excellent (from 11 to 40 aW Hz-1), but the rate of cosmic-ray impacts on the HFI detectors was unexpectedly higher than in other instruments. Furthermore, collisions of cosmic rays with the focal plane produced transient signals in the data (glitches) with a wide range of characteristics and a rate of about one glitch per second. A study of cosmic-ray impacts on the HFI detector modules has been undertaken to categorize and characterize the glitches, to correct the HFI time-ordered data, and understand the residual effects on Planck maps and data products. This paper evaluates the physical origins of glitches observed by the HFI detectors. To better understand the glitches observed by HFI in flight, several ground-based experiments were conducted with flight-spare HFI bolometer modules. The experiments were conducted between 2010 and 2013 with HFI test bolometers in different configurations using varying particles and impact energies. The bolometer modules were exposed to 23 MeV protons from the Orsay IPN Tandem accelerator, and to 241Am and 244Cm ?-particle and 55Fe radioactive X-ray sources. The calibration data from the HFI ground-based preflight tests were used to further characterize the glitches and compare glitch rates with statistical expectations under laboratory conditions. Test results provide strong evidence that the dominant family of glitches observed in flight are due to cosmic-ray absorption by the silicon die substrate on which the HFI detectors reside. Glitch energy is propagated to the thermistor by ballistic phonons, while thermal diffusion also contributes. The average ratio between the energy absorbed, per glitch, in the silicon die and thatabsorbed in the bolometer is equal to 650. We discuss the implications of these results for future satellite missions, especially those in the far-infrared to submillimeter and millimeter regions of the electromagnetic spectrum.
Transition physics and scaling overview
Carlstrom, T.N.
1995-12-01
This paper presents an overview of recent experimental progress towards understanding H-mode transition physics and scaling. Terminology and techniques for studying H-mode are reviewed and discussed. The model of shear E x B flow stabilization of edge fluctuations at the L-H transition is gaining wide acceptance and is further supported by observations of edge rotation on a number of new devices. Observations of poloidal asymmetries of edge fluctuations and dephasing of density and potential fluctuations after the transition pose interesting challenges for understanding H-mode physics. Dedicated scans to determine the scaling of the power threshold have now been performed on many machines. A dear B{sub t} dependence is universally observed but dependence on the line averaged density is complicated. Other dependencies are also reported. Studies of the effect of neutrals and error fields on the power threshold are under investigation. The ITER threshold database has matured and offers guidance to the power threshold scaling issues relevant to next-step devices.
Using CMB data to constrain non-isotropic Planck-scale modifications to Electrodynamics
Gubitosi, Giulia [Berkeley Lab and University of California, Berkeley, CA 94720 (United States); Migliaccio, Marina [Università di Roma Tor Vergata, via della Ricerca Scientifica, 1, Roma (Italy); Pagano, Luca [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California (United States); Amelino-Camelia, Giovanni; Melchiorri, Alessandro [Dipartimento di Fisica, Università La Sapienza, P. le A. Moro 2, Roma (Italy); Natoli, Paolo [Dipartimento di Fisica, Università di Ferrara, via G. Saragat 1, Ferrara (Italy); Polenta, Gianluca, E-mail: giulia.gubitosi@berkeley.edu, E-mail: Marina.Migliaccio@roma2.infn.it, E-mail: luca.pagano@jpl.nasa.gov, E-mail: giovanni.amelino-camelia@roma1.infn.it, E-mail: alessandro.melchiorri@roma1.infn.it, E-mail: paolo.natoli@roma2.infn.it, E-mail: gianluca.polenta@asdc.asi.it [Agenzia Spaziale Italiana Science Data Center, c/o ESRIN, via Galileo Galilei, Frascati (Italy)
2011-11-01
We develop a method to constrain non-isotropic features of Cosmic Microwave Background (CMB) polarization, of a type expected to arise in some models describing quantum gravity effects on light propagation. We describe the expected signatures of this kind of anomalous light propagation on CMB photons, showing that it will produce a non-isotropic birefringence effect, i.e. a rotation of the CMB polarization direction whose observed amount depends in a peculiar way on the observation direction. We also show that the sensitivity levels expected for CMB polarization studies by the Planck satellite are sufficient for testing these effects if, as assumed in the quantum-gravity literature, their magnitude is set by the minute Planck length.
Quantum Theory at Planck Scale, Limiting Values, Deformed Gravity and Dark Energy Problem
A. E. Shalyt-Margolin
2012-05-27
Within a theory of the existing fundamental length on the order of Planck's a high-energy deformation of the General Relativity for the space with horizon has been constructed. On this basis, Markov's work of the early eighties of the last century has been given a new interpretation to show that the heuristic model considered by him may be placed on a fundamental footing. The obtained results have been applied to solving of the dark energy problem, making it possible to frame the following hypothesis: a dynamic cosmological term is a measure of deviation from a thermodynamic identity (the first law of thermodynamics) of the high-energy (Planck's) deformation of Einstein equations for horizon spaces in their thermodynamic interpretation.
An algebraic approach to physical scales
Vitolo, Raffaele
and basic objects in all fields and formulations of physics. Usually, these objects appear in a veryAn algebraic approach to physical scales Josef Janyska1 , Marco Modugno2 , Raffaele Vitolo3 1 (2010), 1249-1276. Abstract This paper is aimed at introducing an algebraic model for physical scales
Explaining Phenomenologically Observed Space-time Flatness Requires New Fundamental Scale Physics
D. Bennett; H. B. Nielsen
2013-06-12
The phenomenologically observed flatness - or near flatness - of spacetime cannot be understood as emerging from continuum Planck (or sub-Planck) scales using known physics. Using dimensional arguments it is demonstrated that any immaginable action will lead to Christoffel symbols that are chaotic. We put forward new physics in the form of fundamental fields that spontaneously break translational invariance. Using these new fields as coordinates we define the metric in such a way that the Riemann tensor vanishes identically as a Bianchi identity. Hence the new fundamental fields define a flat space. General relativity with curvature is recovered as an effective theory at larger scales at which crystal defects in the form of disclinations come into play as the sources of curvature.
GZK photon constraints on Planck-scale Lorentz violation in QED
Maccione, Luca; Liberati, Stefano, E-mail: maccione@sissa.it, E-mail: liberati@sissa.it [SISSA, Via Beirut 2-4, I-34014 Trieste (Italy) [SISSA, Via Beirut 2-4, I-34014 Trieste (Italy); INFN, Sezione di Trieste, Via Valerio 2, I-34127, Trieste (Italy)
2008-08-15
We show how the argument exploited by Galaverni and Sigl (2008 Phys. Rev. Lett. 100 021102 (see also 0708.1737)) to constrain Lorentz invariance violation (LV) using ultra-high-energy photon non-observation by the AUGER experiment can be extended to QED with Planck-suppressed LV (at O(E/M) and O(E{sup 2}/M{sup 2})). While the original constraints given by Galaverni and Sigl (2008 Phys. Rev. Lett. 100 021102) happen to be weakened, we show that, when used together with other EFT reactions and the expected detection of photons at E>10{sup 19} eV by AUGER, this method has the potentiality not only to basically rule out O(E/M) corrections but also to strongly constrain, for the first time, the CPT even O(E{sup 2}/M{sup 2}) LV QED.
The quantum structure of spacetime at the Planck scale and quantum fields
NASA Astrophysics Data System (ADS)
Doplicher, Sergio; Fredenhagen, Klaus; Roberts, John E.
1995-08-01
We propose uncertainty relations for the different coordinates of spacetime events, motivated by Heisenberg's principle and by Einstein's theory of classical gravity. A model of Quantum Spacetime is then discussed where the commutation relations exactly implement our uncertainty relations. We outline the definition of free fields and interactions over QST and take the first steps to adapting the usual perturbation theory. The quantum nature of the underlying spacetime replaces a local interaction by a specific nonlocal effective interaction in the ordinary Minkowski space. A detailed study of interacting QFT and of the smoothing of ultraviolet divergences is deferred to a subsequent paper. In the classical limit where the Planck length goes to zero, our Quantum Spacetime reduces to the ordinary Minkowski space times a two component space whose components are homeomorphic to the tangent bundle TS 2 of the 2-sphere. The relations with Conne's theory of the standard model will be studied elsewhere.
NASA Astrophysics Data System (ADS)
Heilbron, John
2005-03-01
As an editor of the Annalen der Physik, Max Planck published Einstein's early papers on thermodynamics and on special relativity, which Planck probably was the first major physicist to appreciate. They respected one another not only as physicists but also, for their inspired creation of world pictures, as artists. Planck helped to establish Einstein in a sinecure at the center of German physics, Berlin. Despite their differences in scientific style, social life, politics, and religion, they became fast friends. Their mutual admiration survived World War I, during which Einstein advocated pacifism and Planck signed the infamous Manifesto of the 93 Intellectuals supporting the German invasion of Belgium. It also survived the Weimar Republic, which Einstein favored and Planck disliked. Physics drew them together, as both opposed the Copenhagen Interpretation; so did common decency, as Planck helped to protect Einstein from anti-semitic attacks. Their friendship did not survive the Nazis. As a standing secretary of the Berlin Academy, Planck had to advise Einstein to resign from it before his colleagues, outraged at his criticism of the new Germany from the safety of California, expelled him. Einstein never forgave his old friend and former fellow artist for not protesting publicly against his expulsion and denigration, and other enormities of National Socialism. .
Derivation of physically motivated wind speed scales
NASA Astrophysics Data System (ADS)
Dotzek, Nikolai
A class of new wind speed scales is proposed in which the relevant scaling factors are derived from physical quantities like mass flux density, energy density (pressure), or energy flux density. Hence, they are called Energy- or E-scales, and can be applied to wind speeds of any intensity. It is shown that the Mach scale is a special case of an E-scale. Aside from its foundation in physical quantities which allow for a calibration of the scales, the E-scale concept can help to overcome the present plethora of scales for winds in the range from gale to hurricane intensity. A procedure to convert existing data based on the Fujita-scale or other scales (Saffir-Simpson, TORRO, Beaufort) to their corresponding E-scales is outlined. Even for the large US tornado record, the workload of conversion in case of an adoption of the E-scale would in principle remain manageable (if the necessary metadata to do so were available), as primarily the F5 events would have to be re-rated. Compared to damage scales like the "Enhanced Fujita" or EF-scale concept recently implemented in the USA, the E-scales are based on first principles. They can consistently be applied all over the world for the purpose of climatological homogeneity. To account for international variations in building characteristics, one should not adapt wind speed scale thresholds to certain national building characteristics. Instead, one worldwide applicable wind speed scale based on physical principles should rather be complemented by nationally-adapted damage descriptions. The E-scale concept can provide the basis for such a standardised wind speed scale.
Scales for physical and social anhedonia
Loren J. Chapman; Jean P. Chapman; Michael L. Raulin
1976-01-01
Devised 2 true–false scales to measure anhedonia, the lowered ability to experience pleasure: a 40-item Physical Anhedonia (PA) scale and a 48-item Social Anhedonia (SA) scale. After scale development using 371 college students, the final version was given to 505 normal adults stratified by social class, age (18–45), and sex, and to 123 male schizophrenics. The potential artifacts of social
Scaling Laws in Particle Physics and Astrophysics
Rudolf Muradyan
2011-06-07
Disclosure of scaling relationship between observable quantities gives direct information about dynamics of natural phenomenon. This is the main reason why scaling plays a key role in the methodology of natural sciences. In this talk, Part I will consider several diverse scaling laws in particle physics. Part II is dedicated to the to the extension of Chew-Frautschi hadronic spin/mass scaling relation to the realm of astronomical objects.
Cosmological constraints on neutrinos with Planck data
NASA Astrophysics Data System (ADS)
Spinelli, M.
2015-07-01
Neutrinos take part in the dance of the evolving Universe influencing its history from leptogenesis, to Big Bang nucleosynthesis, until late time structure formation. This makes cosmology, and in particular one of its primary observables the Cosmic Microwave Background (CMB), an unusual but valuable tool for testing Neutrino Physics. The best measurement to date of full-sky CMB anisotropies comes from the Planck satellite launched in 2009 by the European Space Agency (ESA) and successful follower of COBE and WMAP. Testing Planck data against precise theoretical predictions allow us to shed light on various interesting open questions such as the value of the absolute scale of neutrino masses or their energy density. We revise here the results concerning neutrinos obtained by the Planck Collaboration in the 2013 data release.
CMB Lensing and Scale Dependent New Physics
Hojjati, Alireza
2015-01-01
Cosmic microwave background lensing has become a new cosmological probe, carrying rich information on the matter power spectrum and distances over the redshift range $z\\approx1$-4. We investigate the role of scale dependent new physics, such as from modified gravity, neutrino mass, and cold (low sound speed) dark energy, and its signature on CMB lensing. The distinction between different scale dependences, and the different redshift dependent weighting of the matter power spectrum entering into CMB lensing and other power spectra, imply that CMB lensing can probe simultaneously a diverse range of physics. We highlight the role of arcminute resolution polarization experiments for distinguishing between physical effects.
Equilibration time scales of physically relevant observables
Luis Pedro García-Pintos; Noah Linden; Artur S. L. Malabarba; Anthony J. Short; Andreas Winter
2015-09-18
We address the problem of understanding from first principles the conditions under which a closed quantum system equilibrates rapidly with respect to a concrete observable. Previously known general upper bounds on the time scales of equilibration were extremely long, with times scaling linearly with the dimension of the Hilbert space. Moreover, these bounds proved to be tight, since particular constructions of observables scaling in this way were found. In this paper we provide a new upper bound on the equilibration time scales which shows, in fact, equilibration is much faster under some physically reasonable conditions. In particular, we apply this result to give bounds on the time scales of equilibration for a system interacting with a thermal bath which do not scale with the size of the bath.
Limits to Seeing High-Redshift Galaxies Due to Planck-Scale-Induced Blurring
NASA Astrophysics Data System (ADS)
Steinbring, Eric
2015-08-01
Carefully accounting for cosmological surface-brightness dimming and K-corrections are two important steps in teasing out the underlying properties of evolving high-z galaxy populations. Another potential effect is worthy of scrutiny simply because of its profound physical implications, if seen. In the last decade or so there has been debate over the possibility that the fuzzy quantum nature of spacetime might decohere wavefronts emanating from very distant sources. Consequences of that could be "blurred" or "faded" images of compact structures in galaxies, primarily at z>1 for their emitted X-rays and gamma-rays, but perhaps even in UV through optical light at higher redshift. So far there are only inconclusive hints of this from z~4 active-galactic nucleii and gamma-ray bursts viewed with Fermi and Hubble Space Telescope. If correct though, that would impose a significant, fundamental resolution limit for galaxies out to z~8 in the era of the James Webb Space Telescope and the next generation of ground-based telescopes using adaptive optics. I consider what to look for (and maybe not see).
Planck-scale soccer-ball problem: a case of mistaken identity
Giovanni Amelino-Camelia
2014-07-29
Over the last decade it has been found that nonlinear laws of composition of momenta are predicted by some alternative approaches to "real" 4D quantum gravity, and by all formulations of dimensionally-reduced (3D) quantum gravity coupled to matter. The possible relevance for rather different quantum-gravity models has motivated several studies, but this interest is being tempered by concerns that a nonlinear law of addition of momenta might inevitably produce a pathological description of the total momentum of a macroscopic body. I here show that such concerns are unjustified, finding that they are rooted in failure to appreciate the differences between two roles for laws composition of momentum in physics. Previous results relied exclusively on the role of a law of momentum composition in the description of spacetime locality. However, the notion of total momentum of a multi-particle system is not a manifestation of locality, but rather reflects translational invariance. By working within an illustrative example of quantum spacetime I show explicitly that spacetime locality is indeed reflected in a nonlinear law of composition of momenta, but translational invariance still results in an undeformed linear law of addition of momenta building up the total momentum of a multi-particle system.
Small-scale physics of the ocean
NASA Technical Reports Server (NTRS)
Caldwell, D. R.
1983-01-01
Progress in research on the small-scale physics of the ocean is reviewed. The contribution of such research to the understanding of the large scales is addressed and compared for various depth ranges of the ocean. The traditional framework for discussing small-scale measurements and turbulence is outlined, and recent research in the area is reviewed, citing references. Evidence for the existence of salt fingering in oceanic mixing is discussed. Factors that might inhibit the growth of salt fingers are assessed, and the influence of differences between laboratory tank and ocean in studying the fingers is discussed. The role of salt fingers in creating intrusions is examined. Instruments and methods used to measure the smallest scales at which there is appreciable variation and the stability of the patch of ocean in which the small-scale motions take place are considered.
On physical scales of dark matter halos
Zemp, Marcel, E-mail: mzemp@pku.edu.cn [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Hai Dian Qu, 100871 Beijing (China)
2014-09-10
It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.
On Physical Scales of Dark Matter Halos
NASA Astrophysics Data System (ADS)
Zemp, Marcel
2014-09-01
It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions "virial." In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.
NASA Astrophysics Data System (ADS)
Bouchet, François R.
2015-08-01
Sketched out in 1992, selected by ESA in 1996, launched in 2009, Planck delivered a "definitive" map of the anisotropies of the Cosmic Microwave Background (CMB) as well as information on their polarisation. The CMB anisotropies, of rms ~100 microK in temperature, reveal the imprint of the primordial fluctuations which initiate the growth of the large scale structures of the Universe, as transformed by their evolution, in particular during the first 370 000 years. This evolution is governed by the Universe content at this early epoch. I will confront what temperature and polarisation anisotropies teach us, both in terms of content of the universe and of characteristics of the primordial fluctuations. I will also discuss the extent of the agreement of Planck cosmology with lower redshift cosmological probes like BAO, Weak Lensing or redshift space distortions. Submitted on behalf of the Planck Collaboration.
NASA Astrophysics Data System (ADS)
Spergel, David N.; Flauger, Raphael; Hložek, Renée
2015-01-01
The tension between the best fit parameters derived by the Planck team and a number of other astronomical measurements suggests either systematics in the astronomical measurements, systematics in the Planck data, the need for new physics, or a combination thereof. We reanalyze the Planck data and find that the 217 GHz ×217 GHz detector set spectrum used in the Planck analysis is responsible for some of this tension. We use a map-based foreground cleaning procedure, relying on a combination of 353 GHz and 545 GHz maps to reduce residual foregrounds in the intermediate frequency maps used for cosmological inference. For our baseline data analysis, which uses 47% of the sky and makes use of both 353 and 545 GHz data for foreground cleaning, we find the ? CDM cosmological parameters ?ch2=0.1170 ±0.0025 , ns=0.9686 ±0.0069 , H0=68.0 ±1.1 km s-1 Mpc-1 , ?bh2=0.02197 ±0.00026 , ln 1010As=3.082 ±0.025 , and ? =0.090 ±0.013 . While in broad agreement with the results reported by the Planck team, these revised parameters imply a universe with a lower matter density of ?m=0.302 ±0.015 , and parameter values generally more consistent with pre-Planck CMB analyses and astronomical observations. We compare our cleaning procedure with the foreground modeling used by the Planck team and find good agreement. The difference in parameters between our analysis and that of the Planck team is mostly due to our use of cross-spectra from the publicly available survey maps instead of their use of the detector set cross-spectra which include pixels only observed in one of the surveys. We show evidence suggesting residual systematics in the detector set spectra used in the Planck likelihood code, which is substantially reduced for our spectra. Using our cleaned survey cross-spectra, we recompute the limit on neutrino species and find Neff=3.34 ±0.35 . We also recompute limits on the ns-r plane, and neutrino mass constraints.
Sub-Planck spots of Schroedinger cats and quantum decoherence
Wojciech Hubert Zurek
2002-01-25
Heisenberg's principle$^1$ states that the product of uncertainties of position and momentum should be no less than Planck's constant $\\hbar$. This is usually taken to imply that phase space structures associated with sub-Planck ($\\ll \\hbar$) scales do not exist, or, at the very least, that they do not matter. I show that this deeply ingrained prejudice is false: Non-local "Schr\\"odinger cat" states of quantum systems confined to phase space volume characterized by `the classical action' $A \\gg \\hbar$ develop spotty structure on scales corresponding to sub-Planck $a = \\hbar^2 / A \\ll \\hbar$. Such structures arise especially quickly in quantum versions of classically chaotic systems (such as gases, modelled by chaotic scattering of molecules), that are driven into nonlocal Schr\\"odinger cat -- like superpositions by the quantum manifestations of the exponential sensitivity to perturbations$^2$. Most importantly, these sub-Planck scales are physically significant: $a$ determines sensitivity of a quantum system (or of a quantum environment) to perturbations. Therefore sub-Planck $a$ controls the effectiveness of decoherence and einselection caused by the environment$^{3-8}$. It may also be relevant in setting limits on sensitivity of Schr\\"odinger cats used as detectors.
Does the measured value of the Planck constant depend on the energy of measurements?
Massa, Enrico; Jentschel, Michael
2011-01-01
The measurement of the Avogadro constant opened the way to a comparison of the watt-balance measurements of the Planck constant with the values calculated from the quotients of the Planck constant and the mass of a particle or an atom. Since the energy scales of these measurements span nine energy decades, these data provide insight into the consistency of our understanding of physics.
Planck Surveyor On Its Way to Orbit
2009-05-14
An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center
Planck Surveyor On Its Way to Orbit
Borrill, Julian
2009-01-01
An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center.
Planck Surveyor On Its Way to Orbit
None
2010-01-08
An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center
Planck Surveyor On Its Way to Orbit
Borrill, Julian
2013-05-29
An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center.
Artificial contradiction between cosmology and particle physics: the lambda problem
Antonio Alfonso-Faus
2009-04-06
It is shown that the usual choice of units obtained by taking G = c = Planck constant = 1, giving the Planck units of mass, length and time, introduces an artificial contradiction between cosmology and particle physics: the lambda problem that we associate with Planck constant. We note that the choice of Planck constant = 1 does not correspond to the scale of quantum physics. For this scale we prove that the correct value is Planck constant \\hbar; 1/10^122, while the choice of Planck constant = 1 corresponds to the cosmological scale. This is due to the scale factor of 10^61 that converts the Planck scale to the cosmological scale. By choosing the ratio G/c^3 = constant = 1, which includes the choice G = c = 1, and the momentum conservation mc = constant, we preserve the derivation of the Einstein field equations from the action principle. Then the product Gm/c^2 = rg, the gravitational radius of m, is constant. For a quantum black hole we prove that Planck constant \\hbar; rg^2 \\hbar; (mc)^2. We also prove that the product lambda x Planck constant is a general constant of order one, for any scale. The cosmological scale implies lambda \\hbar; Planck constant \\hbar; 1, while the Planck scale gives lambda \\hbar; 1/Planck constant \\hbar; 10^122. This explains the lambda problem. We get two scales: the cosmological quantum black hole (QBH), size \\Lambda; 10^28 cm, and the quantum black hole (qbh) that includes the fundamental particles scale, size \\Lambda; 10^-13 cm, as well as the Planck scale, size \\Lambda; 10^-33 cm.
Wang, Fei; Wu, Kun
2015-01-01
Based on the weak coupling expansion of gravity, we calculate the gravitational contributions to yukawa coupling, scalar quartic coupling as well as gauge couplings with general Landau-DeWitt gauge-fixing choice and a gauge preserving (of SM gauge group) cut off regularization scheme. We find that the results depend on the Landau-DeWitt gauge-fixing parameter. Based on the two loop RGE of SM couplings with one loop full gravitational contributions in harmonic gauge, we study the constraints on the higgs and top quark mass from the requirement of existing the other degenerate vacua at the Planck-dominated region. Our numerical calculations show that nature will not develop the other degenerate vacua at the Planck-dominated region with current higgs and top quark masses. On the other hand, requiring the existence of the other degenerate vacua at the Planck-dominated region will constrain the higgs and top mass to lie at approximately 130 and 174 GeV, respectively.
A physical version of the QCD confinement scale(s)
Fried, H M
2015-01-01
We suggest a physical definition of the confinement mass scale in QCD in the framework of non-perturbative, gauge invariant QCD, where all possible gluons exchanged between any pair of quark lines are included; and we insist that a stable, quark bound state should not and must not have transverse quark fluctuations larger than the Compton wavelength of the bound state particle itself. This is possible in our QCD formulation because there are two parameters which describe confinement, a mass scale $\\mu$, and a "deformation parameter" $\\xi$, which shrinks the transverse-quark-coordinate separation distribution $\\varphi(b)$ away from Gaussian. With the mass scale $\\mu$ defined as equal to the mass of each quark bound state, we show that $\\xi$ decreases with increasing bound state mass, $m_{BS}$, using order-of-magnitude estimates which agree with obvious intuition. Our $\\xi$-values, including a calculation for the recently detected 4-quark system, display the predicted behavior: $\\xi$ decreases with increasing $...
Cosmological results from Planck 2014
NASA Astrophysics Data System (ADS)
White, Martin
2015-01-01
The European Space Agency's Planck satellite was launched on 14 May 2009, and surveyed the sky 9 times over its lifetime. In late 2014, ESA and the Planck Collaboration released to the public a complete set of data products from the full mission, including maps of CMB polarization. I will review some of the highlights of this release and the implications for cosmology and early Universe physics.
Cosmological Surveys: From Planck to Euclid
NASA Astrophysics Data System (ADS)
Aghanim, Nabila; Baccigalupi, Carlo
2015-08-01
Planck and Euclid, surveying the sky in the from radio to optical/near IR, are key synergistic European milestones for cosmology and large scale structure studiesIn this contribution, we review the status from Planck survey and the perspectives from Euclid for the primordial universe, the cosmological parameters and the clustering of matter at large scales.
On Maximal-Acceleration, Strings and the Group of Minimal Planck-Area Relativity Theory
Carlos Castro
2002-11-07
Recently we have presented a new physical model that links the maximum speed of light with the minimal Planck scale into a maximal-acceleration Relativity principle in phase spaces . The maximal proper-acceleration bound is $a = c^2/ \\Lambda$ where $ \\Lambda$ is the Planck scale. The group transformation laws of this Maximal-acceleration Relativity theory under velocity and acceleration boosts are analyzed in full detail. For pure acceleration boosts it is shown that the minimal Planck-areas (maximal tension) are universal invariant quantities in any frame of reference. The implications of this minimal Planck-area (maximal tension) principle in future developments of string theory, $ W$-geometry and Quantum Gravity are briefly outlined.
Fokker-Planck . . . Diffusion . . .
Fokker-Planck . . . Diffusion . . . Diffusion- . . . Application: . . . Summary and . . . First #12;Fokker-Planck . . . Diffusion . . . Diffusion- . . . Application: . . . Summary and . . . Topics: 1. Fokker-Planck transport equation 2. Diffusion approximation 3. Diffusion-convection transport
MAP and Planck versus the real universe
NASA Astrophysics Data System (ADS)
Scott, D.
1999-01-01
The MAP and Planck satellites promise to provide accurate maps of the sky at a range of frequencies and angular scales, from which it will be possible to extract estimates for cosmological parameters. But the real Universe is a nasty, messy place, full of non-linear astrophysics. It is certainly clear that MAP and Planck will fix the background cosmology at an unprecedented level. However, they will have to contend with everything that the Universe throws at them: multiple foregrounds; structure formation effects; and other complications we haven't even thought of yet. Some examples of such effects will be presented. Only an ideal, theorists universe can be described by a number of free parameters in the single digits, while in reality it is likely that a greater wealth of information waits to be discovered. These "higher-order" processes should be considered as potentially measurable signals, rather than contaminants. The capabilities of Planck seem ideally suited to fully understanding the physics encoded in the microwave sky.
Bartrum, Sam; Berera, Arjun [SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom); Rosa, João G., E-mail: s.bartrum@sms.ed.ac.uk, E-mail: ab@ph.ed.ac.uk, E-mail: joao.rosa@ua.pt [Departamento de Física da Universidade de Aveiro and I3N, Campus de Santiago, 3810-183 Aveiro (Portugal)
2013-06-01
The recent Planck results and future releases on the horizon present a key opportunity to address a fundamental question in inflationary cosmology of whether primordial density perturbations have a quantum or thermal origin, i.e. whether particle production may have significant effects during inflation. Warm inflation provides a natural arena to address this issue, with interactions between the scalar inflaton and other degrees of freedom leading to dissipative entropy production and associated thermal fluctuations. In this context, we present relations between CMB observables that can be directly tested against observational data. In particular, we show that the presence of a thermal bath warmer than the Hubble scale during inflation decreases the tensor-to-scalar ratio with respect to the conventional prediction in supercooled inflation, yielding r < 8|n{sub t}|, where n{sub t} is the tensor spectral index. Focusing on supersymmetric models at low temperatures, we determine consistency relations between the observables characterizing the spectrum of adiabatic scalar and tensor modes, both for generic potentials and particular canonical examples, and which we compare with the WMAP and Planck results. Finally, we include the possibility of producing the observed baryon asymmetry during inflation through dissipative effects, thereby generating baryon isocurvature modes that can be easily accommodated by the Planck data.
Physics in space-time with scale-dependent metrics
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.
2013-10-01
We construct three-dimensional space R?3 with the scale-dependent metric and the corresponding Minkowski space-time M?,?4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in R?3 is developed. We state that M?,?4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ??0 to DH=4 in the infrared limit ??0, where ?0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS?4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.
Environment-based selection effects of Planck clusters
NASA Astrophysics Data System (ADS)
Kosyra, R.; Gruen, D.; Seitz, S.; Mana, A.; Rozo, E.; Rykoff, E.; Sanchez, A.; Bender, R.
2015-09-01
We investigate whether the large-scale structure environment of galaxy clusters imprints a selection bias on Sunyaev-Zel'dovich (SZ) catalogues. Such a selection effect might be caused by line of sight (LoS) structures that add to the SZ signal or contain point sources that disturb the signal extraction in the SZ survey. We use the Planck PSZ1 union catalogue in the Sloan Digital Sky Survey (SDSS) region as our sample of SZ-selected clusters. We calculate the angular two-point correlation function (2pcf) for physically correlated, foreground and background structure in the RedMaPPer SDSS DR8 catalogue with respect to each cluster. We compare our results with an optically selected comparison cluster sample and with theoretical predictions. In contrast to the hypothesis of no environment-based selection, we find a mean 2pcf for background structures of -0.049 on scales of ?40 arcmin, significantly non-zero at ˜4?, which means that Planck clusters are more likely to be detected in regions of low background density. We hypothesize this effect arises either from background estimation in the SZ survey or from radio sources in the background. We estimate the defect in SZ signal caused by this effect to be negligibly small, of the order of ˜10-4 of the signal of a typical Planck detection. Analogously, there are no implications on X-ray mass measurements. However, the environmental dependence has important consequences for weak lensing follow up of Planck galaxy clusters: we predict that projection effects account for half of the mass contained within a 15 arcmin radius of Planck galaxy clusters. We did not detect a background underdensity of CMASS LRGs, which also leaves a spatially varying redshift dependence of the Planck SZ selection function as a possible cause for our findings.
Initiation and Detonation Physics on Millimeter Scales
Philllips, D F; Benterou, J J; May, C A
2012-03-20
The LLNL Detonation Science Project has a major interest in understanding the physics of detonation on a millimeter scale. This report summarizes the rate stick experiment results of two high explosives. The GO/NO-GO threshold between varying diameters of ultra-fine TATB (ufTATB) and LX-16 were recorded on an electronic streak camera and analyzed. This report summarizes the failure diameters of rate sticks for ufTATB and LX-16. Failure diameter for the ufTATB explosive, with densities at 1.80 g/cc, begin at 2.34 mm (not maintaining detonation velocity over the entire length of the rate stick). ufTATB rate sticks at the larger 3.18 mm diameter maintain a constant detonation velocity over the complete length. The PETN based and LLNL developed explosive, LX-16, with densities at 1.7 g/cc, shows detonation failure between 0.318 mm and 0.365 mm. Additional tests would be required to narrow this failure diameter further. Many of the tested rate sticks were machined using a femtosecond laser focused into a firing tank - in case of accidental detonation.
Zodiacal Light Emission in the PLANCK mission
M. Maris; C. Burigana; S. Fogliani
2006-04-07
The PLANCK satellite, scheduled for launch in 2007, will produce a set of all sky maps in nine frequency bands spanning from 30 GHz to 857 GHz, with an unprecedented sensitivity and resolution. Planets, minor bodies and diffuse interplanetary dust will contribute to the (sub)mm sky emission observed by PLANCK, representing a source of foreground contamination to be removed before extracting the cosmological information. The aim of this paper is to assess the expected level of contamination in the survey of the forthcoming PLANCK mission. Starting from existing far-infrared (far-IR) models of the Zodiacal Light Emission (ZLE), we present a new method to simulate the time-dependent level of contamination from ZLE at PLANCK frequencies. We studied the possibility of PLANCK to detect and separate the ZLE contribution from the other astrophysical signals. We discuss the conditions in which PLANCK will be able to increase the existing information on the ZLE and IDP physical properties.
Planck constraints on monodromy inflation
Easther, Richard; Flauger, Raphael E-mail: flauger@ias.edu
2014-02-01
We use data from the nominal Planck mission to constrain modulations in the primordial power spectrum associated with monodromy inflation. The largest improvement in fit relative to the unmodulated model has ??{sup 2} ? 10 and we find no evidence for a primordial signal, in contrast to a previous analysis of the WMAP9 dataset, for which ??{sup 2} ? 20. The Planck and WMAP9 results are broadly consistent on angular scales where they are expected to agree as far as best-fit values are concerned. However, even on these scales the significance of the signal is reduced in Planck relative to WMAP, and is consistent with a fit to the ''noise'' associated with cosmic variance. Our results motivate both a detailed comparison between the two experiments and a more careful study of the theoretical predictions of monodromy inflation.
NASA Astrophysics Data System (ADS)
Tristram, Matthieu
2015-08-01
On behalf of the Planck collaboration, I will present the maps from the last Planck release. I will focus on the difference with respect to the 2013 data and in particular describe the polarized maps.Planck uncertainties are dominated by residuals from systematics rather than statistical noise. To achieve this level of sensitivities, Planck is calibrated with an unprecedent precision. This is particularly important given the Planck scanning strategy which induce specific leakage from intensity to polarization.
Development and Validation of the Physics Anxiety Rating Scale
ERIC Educational Resources Information Center
Sahin, Mehmet; Caliskan, Serap; Dilek, Ufuk
2015-01-01
This study reports the development and validation process for an instrument to measure university students' anxiety in physics courses. The development of the Physics Anxiety Rating Scale (PARS) included the following steps: Generation of scale items, content validation, construct validation, and reliability calculation. The results of construct…
FUSION RESEARCH CENTER Physics Scaling of Reactor Plasmas
FUSION RESEARCH CENTER Physics Scaling of Reactor Plasmas R J. Fusion Research Center;Physics Scaling of Reactor Plasmas R. J. BICKERTON Fusion Research Center The University of Texas at Austin Austin, Texas 78712 Reactor Plasma The plasma parameters of a reactor plasma for a steady state D
Planck 2013 results. XV. CMB power spectra and likelihood
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best estimate of the CMB angular power spectrum from Planck over three decades in multipole moment, ?, covering 2 ? ? ? 2500. The main source of uncertainty at ? ? 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher ?s. For ? < 50, our likelihood exploits all Planck frequency channels from 30 to 353 GHz, separating the cosmological CMB signal from diffuse Galactic foregrounds through a physically motivated Bayesian component separation technique. At ? ? 50, we employ a correlated Gaussian likelihood approximation based on a fine-grained set of angular cross-spectra derived from multiple detector combinations between the 100, 143, and 217 GHz frequency channels, marginalising over power spectrum foreground templates. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on the final cosmological parameters. We find good internal agreement among the high-? cross-spectra with residuals below a few ?K2 at ? ? 1000, in agreement with estimated calibration uncertainties. We compare our results with foreground-cleaned CMB maps derived from all Planck frequencies, as well as with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. We further show that the best-fit ?CDM cosmology is in excellent agreement with preliminary PlanckEE and TE polarisation spectra. We find that the standard ?CDM cosmology is well constrained by Planck from the measurements at ? ? 1500. One specific example is the spectral index of scalar perturbations, for which we report a 5.4? deviation from scale invariance, ns = 1. Increasing the multipole range beyond ? ? 1500 does not increase our accuracy for the ?CDM parameters, but instead allows us to study extensions beyond the standard model. We find no indication of significant departures from the ?CDM framework. Finally, we report a tension between the Planck best-fit ?CDM model and the low-? spectrum in the form of a power deficit of 5-10% at ? ? 40, with a statistical significance of 2.5-3?. Without a theoretically motivated model for this power deficit, we do not elaborate further on its cosmological implications, but note that this is our most puzzling finding in an otherwise remarkably consistent data set.
Manfred Requardt
1996-12-18
The following is a short report about recent work on discrete physics/mathematics on the Planckscale and the use of the concept of ''random graphs'' in this business, appearing in the group21-proceedings (Gosslar 1996)
Broken scale invariance in particle physics
P. Carruthers
1971-01-01
Recent theoretical efforts to understand how scale invariance is broken are reviewed in this paper. Various formulations of approximate scale invariance are considered, with emphasis on the structure of the energy-momentum tensor and the short distance behaviour of field theory. Present address: Cornell University, Ithaca, New York 14850.
WMAP, Planck, cosmic rays and unconventional cosmologies
Luis Gonzalez-Mestres
2011-10-27
The claim by Gurzadyan et al. that the cosmological sky is a weakly random one where "the random perturbation is a minor component of mostly regular signal" has given rise to a series of useful exchanges. The possibility that the Cosmic Microwave Background radiation (CMB) data present trends in this direction would have strong implications for unconventional cosmologies. Similarly, data on ultra-high energy cosmic rays may contain signatures from new Physics generated beyond the Planck scale. It therefore seems legitimate, from a phenomenological point of view, to consider pre-Big Bang cosmologies as well as patterns where standard particles would not be the ultimate constituents of matter and the presently admitted principles of Physics would not necessarily be the fundamental ones. We discuss here prospects for some noncyclic, nonstandard cosmologies.
Application of multi-scale finite element methods to the solution of the FokkerPlanck equation
Masud, Arif
the computational overhead associated with large scale problems that arise in higher dimensions. Ó 2004 Elsevier B Arif Masud a,1 , Lawrence A. Bergman b,* a Department of Civil and Materials Engineering, University of these problems in the past is the finite element method, though for systems of dimension three or less
Dominant Physical Controls of Soil Hydrology at Different Spatial Scales
NASA Astrophysics Data System (ADS)
Jana, R. B.; Mohanty, B. P.
2011-12-01
Soil moisture and soil hydrologic fluxes (infiltration, ET, runoff) are affected at different scales by the spatial variability of influencing factors such as soil, topography, vegetation, and climatic forcings such as precipitation and temperature patterns. Understanding the nature of the linkage between these physical controls and the soil hydraulic parameters is critical in developing efficient scaling schemes for effective hydrologic modeling at large domains. We present results from a multi-location, multi-scale study designed to tease out the dominant physical control of soil hydraulic parameter variability at each scale of interest, and the evolution of the dominance with scale. Mathematical techniques such as Wavelet analysis and Karhunen-Loeve expansion are applied to bring out the extent of influence of the physical controls on the distribution signatures of the hydraulic parameters at the various scales. Data from diverse hydro-climatic locations across the globe, at various scales, derived from multiple platforms/sensors such as in-situ sensors, airborne remote sensors, and various satellite-borne remote sensors are used in this study to improve our understanding of the processes governing the hydraulic variability of soils. The study also considers the correlations among the soil hydraulic parameters, and their progression with change in scale. Further, we test the efficacy of certain existing soil hydraulic parameter scaling algorithms with regard to preserving these relationships (both among the hydraulic parameters, and with the physical controls) and provide guidelines for their usage at specific scales.
The Planck Mission and its Products
NASA Astrophysics Data System (ADS)
Tauber, Jan A.
2015-08-01
Planck (http://www.esa.int/Planck) is an astronomical satellite part of the Scientific Programme of the European Space Agency, which was designed to image the anisotropies of the Cosmic Microwave Background (CMB) over the whole sky, with unprecedented sensitivity and angular resolution. Planck is a major source of information relevant to many cosmological and astrophysical issues. The ability to measure to high accuracy the angular power spectrum of the CMB fluctuations allows the determination of fundamental cosmological parameters with an uncertainty better than a percent. In addition to the main cosmological goals of the mission, the Planck sky survey can be used to study in detail the very sources of emission which "contaminate" the signal due to the CMB, and will result in a wealth of information on the properties of extragalactic sources, and on the dust and gas in our own galaxy.Planck was launched together with Herschel on 14 May 2009. Its payload surveyed the sky continuously between July 2009 and October 2013. In January 2011 the first Planck data product (the Early Release Compact Source Catalogue) and scientific results were released to the public. The second data release took place on March 2013, and included maps of the whole sky at nine frequencies as well as maps of the major physical emission components. The third data release is taking place between February and May 2015, and includes all the data acquired by Planck.I will present - on behalf of the Planck Collaboration - a very brief overview of the Planck mission, its scientific objectives, and also briefly describe its most recent scientific results. Next, I will concentrate on describing the Planck data products that have been publicly released, and how they can serve a wide community of users. This talk is intended to be an appropriate introduction to the IAU GA Focus Meeting “The Legacy of Planck”.
Physical mechanisms behind the large scale features of chromatin organization
Pombo, Ana; Nicodemi, Mario
2014-01-01
We review the picture emerging from recently published models of classical polymer physics of the general features of chromatin large scale spatial organization, as revealed by microscopy and Hi-C data. PMID:24802900
McDonald, John
2014-11-01
Planck favours a negative running of the spectral index, with the likelihood being dominated by low multipoles l ?< 50 and no preference for running at higher l. A negative spectral index is also necessary for the 2- Planck upper bound on the tensor-to-scalar ratio r to be consistent with values significantly larger than 0.1. Planck has also observed a hemispherical asymmetry of the CMB power spectrum, again mostly at low multipoles. Here we consider whether the physics responsible for the hemispherical asymmetry could also account for the negative running of the spectral index and the consistency of Planck with a large value of r. A negative running of the spectral index can be generated if the hemispherical asymmetry is due to a scale- and space-dependent modulation which suppresses the CMB power spectrum at low multipoles. We show that the observed hemispherical asymmetry at low l can be generated while satisfying constraints on the asymmetry at higher l and generating a negative spectral index of the right magnitude to account for the Planck observation and to allow Planck to be consistent with a large value of r.
The Planck Catalogue of High-z source candidates
NASA Astrophysics Data System (ADS)
Montier, Ludovic
2015-08-01
The Planck satellite has provided the first FIR/submm all-sky survey with a sensitivity allowing us to identify the rarest, most luminous high?z dusty star-forming sources on the sky. It opens a new window on these extreme star-forming systems at redshift above 1.5, providing a powerful laboratory to study the mechanisms of galaxy evolution and enrichment in the frame of the large scale structure growth.I will describe how the Planck catalogue of high-z source candidates (PHz, Planck 2015 in prep.) has been built and charcaterized over 25% of the sky by selecting the brightest red submm sources at a 5' resolution. Follow-up observations with Herschel/SPIRE over 228 Planck candidates have shown that 93% of these candidates are actually overdensities of red sources with SEDs peaking at 350um (Planck Int. results. XXVII 2014). Complementarily to this population of objects, 12 Planck high-z candidates have been identified as strongly lensed star forming galaxies at redshift lying between 2.2 and 3.6 (Canameras et al 2015 subm.), with flux densities larger than 400 mJy up to 1 Jy at 350um, and strong magnification factors. These Planck lensed star-forming galaxies are the rarest brightest lensed in the submm range, providing a unique opportunity to extend the exploration of the star-forming system in this range of mass and redshift.I will detail further a specific analysis performed on a proto-cluster candidate, PHz G95.5-61.6, identified as a double structure at z=1.7 and z=2.03, using an extensive follow-up program (Flores-Cacho et al 2015 subm.). This is the first Planck proto-cluster candidate with spectroscopic confirmation, which opens a new field of statistical analysis about the evolution of dusty star-forming galaxies in such accreting structures.I will finally discuss how the PHz catalogue may help to answer some of the fundamental questions like: At what cosmic epoch did massive galaxy clusters form most of their stars? Is star formation more or less vigorous in these galaxies compared to field galaxies ? What are the physical conditions of the ISM at high-z ?
Salvio, Alberto
2015-01-01
We study a simple Standard Model (SM) extension, which includes three families of right-handed neutrinos with generic non-trivial flavor structure and an economic implementation of the invisible axion idea. We find that in some regions of the parameter space this model accounts for all experimentally confirmed pieces of evidence for physics beyond the SM: it explains neutrino masses (via the type-I see-saw mechanism), dark matter, baryon asymmetry (through leptogenesis), solve the strong CP problem and has a stable electroweak vacuum. The last property allows us to identify the Higgs field with the inflaton.
Scaling and Renormalization in Statistical Physics
John Cardy
1996-01-01
This text provides a thoroughly modern graduate-level introduction to the theory of critical behavior. Beginning with a brief review of phase transitions in simple systems and of mean field theory, the text then goes on to introduce the core ideas of the renormalization group. Following chapters cover phase diagrams, fixed points, cross-over behavior, finite-size scaling, perturbative renormalization methods, low-dimensional systems,
Psychometric Properties of the Commitment to Physical Activity Scale
ERIC Educational Resources Information Center
DeBate, Rita DiGioacchino; Huberty, Jennifer; Pettee, Kelley
2009-01-01
Objective: To assess psychometric properties of the Commitment to Physical Activity Scale (CPAS). Methods: Girls in third to fifth grades (n = 932) completed the CPAS before and after a physical activity intervention. Psychometric measures included internal consistency, factor analysis, and concurrent validity. Results: Three CPAS factors emerged:…
Development of a Scale Measuring Trait Anxiety in Physical Education
ERIC Educational Resources Information Center
Barkoukis, Vassilis; Rodafinos, Angelos; Koidou, Eirini; Tsorbatzoudis, Haralambos
2012-01-01
The aim of the present study was to examine the validity and reliability of a multi-dimensional measure of trait anxiety specifically designed for the physical education lesson. The Physical Education Trait Anxiety Scale was initially completed by 774 high school students during regular school classes. A confirmatory factor analysis supported the…
Extending Higgs Inflation with TeV Scale New Physics
Hong-Jian He; Zhong-Zhi Xianyu
2014-10-09
Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than $2\\sigma$ deviations, and generally gives a negligible tensor-to-scalar ratio $r \\sim 10^{-3}$ (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark $T$ and a real scalar $S$. The presence of singlets $(T, S)$ significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio $r = O(0.1 - 10^{-3})$, consistent with the favored $r$ values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index $ n_s \\simeq 0.96 $. It further allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark $T$ and scalar $S$ at the LHC and future high energy pp colliders.
Extending Higgs inflation with TeV scale new physics
NASA Astrophysics Data System (ADS)
He, Hong-Jian; Xianyu, Zhong-Zhi
2014-10-01
Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than 2? deviations, and generally gives a negligible tensor-to-scalar ratio r ~ 10-3 (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark Script T and a real scalar Script S. The presence of singlets (Script T, Script S) significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio r=Script O(0.1)-Script O(10-3), consistent with the favored r values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index ns simeq 0.96. It allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark Script T and scalar Script S at the LHC and future high energy pp colliders.
Extending Higgs inflation with TeV scale new physics
He, Hong-Jian; Xianyu, Zhong-Zhi E-mail: xianyuzhongzhi@gmail.com
2014-10-01
Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than 2? deviations, and generally gives a negligible tensor-to-scalar ratio r ? 10{sup -3} (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark T and a real scalar S. The presence of singlets (T, S) significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio r=O(0.1)-O(10{sup -3}), consistent with the favored r values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index n{sub s} ? 0.96. It allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark T and scalar S at the LHC and future high energy pp colliders.
Richard Lieu; Lloyd W. Hillman
2003-01-27
We present a method of directly testing whether time continues to have its usual meaning on scales of quantum gravity, the time t of an event cannot be determined more accurately than a standard deviation of the form sigma_t/t = a_o (t_P/t)^a, where a_o and a are positive constants ~1; likewise distances are subject to an ultimate uncertainty c \\sigma_t, where c is the speed of light. As a consequence, the period and wavelength of light cannot be specified precisely; rather, they are independently subject to the same intrinsic limitations in our knowledge of time and space, so that even the most monochromatic plane wave must in reality be a superposition of waves with varying omega and {\\bf k}, each having a different phase velcocity omega/k. For the entire accessible range of the electromagnetic spectrum this effect is extremely small, but can cumulatively lead to a complete loss of phase information if the emitted radiation propagated a sufficiently large distance. Since, at optical frequencies, the phase coherence of light from a distant point source is a necessary condition for the presence of diffraction patterns when the source is viewed through a telescope, such observations offer by far the most sensitive and uncontroversial test. We show that the HST detection of Airy rings from the active galaxy PKS1413+135, located at a distance of 1.2 Gpc, secures the exclusion of all first order (a=1) quantum gravity fluctuations with an amplitude a_o > 0.003. The same result may be used to deduce that the speed of light in vacuo is exact to a few parts in 10^32.
Cosmological Non-Constant Problem: Cosmological bounds on TeV-scale physics and beyond
Niayesh Afshordi; Elliot Nelson
2015-07-04
We study the influence of the fluctuations of a Lorentz invariant and conserved vacuum on cosmological metric perturbations, and show that they generically blow up in the IR. We compute this effect using the K\\"all\\'en-Lehmann spectral representation of stress correlators in generic quantum field theories, as well as the holographic bound on their entanglement entropy, both leading to an IR cut-off that scales as the fifth power of the highest UV scale (in Planck units). One may view this as analogous to the Heisenberg uncertainty principle, which is imposed on the phase space of gravitational theories by the Einstein constraint equations. The leading effect on cosmological observables come from anisotropic vacuum stresses which imply: i) any extension of the standard model of particle physics can only have masses (or resonances) $\\lesssim$ 35 TeV, and ii) perturbative quantum field theory or quantum gravity becomes strongly coupled beyond a cut-off scale of $\\Lambda\\lesssim1$ PeV. Such a low cut-off is independently motivated by the Higgs hierarchy problem. This result, which we dub the cosmological non-constant problem, can be viewed as an extension of the cosmological constant (CC) problem, demonstrating the non-trivial UV-IR coupling and (yet another) limitation of effective field theory in gravity. However, it is more severe than the old CC problem, as vacuum fluctuations cannot be tuned to cancel due to the positivity of spectral densities or entropy. We thus predict that future advances in cosmological observations and collider technology will sandwich from above and below, and eventually discover, new (non-perturbative) physics beyond the Standard Model within the TeV-PeV energy range.
Scales and scaling in turbulent ocean sciences; physics-biology coupling
NASA Astrophysics Data System (ADS)
Schmitt, Francois
2015-04-01
Geophysical fields possess huge fluctuations over many spatial and temporal scales. In the ocean, such property at smaller scales is closely linked to marine turbulence. The velocity field is varying from large scales to the Kolmogorov scale (mm) and scalar fields from large scales to the Batchelor scale, which is often much smaller. As a consequence, it is not always simple to determine at which scale a process should be considered. The scale question is hence fundamental in marine sciences, especially when dealing with physics-biology coupling. For example, marine dynamical models have typically a grid size of hundred meters or more, which is more than 105 times larger than the smallest turbulence scales (Kolmogorov scale). Such scale is fine for the dynamics of a whale (around 100 m) but for a fish larvae (1 cm) or a copepod (1 mm) a description at smaller scales is needed, due to the nonlinear nature of turbulence. The same is verified also for biogeochemical fields such as passive and actives tracers (oxygen, fluorescence, nutrients, pH, turbidity, temperature, salinity...) In this framework, we will discuss the scale problem in turbulence modeling in the ocean, and the relation of Kolmogorov's and Batchelor's scales of turbulence in the ocean, with the size of marine animals. We will also consider scaling laws for organism-particle Reynolds numbers (from whales to bacteria), and possible scaling laws for organism's accelerations.
Planck 2015 results. III. LFI systematic uncertainties
Ade, P A R; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartolo, N; Basak, S; Battaglia, P; Battaner, E; Benabed, K; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Burigana, C; Butler, R C; Calabrese, E; Catalano, A; Christensen, P R; Colombo, L P L; Cruz, M; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Doré, O; Ducout, A; Dupac, X; Elsner, F; Enßlin, T A; Eriksen, H K; Finelli, F; Frailis, M; Franceschet, C; Franceschi, E; Galeotta, S; Galli, S; Ganga, K; Ghosh, T; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gregorio, A; Gruppuso, A; Hansen, F K; Harrison, D L; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Keihäen, E; Keskitalo, R; Kiiveri, K; Kisner, T S; Knoche, J; Krachmalnicoff, N; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lattanzi, M; Lawrence, C R; Leahy, J P; Leonardi, R; Levrier, F; Lilje, P B; Linden-Vørnle, M; Lindholm, V; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Meinhold, P R; Mennella, A; Migliaccio, M; Mitra, S; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Nati, F; Natoli, P; Noviello, F; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Partridge, B; Pasian, F; Pearson, T J; Perdereau, O; Pettorino, V; Piacentini, F; Pointecouteau, E; Polenta, G; Pratt, G W; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Scott, D; Stolyarov, V; Stompor, R; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vassallo, T; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Watson, R; Wehus, I K; Yvon, D; Zacchei, A; Zibin, J P; Zonca, A
2015-01-01
We present the current accounting of systematic effect uncertainties for the Low Frequency Instrument (LFI) that are relevant to the 2015 release of the Planck cosmological results, showing the robustness and consistency of our data set, especially for polarization analysis. We use two complementary approaches: (i) simulations based on measured data and physical models of the known systematic effects; and (ii) analysis of difference maps containing the same sky signal ("null-maps"). The LFI temperature data are limited by instrumental noise. At large angular scales the systematic effects are below the cosmic microwave background (CMB) temperature power spectrum by several orders of magnitude. In polarization the systematic uncertainties are dominated by calibration uncertainties and compete with the CMB $E$-modes in the multipole range 10-20. Based on our model of all known systematic effects, we show that these effects introduce a slight bias of around $0.2\\,\\sigma$ on the reionization optical depth derived ...
Mensur Omerbashich
2006-08-20
I demonstrate two fundamental contributions. First, the Earth tectonics is generally a consequence of the springtide-induced magnification of mechanical resonance in the Earth mantle. The same mechanism that causes bridges to collapse under the soldiers step-marching makes also the Earth lithosphere fail under the springtide-induced magnification of the mantle resonance resulting in strong earthquakes. Secondly, by generalizing the above finding onto any body anywhere in all the Universes and at all times, I find that there is no distinction between physics at intergalactic, Newtonian, quantum, and smaller scales. Thus, the so-called constant of proportionality of physics, G, is not a constant but a parameter of a most general form: G = s e^2, nonlinearly varying amongst different scales s. Any scale-related variations of physics, erroneously recognized as such by Einstein and Planck, are only apparent and arise as a consequence of the Earth mantle springtide-induced extreme resonance, which is also critically impeding any terrestrial experiments aimed at estimating the final proportionality G. Gravitation is explained if simply regarded mechanical and repulsive.
Physical controls of soil moisture variability at multiple scales
NASA Astrophysics Data System (ADS)
Jana, R. B.; Mohanty, B.
2013-12-01
Understanding what factors drive soil hydrological processes at different scales and their variability is very critical to further our ability to model the various components of the hydrologic cycle more accurately. Soil moisture, and, by association, soil hydraulic parameters have been known to be a function of location, and the support scale at which they are measured. Recent increase in remote sensing platforms necessitates increased calibration/validation efforts of their soil moisture products with ground-based measurements. Such cal/val operations require some form of up- or down-scaling process. Understanding the factors that drive soil hydrological processes at different scales, and their variability, is very critical to minimize errors due to this step in the cal/val procedure. Existing literature provides a description of the different sources of soil moisture variability across a range of resolutions from point to continental scales, classified under four categories: soil texture and structure, topography, vegetation, and meteorological forcings. While it is accepted that a dynamic relationship exists between these physical controls and the soil hydraulic properties across spatial scales, the nature of the relationship is not very well understood. In order to formulate better scaling algorithms, it is first necessary to determine the form and amount of influence exerted by the controlling factors on the variability of the soil moisture or hydraulic parameters at each scale of interest. One method to understand the effect of the physical controls is to analyze the covariance or coherence of the physical controls with the soil hydraulic properties across multiple scales and different hydro-climates. Such a study, using wavelet analysis, is presented here. A variety of datasets from multiple platforms across the globe were employed in this study. The AMSR-E soil moisture product was used as the remotely sensed, coarse resolution dataset. Fine resolution, ground-based soil moisture data at the study sites were obtained from the International Soil Moisture Network (ISMN) database. Elevation and slope were derived from SRTM Digital Elevation Data. Soil physical properties such as sand, silt, and clay contents, and precipitation information were obtained from the respective ancillary data from the ISMN database. Vegetation information was derived from the LAI product of the MODIS platform. Similarities in behavior of soil moisture dynamics across hydroclimates at corresponding scales were observed. It was also observed that the influence of the physical controls depended not only on the spatial scale of observation but also on the degree of saturation of the soil. We present these and other inferences drawn from the study.
The physical basis of glacier volume-area scaling
Bahr, D.B.; Meier, M.F.; Peckham, S.D.
1997-01-01
Ice volumes are known for only a few of the roughly 160,000 glaciers worldwide but are important components of many climate and sea level studies which require water flux estimates. A scaling analysis of the mass and momentum conservation equations shows that glacier volumes can be related by a power law to more easily observed glacier surface areas. The relationship requires four closure choices for the scaling behavior of glacier widths, slopes, side drag and mass balance. Reasonable closures predict a volume-area scaling exponent which is consistent with observations, giving a physical and practical basis for estimating ice volumes. Glacier volume is insensitive to perturbations in the mass balance scaling, but changes in average accumulation area ratios reflect significant changes in the scaling of both mass balance and ice volume. Copyright 1997 by the American Geophysical Union.
2D VARIABLY SATURATED FLOWS: PHYSICAL SCALING AND BAYESIAN ESTIMATION
A novel dimensionless formulation for water flow in two-dimensional variably saturated media is presented. It shows that scaling physical systems requires conservation of the ratio between capillary forces and gravity forces. A direct result of this finding is that for two phys...
(Astro)Physics 343 Lecture # 4: Lab # 2 + Temperature Scales
Baker, Andrew J.
(Astro)Physics 343 Lecture # 4: Lab # 2 + Temperature Scales #12; Lab # 2: more observations of the Sun... First part of lab: measure the aperture efficiency of the SRT. Second part of lab: assess level) will be emailed to you. 15 emails received with questions about Lab # 1. Don't be shy! #12; Some details about
(Astro)Physics 343 Lecture # 4: Lab # 2 + Temperature Scales
Baker, Andrew J.
(Astro)Physics 343 Lecture # 4: Lab # 2 + Temperature Scales #12; Lab # 2: more observations of the Sun... First part of lab: measure the aperture efficiency of the SRT. Second part of lab: assess level) will be emailed to you. 4 emails + 2 office visits about Lab # 1. Don't be shy! #12; Some details about
The Basic Psychological Needs in Physical Education Scale
ERIC Educational Resources Information Center
Vlachopoulos, Symeon P.; Katartzi, Ermioni S.; Kontou, Maria G.
2011-01-01
The present study reported on the modification of the Basic Psychological Needs in Exercise Scale (Vlachopoulos & Michailidou, 2006) to assess students' psychological need fulfillment in elementary school, middle school, and high school compulsory physical education classes. Data were collected from 817 5th and 6th grade students, 862 middle…
Visualizing and manipulating graphene physics at the atomic scale
Ku?el, Petr
local environment and how this affects to graphene's quasiparticle dispersion, pseudospin, van HoveVisualizing and manipulating graphene physics at the atomic scale Seminá odd. 26 Tenkých vrstev, Spain In 2004 graphene ceased being a theoretical chimera to become the object of desire
Determining Identifiable Parameterizations for Large-scale Physical Models in
Van den Hof, Paul
the oil and gas production from subsurface reservoirs. A common way to increase the productionDetermining Identifiable Parameterizations for Large-scale Physical Models in Reservoir Engineering Jorn F.M. Van Doren , Paul M.J. Van den Hof Jan Dirk Jansen Okko H. Bosgra Delft Center for Systems
Physical naturalness and dynamical breaking of classical scale invariance
NASA Astrophysics Data System (ADS)
Heikinheimo, Matti; Racioppi, Antonio; Spethmann, Christian; Raidal, Martti; Tuominen, Kimmo
2014-05-01
We propose a model of a confining dark sector, dark technicolor, that communicates with the Standard Model (SM) through the Higgs portal. In this model electroweak (EW) symmetry breaking and dark matter (DM) share a common origin, and the EW scale is generated dynamically. Our motivation to suggest this model is the absence of evidence for new physics from recent Large Hadron Collider (LHC) data. Although the conclusion is far from certain at this point, this lack of evidence may suggest that no mechanism exists at the EW scale to stabilize the Higgs mass against radiative corrections from ultraviolet (UV) physics. The usual reaction to this puzzling situation is to conclude that the stabilizing new physics is either hidden from us by accident, or that it appears at energies that are currently inaccessible, such that nature is indeed fine-tuned. In order to re-examine the arguments that have led to this dichotomy, we review the concept of naturalness in effective field theories, discussing in particular the role of quadratic divergences in relation to different energy scales. This leads us to suggest classical scale invariance as a guideline for model building, implying that explicit mass scales are absent in the underlying theory.
Physical scales in the Wigner–Boltzmann equation
Nedjalkov, M.; Selberherr, S.; Ferry, D.K.; Vasileska, D.; Dollfus, P.; Querlioz, D.; Dimov, I.; Schwaha, P.
2013-01-01
The Wigner–Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner–Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. It is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner–Boltzmann evolution is demonstrated. PMID:23504194
Reactor Physics Methods and Analysis Capabilities in SCALE
Mark D. DeHart; Stephen M. Bowman
2011-05-01
The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.; Kumar, S.; Lapenta, W.; Li, X.; Matsui, T.; Rienecker, M.; Shen, B.W.; Shi, J.J.; Simpson, J.; Zeng, X.
2008-01-01
Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.
2T Physics, Scale Invariance and Topological Vector Fields
W. Chagas-Filho
2007-11-22
We construct, in classical two-time physics, the necessary structure for the most general configuration space formulation of quantum mechanics containing gravity in d+2 dimensions. This structure is composed of a symmetric Riemannian metric tensor and of a vector field that defines a section of a flat U(1) bundle over space-time. This construction is possible because of the existence of a finite local scale invariance of the Hamiltonian and because two-time physics contains, at the classical level, a local generalization of the discrete duality symmetry between position and momentum that underlies the structure of quantum mechanics.
Pre-big bang model has Planck problem
D. H. Coule
1997-12-12
The pre-big bang's kinetic driven inflationary mechanism is not an adequate form of inflation: the Planck length grows more rapidly than the scale factor. In order to explain our large universe, the resulting post-big bang universe requires the same unnatural constants (Planck problem) as those of any other non-inflationary big bang model.
Blind search for variability in Planck data
NASA Astrophysics Data System (ADS)
Rachen, Jörg Paul; Keihanen, Elina; Reinecke, Martin
2015-08-01
The sky is full of variable and transient sources on all time scales, from milliseconds to decades. AGN and moving solar system objects are expected to produce variable sky signals in the Planck frequency regime, but also other transient sources may wait for their discovery. Planck's regular scanning strategy makes it an ideal instrument to search for variable sky signals in the millimetre and submillimetre regime, on time scales from hours to several years. A precondition is that instrumental noise and systematic effects caused in particular by non-symmetric beam shapes, are properly removed. We present a method to perform a full sky blind search for variable and transient objects at all Planck frequencies, and present first results on known populations of variable sources.
Microphysics in Multi-scale Modeling System with Unified Physics
NASA Astrophysics Data System (ADS)
Tao, W.-K.
2012-04-01
Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.
The Goddard multi-scale modeling system with unified physics
NASA Astrophysics Data System (ADS)
Tao, W.-K.; Anderson, D.; Chern, J.; Entin, J.; Hou, A.; Houser, P.; Kakar, R.; Lang, S.; Lau, W.; Peters-Lidard, C.; Li, X.; Matsui, T.; Rienecker, M.; Schoeberl, M. R.; Shen, B.-W.; Shi, J. J.; Zeng, X.
2009-08-01
Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (CRM), (2) a regional-scale model, the NASA unified Weather Research and Forecasting Model (WRF), and (3) a coupled CRM-GCM (general circulation model, known as the Goddard Multi-scale Modeling Framework or MMF). The same cloud-microphysical processes, long- and short-wave radiative transfer and land-surface processes are applied in all of the models to study explicit cloud-radiation and cloud-surface interactive processes in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator for comparison and validation with NASA high-resolution satellite data. This paper reviews the development and presents some applications of the multi-scale modeling system, including results from using the multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols. In addition, use of the multi-satellite simulator to identify the strengths and weaknesses of the model-simulated precipitation processes will be discussed as well as future model developments and applications.
Microphysics in Multi-scale Modeling Systems with Unified Physics
NASA Astrophysics Data System (ADS)
Tao, W.; Chern, J.; Lang, S.
2011-12-01
A multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling systems will be presented
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Astrophysics Data System (ADS)
Tao, W.; Chern, J.; Matsui, T.; Li, X.; Peters-Lidard, C. D.; Zeng, X.; Shen, B.; Shi, J. J.; Lang, S.
2009-12-01
Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (CRM), (2) a regional-scale model, the NASA unified Weather Research and Forecasting Model (WRF), and (3) a coupled CRM-GCM (general circulation model, known as the Goddard Multi-scale Modeling Framework or MMF). The same cloud-microphysical processes, long- and short-wave radiative transfer and land-surface processes are applied in all of the models to study explicit cloud-radiation and cloud-surface interactive processes in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator for comparison and validation with NASA high-resolution satellite data. This paper reviews the development and presents some applications of the multi-scale modeling system, including results from using the multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols. In addition, use of the multi-satellite simulator to identify the strengths and weaknesses of the model-simulated precipitation processes will be discussed as well as future model developments and applications.
Microphysics in Multi-scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2012-01-01
Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.
Aspects of New Physics at the TeV Scale
NASA Astrophysics Data System (ADS)
Gu, Jiayin
The Standard Model, despite its great success, is generally considered as an incomplete theory and various reasons suggest that new physics may appear around the TeV scale. The LHC discovered a Standard Model like Higgs boson at around 126 GeV, but has not observed any evidence of new physics yet. As the tension is increasing between the expectation of the TeV scale new physics and the lack of experimental discovery, it is helpful to consider new model building directions and new search strategies. In this thesis, we present a few studies on different aspects of new physics at the TeV scale. First, we present a composite Higgs model based on the top seesaw mechanism. We show that with an approximate U(3)L chiral symmetry, associated with a vector-like quark and the (t, b)L doublet, the lightest CP-even neutral state of the composite scalar sector is lighter than the top quark and can be identified as the newly discovered Higgs boson. Second, we present two studies of search strategies of the stop particle, with the first one focusing on the semi-leptonic channel and the second one focusing on the di-leptonic channel with compressed signal spectra. In both cases, we introduce new kinematic variables which can substantially improve the signal significance. We also present a mass measurement method at hadron colliders for a decay chain of two steps, which ends with a missing particle. We show that it is possible to extract all three invisible particle masses with reasonable accuracies, which was previously thought to be impossible. With the upgrade of the LHC and the possibilities of new larger colliders in the future, the search for new physics will continue on, and our studies can help.
A review of axion inflation in the era of Planck
NASA Astrophysics Data System (ADS)
Pajer, Enrico; Peloso, Marco
2013-11-01
Because the inflationary mechanism is extremely sensitive to UV-physics, the construction of theoretically robust models of inflation provides a unique window on Planck scale physics. We review efforts to use an axion with a shift symmetry to ensure a prolonged slow-roll background evolution. The symmetry dictates which operators are allowed, and these in turn determine the observational predictions of this class of models, which include observable gravitational waves (potentially chiral), oscillations in all primordial correlators, specific deviations from scale invariance and Gaussianity and primordial black holes. We discuss the constraints on this class of models in light of the recent Planck results and comment on future perspectives. The shift symmetry is very useful in models of large-field inflation, which typically have monomial potentials, but it cannot explain why two or more terms in the potential are fine-tuned against each other, as needed for typical models of small-field inflation. Therefore some additional symmetries or fine tuning will be needed if forthcoming experiments will constrain the tensor-to-scalar ratio to be r ? 0.01.
Effective cosmological constant from TeV-scale physics
Klinkhamer, F. R.
2010-10-15
It has been suggested previously that the observed cosmological constant {Lambda} corresponds to the remnant vacuum energy density of dynamical processes taking place at a cosmic age set by the mass scale M{approx}E{sub ew} of ultramassive particles with electroweak interactions. Here, a simple modification of the nondissipative dynamic equations of q-theory is presented, which produces a remnant vacuum energy density (effective cosmological constant) of the correct order of magnitude. Combined with the observed value of {Lambda}, a first estimate of the required value of the energy scale E{sub ew} ranges from 3 to 9 TeV, depending on the number of species of ultramassive particles and assuming a dissipative coupling constant of order unity. If correct, this estimate implies the existence of new TeV-scale physics beyond the standard model.
Artificial contradiction between cosmology and particle physics: the ? problem
NASA Astrophysics Data System (ADS)
Alfonso-Faus, Antonio
2009-05-01
It is shown that the usual choice of units obtained by taking G= c= ?=1, giving the Planck’s units of mass, length and time, introduces an artificial contradiction between cosmology and particle physics: the lambda problem that we associate with ?. We note that the choice of ?=1 does not correspond to the scale of quantum physics. For this scale we prove that the correct value is ??1/10122, while the choice of ?=1 corresponds to the cosmological scale. This is due to the scale factor of 1061 that converts the Planck scale to the cosmological scale. By choosing the ratio G/ c 3=constant=1, which includes the choice G= c=1, and the momentum conservation mc=constant, we preserve the derivation of the Einstein field equations from the action principle. Then the product Gm/ c 2= r g , the gravitational radius of m, is constant. For a quantum black hole we prove that ?? r {/g 2}?( mc)2. We also prove that the product ? ? is a general constant of order one, for any scale. The cosmological scale implies ?? ??1, while the Planck scale gives ??1/ ??10122. This explains the ? problem. We get two scales: the cosmological quantum black hole (QBH), size ˜1028 cm, and the quantum black hole (qbh) that includes the fundamental particles scale, size ˜10-13 cm, as well as the Planck’ scale, size ˜10-33 cm.
Physical scales in the Wigner-Boltzmann equation
Nedjalkov, M.; Selberherr, S.; Ferry, D.K.; Vasileska, D.; Dollfus, P.; Querlioz, D.; Dimov, I.; Schwaha, P.
2013-01-15
The Wigner-Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner-Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. It is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner-Boltzmann evolution is demonstrated. - Highlights: Black-Right-Pointing-Pointer Dimensionless parameters determine the ratio of quantum or classical WB evolution. Black-Right-Pointing-Pointer The scaling theorem evaluates the decoherence effect due to scattering. Black-Right-Pointing-Pointer Evolution processes are grouped into classes of equivalence.
Planck 2015. XX. Constraints on inflation
Ade, P A R; Arnaud, M; Arroja, F; Ashdown, M; Aumont, J; Baccigalupi, C; Ballardini, M; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoit, A; Benoit-Levy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Contreras, D; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Desert, F -X; Diego, J M; Dole, H; Donzelli, S; Dore, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Ensslin, T A; Eriksen, H K; Fergusson, J; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Frolov, A; Galeotta, S; Galli, S; Ganga, K; Gauthier, C; Giard, M; Giraud-Heraud, Y; Gjerlow, E; Gonzalez-Nuevo, J; Gorski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hamann, J; Handley, W; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versille, S; Hernandez-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huang, Z; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihanen, E; Keskitalo, R; Kim, J; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lahteenmaki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Lesgourgues, J; Levrier, F; Lewis, A; Liguori, M; Lilje, P B; Linden-Vornle, M; Lopez-Caniego, M; Lubin, P M; Ma, Y -Z; Macias-Perez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Martin, P G; Martinez-Gonzalez, E; Masi, S; Matarrese, S; Mazzotta, P; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschenes, M -A; Molinari, D; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munchmeyer, M; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Norgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paladini, R; Pandolfi, S; Paoletti, D; Pasian, F; Patanchon, G; Pearson, T J; Peiris, H V; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prezeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rowan-Robinson, M; Rubino-Martin, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Shiraishi, M; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Trombetti, T; Tucci, M; Tuovinen, J; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; White, M; Yvon, D; Zacchei, A; Zibin, J P; Zonca, A
2015-01-01
We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be $n_\\mathrm{s} = 0.968 \\pm 0.006$ and tightly constrain its scale dependence to $d n_s/d \\ln k =-0.003 \\pm 0.007$ when combined with the Planck lensing likelihood. When the high-$\\ell$ polarization data is included, the results are consistent and uncertainties are reduced. The upper bound on the tensor-to-scalar ratio is $r_{0.002} < 0.11$ (95% CL), consistent with the B-mode polarization constraint $r< 0.12$ (95% CL) obtained from a joint BICEP2/Keck Array and Planck analysis. These results imply that $V(\\phi) \\propto \\phi^2$ and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as $R^2$ ...
NASA Astrophysics Data System (ADS)
Pagano, Luca
2014-09-01
The European Space Agency (hereafter ESA) Planck satellite was launched on May 2009 and has been surveying the microwave and the submillimeter sky since August 2009. In March 2013, ESA and the Planck Collaboration publicly released the initial cosmology products based on the first 15.5 months of Planck operations. In this contribution we present the first cosmological results based on Planck measurements of the Cosmic Microwave Radiation temperature and lensing-potential power spectra. The Planck spectra at high multipoles are well described by the standard Lambda Cold Dark Matter (?CDM) cosmological model based on six parameters. We find a low value of the Hubble parameter, H 0 = 67.3 ± 1.2 km/s/Mpc, and, consequently, an high value of the matter parameter density ? m = 0.315±0.017 (±1 ? errors), in agreement with the measurements of baryon acoustic oscillation (BAO) surveys. We also present results from several possible extensions of the standard cosmological model, by using astrophysical datasets in addition to the Planck data. None of these models are favored significantly over the standard ?CDM. Using BAO and CMB data, we find N eff = 3.30 ± 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.25 eV for the summed neutrino mass.
Planck data processing centers
NASA Astrophysics Data System (ADS)
Pasian, Fabio; Sygnet, Jean-François
2002-12-01
The success of the Planck mission heavily relies on careful planning, design and implementation of its ground segment facilities. Among these, two Data Processing Centres (DPCs) are being implemented, which are operated by the consortia responsible for building the instruments forming the scientific payload of Planck. The two DPCs, together with the Mission Operations Centre (MOC) and the Herschel Science Centre (HSC), are the major elements of the Herschel/Planck scientific ground segment. The Planck DPCs are responsible for the operation of the instruments, and for the production, delivery and archiving of the scientific data products, which can be considered as the final results of the mission: · Calibrated time series data, for each receiver, after removal of systematic features and attitude reconstruction. · Photometrically and astrometrically calibrated maps of the sky in the observed bands. · Sky maps of the main astrophysical components. · Catalogs of sources detected in the sky maps of the main astrophysical components. · CMB power spectrum coefficients. During the development phase, the DPCs are furthermore responsible for the production of data simulating realistically the behaviour of the instruments in flight, and for the support to instrument testing activities. In this paper, some aspects related to the control of the Planck instruments, to the data flow and to the data processing for Planck are described, and an overview of the activities being carried out is provided.
Component separation methods for the Planck mission
S. M. Leach; J. -F. Cardoso; C. Baccigalupi; R. B. Barreiro; M. Betoule; J. Bobin; A. Bonaldi; J. Delabrouille; G. de Zotti; C. Dickinson; H. K. Eriksen; J. González-Nuevo; F. K. Hansen; D. Herranz; M. LeJeune; M. López-Caniego; E. Martinez-González; M. Massardi; J. -B. Melin; M. -A. Miville-Deschênes; G. Patanchon; S. Prunet; S. Ricciardi; E. Salerno; J. L. Sanz; J. -L. Starck; F. Stivoli; V. Stolyarov; R. Stompor; P. Vielva
2008-11-25
The Planck satellite will map the full sky at nine frequencies from 30 to 857 GHz. The CMB intensity and polarization that are its prime targets are contaminated by foreground emission. The goal of this paper is to compare proposed methods for separating CMB from foregrounds based on their different spectral and spatial characteristics, and to separate the foregrounds into components of different physical origin. A component separation challenge has been organized, based on a set of realistically complex simulations of sky emission. Several methods including those based on internal template subtraction, maximum entropy method, parametric method, spatial and harmonic cross correlation methods, and independent component analysis have been tested. Different methods proved to be effective in cleaning the CMB maps from foreground contamination, in reconstructing maps of diffuse Galactic emissions, and in detecting point sources and thermal Sunyaev-Zeldovich signals. The power spectrum of the residuals is, on the largest scales, four orders of magnitude lower than that of the input Galaxy power spectrum at the foreground minimum. The CMB power spectrum was accurately recovered up to the sixth acoustic peak. The point source detection limit reaches 100 mJy, and about 2300 clusters are detected via the thermal SZ effect on two thirds of the sky. We have found that no single method performs best for all scientific objectives. We foresee that the final component separation pipeline for Planck will involve a combination of methods and iterations between processing steps targeted at different objectives such as diffuse component separation, spectral estimation and compact source extraction.
Relativistic Fluid Dynamics: Physics for Many Different Scales
N. Andersson; G. L. Comer
2006-05-02
The relativistic fluid is a highly successful model used to describe the dynamics of many-particle, relativistic systems. It takes as input basic physics from microscopic scales and yields as output predictions of bulk, macroscopic motion. By inverting the process, an understanding of bulk features can lead to insight into physics on the microscopic scale. Relativistic fluids have been used to model systems as ``small'' as heavy ions in collisions, and as large as the universe itself, with ``intermediate'' sized objects like neutron stars being considered along the way. The purpose of this review is to discuss the mathematical and theoretical physics underpinnings of the relativistic (multiple) fluid model. We focus on the variational principle approach championed by Brandon Carter and his collaborators, in which a crucial element is to distinguish the momenta that are conjugate to the particle number density currents. This approach differs from the ``standard'' text-book derivation of the equations of motion from the divergence of the stress-energy tensor, in that one explicitly obtains the relativistic Euler equation as an ``integrability'' condition on the relativistic vorticity. We discuss the conservation laws and the equations of motion in detail, and provide a number of (in our opinion) interesting and relevant applications of the general theory.
Relativistic Fluid Dynamics: Physics for Many Different Scales
NASA Astrophysics Data System (ADS)
Andersson, Nils; Comer, Gregory L.
2007-01-01
The relativistic fluid is a highly successful model used to describe the dynamics of many-particle, relativistic systems. It takes as input basic physics from microscopic scales and yields as output predictions of bulk, macroscopic motion. By inverting the process, an understanding of bulk features can lead to insight into physics on the microscopic scale. Relativistic fluids have been used to model systems as ``small'' as heavy ions in collisions, and as large as the Universe itself, with ``intermediate'' sized objects like neutron stars being considered along the way. The purpose of this review is to discuss the mathematical and theoretical physics underpinnings of the relativistic (multiple) fluid model. We focus on the variational principle approach championed by Brandon Carter and his collaborators, in which a crucial element is to distinguish the momenta that are conjugate to the particle number density currents. This approach differs from the ``standard'' text-book! derivation of the equations of motion from the divergence of the stress-energy tensor in that one explicitly obtains the relativistic Euler equation as an ``integrability'' condition on the relativistic vorticity. We discuss the conservation laws and the equations of motion in detail, and provide a number of (in our opinion) interesting and relevant applications of the general theory.
The CMB derivatives of Planck's beam asymmetry
NASA Astrophysics Data System (ADS)
Rathaus, Ben; Kovetz, Ely D.
2014-09-01
We investigate the anisotropy in cosmic microwave background Planck maps due to the coupling between its beam asymmetry and uneven scanning strategy. Introducing a pixel space estimator based on the temperature gradients, we find a highly significant (˜20?) preference for these to point along ecliptic latitudes. We examine the scale dependence, morphology and foreground sensitivity of this anisotropy, as well as the capability of detailed Planck simulations to reproduce the effect, which is crucial for its removal, as we demonstrate in a search for the weak-lensing signature of cosmic defects.
A Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2008-01-01
Numerical cloud models, which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Because cloud-scale dynamics are treated explicitly, uncertainties stemming from convection that have to be parameterized in (hydrostatic) large-scale models are obviated, or at least mitigated, in cloud models. Global models will use the non-hydrostatic framework when their horizontal resolution becomes about 10 km, the theoretical limit for the hydrostatic approximation. This juncture will be reached one to two decades from now. In recent years, exponentially increasing computer power has extended cloud-resolving-mode1 integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique.
NASA Astrophysics Data System (ADS)
Dupac, Xavier
2015-08-01
The ESA Planck space telescope collaboration has released its second major dataset on Feb. 5th, 2015.It includes Cosmic Microwave Background full-sky maps from the whole observational dataset of Planck, maps of the extended Galactic foreground emissions, catalogues of Galactic and Extragalactic sources, among others.Full-sky temperature/intensity maps are released at nine frequencies (30 GHz to 857 GHz) with unprecedented angular resolution (4’ for the High-Frequency Instrument higher frequency channels) and sensitivity, and polarization maps are released for the Low-Frequency Instrument (30, 44, 70 GHz) and the 353 GHz channel of the High-Frequency Instrument.In this presentation, I will explain what is in the database and how to search and process data from the Planck Legacy Archive newly-released (Dec. 2014) web-based user interface. I will also present the broader context of the Planck archives and future developments for the next Planck data releases, including the Added-Value Interface that is currently under development at European Space Astronomy Centre.
Composite inflation confronts BICEP2 and PLANCK
NASA Astrophysics Data System (ADS)
Karwan, Khamphee; Channuie, Phongpichit
2014-06-01
We examine observational constraints on single-field inflation in which the inflaton is a composite field stemming from a four-dimensional strongly interacting field theory. We confront the predictions with the Planck and very recent BICEP2 data. In the large non-minimal coupling regions, we discover for the minimal composite inflationary model that the predictions lie well inside the joint 68% CL for the Planck data, but is in tension with the recent BICEP2 observations. In the case of the glueball inflationary model, the predictions satisfy the Planck results. However, this model can produce a large tensor-to-scalar ratio consistent with the recent BICEP2 observations if the number of e-foldings is slightly smaller than the range commonly used. For a super Yang-Mills paradigm, we discover that the predictions satisfy the Planck data, and surprisingly a large tensor-to-scalar ratio consistent with the BICEP2 results can also be produced for an acceptable range of the number of e-foldings and of the confining scale. In the small non-minimal coupling regions, all of the models can satisfy the BICEP2 results. However, the predictions of the glueball and superglueball inflationary models cannot satisfy the observational bound on the amplitude of the curvature perturbation launched by Planck, and the techni-inflaton self-coupling in the minimal composite inflationary model is constrained to be extremely small.
NASA Astrophysics Data System (ADS)
Danielewski, Marek
2007-11-01
The Planck -Kleinert Crystal hypothesis is analyzed for an ideal cubic fcc crystal formed by Planck particles. In this type of a quasi-continuum the energy, momentum, and mass transport are described by the classical balance equations. The transverse wave is the electromagnetic wave, and its velocity equals the velocity of light. The quasi-stationary collective movement of mass in the crystal is equivalent to the particle (body), and such an approach enables derivation of the Schrödinger equation. The diffusing interstitial Planck particles create a gravity field, and the computed value of G is within the accuracy of experimental data. The model predicts four different force fields and a vast amount of the "dark matter and dark energy" in the crystal lattice. It allows for a self-consistent interpretation of multiscale phenomena.
Scale Relativity and Fractal Space-Time: Applications to Quantum Physics,
Nottale, Laurent
Scale Relativity and Fractal Space-Time: Applications to Quantum Physics, Cosmology and Chaotic December 1995 Abstract The theory of scale relativity is a new approach to the problem of the origin of fundamental scales and of scaling laws in physics, that consists of generalizing Einstein's principle
Anomalous physical effects from artificial numerical length scales
Menikoff, R.; Lackner, K.S. [Los Alamos National Lab., NM (United States). Theoretical Div.
1995-09-01
Shock capturing algorithms are widely used for simulations of compressible fluid flow. Though these algorithms resolve a shock wave within a couple of grid points, the artificial length scale from the numerical shock profile can have side effects. The side effects are similar to physical effects that occur when a relaxation process gives rise to fully or partly dispersed shock waves. Two anomalies due to a non-zero shock width are discussed: (1) in one-dimension, a non-decaying entropy spike results from a transient when a shock profile is formed or changed; (2) in multi-dimensions, front curvature affects the propagation of a shock wave. The authors show that both the entropy anomaly and the curvature effect are a natural consequence of the conservation laws. The same analysis applies both to the continuum equations and to their finite difference approximations in conservation form. Consequently, the artificial length scale inherent in a shock capturing algorithm can mimic real physical effects that are associated with partly dispersed shock waves.
Detection of thermal SZ-CMB lensing cross-correlation in Planck nominal mission data
Hill, J. Colin; Spergel, David N. E-mail: dns@astro.princeton.edu
2014-02-01
The nominal mission maps from the Planck satellite contain a wealth of information about secondary anisotropies in the cosmic microwave background (CMB), including those induced by the thermal Sunyaev-Zel'dovich (tSZ) effect and gravitational lensing. As both the tSZ and CMB lensing signals trace the large-scale matter density field, the anisotropies sourced by these processes are expected to be correlated. We report the first detection of this cross-correlation signal, which we measure at 6.2? significance using the Planck data. We take advantage of Planck's multifrequency coverage to construct a tSZ map using internal linear combination techniques, which we subsequently cross-correlate with the publicly-released Planck CMB lensing potential map. The cross-correlation is subject to contamination from the cosmic infrared background (CIB), which is known to correlate strongly with CMB lensing. We correct for this contamination via cross-correlating our tSZ map with the Planck 857 GHz map and confirm the robustness of our measurement using several null tests. We interpret the signal using halo model calculations, which indicate that the tSZ-CMB lensing cross-correlation is a unique probe of the physics of intracluster gas in high-redshift, low-mass groups and clusters. Our results are consistent with extrapolations of existing gas physics models to this previously unexplored regime and show clear evidence for contributions from both the one- and two-halo terms, but no statistically significant evidence for contributions from diffuse, unbound gas outside of collapsed halos. We also show that the amplitude of the signal depends rather sensitively on the amplitude of fluctuations (?{sub 8}) and the matter density (?{sub m}), scaling as ?{sub 8}{sup 6.1}?{sub m}{sup 1.5} at ? = 1000. We constrain the degenerate combination ?{sub 8}(?{sub m}/0.282){sup 0.26} = 0.824±0.029, a result that is in less tension with primordial CMB constraints than some recent tSZ analyses. We also combine our measurement with the Planck measurement of the tSZ auto-power spectrum to demonstrate a technique that can in principle constrain both cosmology and the physics of intracluster gas simultaneously. Our detection is a direct confirmation that hot, ionized gas traces the dark matter distribution over a wide range of scales in the universe ( ? 0.1–50 Mpc/h)
Planck, LHC, and $?$-attractors
Renata Kallosh; Andrei Linde
2015-04-08
We describe a simple class of cosmological models called $\\alpha$ attractors, which provide an excellent fit to the latest Planck data. These theories are most naturally formulated in the context of supergravity with logarithmic Kahler potentials. We develop generalized versions of these models which can describe not only inflation but also dark energy and supersymmetry breaking.
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2008-01-01
A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. The following is presented in this report: (1) a brief review of the GCE model and its applications on the impact of aerosols on deep precipitation processes, (2) the Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) a discussion on the Goddard WRF version (its developments and applications).
U(e3) from physics above the GUT scale
Francesco Vissani; Mohan Narayan; Veniamin Berezinsky
2003-05-21
We consider non-renormalizable 1/M_X interaction terms as a perturbation of the conventional neutrino mass matrix. Particular attention is given to the gravitational interaction with M_X=M_Pl. We find that for the degenerate neutrino mass spectrum, the considered perturbation generates a non-zero U(e3) which is within reach of the high performance neutrino factories and just on the borderline to be of interest for supernova physics. For the hierarchical mass spectrum this effect is small. For 1/M_X interaction terms with M_X about the GUT scale, a detectable U(e3) term is induced for the hierarchical mass spectra also. Numerical estimates are given for all the above mentioned cases and renormalization effects are considered.
NASA Astrophysics Data System (ADS)
Joglekar, Archis; Thomas, Alexander; Read, Martin; Kingham, Robert
2014-10-01
Here, we present 2D numerical modeling of near critical density plasma using a fully implicit Vlasov-Fokker-Planck (VFP) code, IMPACTA, with the addition of a ray tracing package. In certain situations, such as those at the critical surface at the walls of a hohlraum, magnetic fields are generated through the crossed temperature and electron density gradients. Modeling shows 0.3 MG fields and the strong heating also results in magnetization of the plasma up to ?? ~ 5 . In the case without magnetic field generation, the heat flows from the laser heating region are isotropic. Including magnetic fields causes the heat flow to form jets along the wall due to the Righi-Leduc effect. The heating of the wall region causes steeper temperature gradients. This serves as a positive feedback mechanism for the field generation rate resulting in nearly twice the amount of field generated in comparison to the case without magnetic fields over 1 ns. The heat conduction, field generation, and the calculation of other transport quantities, is performed ab-initio due to the nature of the VFP equation set. In order to determine the importance of the kinetic effects from IMPACTA, we perform direct comparison with a classical (Braginskii) transport code with hydrodynamic motion (CTC+). The authors would like to acknowledge DOE Grant #DESC0010621 and Advanced Research Computing, UM-AA.
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2010-01-01
A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. In this talk, I will present: (1) A brief review on GCE model and its applications on the impact of the aerosol on deep precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications). We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems. In addition, high - resolution (spatial. 2km, and temporal, I minute) visualization showing the model results will be presented.
Physical Modeling of Scaled Water Distribution System Networks.
O'Hern, Timothy J.; Hammond, Glenn Edward; Orear, Leslie ,; van Bloemen Waanders, Bart G.; Paul Molina; Ross Johnson
2005-10-01
Threats to water distribution systems include release of contaminants and Denial of Service (DoS) attacks. A better understanding, and validated computational models, of the flow in water distribution systems would enable determination of sensor placement in real water distribution networks, allow source identification, and guide mitigation/minimization efforts. Validation data are needed to evaluate numerical models of network operations. Some data can be acquired in real-world tests, but these are limited by 1) unknown demand, 2) lack of repeatability, 3) too many sources of uncertainty (demand, friction factors, etc.), and 4) expense. In addition, real-world tests have limited numbers of network access points. A scale-model water distribution system was fabricated, and validation data were acquired over a range of flow (demand) conditions. Standard operating variables included system layout, demand at various nodes in the system, and pressure drop across various pipe sections. In addition, the location of contaminant (salt or dye) introduction was varied. Measurements of pressure, flowrate, and concentration at a large number of points, and overall visualization of dye transport through the flow network were completed. Scale-up issues that that were incorporated in the experiment design include Reynolds number, pressure drop across nodes, and pipe friction and roughness. The scale was chosen to be 20:1, so the 10 inch main was modeled with a 0.5 inch pipe in the physical model. Controlled validation tracer tests were run to provide validation to flow and transport models, especially of the degree of mixing at pipe junctions. Results of the pipe mixing experiments showed large deviations from predicted behavior and these have a large impact on standard network operations models.3
Planck 2013 results. XXII. Constraints on inflation
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Gauthier, C.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Pandolfi, S.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tréguer-Goudineau, J.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.
2014-11-01
We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be ns = 0.9603 ± 0.0073, ruling out exact scale invariance at over 5?.Planck establishes an upper bound on the tensor-to-scalar ratio of r< 0.11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V''< 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n ? 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns/ dlnk = - 0.0134 ± 0.0090. We verify these conclusions through a numerical analysis, which makes no slow-roll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by ??2eff ? 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the ?2eff by approximately 4 as a result of slightly lowering the theoretical prediction for the ? ? 40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions.
Hertog, Thomas
2014-02-01
The quantum state of the universe combined with the structure of the landscape potential implies a prior that specifies predictions for observations. We compute the prior for CMB related observables given by the no-boundary wave function (NBWF) in a landscape model that includes a range of inflationary patches representative of relatively simple single-field models. In this landscape the NBWF predicts our classical cosmological background emerges from a region of eternal inflation associated with a plateau-like potential. The spectra of primordial fluctuations on observable scales are characteristic of concave potentials, in excellent agreement with the Planck data. By contrast, alternative theories of initial conditions that strongly favor inflation at high values of the potential are disfavored by observations in this landscape.
The Dark Universe after Planck
NASA Astrophysics Data System (ADS)
Pettorino, Valeria
2015-08-01
The cosmic microwave background radiation allows us to test the evolution and content of the Universe. I will review the latest findings of the Planck satellite on the 'dark' content of the universe and the possibility to test gravity and general relativity at cosmological scales. Tests include new findings on background models, such as early dark energy, as well as classes of models in which perturbations are directly modified. In this latter case, I will comment on a few possible tensions that appear with external data sets within a LCDM cosmology (such as weak lensing and redshift space distortions) that will be important to further explore in future surveys. Finally, I will comment on the possibility to use B-mode polarization data as a further tool to test dark energy and modified gravity models.
Believability in Simplifications of Large Scale Physically Based Simulation Donghui Han
Keyser, John
Believability in Simplifications of Large Scale Physically Based Simulation Donghui Han , Shu simulation e-mail:donghui@cs.tamu.edu e-mail:keyser@cse.tamu.edu 1 Introduction Large scale physically based more common. In addition, a number of new techniques for physically-based simulation have also
Planck 2013 results. XXIV. Constraints on primordial non-Gaussianity
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Heavens, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Smith, K.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG). Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result fNLlocal = 2.7 ± 5.8, fNLequil = -42 ± 75, and fNLorth = -25 ± 39 (68% CL statistical). Non-Gaussianity is detected in the data; using skew-C? statistics we find a nonzero bispectrum from residual point sources, and the integrated-Sachs-Wolfe-lensing bispectrum at a level expected in the ?CDM scenario. The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are confirmed by skew-C?, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and thus derive constraints on early-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models. These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, cs ? 0.02 (95% CL), in an effective field theory parametrization, and the curvaton decay fraction rD ? 0.15 (95% CL). The Planck data significantly limit the viable parameter space of the ekpyrotic/cyclic scenarios. The amplitude of the four-point function in the local model ?NL< 2800 (95% CL). Taken together, these constraints represent the highest precision tests to date of physical mechanisms for the origin of cosmic structure.
Planck 2013 results. XXIII. Isotropy and statistics of the CMB
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hansen, M.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J. D.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Räth, C.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rotti, A.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Souradeep, T.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
The two fundamental assumptions of the standard cosmological model - that the initial fluctuations are statistically isotropic and Gaussian - are rigorously tested using maps of the cosmic microwave background (CMB) anisotropy from the Planck satellite. The detailed results are based on studies of four independent estimates of the CMB that are compared to simulations using a fiducial ?CDM model and incorporating essential aspects of the Planck measurement process. Deviations from isotropy have been found and demonstrated to be robust against component separation algorithm, mask choice, and frequency dependence. Many of these anomalies were previously observed in the WMAP data, and are now confirmed at similar levels of significance (about 3?). However, we find little evidence of non-Gaussianity, with the exception of a few statistical signatures that seem to be associated with specific anomalies. In particular, we find that the quadrupole-octopole alignment is also connected to a low observed variance in the CMB signal. A power asymmetry is now found to persist on scales corresponding to about ? = 600 and can be described in the low-? regime by a phenomenological dipole modulation model. However, any primordial power asymmetry is strongly scale-dependent and does not extend toarbitrarily small angular scales. Finally, it is plausible that some of these features may be reflected in the angular power spectrum of the data, which shows a deficit of power on similar scales. Indeed, when the power spectra of two hemispheres defined by a preferred direction are considered separately, one shows evidence of a deficit in power, while its opposite contains oscillations between odd and even modes that may be related to the parity violation and phase correlations also detected in the data. Although these analyses represent a step forward in building an understanding of the anomalies, a satisfactory explanation based on physically motivated models is still lacking.
Algorithms for the scaling toward nanometer VLSI physical synthesis
Sze, Chin Ngai
2007-04-25
Along the history of Very Large Scale Integration (VLSI), we have successfully scaled down the size of transistors, scaled up the speed of integrated circuits (IC) and the number of transistors in a chip - these are just ...
Millimetre molecular lines in Planck cold clumps
NASA Astrophysics Data System (ADS)
Jones, Paul Andrew; Cunningham, Maria; Toth, Viktor
2015-08-01
Many cold (T < 14 K) Galactic clumps have been revealed by dust emission with the Planck satellite. These Planck cold clumps (PCCs) may represent an early stage of prestellar collapse or early prostellar phase. However, follow-up observations in molecular line tracers are needed to determine physical properties such as density, chemical and excitation properties and possible signs of infall or outflow. We have observed a sample of southern hemisphere PCCs with the 22-m Mopra radio telescope in the 3-mm, 7-mm and 12-mm bands to characterise lines of CO, 13CO, C18O, HCN, HCO+, HNC, CS and NH3 , with the aim of determining the above physical properties. We present preliminary results of this work here.
Physically representative atomistic modeling of atomic-scale friction
NASA Astrophysics Data System (ADS)
Dong, Yalin
Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the interesting physical process is buried between the two contact interfaces, thus makes a direct measurement more difficult. Atomistic simulation is able to simulate the process with the dynamic information of each single atom, and therefore provides valuable interpretations for experiments. In this, we will systematically to apply Molecular Dynamics (MD) simulation to optimally model the Atomic Force Microscopy (AFM) measurement of atomic friction. Furthermore, we also employed molecular dynamics simulation to correlate the atomic dynamics with the friction behavior observed in experiments. For instance, ParRep dynamics (an accelerated molecular dynamic technique) is introduced to investigate velocity dependence of atomic friction; we also employ MD simulation to "see" how the reconstruction of gold surface modulates the friction, and the friction enhancement mechanism at a graphite step edge. Atomic stick-slip friction can be treated as a rate process. Instead of running a direction simulation of the process, we can apply transition state theory to predict its property. We will have a rigorous derivation of velocity and temperature dependence of friction based on the Prandtl-Tomlinson model as well as transition theory. A more accurate relation to prediction velocity and temperature dependence is obtained. Furthermore, we have included instrumental noise inherent in AFM measurement to interpret two discoveries in experiments, suppression of friction at low temperature and the attempt frequency discrepancy between AFM measurement and theoretical prediction. We also discuss the possibility to treat wear as a rate process.
Planck CMB anomalies: astrophysical and cosmological secondary effects and the curse of masking
Rassat, A.; Starck, J.-L.; Paykari, P.; Sureau, F.; Bobin, J. E-mail: jstarck@cea.fr E-mail: florent.sureau@cea.fr
2014-08-01
Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html.
Primordial non-Gaussianities after Planck 2015: an introductory review
Renaux-Petel, Sébastien
2015-01-01
Deviations from Gaussian statistics of the cosmological density fluctuations, so-called primordial non-Gaussianities (NG), are one of the most informative fingerprints of the origin of structures in the universe. Indeed, they can probe physics at energy scales inaccessible to laboratory experiments, and are sensitive to the interactions of the field(s) that generated the primordial fluctuations, contrary to the Gaussian linear theory. As a result, they can discriminate between inflationary models that are otherwise almost indistinguishable. In this short review, we explain how to compute the non-Gaussian properties in any inflationary scenario. We review the theoretical predictions of several important classes of models. We then describe the ways NG can be probed observationally, and we highlight the recent constraints from the Planck mission, as well as their implications. We finally identify well motivated theoretical targets for future experiments and discuss observational prospects.
Primordial non-Gaussianities after Planck 2015: an introductory review
Sébastien Renaux-Petel
2015-08-27
Deviations from Gaussian statistics of the cosmological density fluctuations, so-called primordial non-Gaussianities (NG), are one of the most informative fingerprints of the origin of structures in the universe. Indeed, they can probe physics at energy scales inaccessible to laboratory experiments, and are sensitive to the interactions of the field(s) that generated the primordial fluctuations, contrary to the Gaussian linear theory. As a result, they can discriminate between inflationary models that are otherwise almost indistinguishable. In this short review, we explain how to compute the non-Gaussian properties in any inflationary scenario. We review the theoretical predictions of several important classes of models. We then describe the ways NG can be probed observationally, and we highlight the recent constraints from the Planck mission, as well as their implications. We finally identify well motivated theoretical targets for future experiments and discuss observational prospects.
The Physical Origin of Galaxy Morphologies and Scaling Laws
NASA Technical Reports Server (NTRS)
Steinmetz, Matthias; Navarro, Julio F.
2002-01-01
We propose a numerical study designed to interpret the origin and evolution of galaxy properties revealed by space- and ground-based imaging and spectroscopical surveys. Our aim is to unravel the physical processes responsible for the development of different galaxy morphologies and for the establishment of scaling laws such as the Tully-Fisher relation for spirals and the Fundamental Plane of ellipticals. In particular, we plan to address the following major topics: (1) The morphology and observability of protogalaxies, and in particular the relationship between primordial galaxies and the z approximately 3 'Ly-break' systems identified in the Hubble Deep Field and in ground-based searches; (2) The origin of the disk and spheroidal components in galaxies, the timing and mode of their assembly, the corresponding evolution in galaxy morphologies and its sensitivity to cosmological parameters; (3) The origin and redshift evolution of the scaling laws that link the mass, luminosity size, stellar content, and metal abundances of galaxies of different morphological types. This investigation will use state-of-the-art N-body/gasdynamical codes to provide a spatially resolved description of the galaxy formation process in hierarchically clustering universes. Coupled with population synthesis techniques. our models can be used to provide synthetic 'observations' that can be compared directly with observations of galaxies both nearby and at cosmologically significant distances. This study will thus provide insight into the nature of protogalaxies and into the formation process of galaxies like our own Milky Way. It will also help us to assess the cosmological significance of these observations within the context of hierarchical theories of galaxy formation and will supply a theoretical context within which current and future observations can be interpreted.
Planck Oscillators in the Background Dark Energy
Burra G. Sidharth
2009-12-08
We consider a model for an underpinning of the universe: there are oscillators at the Planck scale in the background dark energy. Starting from a coherent array of such oscillators it is possible to get a description from elementary particles to Black Holes including the usual Hawking-Beckenstein theory. There is also a description of Gravitation in the above model which points to a unified description with electromagnetism.
The Physical Character of Small-Scale Interstellar Structures
NASA Technical Reports Server (NTRS)
Lauroesch, James T.
2005-01-01
The primary objective of this program was to obtain FUSE observations of the multiple interstellar absorption lines of H2 toward the members of 3 resolvable binary/multiple star systems to explore the physical conditions in known interstellar small-scale structures. Each of the selected systems was meant to address a different aspect of the models for the origin of these structures: 1) The stars HD 32039/40 were meant to probe a temporally varying component which probed a cloud with an inferred size of tens to a few hundreds of AU. The goal was to see if there was any significant H2 associated with this component; 2) The star HD 36408B and its companion HD 36408A (observed as part of FUSE GTO program P119) show significant spatial and temporal (proper motion induced) Na I column variations in a strong, relatively isolated component, as well as a relatively simple component structure. The key goal here was to identify any differences in H2 or C I excitation between the sightlines, and to measure the physical conditions (primarily density and temperature) in the temporally varying component; 3) The stars HD 206267C and HD 206267D are highly reddened sightlines which showed significant variations in K I and molecular absorption lines in multiple velocity components. Coupled with FUSE GTO observations of HD 206267A (program P116), the goal was to study the variations in H2 along sightlines which are significantly more distant, with larger separations, and with greater extinctions than the other selected binary systems.
Future magnetic fields studies using the Planck Surveyor experiment
Torsten A. Ensslin; Corina Vogt; Andre Waelkens; Alexander A. Schekochihin
2006-01-04
The Planck mission will permit measurements of the polarization of the cosmic microwave background and of polarized foregrounds such as our own Galaxy with an unprecedented combination of accuracy and completeness. This will provide information on cosmological and galactic magnetic fields. The latter can be studied in detail via nearly Faraday-rotation free synchrotron and polarized dust emission. Methods are discussed to extract physically relevant information on the magnetic turbulence from Planck data and other measurements.
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2010-01-01
A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. In this talk, I will present: (1) A brief review on GCE model and its applications on the impact of the aerosol on deep precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications). We are also performing the inline tracer calculation to comprehend the ph ysical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.
Quantum Gravity corrections and entropy at the Planck time
Basilakos, Spyros; Vagenas, Elias C.; Das, Saurya E-mail: saurya.das@uleth.ca
2010-09-01
We investigate the effects of Quantum Gravity on the Planck era of the universe. In particular, using different versions of the Generalized Uncertainty Principle and under specific conditions we find that the main Planck quantities such as the Planck time, length, mass and energy become larger by a factor of order 10?10{sup 4} compared to those quantities which result from the Heisenberg Uncertainty Principle. However, we prove that the dimensionless entropy enclosed in the cosmological horizon at the Planck time remains unchanged. These results, though preliminary, indicate that we should anticipate modifications in the set-up of cosmology since changes in the Planck era will be inherited even to the late universe through the framework of Quantum Gravity (or Quantum Field Theory) which utilizes the Planck scale as a fundamental one. More importantly, these corrections will not affect the entropic content of the universe at the Planck time which is a crucial element for one of the basic principles of Quantum Gravity named Holographic Principle.
Planck's Constant as a Natural Unit of Measurement
ERIC Educational Resources Information Center
Quincey, Paul
2013-01-01
The proposed revision of SI units would embed Planck's constant into the definition of the kilogram, as a fixed constant of nature. Traditionally, Planck's constant is not readily interpreted as the size of something physical, and it is generally only encountered by students in the mathematics of quantum physics. Richard Feynman's…
Localizability and the planck mass
Ne`eman, Y. [Tel-Aviv Univ. (Israel). Sackler Faculty of Exact Sciences]|[Univ. of Texas, Austin, TX (United States). Center for Particle Physics
1993-06-01
The author combines the assumption of environmental decoherence, as the mechanism generating the classical (i.e. no quantum interferences) nature of spacetime, with the limit on its other classical feature, point-like continuity, namely Planck length. As a result, quantum extended objects with masses larger than Planck mass have to derive their quantum behavior from long-range correlations; objects with masses smaller than Planck mass cannot display classical behavior.
Large Scale Computing and Storage Requirements for Nuclear Physics Research
Gerber, Richard A.; Wasserman, Harvey J.
2012-03-02
IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.
Joint Planck and WMAP assessment of low CMB multipoles
NASA Astrophysics Data System (ADS)
Iqbal, Asif; Prasad, Jayanti; Souradeep, Tarun; Malik, Manzoor A.
2015-06-01
The remarkable progress in cosmic microwave background (CMB) studies over past decade has led to the era of precision cosmology in striking agreement with the ?CDM model. However, the lack of power in the CMB temperature anisotropies at large angular scales (low-l), as has been confirmed by the recent Planck data also (up to 0l=4), although statistically not very strong (less than 3?), is still an open problem. One can avoid to seek an explanation for this problem by attributing the lack of power to cosmic variance or can look for explanations i.e., different inflationary potentials or initial conditions for inflation to begin with, non-trivial topology, ISW effect etc. Features in the primordial power spectrum (PPS) motivated by the early universe physics has been the most common solution to address this problem. In the present work we also follow this approach and consider a set of PPS which have features and constrain the parameters of those using WMAP 9 year and Planck data employing Markov-Chain Monte Carlo (MCMC) analysis. The prominent feature of all the models of PPS that we consider is an infra-red cut off which leads to suppression of power at large angular scales. We consider models of PPS with maximum three extra parameters and use Akaike information criterion (AIC) and Bayesian information criterion (BIC) of model selection to compare the models. For most models, we find good constraints for the cut off scale kc, however, for other parameters our constraints are not that good. We find that sharp cut off model gives best likelihood value for the WMAP 9 year data, but is as good as power law model according to AIC. For the joint WMAP 9 + Planck data set, Starobinsky model is slightly preferred by AIC which is also able to produce CMB power suppression up to 0l<=3 to some extent. However, using BIC criteria, one finds model(s) with least number of parameters (power law model) are always preferred.
Does Planck really rule out monomial inflation?
Enqvist, Kari; Kar?iauskas, Mindaugas E-mail: mindaugas.karciauskas@helsinki.fi
2014-02-01
We consider the modifications of monomial chaotic inflation models due to radiative corrections induced by inflaton couplings to bosons and/or fermions necessary for reheating. To the lowest order, ignoring gravitational corrections and treating the inflaton as a classical background field, they are of the Coleman-Weinberg type and parametrized by the renormalization scale ?. In cosmology, there are not enough measurements to fix ? so that we end up with a family of models, each having a slightly different slope of the potential. We demonstrate by explicit calculation that within the family of chaotic ?{sup 2} models, some may be ruled out by Planck whereas some remain perfectly viable. In contrast, radiative corrections do not seem to help chaotic ?{sup 4} models to meet the Planck constraints.
Cosmic reionization after Planck
Mitra, Sourav; Ferrara, Andrea
2015-01-01
Cosmic reionization holds the key to understand structure formation in the Universe, and can inform us about the properties of the first sources, as their star formation efficiency and escape fraction of ionizing photons. By combining the recent release of Planck electron scattering optical depth data with observations of high-redshift quasar absorption spectra, we obtain strong constraints on viable reionization histories. We show that inclusion of Planck data favors a reionization scenario with a single stellar population. The mean $x_{\\rm HI}$ drops from $\\sim0.9$ at $z=10.6$ to $\\sim0.02$ at $z=5.8$ and reionization is completed around $5.8\\lesssim z\\lesssim9.3$ (2-$\\sigma$), thus indicating a significant reduction in contributions to reionization from high redshift sources. We can put independent constraints on the escape fraction $f_{\\rm esc}$ of ionizing photons by incorporating the high-redshift galaxy luminosity function data into our analysis. We find that $f_{\\rm esc}$ increases moderately from $9\\...
Cooling, Physical Scales and the Vacuum Structure of Y-M Theories
García-Pérez, M; Stamatescu, I O
2000-01-01
We present a cooling method controlled by a physical cooling radius that defines a scale below which fluctuations are smoothed out while leaving physics unchanged at all larger scales. This method can be generally used as a gauge invariant low pass filter to extract the physics from noisy MC configurations. Here we apply this method to study topological properties of lattice gauge theories where it allows to retain instanton--anti-instanton pairs.
Evolving desiderata for validating engineered-physics systems without full-scale testing
Langenbrunner, James R [Los Alamos National Laboratory; Booker, Jane M [Los Alamos National Laboratory; Hemez, Francois M [Los Alamos National Laboratory; Ross, Timothy J [Los Alamos National Laboratory
2010-01-01
Theory and principles of engineered-physics designs do not change over time, but the actual engineered product does evolve. Engineered components are prescient to the physics and change with time. Parts are never produced exactly as designed, assembled as designed, or remain unperturbed over time. For this reason, validation of performance may be regarded as evolving over time. Desired use of products evolves with time. These pragmatic realities require flexibility, understanding, and robustness-to-ignorance. Validation without full-scale testing involves engineering, small-scale experiments, physics theory and full-scale computer-simulation validation. We have previously published an approach to validation without full-scale testing using information integration, small-scale tests, theory and full-scale simulations [Langenbrunner et al. 2008]. This approach adds value, but also adds complexity and uncertainty due to inference. We illustrate a validation example that manages evolving desiderata without full-scale testing.
Myers, Chris
2014-01-01
PHYSICAL REVIEW E 89, 042108 (2014) Outbreak statistics and scaling laws for externally driven. In this system the distribution of outbreak sizes scales as P(n) n-3/2 at the critical point as the system size N becomes infinite. The finite-size scaling laws for the outbreak size and duration are also well
Rho-Star Scaling and Physically Realistic Gyrokinetic Simulations of Transport in DIII-D
Waltz, R.E. [General Atomics (United States)
2005-10-15
This paper briefly reviews the DIII-D experiments to determine rho-star ({rho}{sub *}) confinement scaling to reactors, the theory of broken gyro-Bohm scaling from local rotational shear stabilization and various nonlocal effects, and how the gyrokinetic code GYRO is being used for physically realistic simulations to understand Bohm scaling in L-modes.
Full-scale physical model of landslide triggering
NASA Astrophysics Data System (ADS)
Lora, M.; Camporese, M.; Salandin, P.
2013-12-01
Landslide triggering induced by high-intensity rainfall infiltration in hillslopes is a complex phenomenon that involves hydrological processes operating at different spatio-temporal scales. Empirical methods give rough information about landslide-prone areas, without investigating the theoretical framework needed to achieve an in-depth understanding of the involved physical processes. In this study, we tackle this issue through physical experiments developed in an artificial hillslope realized in the Department of Civil, Environmental and Architectural Engineering of the University of Padua. The structure consists of a reinforced concrete box containing a soil prism with the following maximum dimensions: 3.5 m high, 6 m long, and 2 m wide. In order to analyze and examine the triggered failure state, the experiments are carried out with intensive monitoring of pore water pressure and moisture content response. Subsurface monitoring instruments are installed at several locations and depths to measure downward infiltration and/or a rising groundwater table. We measure the unsaturated soil water pressure as well as positive pore pressures preceding failure in each experiments with six tensiometers. The volumetric water content is determined through six Time Domain Reflectometry probes. Two pressure transducers are located in observation wells to determine the position of the water table in time. Two stream gauges are positioned at the toeslope, for measuring both runoff and subsurface outflow. All data are collected and recorded by an acquisition data system from Campbell Scientific. The artificial hillslope is characterized by well-known and controlled conditions, which are designed to reproduce an ideal set-up susceptible to heavy rainfall landslide. The hydrologic forcing is generated by a rainfall simulator realized with nozzles from Sprying System and. specifically designed to produce a spatially uniform rainfall of intensity ranging from 50 to 150 mm/h. The aim of our experiments is to reproduce the instability trigger that occurs in saturated or partially unsaturated conditions depending on the specific characteristics of the soil and its initial conditions; the retention curve of fine sand and the initial porosity are taken into account to highlight the hydrological condition of the surface layer during the trigger occurrence. Through our experimental setup we can investigate the succession of phases and their magnitude that cause the landslide trigger, in order to understand the instability mechanism that heavy rainfall can induce in fine sandy hillslopes. Particular attention is given on the role of water pressure head, not only with respect to the violation of Coulomb failure within a sloping soil, but also with respect to the subsequent deformation that involves the upper hillslope layers. In particular, we report here on the characterization of the sandy terrain used in the experiments and the preliminary results, together with a first discussion of the observed data.
Validation of psychosocial scales for physical activity in university students
Tassitano, Rafael Miranda; de Farias, José Cazuza; Rech, Cassiano Ricardo; Tenório, Maria Cecília Marinho; Cabral, Poliana Coelho; da Silva, Giselia Alves Pontes
2015-01-01
OBJECTIVE Translate the Patient-centered Assessment and Counseling for Exercise questionnaire, adapt it cross-culturally and identify the psychometric properties of the psychosocial scales for physical activity in young university students. METHODS The Patient-centered Assessment and Counseling for Exercise questionnaire is made up of 39 items divided into constructs based on the social cognitive theory and the transtheoretical model. The analyzed constructs were, as follows: behavior change strategy (15 items), decision-making process (10), self-efficacy (6), support from family (4), and support from friends (4). The validation procedures were conceptual, semantic, operational, and functional equivalences, in addition to the equivalence of the items and of measurements. The conceptual, of items and semantic equivalences were performed by a specialized committee. During measurement equivalence, the instrument was applied to 717 university students. Exploratory factor analysis was used to verify the loading of each item, explained variance and internal consistency of the constructs. Reproducibility was measured by means of intraclass correlation coefficient. RESULTS The two translations were equivalent and back-translation was similar to the original version, with few adaptations. The layout, presentation order of the constructs and items from the original version were kept in the same form as the original instrument. The sample size was adequate and was evaluated by the Kaiser-Meyer-Olkin test, with values between 0.72 and 0.91. The correlation matrix of the items presented r < 0.8 (p < 0.05). The factor loadings of the items from all the constructs were satisfactory (> 0.40), varying between 0.43 and 0.80, which explained between 45.4% and 59.0% of the variance. Internal consistency was satisfactory (? ? 0.70), with support from friends being 0.70 and 0.92 for self-efficacy. Most items (74.3%) presented values above 0.70 for the reproducibility test. CONCLUSIONS The validation process steps were considered satisfactory and adequate for applying to the population. PMID:26270013
Large Scale Computing and Storage Requirements for High Energy Physics
Gerber, Richard A.; Wasserman, Harvey
2010-11-24
The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.
Developing a Rasch Measurement Physical Fitness Scale for Hong Kong Primary School-Aged Students
ERIC Educational Resources Information Center
Yan, Zi; Bond, Trevor G.
2011-01-01
The main purpose of this study was to develop a Rasch Measurement Physical Fitness Scale (RMPFS) based on physical fitness indicators routinely used in Hong Kong primary schools. A total of 9,439 records of students' performances on physical fitness indicators, retrieved from the database of a Hong Kong primary school, were used to develop the…
Planck 2013 results. I. Overview of products and scientific results
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bertincourt, B.; Bethermin, M.; Bielewicz, P.; Bikmaev, I.; Blanchard, A.; Bobin, J.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bourdin, H.; Bowyer, J. W.; Bridges, M.; Brown, M. L.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cappellini, B.; Cardoso, J.-F.; Carr, R.; Carvalho, P.; Casale, M.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Church, S.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Déchelette, T.; Delabrouille, J.; Delouis, J.-M.; Démoclès, J.; Désert, F.-X.; Dick, J.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fabre, O.; Falgarone, E.; Falvella, M. C.; Fantaye, Y.; Fergusson, J.; Filliard, C.; Finelli, F.; Flores-Cacho, I.; Foley, S.; Forni, O.; Fosalba, P.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Freschi, M.; Fromenteau, S.; Frommert, M.; Gaier, T. C.; Galeotta, S.; Gallegos, J.; Galli, S.; Gandolfo, B.; Ganga, K.; Gauthier, C.; Génova-Santos, R. T.; Ghosh, T.; Giard, M.; Giardino, G.; Gilfanov, M.; Girard, D.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hamann, J.; Hansen, F. K.; Hansen, M.; Hanson, D.; Harrison, D. L.; Heavens, A.; Helou, G.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huey, G.; Huffenberger, K. M.; Hurier, G.; Ili?, S.; Jaffe, A. H.; Jaffe, T. R.; Jasche, J.; Jewell, J.; Jones, W. C.; Juvela, M.; Kalberla, P.; Kangaslahti, P.; Keihänen, E.; Kerp, J.; Keskitalo, R.; Khamitov, I.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lavabre, A.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Leroy, C.; Lesgourgues, J.; Lewis, A.; Li, C.; Liddle, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lowe, S.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marcos-Caballero, A.; Marinucci, D.; Maris, M.; Marleau, F.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matsumura, T.; Matthai, F.; Maurin, L.; Mazzotta, P.; McDonald, A.; McEwen, J. D.; McGehee, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Millea, M.; Miniscalco, R.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Morisset, N.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Nesvadba, N. P. H.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Orieux, F.; Osborne, S.; O'Sullivan, C.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Pandolfi, S.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Pearson, D.; Pearson, T. J.; Peel, M.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Pullen, A. R.; Rachen, J. P.; Racine, B.; Rahlin, A.; Räth, C.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Riazuelo, A.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Robbers, G.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Rusholme, B.
2014-11-01
The European Space Agency's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. In March 2013, ESA and the Planck Collaboration released the initial cosmology products based on the first 15.5 months of Planck data, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the cosmic microwave background (CMB) and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the Sunyaev-Zeldovich effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter ?CDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25?. Planck finds no evidence for non-Gaussianity in the CMB. Planck's results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations (?8) derived from CMB data and that derived from Sunyaev-Zeldovich data. The Planck and WMAP power spectra are offset from each other by an average level of about 2% around the first acoustic peak. Analysis of Planck polarization data is not yet mature, therefore polarization results are not released, although the robust detection of E-mode polarization around CMB hot and cold spots is shown graphically.
Underpinning the universe: its scales, holography and fractality
Antonio Alfonso-Faus; Marius Josep Fullana i Alfonso
2012-01-23
We expand on the general concept of a universe. We identify physics as a unit applied to a universe. Then we generalize the concept of a quantum black hole, and apply it to the unit of a universe. We find that only one parameter, the Pin, is needed to define all its physical properties. Here we present three significant quantum black holes, three scales: Planck's, sub- Planck and our own universe as a whole. Then we revise the holographic and fractal properties, and propose a sequential growing process to explain the evolution and the basic structure of our universe.
The Planck Catalogue of High-z source candidates : A laboratory for high-z star forming galaxies
NASA Astrophysics Data System (ADS)
Montier, Ludovic
2015-08-01
The Planck satellite has provided the first FIR/submm all-sky survey with a sensitivity allowing us to identify the rarest, most luminous high?z dusty star-forming sources on the sky. It opens a new window on these extreme star-forming systems at redshift above 1.5, providing a powerful laboratory to study the mechanisms of galaxy evolution and enrichment in the frame of the large scale structure growth.I will describe how the Planck catalogue of high-z source candidates (PHz, Planck 2015 in prep.) has been built and charcaterized over 25% of the sky by selecting the brightest red submm sources at a 5' resolution. Follow-up observations with Herschel/SPIRE over 228 Planck candidates have shown that 93% of these candidates are actually overdensities of red sources with SEDs peaking at 350um (Planck Int. results. XXVII 2014). Complementarily to this population of objects, 12 Planck high-z candidates have been identified as strongly lensed star forming galaxies at redshift lying between 2.2 and 3.6 (Canameras et al 2015 subm.), with flux densities larger than 400 mJy up to 1 Jy at 350um, and strong magnification factors. These Planck lensed star-forming galaxies are the rarest brightest lensed in the submm range, providing a unique opportunity to extend the exploration of the star-forming system in this range of mass and redshift.I will detail further a specific analysis performed on a proto-cluster candidate, PHz G95.5-61.6, identified as a double structure at z=1.7 and z=2.03, using an extensive follow-up program (Flores-Cacho et al 2015 subm.). This is the first Planck proto-cluster candidate with spectroscopic confirmation, which opens a new field of statistical analysis about the evolution of dusty star-forming galaxies in such accreting structures.I will finally discuss how the PHz catalogue may help to answer some of the fundamental questions like: At what cosmic epoch did massive galaxy clusters form most of their stars? Is star formation more or less vigorous in these galaxies compared to field galaxies ? What are the physical conditions of the ISM at high-z ?
Reconstruction of broad features in the primordial spectrum and inflaton potential from Planck
Hazra, Dhiraj Kumar; Shafieloo, Arman [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Smoot, George F., E-mail: dhiraj@apctp.org, E-mail: arman@apctp.org, E-mail: gfsmoot@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2013-12-01
With the recently published Cosmic Microwave Background data from Planck we address the optimized binning of the primordial power spectrum. As an important modification to the usual binning of the primordial spectrum, along with the spectral amplitude of the bins, we allow the position of the bins also to vary. This technique enables us to address the location of the possible broad physical features in the primordial spectrum with relatively smaller number of bins compared to the analysis performed earlier. This approach is in fact a reconstruction method looking for broad features in the primordial spectrum and avoiding fitting noise in the data. Performing Markov Chain Monte Carlo analysis we present samples of the allowed primordial spectra with broad features consistent with Planck data. To test how realistic it is to have step-like features in primordial spectrum we revisit an inflationary model, proposed by A. A. Starobinsky which can address the similar features obtained from the binning of the spectrum. Using the publicly available code BINGO, we numerically calculate the local f{sub NL} for this model in equilateral and arbitrary triangular configurations of wavevectors and show that the obtained non-Gaussianity for this model is consistent with Planck results. In this paper we have also considered different spectral tilts at different bins to identify the cosmological scale that the spectral index needs to have a red tilt and it is interesting to report that spectral index cannot be well constrained up to k ? 0.01Mpc{sup ?1}.
Planck 2013 results. XVI. Cosmological parameters
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Pearson, T. J.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (? ? 40) are extremely well described by the standard spatially-flat six-parameter ?CDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be ?? = (1.04147 ± 0.00062) × 10-2, ?bh2 = 0.02205 ± 0.00028, ?ch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, ?m = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ?CDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ?CDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r0.002< 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13-0.10+0.13. We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ?CDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 ? ? ? 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an "anomaly" in an otherwise self-consistent analysis of the Planck temperature data.
Physical meaning of one-machine and multimachine tokamak scalings
Dnestrovskij, Yu. N., E-mail: dnyn@nfi.kiae.ru; Danilov, A. V.; Dnestrovskij, A. Yu.; Lysenko, S. E. [National Research Centre Kurchatov Institute, Institute of Tokamak Physics (Russian Federation)] [National Research Centre Kurchatov Institute, Institute of Tokamak Physics (Russian Federation); Ongena, J. [Euratom-Belgium State Association, Laboratory for Plasma Physics (Belgium)] [Euratom-Belgium State Association, Laboratory for Plasma Physics (Belgium)
2013-04-15
Specific features of energy confinement scalings constructed using different experimental databases for tokamak plasmas are considered. In the multimachine database, some pairs of engineering variables are collinear; e.g., the current I and the input power P both increase with increasing minor radius a. As a result, scalings derived from this database are reliable only for discharges in which such ratios as I/a{sup 2} or P/a{sup 2} are close to their values averaged over the database. The collinearity of variables allows one to exclude the normalized Debye radius d* from the scaling expressed in a nondimensional form. In one-machine databases, the dimensionless variables are functionally dependent, which allow one to cast a scaling without d*. In a database combined from two devices, the collinearity may be absent, so the Debye radius cannot generally be excluded from the scaling. It is shown that the experiments performed in support of the absence of d* in the two-machine scaling are unconvincing. Transformation expressions are given that allow one to compare experiments for the determination of scaling in any set of independent variables.
Molecular gas of Planck cold dust clumps
NASA Astrophysics Data System (ADS)
Wu, Yuefang
2015-08-01
To probe dynamical processes and physical properties of Planck Cold Clumps, survey and mapping of 674 most reliable Planck cold dust clumps with J=1-0 of CO,13CO and C18O were made at PMO 13.7 m telescope. More than 600 molecular cores were obtained, which are mainly located in seven molecular complexes divided by Dame (1987). Parameters of cores in different regions are with some difference, showing different evolutional status and environment of the cores. As a whole they are quiescent. Some are with star forming activities. J=1-0 lines of HCO+ and HCN at CO emission peaks were also observed at PMO, of which 24 were mapped with IRAM 30 m telescope. Several cores were also observed with J=2-1 of CO and 13CO using CSO. Core splits were detected. Combining with infrared data more than 70% of CO cores are identified as starless. Planck cold clumps seem to be ideal samples to search for candidates of massive prestellar cores and pre-clusters.
Robust weak-lensing mass calibration of Planck galaxy clusters
NASA Astrophysics Data System (ADS)
von der Linden, Anja; Mantz, Adam; Allen, Steven W.; Applegate, Douglas E.; Kelly, Patrick L.; Morris, R. Glenn; Wright, Adam; Allen, Mark T.; Burchat, Patricia R.; Burke, David L.; Donovan, David; Ebeling, Harald
2014-09-01
In light of the tension in cosmological constraints reported by the Planck team between their Sunyaev-Zel'dovich-selected cluster counts and Cosmic Microwave Background (CMB) temperature anisotropies, we compare the Planck cluster mass estimates with robust, weak-lensing mass measurements from the Weighing the Giants (WtG) project. For the 22 clusters in common between the Planck cosmology sample and WtG, we find an overall mass ratio of
Planck 2013 results. The Planck Catalogue of Compact Sources
NASA Astrophysics Data System (ADS)
López-Caniego, M.
2015-05-01
The Planck Catalogue of Compact Sources (PCCS) is the catalogue of sources detected in the Planck Nominal mission corresponding to 15 months of data. It consists of nine single-frequency catalogues of Galactic and extragalactic compact sources detected over the entire sky. The PCCS covers the frequency range 30--857 GHz with higher sensitivity and better angular resolution than previous all-sky surveys in the microwave band. The flux density at the 90% completeness level at 143 and 217 GHz, the most sensitive channels, are 190 and 180 mJy. The Planck beams are very different and has a big impact in the detection of compact sources. The resolution of the Planck beams range from 32.38 to 4.33 arcmin at 30 and 857 GHz, respectively. The number of detections change very much with frequency, ranging from ˜1,250 detections at 30 GHz up to ˜24,000 857 GHz, respectively. By construction its reliability is >80 %, and more than 65 % of the sources have been detected at least in two contiguous Planck channels. Many of the Planck PCCS sources can be associated with stars with dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic interstellar medium features. Here we summarize the construction and validation of the PCCS, its contents and its statistical characterization.
Planck 2015 results. XVI. Isotropy and statistics of the CMB
Ade, P A R; Akrami, Y; Aluri, P K; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartolo, N; Basak, S; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Casaponsa, B; Catalano, A; Challinor, A; Chamballu, A; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Contreras, D; Couchot, F; Coulais, A; Crill, B P; Cruz, M; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Désert, F -X; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Fantaye, Y; Fergusson, J; Fernandez-Cobos, R; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Frolov, A; Galeotta, S; Galli, S; Ganga, K; Gauthier, C; Ghosh, T; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huang, Z; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kim, J; Kisner, T S; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; Liu, H; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Marinucci, D; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mikkelsen, K; Mitra, S; Miville-Deschênes, M -A; Molinari, D; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Pant, N; Paoletti, D; Pasian, F; Patanchon, G; Pearson, T J; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Rotti, A; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Souradeep, T; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Trombetti, T; Tucci, M; Tuovinen, J; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Yvon, D; Zacchei, A; Zibin, J P; Zonca, A
2015-01-01
We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The "Cold S...
Paul Benioff
2015-08-07
The relationship between the foundations of mathematics and physics is a topic of of much interest. This paper continues this exploration by examination of the effect of space and time dependent number scaling on theoretical descriptions of some physical and geometric quantities. Fiber bundles provide a good framework to introduce a space and time or space time dependent number scaling field. The effect of the scaling field on a few nonlocal physical and geometric quantities is described. The effect on gauge theories is to introduce a new complex scalar field into the derivatives appearing in Lagrangians. U(1) invariance of Lagrangian terms does not affect the real part of the scaling field. For this field, any mass is possible. The scaling field is also shown to affect quantum wave packets and path lengths, and geodesic equations even on flat space. Scalar fields described so far in physics, are possible candidates for the scaling field. The lack of direct evidence for the field in physics restricts the scaling field in that the gradient of the field must be close to zero in a local region of cosmological space and time. There are no restrictions outside the region. It is also seen that the scaling field does not affect comparisons of computation or measurements outputs with one another. However it does affect the assignment of numerical values to the outputs of computations or measurements. These are needed because theory predictions are in terms of numerical values.
Statistical properties of the polarized emission of Planck Galactic cold clumps
NASA Astrophysics Data System (ADS)
Ristorcelli, Isabelle; Planck Collaboration
2015-08-01
The Galactic magnetic fields are considered as one of the key components regulating star formation, but their actual role on the dense cores formation and evolution remains today an open question.Dust polarized continuum emission is particularly well suited to probe the dense and cold medium and study the magnetic field structure. Such observations also provide tight constraints to better understand the efficiency of the dust alignment along the magnetic field lines, which in turn relate on our grasp to properly interpret the B-field properties.With the Planck all-sky survey of dust submillimeter emission in intensity and polarization, we can investigate the intermediate scales, between that of molecular cloud and of prestellar cores, and perform a statistical analysis on the polarization properties of cold clumps.Combined with the IRAS map at 100microns, the Planck survey has allowed to build the first all-sky catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015). The corresponding 13188 sources cover a broad range in physical properties, and correspond to different evolutionary stages, from cold and starless clumps, nearby cores, to young protostellar objects still embedded in their cold surrounding cloud.I will present the main results of our polarization analysis obtained on different samples of sources from the PGCC catalogue, based on the 353GHz polarized emission measured with Planck. The statistical properties are derived from a stacking method, using optimized estimators for the polarization fraction and angle parameters. These properties are determined and compared according to the nature of the sources (starless or YSOs), their size or density range. Finally, I will present a comparison of our results with predictions from MHD simulations of clumps including radiative transfer and the dust radiative torque alignment mechanism.
Planck 2015 results. XXII. A map of the thermal Sunyaev-Zeldovich effect
Aghanim, N; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartlett, J G; Bartolo, N; Battaner, E; Battye, R; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Challinor, A; Chiang, H C; Christensen, P R; Churazov, E; Clements, D L; Colombo, L P L; Combet, C; Comis, B; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Désert, F -X; Dickinson, C; Diego, J M; Dolag, K; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Fergusson, J; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Génova-Santos, R T; Giard, M; González-Nuevo, J; Górski, K M; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Harrison, D L; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Holmes, W A; Hornstrup, A; Huffenberger, K M; Hurier, G; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lacasa, F; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Leonardi, R; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Macías-Pérez, J F; Maffei, B; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Melchiorri, A; Melin, J -B; Migliaccio, M; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Noviello, F; Novikov, D; Novikov, I; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Sauvé, A; Savelainen, M; Savini, G; Scott, D; Spencer, L D; Stolyarov, V; Stompor, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tramonte, D; Tristram, M; Tucci, M; Tuovinen, J; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Yvon, D; Zacchei, A; Zonca, A
2015-01-01
We have constructed all-sky y-maps of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite survey. These reconstructed y-maps are delivered as part of the Planck 2015 release. The y-maps are characterised in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales and CIB and extragalactic point sources at small angular scales. Specific masks are defined to minimize foreground residuals and systematics. Using these masks we compute the y-map angular power spectrum and higher order statistics. From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20-600. We compare the measured tSZ power spectrum and higher order statistics to various physically motivated models and discuss the implications of our results in terms of cluster physics and cosmology.
Determining Planck's Constant with LEDs
NSDL National Science Digital Library
Zollman, Dean
This resource, created by Dean Zollman of Kansas State University, discusses plank's constant and how it can be determined with the use of a light emitting diode (LED). Additionally, it discusses the Planck relation, Planck's constant and threshold voltage, accepted values and provides a complete analysis of these methods. Each section includes a detailed description and contains the mathematical equations to better explain the theories. This resource is a part of the "Visual Quantum Mechanics Project."
Planck Visualization Project: Seeing and Hearing the Cosmic Microwave Background
NASA Astrophysics Data System (ADS)
van der Veen, J.
2010-08-01
The Planck Mission, launched May 14, 2009, will measure the sky over nine frequency channels, with temperature sensitivity of a few microKelvin, and angular resolution of up to 5 arc minutes. Planck is expected to provide the data needed to set tight constraints on cosmological parameters, study the ionization history of the Universe, probe the dynamics of the inflationary era, and test fundamental physics. The Planck Education and Public Outreach collaborators at NASA's Jet Propulsion Laboratory, the University of California, Santa Barbara and Purdue University are preparing a variety of materials to present the science goals of the Planck Mission to the public. Two products currently under development are an interactive simulation of the mission which can be run in a virtual reality environment, and an interactive presentation on interpreting the power spectrum of the Cosmic Microwave Background with music. In this paper we present a brief overview of CMB research and the Planck Mission, and discuss how to explain, to non-technical audiences, the theory of how we derive information about the early universe from the power spectrum of the CMB by using the physics of music.
Countability of Planck Boxes in Quantum Branching Models
NASA Astrophysics Data System (ADS)
Berezin, Alexander A.
2002-04-01
Two popular paradigms of cosmological quantum branching are Many World (MW) model of parallel universes (Everett, Deutsch) and inflationary quantum foam (IQF) model (Guth, Linde). Taking Planck L,T units as physically smallest, our Big Bang miniverse with size 10E28 cm and duration 10E18 sec has some 10E244 (N) elementary 4D Planck Boxes (PB) in its entire spacetime history. Using combinatorics, N! (about 10E10E247) is upper estimate for number of all possible 4D states, i.e. scale of "eternal return" (ER; Nietzsche, Eliade) for such miniverses. To count all states in full Megaverse (all up and down branches of infinite tree of all MW and/or IQF miniverses) we recall that all countable infinities have same (aleph-naught) cardinality (Cantor). Using Godel-type numbering, count PB in our miniverse by primes. This uses first N primes. Both MW and IQF models presume splitting of miniverses as springing (potentially) from each PB, making each PB infinitely rich, inexhaustible and unique. Next branching level is counted by integers p1Ep2, third level by p1Ep2Ep3 integers, etc, ad infinitum. To count in up and down directions from "our" miniverse, different branching subsets of powers of primes can be used at all levels of tower exponentiation. Thus, all PB in all infinitude of MW and/or IQF branches can be uniquely counted by never repeating integers (tower exponents of primes), offering escape from grim ER scenarios.
Scaled intense laseratom physics: the long wavelength T. O. CLATTERBUCK{, C. LYNGA {*, P. COLOSIMOy,
Martin, James D. D.
-binding energy atom (caesium) excited by an intense mid-infrared (34 mm) laser pulse. The long- wavelengthScaled intense laseratom physics: the long wavelength regime T. O. CLATTERBUCK{, C. LYNGA° {*, P of using a scaled laseratom inter- action can offer not only a practical solution for direct probing
Developing an Attitude Scale for the Profession of Physical Education Teaching (ASPPET)
ERIC Educational Resources Information Center
Unlu, Huseyin
2011-01-01
In this study, the development of a Likert-type attitude scale for the profession of physical education teaching (ASPPET) was aimed. The group of the study was consisted of totally 556 pre-service physical education teachers. In order to determine the structural validity of ASPPET, an exploratory and confirmative factor analyses were performed. A…
Short Course Mineral Physics: Modeling from the Atomic to the Global Scale
Stixrude, Lars
: Quantum mechanical simulation Remaining Days. Student-driven research projects based on computationalShort Course Mineral Physics: Modeling from the Atomic to the Global Scale Dipartimento di Scienze be inferred by examining the rocks. But these processes are in turn governed by the physics and chemistry
Poisson-Boltzmann-Nernst-Planck model
Zheng Qiong; Wei Guowei
2011-05-21
The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external voltages. Extensive numerical experiments show that there is an excellent consistency between the results predicted from the present PBNP model and those obtained from the PNP model in terms of the electrostatic potentials, ion concentration profiles, and current-voltage (I-V) curves. The present PBNP model is further validated by a comparison with experimental measurements of I-V curves under various ion bulk concentrations. Numerical experiments indicate that the proposed PBNP model is more efficient than the original PNP model in terms of simulation time.
NASA Astrophysics Data System (ADS)
Ojha, Richa; Govindaraju, Rao S.
2015-07-01
Scaling relationships are needed as measurements and desired predictions are often not available at concurrent spatial support volumes or temporal discretizations. Surface soil moisture values of interest to hydrologic studies are estimated using ground based measurement techniques or utilizing remote sensing platforms. Remote sensing based techniques estimate field-scale surface soil moisture values, but are unable to provide the local-scale soil moisture information that is obtained from local measurements. Further, obtaining field-scale surface moisture values using ground-based measurements is exhaustive and time consuming. To bridge this scale mismatch, we develop analytical expressions for surface soil moisture based on sharp-front approximation of the Richards equation and assumed log-normal distribution of the spatial surface saturated hydraulic conductivity field. Analytical expressions for field-scale evolution of surface soil moisture to rainfall events are utilized to obtain aggregated and disaggregated response of surface soil moisture evolution with knowledge of the saturated hydraulic conductivity. The utility of the analytical model is demonstrated through numerical experiments involving 3-D simulations of soil moisture and Monte-Carlo simulations for 1-D renderings—with soil moisture dynamics being represented by the Richards equation in each instance. Results show that the analytical expressions developed here show promise for a principled way of scaling surface soil moisture.
Effects of pore-scale physics on uranium geochemistry in Hanford sediments
Hu, Qinhong; Ewing, Robert P.
2013-11-25
Overall, this work examines a key scientific issue, mass transfer limitations at the pore-scale, using both new instruments with high spatial resolution, and new conceptual and modeling paradigms. The complementary laboratory and numerical approaches connect pore-scale physics to macroscopic measurements, providing a previously elusive scale integration. This Exploratory research project produced five peer-reviewed journal publications and eleven scientific presentations. This work provides new scientific understanding, allowing the DOE to better incorporate coupled physical and chemical processes into decision making for environmental remediation and long-term stewardship.
Compact wire array sources: power scaling and implosion physics.
Serrano, Jason Dimitri; Chuvatin, Alexander S. (Laboratoire du Centre National de la Recherche Scientifique Ecole Polytechnique, Palaiseau, France); Jones, M. C.; Vesey, Roger Alan; Waisman, Eduardo M.; Ivanov, V. V. (University of Nevada - Reno, Reno, NV); Esaulov, Andrey A. (University of Nevada - Reno, Reno, NV); Ampleford, David J.; Cuneo, Michael Edward; Kantsyrev, Victor Leonidovich (University of Nevada - Reno, Reno, NV); Coverdale, Christine Anne; Rudakov, L. I. (Icarus Research, Bethesda, MD); Jones, Brent Manley; Safronova, Alla S. (University of Nevada - Reno, Reno, NV); Vigil, Marcelino Patricio
2008-09-01
A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we compare this to cylindrical array results in the context of a K-shell yield scaling model. We have also performed an initial study of compact 3 mm diameter cylindrical wire arrays, which are alternate candidates for a multi-pinch vacuum hohlraum concept. These massive 3.4 and 6 mg/cm loads may have been impacted by opacity, producing a maximum x-ray power of 7 TW at 4.5 MA, 45 ns. Future research directions in compact x-ray sources are discussed.
Artificial intelligence and large scale computation: A physics perspective
NASA Astrophysics Data System (ADS)
Hogg, Tad; Huberman, B. A.
1987-12-01
We study the macroscopic behavior of computation and examine both emergent collective phenomena and dynamical aspects with an emphasis on software issues, which are at the core of large scale distributed computation and artificial intelligence systems. By considering large systems, we exhibit novel phenomena which cannot be foreseen from examination of their smaller counterparts. We review both the symbolic and connectionist views of artificial intelligence, provide a number of examples which display these phenomena, and resort to statistical mechanics, dynamical systems theory and the theory of random graphs to elicit the range of possible behaviors.
Benioff, Paul
2015-01-01
The relationship between the foundations of mathematics and physics is a topic of of much interest. This paper continues this exploration by examination of the effect of space and time dependent number scaling on theoretical descriptions of some physical and geometric quantities. Fiber bundles provide a good framework to introduce a space and time or space time dependent number scaling field. The effect of the scaling field on a few nonlocal physical and geometric quantities is described. The effect on gauge theories is to introduce a new complex scalar field into the derivatives appearing in Lagrangians. U(1) invariance of Lagrangian terms does not affect the real part of the scaling field. For this field, any mass is possible. The scaling field is also shown to affect quantum wave packets and path lengths, and geodesic equations even on flat space. Scalar fields described so far in physics, are possible candidates for the scaling field. The lack of direct evidence for the field in physics restricts the scal...
The Effects of Cloud-Scale Physics Variability on Convection
NASA Astrophysics Data System (ADS)
Nolan, L.; Collins, W.
2011-12-01
Convective momentum transport is highly variable in both space and time, but this variability is currently not captured adequately in climate model parameterizations. Many processes with a large effect on global circulation, namely ENSO, are highly sensitive to convection representations. We investigate the effects of uncertainty in the simulation of several key convective processes on the variability of the mean climate. A two-track strategy is developed to investigate stochastic variability, with one track examining idealized parametric spectra and the other track examining more realistic spectra. The climate response to perturbations of these parameters is simulated using version 4 of NCAR's Community Climate System Model. In the idealized experiments, the constant parameters in the representations have been replaced with variable parameters, perturbed by white and red noise about the standard value within the ranges cited in literature. Model diagnostic tools are utilized in the analysis of the results to investigate the effects on large-scale phenomena. Our analysis focuses on sub-seasonal and inter-seasonal events, such as the Madden Julian Oscillation. While maintaining energy balance, the experiments indicate basin and sub-continental scale changes in distributions of convective activity. Furthermore we intend to utilize realistic spectra of perturbations, while constraining parameters based on the results of cloud resolving model data. This more realistic treatment of convection, allowing key convective parameters to vary between synoptic systems, is expected to improve global circulation and the simulation of ENSO.
Planck 2013 results. XXVIII. The Planck Catalogue of Compact Sources
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argüeso, F.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Beelen, A.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Walter, B.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
The Planck Catalogue of Compact Sources (PCCS) is the catalogue of sources detected in the first 15 months of Planck operations, the “nominal” mission. It consists of nine single-frequency catalogues of compact sources, both Galactic and extragalactic, detected over the entire sky. The PCCS covers the frequency range 30-857 GHz with higher sensitivity (it is 90% complete at 180 mJy in the best channel) and better angular resolution (from 32.88' to 4.33') than previous all-sky surveys in this frequency band. By construction its reliability is >80% and more than 65% of the sources have been detected in at least two contiguous Planck channels. In this paper we present the construction and validation of the PCCS, its contents and its statistical characterization.
Planck 2015 results. XVIII. Background geometry & topology
Ade, P A R; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Désert, F -X; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Feeney, S; Fergusson, J; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; McEwen, J D; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Peiris, H V; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pogosyan, D; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rowan-Robinson, M; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Yvon, D; Zacchei, A; Zonca, A
2015-01-01
Full-sky CMB maps from the 2015 Planck release allow us to detect departures from global isotropy on the largest scales. We present the first searches using CMB polarization for correlations induced by a non-trivial topology with a fundamental domain intersecting, or nearly intersecting, the last scattering surface (at comoving distance $\\chi_{rec}$). We specialize to flat spaces with toroidal and slab topologies, finding that explicit searches for the latter are sensitive to other topologies with antipodal symmetry. These searches yield no detection of a compact topology at a scale below the diameter of the last scattering surface. The limits on the radius $R_i$ of the largest sphere inscribed in the topological domain (at log-likelihood-ratio $\\Delta\\ln{L}>-5$ relative to a simply-connected flat Planck best-fit model) are $R_i>0.97\\chi_{rec}$ for the cubic torus and $R_i>0.56\\chi_{rec}$ for the slab. The limit for the cubic torus from the matched-circles search is numerically equivalent, $R_i>0.97\\chi_{rec}...
Observing the Dark Baryons with Planck
NASA Astrophysics Data System (ADS)
Lavaux, Guilhem
2015-08-01
Planck has offered us an unprecedented view on the early cosmology. However the secondary anisotropy analysis is still not complete though they would give us insights on a totally different part of the history of the Universe. This is the case of the Sunyaev Zel'dovich effects and, in particular, the kinetic component (kSZ) produced by electrons in the halos of galaxies. This effect is sensitive to the electron momentum along the line of sight. Provided the peculiar velocity field is known, it becomes possible to linearly relate the temperature anisotropy to the distribution of baryons around galaxies. I will discuss the detectability prospects, the challenges and the current state of the kSZ analysis based on optimal template fitting on Planck data and futuristic surveys.The kSZ template that I propose are generated based on detailed, statistical, dynamical modeling of the Large Scale structures. The most advanced model involves full Baysian formulation of the formation of Large Scale structure and statistical reconstruction of initial conditions (BORG, Jasche & Wandelt 2013) I will describe these models and how they are related to the kSZ template maps.
Seismic-Scale Rock Physics of Methane Hydrate
Amos Nur
2009-01-08
We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.
Technologies for large-scale physical mapping of human chromosomes
Beugelsdijk, T.J.
1994-12-01
Since its inception 6 years ago, the Human Genome Project has made rapid progress towards its ultimate goal of developing the complete sequence of all human chromosomes. This progress has been made possible through the development of automated devices by laboratories throughout the world that aid the molecular biologist in various phases of the project. The initial phase involves the generation of physical and genetic maps of each chromosome. This task is nearing completion at a low resolution level with several instances of very high detailed maps being developed for isolated chromosomes. In support of the initial mapping thrust of this program, the robotics and automation effort at Los Alamos National Laboratory has developed DNA gridding technologies along with associated database and user interface systems. This paper will discuss these systems in detail and focus on the formalism developed for subsystems which allow for facile system integration.
Improving Planck calibration by including frequency-dependent relativistic corrections
Quartin, Miguel
2015-01-01
The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10^(-3), due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.
Improving Planck calibration by including frequency-dependent relativistic corrections
NASA Astrophysics Data System (ADS)
Quartin, Miguel; Notari, Alessio
2015-09-01
The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10?3, due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.
Characterizing Planck-detected Clusters of Galaxies with Chandra
NASA Astrophysics Data System (ADS)
Jones, Christine; Andrade-Santos, Felipe; Forman, William R.; Murray, Stephen S.; Churazov, Eugene
2014-08-01
Through a Chandra XVP program, we are completing observations of all Planck ESZ clusters of galaxies at z<0.35. The Chandra observations of this mass limited cluster sample enable detailed studies of key cluster scaling relations and comparisons of SZ and X-ray selected cluster samples. In particular, from the Chandra observations, we have determined each cluster's dynamical state, as well as the properties of the X-ray gas. We compare the fractions of clusters with particular cluster morphologies, ranging from cool core relaxed clusters to clusters undergoing major mergers, in the Planck SZ sample with the percentages of similar clusters in X-ray selected samples. We also show comparisons of the distributions of X-ray luminosities for X-ray and SZ selected cluster samples. Finally we determine the fraction of Planck ESZ clusters with AGN-produced cavities and compare these results with those derived from X-ray selected cluster samples.
Spectator field models in light of spectral index after Planck
NASA Astrophysics Data System (ADS)
Kobayashi, Takeshi; Takahashi, Fuminobu; Takahashi, Tomo; Yamaguchi, Masahide
2013-10-01
We revisit spectator field models including curvaton and modulated reheating scenarios, specifically focusing on their viability in the new Planck era, based on the derived expression for the spectral index in general spectator field models. Importantly, the recent Planck observations give strong preference to a red-tilted power spectrum, while the spectator field models tend to predict a scale-invariant one. This implies that, during inflation, either (i) the Hubble parameter varies significantly as in chaotic inflation, or (ii) a scalar potential for the spectator field has a relatively large negative curvature. Combined with the tight constraint on the non-Gaussianity, the Planck data provides us with rich implications for various spectator field models.
Planck 2015 results. XXI. The integrated Sachs-Wolfe effect
Ade, P A R; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Casaponsa, B; Catalano, A; Challinor, A; Chamballu, A; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Désert, F -X; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Fergusson, J; Fernandez-Cobos, R; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Génova-Santos, R T; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Ili?, S; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Langer, M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Ma, Y -Z; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Marcos-Caballero, A; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Schaefer, B M; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Yvon, D; Zacchei, A; Zonca, A
2015-01-01
This paper presents a study of the ISW effect from the Planck 2015 temperature and polarization data release. The CMB is cross-correlated with different LSS tracers: the NVSS, SDSS and WISE catalogues, and the Planck 2015 convergence lensing map. This cross-correlation yields a detection at $4\\,\\sigma$, where most of the signal-to-noise is due to the Planck lensing and NVSS. In fact, the ISW effect is detected only from the Planck data (through the ISW-lensing bispectrum) at $\\approx 3\\,\\sigma$, which is similar to the detection level achieved by combining the cross-correlation signal coming from all the catalogues. This cross-correlation analysis is performed only with the Planck temperature data, since the polarization scales available in the 2015 release do not permit significant improvement of the CMB-LSS cross-correlation detectability. Nevertheless, polarization data is used to study the anomalously large ISW signal previously reported through the aperture photometry on stacked CMB features at the locat...
Ali, Melkamu; Ye, Sheng; Li, Hongyi; Huang, Maoyi; Leung, Lai-Yung R.; Fiori, Aldo; Sivapalan, Murugesu
2014-07-19
Subsurface stormflow is an important component of the rainfall-runoff response, especially in steep forested regions. However; its contribution is poorly represented in current generation of land surface hydrological models (LSMs) and catchment-scale rainfall-runoff models. The lack of physical basis of common parameterizations precludes a priori estimation (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global models. This paper is aimed at deriving physically based parameterizations of the storage-discharge relationship relating to subsurface flow. These parameterizations are derived through a two-step up-scaling procedure: firstly, through simulations with a physically based (Darcian) subsurface flow model for idealized three dimensional rectangular hillslopes, accounting for within-hillslope random heterogeneity of soil hydraulic properties, and secondly, through subsequent up-scaling to the catchment scale by accounting for between-hillslope and within-catchment heterogeneity of topographic features (e.g., slope). These theoretical simulation results produced parameterizations of the storage-discharge relationship in terms of soil hydraulic properties, topographic slope and their heterogeneities, which were consistent with results of previous studies. Yet, regionalization of the resulting storage-discharge relations across 50 actual catchments in eastern United States, and a comparison of the regionalized results with equivalent empirical results obtained on the basis of analysis of observed streamflow recession curves, revealed a systematic inconsistency. It was found that the difference between the theoretical and empirically derived results could be explained, to first order, by climate in the form of climatic aridity index. This suggests a possible codependence of climate, soils, vegetation and topographic properties, and suggests that subsurface flow parameterization needed for ungauged locations must account for both the physics of flow in heterogeneous landscapes, and the co-dependence of soil and topographic properties with climate, including possibly the mediating role of vegetation.
An introduction to inflation after Planck: from theory to observations
Clesse, Sebastien
2015-01-01
These lecture notes have been written for a short introductory course on the status of inflation after Planck and BICEP2, given at the Xth Modave School of Mathematical Physics. The first objective is to give an overview of the theory of inflation: motivations, homogeneous scalar field dynamics, slow-roll approximation, linear theory of cosmological perturbations, classification of single field potentials and their observable predictions. This includes a pedagogical derivation of the primordial scalar and tensor power spectra for any effective single field potential. The second goal is to present the most recent results of Planck and BICEP2 and to discuss their implications for inflation. Bayesian statistical methods are introduced as a tool for model analysis and comparison. Based on the recent work of J. Martin et al., the best inflationary models after Planck and BICEP2 are presented. Finally a series of open questions and issues related to inflation are mentioned and briefly discussed.
An introduction to inflation after Planck: from theory to observations
Sebastien Clesse
2015-01-02
These lecture notes have been written for a short introductory course on the status of inflation after Planck and BICEP2, given at the Xth Modave School of Mathematical Physics. The first objective is to give an overview of the theory of inflation: motivations, homogeneous scalar field dynamics, slow-roll approximation, linear theory of cosmological perturbations, classification of single field potentials and their observable predictions. This includes a pedagogical derivation of the primordial scalar and tensor power spectra for any effective single field potential. The second goal is to present the most recent results of Planck and BICEP2 and to discuss their implications for inflation. Bayesian statistical methods are introduced as a tool for model analysis and comparison. Based on the recent work of J. Martin et al., the best inflationary models after Planck and BICEP2 are presented. Finally a series of open questions and issues related to inflation are mentioned and briefly discussed.
Is Planck data consistent with primordial deuterium measurements?
NASA Astrophysics Data System (ADS)
Salvati, Laura; Said, Najla; Melchiorri, Alessandro
2014-11-01
The recent measurements of the cosmic microwave background anisotropies provided by the Planck satellite experiment have significantly improved the constraints on several cosmological parameters. In this brief paper we point out a small but interesting tension present between recent values of the primordial deuterium measured from quasar absorption line systems and the same value inferred, albeit indirectly, from the Planck measurements assuming ? CDM and big bang nucleosynthesis. Here we discuss this tension in detail investigating the possible new physics that could be responsible for the tension. We found that, among 8 extra parameters, only an anomalous lensing component and a closed universe could change the Planck constraint towards a better consistency with direct deuterium measurements.
Galactic interstellar filaments as probed by LOFAR and Planck
Zaroubi, S; de Bruyn, A G; Boulanger, F; Bracco, A; Kooistra, R; Alves, M I R; Brentjens, M A; Ferrière, K; Ghosh, T; Koopmans, L V E; Levrier, F; Miville-Deschênes, M -A; Montier, L; Pandey, V N; Soler, J D
2015-01-01
Recent Low Frequency Array (LOFAR) observations at 115-175 MHz of a field at medium Galactic latitudes (centered at the bright quasar 3C196) have shown striking filamentary structures in polarization that extend over more than 4 degrees across the sky. In addition, the Planck satellite has released full sky maps of the dust emission in polarization at 353GHz. The LOFAR data resolve Faraday structures along the line of sight, whereas the Planck dust polarization maps probe the orientation of the sky projected magnetic field component. Hence, no apparent correlation between the two is expected. Here we report a surprising, yet clear, correlation between the filamentary structures, detected with LOFAR, and the magnetic field orientation, probed by the Planck satellite. This finding points to a common, yet unclear, physical origin of the two measurements in this specific area in the sky. A number of follow-up multi- frequency studies are proposed to shed light on this unexpected finding.
On the covariance of the Fokker-Planck equation
NASA Astrophysics Data System (ADS)
Garrido, L.
1980-01-01
We study the covariance of the Fokker-Planck equation under general gross variables transformations by means of Riemann differential geometry using an affine connection ? ??? unsymmetric in their lower indices and without assuming that the covariant derivative of the diffusion tensor D??;? be zero. We come to the conclusion that to achieve our aim we only need the value of the contraction ? ???, all other components of the affine connection remaining completely arbitrary. We argue, therefore, that the most economic way of presenting the covariance of the Fokker-Planck equation is by means of exterior differential calculus. As an application we study physical systems under detailed balance showing that for them the irreversible part of the contravariant drift vector, that is then uniquely determined, is related only to a symmetric tensor while its reversible component is exclusively related to an antisymmetric tensor. A criticism of a compact Fokker-Planck equation is also included.
Higgs vacuum stability and inflationary dynamics after BICEP2 and PLANCK dust polarisation data
Bhattacharya, Kaushik; Chakrabortty, Joydeep; Das, Suratna; Mondal, Tanmoy E-mail: joydeep@iitk.ac.in E-mail: tanmoym@prl.res.in
2014-12-01
If the recent detection of B-mode polarization of the Cosmic Microwave Background by BICEP2 observations, withstand the test of time after the release of recent PLANCK dust polarisation data, then it would surprisingly put the inflationary scale near Grand Unification scale if one considers single-field inflationary models. On the other hand, Large Hadron Collider has observed the elusive Higgs particle whose presently observed mass can lead to electroweak vacuum instability at high scale (? O(10{sup 10}) GeV). In this article, we seek for a simple particle physics model which can simultaneously keep the vacuum of the theory stable and yield high-scale inflation successfully. To serve our purpose, we extend the Standard Model of particle physics with a U(1){sub B-L} gauged symmetry which spontaneously breaks down just above the inflationary scale. Such a scenario provides a constrained parameter space where both the issues of vacuum stability and high-scale inflation can be successfully accommodated. The threshold effect on the Higgs quartic coupling due to the presence of the heavy inflaton field plays an important role in keeping the electroweak vacuum stable. Furthermore, this scenario is also capable of reheating the universe at the end of inflation. Though the issues of Dark Matter and Dark Energy, which dominate the late-time evolution of our universe, cannot be addressed within this framework, this model successfully describes the early universe dynamics according to the Big Bang model.
Higgs vacuum stability and inflationary dynamics after BICEP2 and PLANCK dust polarisation data
NASA Astrophysics Data System (ADS)
Bhattacharya, Kaushik; Chakrabortty, Joydeep; Das, Suratna; Mondal, Tanmoy
2014-12-01
If the recent detection of B-mode polarization of the Cosmic Microwave Background by BICEP2 observations, withstand the test of time after the release of recent PLANCK dust polarisation data, then it would surprisingly put the inflationary scale near Grand Unification scale if one considers single-field inflationary models. On the other hand, Large Hadron Collider has observed the elusive Higgs particle whose presently observed mass can lead to electroweak vacuum instability at high scale (~ Script O(1010) GeV). In this article, we seek for a simple particle physics model which can simultaneously keep the vacuum of the theory stable and yield high-scale inflation successfully. To serve our purpose, we extend the Standard Model of particle physics with a U(1)B-L gauged symmetry which spontaneously breaks down just above the inflationary scale. Such a scenario provides a constrained parameter space where both the issues of vacuum stability and high-scale inflation can be successfully accommodated. The threshold effect on the Higgs quartic coupling due to the presence of the heavy inflaton field plays an important role in keeping the electroweak vacuum stable. Furthermore, this scenario is also capable of reheating the universe at the end of inflation. Though the issues of Dark Matter and Dark Energy, which dominate the late-time evolution of our universe, cannot be addressed within this framework, this model successfully describes the early universe dynamics according to the Big Bang model.
Higgs vacuum stability and inflationary dynamics after BICEP2 and PLANCK dust polarisation data
Kaushik Bhattacharya; Joydeep Chakrabortty; Suratna Das; Tanmoy Mondal
2014-11-17
If the recent detection of $B-$mode polarization of the Cosmic Microwave Background by BICEP2 observations, withstand the test of time after the release of recent PLANCK dust polarisation data, then it would surprisingly put the inflationary scale near Grand Unification scale if one considers single-field inflationary models. On the other hand, Large Hadron Collider has observed the elusive Higgs particle whose presently observed mass can lead to electroweak vacuum instability at high scale $(\\sim{\\mathcal O}(10^{10})$ GeV). In this article, we seek for a simple particle physics model which can simultaneously keep the vacuum of the theory stable and yield high-scale inflation successfully. To serve our purpose, we extend the Standard Model of particle physics with a $U(1)_{B-L}$ gauged symmetry which spontaneously breaks down just above the inflationary scale. Such a scenario provides a constrained parameter space where both the issues of vacuum stability and high-scale inflation can be successfully accommodated. The threshold effect on the Higgs quartic coupling due to the presence of the heavy inflaton field plays an important role in keeping the electroweak vacuum stable. Furthermore, this scenario is also capable of reheating the universe at the end of inflation. Though the issues of Dark Matter and Dark Energy, which dominate the late-time evolution of our universe, cannot be addressed within this framework, this model successfully describes the early universe dynamics according to the Big Bang model.
Hacker, M R; Funk, S M; Manco-Johnson, M J
2007-01-01
Persons with haemophilia often experience their first joint haemorrhage in early childhood. Recurrent bleeding into a joint may lead to significant morbidity, specifically haemophilic arthropathy. Early identification of the onset and progression of joint damage is critical to preserving joint structure and function. Physical examination is the most feasible approach to monitor joint health. Our group developed the Colorado Haemophilia Paediatric Joint Physical Examination Scale to identify earlier signs of joint degeneration and incorporate developmentally appropriate tasks for assessing joint function in young children. This study's objectives were to establish normal ranges for this scale and assess interrater reliability. The ankles, knees and elbows of 72 healthy boys aged 1 through 7 years were evaluated by a physical therapist to establish normal ranges. Exactly 10 boys in each age category from 2 to 7 years were evaluated by a second physical therapist to determine interrater reliability. The original scale was modified to account for the finding that mild angulation in the weight-bearing joints is developmentally normal. The interrater reliability of the scale ranged from fair to good, underscoring the need for physical therapists to have specific training in the orthopaedic assessment of very young children and the measurement error inherent in the goniometer. Modifications to axial alignment scoring will allow the scale to distinguish healthy joints from those suffering frequent haemarthroses. PMID:17212728
Rotating space elevators: Physics of celestial scale spinning strings
NASA Astrophysics Data System (ADS)
Knudsen, Steven; Golubovi?, Leonardo
2014-11-01
We explore classical and statistical mechanics of a novel dynamical system, the Rotating Space Elevator (RSE) (L. Golubovi?, S. Knudsen, EPL 86, 34001 (2009)). The RSE is a double rotating floppy string reaching extraterrestrial locations. Objects sliding along the RSE string (climbers) do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in space elevator science, which is how to supply energy to the climbers moving along space elevator strings. The RSE can be made in various shapes that are stabilized by an approximate equilibrium between the gravitational and inertial forces acting in a double rotating frame associated with the RSE. This dynamical equilibrium is achieved by a special ("magical") form of the RSE mass line density derived in this paper. The RSE exhibits a variety of interesting dynamical phenomena explored here by numerical simulations. Thanks to its special design, the RSE exhibits everlasting double rotating motion. Under some conditions, however, we find that the RSE may undergo a morphological transition to a chaotic state reminiscent of fluctuating directed polymers in the realm of the statistical physics of strings and membranes.
Planck 2013 results. XII. Diffuse component separation
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dobler, G.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huey, G.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marcos-Caballero, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Salerno, E.; Sandri, M.; Santos, D.; Savini, G.; Schiavon, F.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Viel, M.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wilkinson, A.; Xia, J.-Q.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
Planck has produced detailed all-sky observations over nine frequency bands between 30 and 857 GHz. These observations allow robust reconstruction of the primordial cosmic microwave background (CMB) temperature fluctuations over nearly the full sky, as well as new constraints on Galactic foregrounds, including thermal dust and line emission from molecular carbon monoxide (CO). This paper describes the component separation framework adopted by Planck for many cosmological analyses, including CMB power spectrum determination and likelihood construction on large angular scales, studies of primordial non-Gaussianity and statistical isotropy, the integrated Sachs-Wolfe effect, gravitational lensing, and searches for topological defects. We test four foreground-cleaned CMB maps derived using qualitatively different component separation algorithms. The quality of our reconstructions is evaluated through detailed simulations and internal comparisons, and shown through various tests to be internally consistent and robust for CMB power spectrum and cosmological parameter estimation up to ? = 2000. The parameter constraints on ?CDM cosmologies derived from these maps are consistent with those presented in the cross-spectrum based Planck likelihood analysis. We choose two of the CMB maps for specific scientific goals. We also present maps and frequency spectra of the Galactic low-frequency, CO, and thermal dust emission. The component maps are found to provide a faithful representation of the sky, as evaluated by simulations, with the largest bias seen in the CO component at 3%. For the low-frequency component, the spectral index varies widely over the sky, ranging from about ? = -4 to - 2. Considering both morphology and prior knowledge of the low frequencycomponents, the index map allows us to associate a steep spectral index (?< -3.2) with strong anomalous microwave emission, corresponding to a spinning dust spectrum peaking below 20 GHz, a flat index of ?> -2.3 with strong free-free emission, and intermediate values with synchrotron emission.
Neutrino physics with multi-ton scale liquid xenon detectors
Baudis, L.; Ferella, A.; Kish, A.; Manalaysay, A.; Undagoitia, T. Marrodán; Schumann, M., E-mail: laura.baudis@physik.uzh.ch, E-mail: alfredo.ferella@lngs.infn.it, E-mail: alexkish@physik.uzh.ch, E-mail: aaronm@ucdavis.edu, E-mail: marrodan@mpi-hd.mpg.de, E-mail: marc.schumann@lhep.unibe.ch [Physik Institut, University of Zürich, Winterthurerstrasse 190, Zürich, CH-8057 (Switzerland)
2014-01-01
We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and {sup 7}Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ? 2 × 10{sup ?48} cm{sup 2} and WIMP masses around 50 GeV?c{sup ?2}, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ? 6 GeV?c{sup ?2} to cross sections above ? 4 × 10{sup ?45}cm{sup 2}. DARWIN could reach a competitive half-life sensitivity of 5.6 × 10{sup 26} y to the neutrinoless double beta decay of {sup 136}Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.
Neutrino physics with multi-ton scale liquid xenon detectors
NASA Astrophysics Data System (ADS)
Baudis, L.; Ferella, A.; Kish, A.; Manalaysay, A.; Marrodán Undagoitia, T.; Schumann, M.
2014-01-01
We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2-30 keV, where the sensitivity to solar pp and 7Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~ 2 × 10-48 cm2 and WIMP masses around 50 GeV?c-2, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ~ 6 GeV?c-2 to cross sections above ~ 4 × 10-45cm2. DARWIN could reach a competitive half-life sensitivity of 5.6 × 1026 y to the neutrinoless double beta decay of 136Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.
Limits on the fluctuating part of y-type distortion monopole from Planck and SPT results
NASA Astrophysics Data System (ADS)
Khatri, Rishi; Sunyaev, Rashid
2015-08-01
We use the published Planck and SPT cluster catalogs [1,2] and recently published y-distortion maps [3] to put strong observational limits on the contribution of the fluctuating part of the y-type distortions to the y-distortion monopole. Our bounds are 5.4× 10?8 < langle yrangle < 2.2× 10?6. Our upper bound is a factor of 6.8 stronger than the currently best upper 95% confidence limit from COBE-FIRAS of langle yrangle <15× 10?6. In the standard cosmology, large scale structure is the only source of such distortions and our limits therefore constrain the baryonic physics involved in the formation of the large scale structure. Our lower limit, from the detected clusters in the Planck and SPT catalogs, also implies that a Pixie-like experiment should detect the y-distortion monopole at >27-?. The biggest sources of uncertainty in our upper limit are the monopole offsets between different HFI channel maps that we estimate to be <10?6.
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marcos-Caballero, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
We have constructed the first all-sky map of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 100 to 857 GHz frequency channel maps from the Planck survey. This map shows an obvious galaxy cluster tSZ signal that is well matched with blindly detected clusters in the Planck SZ catalogue. To characterize the signal in the tSZ map we have computed its angular power spectrum. At large angular scales (? < 60), the major foreground contaminant is the diffuse thermal dust emission. At small angular scales (? > 500) the clustered cosmic infrared background and residual point sources are the major contaminants. These foregrounds are carefully modelled and subtracted. We thus measure the tSZ power spectrum over angular scales 0.17° ? ? ? 3.0° that were previously unexplored. The measured tSZ power spectrum is consistent with that expected from the Planck catalogue of SZ sources, with clear evidence of additional signal from unresolved clusters and, potentially, diffuse warm baryons. Marginalized band-powers of the Planck tSZ power spectrum and the best-fit model are given. The non-Gaussianity of the Compton parameter map is further characterized by computing its 1D probability distribution function and its bispectrum. The measured tSZ power spectrum and high order statistics are used to place constraints on ?8.
Time dependent chemistry in Planck cold clouds?
NASA Astrophysics Data System (ADS)
Berczik, Peter; Bertsyk, Peter; Toth, Viktor; Baranyai, Andras
2015-08-01
We present a set of time dependent chemical evolution models based on the 2012 edition of the UMIST Database for Astrochemistry (McElroy et al. 2013) for a wide range of initial physical cloud parameters (10K
Gyrokinetic Fokker-Planck Collision Operator
Li, Bo
The gyrokinetic linearized exact Fokker-Planck collision operator is obtained in a form suitable for plasma gyrokinetic equations, for arbitrary mass ratio. The linearized Fokker-Planck operator includes both the test-particle ...
NASA Astrophysics Data System (ADS)
Koyama, Kazuya; Pettinari, Guido Walter; Mizuno, Shuntaro; Fidler, Christian
2014-06-01
In this paper, we study cosmic microwave background (CMB) constraints on primordial non-Gaussianity in Dirac-Born-Infeld (DBI) galileon models in which an induced gravity term is added to the DBI action. In this model, the non-Gaussianity of orthogonal shape can be generated. We provide a relation between theoretical parameters and orthogonal/equilateral nonlinear parameters using the Fisher matrix approach for the CMB bispectrum. In doing so, we include the effect of the CMB transfer functions and experimental noise properties by employing the recently developed second order non-Gaussianity code. The relation is also shown in the language of effective theory so that it can be applied to general single-field models. Using the bispectrum Fisher matrix and the central values for equilateral and orthogonal non-Gaussianities found by the Planck temperature survey, we provide forecasts on the theoretical parameters of the DBI galileon model. We consider the upcoming Planck polarization data and the proposed post-Planck experiments Cosmic Origins Explore (COrE) and Polarized Radiation Imaging and Spectroscopy Mission (PRISM). We find that Planck polarization measurements may provide a hint for a non-canonical sound speed at the 68% confidence level. COrE and PRISM will not only confirm a non-canonical sound speed but also exclude the conventional DBI inflation model at more than the 95% and 99% confidence level respectively, assuming that the central values will not change. This indicates that improving constraints on non-Gaussianity further by future CMB experiments is invaluable to constrain the physics of the early universe.
Model-independent constraints on Delta F=2 operators and the scale of New Physics
UTfit Collaboration; M. Bona; M. Ciuchini; E. Franco; V. Lubicz; G. Martinelli; F. Parodi; M. Pierini; P. Roudeau; C. Schiavi; L. Silvestrini; V. Sordini; A. Stocchi; V. Vagnoni
2008-02-29
We update the constraints on new-physics contributions to Delta F=2 processes from the generalized unitarity triangle analysis, including the most recent experimental developments. Based on these constraints, we derive upper bounds on the coefficients of the most general Delta F=2 effective Hamiltonian. These upper bounds can be translated into lower bounds on the scale of new physics that contributes to these low-energy effective interactions. We point out that, due to the enhancement in the renormalization group evolution and in the matrix elements, the coefficients of non-standard operators are much more constrained than the coefficient of the operator present in the Standard Model. Therefore, the scale of new physics in models that generate new Delta F=2 operators, such as next-to-minimal flavour violation, has to be much higher than the scale of minimal flavour violation, and it most probably lies beyond the reach of direct searches at the LHC.
Strong Coupling Running, Gauge Coupling Unification and the Scale of New Physics
Bourilkov, Dimitri
2015-01-01
The apparent unification of gauge couplings in Grand Unified Theories around 10$^{16}$ GeV is one of the strong arguments in favor of Supersymmetric extensions of the Standard Model. In this paper, an analysis of the measurements of the strong coupling running from the CMS experiment at the LHC is combined with a "traditional" gauge coupling unification analysis using data at the Z peak. This approach places powerful constraints on the possible scales of new physics and on the parameters around the unification scale. A supersymmetric analysis without GUT threshold corrections describes the CMS data well and provides perfect unification. The favored scales are $M_{SUSY}\\ =\\ 2820\\ +670\\ -540$ GeV and $M_{GUT}\\ =\\ 1.05 \\pm 0.06 \\cdot 10^{16}$ GeV. For zero or small threshold corrections the scale of new physics may be well within LHC reach.
What is Special About the Planck Mass?
C. Sivaram
2007-06-30
Planck introduced his famous units of mass, length and time a hundred years ago. The many interesting facets of the Planck mass and length are explored. The Planck mass ubiquitously occurs in astrophysics, cosmology, quantum gravity, string theory, etc. Current aspects of its implications for unification of fundamental interactions, energy dependence of coupling constants, dark energy, etc. are discussed.
Sleuth at CDF: A Quasi-model-independent search for new electroweak scale physics
Choudalakis, Georgios; /MIT, LNS
2007-10-01
These proceedings describe Sleuth, a quasi-model-independent search strategy targeting new electroweak scale physics, and its application to 927 pb{sup -1} of CDF II data. Exclusive final states are analyzed for an excess of data beyond the Standard Model prediction at large summed scalar transverse momentum. This analysis of high-pT data represents one of the most encompassing searches so far conducted for new physics at the energy frontier.
Planck 2015 constraints on reionization history
NASA Astrophysics Data System (ADS)
Tristram, Matthieu
2015-08-01
On behalf of the Planck collaboration, we will show the tightest constraints on cosmic reionization extracted from the CMB polarization at low multipole by Planck.The CMB large scales polarization data can gives strong constraints on the reionization history through the measurement of the reionization optical depth. The Thomson optical depth measured is significantly smaller than previously estimated from CMB polarization data. This result reduces the tension between CMB based analyses and constraints from other astrophysical sources. It highlights the necessity of a deep revision of our view on the history of reionization and the dark age. We also combine constraints from low and high l, in particular from the amplitude of the kinetic Sunyaev Zeld’ovitch effect (kSZ), to derive the time and duration of the reionization epoch. In addition, using both a new two-stage parametrization of the ionization fraction, closer to recent self-regulated simulations, and a non parametric reconstruction, we estimate a more realistic beginning, end, and duration of Reionization.
Progress on accurate measurement of the Planck constant: watt balance and counting atoms
Li, Shisong; Zhao, Wei; Li, Zhengkun; Huang, Songling
2014-01-01
The Planck constant $h$ is one of the most significant constants in quantum physics. Recently, the precision measurement of the numeral value of $h$ has been a hot issue due to its important role in establishment for both a new SI and a revised fundamental physical constant system. Up to date, two approaches, the watt balance and counting atoms, have been employed to determine the Planck constant at a level of several parts in $10^8$. In this paper, the principle and progress on precision measurement of the Planck constant using watt balance and counting atoms at national metrology institutes are reviewed. Further improvements for the Planck constant determination and possible developments of a revised physical constant system in future are discussed.
Primordial power spectrum from Planck
Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun E-mail: arman@apctp.org
2014-11-01
Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near ? ? 750–850 represents the most prominent feature in the data. Feature near ? ? 1800–2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2? C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ? 2.5%. In this context low-? and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.
Primordial power spectrum from Planck
Dhiraj Kumar Hazra; Arman Shafieloo; Tarun Souradeep
2014-12-18
Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near $\\ell\\sim750-850$ represents the most prominent feature in the data. Feature near $\\ell\\sim1800-2000$ is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2$\\sigma$ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of $\\sim2.5\\%$. In this context low-$\\ell$ and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.
Full linearized Fokker-Planck collisions in neoclassical transport simulations
NASA Astrophysics Data System (ADS)
Belli, E. A.; Candy, J.
2012-01-01
The complete linearized Fokker-Planck collision operator has been implemented in the drift-kinetic code NEO (Belli and Candy 2008 Plasma Phys. Control. Fusion 50 095010) for the calculation of neoclassical transport coefficients and flows. A key aspect of this work is the development of a fast numerical algorithm for treatment of the field particle operator. This Eulerian algorithm can accurately treat the disparate velocity scales that arise in the case of multi-species plasmas. Specifically, a Legendre series expansion in ? (the cosine of the pitch angle) is combined with a novel Laguerre spectral method in energy to ameliorate the rapid numerical precision loss that occurs for traditional Laguerre spectral methods. We demonstrate the superiority of this approach to alternative spectral and finite-element schemes. The physical accuracy and limitations of more commonly used model collision operators, such as the Connor and Hirshman-Sigmar operators, are studied, and the effects on neoclassical impurity poloidal flows and neoclassical transport for experimental parameters are explored.
A multi-scale approach to the physics of ion beam cancer therapy
NASA Astrophysics Data System (ADS)
Solov'yov, A. V.; Surdutovich, E.; Scifoni, E.; Mishustin, I.; Greiner, W.
2008-12-01
We are developing a multi-scale approach to understanding the physics related to ion/proton-beam cancer therapy and the calculation of the probability of DNA damage as a result of irradiation of tumours with energetic ions (up to 430 MeV/u). This approach is inclusive with respect to different scales, starting from the long scale, defined by the ion stopping, followed by a smaller scale, defined by secondary electrons and radicals, and ending with the shortest scale, defined by interactions of secondaries with the DNA. We present calculations of the probabilities of single and double strand breaks of DNA and suggest a way to further elaborate on such calculations.
Psychometric Properties of the “Sport Motivation Scale (SMS)” Adapted to Physical Education
Granero-Gallegos, Antonio; Baena-Extremera, Antonio; Gómez-López, Manuel; Sánchez-Fuentes, José Antonio; Abraldes, J. Arturo
2014-01-01
The aim of this study was to investigate the factor structure of a Spanish version of the Sport Motivation Scale adapted to physical education. A second aim was to test which one of three hypothesized models (three, five and seven-factor) provided best model fit. 758 Spanish high school students completed the Sport Motivation Scale adapted for Physical Education and also completed the Learning and Performance Orientation in Physical Education Classes Questionnaire. We examined the factor structure of each model using confirmatory factor analysis and also assessed internal consistency and convergent validity. The results showed that all three models in Spanish produce good indicators of fitness, but we suggest using the seven-factor model (?2/gl = 2.73; ECVI = 1.38) as it produces better values when adapted to physical education, that five-factor model (?2/gl = 2.82; ECVI = 1.44) and three-factor model (?2/gl = 3.02; ECVI = 1.53). Key Points Physical education research conducted in Spain has used the version of SMS designed to assess motivation in sport, but validity reliability and validity results in physical education have not been reported. Results of the present study lend support to the factorial validity and internal reliability of three alternative factor structures (3, 5, and 7 factors) of SMS adapted to Physical Education in Spanish. Although all three models in Spanish produce good indicators of fitness, but we suggest using the seven-factor model. PMID:25435772
Reliability and Construct Validity of Turkish Version of Physical Education Activities Scale
ERIC Educational Resources Information Center
Memis, Ugur Altay
2013-01-01
This research was conducted to examine the reliability and construct validity of Turkish version of physical education activities scale (PEAS) which was developed by Thomason (2008). Participants in this study included 313 secondary and high school students from 7th to 11th grades. To analyse the data, confirmatory factor analysis, post hoc…
ERIC Educational Resources Information Center
Oncu, Erman
2013-01-01
The purpose of this study was to examine the psychometric properties of the Physical Education Attitude Scale for Preservice Classroom Teachers (PEAS-PCT). The study was conducted on 561 Turkish preservice classroom teachers at the end of the 2011-2012 Fall Semester. Exploratory and confirmatory factor analyses were conducted to ascertain the…
Evaluation of Social Cognitive Scaling Response Options in the Physical Activity Domain
ERIC Educational Resources Information Center
Rhodes, Ryan E.; Matheson, Deborah Hunt; Mark, Rachel
2010-01-01
The purpose of this study was to compare the reliability, variability, and predictive validity of two common scaling response formats (semantic differential, Likert-type) and two numbers of response options (5-point, 7-point) in the physical activity domain. Constructs of the theory of planned behavior were chosen in this analysis based on its…
PHYSICAL REVIEW E 86, 011107 (2012) Scaling of seismic memory with earthquake size
Stanley, H. Eugene
2012-01-01
PHYSICAL REVIEW E 86, 011107 (2012) Scaling of seismic memory with earthquake size Zeyu Zheng,1 and Management, 10000 Zagreb, Croatia 5 The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa that discrete earthquake events possess memory, i.e., that events occurring in a particular location
Overview of Seminar by Prof. Marilyn Wolf "Cyber-Physical Systems at Small and Large Scales"
Demsky, Brian
Overview of Seminar by Prof. Marilyn Wolf "Cyber-Physical Systems at Small and Large Scales" Prof. Marilyn Wolf School of Electrical and Computer Engineering Georgia Institute of Technology Abstract of distributed real-time control. Biography Marilyn Wolf is Farmer Distinguished Chair and Georgia Research
PHYSICAL REVIEW A 86, 032324 (2012) Surface codes: Towards practical large-scale quantum computation
Martinis, John M.
2012-01-01
PHYSICAL REVIEW A 86, 032324 (2012) Surface codes: Towards practical large-scale quantum 2012; published 18 September 2012) This article provides an introduction to surface code quantum computing. We first estimate the size and speed of a surface code quantum computer. We then introduce
The Children's Perceived Locus of Causality Scale for Physical Education
ERIC Educational Resources Information Center
Pannekoek, Linda; Piek, Jan P.; Hagger, Martin S.
2014-01-01
A mixed methods design was applied to evaluate the application of the Perceived Locus of Causality scale (PLOC) to preadolescent samples in physical education settings. Subsequent to minor item adaptations to accommodate the assessment of younger samples, qualitative pilot tests were performed (N = 15). Children's reports indicated the need…
Soil physical properties of agricultural systems in a large-scale study
Technology Transfer Automated Retrieval System (TEKTRAN)
A large-scale field study was performed to determine the effects of agricultural management systems on soil physical properties, including their spatial and temporal variations. Replicates were established in 1998 at the Center for Environmental Farming Systems, Goldsboro, North Carolina; replicates...
Outcrop-scale physical properties of Burns Formation at Meridiani Planum, Mars
Outcrop-scale physical properties of Burns Formation at Meridiani Planum, Mars Amanda L. Nahm1 at Meridiani Planum, Mars. RMR values were calculated for the present dry conditions (RMR = 63) and past wet were reduced by at most $50% during previous water-saturated conditions. The critical grain crushing
Human scale haptic interaction with a reactive virtual human in a realtime physics simulator
Shoichi Hasegawa; Ishikawa Toshiaki; Naoki Hashimoto
2005-01-01
In this paper, we propose a framework for haptic interac- tion with a reactive virtual human in a physically simulated virtual world. The user controls an avatar in the virtual world via human scale haptic interface and interacts with the virtual human through the avatar. The virtual human recognizes the user's motion and reacts to it. We create a virtual
Relation of Physical Form to Spatial Knowledge in Large-Scale Virtual Environments
ERIC Educational Resources Information Center
Cubukcu, Ebru; Nasar, Jack L.
2005-01-01
This study used a desktop virtual environmental simulation of 18 large-scale residential environments to test effects of plan layout complexity, physical differentiation, and gender on acquired spatial knowledge. One hundred sixty people (95 males and 65 females) were assigned at random to the different conditions. After a learning phase,…
Scale Relativity and Fractal SpaceTime: Applications to Quantum Physics,
Nottale, Laurent
#usion interpretation of the theory 8.2. Quantum eraser and whichÂway information in the geodesics interpretation 8 this hypothesis seems to be well verified in the classical domain, it is clearly broken by the quantum mechanicalScale Relativity and Fractal SpaceÂTime: Applications to Quantum Physics, Cosmology and Chaotic
Planck pre-launch status: The Planck mission
NASA Astrophysics Data System (ADS)
Tauber, J. A.; Mandolesi, N.; Puget, J.-L.; Banos, T.; Bersanelli, M.; Bouchet, F. R.; Butler, R. C.; Charra, J.; Crone, G.; Dodsworth, J.; Efstathiou, G.; Gispert, R.; Guyot, G.; Gregorio, A.; Juillet, J. J.; Lamarre, J.-M.; Laureijs, R. J.; Lawrence, C. R.; Nørgaard-Nielsen, H. U.; Passvogel, T.; Reix, J. M.; Texier, D.; Vibert, L.; Zacchei, A.; Ade, P. A. R.; Aghanim, N.; Aja, B.; Alippi, E.; Aloy, L.; Armand, P.; Arnaud, M.; Arondel, A.; Arreola-Villanueva, A.; Artal, E.; Artina, E.; Arts, A.; Ashdown, M.; Aumont, J.; Azzaro, M.; Bacchetta, A.; Baccigalupi, C.; Baker, M.; Balasini, M.; Balbi, A.; Banday, A. J.; Barbier, G.; Barreiro, R. B.; Bartelmann, M.; Battaglia, P.; Battaner, E.; Benabed, K.; Beney, J.-L.; Beneyton, R.; Bennett, K.; Benoit, A.; Bernard, J.-P.; Bhandari, P.; Bhatia, R.; Biggi, M.; Biggins, R.; Billig, G.; Blanc, Y.; Blavot, H.; Bock, J. J.; Bonaldi, A.; Bond, R.; Bonis, J.; Borders, J.; Borrill, J.; Boschini, L.; Boulanger, F.; Bouvier, J.; Bouzit, M.; Bowman, R.; Bréelle, E.; Bradshaw, T.; Braghin, M.; Bremer, M.; Brienza, D.; Broszkiewicz, D.; Burigana, C.; Burkhalter, M.; Cabella, P.; Cafferty, T.; Cairola, M.; Caminade, S.; Camus, P.; Cantalupo, C. M.; Cappellini, B.; Cardoso, J.-F.; Carr, R.; Catalano, A.; Cayón, L.; Cesa, M.; Chaigneau, M.; Challinor, A.; Chamballu, A.; Chambelland, J. P.; Charra, M.; Chiang, L.-Y.; Chlewicki, G.; Christensen, P. R.; Church, S.; Ciancietta, E.; Cibrario, M.; Cizeron, R.; Clements, D.; Collaudin, B.; Colley, J.-M.; Colombi, S.; Colombo, A.; Colombo, F.; Corre, O.; Couchot, F.; Cougrand, B.; Coulais, A.; Couzin, P.; Crane, B.; Crill, B.; Crook, M.; Crumb, D.; Cuttaia, F.; Dörl, U.; da Silva, P.; Daddato, R.; Damasio, C.; Danese, L.; D'Aquino, G.; D'Arcangelo, O.; Dassas, K.; Davies, R. D.; Davies, W.; Davis, R. J.; de Bernardis, P.; de Chambure, D.; de Gasperis, G.; de La Fuente, M. L.; de Paco, P.; de Rosa, A.; de Troia, G.; de Zotti, G.; Dehamme, M.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; di Girolamo, G.; Dickinson, C.; Doelling, E.; Dolag, K.; Domken, I.; Douspis, M.; Doyle, D.; Du, S.; Dubruel, D.; Dufour, C.; Dumesnil, C.; Dupac, X.; Duret, P.; Eder, C.; Elfving, A.; Enßlin, T. A.; Eng, P.; English, K.; Eriksen, H. K.; Estaria, P.; Falvella, M. C.; Ferrari, F.; Finelli, F.; Fishman, A.; Fogliani, S.; Foley, S.; Fonseca, A.; Forma, G.; Forni, O.; Fosalba, P.; Fourmond, J.-J.; Frailis, M.; Franceschet, C.; Franceschi, E.; François, S.; Frerking, M.; Gómez-Reñasco, M. F.; Górski, K. M.; Gaier, T. C.; Galeotta, S.; Ganga, K.; García Lázaro, J.; Garnica, A.; Gaspard, M.; Gavila, E.; Giard, M.; Giardino, G.; Gienger, G.; Giraud-Heraud, Y.; Glorian, J.-M.; Griffin, M.; Gruppuso, A.; Guglielmi, L.; Guichon, D.; Guillaume, B.; Guillouet, P.; Haissinski, J.; Hansen, F. K.; Hardy, J.; Harrison, D.; Hazell, A.; Hechler, M.; Heckenauer, V.; Heinzer, D.; Hell, R.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Herreros, J. M.; Hervier, V.; Heske, A.; Heurtel, A.; Hildebrandt, S. R.; Hills, R.; Hivon, E.; Hobson, M.; Hollert, D.; Holmes, W.; Hornstrup, A.; Hovest, W.; Hoyland, R. J.; Huey, G.; Huffenberger, K. M.; Hughes, N.; Israelsson, U.; Jackson, B.; Jaffe, A.; Jaffe, T. R.; Jagemann, T.; Jessen, N. C.; Jewell, J.; Jones, W.; Juvela, M.; Kaplan, J.; Karlman, P.; Keck, F.; Keihänen, E.; King, M.; Kisner, T. S.; Kletzkine, P.; Kneissl, R.; Knoche, J.; Knox, L.; Koch, T.; Krassenburg, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lagache, G.; Lagorio, E.; Lami, P.; Lande, J.; Lange, A.; Langlet, F.; Lapini, R.; Lapolla, M.; Lasenby, A.; Le Jeune, M.; Leahy, J. P.; Lefebvre, M.; Legrand, F.; Le Meur, G.; Leonardi, R.; Leriche, B.; Leroy, C.; Leutenegger, P.; Levin, S. M.; Lilje, P. B.; Lindensmith, C.; Linden-Vørnle, M.; Loc, A.; Longval, Y.; Lubin, P. M.; Luchik, T.; Luthold, I.; Macias-Perez, J. F.; Maciaszek, T.; MacTavish, C.; Madden, S.; Maffei, B.; Magneville, C.; Maino, D.; Mambretti, A.; Mansoux, B.; Marchioro, D.; Maris, M.; Marliani, F.; Marrucho, J.-C.; Martí-Canales, J.; Martínez-González, E.; Martín-Polegre, A.; Martin, P.; Marty, C.; Marty, W.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McDonald, A.; McGrath, P.; Mediavilla, A.; Meinhold, P. R.; Mélin, J.-B.; Melot, F.; Mendes, L.; Mennella, A.; Mervier, C.; Meslier, L.; Miccolis, M.; Miville-Deschenes, M.-A.; Moneti, A.; Montet, D.; Montier, L.; Mora, J.; Morgante, G.; Morigi, G.; Morinaud, G.; Morisset, N.; Mortlock, D.; Mottet, S.; Mulder, J.; Munshi, D.; Murphy, A.; Murphy, P.; Musi, P.; Narbonne, J.; Naselsky, P.; Nash, A.; Nati, F.; Natoli, P.; Netterfield, B.; Newell, J.; Nexon, M.; Nicolas, C.; Nielsen, P. H.; Ninane, N.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Oldeman, P.; Olivier, P.; Ouchet, L.
2010-09-01
The European Space Agency's Planck satellite, launched on 14 May 2009, is the third-generation space experiment in the field of cosmic microwave background (CMB) research. It will image the anisotropies of the CMB over the whole sky, with unprecedented sensitivity ({{? T}over T} 2 × 10-6) and angular resolution ( 5 arcmin). Planck will provide a major source of information relevant to many fundamental cosmological problems and will test current theories of the early evolution of the Universe and the origin of structure. It will also address a wide range of areas of astrophysical research related to the Milky Way as well as external galaxies and clusters of galaxies. The ability of Planck to measure polarization across a wide frequency range (30-350 GHz), with high precision and accuracy, and over the whole sky, will provide unique insight, not only into specific cosmological questions, but also into the properties of the interstellar medium. This paper is part of a series which describes the technical capabilities of the Planck scientific payload. It is based on the knowledge gathered during the on-ground calibration campaigns of the major subsystems, principally its telescope and its two scientific instruments, and of tests at fully integrated satellite level. It represents the best estimate before launch of the technical performance that the satellite and its payload will achieve in flight. In this paper, we summarise the main elements of the payload performance, which is described in detail in the accompanying papers. In addition, we describe the satellite performance elements which are most relevant for science, and provide an overview of the plans for scientific operations and data analysis.
Howard E. Haber Santa Cruz Institute for Particle Physics (SCIPP)
California at Santa Cruz, University of
Howard E. Haber Santa Cruz Institute for Particle Physics (SCIPP) UC Santa Cruz Department-Higgs Doublet Model up to the Planck scale, P. Fer- reira, H. E. Haber and E. Santos, arXiv:1505.04001 [hep-ph], submitted to Physical Review D. Books 1. The Higgs Hunter's Guide, J.F. Gunion, H.E. Haber, G.L. Kane, and S
Gurzadyan, V G; Nucita, A A; Ingrosso, G; Kashin, A L; Khachatryan, H G; Sargsyan, S; Yegorian, G; Jetzer, Ph; Qadir, A; Vetrugno, D
2015-01-01
Planck data towards the galaxy M82 are analyzed in the 70, 100 and 143 GHz bands. A substantial north-south and East-West temperature asymmetry is found, extending up to 1 degree from the galactic center. Being almost frequency-independent, these temperature asymmetries are indicative of a Doppler-induced effect regarding the line-of-sight dynamics on the halo scale, the ejections from the galactic center and, possibly, even the tidal interaction with M81 galaxy. The temperature asymmetry thus acts as a model-independent tool to reveal the bulk dynamics in nearby edge-on spiral galaxies, like the Sunyaev-Zeldovich effect for clusters of galaxies.
Advanced computations of multi-physics, multi-scale effects in beam dynamics
Amundson, J.F.; Macridin, A.; Spentzouris, P.; Stern, E.G.; /Fermilab
2009-01-01
Current state-of-the-art beam dynamics simulations include multiple physical effects and multiple physical length and/or time scales. We present recent developments in Synergia2, an accelerator modeling framework designed for multi-physics, multi-scale simulations. We summarize recent several recent results in multi-physics beam dynamics, including simulations of three Fermilab accelerators: the Tevatron, the Main Injector and the Debuncher. Early accelerator simulations focused on single-particle dynamics. To a first approximation, the forces on the particles in an accelerator beam are dominated by the external fields due to magnets, RF cavities, etc., so the single-particle dynamics are the leading physical effects. Detailed simulations of accelerators must include collective effects such as the space-charge repulsion of the beam particles, the effects of wake fields in the beam pipe walls and beam-beam interactions in colliders. These simulations require the sort of massively parallel computers that have only become available in recent times. We give an overview of the accelerator framework Synergia2, which was designed to take advantage of the capabilities of modern computational resources and enable simulations of multiple physical effects. We also summarize some recent results utilizing Synergia2 and BeamBeam3d, a tool specialized for beam-beam simulations.
Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations
NASA Astrophysics Data System (ADS)
Locatelli, R.; Bousquet, P.; Saunois, M.; Chevallier, F.; Cressot, C.
2015-09-01
With the densification of surface observing networks and the development of remote sensing of greenhouse gases from space, estimations of methane (CH4) sources and sinks by inverse modeling are gaining additional constraining data but facing new challenges. The chemical transport model (CTM) linking the flux space to methane mixing ratio space must be able to represent these different types of atmospheric constraints for providing consistent flux estimations. Here we quantify the impact of sub-grid-scale physical parameterization errors on the global methane budget inferred by inverse modeling. We use the same inversion setup but different physical parameterizations within one CTM. Two different schemes for vertical diffusion, two others for deep convection, and one additional for thermals in the planetary boundary layer (PBL) are tested. Different atmospheric methane data sets are used as constraints (surface observations or satellite retrievals). At the global scale, methane emissions differ, on average, from 4.1 Tg CH4 per year due to the use of different sub-grid-scale parameterizations. Inversions using satellite total-column mixing ratios retrieved by GOSAT are less impacted, at the global scale, by errors in physical parameterizations. Focusing on large-scale atmospheric transport, we show that inversions using the deep convection scheme of Emanuel (1991) derive smaller interhemispheric gradients in methane emissions, indicating a slower interhemispheric exchange. At regional scale, the use of different sub-grid-scale parameterizations induces uncertainties ranging from 1.2 % (2.7 %) to 9.4 % (14.2 %) of methane emissions when using only surface measurements from a background (or an extended) surface network. Moreover, spatial distribution of methane emissions at regional scale can be very different, depending on both the physical parameterizations used for the modeling of the atmospheric transport and the observation data sets used to constrain the inverse system. When using only satellite data from GOSAT, we show that the small biases found in inversions using a coarser version of the transport model are actually masking a poor representation of the stratosphere-troposphere methane gradient in the model. Improving the stratosphere-troposphere gradient reveals a larger bias in GOSAT CH4 satellite data, which largely amplifies inconsistencies between the surface and satellite inversions. A simple bias correction is proposed. The results of this work provide the level of confidence one can have for recent methane inversions relative to physical parameterizations included in CTMs.
Inflationary paradigm after Planck 2013
NASA Astrophysics Data System (ADS)
Guth, Alan H.; Kaiser, David I.; Nomura, Yasunori
2014-06-01
Models of cosmic inflation posit an early phase of accelerated expansion of the universe, driven by the dynamics of one or more scalar fields in curved spacetime. Though detailed assumptions about fields and couplings vary across models, inflation makes specific, quantitative predictions for several observable quantities, such as the flatness parameter (?k=1-?) and the spectral tilt of primordial curvature perturbations (ns-1=dln PR/dln k), among others-predictions that match the latest observations from the Planck satellite to very good precision. In the light of data from Planck as well as recent theoretical developments in the study of eternal inflation and the multiverse, we address recent criticisms of inflation by Ijjas, Steinhardt, and Loeb. We argue that their conclusions rest on several problematic assumptions, and we conclude that cosmic inflation is on a stronger footing than ever before.
Constraining Models of Neutrino Mass and Neutrino Interactions with the Planck Satellite
Alexander Friedland; Kathryn M. Zurek; Sergei Bashinsky
2007-04-25
In several classes of particle physics models -- ranging from the classical Majoron models, to the more recent scenarios of late neutrino masses or Mass-Varying Neutrinos -- one or more of the neutrinos are postulated to couple to a new light scalar field. As a result of this coupling, neutrinos in the early universe instead of streaming freely could form a self-coupled fluid, with potentially observable signatures in the Cosmic Microwave Background and the large scale structure of the universe. We re-examine the constraints on this scenario from the presently available cosmological data and investigate the sensitivity expected from the Planck satellite. In the first case, we find that the sensitivity strongly depends on which piece of data is used. The SDSS Main sample data, combined with WMAP and other data, disfavors the scenario of three coupled neutrinos at about the 3.5$\\sigma$ confidence level, but also favors a high number of freely streaming neutrinos, with the best fit at 5.2. If the matter power spectrum is instead taken from the SDSS Large Red Galaxy sample, best fit point has 2.5 freely streaming neutrinos, but the scenario with three coupled neutrinos becomes allowed at $2\\sigma$. In contrast, Planck alone will exclude even a single self-coupled neutrino at the $4.2\\sigma$ confidence level, and will determine the total radiation at CMB epoch to $\\Delta N_\
Neutron electric dipole moment and probe of PeV scale physics
NASA Astrophysics Data System (ADS)
Aboubrahim, Amin; Ibrahim, Tarek; Nath, Pran
2015-05-01
The experimental limit on the neutron electric dipole moment is used as a possible probe of new physics beyond the standard model. Within the minimal supersymmetric standard model (MSSM), we use the current experimental limit on the neutron EDM and possible future improvement as a probe of high-scale supersymmetry (SUSY). Quantitative analyses show that scalar masses as large as a PeV and larger could be probed in an improved experiment far above the scales accessible at future colliders. We also discuss the neutron EDM as a probe of new physics models beyond MSSM. Specifically, we consider an MSSM extension with a particle content including a vectorlike multiplet. Such an extension brings in new sources of charge conjugation and parity (C P ) violation beyond those in the MSSM. These C P phases contribute to the EDM of the quarks and to the neutron EDM. These contributions are analyzed in this work where we include the supersymmetric loop diagrams involving the neutralinos, charginos, and the gluino, squark and mirror squark exchange diagrams at the one-loop level. We also take into account the contributions from the W , Z , quark and mirror quark exchanges arising from the mixings of the vectorlike generation with the three generations. It is shown that the experimental limit on the neutron EDM can be used to probe such new physics models. In the future, one expects the neutron EDM to improve an order of magnitude or more allowing one to extend the probe of high-scale SUSY and of new physics models. For the MSSM, the probe of high scales could go up to and beyond PeV scale masses.
ERIC Educational Resources Information Center
Heesch, K. C.; Masse, L. C.; Dunn, A. L.
2006-01-01
Studies suggest that enjoyment, perceived benefits and perceived barriers may be important mediators of physical activity. However, the psychometric properties of these scales have not been assessed using Rasch modeling. The purpose of this study was to use Rasch modeling to evaluate the properties of three scales commonly used in physical…
Local availability of mathematics and number scaling: effects on quantum physics
NASA Astrophysics Data System (ADS)
Benioff, Paul
2012-06-01
Local availability of mathematics and number scaling provide an approach to a coherent theory of physics and mathematics. Local availability of mathematics assigns separate mathematical universes, x, to each space time point, x.. The mathematics available to an observer, Ox, at x is contained in x . Number scaling is based on extending the choice freedom of vector space bases in gauge theories to choice freedom of underlying number systems. Scaling arises in the description, in x, of mathematical systems in y . If ay or ?y is a number or a quantum state in y, then the corresponding number or state in x is ry,xax or ry,x?x. Here ax and ?x are the same number and state in x as ay and ?y are in y . If y = x+ ?dx is a neighbor point of x, then the scaling factor is ry,x = exp( A(x) • ?dx) where A is the gradient of a scalar field. The effects of scaling and local availability of mathematics on quantum theory show that scaling has two components, external and internal. External scaling is shown above for ay and ?y. Internal scaling occurs in expressions with integrals or derivatives over space time. An example is the replacement of the position expectation value, ??*(y)y?(y)dy, by ?x ry,?x* x(yx)yx?x(yx)dyx. This is an integral in x . The good agreement between quantum theory and experiment shows that scaling is negligible in a space region, L, in which experiments and calculations can be done, and results compared. L includes the solar system, but the speed of light limits the size of L to a few light years. For observers in L and events outside L, at cosmological distances, scaling is not limited by theory experiment agreement requirements.
Physical habitat monitoring strategy (PHAMS) for reach-scale restoration effectiveness monitoring
Jones, Krista L.; O'Daniel, Scott J.; Beechie, Tim J.; Zakrajsek, John; Webster, John G.
2015-01-01
Habitat restoration efforts by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) have shifted from the site scale (1-10 meters) to the reach scale (100-1,000 meters). This shift was in response to the growing scientific emphasis on process-based restoration and to support from the 2007 Accords Agreement with the Bonneville Power Administration. With the increased size of restoration projects, the CTUIR and other agencies are in need of applicable monitoring methods for assessing large-scale changes in river and floodplain habitats following restoration. The goal of the Physical Habitat Monitoring Strategy is to outline methods that are useful for capturing reach-scale changes in surface and groundwater hydrology, geomorphology, hydrologic connectivity, and riparian vegetation at restoration projects. The Physical Habitat Monitoring Strategy aims to avoid duplication with existing regional effectiveness monitoring protocols by identifying complimentary reach-scale metrics and methods that may improve the ability of CTUIR and others to detect instream and riparian changes at large restoration projects.
Precision measurements of the Planck and Avogadro constants
Bettin, Horst; Man, John; Mana, Giovanni; Massa, Enrico; Picard, Alain
2013-01-01
Precision measurements of the fundamental constants are tour de force of basic metrology, where the useful information is usually beyond the last digit of the measured value. They challenge theoretical models and measurement technologies and set a network of measurement equations on which a universal system of units can be built, which stems from the most basic concepts of physics. Because of their connection with the mass unit, the Avogadro and Planck constants are on the spotlight.
Universality and scaling in the N-body sector of Efimov physics
NASA Astrophysics Data System (ADS)
Gattobigio, Mario
2014-05-01
In this talk I will illustrate the universal behavior that we have found inside the window of Efimov physics for systems made of N <= 6 particles. We have solved the Schrödinger equation of the few-body systems using different potentials, and we have changed the potential parameters in such a way to explore a range of two-body scattering length, a, around the unitary limit, | a | --> ? . The ground- (EN0) and excited-state (EN1) energies have been analyzed by means of a recent-developed method which allows to remove finite-range effects. In this way we show that the calculated ground- and excited-state energies collapse over the same universal curve obtained in the zero-range three-body systems. Universality and scaling are reminiscent of critical phenomena; in that framework, the critical point is mapped onto a fixed point of the Renormalization Group (RG) where the system displays scale-invariant (SI) symmetry. A consequence of SI symmetry is the scaling of the observables: for different materials, in the same class of universality, a selected observable can be represented as a function of the control parameter and, provided that both the observable and the control parameter are scaled by some material-dependent factor, all representations collapse onto a single universal curve. Efimov physics is a more recent example of universality, but in this case the physics is governed by a limit cycle on the RG flow with the emergence of a discrete scale invariance (DSI). The scaling of the few-body energies can be interpreted as follow: few-body systems (at least up to N = 6), inside the Efimov window, belong to the same class of universality, which is governed by the limit cycle. These results can be summarized by the following formula ENn/E2 =tan2 ??NnaB +?Nn = e- ? (?) / 2s0 cos? . where the function ? (?) is universal and it is determined by the three-body physics, and s0 = 1 . 00624 . The parameter ?Nn appears as a scale parameter and the shift ?nN is a finite-range scale parameter introduced to take into account finite-range corrections.
Small-scale biological, physical and chemical signals in the sea
NASA Astrophysics Data System (ADS)
Yen, Jeannette
2010-11-01
Plankton operate at low to intermediate Reynolds numbers, generating watery signals that can be attenuated by viscosity and confused with small-scale turbulence. Yet messages are created, transmitted, perceived and recognized. These messages guide essential survival tasks of aquatic micro crustaceans. Cues created include those of escaping prey, lunging predators, attractive mates, and appropriate hosts. In this presentation, I describe some unusual and some typical examples of small-scale biological-physical-chemical signals in the sea that help to maintain the integrity of our aquatic ecosystems.
MUPHY: A parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations
NASA Astrophysics Data System (ADS)
Bernaschi, M.; Melchionna, S.; Succi, S.; Fyta, M.; Kaxiras, E.; Sircar, J. K.
2009-09-01
We present a parallel version of MUPHY, a multi-physics/scale code based upon the combination of microscopic Molecular Dynamics (MD) with a hydro-kinetic Lattice Boltzmann (LB) method. The features of the parallel version of MUPHY are hereby demonstrated for the case of translocation of biopolymers through nanometer-sized, multi-pore configurations, taking into explicit account the hydrodynamic interactions of the translocating molecules with the surrounding fluid. The parallel implementation exhibits excellent scalability on the IBM BlueGene platform and includes techniques which may improve the flexibility and efficiency of other complex multi-physics parallel applications, such as hemodynamics, targeted-drug delivery and others.
Microphysics in the Multi-Scale Modeling Systems with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.
2011-01-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.
Constraints on secret neutrino interactions after Planck
NASA Astrophysics Data System (ADS)
Forastieri, Francesco; Lattanzi, Massimiliano; Natoli, Paolo
2015-07-01
Neutrino interactions beyond the standard model of particle physics may affect the cosmological evolution and can be constrained through observations. We consider the possibility that neutrinos possess secret scalar or pseudoscalar interactions mediated by the Nambu-Goldstone boson of a still unknown spontaneously broken global U(1) symmetry, as in, e.g., Majoron models. In such scenarios, neutrinos still decouple at Tsimeq 1 MeV, but become tightly coupled again (``recouple'') at later stages of the cosmological evolution. We use available observations of the cosmic microwave background (CMB) anisotropies, including Planck 2013 and the joint BICEP2/Planck 2015 data, to derive constraints on the quantity ???4, parameterizing the neutrino collision rate due to scalar or pseudoscalar interactions. We consider both a minimal extension of the standard ?CDM model, and more complicated scenarios with extra relativistic degrees of freedom or non-vanishing tensor amplitude. For a wide range of dataset and model combinations, we find a typical constraint ???4 lesssim 0.9× 10?27 (95% C.L.), implying an upper limit on the redshift z?rec of neutrino recoupling 0lesssim 850, leaving open the possibility that the latter occured well before hydrogen recombination. In the framework of Majoron models, the upper limit on ??? roughly translates on a constraint g lesssim 8.2× 10?7 on the Majoron-neutrino coupling constant g. In general, the data show a weak (~ 1?) but intriguing preference for non-zero values of ???4, with best fits in the range ???4 = (0.15–0.35)× 10?27, depending on the particular dataset. This is more evident when either high-resolution CMB observations from the ACT and SPT experiments are included, or the possibility of non-vanishing tensor modes is considered. In particular, for the minimal model ?CDM+??? and including the Planck 2013, ACT and SPT data, we report ???4=(0.44+0.17?0.36)×10?27 (0300 lesssim z?rec lesssim 550) at 68% confidence level.
A Natural Hierarchy and a low New Physics scale from a Bulk Higgs
Vecchi, Luca
2010-01-01
We show that a bulk Higgs with a mass saturating the Breitenlohner-Freedman bound can naturally generate and stabilize an exponential hierarchy on a nearly AdS background. The physical Higgs boson in this class of models emerges as the lightest eigenstate of the Higgs/radion system and has a mass strictly lighter than the Kaluza-Klein scale. These theories are dual to strongly coupled CFTs deformed by a marginally relevant Higgs mass operator. On the 5D side, the marginally relevant nature of the Higgs mass operator implies that the Higgs VEV is maximally spread in the bulk. This feature significantly decreases the lower bound on the new physics scale in models that address the SM flavor problem. The collider phenomenology interpolates between Randall-Sundrum scenarios with a heavy Higgs and a light radion, and composite Higgs models.
Scaling and correlation of human movements in cyberspace and physical space
NASA Astrophysics Data System (ADS)
Zhao, Zhi-Dan; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng
2014-11-01
Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a superlinear scaling relation between the mean frequency of visit
NASA Astrophysics Data System (ADS)
Blanco-Vogt, A.; Schanze, J.
2014-08-01
There are various approaches available for assessing the flood vulnerability and damage to buildings and critical infrastructure. They cover pre- and post-event methods for different scales. However, there can hardly be found any method that allows for a large-scale pre-event assessment of the built structures with a high resolution. To make advancements in this respect, the paper presents, first, a conceptual framework for understanding the physical flood susceptibility of buildings and, second, a methodological framework for its assessment. The latter ranges from semi-automatic extraction of buildings, mainly from remote sensing with a subsequent classification and systematic characterisation, to the assessment of the physical flood susceptibility on the basis of depth-impact functions. The work shows results of the methodology's implementation and testing in a settlement of the city of Magangué, along the Magdalena River in Colombia.
ERIC Educational Resources Information Center
Freund, Philipp Alexander; Tietjens, Maike; Strauss, Bernd
2013-01-01
The current study employs Mixture Distribution Rasch models to compare the psychometric properties of two rating scale variants (original rating scale with six response categories, "N"?=?806 school students; a variant with four response categories, "N"?=?905 school students) for five specific scales of the Physical…
Materials Science and Physics at Micro/Nano-Scales. FINAL REPORT
Wu, Judy Z
2009-09-07
The scope of this project is to study nanostructures of semiconductors and superconductors, which have been regarded as promising building blocks for nanoelectronic and nanoelectric devices. The emphasis of this project is on developing novel synthesis approaches for fabrication of nanostructures with desired physical properties. The ultimate goal is to achieve a full control of the nanostructure growth at microscopic scales. The major experimental achievements obtained are summarized
Quasi-physical Simulation of Large-Scale Dynamic Forest Scenes
Long Zhang; Chengfang Song; Qifeng Tan; Wei Chen; Qunsheng Peng
2006-01-01
This paper presents a quasi-physically based approach for interactively simulating large-scale dynamic forest scenes under\\u000a different wind conditions. We introduce theories from the wind engineering, and model the natural wind field as a stationary stochastic process. To reduce the geometry complexities without sacrificing\\u000a much image quality, we adopt a hybrid geometry\\/image representation scheme to faithfully model the appearance of trees.
Sensitivity of the recent methane budget to LMDz sub-grid scale physical parameterizations
NASA Astrophysics Data System (ADS)
Locatelli, R.; Bousquet, P.; Saunois, M.; Chevallier, F.; Cressot, C.
2015-04-01
With the densification of surface observing networks and the development of remote sensing of greenhouse gases from space, estimations of methane (CH4) sources and sinks by inverse modelling face new challenges. Indeed, the chemical transport model used to link the flux space with the mixing ratio space must be able to represent these different types of constraints for providing consistent flux estimations. Here we quantify the impact of sub-grid scale physical parameterization errors on the global methane budget inferred by inverse modelling using the same inversion set-up but different physical parameterizations within one chemical-transport model. Two different schemes for vertical diffusion, two others for deep convection, and one additional for thermals in the planetary boundary layer are tested. Different atmospheric methane datasets are used as constraints (surface observations or satellite retrievals). At the global scale, methane emissions differ, on average, from 4.1 Tg CH4 per year due to the use of different sub-grid scale parameterizations. Inversions using satellite total-column retrieved by GOSAT satellite are less impacted, at the global scale, by errors in physical parameterizations. Focusing on large-scale atmospheric transport, we show that inversions using the deep convection scheme of Emanuel (1991) derive smaller interhemispheric gradient in methane emissions. At regional scale, the use of different sub-grid scale parameterizations induces uncertainties ranging from 1.2 (2.7%) to 9.4% (14.2%) of methane emissions in Africa and Eurasia Boreal respectively when using only surface measurements from the background (extended) surface network. When using only satellite data, we show that the small biases found in inversions using GOSAT-CH4 data and a coarser version of the transport model were actually masking a poor representation of the stratosphere-troposphere gradient in the model. Improving the stratosphere-troposphere gradient reveals a larger bias in GOSAT-CH4 satellite data, which largely amplifies inconsistencies between surface and satellite inversions. A simple bias correction is proposed. The results of this work provide the level of confidence one can have for recent methane inversions relatively to physical parameterizations included in chemical-transport models.
On the coherence of WMAP and Planck temperature maps
NASA Astrophysics Data System (ADS)
Kovács, András; Carron, Julien; Szapudi, István
2013-12-01
The recent data release of ESA's Planck mission together with earlier Wilkinson Microwave Anisotropy Probe (WMAP) releases provide the first opportunity to compare high-resolution full sky cosmic microwave background (CMB) temperature anisotropy maps. To quantify the coherence of these maps beyond the power spectrum, we introduce Generalized Phases in the sense of SO(3), unit vectors in the 2? + 1 dimensional representation spaces. For an isotropic Gaussian distribution, Generalized Phases point to random directions and if there is non-Gaussianity, they represent most of the non-Gaussian information. The alignment of these unit vectors from two maps can be characterized by their angle, 0° expected for full coherence, and 90° for random vectors. We analyse maps from both missions with the same mask and Nside = 512 resolution, and compare both power spectra and Generalized Phases. We find excellent agreement of the Generalized Phases of Planck Spectral Matching Independent Component Analysis map with that of the WMAP Q, V, W maps, rejecting the null hypothesis of no correlations at 5? for ? < 700, ? < 900 and ? < 1100, respectively, except perhaps for ? < 10. Using foreground reduced maps for WMAP increases the phase-coherence. The observed coherence angles can be explained with a simple assumption of Gaussianity and a WMAP noise model neglecting Planck noise, except for low-intermediate ? values there is a slight, but significant offset, depending on the WMAP band. On the same scales WMAP power spectrum is about 2.6 per cent higher at a very high significance, while at higher ? ranges there appears to be no significant bias. Using our theoretical tools, we predict the phase alignment of Planck with a hypothetical perfect noiseless CMB experiment, finding decoherence at ? ? 2900; below this value Planck can be used most efficiently to constrain non-Gaussianity.
Planck intermediate results. XIII. Constraints on peculiar velocities
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Démoclès, J.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Enßlin, T. A.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Frommert, M.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Gonzáalez-Nuevo, J.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, T. R.; Jaffe, A. H.; Jasche, J.; Jones, W. C.; Juvela, M.; Keihánen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Macías-Pérez, J. F.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Maris, M.; Marleau, F.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pagano, L.; Paoletti, D.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Puisieux, S.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Roman, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Welikala, N.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.
2014-01-01
Using Planck data combined with the Meta Catalogue of X-ray detected Clusters of galaxies (MCXC), we address the study of peculiar motions by searching for evidence of the kinetic Sunyaev-Zeldovich effect (kSZ). By implementing various filters designed to extract the kSZ generated at the positions of the clusters, we obtain consistent constraints on the radial peculiar velocity average, root mean square (rms), and local bulk flow amplitude at different depths. For the whole cluster sample of average redshift 0.18, the measured average radial peculiar velocity with respect to the cosmic microwave background (CMB) radiation at that redshift, i.e., the kSZ monopole, amounts to 72 ± 60 km s-1. This constitutes less than 1% of the relative Hubble velocity of the cluster sample with respect to our local CMB frame. While the linear ?CDM prediction for the typical cluster radial velocity rms at z = 0.15 is close to 230 km s-1, the upper limit imposed by Planck data on the cluster subsample corresponds to 800 km s-1 at 95% confidence level, i.e., about three times higher. Planck data also set strong constraints on the local bulk flow in volumes centred on the Local Group. There is no detection of bulk flow as measured in any comoving sphere extending to the maximum redshift covered by the cluster sample. A blind search for bulk flows in this sample has an upper limit of 254 km s-1 (95% confidence level) dominated by CMB confusion and instrumental noise, indicating that the Universe is largely homogeneous on Gpc scales. In this context, in conjunction with supernova observations, Planck is able to rule out a large class of inhomogeneous void models as alternatives to dark energy or modified gravity. The Planck constraints on peculiar velocities and bulk flows are thus consistent with the ?CDM scenario.
NASA Astrophysics Data System (ADS)
Covino, T. P.; McGlynn, B. L.; Wohl, E.
2014-12-01
Physical and biological processes occurring within fluvial networks can have strong influence on catchment scale retention of water and nutrients. Quantifying the physical (i.e., hydrologic exchange) and biological (i.e., nutrient uptake) contributions to total retention and deciphering how they relate to catchment morphology remains a central challenge in the hydrologic and biogeo-sciences. Here we present examples from our research that highlight the interactions between biology, physical hydrology, and geomorphology and how they combine to influence nutrient retention and streamwater compositions. Biological nutrient uptake in streams can have substantial influence on downstream fluxes and induce nutrient transformation along stream networks. Additionally, hydrologic loss of water and associated nutrients from streams to surrounding groundwater systems can greatly elongate water and nutrient retention times. While in-stream nutrient uptake is often associated with hyporheic exchanges that occur at sub-meter scales, these are nested within a larger framework of fluvial exchanges (100s - 1000s of meters). Larger scale exchanges can lead to strong shifts in streamwater composition over relatively short spatial scales (~1km) and are often very pronounced along geomorphic transitions (e.g., mountain to valley) and/or catchment retention zones (e.g., alluvial aquifers, wetlands, lakes). In fact, 50 - 80% of the water in the channel can be exchanged and replaced by different water (i.e., groundwater) along geomorphic transitions/catchment retention zones that are ~1 km in scale. These features can enhance geochemical processing through extended interactions between water, sediment, and nutrients. Accordingly, we suggest that although catchment retention features may be limited in spatial extent (~1km) and frequency they have the capacity to play a disproportionately large role in controlling catchment retention dynamics and setting fluvial network streamwater compositions.
Direct neutrino mass measurements after PLANCK
Formaggio, Joseph A.
The absolute mass scale of neutrinos remains an open question subject to experimental investigation from both particle physics and cosmology. Over the next decade, a number of experiments from both disciplines will attempt ...
NASA Astrophysics Data System (ADS)
Kammel, L.; Pasternack, G. B.; Wyrick, J. R.; Massa, D.; Bratovich, P.; Johnson, T.
2012-12-01
Currently accepted perception assumes Oncorhynchus mykiss prefer different ranges of similar physical habitat elements for spawning than Chinook salmon (Oncorhynchus tshawytscha), taking into account their difference in size. While there is increasing research interest regarding O. mykiss habitat use and migratory behavior, research conducted to date distinguishing the physical habitat conditions utilized for O. mykiss spawning has not provided quantified understanding of their spawning habitat preferences. The purpose of this study was to use electivity indices and other measures to assess the physical habitat characteristics preferred for O. mykiss spawning in terms of both 1-m scale microhabitat attributes, and landforms at different spatial scales from 0.1-100 times channel width. The testbed for this study was the 37.5-km regulated gravel-cobble Lower Yuba River (LYR). Using spatially distributed 2D hydrodynamic model results, substrate mapping, and a census of O. mykiss redds from two years of observation, micro- and meso-scale representations of physical habitat were tested for their ability to predict spawning habitat preference and avoidance. Overall there was strong stratification of O. mykiss redd occurrence for all representation types of physical habitat. A strong preference of hydraulic conditions was shown for mean water column velocities of 1.18-2.25 ft/s, and water depths of 1.25-2.76 ft. There was a marked preference for the two most upstream alluvial reaches of the LYR (out of 8 total reaches), accounting for 92% of all redds observed. The preferred morphological units (MUs) for O. mykiss spawning were more variable than for Chinook salmon and changed with increasing discharge, demonstrating that O. mykiss shift spawning to different MUs in order to utilize their preferred hydraulic conditions. The substrate range preferred for O. mykiss spawning was within 32-90 mm. Overall, O. mykiss spawning behavior was highly predictable and required a holistic blend of hydraulic and geomorphic representations to explain.
K. Hokoishi; M. Ikeda; N. Maki; M. Nomura; S. Torikawa; N. Fujimoto; R. Fukuhara; K. Komori; H. Tanabe
2001-01-01
This study was performed to assess interrater reliability of the Japanese version of the Physical Self-Maintenance Scale (PSMS) and the Instrumental Activities of Daily Living Scale (IADL), which are simple and efficient assessment instruments of functional abilities in elderly patients. The subjects were 25 consecutive patients with Alzheimer's disease who were outpatients of the Department of Neuropsychiatry in Ehime University
Lathrop, Daniel P.
2014-01-01
PHYSICAL REVIEW A 89, 022317 (2014) Large-scale modular quantum-computer architecture with atomic.-M. Duan,5 and J. Kim4 1 Joint Quantum Institute, University of Maryland Department of Physics and National Institute of Standards and Technology, College Park, Maryland 20742, USA 2 Department of Physics
Unified scaling behavior of physical properties of clays in alcohol solutions.
Pujala, Ravi Kumar; Pawar, Nisha; Bohidar, H B
2011-12-15
This paper reports observation of universal scaling of physical properties of clay particles, Laponite (aspect ratio=30) (L) and Na Montmorillonite (MMT, aspect ratio=200), in aqueous alcohol solutions (methanol, ethanol and 1-propanol) with solvent polarity, defined through reaction field factor f(OH)(?(0),n)=[(?(0) - 1/?(0) + 2) - (n(2) - 1/n(2) + 2)], at room temperature (20°C). Here, ?(0) and n are the static dielectric constant and refractive index of the solvent concerned. Physical properties (Z) such as zeta potential, effective aggregate size, viscosity and surface tension scaled with the relative solvent polarity as Z??f(?); ?f=(f(w)(?(0),n) - f(OH)(?(0),n)), where f(w)(?(0),n) is the reaction field factor for water, Z is the normalized physical property, and ? is its characteristic scaling exponent. The value of this exponent was found to be invariant of aspect ratio of the clay but dependent on the solvent polarity only. PMID:21945239
The development and validation of the Physical Appearance Comparison Scale-Revised (PACS-R).
Schaefer, Lauren M; Thompson, J Kevin
2014-04-01
The Physical Appearance Comparison Scale (PACS; Thompson, Heinberg, & Tantleff, 1991) was revised to assess appearance comparisons relevant to women and men in a wide variety of contexts. The revised scale (Physical Appearance Comparison Scale-Revised, PACS-R) was administered to 1176 college females. In Study 1, exploratory factor analysis and parallel analysis using one half of the sample suggested a single factor structure for the PACS-R. Study 2 utilized the remaining half of the sample to conduct confirmatory factor analysis, item analysis, and to examine the convergent validity of the scale. These analyses resulted in an 11-item measure that demonstrated excellent internal consistency and convergent validity with measures of body satisfaction, eating pathology, sociocultural influences on appearance, and self-esteem. Regression analyses demonstrated the utility of the PACS-R in predicting body satisfaction and eating pathology. Overall, results indicate that the PACS-R is a reliable and valid tool for assessing appearance comparison tendencies in women. PMID:24854806
Kähler potentials for Planck inflation
Roest, Diederik; Scalisi, Marco; Zavala, Ivonne, E-mail: d.roest@rug.nl, E-mail: m.scalisi@rug.nl, E-mail: e.i.zavala@rug.nl [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)
2013-11-01
We assess which Kähler potentials in supergravity lead to viable single-field inflationary models that are consistent with Planck. We highlight the role of symmetries, such as shift, Heisenberg and supersymmetry, in these constructions. Also the connections to string theory are pointed out. Finally, we discuss a supergravity model for arbitrary inflationary potentials that is suitable for open string inflation and generalise it to the case of closed string inflation. Our model includes the recently discussed supergravity reformulation of the Starobinsky model of inflation as well as an interesting alternative with comparable predictions.
Regionale Verteilung der Forschungseinrichtungen der Max-Planck-Gesellschaft *
Falge, Eva
-Planck-Institut für Physik (Werner-Heisenberg-Institut), München - Max-Planck-Institut für die Physik des Lichts Steuerrecht und Öffentliche Finanzen, München Berlin - Max-Planck-Institut für Bildungsforschung - Fritz
HI shape traces Planck dust polarization: An independent determination of polarized CMB foregrounds
NASA Astrophysics Data System (ADS)
Clark, Susan E.; Hill, J. Colin; Peek, Joshua E. G.; Putman, Mary
2015-08-01
The Planck all-sky polarization maps provide key foreground information for studies of the polarized CMB, including the search for primordial B-mode polarization. However, the Planck 353 GHz polarization measurements lack the sensitivity at high latitudes to precisely describe the polarized dust foregrounds. We present the discovery that the orientation of neutral hydrogen (HI) structures traces the Planck 353 GHz polarization angle with surprising precision across a range of angular scales. This result demonstrates a deep connection between the structure of diffuse Galactic HI and Galactic dust. When combined with Planck 353 GHz data or other measures of dust polarization amplitude, this method will enable higher fidelity maps for foreground subtraction. As it is particularly powerful at high latitudes, this method may be the best tool yet developed for identifying the cleanest regions of high-latitude sky for CMB polarization experiments to target.
Planck 2015 results. XIX. Constraints on primordial magnetic fields
Ade, P A R; Arnaud, M; Arroja, F; Ashdown, M; Aumont, J; Baccigalupi, C; Ballardini, M; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Chamballu, A; Chiang, H C; Chluba, J; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Désert, F -X; Diego, J M; Dolag, K; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Fergusson, J; Finelli, F; Florido, E; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Hanson, D; Harrison, D L; Helou, G; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kim, J; Kisner, T S; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leahy, J P; Leonardi, R; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Molinari, D; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Oppermann, N; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Ruiz-Granados, B; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Shiraishi, M; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Yvon, D; Zacchei, A; Zonca, A
2015-01-01
We predict and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB spectra; the effect on CMB polarization induced by Faraday rotation; magnetically-induced non-Gaussianities; and the magnetically-induced breaking of statistical isotropy. Overall, Planck data constrain the amplitude of PMFs to less than a few nanogauss. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are $B_{1\\,\\mathrm{Mpc}}helicity, and $B_{1\\,\\mathrm{Mpc}}helical field. For nearly scale-invariant PMFs we obtain $B_{1\\,\\mathrm{Mpc}}<2.1$ nG and $B_{1\\,\\mathrm{Mpc}}<0.7$ nG if the impact of PMFs on the ionization history of the Universe is included in the analysis...
Constraints on Cosmological Parameters: Combining Planck With Other Measurements
NASA Astrophysics Data System (ADS)
Freedman, Wendy
2015-08-01
The recent measurements from Planck have set a new high bar for accuracy in the measurement of cosmological parameters. In parallel, new and increasingly accurate measurements of Baryon Acoustic Oscillations, Type Ia supernovae, and the Hubble Constant offer independent probes of various cosmological parameters. The increased accuracy in cosmic microwave background fluctuation measurements make direct comparisons with other methods even more critical, given the intrinsic physical degeneracies amongst different cosmological parameters in the acoustic oscillation spectrum. There has been fundamental progress over the last couple of decades in measuring extragalactic distances. I will discuss the current limits, and the prospects for reaching 1% uncertainty in measurement of the Hubble constant, which, combined with measurements from Planck, will be critical for providing independent constraints on dark energy, the geometry, and matter density of the universe.
Max-Planck-Institut fur Mathematik
Max-Planck-Institut f¨ur Mathematik in den Naturwissenschaften Leipzig The free energy method Preprint no.: 29 2015 #12;#12;THE FREE ENERGY METHOD FOR THE FOKKER-PLANCK EQUATION1 OF THE WRIGHT32 Date: April 22, 2015. 1 #12;2 TAT DAT TRAN, JULIAN HOFRICHTER, J¨URGEN JOST the prospective
Heat Hyperbolic Diffusion in Planck Gas
Miroslaw Kozlowski; Janina Marciak-Kozlowska
2006-07-06
In this paper we investigate the diffusion of the thermal pulse in Planck Gas. We show that the Fourier diffusion equation gives the speed of diffusion, v > c and breaks the causality of the thermal processes in Planck gas .For hyperbolic heat transport v
Factorial Validity and Internal Consistency of the Motivational Climate in Physical Education Scale
Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo
2014-01-01
The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key Points This study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories. The statistical fit of the four-factor model of the MCPES consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. Additionally, the results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate. Autonomy, social relatedness, and task climate were significantly and strongly correlated with each other, whereas the ego climate factor had low or negligible correlations with the other three factors. PMID:24570617
Factorial validity and internal consistency of the motivational climate in physical education scale.
Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo
2014-01-01
The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key PointsThis study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories.The statistical fit of the four-factor model of the MCPES consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. Additionally, the results of the reliability analysis showed acceptable internal consistencies for all four dimensions.The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate.Autonomy, social relatedness, and task climate were significantly and strongly correlated with each other, whereas the ego climate factor had low or negligible correlations with the other three factors. PMID:24570617
Bayesian physical reconstruction of initial conditions from large-scale structure surveys
NASA Astrophysics Data System (ADS)
Jasche, Jens; Wandelt, Benjamin D.
2013-06-01
We present a fully probabilistic, physical model of the non-linearly evolved density field, as probed by realistic galaxy surveys. Our model is valid in the linear and mildly non-linear regimes and uses second-order Lagrangian perturbation theory to connect the initial conditions with the final density field. Our parameter space consists of the 3D initial density field and our method allows a fully Bayesian exploration of the sets of initial conditions that are consistent with the galaxy distribution sampling the final density field. A natural by-product of this technique is an optimal non-linear reconstruction of the present density and velocity fields, including a full propagation of the observational uncertainties. A test of these methods on simulated data mimicking the survey mask, selection function and galaxy number of the Sloan Digital Sky Survey Data Release 7 main sample shows that this physical model gives accurate reconstructions of the underlying present-day density and velocity fields on scales larger than ˜6 Mpc h-1. Our method naturally and accurately reconstructs non-linear features corresponding to three-point and higher order correlation functions such as walls and filaments. Simple tests of the reconstructed initial conditions show statistical consistency with the Gaussian simulation inputs. Our test demonstrates that statistical approaches based on physical models of the large-scale structure distribution are now becoming feasible for realistic current and future surveys.
The physics of energy transfer toward improved subgrid-scale models
NASA Astrophysics Data System (ADS)
Cimarelli, Andrea; De Angelis, Elisabetta
2014-05-01
Starting from physical insight on the energy transfer phenomena in wall turbulent flows, it is shown how modeling of subgrid stresses in large-eddy simulations can be improved. Each model should aim at reproducing the double feature of energy sink and source of the small scales of wall flows which become relevant when large filter lengths are considered. Here we propose one possible choice where the main ingredient is the coupling of the classical linear formulation of eddy viscosity with the nonlinear anisotropic features of the velocity increments tensor. This approach, which actually presents most of the features of the mixed models, captures the near-wall dynamics for very large filter lengths reproducing the small scales source physics responsible for backward energy transfer. A posteriori tests show excellent agreement with direct numerical simulation of turbulent channel flows even when very coarse grids are considered. The capability of the balance of the filtered second order structure function as a post-processing tool to evaluate the physics of any model is also shown.
WMAP OBSERVATIONS OF PLANCK ESZ CLUSTERS
Ma Yinzhe; Hinshaw, Gary; Scott, Douglas
2013-07-10
We examine the Sunyaev-Zeldovich (SZ) effect in the seven year Wilkinson Microwave Anisotropy Probe (WMAP) data by cross-correlating it with the Planck Early-release Sunyaev-Zeldovich catalog. Our analysis proceeds in two parts. We first perform a stacking analysis in which the filtered WMAP data are averaged at the locations of the 175 Planck clusters. We then perform a regression analysis to compare the mean amplitude of the SZ signal, Y{sub 500}, in the WMAP data to the corresponding amplitude in the Planck data. The aggregate Planck clusters are detected in the seven year WMAP data with a signal-to-noise ratio of 16.3. In the regression analysis, we find that the SZ amplitude measurements agree to better than 25%: a = 1.23 {+-} 0.18 for the fit Y{sup wmap}{sub 500}= aY{sup planck}{sub 500}.
Planck on Radio Sources: Data and Findings
NASA Astrophysics Data System (ADS)
Partridge, Robert Bruce
2015-08-01
Planck scanned the entire sky every six months at nine frequency bands from 28 to 857 GHz with enough sensitivity to detect over a thousand extragalactic radio sources. It thus provides measurements of the mm and sub-mm spectra of these sources in a regular cadence, even at wavelengths hard to observe from the ground. Polarization measurements (or upper limits) are provided for brighter sources at 28-353 GHz. Finally, Planck is calibrated to <1% accuracy in most of its frequency bands.I will first introduce the valuable data set Planck provides on extragalactic sources, in particular the Second Planck Catalogue of Compact Sources (PCCS2), then more briefly describe some of the scientific conclusions drawn from the Planck measurments.
NASA Astrophysics Data System (ADS)
Benioff, Paul
2015-08-01
The relationship between the foundations of mathematics and physics is a topic of of much interest. This paper continues this exploration by examination of the effect of space- and time- dependent number scaling on theoretical descriptions of some physical and geometric quantities. Fiber bundles provide a good framework to introduce a space- and time- or space-time-dependent number scaling field. The effect of the scaling field on a few nonlocal physical and geometric quantities is described. The effect on gauge theories is to introduce a new complex scalar field into the derivatives appearing in Lagrangians. U(1) invariance of Lagrangian terms does not affect the real part of the scaling field. For this field, any mass is possible. The scaling field is also shown to affect quantum wave packets and path lengths, and geodesic equations even on flat space. Scalar fields described so far in physics are possible candidates for the scaling field. The lack of direct evidence for the field in physics restricts the scaling field in that the gradient of the field must be close to zero in a local region of cosmological space and time. There are no restrictions outside the region. It is also seen that the scaling field does not affect comparisons of computation or measurements outputs with one another. However, it does affect the assignment of numerical values to the outputs of computations or measurements. These are needed because theory predictions are in terms of numerical values.
Particle Physics Aspects of Antihydrogen Studies with ALPHA at CERN
ALPHA Collaboration; M. C. Fujiwara; G. B. Andresen; W. Bertsche; P. D. Bowe; C. C. Bray; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; J. Fajans; R. Funakoshi; D. R. Gill; J. S. Hangst; W. N. Hardy; R. S. Hayano; M. E. Hayden; A. J. Humphries; R. Hydomako; M. J. Jenkins; L. V. Jorgensen; L. Kurchaninov; W. Lai; R. Lambo; N. Madsen; P. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa; F. Robicheaux; E. Sarid; S. Seif El Nasr; D. M. Silveira; J. W. Storey; R. I. Thompson; D. P. van der Werf; L. Wasilenko; J. S. Wurtele; Y. Yamazaki
2008-05-27
We discuss aspects of antihydrogen studies, that relate to particle physics ideas and techniques, within the context of the ALPHA experiment at CERN's Antiproton Decelerator facility. We review the fundamental physics motivations for antihydrogen studies, and their potential physics reach. We argue that initial spectroscopy measurements, once antihydrogen is trapped, could provide competitive tests of CPT, possibly probing physics at the Planck Scale. We discuss some of the particle detection techniques used in ALPHA. Preliminary results from commissioning studies of a partial system of the ALPHA Si vertex detector are presented, the results of which highlight the power of annihilation vertex detection capability in antihydrogen studies.
Towards physics responsible for large-scale Lyman-$\\alpha$ forest bias parameters
Cieplak, Agnieszka M
2015-01-01
Using a series of carefully constructed numerical experiments based on hydrodynamic cosmological SPH simulations, we attempt to build an intuition for the relevant physics behind the large scale density ($b_\\delta$) and velocity gradient ($b_\\eta$) biases of the Lyman-$\\alpha$ forest. Starting with the fluctuating Gunn-Peterson approximation applied to the smoothed total density field in real-space, and progressing through redshift-space with no thermal broadening, redshift-space with thermal broadening and hydrodynamicaly simulated baryon fields, we investigate how approximations found in the literature fare. We find that Seljak's 2012 analytical formulae for these bias parameters work surprisingly well in the limit of no thermal broadening and linear redshift-space distortions. We also show that his $b_\\eta$ formula is exact in the limit of no thermal broadening. Since introduction of thermal broadening significantly affects its value, we speculate that a combination of large-scale measurements of $b_\\eta$ ...
Fundamental Scalings of Zonal Flows in a Basic Plasma Physics Experiment
NASA Astrophysics Data System (ADS)
Sokolov, Vladimir; Wei, Xiao; Sen, Amiya K.
2007-11-01
A basic physics experimental study of zonal flows (ZF) associated with ITG (ion temperature gradient) drift modes has been performed in the Columbia Linear Machine (CLM) and ZF has been definitively identified [1]. However, in contrast to most tokamak experiments, the stabilizing effect of ZF shear to ITG appears to be small in CLM. We now report on the study of important scaling behavior of ZF. First and most importantly, we report on the collisional damping scaling of ZF, which is considered to be its saturation mechanism [2]. By varying the sum of ion-ion and ion-neutral collision frequency over nearly half an order of magnitude, we find no change in the amplitude of ZF. Secondly, we study the scaling of ZF amplitude with ITG amplitude via increasing ITG drive though ?i, as well as feedback (stabilizing / destabilizing). We have observed markedly different scaling near and far above marginal stability. [1] V. Sokolov, X. Wei, A.K. Sen and K. Avinash, Plasma Phys.Controlled Fusion 48, S111 (2006). [2] P.H. Diamond, S.-I. Itoh, K.Itoh and T.S. Hahm, Plasma Phys.Controlled Fusion 47, R35 (2005).
Search for TeV Scale Physics in Heavy Flavour Decays
George W. S. Hou
2008-08-14
The subject of heavy flavour decays as probes for physics at and beyond the TeV scale is covered from the experimental perspective. Emphasis is placed on the more traditional Beyond the Standard Model topics that have potential for impact in the early LHC era, and in anticipation of the B factory upgrade(s). The aim is to explain the physics, without getting too involved in the details, whether experimental or theoretical, to give the interested nonexpert a perspective on the Flavour/TeV link. We cover the forefront topics of $CP$ violation in $b\\to s$ transitions involving penguin and box diagrams, and probes of charged Higgs, right-handed and scalar interactions. We touch briefly on $\\Upsilon$ decay, $D^0$ mixing, rare $K$ decays, and lepton flavor violating probes in $\\tau$ decay. Our own phemonenology work is often used for illustration.
Inference of hidden structures in complex physical systems by multi-scale clustering
Nussinov, Z; Hu, Dandan; Chakrabarty, S; Sahu, M; Sun, Bo; Mauro, N A; Sahu, K K
2015-01-01
We survey the application of a relatively new branch of statistical physics--"community detection"-- to data mining. In particular, we focus on the diagnosis of materials and automated image segmentation. Community detection describes the quest of partitioning a complex system involving many elements into optimally decoupled subsets or communities of such elements. We review a multiresolution variant which is used to ascertain structures at different spatial and temporal scales. Significant patterns are obtained by examining the correlations between different independent solvers. Similar to other combinatorial optimization problems in the NP complexity class, community detection exhibits several phases. Typically, illuminating orders are revealed by choosing parameters that lead to extremal information theory correlations.
Extracting physical properties of arbitrarily shaped laser-doped micro-scale areas in semiconductors
Heinrich, Martin, E-mail: mh@nus.edu.sg [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore, Singapore 117574 (Singapore) [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore, Singapore 117574 (Singapore); NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore 117456 (Singapore); Kluska, Sven [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, D-79110 Freiburg (Germany)] [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, D-79110 Freiburg (Germany); Hameiri, Ziv; Hoex, Bram [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore, Singapore 117574 (Singapore)] [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore, Singapore 117574 (Singapore); Aberle, Armin G. [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore, Singapore 117574 (Singapore) [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore, Singapore 117574 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore 117456 (Singapore)
2013-12-23
We present a method that allows the extraction of relevant physical properties such as sheet resistance and dopant profile from arbitrarily shaped laser-doped micro-scale areas formed in semiconductors with a focused pulsed laser beam. The key feature of the method is to use large laser-doped areas with an identical average number of laser pulses per area (laser pulse density) as the arbitrarily shaped areas. The method is verified using sheet resistance measurements on laser-doped silicon samples. Furthermore, the method is extended to doping with continuous-wave lasers by using the average number of passes per area or density of passes.
Connecting LHC signals with deep physics at the TeV scale and baryogenesis
NASA Astrophysics Data System (ADS)
Shu, Jing
We address in this dissertation two primary questions aimed at deciphering collider signals at the Large Hadron Collider (LHC) to give a deep and concrete understanding of the TeV scale physics and to interpret the origin of baryon asymmetry in our universe. We are at a stage of exploring new physics at the terascale which is responsible for the electroweak symmetry breaking (EWSB) in the Standard Model (SM) of particle physics. The LHC, which begins its operation this year, will break us into such a new energy frontier and seek for the possible signals of new physics. Theorists have come up with many possible models beyond SM to explain the origin of EWSB. However, how we will determine the underlying physics from LHC data is still an open question. In the first part of this dissertation, we consider several examples to connect the expected LHC signals to the underlying physics in a completely model independent way. We first explore the Randall-Sundrum (RS) scenario, and use the collider signals of first Kaluza-Klein (KK) excitations of gluons to discriminate several commonly considered theories which attempt to render RS consistent with precision electroweak data. We then investigate top compositeness. We derive a bound for the energy scale of right handed top compositeness from top pair production at the Tevatron, and we find that the cross section to produce four tops will be greatly amplified by 3 orders of magnitude. We next consider the possibilities that the gauge symmetry in the underlying theory is violated in the incomplete theory that we can reconstruct from the LHC observables. We derive a model independent bound on the scale of new physics from unitarity of the S-matrix if we observe a new massive vector boson with nonzero axial couplings to fermions at LHC. Finally, we derive a generalized Landau-Yang theorem and apply it to the Z' decay into two Z bosons. We show that there is a phase shift in the azimuthal angle distribution in the normalized differential cross section and the anomalous coupling of Z'-Z-Z can be discriminated from the regular one at the 3s level when both Z bosons decay leptonically at the LHC. The origin of baryon asymmetry of the Universe (BAU) remains an important, unsolved problem for particle physics and cosmology, and is one of the motivations to search for possible new physics beyond SM. In the second part of this dissertation, we attempt to account for the baryon number generation in our universe through some novel mechanisms. We first systematically investigate models of baryogenesis from spontaneously Lorentz violating background (SLVB). We find that the sphaleron transitions will generate a nonzero B+L asymmetry in the presence of SLVB and we identify two scenarios of interest. We then consider the possibilities to generate a baryon asymmetry through an earlier time phase transition and address the question whether or not we can still test the baryogenesis mechanism at LHC/ILC if the electroweak phase transition is not strongly first order. We find a general framework and realize this idea in the top flavor model. We show that the realistic baryon density can be achieved in the natural parameter space of topflavor model.
Planck 2013 results. XXVI. Background geometry and topology of the Universe
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Fabre, O.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J. D.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Riazuelo, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
The new cosmic microwave background (CMB) temperature maps from Planck provide the highest-quality full-sky view of the surface of last scattering available to date. This allows us to detect possible departures from the standard model of a globally homogeneous and isotropic cosmology on the largest scales. We search for correlations induced by a possible non-trivial topology with a fundamental domain intersecting, or nearly intersecting, the last scattering surface (at comoving distance ?rec), both via a direct search for matched circular patterns at the intersections and by an optimal likelihood search for specific topologies. For the latter we consider flat spaces with cubic toroidal (T3), equal-sided chimney (T2) and slab (T1) topologies, three multi-connected spaces of constant positive curvature (dodecahedral, truncated cube and octahedral) and two compact negative-curvature spaces. These searches yield no detection of the compact topology with the scale below the diameter of the last scattering surface. For most compact topologies studied the likelihood maximized over the orientation of the space relative to the observed map shows some preference for multi-connected models just larger than the diameter of the last scattering surface. Since this effect is also present in simulated realizations of isotropic maps, we interpret it as the inevitable alignment of mild anisotropic correlations with chance features in a single sky realization; such a feature can also be present, in milder form, when the likelihood is marginalized over orientations. Thus marginalized, the limits on the radius ?i of the largest sphere inscribed in topological domain (at log-likelihood-ratio ?ln ? > -5 relative to a simply-connected flat Planck best-fit model) are: in a flat Universe, ?i> 0.92?rec for the T3 cubic torus; ?i> 0.71?rec for the T2 chimney; ?i> 0.50?rec for the T1 slab; and in a positively curved Universe, ?i> 1.03?rec for the dodecahedral space; ?i> 1.0?rec for the truncated cube; and ?i> 0.89?rec for the octahedral space. The limit for a wider class of topologies, i.e., those predicting matching pairs of back-to-back circles, among them tori and the three spherical cases listed above, coming from the matched-circles search, is ?i> 0.94?rec at 99% confidence level. Similar limits apply to a wide, although not exhaustive, range of topologies. We also perform a Bayesian search for an anisotropic global Bianchi VIIh geometry. In the non-physical setting where the Bianchi cosmology is decoupled from the standard cosmology, Planck data favour the inclusion of a Bianchi component with a Bayes factor of at least 1.5 units of log-evidence. Indeed, the Bianchi pattern is quite efficient at accounting for some of the large-scale anomalies found in Planck data. However, the cosmological parameters that generate this pattern are in strong disagreement with those found from CMB anisotropy data alone. In the physically motivated setting where the Bianchi parameters are coupled and fitted simultaneously with the standard cosmological parameters, we find no evidence for a Bianchi VIIh cosmology and constrain the vorticity of such models to (?/H)0< 8.1 × 10-10 (95% confidence level).
Gravitational Equivalent Frequency and the Planck Length
Roger Ellman
2008-03-03
The mass equivalency [m*c^2 = h*f] applies to gravitational mass just as to inertial mass. From that, the gravitational mass has a corresponding, associated, equivalent frequency, f. Using that frequency a new result is obtained in which the significance of the Planck Length is clarified. The Planck Length is fundamental to gravitation and in effect supercedes G in that role because it is found that there is operational or mechanical significance to the role of the Planck Length in gravitation whereas G is simply a constant of proportionality. It further is shown that the Planck Length [and, likely the Planck mass and the Planck time] are slightly mis-defined by the use of h-bar [h/2pi] rather than simply Planck's constant, h. Theoretical implications of these results are presented. In addition, the applicability of using the frequency aspect of mass in the analysis of gravitation, and the nature of the results obtained, would appear to imply a considerably greater significance for the frequency, that is the WAVE, aspect of mass, matter, and particles in general than has been heretofore recognized.
Loop Quantum Gravity and the The Planck Regime of Cosmology
Abhay Ashtekar
2013-03-20
The very early universe provides the best arena we currently have to test quantum gravity theories. The success of the inflationary paradigm in accounting for the observed inhomogeneities in the cosmic microwave background already illustrates this point to a certain extent because the paradigm is based on quantum field theory on the curved cosmological space-times. However, this analysis excludes the Planck era because the background space-time satisfies Einstein's equations all the way back to the big bang singularity. Using techniques from loop quantum gravity, the paradigm has now been extended to a self-consistent theory from the Planck regime to the onset of inflation, covering some 11 orders of magnitude in curvature. In addition, for a narrow window of initial conditions, there are departures from the standard paradigm, with novel effects, such as a modification of the consistency relation involving the scalar and tensor power spectra and a new source for non-Gaussianities. Thus, the genesis of the large scale structure of the universe can be traced back to quantum gravity fluctuations \\emph{in the Planck regime}. This report provides a bird's eye view of these developments for the general relativity community.
Champa Joshi; Binayak P. Mohanty
2010-01-01
Understanding of near-surface soil moisture variability at different spatial scales and associated dominant physical controls is limited. In the past, soil moisture dynamics studies have been conducted extensively at different spatial scales using both in situ and remote sensing (RS) data in the subhumid Southern Great Plains region, which has mostly pasture and range land cover with rolling topography. Compared
Kais, Sabre
2012-01-01
PHYSICAL REVIEW E 85, 036706 (2012) Finite-size scaling for quantum criticality using the finite-element, the finite-element method was shown to be a powerful numerical method for ab initio electronic parameters by combining the finite-element method (FEM) with finite size scaling (FSS) using different ab
All-sky component separation for the Planck mission
NASA Astrophysics Data System (ADS)
Stolyarov, V.; Hobson, M. P.; Ashdown, M. A. J.; Lasenby, A. N.
2002-10-01
A harmonic-space maximum-entropy method (MEM) is presented for separating the emission from different physical components in all-sky observations by the forthcoming Planck satellite. The analysis is performed at full Planck resolution, with a pixel size of 1.7 arcmin, which corresponds to lmax~ 6000. The simulated Planck data include emission from the cosmic microwave background (CMB), the kinetic and thermal Sunyaev-Zel'dovich (SZ) effects from galaxy clusters, as well as Galactic dust, free-free and synchrotron emission. Our simulations also assume homogeneous, uncorrelated pixel noise, although this is not a requirement of the method. We find that the MEM technique produces faithful reconstructions of the main input components over the whole sky, without the need to perform a Galactic cut. The CMB power spectrum is accurately recovered up to l~ 2000. The algorithm is parallelized so that the entire reconstruction can be performed in ~6 h using 30 R10000 processors on an SGI Origin 2000 supercomputer and requires 14 Gb of RAM.
ERIC Educational Resources Information Center
Saul, Jeffery M.; Deardorff, Duane L.; Abbott, David S.; Allain, Rhett J.; Beichner, Robert J.
The Student-Centered Activities for Large Enrollment University Physics (SCALE-UP) project at North Carolina State University (NCSU) is developing a curriculum to promote learning through in-class group activities in introductory physics classes up to 100 students. The authors are currently in Phase II of the project using a specially designed…
Running Spectral Index as a Probe of Physics at High Scales
G. Ballesteros; J. A. Casas; J. R. Espinosa
2006-03-23
The WMAP results on the scalar spectral index n and its running with scale, though preliminary, open a very interesting window to physics at very high energies. We address the problem of finding inflaton potentials well motivated by particle physics which can accomodate WMAP data. We make a model independent analysis of a large class of models: those with flat tree-level potential lifted by radiative corrections, which cause the slow rolling of the inflaton and the running of n. This includes typical hybrid inflation models. In the small-coupling regime the predictions for the size and running of n are remarkably neat, e.g. -dn/dln k=(n-1)^2 price of having a small number of e-folds, Ne. We also examine the effect of mass thresholds crossed during inflation. Finally, we show that the presence of non-renormalizable operators for the inflaton, suppressed by a mass scale above the inflationary range, is able to give both dn/dln k ~ O(-0.05) and Ne ~ 50.
A survey of physically-based catchment-scale modeling over the last half century
NASA Astrophysics Data System (ADS)
Paniconi, Claudio; Putti, Mario
2015-04-01
Integrated, process-based based numerical models in hydrology and connected disciplines (ecohydrology, hydrometeorology, hydrogeomorphology, biogeochemistry, hydrogeophysics, etc) are rapidly evolving, spurred by advances in computer technology, numerical algorithms, and environmental observation, and by the need to better understand the potential impacts of population, land use, and climate change on water and other natural resources. At the catchment scale, simulation models are commonly based on conservation principles for surface and subsurface water flow and mass transport (e.g., the Richards, St. Venant, and advection-dispersion-reaction equations, and approximations thereof), and need to be resolved by robust numerical techniques for space and time discretization, linearization, interpolation, etc. Model development through the years has continually faced physical and numerical challenges arising from heterogeneity and variability in parameters and state variables; nonlinearities and scale effects in process interactions and interface dynamics; and complex or poorly known boundary conditions and initial system states. We give an historical perspective (past 50 years) on some of the key developments in physically-based hydrological modeling, examining how these various challenges have been addressed and providing some insight on future directions as catchment modeling enters a highly interdisciplinary era.
Varying c cosmology and Planck value constraints
D. H. Coule
1999-06-08
It has been suggested that by increasing the speed of light during the early universe various cosmological problems of standard big bang cosmology can be overcome, without requiring an inflationary phase. However, we find that as the Planck length and Planck time are then made correspondingly smaller, and together with the need that the universe should not re-enter a Planck epoch, the higher $c$ models have very limited ability to resolve such problems. For a constantly decreasing $c$ the universe will quickly becomes quantum gravitationally dominated as time increases: the opposite to standard cosmology where quantum behaviour is only ascribed to early times.
Jeffery M. Saul; Duane L. Deardorff; David S. Abbott; Rhett J. Allain; Robert J. Beichner
2000-01-01
The Student-Centered Activities for Large Enrollment University Physics (SCALE-UP) project at North Carolina State University (NCSU) is developing a curriculum to promote learning through in-class group activities in introductory physics classes up to 100 students. We are currently in Phase II of the project using a specially designed multimedia classroom for 54 students to teach the introductory physics course for
Two-time scale subordination in physical processes with long-term memory
Aleksander Stanislavsky; Karina Weron
2011-11-14
We use the two-time scale subordination in order to describe dynamical processes in continuous media with a long-term memory. Our consideration touches two physical examples in detail. First we study a temporal evolution of the species concentration for the trapping reaction in which a diffusing reactant is surrounded by a sea of randomly moving traps. The analysis is based on the random-variable formalism of anomalous diffusive processes. We find that the empirical trapping-reaction law, according to which the reactant concentration decreases in time as a product of an exponential and a stretched exponential function, can be explained by the two-time scale subordination of random processes. Another example is connected with a state equation for continuous media with memory. If the pressure and the density of a medium are subordinated in two different random processes, then the ordinary state equation becomes fractional with two time scales. This allows one to arrive at the state equation of Bagley-Torvik type.
Inflation physics from the cosmic microwave background and large scale structure
NASA Astrophysics Data System (ADS)
Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Buder, I.; Burke, D. L.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Crill, B. P.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Feng, J. L.; Fraisse, A.; Gallicchio, J.; Giddings, S. B.; Green, D.; Halverson, N. W.; Hanany, S.; Hanson, D.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Horowitz, G.; Hu, W.; Hubmayr, J.; Irwin, K.; Jackson, M.; Jones, W. C.; Kallosh, R.; Kamionkowski, M.; Keating, B.; Keisler, R.; Kinney, W.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C.-L.; Kusaka, A.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linde, A.; Linder, E.; Lubin, P.; Maldacena, J.; Martinec, E.; McMahon, J.; Miller, A.; Mukhanov, V.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Senatore, L.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.; Zaldarriaga, M.
2015-03-01
Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments-the theory of cosmic inflation-and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5? measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.
PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE
KING,B.J.
2000-05-05
A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e{sup +}e{sup {minus}} and hadron colliders and three {mu}{sup +}{mu}{sup {minus}} colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.
Inflation as a probe of new physics
Ulf H. Danielsson
2005-11-27
In this paper we consider inflation as a probe of new physics near the string or Planck scale. We discuss how new physics can be captured by the choice of vacuum, and how this leads to modifications of the primordial spectrum as well as the way in which the universe expands during inflation. Provided there is a large number of fields contributing to the vacuum energy -- as typically is expected in string theory -- we will argue that both types of effects can be present simultaneously and be of observational relevance. Our conclusion is that the ambiguity in choice of vacuum is an interesting new parameter in serious model building.
Max-Planck-Institut fur Mathematik
-Planck-Institute for Mathematics in the Sciences, Leipzig, 04103, Germany 2 School of Mathematics and Statistics, Hainan Normal a difficult problem to find the concrete PPT conditions for a given such state within this class. Moreover
Hydrogen Sorption Cryocoolers for the Planck Mission
NASA Technical Reports Server (NTRS)
Wade, L.; Bhandari, P.; Bowman, R.; Paine, C.; Morgante, G.; Lindensmith, C.; Crumb, D.; Prina, M.; Sugimura, R.; Rapp, D.
1999-01-01
Two continuous opertation 18K/20K sorption coolers are being developed by the Jet Propulsion Laboratory (JPL) as a NASA contribution to the European Space Agency (ESA) Planck mission that is currently planned for a 2007 launch.
Planck focal plane instruments: advanced modelization and combined analysis
NASA Astrophysics Data System (ADS)
Zonca, Andrea; Mennella, Aniello
2012-08-01
This thesis is the result of my work as research fellow at IASF-MI, Milan section of the Istituto di Astrofisica Spaziale e Fisica Cosmica, part of INAF, Istituto Nazionale di Astrofisica. This work started in January 2006 in the context of the PhD school program in Astrophysics held at the Physics Department of Universita' degli Studi di Milano under the supervision of Aniello Mennella. The main topic of my work is the software modelling of the Low Frequency Instrument (LFI) radiometers. The LFI is one of the two instruments on-board the European Space Agency Planck Mission for high precision measurements of the anisotropies of the Cosmic Microwave Background (CMB). I was also selected to participate at the International Doctorate in Antiparticles Physics, IDAPP. IDAPP is funded by the Italian Ministry of University and Research (MIUR) and coordinated by Giovanni Fiorentini (Universita' di Ferrara) with the objective of supporting the growing collaboration between the Astrophysics and Particles Physics communities. It is an international program in collaboration with the Paris PhD school, involving Paris VI, VII and XI Universities, leading to a double French-Italian doctoral degree title. My work was performed with the co-tutoring of Jean-Michel Lamarre, Instrument Scientist of the High Frequency Instrument (HFI), the bolometric instrument on-board Planck. Thanks to this collaboration I had the opportunity to work with the HFI team for four months at the Paris Observatory, so that the focus of my activity was broadened and included the study of cross-correlation between HFI and LFI data. Planck is the first CMB mission to have on-board the same satellite very different detection technologies, which is a key element for controlling systematic effects and improve measurements quality.
Micrometer-Scale Physical Structure and Microbial Composition of Soil Macroaggregates
Bailey, Vanessa L.; McCue, Lee Ann; Fansler, Sarah J.; Boyanov, Maxim I.; DeCarlo, F.; Kemner, Kenneth M.; Konopka, Allan
2013-10-01
Soil macroaggregates are discrete, separable units of soil that we hypothesize contain smaller assemblages of microorganisms than bulk soil, and represent a scale potentially consistent with naturally occurring microbial communities. We posed two questions to explore microbial community composition in the context of the macroaggregate: 1) Is there a relationship between macroaggregate physical structure and microbial community composition in individual macroaggregates? And, 2) How similar are the bacterial communities in individual sub-millimeter soil macroaggregates sampled from the same 5-cm core? To address these questions, individual macroaggregates of three arbitrary size classes (250–425, 425–841, and 841–1000 ?m) were sampled from a grassland field. The physical structures of 14 individual macroaggregates were characterized using synchrotron-radiation based transmission X-ray tomography, revealing that a greater proportion of the pore space in the small- and medium-sized macroaggregates is as relatively smaller pores, resulting in greater overall porosity and pore–mineral interface area in these smaller macroaggregates. Microbial community composition was characterized using 16S rRNA pyrosequencing data. Rarefaction analyses indicated that the membership of each macroaggregate was sufficiently sampled with only a few thousand sequences; in addition, the community membership varied widely between macroaggregates and the structure varied from those communities strongly dominated by a few phylotypes to communities that were evenly distributed among several phylotypes. We found no strong relationship of physical structure with community membership; this may be due to the low number of aggregates (10) for which we have both physical and biological data. Our results do support our initial expectation that individual macroaggregate communities were significantly less diverse than bulk soil from the same grassland field site.
Candidate High Redshift Clusters of Dusty Galaxies from Herschel & Planck
NASA Astrophysics Data System (ADS)
Clements, David L.
2015-08-01
The cross identification of Planck compact sources with objects in karger area Herschel surveys, such as HerMES and H-ATLAS, has led to the discovery of candidate high redshift (out to z~3) clusters of far-IR luminous star forming galaxies. These objects are not easily reproduced in the current generations of galaxy and large scale formation simulations and are thus a potentially powerful new tool for comnstraining galaxy and cluster formation models. We will review the current results on these sources and examine future prospects for progress in this novel and potentially important new field.
NASA Astrophysics Data System (ADS)
Cao, Chao
2009-03-01
Nano-scale physical phenomena and processes, especially those in electronics, have drawn great attention in the past decade. Experiments have shown that electronic and transport properties of functionalized carbon nanotubes are sensitive to adsorption of gas molecules such as H2, NO2, and NH3. Similar measurements have also been performed to study adsorption of proteins on other semiconductor nano-wires. These experiments suggest that nano-scale systems can be useful for making future chemical and biological sensors. Aiming to understand the physical mechanisms underlying and governing property changes at nano-scale, we start off by investigating, via first-principles method, the electronic structure of Pd-CNT before and after hydrogen adsorption, and continue with coherent electronic transport using non-equilibrium Green’s function techniques combined with density functional theory. Once our results are fully analyzed they can be used to interpret and understand experimental data, with a few difficult issues to be addressed. Finally, we discuss a newly developed multi-scale computing architecture, OPAL, that coordinates simultaneous execution of multiple codes. Inspired by the capabilities of this computing framework, we present a scenario of future modeling and simulation of multi-scale, multi-physical processes.
Max-Planck-Institut fr molekulare Genetik
Spang, Rainer
IP-chip, ChIP-seq #12;Max-Planck-Institut für molekulare Genetik Software Praktikum, 1.2.2013 Folie 5 Target Genes of a TF Experiments ChIP-chip, ChIP-seq Microarray #12;Max-Planck-Institut für molekulare Genetik Software Praktikum, 1.2.2013 Folie 6 Target Genes of a TF Experiments ChIP-chip, ChIP-seq Microarray PWM
A Planck-like problem for quantum charged black holes
Fabbri, A; Navarro-Salas, J
2001-01-01
Motivated by the parallelism existing between the puzzles of classical physics at the beginning of the XXth century and the current paradoxes in the search of a quantum theory of gravity, we give, in analogy with Planck's black body radiation problem, a solution for the exact Hawking flux of evaporating Reissner-Nordstrom black holes. Our results show that when back-reaction effects are fully taken into account the standard picture of black hole evaporation is significantly altered, thus implying a possible resolution of the information loss problem.
Scale Development for Measuring and Predicting Adolescents’ Leisure Time Physical Activity Behavior
Ries, Francis; Romero Granados, Santiago; Arribas Galarraga, Silvia
2009-01-01
The aim of this study was to develop a scale for assessing and predicting adolescents’ physical activity behavior in Spain and Luxembourg using the Theory of Planned Behavior as a framework. The sample was comprised of 613 Spanish (boys = 309, girls = 304; M age =15.28, SD =1.127) and 752 Luxembourgish adolescents (boys = 343, girls = 409; M age = 14.92, SD = 1.198), selected from students of two secondary schools in both countries, with a similar socio-economic status. The initial 43-items were all scored on a 4-point response format using the structured alternative format and translated into Spanish, French and German. In order to ensure the accuracy of the translation, standardized parallel back-translation techniques were employed. Following two pilot tests and subsequent revisions, a second order exploratory factor analysis with oblimin direct rotation was used for factor extraction. Internal consistency and test-retest reliabilities were also tested. The 4-week test-retest correlations confirmed the items’ time stability. The same five factors were obtained, explaining 63.76% and 63.64% of the total variance in both samples. Internal consistency for the five factors ranged from ? = 0.759 to ? = 0. 949 in the Spanish sample and from ? = 0.735 to ? = 0.952 in the Luxembourgish sample. For both samples, inter-factor correlations were all reported significant and positive, except for Factor 5 where they were significant but negative. The high internal consistency of the subscales, the reported item test-retest reliabilities and the identical factor structure confirm the adequacy of the elaborated questionnaire for assessing the TPB-based constructs when used with a population of adolescents in Spain and Luxembourg. The results give some indication that they may have value in measuring the hypothesized TPB constructs for PA behavior in a cross-cultural context. Key points When using the structured alternative format, weak internal consistency was obtained. Rephrasing the items and scoring items on a Likert-type scale enhanced greatly the subscales reliability. Identical factorial structure was extracted for both culturally different samples. The obtained factors, namely perceived physical competence, parents’ physical activity, perceived resources support, attitude toward physical activity and perceived parental support were hypothesized as for the original TPB constructs. PMID:24149606
NASA Astrophysics Data System (ADS)
Hivon, Eric; Reinecke, Martin; Gorski, Krzysztof M.
2015-08-01
The Hierarchical Equal Area iso-Latitude Pixelation of the Sphere (HEALPix, http://healpix.sf.net) is both a mathematical pixelation of the sphere and a suite of software tools implementing it in many different languages (C, C++, Fortran, IDL/GDL, Java, Python). It has been used in the simulation, observation and analysis of WMAP, Planck and many other CMB and astronomical missions and has become a standard tool used in many different astronomical fields, such as large galaxy surveys (eg, SDSS), 3D structure of the Galaxy (eg, GAIA), high energy cosmic rays (eg, Pierre Auger Observatory), ..., and is fully supported by many Virtual Observatory visualization tools (eg, Aladin).Third party developments have implemented new functionalities like wavelet analysis, Minkowski functionals, structures identification, and propose wrappings or translations of HEALPix functionalities in other languages (eg, Matlab/Octave, Yorick).This talk will review what is currently possible with HEALPix, in terms of simulations, Spherical Harmonics transforms, data processing, visualization, statistical analyses, search of local extrema, pixel queries, I/O, and the projected developments including database storage and queries, multi-resolution dataset (MOC),
NASA Astrophysics Data System (ADS)
Gonzalez-Mestres, L.
2014-04-01
Detailed analyses of WMAP and Planck data can have significant implications for noncyclic pre-Big Bang approaches incorporating a new fundamental scale beyond the Planck scale and, potentially, new ultimate constituents of matter with unconventional basic properties as compared to standard particles. Cosmic-ray experiments at the highest energies can also yield relevant information. Hopefully, future studies will be able to deal with alternatives: i) to standard physics for the structure of the physical vacuum, the nature of space-time, the validity of quantum field theory and conventional symmetries, the interpretation of string-like theories...; ii) to standard cosmology concerning the origin and evolution of our Universe, unconventional solutions to the cosmological constant problem, the validity of inflationary scenarios, the need for dark matter and dark energy... Lorentz-like symmetries for the properties of matter can then be naturally stable space-time configurations resulting from more general primordial scenarios that incorporate physics beyond the Planck scale and describe the formation and evolution of the physical vacuum. A possible answer to the question of the origin of half-integer spins can be provided by a primordial spinorial space-time with two complex coordinates instead of the conventional four real ones, leading to a really new cosmology. We discuss basic questions and phenomenological topics concerning noncyclic pre-Big Bang cosmologies and potentially related physics.
Cuevas, Ricardo; Sánchez-Oliva, David; Bartholomew, Kimberley J; Ntoumanis, Nikos; García-Calvo, Tomás
2015-01-01
Drawing from self-determination theory (SDT; Deci & Ryan, 1985; Ryan & Deci, 2002), the aim of the study was to adapt and validate a Spanish version of the Psychological Need Thwarting Scale (PNTS; Bartholomew, Ntoumanis, Ryan, & Thørgersen-Ntoumani, 2011) in the educational domain. Psychological need thwarting and burnout were assessed in 619 physical education teachers from several high schools in Spain. Overall, the adapted measure demonstrated good content, factorial (?2/gl = 4.87, p < .01, CFI = .95, IFI = .96, TLI = .94, RMSEA = .08, SRMR = .05), and external validity, as well as internal consistency (? ? .81) and invariance across gender. Moreover, burnout was strongly predicted by teachers' perceptions of competence (? = .53, p ? .01), autonomy (? = .34, p ? .01), and relatedness (? = .31, p ? .01) need thwarting. In conclusion, these results support the Spanish version of the PNTS as a valid and reliable instrument for assessing the understudied concept of psychological need thwarting in teachers. PMID:26190416
The physics potential of proton-nucleus collisions at the TeV scale
Carlos A. Salgado
2011-08-27
The LHC brings nuclear collisions to the TeV scale for the first time and the first data show the qualitative differences of this new regime. The corresponding phase-space available encompasses completely uncharted regions of QCD in which high-density or high-temperature domains can be identified. Proton-nucleus runs are essential for a complete interpretation of the data and for the study of new regimes dominated by large occupation numbers in the hadronic wave function. I comment here the physics opportunities for p+Pb runs at the LHC and d+Au runs at RHIC and the corresponding needs in view of the new Pb+Pb data from the LHC.
Shu, Qiaosheng; Liu, Zuoxin; Si, Bingcheng
2008-01-01
Understanding the correlation between soil hydraulic parameters and soil physical properties is a prerequisite for the prediction of soil hydraulic properties from soil physical properties. The objective of this study was to examine the scale- and location-dependent correlation between two water retention parameters (alpha and n) in the van Genuchten (1980) function and soil physical properties (sand content, bulk density [Bd], and organic carbon content) using wavelet techniques. Soil samples were collected from a transect from Fuxin, China. Soil water retention curves were measured, and the van Genuchten parameters were obtained through curve fitting. Wavelet coherency analysis was used to elucidate the location- and scale-dependent relationships between these parameters and soil physical properties. Results showed that the wavelet coherence between alpha and sand content was significantly different from red noise at small scales (8-20 m) and from a distance of 30 to 470 m. Their wavelet phase spectrum was predominantly out of phase, indicating negative correlation between these two variables. The strong negative correlation between alpha and Bd existed mainly at medium scales (30-80 m). However, parameter n had a strong positive correlation only with Bd at scales between 20 and 80 m. Neither of the two retention parameters had significant wavelet coherency with organic carbon content. These results suggested that location-dependent scale analyses are necessary to improve the performance for soil water retention characteristic predictions. PMID:18948482
On the physics of radio haloes in galaxy clusters: scaling relations and luminosity functions
NASA Astrophysics Data System (ADS)
Zandanel, Fabio; Pfrommer, Christoph; Prada, Francisco
2014-02-01
The underlying physics of giant and mini radio haloes in galaxy clusters is still an open question. We find that mini haloes (such as in Perseus and Ophiuchus) can be explained by radio-emitting electrons that are generated in hadronic cosmic ray (CR) interactions with protons of the intracluster medium. By contrast, the hadronic model either fails to explain the extended emission of giant radio haloes (as in Coma at low frequencies) or would require a flat CR profile, which can be realized through outward streaming and diffusion of CRs (in Coma and A2163 at 1.4 GHz). We suggest that a second leptonic component could be responsible for the missing flux in the outer parts of giant haloes within a new hybrid scenario and we describe its possible observational consequences. To study the hadronic emission component of the radio-halo population statistically, we use a cosmological mock galaxy cluster catalogue built from the MultiDark simulation. Because of the properties of CR streaming and the different scalings of the X-ray luminosity (LX) and the Sunyaev-Zel'dovich flux (Y) with gas density, our model can simultaneously reproduce the observed bimodality of radio-loud and radio-quiet clusters at the same LX as well as the unimodal distribution of radio-halo luminosity versus Y; thereby suggesting a physical solution to this apparent contradiction. We predict radio-halo emission down to the mass scale of galaxy groups, which highlights the unique prospects for low-frequency radio surveys (such as the Low Frequency Array Tier 1 survey) to increase the number of detected radio haloes by at least an order of magnitude.
Quantum Physics: An Introduction
NSDL National Science Digital Library
Introduction to Quantum Physics concepts with an activity demonstrating Heisenberg's Uncertainty Principle, wave/particle duality, Planck's Constant, de Broglie wavelength, and how Newton's Laws go right out the window on a quantum level.
Planck 2013 results. XIX. The integrated Sachs-Wolfe effect
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Ili?, S.; Jaffe, A. H.; Jaffe, T. R.; Jasche, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marcos-Caballero, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Schaefer, B. M.; Schiavon, F.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Viel, M.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; Xia, J.-Q.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
Based on cosmic microwave background (CMB) maps from the 2013 Planck Mission data release, this paper presents the detection of the integrated Sachs-Wolfe (ISW) effect, that is, the correlation between the CMB and large-scale evolving gravitational potentials. The significance of detection ranges from 2 to 4?, depending on which method is used. We investigated three separate approaches, which essentially cover all previous studies, and also break new ground. (i) We correlated the CMB with the Planck reconstructed gravitational lensing potential (for the first time). This detection was made using the lensing-induced bispectrum between the low-? and high-? temperature anisotropies; the correlation between lensing and the ISW effect has a significance close to 2.5?. (ii) We cross-correlated with tracers of large-scale structure, which yielded a significance of about 3?, based on a combination of radio (NVSS) and optical (SDSS) data. (iii) We used aperture photometry on stacked CMB fields at the locations of known large-scale structures, which yielded and confirms a 4? signal, over a broader spectral range, when using a previously explored catalogue, but shows strong discrepancies in amplitude and scale when compared with expectations. More recent catalogues give more moderate results that range from negligible to 2.5? at most, but have a more consistent scale and amplitude, the latter being still slightly higher than what is expected from numerical simulations within ?CMD. Where they can be compared, these measurements are compatible with previous work using data from WMAP, where these scales have been mapped to the limits of cosmic variance. Planck's broader frequency coverage allows for better foreground cleaning and confirms that the signal is achromatic, which makes it preferable for ISW detection. As a final step we used tracers of large-scale structure to filter the CMB data, from which we present maps of the ISW temperature perturbation. These results provide complementary and independent evidence for the existence of a dark energy component that governs the currently accelerated expansion of the Universe.
Meacham, J. Mark; Durvasula, Kiranmai; Degertekin, F. Levent; Fedorov, Andrei G.
2015-01-01
Effective intracellular delivery is a significant impediment to research and therapeutic applications at all processing scales. Physical delivery methods have long demonstrated the ability to deliver cargo molecules directly to the cytoplasm or nucleus, and the mechanisms underlying the most common approaches (microinjection, electroporation, and sonoporation) have been extensively investigated. In this review, we discuss established approaches, as well as emerging techniques (magnetofection, optoinjection, and combined modalities). In addition to operating principles and implementation strategies, we address applicability and limitations of various in vitro, ex vivo, and in vivo platforms. Importantly, we perform critical assessments regarding (1) treatment efficacy with diverse cell types and delivered cargo molecules, (2) suitability to different processing scales (from single cell to large populations), (3) suitability for automation/integration with existing workflows, and (4) multiplexing potential and flexibility/adaptability to enable rapid changeover between treatments of varied cell types. Existing techniques typically fall short in one or more of these criteria; however, introduction of micro-/nanotechnology concepts, as well as synergistic coupling of complementary method(s), can improve performance and applicability of a particular approach, overcoming barriers to practical implementation. For this reason, we emphasize these strategies in examining recent advances in development of delivery systems. PMID:23813915
NASA Astrophysics Data System (ADS)
Roldin, Maria; Mark, Ole; Kuczera, George; Mikkelsen, Peter S.; Binning, Philip J.
2012-01-01
SummaryThe increased load on urban stormwater systems due to climate change and growing urbanization can be partly alleviated by using soakaways and similar infiltration techniques. However, while soakaways are usually small-scale structures, most urban drainage network models operate on a larger spatial scale and the simulation of individual soakaways in these models is therefore often not readily feasible. This study describes the coupling of a soakaway model to a physically distributed urban drainage model, and investigates different upscaling methods. The soakaway component calculates the infiltration rate based on water depth and soil properties for each time step, and controls the removal of water from the urban drainage model. The model is intended to be used to assess the impact of soakaways on urban drainage networks. The model is tested using field data and shown to simulate the behavior of individual soakaways well. Six upscaling methods to aggregate individual soakaway units with varying saturated hydraulic conductivity ( K) in the surrounding soil have been investigated. In the upscaled model, the weighted geometric mean hydraulic conductivity of individual allotments is found to provide the best match to an individual allotment model when comparing total outflow volume and peak flow rate. The error introduced by upscaling is found to be in the range of a few percent, and is relatively small compared to the uncertainty of typical field estimates of hydraulic conductivity.
Planck intermediate results. VIII. Filaments between interacting clusters
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, J. G. Bartlett E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bourdin, H.; Burenin, R.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Cayón, L.; Chamballu, A.; Chary, R.-R.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombo, L. P. L.; Comis, B.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Démoclès, J.; Désert, F.-X.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Ganga, K.; Génova-Santos, T.; Giard, M.; Gilfanov, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hurier, G.; Jaffe, T. R.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juvela, M.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Luzzi, G.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschènes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Piffaretti, R.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Schaefer, B. M.; Scott, D.; Smoot, G. F.; Starck, J.-L.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Welikala, N.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2013-02-01
Context. About half of the baryons of the Universe are expected to be in the form of filaments of hot and low-density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories, which are limited in sensitivity to the diffuse low-density medium. Aims: The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low-density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters. Methods: Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we selected physical pairs of clusters as candidates. Using the Planck data, we constructed a local map of the tSZ effect centred on each pair of galaxy clusters. ROSAT data were used to construct X-ray maps of these pairs. After modelling and subtracting the tSZ effect and X-ray emission for each cluster in the pair, we studied the residuals on both the SZ and X-ray maps. Results: For the merging cluster pair A399-A401 we observe a significant tSZ effect signal in the intercluster region beyond the virial radii of the clusters. A joint X-ray SZ analysis allows us to constrain the temperature and density of this intercluster medium. We obtain a temperature of kT = 7.1 ± 0.9 keV (consistent with previous estimates) and a baryon density of (3.7 ± 0.2) × 10-4 cm-3. Conclusions: The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas.
Pedisic, Zeljko; Matouschek, Stefanie; Stückler, Martina; Basaric, Amir; Titze, Sylvia
2014-01-01
The high prevalence of insufficient physical activity (PA) among adolescents is an important public health issue. Studying reasons for disliking PA might help researchers better understand its underlying mechanisms, yet this psychological construct has been understudied. This study established the psychometric properties of the German language version of the Girls' Disinclination for Physical Activity Scale (G-DAS-Ger). Data were collected on a sample of 257 adolescent girls in Austria (mean age: 13.0 ± 0.7 years) using the G-DAS-Ger and the Physical Activity Enjoyment Scale. One week after the first assessment, the questionnaires were re-administered to 78 girls. Between two administrations, PA of 215 girls was monitored for seven consecutive days using the ActiGraph GT3X+ accelerometers. Confirmatory factor analysis of G-DAS-Ger showed good fit for a three-factor model (?(2)/df = 2.025; Bollen-Stine (B-S) p = 0.159; root mean square error of approximation = 0.063; standardised root mean square residual = 0.054; comparative fit index = 0.950). Cronbach's alphas for G-DAS-Ger factors/subscales ranged 0.64-0.76. The test-retest reliability assessed by Spearman's rank correlation ranged 0.62-0.75. Only one subscale correlated significantly with vigorous-intensity PA (Spearman's rho = -0.16) and none with moderate-to-vigorous-intensity PA, which indicated poor predictive validity of the G-DAS-Ger. Correlations between G-DAS-Ger subscales and enjoyment of PA ranged from -0.29 to -0.41, indicating satisfactory convergent validity. The G-DAS-Ger may be used in its present form to assess disinclination for PA among adolescent girls in German-speaking countries. However, our results put into question the stability of the originally proposed factor structure of the questionnaire and its predictive validity among German-speaking adolescent girls. Methodological refinements to the G-DAS-Ger may be required to improve its psychometric properties in this population. PMID:24678713
Discrete-time ratchets, the Fokker-Planck equation and Parrondo's paradox
P. Amengual; A. Allison; R. Toral; D. Abbott
Parrondo's games manifest the apparent paradox where losing strategies can be combined to win and have generated signiflcant multidisciplinary interest in the lit- erature. Here we review two recent approaches, based on the Fokker-Planck equa- tion, that rigorously establish the connection between Parrondo's games and a physical model known as the ?ashing Brownian ratchet. This gives rise to a new
Convergence of an Entropic Semi-discretization for Nonlinear Fokker-Planck Equations in Rd
Jüngel, Ansgar
. For the (given) potential, either a less than quadratic growth condition at infinity is supposed or the initial-most-quadratic growth case. Keywords: Fokker-Planck equation, drift-diffusion equation, degenerate parabolic equation theory [14, 16], plasma physics [19], population dynamics [3], stellar dynamics [11], vortex dynamics [8
Analysis of LED data for the measurement of Planck's constant in the undergraduate laboratory
NASA Astrophysics Data System (ADS)
Indelicato, Valeria; La Rocca, Paola; Riggi, Francesco; Santagati, Gianluca; Zappalà, Gaetano
2013-07-01
Two measurements of Planck's constant, one based on the visible photoelectric effect and the other making use of light-emitting diodes of various colors, have been proposed for the third-year physics student undergraduate laboratory. The experimental data require various levels of analysis and interpretation, which may provide interesting activities for the students involved, notwithstanding the simplicity of the experimental setups employed.
VizieR Online Data Catalog: Updated Planck catalogue PSZ1 (Planck+, 2015)
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.; Bohringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; da Silva, A.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; De Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Democles, J.; Desert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.! , Dupac X ., Efstathiou G., Enslin T.A., Eriksen H.K., Feroz F., Ferragamo A., Finelli F., Flores-Cacho I., Forni O., Frailis M., Franceschi E., Fromenteau S., Galeotta S., Ganga K., Genova-Santos R.T., Giard M., Giardino G., Gilfanov M., Giraud-Heraud Y., Gonzalez-Nuevo J., Gorski K.M., Grainge K.J.B., Gratton S., Gregorio A., Groeneboom N.E., Gruppuso A., Hansen F.K., Hanson D., Harrison D., Hempel A., Henrot-Versille S., Hernandez-Monteagudo C., Herranz D., Hildebrandt S.R., Hivon E., Hobson M., Holmes W.A., Hornstrup A., Hovest W., Huffenberger K.M., Hurier G., Hurley-Walker N., Jaffe A.H., Jaffe T.R., Jones W.C., Juvela M., Keihanen E., Keskitalo R., Khamitov I., Kisner T.S., Kneissl R., Knoche J., Knox L., Kunz M., Kurki-Suonio H., Lagache G., Lahteenmaki A., Lamarre J.-M., Lasenby A., Laureijs R.J., Lawrence C.R., Leahy J.P., Leonardi R., Leon-Tavares J., Lesgourgues J., Li C., Liddle A., Liguori M., Lilje P.B., Linden-Vornle M., Lopez-Caniego M., Lubin P.M., Macias-Perez J.F.! , MacTavi sh C.J., Maffei B., Maino D., Mandolesi N., Maris M., Marshall D.J., Martin P.G., Martinez-Gonzalez E., Masi S., Massardi M., Matarrese S., Matthai F., Mazzotta P., Mei S., Meinhold P.R., Melchiorri A., Melin J.-B., Mendes L., Mennella A., Migliaccio M., Mikkelsen K., Mitra S., Miville-Deschenes M.-A., Moneti A., Montier L., Morgante G., Mortlock D., Munshi D., Murphy J.A., Naselsky P., Nastasi A., Nati F., Natoli P., Nesvadba N.P.H., Netterfield C.B., Norgaard-Nielsen H.U., Noviello F., Novikov D., Novikov I., O'Dwyer I.J., Olamaie M., Osborne S., Oxborrow C.A., Paci F., Pagano L., Pajot F., Paoletti D., Pasian F., Patanchon G., Pearson T.J., Perdereau O., Perotto L., Perrott Y.C., Perrotta F., Piacentini F., Piat M., Pierpaoli E., Pietrobon D., Plaszczynski S., Pointecouteau E., Polenta G., Ponthieu N., Popa L., Poutanen T., Pratt G.W., Prezeau G., Prunet S., Puget J.-L., Rachen J.P., Reach W.T., Rebolo R., Reinecke M., Remazeilles M., Renault C., Ricciardi S., Riller T.,! Ristorce lli I., Rocha G., Rosset C., Roudier G., Rowan-Robinson M., Rubino-Martin J.A., Rumsey C., Rusholme B., Sandri M., Santos D., Saunders R.D.E., Savini G., Schammel M.P., Scott D., Seiffert M.D., Shellard E.P.S., Shimwel T.W., Spencer L.D., Starck J.-L., Stolyarov V., Stompor R., Streblyanska A., Sudiwala R., Sunyaev R., Sureau F., Sutton D., Suur-Uski A.-S., Sygnet J.-F., Tauber J.A., Tavagnacco D., Terenzi L., Toffolatti L., Tomasi M., Tramonte D., Tristram M., Tucci M., Tuovinen J., Turler M., Umana G., Valenziano L., Valiviita J., Van Tent B., Vibert L., Vielva P., Villa F., Vittorio N., Wade L.A., Wandelt B.D., White M., White S.D.M., Yvon D., Zacchei A., Zonca A.
2015-08-01
The updated Planck catalogue of SZ sources is available at PLA (http://www.sciops.esa.int/index.php?page= PlanckLegacyArchive&project=planck) and the SZ cluster database (http://szcluster-db.ias.u-psud.fr). The updated PSZ1 gathers in a single table all the entries of the delivered catalogue mainly based on the Planck data and the entries of the external validation information based on ancillary data (Appendices B and C of Planck Collaboration et al. (2014A&A...571A..29P, Cat. VIII/91), respectively). It also contains additional entries. The updated catalogue contains, when available, cluster external identifications8 and consolidated redshifts. We added two new entries: the redshift type and the bibliographic reference. (2 data files).
Analysis of Fokker-Planck approach for foreign exchange market statistics study
NASA Astrophysics Data System (ADS)
Smirnov, A. P.; Shmelev, A. B.; Sheinin, E. Ya.
2004-12-01
In a well-known work (Phys. Rev. Lett. 84 (2000) 5224) it was shown that behaviour of returns for foreign exchange markets in different time scales can be described in terms of Fokker-Planck equation, with Kramers-Moyal coefficients being estimated from the empirical data. In the current paper the authors provide analytical solution for stationary Fokker-Planck equation, which allows explanation of non Gaussian tails of the distribution function. It is also shown that while approximating empirical data one needs to observe some limitations for correct results obtaining.
Scale-Relativistic Estimate of the Fine Structure Constant Laurent Nottale
Nottale, Laurent
1 Scale-Relativistic Estimate of the Fine Structure Constant Laurent Nottale CNRS, DAEC of scale relativity, in which the Planck length-scale is reinterpreted as a lowest, limiting, unpassable in QED; (ii) the nature of the Planck scale; (iii) the origin and values of universal scales
Planck 2015 results. IX. Diffuse component separation: CMB maps
Adam, R; Aghanim, N; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartlett, J G; Bartolo, N; Basak, S; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Casaponsa, B; Castex, G; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chiang, H C; Christensen, P R; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Falgarone, E; Fantaye, Y; Fergusson, J; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Ghosh, T; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Hanson, D; Harrison, D L; Helou, G; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Krachmalnicoff, N; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Jeune, M Le; Leonardi, R; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Molinari, D; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Pasian, F; Patanchon, G; Pearson, T J; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Racine, B; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Trombetti, T; Tucci, M; Tuovinen, J; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Yvon, D; Zacchei, A; Zonca, A
2015-01-01
We present foreground-reduced CMB maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-to-polarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales $\\ell\\gtrsim40$. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with $\\ell < 20$ are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with re...
Principal component analysis of the reionization history from Planck 2015 data
Dai, Wei-Ming; Cai, Rong-Gen
2015-01-01
The simple assumption of an instantaneous reionization of the Universe may bias estimates of cosmological parameters. In this paper a model-independent principal component method for the reionization history is applied to give constraints on the cosmological parameters from recent Planck 2015 data. We find that the Universe are not completely reionized at redshifts $z \\ge 8.5$ at 95% CL. Both the reionization optical depth and the matter fluctuation amplitude are higher than but consistent with those obtained in the standard instantaneous reionization scheme. The high estimated value of the matter fluctuation amplitude strengthens the tension between Planck CMB observations and some astrophysical data, such as cluster counts and weak lensing. The tension can significantly be relieved if the neutrino masses are allowed to vary. Thanks to a high scalar spectral index, the low-scale spontaneously broken SUSY inflationary model can fit the data well, which is marginally disfavored at 95% CL in the Planck analysis...
NASA Technical Reports Server (NTRS)
Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoit, A.; Berdyugin, A.; Bernard, J. P.; Bersanelli, M.; Bhatia, R.; Bonaldi, A.; Bonavera, L.; Gehrels, N.
2011-01-01
Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.
Progress on accurate measurement of the Planck constant: Watt balance and counting atoms
NASA Astrophysics Data System (ADS)
Li, Shi-Song; Zhang, Zhong-Hua; Zhao, Wei; Li, Zheng-Kun; Huang, Song-Ling
2015-01-01
The Planck constant h is one of the most significant constants in quantum physics. Recently, the precision measurement of the value of h has been a hot issue due to its important role for the establishment of both a new SI and a revised fundamental physical constant system. Up to date, two approaches, the watt balance and counting atoms, have been employed to determine the Planck constant at a level of several parts in 108. In this paper, the principle and progress on precision measurement of the Planck constant using watt balance and counting atoms at national metrology institutes are reviewed. Further improvement in determining the Planck constant and possible developments of a revised physical constant system in future are discussed. Project supported by the National Natural Science Foundation of China (Grant No. 51477160), the National Department Public Benefit Research Foundation of China (Grant No. 201010010), and the National Key Technology R&D Program of China (Grant No. 2006BAF06B01)
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Carvalho, P.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Chon, G.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Curto, A.; Cuttaia, F.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J. M.; Dole, H.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Gilfanov, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2015-10-01
We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with the Russian-Turkish 1.5 m telescope (RTT150), as a part of the optical follow-up programme undertaken by the Planck collaboration. During this time period approximately 20% of all dark and grey clear time available at the telescope was devoted to observations of Planck objects. Some observations of distant clusters were also done at the 6 m Bolshoi Telescope Alt-azimutalnyi (BTA) of the Special Astrophysical Observatory of the Russian Academy of Sciences. In total, deep, direct images of more than one hundred fields were obtained in multiple filters. We identified 47 previously unknown galaxy clusters, 41 of which are included in the Planck catalogue of SZ sources. The redshifts of 65 Planck clusters were measured spectroscopically and 14 more were measured photometrically. We discuss the details of cluster optical identifications and redshift measurements. We also present new spectroscopic redshifts for 39 Planck clusters that were not included in the Planck SZ source catalogue and are published here for the first time.
NASA Astrophysics Data System (ADS)
Luna, Byron Quan; Vidar Vangelsten, Bjørn; Liu, Zhongqiang; Eidsvig, Unni; Nadim, Farrokh
2013-04-01
Landslide risk must be assessed at the appropriate scale in order to allow effective risk management. At the moment, few deterministic models exist that can do all the computations required for a complete landslide risk assessment at a regional scale. This arises from the difficulty to precisely define the location and volume of the released mass and from the inability of the models to compute the displacement with a large amount of individual initiation areas (computationally exhaustive). This paper presents a medium-scale, dynamic physical model for rapid mass movements in mountainous and volcanic areas. The deterministic nature of the approach makes it possible to apply it to other sites since it considers the frictional equilibrium conditions for the initiation process, the rheological resistance of the displaced flow for the run-out process and fragility curve that links intensity to economic loss for each building. The model takes into account the triggering effect of an earthquake, intense rainfall and a combination of both (spatial and temporal). The run-out module of the model considers the flow as a 2-D continuum medium solving the equations of mass balance and momentum conservation. The model is embedded in an open source environment geographical information system (GIS), it is computationally efficient and it is transparent (understandable and comprehensible) for the end-user. The model was applied to a virtual region, assessing landslide hazard, vulnerability and risk. A Monte Carlo simulation scheme was applied to quantify, propagate and communicate the effects of uncertainty in input parameters on the final results. In this technique, the input distributions are recreated through sampling and the failure criteria are calculated for each stochastic realisation of the site properties. The model is able to identify the released volumes of the critical slopes and the areas threatened by the run-out intensity. The obtained final outcome is the estimation of individual building damage and total economic risk. The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement No 265138 New Multi-HAzard and MulTi-RIsK Assessment MethodS for Europe (MATRIX).
Current dependence of spin torque switching rate based on Fokker-Planck approach
Taniguchi, Tomohiro, E-mail: tomohiro-taniguchi@aist.go.jp; Imamura, Hiroshi [National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center, Tsukuba 305-8568 (Japan)
2014-05-07
The spin torque switching rate of an in-plane magnetized system in the presence of an applied field is derived by solving the Fokker-Planck equation. It is found that three scaling currents are necessary to describe the current dependence of the switching rate in the low-current limit. The dependences of these scaling currents on the applied field strength are also studied.
Planck 2013 results. XXIX. The Planck catalogue of Sunyaev-Zeldovich sources
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Démoclès, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Eisenhardt, P. R. M.; Enßlin, T. A.; Eriksen, H. K.; Feroz, F.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Gilfanov, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Groeneboom, N., E.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Hurley-Walker, N.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Li, C.; Liddle, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nesvadba, N. P. H.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Olamaie, M.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrott, Y. C.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rumsey, C.; Rusholme, B.; Sandri, M.; Santos, D.; Saunders, R. D. E.; Savini, G.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shimwell, T. W.; Spencer, L. D.; Stanford, S. A.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
We describe the all-sky Planck catalogue of clusters and cluster candidates derived from Sunyaev-Zeldovich (SZ) effect detections using the first 15.5 months of Planck satellite observations. The catalogue contains 1227 entries, making it over six times the size of the Planck Early SZ (ESZ) sample and the largest SZ-selected catalogue to date. It contains 861 confirmed clusters, of which 178 have been confirmed as clusters, mostly through follow-up observations, and a further 683 are previously-known clusters. The remaining 366 have the status of cluster candidates, and we divide them into three classes according to the quality of evidence that they are likely to be true clusters. The Planck SZ catalogue is the deepest all-sky cluster catalogue, with redshifts up to about one, and spans the broadest cluster mass range from (0.1 to 1.6) × 1015 M?. Confirmation of cluster candidates through comparison with existing surveys or cluster catalogues is extensively described, as is the statistical characterization of the catalogue in terms of completeness and statistical reliability. The outputs of the validation process are provided as additional information. This gives, in particular, an ensemble of 813 cluster redshifts, and for all these Planck clusters we also include a mass estimated from a newly-proposed SZ-mass proxy. A refined measure of the SZ Compton parameter for the clusters with X-ray counter-parts is provided, as is an X-ray flux for all the Planck clusters not previously detected in X-ray surveys. The catalogue of SZ sources is available at Planck Legacy Archive and http://www.sciops.esa.int/index.php?page=Planck_Legacy_Archive&project=planck
Loss, Daniel
NATURE PHYSICS | VOL 7 | MAY 2011 | www.nature.com/naturephysics 367 editorial The scale of the disaster is overwhelming. Following the earthquake and tsunami that hit the northeast coast of Japan. And in the wake of that devastation, further disaster threatened at the Fukushima Dai-ichi nuclear plant
Coppersmith, Susan N.
2013-01-01
PHYSICAL REVIEW A 88, 032307 (2013) Power-law scaling for the adiabatic algorithm for search 2012; published 5 September 2013) An important method for search engine result ranking works by finding the principal eigenvector of the "Google matrix." Recently, a quantum algorithm for generating this eigenvector
Coolen, ACC "Ton"
Progress of Theoretical Physics Supplement No. 161, 2006 385 A Large Scale Dynamical System Immune that in immune systems there generally exist several kinds of immune cells which can recognize any particular with only a small number of randomly selected other components. One such system is the immune network
ERIC Educational Resources Information Center
Hampden-Thompson, Gillian; Lubben, Fred; Bennett, Judith
2011-01-01
Quantitative secondary analysis of large-scale data can be combined with in-depth qualitative methods. In this paper, we discuss the role of this combined methods approach in examining the uptake of physics and chemistry in post compulsory schooling for students in England. The secondary data analysis of the National Pupil Database (NPD) served…
Stanley, H. Eugene
2013-01-01
Stanley,3 Pablo G. Debenedetti,4 and Peter J. Rossky5,a) 1 The Dow Chemical Company, Freeport, Texas 77541THE JOURNAL OF CHEMICAL PHYSICS 138, 064506 (2013) Temperature and length scale dependence of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA 5 Institute
ERIC Educational Resources Information Center
Peterson, Jana J.; Peterson, N. Andrew; Lowe, John B.; Nothwehr, Faryle K.
2009-01-01
Background: Many individuals with intellectual disabilities are not sufficiently active for availing health benefits. Little is known about correlates of physical activity among this population on which to build health promotion interventions. Materials and Methods: We developed scales for measurement of self-efficacy and social support for…
LÃ¼beck, Sven
2002-01-01
Physical Review E 65, 046150 (2002) Scaling behavior of the order parameter and its conjugated field in an absorbing phase transition around the upper critical dimension S. LÂ¨ubeck Theoretische) We analyse numerically the critical behavior of an absorbing phase transition in a conserved lattice
LÃ¼beck, Sven
2002-01-01
Physical Review E 65, 046150 (2002) Scaling behavior of the order parameter and its conjugated field in an absorbing phase transition around the upper critical dimension S. LË?ubeck # Theoretische) We analyse numerically the critical behavior of an absorbing phase transition in a conserved lattice
Cohort Profile of the Goals Study: A Large-Scale Research of Physical Activity in Dutch Students
ERIC Educational Resources Information Center
de Groot, Renate H. M.; van Dijk, Martin L.; Kirschner, Paul A.
2015-01-01
The GOALS study (Grootschalig Onderzoek naar Activiteiten van Limburgse Scholieren [Large-scale Research of Activities in Dutch Students]) was set up to investigate possible associations between different forms of physical activity and inactivity with cognitive performance, academic achievement and mental well-being. It was conducted at a…
2011-01-01
PHYSICAL REVIEW E 84, 021907 (2011) Effectiveness of beads for tracking small-scale molecular motor attributed to aborted motor steps, and that bead dynamics alone can produce multiple subphases during a step the motor. These effects are magnified when the bead is much larger than the motor, which is usually
Universal Scaling Laws in Quantum Theory and Cosmology
NASA Astrophysics Data System (ADS)
Rauscher, Elizabeth A.; Hurtak, James J.; Hurtak, D. E.
2013-09-01
We have developed a hyperdimensional geometry, Dn or Descartes space of dimensionality of n > 4, for our consideration n = 10. This model introduces a formation in terms of the conditions of constants as the space that allows us to calculate a unique set of scaling laws from the lower end scale of the quantum vacuum foam to the current universe. A group theoretical matrix formalism is made for the ten and eleven dimensional model of this space. For the eleven dimensional expressions of this geometry, a fundamental frequency is introduced and utilized as an additional condition on the topology. The constraints on the Dn space are imposed by the relationship of the universal constraints of nature expressed in terms of physical variables. The quantum foam picture can be related to the Fermi-Dirac vacuum model. Consideration is made for the lower limit of a universal size scaling from the Planck length, l = 10-33 cm, temporal component, t = 10-44 sec, density, 1093 gm/cm3 and additional Planck units of quantized variables. The upper limit of rotational frequency in the Dn space is given as 1043 Hz, as conditions or constraints that apply to the early universe which are expressed uniquely in terms of the universal constants, h, Planck's constant, the G, the gravitational constant and c, the velocity of light. We have developed a scaling law for cosmogenesis from the early universe to our present day universe. We plot the physical variables of the ten and eleven dimensional space versus a temporal evolution of these parameters. From this formalism, in order to maintain the compatibility of Einstein's General Relativity with the current model of cosmology, we replace Guth's inflationary model with a matter creation term. Also we have developed a fundamental scaling relationship between the "size scale" of organized matter with their associated fundamental frequency.
Physics on noncommutative spacetimes
NASA Astrophysics Data System (ADS)
Padmanabhan, Pramod
The structure of spacetime at the Planck scale remains a mystery to this date with a lot of insightful attempts to unravel this puzzle. One such attempt is the proposition of a 'pointless' structure for spacetime at this scale. This is done by studying the geometry of the spacetime through a noncommutative algebra of functions defined on it. We call such spacetimes 'noncommutative spacetimes'. This dissertation probes physics on several such spacetimes. These include compact noncommutative spaces called fuzzy spaces and noncompact spacetimes. The compact examples we look at are the fuzzy sphere and the fuzzy Higg's manifold. The noncompact spacetimes we study are the Groenewold-Moyal plane and the Bcn? plane. A broad range of physical effects are studied on these exotic spacetimes. We study spin systems on the fuzzy sphere. The construction of Dirac and chirality operators for an arbitrary spin j is studied on both S2F and S2 in detail. We compute the spectrums of the spin 1 and spin 32 Dirac operators on S2F . These systems have novel thermodynamical properties which have no higher dimensional analogs, making them interesting models. The fuzzy Higg's manifold is found to exhibit topology change, an important property for any theory attempting to quantize gravity. We study how this change occurs in the classical setting and how quantizing this manifold smoothens the classical conical singularity. We also show the construction of the star product on this manifold using coherent states on the noncommutative algebra describing this noncommutative space. On the Moyal plane we develop the LSZ formulation of scalar quantum field theory. We compute scattering amplitudes and remark on renormalization of this theory. We show that the LSZ formalism is equivalent to the interaction representation formalism for computing scattering amplitudes on the Moyal plane. This result is true for on-shell Green's functions and fails to hold for off-shell Green's functions. With the present technology available, there is a scarcity of experiments which directly involve the Planck scale. However there are interesting low and medium energy experiments which put bounds on the validity of established principles which are thought to be violated at the Planck scale. One such principle is the Pauli principle which is expected to be violated on noncommutative spacetimes. We introduce a noncommutative spacetime called the Bcn? plane to show how transitions, not obeying the Pauli principle, occur in atomic systems. On confronting with the data from experiments, we place bounds on the noncommutative parameter.
Constraints on secret neutrino interactions after Planck
Francesco Forastieri; Massimiliano Lattanzi; Paolo Natoli
2015-06-03
(Abridged) Neutrino interactions beyond the standard model may affect the cosmological evolution and can be constrained through observations. We consider the possibility that neutrinos possess secret scalar or pseudoscalar interactions mediated by the Nambu-Goldstone boson of a still unknown spontaneously broken global $U(1)$ symmetry, as in, e.g. , Majoron models. In such scenarios, neutrinos still decouple at $T\\simeq 1$ MeV, but become tightly coupled again ('recouple') at later stages of the cosmological evolution. We use available observations of CMB anisotropies, including Planck 2013 and the joint BICEP2/Planck 2015 data, to derive constraints on the quantity $\\gamma_{\
Constraints on secret neutrino interactions after Planck
Forastieri, Francesco; Natoli, Paolo
2015-01-01
(Abridged) Neutrino interactions beyond the standard model may affect the cosmological evolution and can be constrained through observations. We consider the possibility that neutrinos possess secret scalar or pseudoscalar interactions mediated by the Nambu-Goldstone boson of a still unknown spontaneously broken global $U(1)$ symmetry, as in, e.g. , Majoron models. In such scenarios, neutrinos still decouple at $T\\simeq 1$ MeV, but become tightly coupled again ('recouple') at later stages of the cosmological evolution. We use available observations of CMB anisotropies, including Planck 2013 and the joint BICEP2/Planck 2015 data, to derive constraints on the quantity $\\gamma_{\
Cosmic ray knee and new physics at the TeV scale
Roberto Barcelo; Manuel Masip; Iacopo Mastromatteo
2009-06-19
We analyze the possibility that the cosmic ray knee appears at an energy threshold where the proton-dark matter cross section becomes large due to new TeV physics. It has been shown that such interactions could break the proton and produce a diffuse gamma ray flux consistent with MILAGRO observations. We argue that this hypothesis implies knees that scale with the atomic mass for the different nuclei, as KASKADE data seem to indicate. We find that to explain the change in the spectral index in the flux from E^{-2.7} to E^{-3.1} the cross section must grow like E^{0.4+\\beta} above the knee, where \\beta=0.3-0.6 parametrizes the energy dependence of the age (\\tau \\propto E^{-\\beta}) of the cosmic rays reaching the Earth. The hypothesis also requires mbarn cross sections (that could be modelled with TeV gravity) and large densities of dark matter (that could be clumped around the sources of cosmic rays). We argue that neutrinos would also exhibit a threshold at E=(m_\\chi/m_p)E_{knee}\\approx 10^8 GeV where their interaction with a nucleon becomes strong. Therefore, the observation at ICECUBE or ANITA of standard neutrino events above this threshold would disprove the scenario.
Cosmic ray knee and new physics at the TeV scale
Barceló, Roberto; Masip, Manuel; Mastromatteo, Iacopo E-mail: masip@ugr.es
2009-06-01
We analyze the possibility that the cosmic ray knee appears at an energy threshold where the proton-dark matter cross section becomes large due to new TeV physics. It has been shown that such interactions could break the proton and produce a diffuse gamma ray flux consistent with MILAGRO observations. We argue that this hypothesis implies knees that scale with the atomic mass for the different nuclei, as KASKADE data seem to indicate. We find that to explain the change in the spectral index in the flux from E{sup ?2.7} to E{sup ?3.1} the cross section must grow like E{sup 0.4+?} above the knee, where ? = 0.3–0.6 parametrizes the energy dependence of the age (??E{sup ??}) of the cosmic rays reaching the Earth. The hypothesis also requires mbarn cross sections (that could be modelled with TeV gravity) and large densities of dark matter (that could be clumped around the sources of cosmic rays). We argue that neutrinos would also exhibit a threshold at E = (m{sub ?}/m{sub p}) E{sub knee} ? 10{sup 8} GeV where their interaction with a nucleon becomes strong. Therefore, the observation at ICECUBE or ANITA of standard neutrino events above this threshold would disprove the scenario.
Hoehner, Christine M.; Hallal, Pedro C.; Reis, Rodrigo S.; Simoes, Eduardo J.; Malta, Deborah C.; Pratt, Michael; Brownson, Ross C.
2013-01-01
The global health burden due to physical inactivity is enormous and growing. There is a need to consider new ways of generating evidence and to identify the role of government in promoting physical activity at the population level. In this paper, we summarize key findings from a large-scale cross-national collaboration to understand physical activity promotion in Brazil. We describe the main aspects of the partnership of Project GUIA (Guide for Useful Interventions for Activity in Brazil and Latin America) that sustained the collaborative effort for eight years and describe how the evidence gathered from the collaboration triggered political action in Brazil to scale up a physical activity intervention at the national level. Project GUIA is a cross-national multidisciplinary research partnership designed to understand and evaluate current efforts for physical activity promotion at the community level in Latin America. This example of scaling up is unprecedented for promoting health in the region and is an example that must be followed and evaluated. PMID:24323944
Quasi-Classical dynamical determination of the Basic Planck Units and fine structure constant
Vladan Pankovic; Darko V. Kapor
2012-11-15
In this work all basic Planck units (Planck mass, Planck length, Planck time and Planck electrical charge) and some derived Planck units (Planck force and Planck energy) are exactly determined by solution of a simple system of quasi-classical (Bohr-Sommerfeld) quantum dynamical equations. Also we determine approximately, but with high accuracy, fine structure constant using typical quasi classical methods in a crystal lattice structure.
TIDWELL,VINCENT C.; WILSON,JOHN L.
2000-04-20
Over 75,000 permeability measurements were collected from a meter-scale block of Massillon sandstone, characterized by conspicuous cross bedding that forms two distinct nested-scales of heterogeneity. With the aid of a gas minipermeameter, spatially exhaustive fields of permeability data were acquired at each of five different sample supports (i.e. sample volumes) from each block face. These data provide a unique opportunity to physically investigate the relationship between the multi-scale cross-stratified attributes of the sandstone and the corresponding statistical characteristics of the permeability. These data also provide quantitative physical information concerning the permeability upscaling of a complex heterogeneous medium. Here, a portion of the data taken from a single block face cut normal to stratification is analyzed. Results indicate a strong relationship between the calculated summary statistics and the cross-stratified structural features visible evident in the sandstone sample. Specifically, the permeability fields and semivariograms are characterized by two nested scales of heterogeneity, including a large-scale structure defined by the cross-stratified sets (delineated by distinct bounding surfaces) and a small-scale structure defined by the low-angle cross-stratification within each set. The permeability data also provide clear evidence of upscaling. That is, each calculated summary statistic exhibits distinct and consistent trends with increasing sample support. Among these trends are an increasing mean, decreasing variance, and an increasing semivariogram range. Results also clearly indicate that the different scales of heterogeneity upscale differently, with the small-scale structure being preferentially filtered from the data while the large-scale structure is preserved. Finally, the statistical and upscaling characteristics of individual cross-stratified sets were found to be very similar owing to their shared depositional environment; however, some differences were noted that are likely the result of minor variations in the sediment load and/or flow conditions between depositional events.
The ellipsoidal universe in the Planck satellite era
NASA Astrophysics Data System (ADS)
Cea, Paolo
2014-06-01
Recent Planck data confirm that the cosmic microwave background displays the quadrupole power suppression together with large-scale anomalies. Progressing from previous results, that focused on the quadrupole anomaly, we strengthen the proposal that the slightly anisotropic ellipsoidal universe may account for these anomalies. We solved at large scales the Boltzmann equation for the photon distribution functions by taking into account both the effects of the inflation produced primordial scalar perturbations and the anisotropy of the geometry in the ellipsoidal universe. We showed that the low quadrupole temperature correlations allowed us to fix the eccentricity at decoupling, edec = (0.86 ± 0.14) 10-2, and to constraint the direction of the symmetry axis. We found that the anisotropy of the geometry of the universe contributes only to the large-scale temperature anisotropies without affecting the higher multipoles of the angular power spectrum. Moreover, we showed that the ellipsoidal geometry of the universe induces sizeable polarization signal at large scales without invoking the reionization scenario. We explicitly evaluated the quadrupole TE and EE correlations. We found an average large-scale polarization ?Tpol = (1.20 ± 0.38) ?K. We point out that great care is needed in the experimental determination of the large-scale polarization correlations since the average temperature polarization could be misinterpreted as foreground emission leading, thereby, to a considerable underestimate of the cosmic microwave background polarization signal.
Monitoring Physical and Biogeochemical Dynamics of Uranium Bioremediation at the Intermediate Scale
NASA Astrophysics Data System (ADS)
Tarrell, A. N.; Figueroa, L. A.; Rodriguez, D.; Haas, A.; Revil, A.
2011-12-01
Subsurface uranium above desired levels for aquifer use categories exists naturally and from historic mining and milling practices. In situ bioimmobilization offers a cost effective alternative to conventional pump and treat methods by stimulating growth of microorganisms that lead to the reduction and precipitation of uranium. Vital to the long-term success of in situ bioimmobilization is the ability to successfully predict and demonstrate treatment effectiveness to assure that regulatory goals are met. However, successfully monitoring the progress over time is difficult and requires long-term stewardship to ensure effective treatment due to complex physical and biogeochemical heterogeneity. In order to better understand these complexities and the resultant effect on uranium immobilization, innovative systematic monitoring approaches with multiple performance indicators must be investigated. A key issue for uranium bioremediation is the long term stability of solid-phase reduction products. It has been shown that a combination of data from electrode-based monitoring, self-potential monitoring, oxidation reduction potential (ORP), and water level sensors provides insight for identifying and localizing bioremediation activity and can provide better predictions of deleterious biogeochemical change such as pore clogging. In order to test the proof-of-concept of these sensing techniques and to deconvolve redox activity from other electric potential changing events, an intermediate scale 3D tank experiment has been developed. Well-characterized materials will be packed into the tank and an artificial groundwater will flow across the tank through a constant-head boundary. The experiment will utilize these sensing methods to image the electrical current produced by bacteria as well as indications of when and where electrical activity is occurring, such as with the reduction of radionuclides. This work will expand upon current knowledge by exploring the behavior of uranium bioremediation at an intermediate scale, as well as examining the effects from introducing a flow field in a laboratory setting. Data collected from this experiment will help further characterize which factors are contributing to current increases. Additional information concerning the effect of geochemical changes in porosity may also be observed. The results of this work will allow the creation of a new data set collected from a more comprehensive laboratory monitoring network and will allow stakeholders to develop effective decision-making tools on the long-term remediation management at uranium contaminated sites. The data will also aid in the long-term prediction abilities of a reactive transport models. As in situ bioremediation offers a low cost alternative to ex situ treatment methods, the results of this work will help to both reduce cost at existing sites and enable treatment of sites that otherwise have no clear solution.
ERIC Educational Resources Information Center
Schaffhauser, Dian
2009-01-01
The common approach to scaling, according to Christopher Dede, a professor of learning technologies at the Harvard Graduate School of Education, is to jump in and say, "Let's go out and find more money, recruit more participants, hire more people. Let's just keep doing the same thing, bigger and bigger." That, he observes, "tends to fail, and fail…
The observational status of Galileon gravity after Planck
Barreira, Alexandre; Li, Baojiu; Baugh, Carlton M.; Pascoli, Silvia E-mail: baojiu.li@durham.ac.uk E-mail: silvia.pascoli@durham.ac.uk
2014-08-01
We use the latest CMB data from Planck, together with BAO measurements, to constrain the full parameter space of Galileon gravity. We constrain separately the three main branches of the theory known as the Cubic, Quartic and Quintic models, and find that all yield a very good fit to these data. Unlike in ?CDM, the Galileon model constraints are compatible with local determinations of the Hubble parameter and predict nonzero neutrino masses at over 5? significance. We also identify that the low l part of the CMB lensing spectrum may be able to distinguish between ?CDM and Galileon models. In the Cubic model, the lensing potential deepens at late times on sub-horizon scales, which is at odds with the current observational suggestion of a positive ISW effect. Compared to ?CDM, the Quartic and Quintic models predict less ISW power in the low l region of the CMB temperature spectrum, and as such are slightly preferred by the Planck data. We illustrate that residual local modifications to gravity in the Quartic and Quintic models may render the Cubic model as the only branch of Galileon gravity that passes Solar System tests.
DBI Galileon inflation in the light of Planck 2015
K. Sravan Kumar; Celia Escamilla-Rivera; Juan C. Bueno Sanchez; Paulo Vargas Moniz; Joao Marto
2015-07-14
In this work we consider a DBI Galileon (DBIG) inflationary model and constrain its parameter space with the Planck 2015 and BICEP2/Keck array and Planck (BKP) joint analysis data by means of a potential independent analysis. We focus our attention on inflationary solutions characterized by a constant or varying sound speed as well as warp factor. We impose bounds on stringy aspects of the model, such as the warp factor $\\left(f\\right)$ and the induced gravity parameter $\\left(\\tilde{m}\\right)$. We find that inflation happens at the GUT scale with $r=\\mathcal{O}\\left(10^{-3}\\right)$. In addition, we obtain the tilt of the tensor power spectrum and test the standard inflationary consistency relation $\\left(r\\simeq-8n_{t}\\right)$ against the latest bounds from the combined results of BKP+Laser Interferometer Gravitational-Waves Observatory (LIGO), and find that DBIG inflation predicts a red spectral index for the tensor power spectrum.
The gas content of dark halos as revealed by Planck
NASA Astrophysics Data System (ADS)
White, Simon
2015-08-01
It has been known for some time that the observed baryon content of dark halos falls well short of the global cosmic baryon fraction in all but the most massive cluster halos. Stacking of the Planck Sunyaev-Zeldovich signal around Locally Brightest Galaxies appears, however, to have detected all the baryons associated with the dark halos of these galaxies in the form of hot gas. I will present X-ray detections for these same stacks of galaxies which extend to much smaller halos the strong scaling with halo mass seen in earlier studies of groups and clusters. These seemingly contradictory results can be reconciled in models where halo gas is strongly heated by AGN and so is substantially less concentrated in lower mass halos. I will also present weak lensing results which demonstrate that the mean halo masses of Locally Brightest Galaxies are indeed precisely those assumed in interpreting the ZZ and X-ray data. Together these results confirm that Planck has indeed seen all the expected baryons associated with halos more massive than those of galaxies like M31.
Planck and the local Universe: Quantifying the tension
NASA Astrophysics Data System (ADS)
Verde, Licia; Protopapas, Pavlos; Jimenez, Raul
2013-09-01
We use the latest Planck constraints, and in particular constraints on the derived parameters (Hubble constant and age of the Universe) for the local universe and compare them with local measurements of the same quantities. We propose a way to quantify whether cosmological parameters constraints from two different experiments are in tension or not. Our statistic, T, is an evidence ratio and therefore can be interpreted with the widely used Jeffrey’s scale. We find that in the framework of the ?CDM model, the Planck inferred two dimensional, joint, posterior distribution for the Hubble constant and age of the Universe is in “strong” tension with the local measurements; the odds being ˜1:50. We explore several possibilities for explaining this tension and examine the consequences both in terms of unknown errors and deviations from the ?CDM model. In some one-parameter ?CDM model extensions, tension is reduced whereas in other extensions, tension is instead increased. In particular, small total neutrino masses are favored and a total neutrino mass above 0.15 eV makes the tension “highly significant” (odds ˜1:150). A consequence of accepting this interpretation of the tension is that the degenerate neutrino hierarchy is highly disfavored by cosmological data and the direct hierarchy is slightly favored over the inverse.
Axion hot dark matter bounds after Planck
Archidiacono, Maria; Hannestad, Steen; Mirizzi, Alessandro; Raffelt, Georg; Wong, Yvonne Y.Y. E-mail: sth@phys.au.dk E-mail: raffelt@mpp.mpg.de
2013-10-01
We use cosmological observations in the post-Planck era to derive limits on thermally produced cosmological axions. In the early universe such axions contribute to the radiation density and later to the hot dark matter fraction. We find an upper limit m{sub a} < 0.67 eV at 95% C.L. after marginalising over the unknown neutrino masses, using CMB temperature and polarisation data from Planck and WMAP respectively, the halo matter power spectrum extracted from SDSS-DR7, and the local Hubble expansion rate H{sub 0} released by the Carnegie Hubble Program based on a recalibration of the Hubble Space Telescope Key Project sample. Leaving out the local H{sub 0} measurement relaxes the limit somewhat to 0.86 eV, while Planck+WMAP alone constrain the axion mass to 1.01 eV, the first time an upper limit on m{sub a} has been obtained from CMB data alone. Our axion limit is therefore not very sensitive to the tension between the Planck-inferred H{sub 0} and the locally measured value. This is in contrast with the upper limit on the neutrino mass sum, which we find here to range from ? m{sub ?} < 0.27 eV at 95% C.L. combining all of the aforementioned observations, to 0.84 eV from CMB data alone.
Max-Planck-Institut fur Mathematik
the spin Hall effect in light; Dixon et al. [10] apply the weak measurement to detect very small transverseMax-Planck-Institut f¨ur Mathematik in den Naturwissenschaften Leipzig Super quantum correlation, and Zhi-Xi Wang Preprint no.: 11 2014 #12;#12;Super quantum correlation and geometry for Bell
Max-Planck-Gesellschaft zur Frderung
Hell, Stefan W.
Lehrbüchern der Zellbiologie. Marcus Dyba und Stefan Hell vom Göttinger Max-Planck-Institut für Review Letters, 22. April 2002). Sie kombinierten dazu zwei von Hell bereits früher erfundene hat sich die Arbeitsgruppe ,Hochauflösende Optische Mikroskopie' um Stefan Hell am Max
Max-Planck-Institut f ur Mathematik
Max-Planck-Institut fË? ur Mathematik in den Naturwissenschaften Leipzig Documentation for the HDD method by Alexander Litvinenko Technical Report no.: 5 2006 #12; #12; Documentation for the HDD Method A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 Other Important Algorithms 13 4.1 Generation of a Hierarchy of Grids
Max-Planck-Institut fur Mathematik
frequencies of two alleles at a diploid locus under random genetic drift in a population of fixed size in its one can easily derive all the essential properties of this random genetic drift process from our Random genetic drift Á WrightFisher model Á FokkerPlanck equation Introduction In population genetics
Max-Planck-Institut fur Mathematik
Max-Planck-Institut fÂ¨ur Mathematik in den Naturwissenschaften Leipzig Decomposition of Monomial.: 32 2012 #12;#12;DECOMPOSITION OF MONOMIAL ALGEBRAS: APPLICATIONS AND ALGORITHMS JANKO BÂ¨OHM, DAVID semigroup rings over a field K we have developed in [1] an algorithm to decompose K[B] as a direct sum
Max-Planck-Institut fur Mathematik
Max-Planck-Institut fÂ¨ur Mathematik in den Naturwissenschaften Leipzig Decomposition of semigroup no.: 67 2011 #12;#12;DECOMPOSITION OF SEMIGROUP ALGEBRAS JANKO BÂ¨OHM, DAVID EISENBUD, AND MAX J that the semigroup ring R[B] can be decomposed, as an R[A]-module, into a direct sum of R
Max-Planck-Institut fur Mathematik
Hackbusch, Wolfgang
-Planck-Institute for Mathematics in the Sciences, Inselstraße 22-26, D-04103 Leipzig b Department of Mechanical Engineering.15.Ap, 31.15.E-, 31.15.xt, 02.60-x 2000 MSC: 81-08, 65Y20, 68P05, 15A23 1. Introduction In this article
Max-Planck-Institut fur Mathematik
corresponds to a worst-case analysis. The ideas from this pa- per can also be used to study the expectation State University, University Park, PA 16802, USA, gfm10@psu.edu, 2 Max Planck Institute for Mathematics Park Road, Santa Fe, NM 87501, USA. Abstract. We review recent results about the maximal values
Max-Planck-Institut fur Mathematik
.65.-w I. INTRODUCTION Quantum entanglement, as the remarkable nonlocal feature of quantum mechanics, with various applications such as quantum computation [1, 2], quantum teleportation [3], dense coding [4Max-Planck-Institut fÂ¨ur Mathematik in den Naturwissenschaften Leipzig Quantum Separability
Max-Planck-Institut fur Mathematik
of quantum discord (NGMQD) display similar behavior. There is no sudden death and sudden birthMax-Planck-Institut f¨ur Mathematik in den Naturwissenschaften Leipzig Dynamics of quantum #12;#12;Noname manuscript No. (will be inserted by the editor) Dynamics of quantum correlations
Max-Planck-Institut fur Mathematik
cost increases. To overcome this difficulty, one applies tensor truncations (from higher representation of tensor spaces are spaces of functions defined on the d-fold Cartesian product := 1 Ã? . . . Ã? d, where, eMax-Planck-Institut fÂ¨ur Mathematik in den Naturwissenschaften Leipzig L estimation of tensor
Doscher, T M
1980-12-01
Scaling laws of the heat transport mechanism in steam displacement processes are developed based upon an integral energy balance equation. Unlike the differential approach adopted by previous workers, the above scaling laws do not necessitate the use of any empirical correction factor as has been done in previous scaling calculations. The results provide a complete and consistent scale-down of the energy transport behavior, which is the critical mechanism for the success of a steam injection process. In the course of the study, the scaling problems associated with relative permeability and capillary pressure are also discussed. A method which has often been used in scaling nonthermal displacement processes is applied to reduce errors due to scaling in relative permeability. Both dimensional and inspectional analyses are applied to illustrate their use in steam processes. Scale-up laws appeared in the literature and those used in this study are compared and numerical examples are given.
Modified dispersion relations and black hole physics
Ling Yi; Li Xiang [Center for Gravity and Relativity, Department of Physics, Nanchang University, 330047 (China); CCAST (World Laboratory), P.O. Box 8730, Beijing 100080 (China); Hu Bo [Center for Gravity and Relativity, Department of Physics, Nanchang University, 330047 (China)
2006-04-15
A modified formulation of the energy-momentum relation is proposed in the context of doubly special relativity. We investigate its impact on black hole physics. It turns out that such a modification will give corrections to both the temperature and the entropy of black holes. In particular, this modified dispersion relation also changes the picture of Hawking radiation greatly when the size of black holes approaches the Planck scale. It can prevent black holes from total evaporation, as a result providing a plausible mechanism to treat the remnant of black holes as a candidate for dark matter.
Quantum Signature of Cosmological Large Scale Structures
Salvatore Capozziello; Salvatore De Martino; Silvio De Siena; Fabrizio Illuminati
1998-09-17
We demonstrate that to all large scale cosmological structures where gravitation is the only overall relevant interaction assembling the system (e.g. galaxies), there is associated a characteristic unit of action per particle whose order of magnitude coincides with the Planck action constant $h$. This result extends the class of physical systems for which quantum coherence can act on macroscopic scales (as e.g. in superconductivity) and agrees with the absence of screening mechanisms for the gravitational forces, as predicted by some renormalizable quantum field theories of gravity. It also seems to support those lines of thought invoking that large scale structures in the Universe should be connected to quantum primordial perturbations as requested by inflation, that the Newton constant should vary with time and distance and, finally, that gravity should be considered as an effective interaction induced by quantization.
Evolving Planck Constant Measurements into the SI Kilogram Standard
NASA Astrophysics Data System (ADS)
Steiner, Richard
2012-02-01
This is a very brief 100 year history of measuring 2e/h (pre-and post-Josephson), with a little on e^2/h (quantum Hall Effect, QHE), and then on to a direct measure of Planck constant h, where the watt balance technique combines four basic standards, i.e., physical constants of time, length, voltage, and resistance into a mass redefinition. There are parallels between old and new controversies. In the 1970's and 80's the controversy was in the changeover from standard cells to the Josephson effect as voltage reference. A slightly similar and briefer one concerned the ohm and QHE. Today's discussion is about changing definitions from an artifact mass standard to the Planck constant (or Avogadro constant) using the different methods as realization. The mass redefinition concerns are two orders of magnitude down from those of voltage, and the discrepancies between h are probably more systemic rather than artifact related (or not) as compared to the Josephson effect testing. This shows how far electronic metrology has progressed but also that is it not completed research. The conclusion summarizes the latest efforts on the watt balances.
NASA Astrophysics Data System (ADS)
Olson, Joseph; Grell, Georg
2014-05-01
Model development at NOAA/GSD spans a wide range of spatial scales: global scale (Flow-following finite-volume Icosohedral Model, FIM; 10-250 km grid spacing), continental scale (RAP; 13 km grid spacing), CONUS scale (HRRR; 3 km grid spacing), and regional modeling (experimental nesting at 1 km grid spacing over complex terrain). As the model resolution changes, the proportion of resolved vs unresolved physical processes changes; therefore, physical parameterizations need to adapt to different model resolutions to more accurately handle the unresolved processes. The Limited Area Model (LAM) component of the Grey Zone Experiment was designed to assess the change in behavior of numerical weather prediction models between 16 and 1 km by simulating a cold-air outbreak over the North Atlantic and North Sea. The RAP and HRRR model physics were tested in this case study in order to examine the change in behavior of the model physics at 16, 8, 4, 2, and 1 km grid spacings with and without the use a convective parameterization. The primary purpose of these tests is to better understand the change in behavior of the boundary layer and convective schemes across the grey zone, such that further targeted modifications can then help improve general performance at various scales. The RAP currently employs a modified form of the Mellor-Yamada-Nakanishi-Niino (MYNN) PBL scheme, which is an improved TKE-based scheme tuned to match large-eddy simulations. Modifications have been performed to better match observations at 13 km (RAP) grid spacing but more multi-scale testing is required before modifications are introduced to make it scale-aware. A scale-aware convective parameterization, the Grell-Freitas scheme (both deep- and shallow-cumulus scheme), has been developed to better handle the transition in behavior of the sub-grid scale convective processes through the grey zone. This study examines the change in behavior of both schemes across the grey zone. Their transitional behavior is characterized and strategies to improve each scheme are explored. Further tests are performed to elucidate the impacts of specific model configurations and parameters that may improve weather prediction across the grey zone.
Planck’s constant measurement by Landauer quantization for student laboratories
NASA Astrophysics Data System (ADS)
Damyanov, Desislav S.; Pavlova, Iliana N.; Ilieva, Simona I.; Gourev, Vassil N.; Yordanov, Vasil G.; Mishonov, Todor M.
2015-09-01
A simple experimental setup for measuring Planck’s constant, using Landauer quantization of the conductance between touching gold wires, is described. It consists of two gold wires with thickness of 500 ? {{m}} and 1.5 {cm} length, and an operational amplifier. The setup costs less than 30 and can be realized in every teaching laboratory in two weeks. The use of an oscilloscope is required.
Evolution of large-scale plasma structures in comets: Kinematics and physics
NASA Technical Reports Server (NTRS)
Brandt, John C.
1993-01-01
Cometary and solar wind data from December 1985 through April 1986 are presented for the purpose of determining the solar wind conditions associated with comet plasma tail disconnection events (DE's). The cometary data are from The International Halley Watch Atlas of Large-Scale Phenomena (Brandt, Niedner, and Rahe, 1992). In addition, we present the kinematic analysis of 4 DE's, those of Dec. 13.5 and 31.2, 1985, and Feb. 21.7 and 28.7, 1986. The circumstances of these DE's clearly illustrate the need to analyze DE's in groups. In situ solar wind measurements from IMP-8, ICE, and PVO were used to construct the variation of solar wind speed, density, and dynamic pressure during this interval. Data from these same spacecraft plus Vega-1 were used to determine the time of 48 current sheet crossings. These data were fitted to heliospheric current sheet curves extrapolated from the corona into the heliosphere in order to determine the best-fit source surface radius for each Carrington rotation. Comparison of the solar wind conditions and 16 DE's in Halley's comet (the four DE's discussed in this paper and 12 DE's in the literature) leaves little doubt that DE's are associated primarily with crossings of the heliospheric current sheet and apparently not with any other property of the solar wind. If we assume that there is a single or primary physical mechanism and that Halley's DE's are representative, efforts at simulation should concentrate on conditions at current sheet crossings. The mechanisms consistent with this result are sunward magnetic reconnection and tailward magnetic reconnection, if tailward reconnection can be triggered by the sector boundary crossing.
NASA Astrophysics Data System (ADS)
Bracco, Andrea; André, Philippe; Boulanger, Francois
2015-08-01
The recent Planck results in polarization at sub-mm wavelengths allow us to gain insight into the Galactic magnetic field topology, revealing its statistical correlation with matter, from the diffuse interstellar medium (ISM), to molecular clouds (MCs) (Planck intermediate results. XXXII, XXXIII, XXXV). This correlation has a lot to tell us about the dynamics of the turbulent ISM, stressing the importance of considering magnetic fields in the formation of structures, some of which eventually undergo gravitational collapse producing new star-forming cores.Investigating the early phases of star formation has been a fundamental scope of the Herschel Gould Belt survey collaboration (http://gouldbelt-herschel.cea.fr), which, in the last years, has thoroughly characterized, at a resolution of few tens of arcseconds, the statistics of MCs, such as their filamentary structure, kinematics and column density.Although at lower angular resolution, the Planck maps of dust emission at 353GHz, in intensity and polarization, show that all MCs are complex environments, where we observe a non-trivial correlation between the magnetic field and their density structure. This result opens new perspectives on their formation and evolution, which we have started to explore.In this talk, I will present first results of a comparative analysis of the Herschel-Planck data, where we combine the high resolution Herschel maps of some MCs of the Gould Belt with the Planck polarization data, which sample the structure of the field weighted by the density.In particular, I will discuss the large-scale envelopes of the selected MCs, and, given the correlation between magnetic field and matter, I will show how to make use of the high resolution information of the density structure provided by Herschel to investigate the statistics of interstellar magnetic fields in the Planck data.
Molecular Environments of 51 Planck Cold Clumps in the Orion Complex
NASA Astrophysics Data System (ADS)
Liu, Tie; Wu, Yuefang; Zhang, Huawei
2012-09-01
A mapping survey of 51 Planck cold clumps projected on the Orion complex was performed with J = 1-0 lines of 12CO and 13CO with the 13.7 m telescope at the Purple Mountain Observatory. The mean column densities of the Planck gas clumps range from 0.5 to 9.5 × 1021 cm-2, with an average value of (2.9 ± 1.9) × 1021 cm-2. The mean excitation temperatures of these clumps range from 7.4 to 21.1 K, with an average value of 12.1 ± 3.0 K and the average three-dimensional velocity dispersion ?3D in these molecular clumps is 0.66 ± 0.24 km s-1. Most of the clumps have ?NT larger than or comparable to ?Therm. The H2 column density of the molecular clumps calculated from molecular lines correlates with the aperture flux at 857 GHz of the dust emission. By analyzing the distributions of the physical parameters, we suggest that turbulent flows can shape the clump structure and dominate their density distribution on large scales, but not function on small scales due to local fluctuations. Eighty-two dense cores are identified in the molecular clumps. The dense cores have an average radius and local thermal equilibrium (LTE) mass of 0.34 ± 0.14 pc and 38+5 - 30 M?, respectively. The structures of low column density cores are more affected by turbulence, while the structures of high column density cores are more affected by other factors, especially by gravity. The correlation of velocity dispersion versus core size is very weak for the dense cores. The dense cores are found to be most likely gravitationally bounded rather than pressure confined. The relationship between M vir and M LTE can be well fitted with a power law. The core mass function here is much flatter than the stellar initial mass function. The lognormal behavior of the core mass distribution is most likely determined by internal turbulence.
The Development and Validation of the Physical Self-Concept Scale for Older Adults
ERIC Educational Resources Information Center
Hsu, Ya-Wen; Lu, Frank Jing-Horng
2013-01-01
Physical self-concept plays a central role in older adults' physical health, mental health and psychological well-being; however, little attention has been paid to the underlying dimensions of physical self-concept in the elderly. The purpose of this study was to develop and validate a new measurement for older adults. First, a qualitative…
Kerner, Matthew S; Kalinski, Michael I
2002-08-01
Using the Theory of Planned Behavior as a framework, the Attitude to Leisure-time Physical Activity, Expectations of Others, Perceived Control, and Intention of Engage in Leisure-time Physical Activity scales were developed for use among high school students. The study population included 20 boys and 68 girls 13 to 17 years of age (for boys, M = 15.1 yr., SD = 1.0; for girls, M = 15.0 yr., SD = 1.1). Generation of items and the establishment of content validity were performed by professionals in exercise physiology, physical education, and clinical psychology. Each scale item was phrased in a Likert-type format. Both unipolar and bipolar scales with seven response choices were developed. Following the pilot testing and subsequent revisions, 32 items were retained in the Attitude to Leisure-time Physical Activity scale, 10 items were retained in the Expectations of Others scale, 3 items were retained in the Perceived Control Scale, and 24 items were retained in the Intention to Engage in Leisure-time Physical Activity scale. Coefficients indicated adequate stability and internal consistency with alpha ranging from .81 to .96. Studies of validities are underway, after which scales would be made available to those interested in intervention techniques for promoting positive attitudes toward physical fitness, perception of control over engaging in leisure-time physical activities, and good intentions to engage in leisure-time physical activities. The present results are encouraging. PMID:12365245
A Discussion on Possible Effects of the Barbero-Immirzi Parameter at the TeV-scale Particle Physics
Nelson Panza; Hilário Rodrigues; Denis Cocuroci; José Abdala Helayël-Neto
2014-11-21
In this paper, we analyse a curvature- and torsion-square quantum gravity action with an additional Holst term minimally coupled to a massive Dirac field in four dimensions. The main purpose here is to try to estimate and compare the value of the Barbero-Immirzi (BI) parameter with its currently known results. To do that, we work out the physical mass of the fermion as a function of this parameter in a perturbative one-loop calculation, assuming the scenario of a physics at the TeV-scale.
A Discussion on Possible Effects of the Barbero-Immirzi Parameter at the TeV-scale Particle Physics
Panza, Nelson; Cocuroci, Diego; Helayël-Neto, José Abdala
2014-01-01
In this paper, we analyse a curvature-and torsion-square quantum gravity action with an additional Holst term minimally coupled to a massive Dirac field in four dimensions. The main purpose here is to try to estimate and compare the value of the Barbero-Immirzi (BI) parameter with its currently known results. To do that, we work out the physical mass of the fermion as a function of this parameter in a perturbative one-loop calculation, assuming the scenario of a physics at the TeV-scale.
Stanchev, Orlin; Kauffmann, Jens; Donkov, Sava; Shetty, Rahul; Körtgen, Bastian; Klessen, Ralf S
2015-01-01
We present an analysis of probability distribution functions (pdfs) of column density in different zones of the star-forming region Perseus and its diffuse environment based on the map of dust opacity at 353 GHz available from the Planck archive. The pdf shape can be fitted by a combination of a lognormal function and an extended power-law tail at high densities, in zones centred at the molecular cloud Perseus. A linear combination of several lognormals fits very well the pdf in rings surrounding the cloud or in zones of its diffuse neighbourhood. The slope of the mean density scaling law $\\langle\\rho\\rangle_L \\propto L^\\alpha$ is steep ($\\alpha=-1.93$) in the former case and rather shallow ($\\alpha=-0.77\\pm0.11$) in the rings delineated around the cloud. We interpret these findings as signatures of two distinct physical regimes: i) a gravoturbulent one which is characterized by nearly linear scaling of mass and practical lack of velocity scaling; and ii) a predominantly turbulent one which is best described ...
Murray Gibson
2007-04-27
Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).
Murray Gibson
2010-01-08
Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain ? a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).
NASA Astrophysics Data System (ADS)
Cianfrani, C. M.; Sullivan, S. P.; Hession, W. C.; Watzin, M. C.
2006-05-01
Twenty-five independent stream reaches in northwestern Vermont, USA spanning a range of geomorphic conditions were surveyed to determine the effects of land use and physical habitat on fish community diversity at multiple spatial scales including watershed, local riparian, and in-stream. Watershed-scale parameters were evaluated using a geographic information system (GIS) and the Soil and Water Assessment Tool (SWAT) watershed modeling software. Riparian vegetation was surveyed and classified in the field. In-stream physical characteristics were assessed using rapid geomorphic and rapid habitat assessments. Detailed in-stream geomorphic surveys and habitat assessments were also completed to provide quantitative data for each site. In-stream physical habitat was classified as having either predominantly pool-riffle type or comprised of multiple channel types. Fish were sampled using a bag seine at three to four locations selected to represent major flow habitats. Three fish community diversity measures were calculated: 1) Species richness (S); Shannon-Weaver Index (H'); and Simpson's Index (1/D). Analysis of variance (ANOVA), principal components analysis (PCA), and multiple regression were used to assess the relative importance of and the relationships between and among land use/physical habitat type and fish community diversity. Watershed scale land use was found to be a significant predictor of fish community diversity. Further, fish community diversity was higher for all three measures in streams with multiple channel types as compared to predominantly pool-riffle streams. Our results suggest that sampling strategies for fish (and potentially other biota) that focus on homogeneous reaches may underestimate diversity. In order to address these issues, comprehensive watershed management and restoration/protection plans should include assessment at multiple scales from a geomorphological, watershed, and ecological perspective.
NASA Astrophysics Data System (ADS)
Vihma, T.; Pirazzini, R.; Renfrew, I. A.; Sedlar, J.; Tjernström, M.; Nygård, T.; Fer, I.; Lüpkes, C.; Notz, D.; Weiss, J.; Marsan, D.; Cheng, B.; Birnbaum, G.; Gerland, S.; Chechin, D.; Gascard, J. C.
2013-12-01
The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007-2008, significant advances have been made in understanding these processes. Here these advances are reviewed, synthesized and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal and fjordic processes, as well as in boundary-layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of super-imposed ice and snow ice, and the small-scale dynamics of sea ice. In the ocean, significant advances have been related to exchange processes at the ice-ocean interface, diapycnal mixing, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave-turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice-ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but challenge is to understand their interactions with, and impacts and feedbacks on, other processes. Uncertainty in the parameterization of small-scale processes continues to be among the largest challenges facing climate modeling, and nowhere is this more true than in the Arctic. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.
NASA Astrophysics Data System (ADS)
Vihma, T.; Pirazzini, R.; Fer, I.; Renfrew, I. A.; Sedlar, J.; Tjernström, M.; Lüpkes, C.; Nygård, T.; Notz, D.; Weiss, J.; Marsan, D.; Cheng, B.; Birnbaum, G.; Gerland, S.; Chechin, D.; Gascard, J. C.
2014-09-01
The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007-2009, significant advances have been made in understanding these processes. Here, these recent advances are reviewed, synthesized, and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal, and fjordic processes as well as in boundary layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of superimposed ice and snow ice, and the small-scale dynamics of sea ice. For the ocean, significant advances have been related to exchange processes at the ice-ocean interface, diapycnal mixing, double-diffusive convection, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave-turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice-ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but the challenge is to understand their interactions with and impacts and feedbacks on other processes. Uncertainty in the parameterization of small-scale processes continues to be among the greatest challenges facing climate modelling, particularly in high latitudes. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.
Gresswell, Robert E.; Liss, W.J.; Larson, Gary L.; Bartlein, P.J.
1997-01-01
Individual spawning populations of Yellowstone cutthroat trout Oncorhynchus clarki bouvieri differ in life history characteristics associated with broad spatial and temporal environmental patterns, but relationships between specific life history characteristics of Yellowstone cutthroat trout and physical aspects of the environment are poorly understood. We examined basin-scale physical characteristics of tributary drainages and subbasins of Yellowstone Lake in relation to timing (peak and duration) of lacustrinea??adfluvial Yellowstone cutthroat trout spawning migrations and mean length of cutthroat trout spawners in 27 tributaries to the lake. Stream drainages varied along gradients that can be described by mean aspect, mean elevation, and drainage and stream size. Approximately two-thirds of the variation in the timing of the peak of the annual cutthroat trout spawning migrations and average length of spawners was explained by third-order polynomial regressions with mean aspect and basin area as predictor variables. Because most cutthroat trout ascend tributaries soon after peak runoff, it appears that the influence of basin-scale physical variables on the date of the migration peak is manifested by the pattern of stream discharge. Spawner length does not seem to be a direct function of stream size in the Yellowstone Lake watershed, and aspect of the tributary basin seems to have a greater influence on the body length of cutthroat trout spawners than does stream size. Mechanisms that explain how the interaction of basin-scale physical variables influence spawner length were not investigated directly; however, we found evidence of distinct aggregations of cutthroat trout that are related to physical and limnological characteristics of the lake subbasins, and there is some indication that lake residence may be related to tributary location.
Wettlaufer, John S.
2011-01-01
PHYSICAL REVIEW E 83, 021402 (2011) Particle-scale structure in frozen colloidal suspensions from, New Haven, Connecticut 06520, USA S. G. J. Mochrie Department of Physics, Yale University, New Haven, New Haven, Connecticut 06520, USA; Department of Physics, Yale University, New Haven, Connecticut
NASA Astrophysics Data System (ADS)
Tribbia, Joseph
2015-04-01
The problem of parameterization of physical process in large scale numerical models of the atmosphere has until recently focused upon modeling the 'average' or mean tendencies and the models developed for the average tendencies have been almost exclusively developed from idealized process models. Sub-grid physical processes have made little use of the observed spatial scaling structure in atmospheric turbulence in the development of parameterizations. This is complicated by the observation that the atmosphere has two distinct scaling ranges: -3 for planetary to synoptic wave numbers and -5/3 for mesoscale wave numbers and beyond. I will describe some efforts and strategies aimed at moving beyond the use of averaged process models for the computation of the sub-grid tendencies due to sub-grid effects of moist processes (precipitation and clouds). Stochastic fractal interpolation will be used to refine coarsely resolved field variables important for moist processes in order to investigate whether moist physics is necessary to explain the existence of the Nastrom-Gage -5/3 spectral range in atmospheric Kinetic energy or merely amplifies and maintains this spectrum in the atmospheric mesoscale and beyond.
Comparative examination of scale-explicit biological and physical processes: recruitment
, maintenance, and destruction of aquatic organism distributions result from biological and physical processes among larvae to somatic growth and active locomotion among juveniles. Comparison of hake rate diagrams
A 100-3000 GHz model of thermal dust emission observed by Planck, DIRBE and IRAS
NASA Astrophysics Data System (ADS)
Meisner, Aaron M.; Finkbeiner, Douglas P.
2015-01-01
We apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. This parametrization of the far-infrared dust spectrum as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody (MBB) dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We also derive full-sky 6.1' resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100?m data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.1' FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anistropy on small angular scales. We have recently released maps and associated software utilities for obtaining thermal dust emission and reddening predictions using our Planck-based two-component model.
Planck 2015 results. XV. Gravitational lensing
Ade, P A R; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartlett, J G; Bartolo, N; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Désert, F -X; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dunkley, J; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Fergusson, J; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Lesgourgues, J; Levrier, F; Lewis, A; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rowan-Robinson, M; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; White, M; Yvon, D; Zacchei, A; Zonca, A
2015-01-01
We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40 sigma), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator we detect lensing at a significance of 5 sigma. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40