These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Selected topics in Planck-scale physics  

E-print Network

We review a few topics in Planck-scale physics, with emphasis on possible manifestations in relatively low energy. The selected topics include quantum fluctuations of spacetime, their cumulative effects, uncertainties in energy-momentum measurements, and low energy quantum-gravity phenomenology. The focus is on quantum-gravity-induced uncertainties in some observable quantities. We consider four possible ways to probe Planck-scale physics experimentally: 1. looking for energy-dependent spreads in the arrival time of photons of the same energy from GRBs; 2. examining spacetime fluctuation-induced phase incoherence of light from extragalactic sources; 3. detecting spacetime foam with laser-based interferometry techniques; 4. understanding the threshold anomalies in high energy cosmic ray and gamma ray events. Some other experiments are briefly discussed. We show how some physics behind black holes, simple clocks, simple computers, and the holographic principle is related to Planck-scale physics. We also discuss a formulation of the Dirac equation as a difference equation on a discrete Planck-scale spacetime lattice, and a possible interplay between Planck-scale and Hubble-scale physics encoded in the cosmological constant (dark energy).

Y. Jack Ng

2003-05-15

2

Probing the Planck Scale in Low-Energy Atomic Physics  

NASA Astrophysics Data System (ADS)

Experiments in atomic physics have exceptional sensitivity to small shifts in energy in an atom, ion, or bound particle. They are particularly well suited to search for unique low-energy signatures of new physics, including effects that could originate from the Planck scale. A number of recent experiments have used CPT and Lorentz violation as a candidate signal of new physics originating from the Planck scale. A discussion of these experiments and their theoretical implications is presented.

Bluhm, R.

2002-02-01

3

Probing Planck-scale Physics with Extragalactic Sources?  

E-print Network

At Planck-scale, spacetime is "foamy" due to quantum fluctuations predicted by quantum gravity. Here we consider the possibility of using spacetime foam-induced phase incoherence of light from distant galaxies and gamma-ray bursters to probe Planck-scale physics. In particular, we examine the cumulative effects of spacetime fluctuations over a huge distance. Our analysis shows that they are far below what is required in this approach to shed light on the foaminess of spacetime.

Y. Jack Ng; W. A. Christiansen; H. van Dam

2003-05-26

4

Cosmological texture is incompatible with Planck-scale physics  

NASA Technical Reports Server (NTRS)

Nambu-Goldstone modes are sensitive to the effects of physics at energies comparable to the scale of spontaneous symmetry breaking. We show that as a consequence of this the global texture proposal for structure formation requires rather severe assumptions about the nature of physics at the Planck scale.

Holman, Richard; Hsu, Stephen D. H.; Kolb, Edward W.; Watkins, Richard; Widrow, Lawrence M.

1992-01-01

5

Planck Scale Physics, Pregeometry and the Notion of Time  

E-print Network

Recent progress in quantum gravity and string theory has raised interest among scientists to whether or not nature behaves discretely at the Planck scale. There are two attitudes twoards this discretenes i.e. top-down and bottom-up approach. We have followed up the bottom-up approach. Here we have tried to describe how macroscopic space-time or its underlying mesoscopic substratum emerges from a more fundamental concept. The very concept of space-time, causality may not be valid beyond Planck scale. We have introduced the concept of generalised time within the framework of Sheaf Cohomology where the physical time emrges around and above Planck scale. The possible physical amd metaphysical implications are discussed.

S. Roy

2003-11-04

6

The Robustness of Inflation to Changes in Super-Planck-Scale Physics  

Microsoft Academic Search

We calculate the spectrum of density fluctuations in models of inflation based on a weakly self-coupled scalar matter field minimally coupled to gravity, and specifically investigate the dependence of the predictions on modifications of the physics on length scales smaller than the Planck length. These modifications are encoded in terms of modified dispersion relations. Whereas for some classes of dispersion

Robert H. Brandenberger; Jérôme Martin

2001-01-01

7

Searching for Traces of Planck-Scale Physics with High Energy Neutrinos  

E-print Network

High energy cosmic neutrino observations provide a sensitive test of Lorentz invariance violation, which may be a consequence of quantum gravity theories. We consider a class of non-renormalizable, Lorentz invariance violating operators that arise in an effective field theory description of Lorentz invariance violation in the neutrino sector inspired by Planck-scale physics and quantum gravity models. We assume a conservative generic scenario for the redshift distribution of extragalactic neutrino sources and employ Monte Carlo techniques to describe superluminal neutrino propagation, treating kinematically allowed energy losses of superluminal neutrinos caused by both vacuum pair emission and neutrino splitting. We consider EFTs with both non-renormalizable CPT-odd and non-renormalizable CPT-even operator dominance. We then compare the spectra derived using our Monte Carlo calculations in both cases with the spectrum observed by IceCube in order to determine the implications of our results regarding Planck-scale physics. We find that if the drop off in the neutrino flux above ~2 PeV is caused by Planck scale physics, rather than by a limiting energy in the source emission, a potentially significant pileup effect would be produced just below the drop off energy in the case of CPT-even operator dominance. However, such a clear drop off effect would not be observed if the CPT-odd, CPT-violating term dominates.

Floyd W. Stecker; Sean T. Scully; Stefano Liberati; David Mattingly

2015-01-16

8

p-Adic physics below and above Planck scales  

E-print Network

We present a rewiew and also new possible applications of $p$-adic numbers to pre-spacetime physics. It is shown that instead of the extension $R^n\\to Q_p^n$, which is usually implied in $p$-adic quantum field theory, it is possible to build a model based on the $R^n\\to Q_p$, where p=n+2 extension and get rid of loop divergences. It is also shown that the concept of mass naturally arises in $p$-adic models as inverse transition probability with a dimensional constant of proportionality.

Mikhail V. Altaisky; B. G. Sidharth

1998-02-16

9

[Probing Planck-scale Physics with a Ne-21/He-3 Zeeman Maser  

NASA Technical Reports Server (NTRS)

The Ne-21/He-3 Zeeman maser is a recently developed device which employs co-located ensembles of Ne-21 and He-3 atoms to provide sensitive differential measurements of the noble gas nuclear Zeeman splittings as a function of time, thereby greatly attenuating common-mode systematic effects such as uniform magnetic field variations. The Ne-21 maser will serve as a precision magnetometer to stabilize the system's static magnetic field, while the He-3 maser is used as a sensitive probe for violations of CPT and Lorentz symmetry by searching for small variations in the 3He maser frequency as the spatial orientation of the apparatus changes due to the rotation of the Earth (or placement on a rotating table). In the context of a general extension of the Standard Model of particle physics, the Ne-21/He-3 maser will provide the most sensitive search to date for CPT and Lorentz violation of the neutron: better than 10(exp -32) GeV, an improvement of more than an order of magnitude over past experiments. This exceptional precision will offer a rare opportunity to probe physics at the Planck scale. A future space-based Ne-21/He-3 maser or related device could provide even greater sensitivity to violations of CPT and Lorentz symmetry, and hence to Planck-scale physics, because of isolation from dominant systematic effects associated with ground-based operation, and because of access to different positions in space-time.

2003-01-01

10

Lifetime of the electroweak vacuum and sensitivity to Planck scale physics  

NASA Astrophysics Data System (ADS)

If the Standard Model (SM) is valid up to extremely high energy scales, then the Higgs potential becomes unstable at approximately 1 011 GeV . However, calculations of the lifetime of the SM vacuum have shown that it vastly exceeds the age of the Universe. It was pointed out by two of us (V. B., E. M.) that these calculations are extremely sensitive to effects from Planck scale higher-dimensional operators and, without knowledge of these operators, firm conclusions about the lifetime of the SM vacuum cannot be drawn. The previous paper used analytical approximations to the potential and, except for Higgs contributions, ignored loop corrections to the bounce action. In this work, we do not rely on any analytical approximations and consider all contributions to the bounce action, confirming the earlier result. It is surprising that the Planck scale operators can have such a large effect when the instability is at 1 011 GeV . There are two reasons for the size of this effect. In typical tunneling calculations, the value of the field at the center of the critical bubble is much larger than the point of the instability; in the SM case, this turns out to be numerically within an order of magnitude of the Planck scale. In addition, tunneling is an inherently nonperturbative phenomenon and may not be as strongly suppressed by inverse powers of the Planck scale. We include effective ?6 and ?8 Planck-scale operators and show that they can have an enormous effect on the tunneling rate.

Branchina, Vincenzo; Messina, Emanuele; Sher, Marc

2015-01-01

11

High-energy cosmic rays and tests of basic principles of Physics. Looking at the Planck scale and beyond  

NASA Astrophysics Data System (ADS)

With the present understanding of data, the observed flux suppression for ultra-high energy cosmic rays (UHECR) at energies above 4.1019 eV can be a signature of the Greisen-Zatsepin-Kuzmin (GZK) cutoff or be related to a similar mechanism. But it may also correspond, for instance, to the maximum energies available at the relevant sources. In both cases, violations of special relativity modifying cosmic-ray propagation or acceleration at very high energy can potentially play a role. Other violations of fundamental principles of standard particle physics (quantum mechanics, energy and momentum conservation, vacuum homogeneity and "static" properties, effective space dimensions, quark confinement…) can also be relevant at these energies. In particular, UHECR data would in principle allow to set bounds on Lorentz symmetry violation (LSV) in patterns incorporating a privileged local reference frame (the "vacuum rest frame", VRF). But the precise analysis is far from trivial, and other effects can also be present. The effective parameters can be related to Planckscale physics, or even to physics beyond Planck scale, as well as to the dynamics and effective symmetries of LSV for nucleons, quarks, leptons and the photon. LSV can also be at the origin of GZK-like effects. In the presence of a VRF, and contrary to a "grand unification" view, LSV and other violations of standard principles can modify the internal structure of particles at very high energy and conventional symmetries may cease to be valid at energies close to the Planck scale. We present an updated discussion of these topics, including experimental prospects, new potentialities for high-energy cosmic ray phenomenology and the possible link with unconventional pre-Big Bang scenarios, superbradyon (superluminal preon) patterns… The subject of a possible superluminal propagation of neutrinos at accelerator energies is also dealt with.

Gonzalez-Mestres, L.

2014-04-01

12

Probing Planck-Scale physics with a Ne-21/He-3 Zeeman maser  

NASA Technical Reports Server (NTRS)

We completed a search for a sidereal annual variation in the frequency difference between co-located Xe-129 and He-3 Zeeman masers. This search sets a stringent limit of approximately 10(exp -27) GeV on boost-dependent Lorentz and CPT violation involving the neutron. A paper reporting this result has been accepted for publication in Physical Review Letters. We also completed detailed modeling and design of the next-generation dual-noble-gas Zeeman maser for an improved test of Lorentz and CPT violation, and begin construction of this device.

Walsworth, Ronald L.; Phillips, David

2004-01-01

13

Max Planck Institute for the Physics of Complex Systems  

E-print Network

Max Planck Institute for the Physics of Complex Systems The Max Planck Institute for the Physics, both in the neighbouring Max Planck Institute for Chemical Physics of Solids as well-PKS; Noethnitzer Str. 38; 01187 Dresden; Germany). The Max Planck Institute aims to increase the number of women

Prentiss, Mara

14

Max Planck Institute for the Physics of Complex Systems  

E-print Network

Max Planck Institute for the Physics of Complex Systems The Max Planck Institute for the Physics research activities. Strong experimental groups are nearby, both in the neighbouring Max Planck Institute by email (visitors@pks.mpg.de), or by regular mail " Max Planck Institute for the Physics of Complex

15

Scalar-Qed ?-FUNCTIONS Near Planck's Scale  

NASA Astrophysics Data System (ADS)

The Renormalization Group Flow Equations of the Scalar-QED model near Planck's scale are computed within the framework of the average effective action. Exact Flow Equations, corrected by Einstein Gravity, for the running self-interacting scalar coupling parameter and for the running v.e.v. of ?*?, are computed taking into account threshold effects. Analytic solutions are given in the infrared and ultraviolet limits.

Pires, Gentil O.

16

Max Planck Institute for Physics  

E-print Network

(Reference code: H1). ILC: The MPI is seeking to increase its role in the R&D effort for the proposed to the mass-scale indicated by neutrino oscillations. The experiment uses the novel approach of shielding

17

Bare Higgs mass at Planck scale  

E-print Network

We compute one- and two-loop quadratic divergent contributions to the bare Higgs mass in terms of the bare couplings in the Standard Model. We approximate the bare couplings, defined at the ultraviolet cutoff scale, by the MS-bar ones at the same scale, which are evaluated by the two-loop renormalization group equations for the Higgs mass around 126GeV in the Standard Model. We obtain the cutoff scale dependence of the bare Higgs mass, and examine where it becomes zero. We find that when we take the current central value for the top quark pole mass, 173GeV, the bare Higgs mass vanishes if the cutoff is about 10^{23}GeV. With a 1.3 sigma smaller mass, 170GeV, the scale can be of the order of the Planck scale.

Yuta Hamada; Hikaru Kawai; Kin-ya Oda

2015-01-19

18

Dynamically Induced Planck Scale and Inflation  

E-print Network

Theories where the Planck scale is dynamically generated from dimensionless interactions provide predictive inflationary potentials and super-Planckian field variations. We first study the minimal single-field realisation in the low-energy effective field theory limit, finding the predictions $n_s \\approx 0.96$ for the spectral index and $r \\approx 0.13$ for the tensor-to-scalar ratio, close to those of a quadratic potential. Next we consider agravity as a dimensionless quantum gravity theory finding a multi-field inflation that converges towards an attractor trajectory that predicts $n_s\\approx 0.96$ and $0.003inflation. These theories relate the smallness of the weak scale to the smallness of inflationary perturbations: both arise naturally because of small couplings, implying a reheating temperature of $10^{7-9}$ GeV. A measurement of $r$ by Keck/Bicep3 would give us information on quantum gravity in the dimensionless scenario.

Kannike, Kristjan; Pizza, Liberato; Racioppi, Antonio; Raidal, Martti; Salvio, Alberto; Strumia, Alessandro

2015-01-01

19

Max Planck Institute for Gravitational Physics  

NSDL National Science Digital Library

This expansive Web site features the Max Planck Institute for Gravitational Physics' research dealing primarily with geometric analysis and gravitation, astrophysical relativity, quantum gravity and unified theories, and laser interferometry and gravitational wave astronomy. After learning about the Institute's origins in 1995, researchers can find out about the institute's intense efforts and hardships in developing a consistent theory of quantum gravity as well as its investigation in gravitational radiation and causal structures. The site provides visitors with downloads to many published articles as well as links to two free access electronic review journals: _Living Reviews in Relativity_ and _Living Reviews in Solar Physics_. While some content is not in English, all visitors can find valuable information about research in gravitational physics.

20

Revisiting neutrino masses from Planck scale operators  

NASA Astrophysics Data System (ADS)

Planck scale lepton number violation is an interesting and natural possibility to explain nonzero neutrino masses. We consider such operators in the context of Randall-Sundrum (RS1) scenarios. Implementation of this scenario with a single Higgs localized on the IR brane (standard RS1) is not phenomenologically viable as they lead to inconsistencies in the charged lepton mass fits. In this paper we propose a setup with two Higgs doublets. We present a detailed numerical analysis of the fits to fermion masses and mixing angles. This model solves the issues regarding the fermion mass fits but solutions with consistent electroweak symmetry breaking are highly fine-tuned. A simple resolution is to consider supersymmetry in the bulk and a detailed discussion of which is provided. Constraints from flavor are found to be strong and minimal flavor violation (MFV) is imposed to alleviate them.

Iyer, Abhishek M.

2014-06-01

21

Planck scale effects on some low energy quantum phenomena  

NASA Astrophysics Data System (ADS)

Almost all theories of Quantum Gravity predict modifications of the Heisenberg Uncertainty Principle near the Planck scale to a so-called Generalized Uncertainty Principle (GUP). Recently it was shown that the GUP gives rise to corrections to the Schrödinger and Dirac equations, which in turn affect all non-relativistic and relativistic quantum Hamiltonians. In this Letter, we apply it to superconductivity and the quantum Hall effect and compute Planck scale corrections. We also show that Planck scale effects may account for a (small) part of the anomalous magnetic moment of the muon. We obtain (weak) empirical bounds on the undetermined GUP parameter from present-day experiments.

Das, Saurya; Mann, R. B.

2011-10-01

22

Cosmological constant in SUGRA models with Planck scale SUSY breaking and degenerate vacua  

NASA Astrophysics Data System (ADS)

The empirical mass of the Higgs boson suggests small to vanishing values of the quartic Higgs self-coupling and the corresponding beta function at the Planck scale, leading to degenerate vacua. This leads us to suggest that the measured value of the cosmological constant can originate from supergravity (SUGRA) models with degenerate vacua. This scenario is realised if there are at least three exactly degenerate vacua. In the first vacuum, associated with the physical one, local supersymmetry (SUSY) is broken near the Planck scale while the breakdown of the SU(2)W×U(1)Y symmetry takes place at the electroweak (EW) scale. In the second vacuum local SUSY breaking is induced by gaugino condensation at a scale which is just slightly lower than ?QCD in the physical vacuum. Finally, in the third vacuum local SUSY and EW symmetry are broken near the Planck scale.

Froggatt, C. D.; Nevzorov, R.; Nielsen, H. B.; Thomas, A. W.

2014-10-01

23

Hubble and Planck scale limits on the determination of orbital angular momentum states of light  

E-print Network

We review Heisenberg's uncertainty principle for the orbital angular momentum (OAM) of light. By taking into account the largest and smallest scales present in nature, such as the the Hubble radius and the Planck length, we have found that there exist upper and lower physical limits to the determination of the OAM of a photon.

F. Tamburini; B. Thidé; A. Sponselli

2012-01-16

24

Unified model for inflation and dark energy with Planck-scale pseudo-Goldstone bosons  

NASA Astrophysics Data System (ADS)

We present a model with a complex and a real scalar field and a potential with a symmetry which is explicitly broken by Planck-scale physics. For exponentially small breaking, the model accounts for the period of inflation in the early universe and for the period of acceleration of the late universe.

Massó, Eduard; Zsembinszki, Gabriel

2006-02-01

25

Gravitational effects on vanishing Higgs potential at the Planck scale  

NASA Astrophysics Data System (ADS)

We investigate gravitational effects on the so-called multiple point criticality principle (MPCP) at the Planck scale. The MPCP requires two degenerate vacua, whose necessary conditions are expressed by vanishing Higgs quartic coupling [? (MPl)=0 ] and vanishing its ? function [??(MPl)=0 ]. We discuss a case that a specific form of gravitational corrections are assumed to contribute to ? functions of coupling constants [although it is accepted that gravitational corrections do not alter the running of the standard model (SM) couplings]. To satisfy the above two boundary conditions at the Planck scale, we find that the top pole mass and the Higgs mass should be 170.8 GeV ?Mt?171.7 GeV and Mh=125.7 ±0.4 GeV , respectively, as well as include suitable magnitude of gravitational effects (a coefficient of gravitational contribution as |a?|>2 ). In this case, however, since the Higgs quartic coupling ? becomes negative below the Planck scale, two vacua are not degenerate. We find that Mh?131.5 GeV with Mt?174 GeV is required by the realization of the MPCP. Therefore, the MPCP at the Planck scale cannot be realized in the SM, and also the SM with gravity since Mh?131.5 GeV is experimentally ruled out.

Haba, Naoyuki; Kaneta, Kunio; Takahashi, Ryo; Yamaguchi, Yuya

2015-01-01

26

Gravitation and Special Relativity from Compton Wave Interactions at the Planck Scale: An Algorithmic Approach  

NASA Technical Reports Server (NTRS)

In this paper space is modeled as a lattice of Compton wave oscillators (CWOs) of near- Planck size. It is shown that gravitation and special relativity emerge from the interaction between particles Compton waves. To develop this CWO model an algorithmic approach was taken, incorporating simple rules of interaction at the Planck-scale developed using well known physical laws. This technique naturally leads to Newton s law of gravitation and a new form of doubly special relativity. The model is in apparent agreement with the holographic principle, and it predicts a cutoff energy for ultrahigh-energy cosmic rays that is consistent with observational data.

Blackwell, William C., Jr.

2004-01-01

27

Reconciliation of high energy scale models of inflation with Planck  

NASA Astrophysics Data System (ADS)

The inflationary cosmology paradigm is very successful in explaining the CMB anisotropy to the percent level. Besides the dependence on the inflationary model, the power spectra, spectral tilt and non-Gaussianity of the CMB temperature fluctuations also depend on the initial state of inflation. Here, we examine to what extent these observables are affected by our ignorance in the initial condition for inflationary perturbations, due to unknown new physics at a high scale M. For initial states that satisfy constraints from backreaction, we find that the amplitude of the power spectra could still be significantly altered, while the modification in bispectrum remains small. For such initial states, M has an upper bound of a few tens of H, with H being the Hubble parameter during inflation. We show that for M ~ 20H, such initial states always (substantially) suppress the tensor to scalar ratio. In particular we show that such a choice of initial conditions can satisfactorily reconcile the simple ½m2phi2 chaotic model with the Planck data [1-3].

Ashoorioon, Amjad; Dimopoulos, Konstantinos; Sheikh-Jabbari, M. M.; Shiu, Gary

2014-02-01

28

Gravitational effects on vanishing Higgs potential at the Planck scale  

E-print Network

We investigate gravitational effects on so-called multiple point criticality principle (MPCP) at the Planck scale. The MPCP requires two degenerate vacua, whose necessary conditions are expressed by vanishing Higgs quartic coupling ($\\lambda(M_{\\rm Pl})=0$) and vanishing its $\\beta$-function ($\\beta_\\lambda(M_{\\rm Pl})=0$). In order to satisfy the conditions, we find that the top pole mass and the Higgs mass should be $170.8\\,{\\rm GeV} \\lesssim M_t\\lesssim 171.7\\, {\\rm GeV}$ and $M_h=125.7\\pm0.4\\, {\\rm GeV}$, respectively, as well as suitable magnitude of gravitational effects (a coefficient of gravitational contribution as $|a_\\lambda| > 2$). In this case, however, since the Higgs quartic coupling $\\lambda$ becomes negative below the Planck scale, two vacua are not degenerate. We find that $M_h \\gtrsim 131.5\\, {\\rm GeV}$ with $M_t \\gtrsim 174\\, {\\rm GeV}$ is required by the realization of the MPCP. Therefore, the MPCP at the Planck scale cannot be realized in the SM and also the SM with gravity since $M_h \\gtrsim 131.5\\, {\\rm GeV}$ is experimentally ruled out.

Naoyuki Haba; Kunio Kaneta; Ryo Takahashi; Yuya Yamaguchi

2014-08-24

29

Modelling Planck-scale Lorentz violation via analogue models  

E-print Network

Astrophysical tests of Planck-suppressed Lorentz violations had been extensively studied in recent years and very stringent constraints have been obtained within the framework of effective field theory. There are however still some unresolved theoretical issues, in particular regarding the so called "naturalness problem" - which arises when postulating that Planck-suppressed Lorentz violations arise only from operators with mass dimension greater than four in the Lagrangian. In the work presented here we shall try to address this problem by looking at a condensed-matter analogue of the Lorentz violations considered in quantum gravity phenomenology. Specifically, we investigate the class of two-component BECs subject to laser-induced transitions between the two components, and we show that this model is an example for Lorentz invariance violation due to ultraviolet physics. We shall show that such a model can be considered to be an explicit example high-energy Lorentz violations where the ``naturalness problem'' does not arise.

Silke Weinfurtner; Stefano Liberati; Matt Visser

2005-12-22

30

Cosmology from decaying dark energy, primordial at the Planck scale  

NASA Astrophysics Data System (ADS)

The consideration of dark energy's quanta, required also by thermodynamics, introduces its chemical potential into the cosmological equations. Isolating its main contribution, we obtain solutions with dark energy decaying to matter or radiation. When dominant, their energy densities tend asymptotically to a constant ratio, explaining today's dark energy-dark matter coincidence, and in agreement with supernova redshift data, and an age-of-the-universe constraint. This also connects the Planck and today's scales through time. This decay may be manifested in the highest-energy cosmic rays, recently detected.

Besprosvany, Jaime

2005-04-01

31

Trapped Bose-Einstein condensates with Planck-scale induced deformation of the energy-momentum dispersion relation  

NASA Astrophysics Data System (ADS)

We show that harmonically trapped Bose-Einstein condensates can be used to constrain Planck-scale physics. In particular we prove that a Planck-scale induced deformation of the Minkowski energy-momentum dispersion relation ?E??1mcp/2Mp produces a shift in the condensation temperature Tc of about ?Tc/Tc0?10-6?1 for typical laboratory conditions. Such a shift allows to bound the deformation parameter up to |?1|?104. Moreover we show that it is possible to enlarge ?Tc/Tc0 and improve the bound on ?1 lowering the frequency of the harmonic trap. Finally we compare the Planck-scale induced shift in Tc with similar effects due to interboson interactions and finite size effects.

Briscese, F.

2012-11-01

32

Max Planck Institute for Extraterrestrial Physics: X-Ray Astronomy  

NSDL National Science Digital Library

This website features the latest space science news, research activities, projects, and laboratories of the Max Planck Institute for Extraterrestrial Physics' X-Ray Astronomy group. Visitors can view images and read clear summaries of its research in the areas of galactic and extragalactic astronomy. Researchers can learn about the group's instrumental techniques using soft and hard X-rays such as imaging with Wolter telescopes and multi-wire proportional counters. In the Data Center, visitors can explore the group's data analysis software and user data archives. The site provides links to its innumerable collaborators.

33

The International Max Planck Research School (IMPRS) on Elementary Particle Physics in Munich, Germany  

E-print Network

The International Max Planck Research School (IMPRS) on Elementary Particle Physics in Munich, Germany invites applications for Ph.D. Fellowships in Elementary Particle Physics. The IMPRS is a joint initiative of the Max Planck Institute of Physics (Werner Heisenberg Institute) and the particle

34

Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics  

NASA Astrophysics Data System (ADS)

Recent work has shown that dispersion relations with Planck scale Lorentz violation can produce observable effects at energies many orders of magnitude below the Planck energy M. This opens a window on physics that may reveal quantum gravity phenomena. It has already constrained the possibility of Planck scale Lorentz violation, which is suggested by some approaches to quantum gravity. In this work we carry out a systematic analysis of reaction thresholds, allowing unequal deformation parameters for different particle dispersion relations. The thresholds are found to have some unusual properties compared with standard ones, such as asymmetric momenta for pair creation and upper thresholds. The results are used together with high energy observational data to determine combined constraints. We focus on the case of photons and electrons, using vacuum ?erenkov, photon decay, and photon annihilation processes to determine order unity constraints on the parameters controlling O(E/M) Lorentz violation. Interesting constraints for protons (with photons or pions) are obtained even at O((E/M)2), using the absence of vacuum ?erenkov and the observed GZK cutoff for ultrahigh energy cosmic rays. A strong ?erenkov limit using atmospheric PeV neutrinos is possible for O(E/M) deformations provided the rate is high enough. If detected, ultrahigh energy cosmological neutrinos might yield limits at or even beyond O((E/M)2).

Jacobson, T.; Liberati, S.; Mattingly, D.

2003-06-01

35

The Planck scale, the Higgs mass and scalar dark matter  

E-print Network

This study is inspired by a scenario, in which the Standard Model, enhanced by an additional dark matter scalar, could be extended up to the Planck scale, while accommodating the low measured value of the Higgs mass. To that end, we study a toy model for a gauge singlet dark matter scalar coupled to the Higgs-top-quark sector of the Standard Model. Using functional methods to derive Renormalization Group flow equations in that model, we examine several choices for the ultraviolet, bare potential in the Higgs-dark-matter sector. Our results indicate that the dark matter scalar can decrease the lower bound on the Higgs mass in the Standard Model. We then use the fact that higher-order couplings which are driven to tiny values by the Renormalization Group flow towards low energies can easily be of order one at the ultraviolet cutoff scale. Our study indicates that the inclusion of these couplings can significantly increase the ultraviolet cutoff scale and therefore the range of validity of the model while yielding a low value for the Higgs mass in the infrared. This is achieved within a setting where the dark matter scalar accounts for the complete dark matter relic density in our universe.

Astrid Eichhorn; Michael M. Scherer

2014-04-23

36

Phenomenological scaling laws relating the observed galactic dimensions to Planck action constant  

E-print Network

It is shown that the characteristic observed radius, velocity, and temperature of a typical galaxy can be inferred from Planck action constant through a phenomenological scaling law on all cosmological scales.

Salvatore Capozziello; Salvatore De Martino; Silvio De Siena; Fabrizio Illuminati

1999-03-30

37

Ultra-high energy physics and standard basic principles. Do Planck units really make sense?  

NASA Astrophysics Data System (ADS)

It has not yet been elucidated whether the observed flux suppression for ultra-high energy cosmic rays (UHECR) at energies above ? 4 x 1019 eV is a signature of the Greisen-Zatsepin-Kuzmin (GZK) cutoff or a consequence of other phenomena. In both cases, violations of the standard fundamental principles of Physics can be present and play a significant role. They can in particular modify cosmic-ray interactions, propagation or acceleration at very high energy. Thus, in a long-term program, UHECR data can hopefully be used to test relativity, quantum mechanics, energy and momentum conservation, vacuum properties... as well as the elementariness of standard particles. Data on cosmic rays at energies ? 1020 eV may also be sensitive to new physics generated well beyond Planck scale. A typical example is provided by the search for possible signatures of a Lorentz symmetry violation (LSV) associated to a privileged local reference frame (the "vacuum rest frame", VRF). If a VRF exists, the internal structure of standard particles at ultra-high energy can undergo substantial modifications. Similarly, the conventional particle symmetries may cease to be valid at such energies instead of heading to a grand unification and the structure of vacuum may no longer be governed by standard quantum field theory. Then, the question whether the notion of Planck scale still makes sense clearly becomes relevant and the very grounds of Cosmology can undergo essential modifications. UHECR studies naturally interact with the interpretation of WMAP and Planck observations. Recent Planck data analyses tend to confirm the possible existence of a privileged space direction. If the observed phenomenon turns out to be a signature of the spinorial space-time (SST) we suggested in 1996-97, then conventional Particle Physics may correspond to the local properties of standard matter at low enough energy and large enough distances. This would clearly strengthen the cosmological relevance of UHECR phenomenology and weaken the status of the Planck scale hypothesis. Another crucial observation is that, already before incorporating standard matter and relativity, the SST geometry naturally yields a H t = 1 law where t is the age of the Universe and H the ratio between relative speeds and distances at cosmic scale. As standard cosmology is not required to get such a fundamental result, the need for a conventional Planck scale is far from obvious and the study of UHECR can potentially yield evidence for an alternative approach including new physics and new ultimate constituents of matter. UHECR may in particular allow to explore the possible indications of the existence of a transition scale at very high energy where the standard laws would start becoming less and less dominant and new physics would replace the conventional fundamental principles. We discuss prospects of searches for potential signatures of such a phenomenon.

Gonzalez-Mestres, Luis

2014-04-01

38

New constraints on space-time Planck scale fluctuations from established high energy astronomy observations  

NASA Astrophysics Data System (ADS)

The space-time metric is widely believed to be subject to stochastic fluctuations induced by quantum gravity at the Planck scale. This work is based on two different phenomenological approaches being currently made to this topic, and theoretical models which describe this phenomenon are not dealt with here. By using the idea developed in one of these two approaches in the framework of the other one, it is shown that the constraints on the nature of Planck scale space-time fluctuations already set by the observation of electrons and gamma-rays with energies above 15 TeV are much stronger than have been shown so far. It is concluded that for the kind of Planck scale fluctuations implied by several models, including the most naive one, to be consistent with the observations, the transformation laws between different reference frames must be modified in order to let the Planck scale be observer independent.

Le Gallou, R.

2004-03-01

39

Conjecture on the physical implications of the scale anomaly  

SciTech Connect

Murray Gell-Mann, after co-inventing QCD, recognized the interplay of the scale anomaly, the renormalization group, and the origin of the strong scale, {Lambda}{sub QCD}. I tell a story, then elaborate this concept, and for the sake of discussion, propose a conjecture that the physical world is scale invariant in the classical, {h_bar}, limit. This principle has implications for the dimensionality of space-time, the cosmological constant, the weak scale, and Planck scale.

Hill, Christopher T.; /Fermilab

2005-10-01

40

Conjecture on the Physical Implications of the Scale Anomaly  

E-print Network

Murray Gell-Mann, after co-inventing QCD, recognized the interplay of the scale anomaly, the renormalization group, and the origin of the strong scale, Lambda_{QCD}. I tell a story, then elaborate this concept, and for the sake of discussion, propose a conjecture that the physical world is scale invariant in the classical, \\hbar -> 0, limit. This principle has implications for the dimensionality of space-time, the cosmological constant, the weak scale, and Planck scale.

Christopher T. Hill

2005-10-21

41

Conjecture on the Physical Implications of the Scale Anomaly  

E-print Network

Murray Gell-Mann, after co-inventing QCD, recognized the interplay of the scale anomaly, the renormalization group, and the origin of the strong scale, Lambda_{QCD}. I tell a story, then elaborate this concept, and for the sake of discussion, propose a conjecture that the physical world is scale invariant in the classical, \\hbar -> 0, limit. This principle has implications for the dimensionality of space-time, the cosmological constant, the weak scale, and Planck scale.

Hill, C T

2005-01-01

42

Planck-scale phenomenology with anti-de Sitter momentum space  

E-print Network

We investigate the anti-de Sitter (AdS) counterpart to the well studied de Sitter (dS) model for energy-momentum space, viz "$\\kappa$-momentum space" space (with a structure based on the properties of the $\\kappa$-Poincar\\'e Hopf algebra). On the basis of previous preliminary results one might expect the two models to be "dual": dS exhibiting an invariant maximal spatial momentum but unbounded energy, AdS a maximal energy but unbounded momentum. If that were the case AdS momentum space could be used to implement a principle of maximal Planck-scale energy, just as several studies use dS momentum space to postulate of maximal Planck-scale spatial momentum. However several unexpected features are uncovered in this paper, which limit the scope of the expected duality, and interestingly they take different forms in different coordinatizations of AdS momentum space. "Cosmological" AdS coordinates mimic the dS construction used for $\\kappa$-momentum space, and produce a Carrol limit in the ultraviolet. However, unlike the $\\kappa$-momentum space, the boundary of the covered patch breaks Lorentz invariance, thereby introducing a preferred frame. In "horospherical" coordinates we achieve full consistency with frame independence as far as boost transformations are concerned, but find that rotational symmetry is broken, leading to an anisotropic model for the speed of light. Finally, in "static" coordinates we find a way of deforming relativistic transformations that successfully enforces frame invariance and isotropy, and produces a Carrol limit in the ultraviolet. However, the phenomenological implications appear to be too weak for any realistic chance of detection. Our results are also relevant for a long-standing debate on whether or not coordinate redefinitions in momentum space lead to physically equivalent theories: our three proposals are evidently physically inequivalent (abridged)

Michele Arzano; Giulia Gubitosi; Joao Magueijo; Giovanni Amelino-Camelia

2014-12-05

43

Planck 2010  

SciTech Connect

Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by ° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, ° the ERC Advanced Grant "MassTeV" 226371, ° and the CERN-TH unit.

None

2010-06-02

44

Absolute Calibration of the Radio Astronomy Flux Density Scale from 22 to 43 GHz using Planck  

NASA Astrophysics Data System (ADS)

The Planck mission detected hundreds of extragalactic radio sources at frequencies from 28 to 857 GHz. Since Planck's calibration is absolute, based on the satellite's annual motion around the Sun, and since its beams are well-characterized at the sub-percent levels, Planck's flux density measurements are absolute to percent-level accuracy. We have made coordinated Planck, VLA and ATCA observations of ~60 strong, unresolved sources in order to compare Planck's absolute calibration to that used by these two interferometers at 22, 28 and 43 GHz. The flux densities of the sources used to calibrate the VLA observations are taken from Perley and Butler (2013), which is fundamentally based on models of the planet Mars calibrated via WMAP observations. The flux densities of the sources used to calibrate the ATCA observations are based on models of the planet Uranus. Despite the scatter introduced by the variability of many of the sources, the three flux density scales are determined to agree to 1-2% accuracy.

Butler, Bryan J.; Partridge, R. Bruce; Perley, Richard A.; Stevens, Jamie B.; Lopez-Caniego, Marcos; Rocha, Graca; Walter, Ben Z.; Zacchei, Andrea

2015-01-01

45

Constraining the Energy-Momentum Dispersion Relation with Planck-Scale Sensitivity Using Cold Atoms  

NASA Astrophysics Data System (ADS)

We use the results of ultraprecise cold-atom-recoil experiments to constrain the form of the energy-momentum dispersion relation, a structure that is expected to be modified in several quantum-gravity approaches. Our strategy of analysis applies to the nonrelativistic (small speeds) limit of the dispersion relation, and is therefore complementary to an analogous ongoing effort of investigation of the dispersion relation in the ultrarelativistic regime using observations in astrophysics. For the leading correction in the nonrelativistic limit the exceptional sensitivity of cold-atom-recoil experiments remarkably allows us to set a limit within a single order of magnitude of the desired Planck-scale level, thereby providing the first example of Planck-scale sensitivity in the study of the dispersion relation in controlled laboratory experiments.

Amelino-Camelia, Giovanni; Laemmerzahl, Claus; Mercati, Flavio; Tino, Guglielmo M.

2009-10-01

46

Constraining the energy-momentum dispersion relation with Planck-scale sensitivity using cold atoms.  

PubMed

We use the results of ultraprecise cold-atom-recoil experiments to constrain the form of the energy-momentum dispersion relation, a structure that is expected to be modified in several quantum-gravity approaches. Our strategy of analysis applies to the nonrelativistic (small speeds) limit of the dispersion relation, and is therefore complementary to an analogous ongoing effort of investigation of the dispersion relation in the ultrarelativistic regime using observations in astrophysics. For the leading correction in the nonrelativistic limit the exceptional sensitivity of cold-atom-recoil experiments remarkably allows us to set a limit within a single order of magnitude of the desired Planck-scale level, thereby providing the first example of Planck-scale sensitivity in the study of the dispersion relation in controlled laboratory experiments. PMID:19905745

Amelino-Camelia, Giovanni; Lämmerzahl, Claus; Laemmerzahl, Claus; Mercati, Flavio; Tino, Guglielmo M

2009-10-23

47

Planck-Scale Traces from the Interference Pattern of two Bose-Einstein Condensates  

E-print Network

We analyze the possible effects arising from Planck scale regime upon the interference pattern of two non-interacting Bose-Einstein condensates. We start with the analysis of the free expansion of a condensate, taken into account the effects produced by a deformed dispersion relation, suggested in several quantum-gravity models. The analysis of the condensate free expansion, in particular, the modified free velocity expansion, suggests in a natural way, a modified uncertainty principle that could leads to new phenomenological implications related to the quantum structure of space time. Finally, we analyze the corresponding separation between the interference fringes after the two condensates overlap, in order to explore the sensitivity of the system to possible signals caused by the Planck scale regime.

E. Castellanos; J. I. Rivas

2014-11-24

48

Towards an axiomatic model of fundamental interactions at Planck scale  

E-print Network

By exploring possible physical sense of notions, structures, and logic in a class of noncommutative geometries, we try to unify the four fundamental interactions within an axiomatic quantum picture. We identify the objects and algebraic operations which could properly encode the formation and structure of sub-atomic particles, antimatter, annihilation, CP-symmetry violation, mass endowment mechanism, three lepton-neutrino matchings, spin, helicity and chirality, electric charge and electromagnetism, as well as the weak and strong interaction between particles, admissible transition mechanisms (e.g., muon to muon neutrino, electron, and electron antineutrino), and decays (e.g., neutron to proton, electron, and electron antineutrino).

Arthemy V. Kiselev

2014-03-31

49

THE JOURNAL OF CHEMICAL PHYSICS 135, 084103 (2011) How accurate are the nonlinear chemical Fokker-Planck and chemical  

E-print Network

THE JOURNAL OF CHEMICAL PHYSICS 135, 084103 (2011) How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? Ramon Grima,1,a) Philipp Thomas,1,2 and Arthur V. Straube2 1 School August 2011) The chemical Fokker-Planck equation and the corresponding chemical Langevin equation are com

Straube, Arthur V.

50

The Division of Condensed Matter Theory of the Max Planck Institute for the Physics of Complex Systems seeks candidates for the position of a  

E-print Network

The Division of Condensed Matter Theory of the Max Planck Institute for the Physics of Complex experimental groups are nearby, e.g. in the neighbou- ring Max Planck Institute for Chemical Physics of Solids by 18 January 2013. Prof. Roderich Moessner Max-Planck-Institut für Physik komplexer Systeme Nöthnitzer

51

Low and high scale MSSM inflation, gravitational waves and constraints from Planck  

SciTech Connect

In this paper we will analyze generic predictions of an inflection-point model of inflation with Hubble-induced corrections and study them in light of the Planck data. Typically inflection-point models of inflation can be embedded within Minimal Supersymmetric Standard Model (MSSM) where inflation can occur below the Planck scale. The flexibility of the potential allows us to match the observed amplitude of the TT-power spectrum of the cosmic microwave background radiation with low and high multipoles, spectral tilt, and virtually mild running of the spectral tilt, which can put a bound on an upper limit on the tensor-to-scalar ratio, r ? 0.12. Since the inflaton within MSSM carries the Standard Model charges, therefore it is the minimal model of inflation beyond the Standard Model which can reheat the universe with the right thermal degrees of freedom without any dark-radiation.

Choudhury, Sayantan; Pal, Supratik [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700 108 (India); Mazumdar, Anupam, E-mail: sayanphysicsisi@gmail.com, E-mail: a.mazumdar@lancaster.ac.uk, E-mail: supratik@isical.ac.in [Consortium for Fundamental Physics, Physics Department, Lancaster University, Bailrigg, Lancaster, LA1 4YB (United Kingdom)

2013-07-01

52

On the significance of power asymmetries in Planck CMB data at all scales  

NASA Astrophysics Data System (ADS)

We perform an analysis of the CMB temperature data taken by the Planck satellite investigating if there is any significant deviation from cosmological isotropy. We look for differences in the spectrum between two opposite hemispheres and also for dipolar modulations. We propose a new way to avoid biases due to partial-sky coverage by producing a mask symmetrized in antipodal directions, in addition to the standard smoothing procedure. We also properly take into account both Doppler and aberration effects due to our peculiar velocity and the anisotropy of the noise, since these effects induce a significant hemispherical asymmetry. We are thus able to probe scales all the way to l = 2000. After such treatment we find no evidence for significant hemispherical anomalies along any of the analyzed directions (i.e. deviations are less than 1.5? when summing over all scales). Although among the larger scales there are sometimes higher discrepancies, these are always less than 3?. We also find results on a dipolar modulation of the power spectrum. Along the hemispheres aligned with the most asymmetric direction for 2 <= l <= 2000 we find a 3.3? discrepancy when comparing to simulations. However, if we do not restrict ourselves to Planck's maximal asymmetry axis, which can only be known a posteriori, and compare Planck data with the modulation of simulations along their respective maximal asymmetry directions, the discrepancy goes down to less than 1? (with, again, almost 3? discrepancies in some low-l modes). We thus conclude that no significant power asymmetries seem to be present in the full data set. Interestingly, without proper removal of Doppler and aberration effects one would find spurious anomalies at high l, between 3? and 5?. Even when considering only l < 600 we find that the boost is non-negligible and alleviates the discrepancy by roughly half-?.

Quartin, Miguel; Notari, Alessio

2015-01-01

53

Georg Raffelt, Max-Planck-Institut fr Physik, Mnchen, Germany Theoretical Physics Colloquium, 16 Feb 2010, TIFR, Mumbai, India AxionsAxionsGeorg G. Raffelt, Max-Planck-Institut fr Physik, MnchenGeorg G. Raffelt, Max-Planck-Institut fr Physik, Mnchen  

E-print Network

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Theoretical Physics Colloquium, 16 Feb 2010, TIFR, Mumbai, India AxionsAxionsGeorg G. Raffelt, Max-Planck-Institut für Physik, MünchenGeorg G. Raffelt, Max-Planck-Institut für Physik, München Motivation, Cosmological Role and Experimental

54

A Vlasov-Fokker-Planck code for high energy density physics  

NASA Astrophysics Data System (ADS)

OSHUN is a parallel relativistic 2D3P Vlasov-Fokker-Planck code, developed primarily to study electron transport and instabilities pertaining to laser-produced—including laser-fusion—plasmas. It incorporates a spherical harmonic expansion of the electron distribution function, where the number of terms is an input parameter that determines the angular resolution in momentum-space. The algorithm employs the full 3D electromagnetic fields and a rigorous linearized Fokker-Planck collision operator. The numerical scheme conserves energy and number density. This enables simulations for plasmas with temperatures from MeV down to a few eV and densities from less than critical to more than solid. Kinetic phenomena as well as electron transport physics can be recovered accurately and efficiently.

Tzoufras, M.; Bell, A. R.; Norreys, P. A.; Tsung, F. S.

2011-07-01

55

Internal Structure of Ultra-High Energy Particles with Lorentz Symmetry Violation at the Planck Scale  

NASA Astrophysics Data System (ADS)

Assuming the existence of a local vacuum rest frame (LVRF), and using suitable algebraic tranformations, the internal structure of ultra-high energy particles (UHEPs) is studied in the presence of Lorentz symmetry violation (LSV) at the Planck scale. Violations of the standard Lorentz contraction and time dilation formulae are made explicit. Dynamics in the rest frame of a UHEP is worked out and discussed. Phenomenological implications for ultra-high energy cosmic rays (UHECR), including possible violations of the Greisen-Zatsepin-Kuzmin GZK) cutoff, are studied for several LSV models.

Gonzalez-Mestres, Luis

2003-07-01

56

Experimental limits on the fundamental Planck scale in large extra dimensions  

E-print Network

I present an up to date set of limits on the fundamental Planck scale M_D. The best limit for each number of extra dimensions n is shown in bold font. For n = 2, M_D > 4.2 TeV; n = 3, M_D > 3.3 TeV; n = 4, M_D > 2.9 TeV; n = 5, M_D > 2.8 TeV; n = 6, M_D > 2.5 TeV; and for 6 0.8 TeV.

Douglas M. Gingrich

2012-10-22

57

THE Y {sub SZ}-Y{sub X} SCALING RELATION AS DETERMINED FROM PLANCK AND CHANDRA  

SciTech Connect

Sunyaev-Zeldovich (SZ) clusters surveys, such as Planck, the South Pole Telescope, and the Atacama Cosmology Telescope, will soon be publishing several hundred SZ-selected systems. The key ingredient required to transport the mass calibration from current X-ray-selected cluster samples to these SZ systems is the Y {sub SZ}-Y{sub X} scaling relation. We constrain the amplitude, slope, and scatter of the Y {sub SZ}-Y{sub X} scaling relation using SZ data from Planck and X-ray data from Chandra. We find a best-fit amplitude of ln (D {sup 2} {sub A} Y {sub SZ}/CY{sub X} ) = -0.202 {+-} 0.024 at the pivot point CY{sub X} = 8 Multiplication-Sign 10{sup -5} Mpc{sup 2}. This corresponds to a Y {sub SZ}/Y{sub X} ratio of 0.82 {+-} 0.024, in good agreement with X-ray expectations after including the effects of gas clumping. The slope of the relation is {alpha} = 0.916 {+-} 0.032, consistent with unity at Almost-Equal-To 2.3{sigma}. We are unable to detect intrinsic scatter, and find no evidence that the scaling relation depends on cluster dynamical state.

Rozo, Eduardo; More, Surhud [Kavli Institute for Cosmological Physics, Chicago, IL 60637 (United States); Vikhlinin, Alexey [Space Research Institute (IKI), Profsoyuznaya 84/32, Moscow 117810 (Russian Federation)

2012-11-20

58

Planck stars  

NASA Astrophysics Data System (ADS)

Quantum-gravitational pressure can stop gravitational collapse and cause a bounce. We observe that: (i) due to the huge time dilation, the process can last micro-seconds in local proper time and billions of years observed from the outside; (ii) the bounce volume can be much larger than planckian, because the onset of quantum-gravity effects is governed by density, not size; (iii) the emerging object can then be bigger than planckian by a factor (m/mP)n, where m is the initial mass, mP is the Planck mass, and n positive; (iv) the interior of an evaporating hole can keep memory of the initial mass, providing an independent scale for the physics of the final explosion. If so, primordial black holes could produce a detectable signal of quantum gravitational origin, which we estimate, under some hypotheses, around the wavelength 10-14 cm.

Rovelli, Carlo; Vidotto, Francesca

2014-12-01

59

Vanishing Higgs potential at the Planck scale in a singlet extension of the standard model  

NASA Astrophysics Data System (ADS)

We discuss the realization of a vanishing effective Higgs potential at the Planck scale, which is required by the multiple-point criticality principle (MPCP), in the standard model with singlet scalar dark matter and a right-handed neutrino. We find the scalar dark matter and the right-handed neutrino play crucial roles for realization of the MPCP, where a neutrino Yukawa becomes effective above the Majorana mass of the right-handed neutrino. Once the top mass is fixed, the MPCP at the (reduced) Planck scale and the suitable dark matter relic abundance determine the dark matter mass, mS, and the Majorana mass of the right-handed neutrino, MR, as 8.5(8.0)×102 GeV ?mS?1.4(1.2)×103 GeV and 6.3(5.5)×1013 GeV ?MR?1.6(1.2)×1014 GeV within current experimental values of the Higgs and top masses. This scenario is consistent with current dark matter direct search experiments and will be checked by future experiments such as LUX with further exposure and/or the XENON1T.

Haba, Naoyuki; Ishida, Hiroyuki; Kaneta, Kunio; Takahashi, Ryo

2014-08-01

60

Radiative electroweak symmetry breaking model perturbative all the way to the Planck scale.  

PubMed

We discuss an extension of the standard model by fields not charged under standard model gauge symmetry in which the electroweak symmetry breaking is driven by the Higgs quartic coupling itself without the need for a negative mass term in the potential. This is achieved by a scalar field S with a large coupling to the Higgs field at the electroweak scale which is driven to very small values at high energies by the gauge coupling of a hidden symmetry under which S is charged. This model can remain perturbative all the way to the Planck scale. The Higgs boson is fully standard-model-like in its couplings to fermions and gauge bosons. However, the effective cubic and quartic self-couplings of the Higgs boson are significantly enhanced. PMID:25126909

Chway, Dongjin; Dermíšek, Radovan; Jung, Tae Hyun; Kim, Hyung Do

2014-08-01

61

SCALING METHODS IN SOIL PHYSICS  

Technology Transfer Automated Retrieval System (TEKTRAN)

Soil physical properties are needed to understand and manage natural systems spanning an extremely wide range of scales. Much of soil data are obtained from small soil samples and cores, monoliths, or small field plots, yet the goal is to reconstruct soil physical properties across fields, watershed...

62

A no-scale supergravity framework for sub-Planckian physics  

NASA Astrophysics Data System (ADS)

We propose a minimal model framework for physics below the Planck scale with the following features: (i) it is based on no-scale supergravity, as favored in many string compactifications, (ii) it incorporates Starobinsky-like inflation, and hence is compatible with constraints from the Planck satellite, (iii) the inflaton may be identified with a singlet field in a seesaw model for neutrino masses, providing an efficient scenario for reheating and leptogenesis, (iv) supersymmetry breaking occurs with an arbitrary scale and a cosmological constant that vanishes before radiative corrections, and (v) regions of the model parameter space are compatible with all LHC, Higgs boson, and dark matter constraints.

Ellis, John; Nanopoulos, Dimitri V.; Olive, Keith A.

2014-02-01

63

PREFACE: DICE 2012 : Spacetime Matter Quantum Mechanics - from the Planck scale to emergent phenomena  

NASA Astrophysics Data System (ADS)

Presented in this volume are the Invited Lectures and the Contributed Papers of the Sixth International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2012, held at Castello Pasquini, Castiglioncello (Tuscany), 17-21 September 2012. These proceedings may document to the interested public and to the wider scientific community the stimulating exchange of ideas at the meeting. The number of participants has been steadily growing over the years, reflecting an increasing attraction, if not need, of such conference. Our very intention has always been to bring together leading researchers, advanced students, and renowned scholars from various areas, in order to stimulate new ideas and their exchange across the borders of specialization. In this way, the series of meetings successfully continued from the beginning with DICE 20021, followed by DICE 20042, DICE 20063, DICE 20084, and DICE 20105, Most recently, DICE 2012 brought together more than 120 participants representing more than 30 countries worldwide. It has been a great honour and inspiration to have Professor Yakir Aharonov (Tel Aviv) with us, who presented the opening Keynote Lecture 'The two-vector quantum formalism'. With the overarching theme 'Spacetime - Matter - Quantum Mechanics - from the Planck scale to emergent phenomena', the conference took place in the very pleasant and inspiring atmosphere of Castello Pasquini - in beautiful surroundings, overlooking a piece of Tuscany's coast. The 5-day program covered these major topics: Quantum Mechanics, Foundations and Quantum-Classical Border Quantum-Classical Hybrids and Many-Body Systems Spectral Geometry, Path Integrals and Experiments Quantum -/- Gravity -/- Spacetime Quantum Mechanics on all Scales? A Roundtable Discussion under the theme 'Nuovi orizzonti nella ricerca scientifica. Ci troviamo di fronte ad una rivoluzione scientifica?' formed an integral part of the program. With participation of E Del Giudice (INFN & Università di Milano), F Guerra (Università 'La Sapienza', Roma) and G Vitiello (Università di Salerno), this event traditionally dedicated to the public drew a large audience involved in lively discussions until late. The workshop was organized by L Diósi (Budapest), H-T Elze (Pisa, chair), L Fronzoni (Pisa), J J Halliwell (London), E Prati (Milano) and G Vitiello (Salerno), with most essential help from our conference secretaries L Fratino, N Lampo, I Pozzana, and A Sonnellini, all students from Pisa, and from our former secretaries M Pesce-Rollins and L Baldini. Several institutions and sponsors supported the workshop and their representatives and, in particular, the citizens of Rosignano/Castiglioncello are deeply thanked for the generous help and kind hospitality: Comune di Rosignano - A Franchi (Sindaco di Rosignano), S Scarpellini (Segreteria sindaco), L Benini (Assessore ai lavori pubblici), M Pia (Assessore all' urbanistica) REA Rosignano Energia Ambiente s.p.a. - F Ghelardini (Presidente della REA), E Salvadori and C Peccianti (Segreteria) Associazione Armunia - A Nanni (Direttore), G Mannari (Programmazione), C Perna, F Bellini, M Nannerini, P Bruni and L Meucci (Tecnici). Special thanks go to G Mannari and her collaborators for advice and great help in all the practical matters that had to be dealt with, in order to run the meeting at Castello Pasquini smoothly Funds made available by Università di Pisa, Domus Galilaeana (Pisa), Centro Interdisciplinare per lo Studio dei Sistemi Complessi - CISSC (Pisa), Dipartimento di Ingegneria Industriale (Università di Salerno), Istituto Italiano per gli Studi Filosofici - IISF (Napoli), Solvay Italia SA (Rosignano), Institute of Physics Publishing - IOP (Bristol), Springer Verlag (Heidelberg), and Hungarian Scientific Research Fund OTKA are gratefully acknowledged. Last, but not least, special thanks are due to Laura Pesce (Vitrium Galleria, San Vincenzo) for the exposition of her artwork 'arte e scienza' at Castello Pasquini during the conference. The papers submitted in the wake of the conference have been edited by

Diósi, Lajos; Elze, Hans-Thomas; Fronzoni, Leone; Halliwell, Jonathan; Prati, Enrico; Vitiello, Giuseppe; Yearsley, James

2013-06-01

64

An Analog Cellular Automaton Model of Gravitation: Planck-Scale Black Holes Randall C. O'Reilly  

E-print Network

An Analog Cellular Automaton Model of Gravitation: Planck-Scale Black Holes Randall C. O within a three dimensional regular face-centered cubic lattice. The gravitational field is modeled "mass" of any other waves in the system (e.g., electromagnetic waves). The effects of this gravitational

O'Reilly, Randall C.

65

Planck-scale Lorentz violation constrained by Ultra-High-Energy Cosmic Rays  

NASA Astrophysics Data System (ADS)

We investigate the consequences of higher dimension Lorentz violating, CPT even kinetic operators that couple standard model fields to a non-zero vector field in an Effective Field Theory framework. Comparing the ultra-high energy cosmic ray spectrum reconstructed in the presence of such terms with data from the Pierre Auger observatory allows us to establish two sided bounds on the coefficients of the mass dimension five and six operators for the proton and pion. Our bounds imply that for both protons and pions, the energy scale of Lorentz symmetry breaking must be well above the Planck scale. In particular, the dimension five operators are constrained at the level of 10-3MPlanck-1. The magnitude of the dimension six proton coefficient is bounded at the level of 10-6MPlanck-2 except in a narrow range where the pion and proton coefficients are both negative and nearly equal. In this small area, the magnitude of the dimension six proton coefficient must only be below 10-3MPlanck-2. Constraints on the dimension six pion coefficient are found to be much weaker, but still below MPlanck-2.

Maccione, Luca; Taylor, Andrew M.; Mattingly, David M.; Liberati, Stefano

2009-04-01

66

Characterization and Physical Explanation of Energetic Particles on Planck HFI Instrument  

NASA Astrophysics Data System (ADS)

The Planck High Frequency Instrument (HFI) has been surveying the sky continuously from the second Lagrangian point (L2) between August 2009 and January 2012. It operates with 52 high impedance bolometers cooled at 100 mK in a range of frequency between 100 GHz and 1 THz with unprecedented sensitivity, but strong coupling with cosmic radiation. At L2, the particle flux is about 5 and is dominated by protons incident on the spacecraft. Protons with an energy above 40 MeV can penetrate the focal plane unit box causing two different effects: glitches in the raw data from direct interaction of cosmic rays with detectors (producing a data loss of about 15 % at the end of the mission) and thermal drifts in the bolometer plate at 100 mK adding non-Gaussian noise at frequencies below 0.1 Hz. The HFI consortium has made strong efforts in order to correct for this effect on the time ordered data and final Planck maps. This work intends to give a view of the physical explanation of the glitches observed in the HFI instrument in-flight. To reach this goal, we performed several ground-based experiments using protons and particles to test the impact of particles on the HFI spare bolometers with a better control of the environmental conditions with respect to the in-flight data. We have shown that the dominant part of glitches observed in the data comes from the impact of cosmic rays in the silicon die frame supporting the micro-machined bolometric detectors propagating energy mainly by ballistic phonons and by thermal diffusion. The implications of these results for future satellite missions will be discussed.

Catalano, A.; Ade, P.; Atik, Y.; Benoit, A.; Bréele, E.; Bock, J. J.; Camus, P.; Charra, M.; Crill, B. P.; Coron, N.; Coulais, A.; Désert, F.-X.; Fauvet, L.; Giraud-Héraud, Y.; Guillaudin, O.; Holmes, W.; Jones, W. C.; Lamarre, J.-M.; Macías-Pérez, J.; Martinez, M.; Miniussi, A.; Monfardini, A.; Pajot, F.; Patanchon, G.; Pelissier, A.; Piat, M.; Puget, J.-L.; Renault, C.; Rosset, C.; Santos, D.; Sauvé, A.; Spencer, L.; Sudiwala, R.

2014-09-01

67

Planck Cluster Cosmology 2014  

NASA Astrophysics Data System (ADS)

As a cosmological probe, galaxy clusters are a powerful complement to the primary cosmic microwave background (CMB) anisotropies. They provide a direct measurement of the density perturbation amplitude at the present epoch that, when combined with primary CMB constraints, tests the validity of the cosmological model. The 2013 Planck analysis uncovered an intriguing tension between the cluster abundance and the primary CMB constraints, a tension that could indicate the need for new physics, such as non-minimal neutrino mass, or an important revision of the cluster mass scale. Unraveling this mystery has been a central focus of cluster cosmology research over the past year. We present our 2014 cluster cosmology analysis based on the full Planck data set. This analysis includes a new cluster catalog and analysis techniques, and incorporates recent results on cluster masses, where significant progress has been made in the past year.

Bartlett, James G.; Planck Collaboration

2015-01-01

68

The Emergence of a Root Metaphor in Modern Physics: Max Planck's "Quantum" Metaphor.  

ERIC Educational Resources Information Center

Uses metaphorical analysis to determine whether or not Max Planck invented the quantum postulate. Demonstrates how metaphorical analysis can be used to analyze the rhetoric of revolutionary texts in science. Concludes that, in his original 1900 quantum paper, Planck considered the quantum postulate to be important, but not revolutionary. (PA)

Johnson-Sheehan, Richard D.

1997-01-01

69

Impact of particles on the Planck HFI detectors: Ground-based measurements and physical interpretation  

NASA Astrophysics Data System (ADS)

The Planck High Frequency Instrument (HFI) surveyed the sky continuously from August 2009 to January 2012. Its noise and sensitivity performance were excellent (from 11 to 40 aW Hz-1), but the rate of cosmic-ray impacts on the HFI detectors was unexpectedly higher than in other instruments. Furthermore, collisions of cosmic rays with the focal plane produced transient signals in the data (glitches) with a wide range of characteristics and a rate of about one glitch per second. A study of cosmic-ray impacts on the HFI detector modules has been undertaken to categorize and characterize the glitches, to correct the HFI time-ordered data, and understand the residual effects on Planck maps and data products. This paper evaluates the physical origins of glitches observed by the HFI detectors. To better understand the glitches observed by HFI in flight, several ground-based experiments were conducted with flight-spare HFI bolometer modules. The experiments were conducted between 2010 and 2013 with HFI test bolometers in different configurations using varying particles and impact energies. The bolometer modules were exposed to 23 MeV protons from the Orsay IPN Tandem accelerator, and to 241Am and 244Cm ?-particle and 55Fe radioactive X-ray sources. The calibration data from the HFI ground-based preflight tests were used to further characterize the glitches and compare glitch rates with statistical expectations under laboratory conditions. Test results provide strong evidence that the dominant family of glitches observed in flight are due to cosmic-ray absorption by the silicon die substrate on which the HFI detectors reside. Glitch energy is propagated to the thermistor by ballistic phonons, while thermal diffusion also contributes. The average ratio between the energy absorbed, per glitch, in the silicon die and thatabsorbed in the bolometer is equal to 650. We discuss the implications of these results for future satellite missions, especially those in the far-infrared to submillimeter and millimeter regions of the electromagnetic spectrum.

Catalano, A.; Ade, P.; Atik, Y.; Benoit, A.; Bréele, E.; Bock, J. J.; Camus, P.; Chabot, M.; Charra, M.; Crill, B. P.; Coron, N.; Coulais, A.; Désert, F.-X.; Fauvet, L.; Giraud-Héraud, Y.; Guillaudin, O.; Holmes, W.; Jones, W. C.; Lamarre, J.-M.; Macías-Pérez, J.; Martinez, M.; Miniussi, A.; Monfardini, A.; Pajot, F.; Patanchon, G.; Pelissier, A.; Piat, M.; Puget, J.-L.; Renault, C.; Rosset, C.; Santos, D.; Sauvé, A.; Spencer, L. D.; Sudiwala, R.

2014-09-01

70

Development of Physics Self-Efficacy Scale  

Microsoft Academic Search

In this article, we describe development of a Physics Self-Efficacy Scale (PSES) that is a self-administered measure to assess physics self-efficacy beliefs regarding one’s ability to successfully perform physics tasks in physics classroom. The scale is initially composed of 56 items prepared following a brief scrutiny of relating literature on self-efficacy. It was initially administered 30 physics teacher candidates and

Mustafa Erol

2007-01-01

71

Development of Physics Self-Efficacy Scale  

Microsoft Academic Search

In this article, we describe development of a Physics Self-Efficacy Scale (PSES) that is a self-administered measure to assess physics self-efficacy beliefs regarding one's ability to successfully perform physics tasks in physics classroom. The scale is initially composed of 56 items prepared following a brief scrutiny of relating literature on self-efficacy. It was initially administered 30 physics teacher candidates and

Serap Çaliskan; Gamze S. Selçuk; Mustafa Erol

2007-01-01

72

Derivation of physically motivated wind speed scales  

Microsoft Academic Search

A class of new wind speed scales is proposed in which the relevant scaling factors are derived from physical quantities like mass flux density, energy density (pressure), or energy flux density. Hence, they are called Energy- or E-scales, and can be applied to wind speeds of any intensity. It is shown that the Mach scale is a special case of

Nikolai Dotzek

2009-01-01

73

Quantum Theory at Planck Scale, Limiting Values, Deformed Gravity and Dark Energy Problem  

NASA Astrophysics Data System (ADS)

Within a theory of the existing fundamental length on the order of Planck's, a high-energy deformation of the General Relativity for the space with horizon has been constructed. On this basis, Markov's work of the early eighties of the last century has been given a new interpretation to show that the heuristic model considered by him may be placed on a fundamental footing. The obtained results have been applied to solving of the dark energy problem, making it possible to frame the following hypothesis: a dynamic cosmological term is a measure of deviation from a thermodynamic identity (the first law of thermodynamics) of the high-energy (Planck's) deformation of Einstein equations for horizon spaces in their thermodynamic interpretation.

Shalyt-Margolin, A. E.

74

Using CMB data to constrain non-isotropic Planck-scale modifications to Electrodynamics  

SciTech Connect

We develop a method to constrain non-isotropic features of Cosmic Microwave Background (CMB) polarization, of a type expected to arise in some models describing quantum gravity effects on light propagation. We describe the expected signatures of this kind of anomalous light propagation on CMB photons, showing that it will produce a non-isotropic birefringence effect, i.e. a rotation of the CMB polarization direction whose observed amount depends in a peculiar way on the observation direction. We also show that the sensitivity levels expected for CMB polarization studies by the Planck satellite are sufficient for testing these effects if, as assumed in the quantum-gravity literature, their magnitude is set by the minute Planck length.

Gubitosi, Giulia [Berkeley Lab and University of California, Berkeley, CA 94720 (United States); Migliaccio, Marina [Università di Roma Tor Vergata, via della Ricerca Scientifica, 1, Roma (Italy); Pagano, Luca [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California (United States); Amelino-Camelia, Giovanni; Melchiorri, Alessandro [Dipartimento di Fisica, Università La Sapienza, P. le A. Moro 2, Roma (Italy); Natoli, Paolo [Dipartimento di Fisica, Università di Ferrara, via G. Saragat 1, Ferrara (Italy); Polenta, Gianluca, E-mail: giulia.gubitosi@berkeley.edu, E-mail: Marina.Migliaccio@roma2.infn.it, E-mail: luca.pagano@jpl.nasa.gov, E-mail: giovanni.amelino-camelia@roma1.infn.it, E-mail: alessandro.melchiorri@roma1.infn.it, E-mail: paolo.natoli@roma2.infn.it, E-mail: gianluca.polenta@asdc.asi.it [Agenzia Spaziale Italiana Science Data Center, c/o ESRIN, via Galileo Galilei, Frascati (Italy)

2011-11-01

75

Developmentally Appropriate Physical Education. A Rating Scale.  

ERIC Educational Resources Information Center

The purpose of elementary physical education is poorly defined, and the public has low expectations and support for the field. The Developmentally Appropriate Physical Education Practices for Children rating scale emphasizes teaching practices that are appropriate to each student's age and ability. The paper describes use of the scale. (SM)

Stork, Steve; Sanders, Steve

1996-01-01

76

Characterizing Large-Scale Computational Physics  

NASA Astrophysics Data System (ADS)

Large-scale computational physics calculations typically share some of a number of basic characteristics: *Brute-force approaches: Atomistic molecular dynamics, particle-in-cell plasma physics, particle-mesh cosmological simulations, DNS of turbulence, lattice QCD, Monte Carlo, . *Wide range of relevant scales: Angstroms to millimeters in molecular dynamics, ion/electron cyclotron period to seconds or minutes in plasmas, galaxy to observable universe in cosmology, high Reynolds number turbulence, . *Obvious need for yet larger scale: higher resolution, larger simulation domain, more particles, . *Code is named, parallel, community, long-lived (but evolving). This talk views the computational physics landscape from the perspective a physicist who has worked at three DOE large-scale computing centers: the Argonne Leadership Computing Facility, the (former) Advanced Computing Laboratory, and NERSC. The "usual suspects" at the large-scale end of computational physics are remarkably persistent, even in the face of an ever-increasing definition of large-scale.

Williams, Timothy

2011-03-01

77

Derivation of physically motivated wind speed scales  

NASA Astrophysics Data System (ADS)

A class of new wind speed scales is proposed in which the relevant scaling factors are derived from physical quantities like mass flux density, energy density (pressure), or energy flux density. Hence, they are called Energy- or E-scales, and can be applied to wind speeds of any intensity. It is shown that the Mach scale is a special case of an E-scale. Aside from its foundation in physical quantities which allow for a calibration of the scales, the E-scale concept can help to overcome the present plethora of scales for winds in the range from gale to hurricane intensity. A procedure to convert existing data based on the Fujita-scale or other scales (Saffir-Simpson, TORRO, Beaufort) to their corresponding E-scales is outlined. Even for the large US tornado record, the workload of conversion in case of an adoption of the E-scale would in principle remain manageable (if the necessary metadata to do so were available), as primarily the F5 events would have to be re-rated. Compared to damage scales like the "Enhanced Fujita" or EF-scale concept recently implemented in the USA, the E-scales are based on first principles. They can consistently be applied all over the world for the purpose of climatological homogeneity. To account for international variations in building characteristics, one should not adapt wind speed scale thresholds to certain national building characteristics. Instead, one worldwide applicable wind speed scale based on physical principles should rather be complemented by nationally-adapted damage descriptions. The E-scale concept can provide the basis for such a standardised wind speed scale.

Dotzek, Nikolai

78

Max Planck  

Microsoft Academic Search

IN a broadcast talk on Max Planck, in which whole-hearted tribute was paid to his great work, I used the words, ``If I hesitate to put Planck on a level with Newton and Einstein it must be partly on the ground that he did not seem to know quite what he had done when he did it ... Planck seems

E. N. Da C. Andrade

1948-01-01

79

A bound on Planck-scale modifications of the energy-momentum composition rule from atomic interferometry  

NASA Astrophysics Data System (ADS)

High-sensitivity measurements in atomic spectroscopy were recently used by Amelino-Camelia et al. (Phys. Rev. Lett., 103 (2009) 171302) to constraint the form of possible modifications of the energy-momentum dispersion relation resulting from Lorentz invariance violation (LIV). In this letter we show that the same data can be used successfully to set experimental bounds on deformations of the energy-momentum composition rule. Such modifications are natural in models of deformed Lorentz symmetry which are relevant in certain quantum gravity scenarios. We find the bound for the deformation parameter ? to be a few orders of magnitude below the Planck scale and of the same magnitude as the next-to-leading-order effect found by Amelino-Camelia et al. in the above-mentioned paper. We briefly discuss how it would be possible to distinguish between these two scenarios.

Arzano, M.; Kowalski-Glikman, J.; Walkus, A.

2010-05-01

80

Unveiling acoustic physics of the CMB using nonparametric estimation of the temperature angular power spectrum for Planck  

NASA Astrophysics Data System (ADS)

Estimation of the angular power spectrum is one of the important steps in Cosmic Microwave Background (CMB) data analysis. Here, we present a nonparametric estimate of the temperature angular power spectrum for the Planck 2013 CMB data. The method implemented in this work is model-independent, and allows the data, rather than the model, to dictate the fit. Since one of the main targets of our analysis is to test the consistency of the ?CDM model with Planck 2013 data, we use the nuisance parameters associated with the best-fit ?CDM angular power spectrum to remove foreground contributions from the data at multipoles l >=50. We thus obtain a combined angular power spectrum data set together with the full covariance matrix, appropriately weighted over frequency channels. Our subsequent nonparametric analysis resolves six peaks (and five dips) up to l ~1850 in the temperature angular power spectrum. We present uncertainties in the peak/dip locations and heights at the 95% confidence level. We further show how these reflect the harmonicity of acoustic peaks, and can be used for acoustic scale estimation. Based on this nonparametric formalism, we found the best-fit ?CDM model to be at 36% confidence distance from the center of the nonparametric confidence set—this is considerably larger than the confidence distance (9%) derived earlier from a similar analysis of the WMAP 7-year data. Another interesting result of our analysis is that at low multipoles, the Planck data do not suggest any upturn, contrary to the expectation based on the integrated Sachs-Wolfe contribution in the best-fit ?CDM cosmology.

Aghamousa, Amir; Shafieloo, Arman; Arjunwadkar, Mihir; Souradeep, Tarun

2015-02-01

81

Einstein and Planck  

NASA Astrophysics Data System (ADS)

As an editor of the Annalen der Physik, Max Planck published Einstein's early papers on thermodynamics and on special relativity, which Planck probably was the first major physicist to appreciate. They respected one another not only as physicists but also, for their inspired creation of world pictures, as artists. Planck helped to establish Einstein in a sinecure at the center of German physics, Berlin. Despite their differences in scientific style, social life, politics, and religion, they became fast friends. Their mutual admiration survived World War I, during which Einstein advocated pacifism and Planck signed the infamous Manifesto of the 93 Intellectuals supporting the German invasion of Belgium. It also survived the Weimar Republic, which Einstein favored and Planck disliked. Physics drew them together, as both opposed the Copenhagen Interpretation; so did common decency, as Planck helped to protect Einstein from anti-semitic attacks. Their friendship did not survive the Nazis. As a standing secretary of the Berlin Academy, Planck had to advise Einstein to resign from it before his colleagues, outraged at his criticism of the new Germany from the safety of California, expelled him. Einstein never forgave his old friend and former fellow artist for not protesting publicly against his expulsion and denigration, and other enormities of National Socialism. .

Heilbron, John

2005-03-01

82

Development of Physics Self-Efficacy Scale  

NASA Astrophysics Data System (ADS)

In this article, we describe development of a Physics Self-Efficacy Scale (PSES) that is a self-administered measure to assess physics self-efficacy beliefs regarding one's ability to successfully perform physics tasks in physics classroom. The scale is initially composed of 56 items prepared following a brief scrutiny of relating literature on self-efficacy. It was initially administered 30 physics teacher candidates and was also examined by 6 experts of physics education, then ambiguous or incomprehensible 6 items were dismissed. This PSES was tested on 558 undergraduate students all completed fundamental physics courses. Cronbach's Alpha reliability coefficient of the PSES was calculated as 0.94. The final version of the PSES contained 30 items with 5 dimensions namely, 1. Self-efficacy towards solving physics problems, 2. Self-efficacy towards physics laboratory, 3. Self-efficacy towards learning physics, 4. Self-efficacy towards application of physics knowledge and 5. Self-efficacy towards memorizing physics knowledge.

Çali?kan, Serap; Selçuk, Gamze S.; Erol, Mustafa

2007-04-01

83

Scale-Invariant Form of the Planck Law of Energy Distribution and its Connection to the Maxwell-Boltzmann Distribution  

NASA Astrophysics Data System (ADS)

Scale-invariant form of the Planck law of energy distribution is introduced as belE:first frac?_?N_?V=?_?d?=frac8? m_?^2k frac?^3d?e^h?/kT-1 that at the chromodynamic scale ? = ? for photon gas involves the gravitational mass of photon m_? = (hk/c^3)^1/2. At a constant T, (1) describes the size spectrum of photon clusters of energy ?_cj = N_? jh?_? j = N_? j?_? j where N_? j is the number of photons in cluster j (energy level j) per unit volume and ?_? j is the energy of photon in cluster j. Similarly, at molecular-dynamic scale, Eq.(1) with m_? = M_?/No = M_?m_?c^2 gives the spectrum of size of molecular clusters acting as composite bosons with energy ?_cj = N_mjh?_mj = N_mj?_mj and matter wavelength and frequency given by h_? = p_??_? = h (de Broglie) and k_? = p_??_? = k. Particles are suggested to oscillate in two directions (x^+, x^-) such that mm < u^2 > = 2mm < u^2_x^+ > = 3kT leading to calculated rms molecular speeds (1346, 336, 360, 300, 952, 287) m/s that are comparable with the observed velocity of sound (1286, 332, 337, 308, 972, 268) m/s for gases (H_2, O_2, N_2, Ar, He, CO_2) at s.t.p. as initially suspected by Newton.

Sohrab, Siavash

2004-03-01

84

Multiple Scales in Solid State Physics  

Microsoft Academic Search

The quest for an accurate simulations of the physical world, most vividly expressed in the vision of Laplace's daemon [1], is almost as old as quantitative science. Naturally, such a simulation requires the knowledge of all the relevant physical\\u000a laws, i.e., a Theory of Everything. For the phenomena involving scales larger than an atomic nucleus and smaller than a star,

Erik Koch; Eva Pavarini

85

Max Planck  

Microsoft Academic Search

Am 4. Oktober 1947 ist Max Planck im Alter von 89 Jahren entschlafen.Seit 52 Jahren hat sich Planck mit seinem klugen Rat und seiner reichen Erfahrung in den Dienst der Annalen-Redaktion gestellt und viel verantwortliche Tätigkeit übernommen, die in vollem Maße nur den Herausgebern und dem Verlage bekannt geworden ist. So manchen Ballast hat er von der Zeitschrift ferngehalten, viele

E. Grüneisen; F. Möglich; A. Meiner

1947-01-01

86

Taming Nonlocality in Theories with Planck-Scale Deformed Lorentz Symmetry  

NASA Astrophysics Data System (ADS)

We report a general analysis of worldlines for theories with deformed relativistic symmetries and momentum dependence of the speed of photons. Our formalization is faithful to Einstein’s program, with spacetime points viewed as an abstraction of physical events. The emerging picture imposes the renunciation of the idealization of absolutely coincident events, but is free from some pathologies which had been previously conjectured.

Amelino-Camelia, Giovanni; Matassa, Marco; Mercati, Flavio; Rosati, Giacomo

2011-02-01

87

CHILDREN'S PHYSICAL ENVIRONMENTS RATING SCALE1  

Microsoft Academic Search

It is now known that the quality of the physical, designed environment of early childhood centers - size, density, privacy, well-defined activity settings, modified open-plan space, a variety of technical design features and the quality of outdoor play spaces - is related to children's cognitive, social and emotional development. A number of scales are in existence for assessing childcare centres

Takemi Sugiyama; Louise O'Donnell

88

On Physical Scales of Dark Matter Halos  

NASA Astrophysics Data System (ADS)

It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions "virial." In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.

Zemp, Marcel

2014-09-01

89

Adolfo, Poma Max Planck Institute for Polymer  

E-print Network

Adolfo, Poma Max Planck Institute for Polymer Research Homepage: http­Present Ph.D. in Physics, Max Planck Institute for Polymer Research , Germany. - Expected in 2011. 2005). Scholarships 2009-2011 DAAD Scholarship, Germany. 2008­2009 International Max Planck Research School

Roma "La Sapienza", Università di

90

Overview of Icing Physics Relevant to Scaling  

NASA Technical Reports Server (NTRS)

An understanding of icing physics is required for the development of both scaling methods and ice-accretion prediction codes. This paper gives an overview of our present understanding of the important physical processes and the associated similarity parameters that determine the shape of Appendix C ice accretions. For many years it has been recognized that ice accretion processes depend on flow effects over the model, on droplet trajectories, on the rate of water collection and time of exposure, and, for glaze ice, on a heat balance. For scaling applications, equations describing these events have been based on analyses at the stagnation line of the model and have resulted in the identification of several non-dimensional similarity parameters. The parameters include the modified inertia parameter of the water drop, the accumulation parameter and the freezing fraction. Other parameters dealing with the leading edge heat balance have also been used for convenience. By equating scale expressions for these parameters to the values to be simulated a set of equations is produced which can be solved for the scale test conditions. Studies in the past few years have shown that at least one parameter in addition to those mentioned above is needed to describe surface-water effects, and some of the traditional parameters may not be as significant as once thought. Insight into the importance of each parameter, and the physical processes it represents, can be made by viewing whether ice shapes change, and the extent of the change, when each parameter is varied. Experimental evidence is presented to establish the importance of each of the traditionally used parameters and to identify the possible form of a new similarity parameter to be used for scaling.

Anderson, David N.; Tsao, Jen-Ching

2005-01-01

91

Planck-scale deformation of Lorentz symmetry as a solution to the ultrahigh energy cosmic ray and the TeV-photon paradoxes  

NASA Astrophysics Data System (ADS)

One of the most puzzling current experimental physics paradoxes is the arrival on Earth of ultrahigh energy cosmic rays (UHECRs) with energies above the Greisen-Zatsepin-Kuzmin threshold (5×1019 eV). Photopion production by cosmic microwave background radiation photons should reduce the energy of these protons below this level. The recent observation of 20 TeV photons from Mk 501 (a BL Lac object at a distance of 150 Mpc) is another somewhat similar paradox. These high energy photons should have disappeared due to pair production with IR background photons. A common feature of these two paradoxes is that they can both be seen as ``threshold anomalies'': energies corresponding to an expected threshold (pion production or pair creation) are reached but the threshold is not observed. Several (relatively speculative) models have been proposed for the UHECR paradox. No solution has yet been proposed for the TeV-? paradox. Remarkably, the single drastic assumption of the violation of ordinary Lorentz invariance would resolve both paradoxes. We present here a formalism for the systematic description of the type of Lorentz-invariance deformation (LID) that could be induced by the nontrivial short-distance structure of space-time, and we show that this formalism is well suited for comparison of experimental data with LID predictions. We use the UHECR and TeV-? data, as well as upper bounds on time-of-flight differences between photons of different energies, to constrain the parameter space of the LID. A model with only two free parameters, an energy scale and a dimensionless parameter characterizing the functional dependence on the energy scale, is shown to be sufficient to solve both the UHECR and the TeV-? threshold anomalies while satisfying the time-of-flight bounds. The allowed region of the two-parameter space is relatively small, but, remarkably, it fits perfectly the expectations of the quantum-gravity-motivated space-time models known to support such deformations of Lorentz invariance: an integer value of the dimensionless parameter and a characteristic energy scale constrained to a narrow interval in the neighborhood of the Planck scale.

Amelino-Camelia, Giovanni; Piran, Tsvi

2001-08-01

92

Max Planck Fellows Max Planck Fellows  

E-print Network

53 Max Planck Fellows Max Planck Fellows NaTIONal | NaTIONal Das Max Planck Fellow-Programm fördert die Zusammenarbeit von herausragenden Hochschullehrerinnen und -lehrern mit Wis- senschaftlern der Max-Planck-Gesellschaft. Die Bestellung von Hochschullehrerinnen und -lehrern zu Max Planck Fellows ist auf fünf Jahre

Falge, Eva

93

Max-Planck-Institut fr Physik (Werner-Heisenberg-Institut)  

E-print Network

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) The Max Planck Institute for Physics with the possibility of an extension. The Max Planck Soci- ety is an equal opportunity employer. Further information@mppmu.mpg.de). Interested applicants should address their application to: Max-Planck-Institut für Physik Ms. F. Happel

94

Ford-Pfenning Quantum Inequalities(QI) in the Natario Warp Drive Spacetime using the Planck Length Scale.  

E-print Network

Ford-Pfenning Quantum Inequalities(QI) in the Natario Warp Drive Spacetime using the Planck Length]) The warp drive as conceived by Alcubierre worked with an expansion of the spacetime behind an object Warp Drives are solutions of the Einstein Field Equations that allows superluminal travel within

Paris-Sud XI, Université de

95

Planck data reconsidered  

NASA Astrophysics Data System (ADS)

The tension between the best fit parameters derived by the Planck team and a number of other astronomical measurements suggests either systematics in the astronomical measurements, systematics in the Planck data, the need for new physics, or a combination thereof. We reanalyze the Planck data and find that the 217 GHz ×217 GHz detector set spectrum used in the Planck analysis is responsible for some of this tension. We use a map-based foreground cleaning procedure, relying on a combination of 353 GHz and 545 GHz maps to reduce residual foregrounds in the intermediate frequency maps used for cosmological inference. For our baseline data analysis, which uses 47% of the sky and makes use of both 353 and 545 GHz data for foreground cleaning, we find the ? CDM cosmological parameters ?ch2=0.1170 ±0.0025 , ns=0.9686 ±0.0069 , H0=68.0 ±1.1 km s-1 Mpc-1 , ?bh2=0.02197 ±0.00026 , ln 1010As=3.082 ±0.025 , and ? =0.090 ±0.013 . While in broad agreement with the results reported by the Planck team, these revised parameters imply a universe with a lower matter density of ?m=0.302 ±0.015 , and parameter values generally more consistent with pre-Planck CMB analyses and astronomical observations. We compare our cleaning procedure with the foreground modeling used by the Planck team and find good agreement. The difference in parameters between our analysis and that of the Planck team is mostly due to our use of cross-spectra from the publicly available survey maps instead of their use of the detector set cross-spectra which include pixels only observed in one of the surveys. We show evidence suggesting residual systematics in the detector set spectra used in the Planck likelihood code, which is substantially reduced for our spectra. Using our cleaned survey cross-spectra, we recompute the limit on neutrino species and find Neff=3.34 ±0.35 . We also recompute limits on the ns-r plane, and neutrino mass constraints.

Spergel, David N.; Flauger, Raphael; Hložek, Renée

2015-01-01

96

Tests of the Lorentz and CPT Symmetries at the Planck Energy Scale from X-Ray and Gamma-Ray Observations  

NASA Astrophysics Data System (ADS)

X-ray and gamma-ray observations of astrophysical objects at cosmological distances can be used to probe the energy dependence of the speed of light with high accuracy and to search for violations of Lorentz invariance and CPT symmetry at the Planck energy scale. In this conference contribution, we discuss these searches in the theoretical framework of the Standard-Model Extension. We present new limits on the dispersion relation governed by operators of mass dimension d = 5 and d = 6, and we discuss avenues for future progress.

Krawczynski, Henric; Kislat, Fabian; Beilicke, Matthias; Zajczyk, Anna

2014-01-01

97

2/2007 B56133 MaxPlanckResearchSCIENCE MAGAZINE OF THE MAX PLANCK SOCIETY  

E-print Network

2/2007 B56133 MaxPlanckResearchSCIENCE MAGAZINE OF THE MAX PLANCK SOCIETY MaxPlanckResearch CONSTITUTIONAL LAW A Reform That Misses Its Mark A Reform That Misses Its Mark FOCUS The World in Our HeadsThe World in Our Heads PARTICLE PHYSICS 240 Elephants in a Tunnel 240 Elephants in a Tunnel STUDY

Falge, Eva

98

Springtide-induced magnification of Earth mantle resonance causes tectonics and conceals universality of physics at all scales  

E-print Network

I demonstrate two fundamental contributions. First, the Earth tectonics is generally a consequence of the springtide-induced magnification of mechanical resonance in the Earth mantle. The same mechanism that causes bridges to collapse under the soldiers step-marching makes also the Earth lithosphere fail under the springtide-induced magnification of the mantle resonance resulting in strong earthquakes. Secondly, by generalizing the above finding onto any body anywhere in all the Universes and at all times, I find that there is no distinction between physics at intergalactic, Newtonian, quantum, and smaller scales. Thus, the so-called constant of proportionality of physics, G, is not a constant but a parameter of a most general form: G = s e^2, nonlinearly varying amongst different scales s. Any scale-related variations of physics, erroneously recognized as such by Einstein and Planck, are only apparent and arise as a consequence of the Earth mantle springtide-induced extreme resonance, which is also criticall...

Omerbashich, M

2006-01-01

99

Planck Surveyor On Its Way to Orbit  

SciTech Connect

An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center

2009-05-14

100

Cosmological results from Planck 2014  

NASA Astrophysics Data System (ADS)

The European Space Agency's Planck satellite was launched on 14 May 2009, and surveyed the sky 9 times over its lifetime. In late 2014, ESA and the Planck Collaboration released to the public a complete set of data products from the full mission, including maps of CMB polarization. I will review some of the highlights of this release and the implications for cosmology and early Universe physics.

White, Martin

2015-01-01

101

Planck-Length Phenomenology  

E-print Network

This author's recent proposal of interferometric tests of Planck-scale-related properties of space-time is here revisited from a strictly phenomenological viewpoint. The results announced previously are rederived using elementary dimensional considerations. The dimensional analysis is then extended to the other two classes of experiments (observations of neutral kaons at particle accelerators and observations of the gamma rays we detect from distant astrophysical sources) which have been recently considered as opportunities to explore "foamy" properties of space-time. The emerging picture suggests that there is an objective and intuitive way to connect the sensitivities of these three experiments with the Planck length. While in previous studies the emphasis was always on some quantum-gravity scenario and the analysis was always primarily aimed at showing that the chosen scenario would leave a trace in a certain class of doable experiments, the analysis here reported takes as starting point the experiments and, by relating in a direct quantitative way the sensitivities to the Planck length, provides a model-independent description of the status of Planck-length phenomenology.

Giovanni Amelino-Camelia

2000-08-04

102

October 4-6, 2010 Max Planck Institute for  

E-print Network

October 4-6, 2010 Max Planck Institute for Mathematics in the Sciences Leipzig, Germany Multi-scale dynamics and evolvability of biological networks Scientific Organizers Jürgen Jost Max Planck Institute

103

Development of a Physical Education Teaching Efficacy Scale  

ERIC Educational Resources Information Center

Relationships have been found between teacher efficacy and many teaching and learning variables, but few researchers have examined teaching efficacy in physical education. The instrument reported here, the Physical Education Teaching Efficacy Scale, was developed based on the teaching efficacy literature, existing scales, and National Association…

Humphries, Charlotte A.; Hebert, Edward; Daigle, Kay; Martin, Jeffrey

2012-01-01

104

MAP and Planck vs the Real Universe  

E-print Network

The Microwave Anisotropy Probe (MAP) and Planck Surveyor satellites promise to provide accurate maps of the sky at a range of frequencies and angular scales, from which it will be possible to extract estimates for cosmological parameters. But the real Universe is a nasty, messy place, full of non-linear astrophysics. It is certainly clear that MAP and Planck will fix the background cosmology at an unprecedented level. However, they will have to contend with everything that the Universe throws at them: multiple foregrounds; structure formation effects; and other complications we haven't even thought of yet. Some examples of such effects will be presented. Only an ideal, theorist's universe can be described by a number of free parameters in the single digits, while in reality it is likely that a greater wealth of information waits to be discovered. These `higher-order' processes should be considered as potentially measurable signals, rather than contaminants. The capabilities of Planck seem ideally suited to fully understanding the physics encoded in the microwave sky.

Douglas Scott

1998-10-21

105

Unveiling acoustic physics of the CMB using nonparametric estimation of the temperature angular power spectrum for Planck  

E-print Network

Estimation of the angular power spectrum is one of the important steps in Cosmic Microwave Background (CMB) data analysis. Here, we present a nonparametric estimate of the temperature angular power spectrum for the Planck 2013 CMB data. The method implemented in this work is model-independent, and allows the data, rather than the model, to dictate the fit. Since one of the main targets of our analysis is to test the consistency of the $\\Lambda$CDM model with Planck 2013 data, we use the nuisance parameters associated with the best-fit $\\Lambda$CDM angular power spectrum to remove foreground contributions from the data at multipoles $\\ell \\geq50$. We thus obtain a combined angular power spectrum data set together with the full covariance matrix, appropriately weighted over frequency channels. Our subsequent nonparametric analysis resolves six peaks (and five dips) up to $\\ell \\sim1850$ in the temperature angular power spectrum. We present uncertainties in the peak/dip locations and heights at the $95\\%$ confid...

Aghamousa, Amir; Arjunwadkar, Mihir; Souradeep, Tarun

2014-01-01

106

Warming up for Planck  

NASA Astrophysics Data System (ADS)

The recent Planck results and future releases on the horizon present a key opportunity to address a fundamental question in inflationary cosmology of whether primordial density perturbations have a quantum or thermal origin, i.e. whether particle production may have significant effects during inflation. Warm inflation provides a natural arena to address this issue, with interactions between the scalar inflaton and other degrees of freedom leading to dissipative entropy production and associated thermal fluctuations. In this context, we present relations between CMB observables that can be directly tested against observational data. In particular, we show that the presence of a thermal bath warmer than the Hubble scale during inflation decreases the tensor-to-scalar ratio with respect to the conventional prediction in supercooled inflation, yielding r < 8|nt|, where nt is the tensor spectral index. Focusing on supersymmetric models at low temperatures, we determine consistency relations between the observables characterizing the spectrum of adiabatic scalar and tensor modes, both for generic potentials and particular canonical examples, and which we compare with the WMAP and Planck results. Finally, we include the possibility of producing the observed baryon asymmetry during inflation through dissipative effects, thereby generating baryon isocurvature modes that can be easily accommodated by the Planck data.

Bartrum, Sam; Berera, Arjun; Rosa, João G.

2013-06-01

107

Warming up for Planck  

SciTech Connect

The recent Planck results and future releases on the horizon present a key opportunity to address a fundamental question in inflationary cosmology of whether primordial density perturbations have a quantum or thermal origin, i.e. whether particle production may have significant effects during inflation. Warm inflation provides a natural arena to address this issue, with interactions between the scalar inflaton and other degrees of freedom leading to dissipative entropy production and associated thermal fluctuations. In this context, we present relations between CMB observables that can be directly tested against observational data. In particular, we show that the presence of a thermal bath warmer than the Hubble scale during inflation decreases the tensor-to-scalar ratio with respect to the conventional prediction in supercooled inflation, yielding r < 8|n{sub t}|, where n{sub t} is the tensor spectral index. Focusing on supersymmetric models at low temperatures, we determine consistency relations between the observables characterizing the spectrum of adiabatic scalar and tensor modes, both for generic potentials and particular canonical examples, and which we compare with the WMAP and Planck results. Finally, we include the possibility of producing the observed baryon asymmetry during inflation through dissipative effects, thereby generating baryon isocurvature modes that can be easily accommodated by the Planck data.

Bartrum, Sam; Berera, Arjun [SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom); Rosa, João G., E-mail: s.bartrum@sms.ed.ac.uk, E-mail: ab@ph.ed.ac.uk, E-mail: joao.rosa@ua.pt [Departamento de Física da Universidade de Aveiro and I3N, Campus de Santiago, 3810-183 Aveiro (Portugal)

2013-06-01

108

Broken scale invariance in particle physics  

Microsoft Academic Search

Recent theoretical efforts to understand how scale invariance is broken are reviewed in this paper. Various formulations of approximate scale invariance are considered, with emphasis on the structure of the energy-momentum tensor and the short distance behaviour of field theory. Present address: Cornell University, Ithaca, New York 14850.

P. Carruthers

1971-01-01

109

Phenomenology of SUSY with intermediate scale physics  

E-print Network

The presence of fields at an intermediate scale between the Electroweak and the Grand Unification scale modifies the evolution of the gauge couplings and consequently the running of other parameters of the Minimal Supersymmetric Standard Model, such as gauginos and scalar masses. The net effect is a modification of the low energy spectrum which affects both the collider phenomenology and the dark matter relic density.

C. Biggio

2012-06-01

110

Planck, Max (1858-1947)  

Microsoft Academic Search

Born in Kiel, Schleswig-Holstein, Germany, Nobel prizewinner for physics (1918). Calculated the radiation of a black-body by means of the introduction of the quantum theory of light. The Planck satellite launched to study the black-body spectrum of the cosmic microwave background was named for him....

P. Murdin

2000-01-01

111

WMAP, Planck, cosmic rays and unconventional cosmologies  

E-print Network

The claim by Gurzadyan et al. that the cosmological sky is a weakly random one where "the random perturbation is a minor component of mostly regular signal" has given rise to a series of useful exchanges. The possibility that the Cosmic Microwave Background radiation (CMB) data present trends in this direction would have strong implications for unconventional cosmologies. Similarly, data on ultra-high energy cosmic rays may contain signatures from new Physics generated beyond the Planck scale. It therefore seems legitimate, from a phenomenological point of view, to consider pre-Big Bang cosmologies as well as patterns where standard particles would not be the ultimate constituents of matter and the presently admitted principles of Physics would not necessarily be the fundamental ones. We discuss here prospects for some noncyclic, nonstandard cosmologies.

Luis Gonzalez-Mestres

2011-10-27

112

Extending Higgs inflation with TeV scale new physics  

NASA Astrophysics Data System (ADS)

Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than 2? deviations, and generally gives a negligible tensor-to-scalar ratio r ~ 10-3 (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark Script T and a real scalar Script S. The presence of singlets (Script T, Script S) significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio r=Script O(0.1)-Script O(10-3), consistent with the favored r values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index ns simeq 0.96. It allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark Script T and scalar Script S at the LHC and future high energy pp colliders.

He, Hong-Jian; Xianyu, Zhong-Zhi

2014-10-01

113

Extending Higgs Inflation with TeV Scale New Physics  

E-print Network

Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than $2\\sigma$ deviations, and generally gives a negligible tensor-to-scalar ratio $r \\sim 10^{-3}$ (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark $T$ and a real scalar $S$. The presence of singlets $(T, S)$ significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio $r = O(0.1 - 10^{-3})$, consistent with the favored $r$ values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index $ n_s \\simeq 0.96 $. It further allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark $T$ and scalar $S$ at the LHC and future high energy pp colliders.

Hong-Jian He; Zhong-Zhi Xianyu

2014-10-09

114

Planck early results. I. The Planck mission  

Microsoft Academic Search

The European Space Agency's Planck satellite was launched on 14 May 2009, and has been surveying the sky stably and continuously since 13 August 2009. Its performance is well in line with expectations, and it will continue to gather scientific data until the end of its cryogenic lifetime. We give an overview of the history of Planck in its first

P. A. R. Ade; N. Aghanim; M. Arnaud; M. Ashdown; J. Aumont; C. Baccigalupi; M. Baker; A. Balbi; A. J. Banday; R. B. Barreiro; J. G. Bartlett; E. Battaner; K. Benabed; K. Bennett; A. Benoît; J.-P. Bernard; M. Bersanelli; R. Bhatia; J. J. Bock; A. Bonaldi; J. R. Bond; J. Borrill; T. Bradshaw; M. Bremer; M. Bucher; C. Burigana; R. C. Butler; P. Cabella; C. M. Cantalupo; B. Cappellini; J.-F. Cardoso; R. Carr; M. Casale; A. Catalano; L. Cayón; A. Challinor; A. Chamballu; J. Charra; R.-R. Chary; L.-Y. Chiang; C. Chiang; P. R. Christensen; D. L. Clements; S. Colombi; F. Couchot; A. Coulais; B. P. Crill; G. Crone; M. Crook; F. Cuttaia; L. Danese; O. D'Arcangelo; R. D. Davies; R. J. Davis; P. de Bernardis; J. de Bruin; G. de Gasperis; A. de Rosa; G. de Zotti; J. Delabrouille; J.-M. Delouis; F.-X. Désert; J. Dick; C. Dickinson; K. Dolag; H. Dole; S. Donzelli; O. Doré; U. Dörl; M. Douspis; X. Dupac; G. Efstathiou; T. A. Enßlin; H. K. Eriksen; F. Finelli; S. Foley; O. Forni; P. Fosalba; M. Frailis; E. Franceschi; M. Freschi; T. C. Gaier; S. Galeotta; J. Gallegos; B. Gandolfo; K. Ganga; M. Giard; G. Giardino; G. Gienger; Y. Giraud-Héraud; J. González-Nuevo; K. M. Górski; S. Gratton; A. Gregorio; A. Gruppuso; G. Guyot; J. Haissinski; F. K. Hansen; D. Harrison; G. Helou; S. Henrot-Versillé; C. Hernández-Monteagudo; D. Herranz; S. R. Hildebrandt; E. Hivon; M. Hobson; A. Hornstrup; W. Hovest; R. J. Hoyland; K. M. Huffenberger; A. H. Jaffe; T. Jagemann; W. C. Jones; J. J. Juillet; M. Juvela; P. Kangaslahti; E. Keihänen; R. Keskitalo; T. S. Kisner; R. Kneissl; L. Knox; M. Krassenburg; H. Kurki-Suonio; G. Lagache; A. Lähteenmäki; J.-M. Lamarre; A. E. Lange; A. Lasenby; R. J. Laureijs; C. R. Lawrence; S. Leach; J. P. Leahy; R. Leonardi; C. Leroy; P. B. Lilje; M. Linden-Vørnle; M. López-Caniego; S. Lowe; P. M. Lubin; J. F. Macías-Pérez; T. Maciaszek; C. J. MacTavish; B. Maffei; D. Maino; N. Mandolesi; R. Mann; M. Maris; E. Martínez-González; S. Masi; M. Massardi; S. Matarrese; F. Matthai; P. Mazzotta; A. McDonald; P. R. Meinhold; A. Melchiorri; J.-B. Melin; L. Mendes; A. Mennella; C. Mevi; R. Miniscalco; S. Mitra; M.-A. Miville-Deschênes; A. Moneti; L. Montier; G. Morgante; N. Morisset; D. Mortlock; D. Munshi; A. Murphy; P. Naselsky; P. Natoli; C. B. Netterfield; H. U. Nørgaard-Nielsen; F. Noviello; D. Novikov; I. Novikov; I. J. O'Dwyer; I. Ortiz; S. Osborne; P. Osuna; C. A. Oxborrow; F. Pajot; R. Paladini; B. Partridge; F. Pasian; T. Passvogel; G. Patanchon; D. Pearson; T. J. Pearson; O. Perdereau; L. Perotto; F. Piacentini; M. Piat; E. Pierpaoli; S. Plaszczynski; P. Platania; E. Pointecouteau; G. Polenta; N. Ponthieu; L. Popa; T. Poutanen; G. Prézeau; S. Prunet; J.-L. Puget; J. P. Rachen; W. T. Reach; R. Rebolo; M. Reinecke; J.-M. Reix; C. Renault; S. Ricciardi; T. Riller; I. Ristorcelli; G. Rocha; C. Rosset; M. Rowan-Robinson; J. A. Rubiño-Martín; B. Rusholme; E. Salerno; M. Sandri; D. Santos; G. Savini; B. M. Schaefer; D. Scott; M. D. Seiffert; P. Shellard; A. Simonetto; G. F. Smoot; C. Sozzi; J.-L. Starck; J. Sternberg; F. Stivoli; V. Stolyarov; R. Stompor; L. Stringhetti; R. Sudiwala; R. Sunyaev; J.-F. Sygnet; D. Tapiador; J. A. Tauber; D. Tavagnacco; D. Taylor; L. Terenzi; D. Texier; L. Toffolatti; M. Tomasi; J.-P. Torre; M. Tristram; J. Tuovinen; M. Türler; M. Tuttlebee; G. Umana; L. Valenziano; J. Valiviita; J. Varis; L. Vibert; P. Vielva; F. Villa; N. Vittorio; L. A. Wade; B. D. Wandelt; C. Watson; S. D. M. White; M. White; A. Wilkinson; D. Yvon; A. Zacchei; A. Zonca

2011-01-01

115

Springtide-induced magnification of Earth mantle resonance causes tectonics and conceals universality of physics at all scales  

E-print Network

I demonstrate two fundamental contributions. First, the Earth tectonics is generally a consequence of the springtide-induced magnification of mechanical resonance in the Earth mantle. The same mechanism that causes bridges to collapse under the soldiers step-marching makes also the Earth lithosphere fail under the springtide-induced magnification of the mantle resonance resulting in strong earthquakes. Secondly, by generalizing the above finding onto any body anywhere in all the Universes and at all times, I find that there is no distinction between physics at intergalactic, Newtonian, quantum, and smaller scales. Thus, the so-called constant of proportionality of physics, G, is not a constant but a parameter of a most general form: G = s e^2, nonlinearly varying amongst different scales s. Any scale-related variations of physics, erroneously recognized as such by Einstein and Planck, are only apparent and arise as a consequence of the Earth mantle springtide-induced extreme resonance, which is also critically impeding any terrestrial experiments aimed at estimating the final proportionality G. Gravitation is explained if simply regarded mechanical and repulsive.

Mensur Omerbashich

2006-08-02

116

Planck 2015. XX. Constraints on inflation  

E-print Network

We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be $n_\\mathrm{s} = 0.968 \\pm 0.006$ and tightly constrain its scale dependence to $d n_s/d \\ln k =-0.003 \\pm 0.007$ when combined with the Planck lensing likelihood. When the high-$\\ell$ polarization data is included, the results are consistent and uncertainties are reduced. The upper bound on the tensor-to-scalar ratio is $r_{0.002} inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as $R^2$ ...

Ade, P A R; Arnaud, M; Arroja, F; Ashdown, M; Aumont, J; Baccigalupi, C; Ballardini, M; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoit, A; Benoit-Levy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Contreras, D; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Desert, F -X; Diego, J M; Dole, H; Donzelli, S; Dore, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Ensslin, T A; Eriksen, H K; Fergusson, J; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Frolov, A; Galeotta, S; Galli, S; Ganga, K; Gauthier, C; Giard, M; Giraud-Heraud, Y; Gjerlow, E; Gonzalez-Nuevo, J; Gorski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hamann, J; Handley, W; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versille, S; Hernandez-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huang, Z; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihanen, E; Keskitalo, R; Kim, J; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lahteenmaki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Lesgourgues, J; Levrier, F; Lewis, A; Liguori, M; Lilje, P B; Linden-Vornle, M; Lopez-Caniego, M; Lubin, P M; Ma, Y -Z; Macias-Perez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Martin, P G; Martinez-Gonzalez, E; Masi, S; Matarrese, S; Mazzotta, P; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschenes, M -A; Molinari, D; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munchmeyer, M; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Norgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paladini, R; Pandolfi, S; Paoletti, D; Pasian, F; Patanchon, G; Pearson, T J; Peiris, H V; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prezeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rowan-Robinson, M; Rubino-Martin, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Shiraishi, M; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Trombetti, T; Tucci, M; Tuovinen, J; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; White, M; Yvon, D; Zacchei, A; Zibin, J P; Zonca, A

2015-01-01

117

2D VARIABLY SATURATED FLOWS: PHYSICAL SCALING AND BAYESIAN ESTIMATION  

EPA Science Inventory

A novel dimensionless formulation for water flow in two-dimensional variably saturated media is presented. It shows that scaling physical systems requires conservation of the ratio between capillary forces and gravity forces. A direct result of this finding is that for two phys...

118

Physical Origins of Statistical Scale Invariance or Scaling in Peak Flows in Real River Networks  

NASA Astrophysics Data System (ADS)

For nearly forty years, regional flood frequency analyses in unnested and in nested basins have shown that annual peak-flow quantiles can be related to drainage areas as power laws that arise from the property of scale invariance. This empirical feature has instigated a basic hydrologic question: Can power laws be obtained from physical processes governing rainfall-runoff transformations on real channel networks? There has been steady progress in answering this question since 1990. A physical understanding of peak flow scaling requires the time scales of individual rainfall-runoff events as a first step before going to longer time scales. We have used data from two Agriculture Research Service (ARS) experimental basins in the United States to test the physical basis of scaling in peak flows. The first basin is Goodwin Creek in Mississippi (21 km2), and the second one is Walnut Gulch in Arizona (150 km2). We have tested the hypothesis that scaling parameters of individual flood events on Goodwin Creek vary from one event to the next due to the effect of temporal rainfall variability. On the Walnut Gulch, we have tested the hypothesis that scaling in peak flows for short duration rainfall events is controlled by the river network topological and geometric configuration and the downstream hydraulic-geometric properties. Based on these results we present a gauging strategy to investigate peak flow scaling in the 1100 km2 Whitewater basin in Kansas.

Mantilla, R.; Gupta, V. K.; Furey, P.

2005-12-01

119

Max-Planck-Forschungsgruppen Max Planck research groups  

E-print Network

65 Max-Planck-Forschungsgruppen Max Planck research groups NaCHwuCHsFörDeruNg | suppOrT OF JuNIOr sCIeNTIsTs Seit 1969 fördert die Max-Planck-Gesellschaft besonders begabte junge Wissenschaftler im Rahmen von zeitlich befristeten Max- Planck-Forschungsgruppen. Die Positionen für Max-Planck

Falge, Eva

120

Reactor Physics Methods and Analysis Capabilities in SCALE  

SciTech Connect

The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.

DeHart, Mark D [ORNL; Bowman, Stephen M [ORNL

2011-01-01

121

Reactor Physics Methods and Analysis Capabilities in SCALE  

SciTech Connect

The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.

Mark D. DeHart; Stephen M. Bowman

2011-05-01

122

Physical scales in the Wigner–Boltzmann equation  

PubMed Central

The Wigner–Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner–Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. It is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner–Boltzmann evolution is demonstrated. PMID:23504194

Nedjalkov, M.; Selberherr, S.; Ferry, D.K.; Vasileska, D.; Dollfus, P.; Querlioz, D.; Dimov, I.; Schwaha, P.

2013-01-01

123

Planck's Energy Constant  

NASA Astrophysics Data System (ADS)

Planck's proportionality constant ``h'' is not an action constant. Re-examination of Planck's work has revealed the numerical value for his famous constant ``h'' is actually an energy constant.* Planck's energy constant is the mean energy of a single oscillation of electromagnetic energy, namely 6.626 X 10-34 J/osc. The misinterpretation of Planck's constant resulted from an inadvertent mathematical procedure in his 1901 black-body derivation. Planck's energy constant is found in his original (1897) quantum relationship: E a ? tm where energy (``E'') is proportional to the product of a constant (``a'', energy per oscillation), the frequency (``?''), and the measurement time (``tm''). Planck's inadvertence fixed the measurement time variable ``tm'' at a value of one second, and multiplied it by his constant ``a'', resulting in the product ``h'' which Planck proposed as the ``quantum of action''. Planck's black-body derivation and condensed quantum formula E = h? were never knowingly premised on one second time intervals, however. Subsequent development of quantum mechanics thus took place against the back drop of a hidden assumption. Numerous paradoxes, problems and a lack of reality resulted. Recognition of Planck's energy constant provides a richer and more realistic interpretation of quantum mechanics. *Brooks, JHJ, ``Hidden Variables: The Elementary Quantum of Light'', The Nature of Light: What are Photons? III, Proc. of SPIE Vol. 7421, 74210T-3, 2009. )

Brooks, Juliana

2010-02-01

124

Rede des Prsidenten, Prof. Peter Gruss zur Festveranstaltung zum 150. Geburtstag von Max Planck  

E-print Network

Rede des Präsidenten, Prof. Peter Gruss zur Festveranstaltung zum 150. Geburtstag von Max Planck-PLANCK-GESELLSCHAFT Rede des Präsidenten #12;Präsidenten der European Physical Society, Herrn Kolwas. Auch mehrere

125

Scale invariability  

E-print Network

I recently demonstrated that the Earth is a forced mechanical oscillator in which springtide induced magnification of all-masses resonance causes tectonics. I here generalize this georesonator concept so to make it apply to any body, anywhere in all the universes and at all times. It turns out that there is no distinction between physics at intergalactic, mechanist, quantum, and smaller scales. Instead of being a constant (of proportionality of physics at all scales), G is a parameter of most general form: G = s e^2, nonlinearly varying amongst different scales s. The so called scale variability of physics but not of G, imagined as such by Planck and Einstein, is due to springtide-induced extreme resonance of Earth masses, critically impeding terrestrial experiments for estimating G, while providing artificial settings for quantum experiments to all trivially "work". I propose that reality is a system of near infinitely many magnifying oscillators where permanent energy decay of all oscillation naturally forb...

Omerbashich, M

2008-01-01

126

Particle physics models at the electroweak scale and beyond  

Microsoft Academic Search

We consider various particle physics models constructed to address issues in electroweak-scale supersymmetry, grand unification, and inflation. We begin by exploring the phenomenology of a supersymmetric SU(5) theory living in a truncated, warped 5-dimensional spacetime, with the gauge group broken down to the Standard Model at both ends. The low-energy spectrum of this setup is exotic, and in particular includes

Brock Adam Tweedie

2007-01-01

127

Physical scales in the Wigner-Boltzmann equation  

SciTech Connect

The Wigner-Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner-Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. It is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner-Boltzmann evolution is demonstrated. - Highlights: Black-Right-Pointing-Pointer Dimensionless parameters determine the ratio of quantum or classical WB evolution. Black-Right-Pointing-Pointer The scaling theorem evaluates the decoherence effect due to scattering. Black-Right-Pointing-Pointer Evolution processes are grouped into classes of equivalence.

Nedjalkov, M., E-mail: mixi@iue.tuwien.ac.at [Institute for Microelectronics, Vienna University of Technology, Vienna (Austria); Selberherr, S. [Institute for Microelectronics, Vienna University of Technology, Vienna (Austria)] [Institute for Microelectronics, Vienna University of Technology, Vienna (Austria); Ferry, D.K.; Vasileska, D. [Department of Electrical Engineering, Arizona State University, Tempe, AZ (United States)] [Department of Electrical Engineering, Arizona State University, Tempe, AZ (United States); Dollfus, P.; Querlioz, D. [Institute of Fundamental Electronics, CNRS, University of Paris-sud, Orsay (France)] [Institute of Fundamental Electronics, CNRS, University of Paris-sud, Orsay (France); Dimov, I. [Institute for IC Technology, Bulgarian Academy of Sciences, Sofia (Bulgaria)] [Institute for IC Technology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Schwaha, P. [Shenteq s.r.o., Bratislava (Slovakia)] [Shenteq s.r.o., Bratislava (Slovakia)

2013-01-15

128

The Higgs Mass and the Scale of New Physics  

E-print Network

In view of the measured Higgs mass of 125 GeV, the perturbative renormalization group evolution of the Standard Model suggests that our Higgs vacuum might not be stable. We connect the usual perturbative approach and the functional renormalization group which allows for a straightforward inclusion of higher-dimensional operators in the presence of an ultraviolet cutoff. In the latter framework we study vacuum stability in the presence of higher-dimensional operators. We find that their presence can have a sizable influence on the maximum ultraviolet scale of the Standard Model and the existence of instabilities. Finally, we discuss how such operators can be generated in specific models and study the relation between the instability scale of the potential and the scale of new physics required to avoid instabilities.

Eichhorn, Astrid; Jaeckel, Joerg; Plehn, Tilman; Scherer, Michael M; Sondenheimer, René

2015-01-01

129

Impact of inconsistent density scaling on physical analogue models of continental margin scale salt tectonics  

NASA Astrophysics Data System (ADS)

The influence of inaccuracies in density scaling on the structural evolution of physical analogue experiments of salt systems has been debated, and is here investigated considering a gravity spreading example. Plane strain finite element numerical analysis was used to systematically evaluate the impact of changes in density scaling on buoyancy force, sediment strength, and pressure gradient. A range of densities typical of natural systems (including compacting sediment) and physical analogue experiments was included. A fundamental shift in the structure of the salt-sediment system, from diapir-minibasin pairs to expulsion rollover, was observed when sediment and salt densities were altered from values typical of physical experiments (1600 and 990 kg/m3) to those most often found in nature (1900-2300 and 2150 kg/m3). Experiments equivalent to physical analogue models but with reduced sediment density showed diapir-minibasin pair geometry, persisting to sediment densities of ˜1300 kg/m3. Salt burial by pre-kinematic sediments was found to suppress diapir formation for thicknesses greater than ˜750 m (0.75 cm at the laboratory scale). The relative importance of disproportionately high buoyancy force, low sediment strength, and pressure gradient in physical experiments was investigated by isolating each of these scaling errors in turn. Buoyancy was found to be most influential in the development of diapir-minibasin pairs versus expulsion rollover geometry. Finally, we demonstrate that dry physical analogue experiments with sediment density reduced to ˜1140 kg/m3 (achievable through mixing with hollow glass beads) would provide a reasonable approximation of submarine salt systems in nature (including water load and hydrostatic pore fluid pressure).

Allen, Janice; Beaumont, Christopher

2012-08-01

130

Integrated physics package of a chip-scale atomic clock  

NASA Astrophysics Data System (ADS)

The physics package of a chip-scale atomic clock (CSAC) has been successfully realized by integrating vertical cavity surface emitting laser (VCSEL), neutral density (ND) filter, ?/4 wave plate, 87Rb vapor cell, photodiode (PD), and magnetic coil into a cuboid metal package with a volume of about 2.8 cm3. In this physics package, the critical component, 87Rb vapor cell, is batch-fabricated based on MEMS technology and in-situ chemical reaction method. Pt heater and thermistors are integrated in the physics package. A PTFE pillar is used to support the optical elements in the physics package, in order to reduce the power dissipation. The optical absorption spectrum of 87Rb D1 line and the microwave frequency correction signal are successfully observed while connecting the package with the servo circuit system. Using the above mentioned packaging solution, a CSAC with short-term frequency stability of about 7 × 10-10 ?-1/2 has been successfully achieved, which demonstrates that this physics package would become one promising solution for the CSAC.

Li, Shao-Liang; Xu, Jing; Zhang, Zhi-Qiang; Zhao, Lu-Bing; Long, Liang; Wu, Ya-Ming

2014-07-01

131

Measuring Enjoyment of Physical Activity in Children: Validation of the Physical Activity Enjoyment Scale  

Microsoft Academic Search

This study sought to determine the reliability and validity of the Physical Activity Enjoyment Scale (PACES) in elementary school children. The sample consisted of 564 3rd grade students (M age = 8.72 ±.54; 268 male, 296 female) surveyed at the beginning of the fall semester. Results indicated that the PACES displayed good internal consistency and item-total correlations. Confirmatory factor analyses

Justin B. Moore; Zenong Yin; John Hanes; Joan Duda; Bernard Gutin; Paule Barbeau

2009-01-01

132

MAX-PLANCK-GESELLSCHAFT Max-Planck Hebrew University Center  

E-print Network

MAX-PLANCK-GESELLSCHAFT Max-Planck Hebrew University Center for Brain Research Call for Applications Ph.D. students, post-docs and Junior Fellows TheMaxPlanck and Lily Safra Center for Brain Sciences (ELSC) in Jerusalem and the Max Planck Institute (MPI

133

Precision measurements of Higgs couplings: implications for new physics scales  

NASA Astrophysics Data System (ADS)

The measured properties of the recently discovered Higgs boson are in good agreement with predictions from the Standard Model. However, small deviations in the Higgs couplings may manifest themselves once the currently large uncertainties will be improved as part of the LHC program and at a future Higgs factory. We review typical new physics scenarios that lead to observable modifications of the Higgs interactions. They can be divided into two broad categories: mixing effects as in portal models or extended Higgs sectors, and vertex loop effects from new matter or gauge fields. In each model we relate coupling deviations to their effective new physics scale. It turns out that with percent level precision the Higgs couplings will be sensitive to the multi-TeV regime.

Englert, C.; Freitas, A.; Mühlleitner, M. M.; Plehn, T.; Rauch, M.; Spira, M.; Walz, K.

2014-11-01

134

MAX-PLANCK-GESELLSCHAFT Stellungnahme  

E-print Network

MAX-PLANCK-GESELLSCHAFT Stellungnahme "Diät-Plan vom Max-Planck-Institut für Ernährung" 17. Dezember 2001 Die Max-Planck-Gesellschaft und ihre Forschungsinstitute erhalten seit Jahren laufend Anfragen aus der Bevölkerung zu einem offenbar inzwischen weit verbreiteten "Diät-Plan vom Max-Planck

Falge, Eva

135

MAX-PLANCK-GESELLSCHAFT Presseinformation  

E-print Network

MAX-PLANCK-GESELLSCHAFT Presseinformation SP 1 / 2004 (2)] 15. Januar 2004 Max-Planck Astronomical Society in Atlanta vorgestellt. Dr. Eric F. Bell vom Max-Planck-Institut für Astronomie Evolution from Morphology and Spectral Energy Distributions", das von Prof. Hans-Walter Rix, Direktor am Max-Planck

136

MAX PLANCK SOCIETY Press Release  

E-print Network

MAX PLANCK SOCIETY Press Release SP / 2004 (1) January 15th, 2004 Max Planck Society at the American Astronomical Society meeting in Atlanta, Georgia. Dr. Eric F. Bell of the Max-Planck consortium and led by Dr. Hans-Walter Rix, Director of the Max-Planck-Institute for Astronomy, said the image

137

Measuring Enjoyment of Physical Activity in Children: Validation of the Physical Activity Enjoyment Scale  

PubMed Central

This study sought to determine the reliability and validity of the Physical Activity Enjoyment Scale (PACES) in elementary school children. The sample consisted of 564 3rd grade students (M age = 8.72 ± .54; 268 male, 296 female) surveyed at the beginning of the fall semester. Results indicated that the PACES displayed good internal consistency and item-total correlations. Confirmatory factor analyses supported a unidimensional factor structure. Scores on the PACES were significantly correlated with task goal orientation (r = .65, p < .01), athletic competence (r = .23, p < .01), physical appearance (r = .20, p < .01), and self-reported physical activity (r = .16, p < .01). However, results of invariance analysis suggested the factor structure is variant across sex. The present findings suggest support for the validity of the PACES as a valid measure of enjoyment of physical activity in children; nevertheless, further research examining the invariance of the factor structure across sex is warranted. PMID:20209028

2009-01-01

138

This article was downloaded by:[Max Planck Inst & Research Groups Consortium] On: 23 April 2008  

E-print Network

This article was downloaded by:[Max Planck Inst & Research Groups Consortium] On: 23 April 2008. Vrakking a a FOM Instituut voor Atoom en Molecuul Fysica (AMOLF), Amsterdam, 1098 SJ, The Netherlands b Max-Planck;DownloadedBy:[MaxPlanckInst&ResearchGroupsConsortium]At:13:4923April2008 Molecular Physics Vol. 106, Nos. 2

Kling, Matthias

139

Anomalous physical effects from artificial numerical length scales  

SciTech Connect

Shock capturing algorithms are widely used for simulations of compressible fluid flow. Though these algorithms resolve a shock wave within a couple of grid points, the artificial length scale from the numerical shock profile can have side effects. The side effects are similar to physical effects that occur when a relaxation process gives rise to fully or partly dispersed shock waves. Two anomalies due to a non-zero shock width are discussed: (1) in one-dimension, a non-decaying entropy spike results from a transient when a shock profile is formed or changed; (2) in multi-dimensions, front curvature affects the propagation of a shock wave. The authors show that both the entropy anomaly and the curvature effect are a natural consequence of the conservation laws. The same analysis applies both to the continuum equations and to their finite difference approximations in conservation form. Consequently, the artificial length scale inherent in a shock capturing algorithm can mimic real physical effects that are associated with partly dispersed shock waves.

Menikoff, R.; Lackner, K.S. [Los Alamos National Lab., NM (United States). Theoretical Div.

1995-09-01

140

Lattice physics capabilities of the SCALE code system using TRITON  

SciTech Connect

This paper describes ongoing calculations used to validate the TRITON depletion module in SCALE for light water reactor (LWR) fuel lattices. TRITON has been developed to provide improved resolution for lattice physics mixed-oxide fuel assemblies as programs to burn such fuel in the United States begin to come online. Results are provided for coupled TRITON/PARCS analyses of an LWR core in which TRITON was employed for generation of appropriately weighted few-group nodal cross-sectional sets for use in core-level calculations using PARCS. Additional results are provided for code-to-code comparisons for TRITON and a suite of other depletion packages in the modeling of a conceptual next-generation boiling water reactor fuel assembly design. Results indicate that the set of SCALE functional modules used within TRITON provide an accurate means for lattice physics calculations. Because the transport solution within TRITON provides a generalized-geometry capability, this capability is extensible to a wide variety of non-traditional and advanced fuel assembly designs. (authors)

DeHart, M. D. [Oak Ridge National Laboratory, MS 6170, P.O. Box 2008, Oak Ridge, TN 37831-6170 (United States)

2006-07-01

141

Max-Planck-Institut f ur Mathematik  

E-print Network

multiresolution analysis for electron correlations by Heinz­JË? urgen Flad, Wolfgang Hackbusch, Hongjun Luo correlations Heinz­JË?urgen Flad and Wolfgang Hackbusch Max­Planck­Institut fË?ur Mathematik in den physics. Antisymmetry of fermionic wavefunctions introduces, via Pauli's exclusion principle, a multiscale

142

Planck Distribution in Noncommutative Space  

E-print Network

In this study, we derive the Planck distribution function in noncommutative space. It is found that it is modified by a small factor. It is shown that it is reduced to the usual Planck distribution function in the commutative limit .

C. Yuce

2005-06-13

143

Is super-Planckian physics visible? Scattering of black holes in 5 dimensions  

SciTech Connect

It may be widely believed that probing short distance physics is limited by the presence of the Planck energy scale above which scale any information is cloaked behind a horizon. If this hypothesis is correct, we could observe quantum behavior of gravity only through a black hole of Planck mass. We numerically show that in a scattering of two black holes in the 5-dimensional spacetime, a visible domain, whose curvature radius is much shorter than the Planck length, can be formed. Our result indicates that super-Planckian phenomena may be observed without an obstruction by horizon formation in particle accelerators.

Okawa, Hirotada; Shibata, Masaru [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Nakao, Ken-ichi [Department of Mathematics and Physics, Graduate School of Science, Osaka City University, Osaka 558-8585 (Japan)

2011-06-15

144

Physically representative atomistic modeling of atomic-scale friction  

NASA Astrophysics Data System (ADS)

Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the interesting physical process is buried between the two contact interfaces, thus makes a direct measurement more difficult. Atomistic simulation is able to simulate the process with the dynamic information of each single atom, and therefore provides valuable interpretations for experiments. In this, we will systematically to apply Molecular Dynamics (MD) simulation to optimally model the Atomic Force Microscopy (AFM) measurement of atomic friction. Furthermore, we also employed molecular dynamics simulation to correlate the atomic dynamics with the friction behavior observed in experiments. For instance, ParRep dynamics (an accelerated molecular dynamic technique) is introduced to investigate velocity dependence of atomic friction; we also employ MD simulation to "see" how the reconstruction of gold surface modulates the friction, and the friction enhancement mechanism at a graphite step edge. Atomic stick-slip friction can be treated as a rate process. Instead of running a direction simulation of the process, we can apply transition state theory to predict its property. We will have a rigorous derivation of velocity and temperature dependence of friction based on the Prandtl-Tomlinson model as well as transition theory. A more accurate relation to prediction velocity and temperature dependence is obtained. Furthermore, we have included instrumental noise inherent in AFM measurement to interpret two discoveries in experiments, suppression of friction at low temperature and the attempt frequency discrepancy between AFM measurement and theoretical prediction. We also discuss the possibility to treat wear as a rate process.

Dong, Yalin

145

The Physical Character of Small-Scale Interstellar Structures  

NASA Technical Reports Server (NTRS)

The primary objective of this program was to obtain FUSE observations of the multiple interstellar absorption lines of H2 toward the members of 3 resolvable binary/multiple star systems to explore the physical conditions in known interstellar small-scale structures. Each of the selected systems was meant to address a different aspect of the models for the origin of these structures: 1) The stars HD 32039/40 were meant to probe a temporally varying component which probed a cloud with an inferred size of tens to a few hundreds of AU. The goal was to see if there was any significant H2 associated with this component; 2) The star HD 36408B and its companion HD 36408A (observed as part of FUSE GTO program P119) show significant spatial and temporal (proper motion induced) Na I column variations in a strong, relatively isolated component, as well as a relatively simple component structure. The key goal here was to identify any differences in H2 or C I excitation between the sightlines, and to measure the physical conditions (primarily density and temperature) in the temporally varying component; 3) The stars HD 206267C and HD 206267D are highly reddened sightlines which showed significant variations in K I and molecular absorption lines in multiple velocity components. Coupled with FUSE GTO observations of HD 206267A (program P116), the goal was to study the variations in H2 along sightlines which are significantly more distant, with larger separations, and with greater extinctions than the other selected binary systems.

Lauroesch, James T.

2005-01-01

146

The Physical Origin of Galaxy Morphologies and Scaling Laws  

NASA Technical Reports Server (NTRS)

We propose a numerical study designed to interpret the origin and evolution of galaxy properties revealed by space- and ground-based imaging and spectroscopical surveys. Our aim is to unravel the physical processes responsible for the development of different galaxy morphologies and for the establishment of scaling laws such as the Tully-Fisher relation for spirals and the Fundamental Plane of ellipticals. In particular, we plan to address the following major topics: (1) The morphology and observability of protogalaxies, and in particular the relationship between primordial galaxies and the z approximately 3 'Ly-break' systems identified in the Hubble Deep Field and in ground-based searches; (2) The origin of the disk and spheroidal components in galaxies, the timing and mode of their assembly, the corresponding evolution in galaxy morphologies and its sensitivity to cosmological parameters; (3) The origin and redshift evolution of the scaling laws that link the mass, luminosity size, stellar content, and metal abundances of galaxies of different morphological types. This investigation will use state-of-the-art N-body/gasdynamical codes to provide a spatially resolved description of the galaxy formation process in hierarchically clustering universes. Coupled with population synthesis techniques. our models can be used to provide synthetic 'observations' that can be compared directly with observations of galaxies both nearby and at cosmologically significant distances. This study will thus provide insight into the nature of protogalaxies and into the formation process of galaxies like our own Milky Way. It will also help us to assess the cosmological significance of these observations within the context of hierarchical theories of galaxy formation and will supply a theoretical context within which current and future observations can be interpreted.

Steinmetz, Matthias; Navarro, Julio F.

2002-01-01

147

Planck 2013 results. XXIV. Constraints on primordial non-Gaussianity  

NASA Astrophysics Data System (ADS)

The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG). Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result fNLlocal = 2.7 ± 5.8, fNLequil = -42 ± 75, and fNLorth = -25 ± 39 (68% CL statistical). Non-Gaussianity is detected in the data; using skew-C? statistics we find a nonzero bispectrum from residual point sources, and the integrated-Sachs-Wolfe-lensing bispectrum at a level expected in the ?CDM scenario. The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are confirmed by skew-C?, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and thus derive constraints on early-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models. These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, cs ? 0.02 (95% CL), in an effective field theory parametrization, and the curvaton decay fraction rD ? 0.15 (95% CL). The Planck data significantly limit the viable parameter space of the ekpyrotic/cyclic scenarios. The amplitude of the four-point function in the local model ?NL< 2800 (95% CL). Taken together, these constraints represent the highest precision tests to date of physical mechanisms for the origin of cosmic structure.

Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Heavens, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Smith, K.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

2014-11-01

148

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

SciTech Connect

IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

Gerber, Richard A.; Wasserman, Harvey J.

2012-03-02

149

Inflationary schism after Planck2013  

E-print Network

Classic inflation, the theory described in textbooks, is based on the idea that, beginning from typical initial conditions and assuming a simple inflaton potential with a minimum of fine-tuning, inflation can create exponentially large volumes of space that are generically homogeneous, isotropic and flat, with nearly scale-invariant spectra of density and gravitational wave fluctuations that are adiabatic, Gaussian and have generic predictable properties. In a recent paper, we showed that, in addition to having certain conceptual problems known for decades, classic inflation is for the first time also disfavored by data, specifically the most recent data from WMAP, ACT and Planck2013. Guth, Kaiser and Nomura and Linde have each recently published critiques of our paper, but, as made clear here, we all agree about one thing: the problematic state of classic inflation. Instead, they describe an alternative inflationary paradigm that revises the assumptions and goals of inflation, and perhaps of science generally.

Anna Ijjas; Paul J. Steinhardt; Abraham Loeb

2014-02-27

150

Joint Planck and WMAP Assessment of Low CMB Multipoles  

E-print Network

The remarkable progress in cosmic microwave background (CMB) studies over past decade has led to the era of precision cosmology in striking agreement with the $\\Lambda$CDM model. However, the lack of power in the CMB temperature anisotropies at large angular scales (low-$\\ell$), as has been confirmed by the recent Planck data also (up to $\\ell=40$), is still an open problem. One can avoid to seek an explanation for this problem by attributing the lack of power to cosmic variance or can look for explanations i.e., different inflationary potentials or initial conditions for inflation to begin with, non-trivial topology, ISW effect etc. Features in the primordial power spectrum (PPS) motivated by the early universe physics has been the most common solution to address this problem. In the present work we also follow this approach and consider a set of PPS which have features and constrain the parameters of those using WMAP 9 year and Planck data employing Markov-Chain Monte Carlo (MCMC) analysis. The prominent fe...

Iqbal, Asif; Souradeep, Tarun; Malik, Manzoor A

2015-01-01

151

Planck CMB anomalies: astrophysical and cosmological secondary effects and the curse of masking  

NASA Astrophysics Data System (ADS)

Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html.

Rassat, A.; Starck, J.-L.; Paykari, P.; Sureau, F.; Bobin, J.

2014-08-01

152

RELATING GEOPHYSICAL AND HYDROLOGIC PROPERTIES USING FIELD-SCALE ROCK PHYSICS  

E-print Network

CMWRXVI 1 RELATING GEOPHYSICAL AND HYDROLOGIC PROPERTIES USING FIELD-SCALE ROCK PHYSICS STEPHEN has been made by rock physics investigations that define how pore-scale variations in properties like mineralogy, fluid content, and grain geometry affect the geophysical response of a rock or sediment

Knight, Rosemary

153

Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes  

Microsoft Academic Search

We argue that the basic properties of rain and cloud fields (particularly their scaling and intermittency) are best understood in terms of coupled (anisotropic and scaling) cascade processes. We show how such cascades provide a framework not only for theoretically and empirically investigating these fields, but also for constructing physically based stochastic models. This physical basis is provided by cascade

Daniel Schertzer; Shaun Lovejoy

1987-01-01

154

Quantifying the BICEP2-Planck tension over gravitational waves.  

PubMed

The recent BICEP2 measurement of B-mode polarization in the cosmic microwave background (r = 0.2(-0.05)(+0.07)), a possible indication of primordial gravity waves, appears to be in tension with the upper limit from WMAP (r < 0.13 at 95% C.L.) and Planck (r < 0.11 at 95% C.L.). We carefully quantify the level of tension and show that it is very significant (around 0.1% unlikely) when the observed deficit of large-scale temperature power is taken into account. We show that measurements of TE and EE power spectra in the near future will discriminate between the hypotheses that this tension is either a statistical fluke or a sign of new physics. We also discuss extensions of the standard cosmological model that relieve the tension and some novel ways to constrain them. PMID:25083631

Smith, Kendrick M; Dvorkin, Cora; Boyle, Latham; Turok, Neil; Halpern, Mark; Hinshaw, Gary; Gold, Ben

2014-07-18

155

Planck's Constant as a Natural Unit of Measurement  

ERIC Educational Resources Information Center

The proposed revision of SI units would embed Planck's constant into the definition of the kilogram, as a fixed constant of nature. Traditionally, Planck's constant is not readily interpreted as the size of something physical, and it is generally only encountered by students in the mathematics of quantum physics. Richard Feynman's…

Quincey, Paul

2013-01-01

156

Planck Oscillators in the Background Dark Energy  

E-print Network

We consider a model for an underpinning of the universe: there are oscillators at the Planck scale in the background dark energy. Starting from a coherent array of such oscillators it is possible to get a description from elementary particles to Black Holes including the usual Hawking-Beckenstein theory. There is also a description of Gravitation in the above model which points to a unified description with electromagnetism.

Burra G. Sidharth

2009-12-08

157

Planck Oscillators in the Background Dark Energy  

NASA Astrophysics Data System (ADS)

We consider a model for an underpinning of the universe: there are oscillators at the Planck scale in the background dark energy. Starting from a coherent array of such oscillators it is possible to get a description from elementary particles to Black Holes including the usual Hawking-Beckenstein theory. There is also a description of Gravitation in the above model which points to a unified description with electromagnetism.

Sidharth, B. G.

2010-10-01

158

Physical Activity Recognition from Accelerometer Data Using a Multi-Scale Ensemble Method  

E-print Network

Physical Activity Recognition from Accelerometer Data Using a Multi-Scale Ensemble Method Yonglei Accurate and detailed measurement of an individual's physical activity is a key requirement for helping re- searchers understand the relationship between physical activity and health. Accelerometers have become

Wong, Weng-Keen

159

Developing a Rasch Measurement Physical Fitness Scale for Hong Kong Primary School-Aged Students  

ERIC Educational Resources Information Center

The main purpose of this study was to develop a Rasch Measurement Physical Fitness Scale (RMPFS) based on physical fitness indicators routinely used in Hong Kong primary schools. A total of 9,439 records of students' performances on physical fitness indicators, retrieved from the database of a Hong Kong primary school, were used to develop the…

Yan, Zi; Bond, Trevor G.

2011-01-01

160

Quantum Gravity corrections and entropy at the Planck time  

SciTech Connect

We investigate the effects of Quantum Gravity on the Planck era of the universe. In particular, using different versions of the Generalized Uncertainty Principle and under specific conditions we find that the main Planck quantities such as the Planck time, length, mass and energy become larger by a factor of order 10?10{sup 4} compared to those quantities which result from the Heisenberg Uncertainty Principle. However, we prove that the dimensionless entropy enclosed in the cosmological horizon at the Planck time remains unchanged. These results, though preliminary, indicate that we should anticipate modifications in the set-up of cosmology since changes in the Planck era will be inherited even to the late universe through the framework of Quantum Gravity (or Quantum Field Theory) which utilizes the Planck scale as a fundamental one. More importantly, these corrections will not affect the entropic content of the universe at the Planck time which is a crucial element for one of the basic principles of Quantum Gravity named Holographic Principle.

Basilakos, Spyros; Vagenas, Elias C. [Research Center for Astronomy and Applied Mathematics, Academy of Athens, Soranou Efessiou 4, GR-11527, Athens (Greece); Das, Saurya, E-mail: svasil@academyofathens.gr, E-mail: saurya.das@uleth.ca, E-mail: evagenas@academyofathens.gr [Theoretical Physics Group, Department of Physics and Astronomy, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta - T1K 3M4 (Canada)

2010-09-01

161

Neutrinos Help Reconcile Planck Measurements with the Local Universe  

NASA Astrophysics Data System (ADS)

Current measurements of the low and high redshift Universe are in tension if we restrict ourselves to the standard six-parameter model of flat ?CDM. This tension has two parts. First, the Planck satellite data suggest a higher normalization of matter perturbations than local measurements of galaxy clusters. Second, the expansion rate of the Universe today, H0, derived from local distance-redshift measurements is significantly higher than that inferred using the acoustic scale in galaxy surveys and the Planck data as a standard ruler. The addition of a sterile neutrino species changes the acoustic scale and brings the two into agreement; meanwhile, adding mass to the active neutrinos or to a sterile neutrino can suppress the growth of structure, bringing the cluster data into better concordance as well. For our fiducial data set combination, with statistical errors for clusters, a model with a massive sterile neutrino shows 3.5? evidence for a nonzero mass and an even stronger rejection of the minimal model. A model with massive active neutrinos and a massless sterile neutrino is similarly preferred. An eV-scale sterile neutrino mass—of interest for short baseline and reactor anomalies—is well within the allowed range. We caution that (i) unknown astrophysical systematic errors in any of the data sets could weaken this conclusion, but they would need to be several times the known errors to eliminate the tensions entirely; (ii) the results we find are at some variance with analyses that do not include cluster measurements; and (iii) some tension remains among the data sets even when new neutrino physics is included.

Wyman, Mark; Rudd, Douglas H.; Vanderveld, R. Ali; Hu, Wayne

2014-02-01

162

Neutrinos help reconcile Planck measurements with the local universe.  

PubMed

Current measurements of the low and high redshift Universe are in tension if we restrict ourselves to the standard six-parameter model of flat ?CDM. This tension has two parts. First, the Planck satellite data suggest a higher normalization of matter perturbations than local measurements of galaxy clusters. Second, the expansion rate of the Universe today, H0, derived from local distance-redshift measurements is significantly higher than that inferred using the acoustic scale in galaxy surveys and the Planck data as a standard ruler. The addition of a sterile neutrino species changes the acoustic scale and brings the two into agreement; meanwhile, adding mass to the active neutrinos or to a sterile neutrino can suppress the growth of structure, bringing the cluster data into better concordance as well. For our fiducial data set combination, with statistical errors for clusters, a model with a massive sterile neutrino shows 3.5? evidence for a nonzero mass and an even stronger rejection of the minimal model. A model with massive active neutrinos and a massless sterile neutrino is similarly preferred. An eV-scale sterile neutrino mass--of interest for short baseline and reactor anomalies--is well within the allowed range. We caution that (i) unknown astrophysical systematic errors in any of the data sets could weaken this conclusion, but they would need to be several times the known errors to eliminate the tensions entirely; (ii) the results we find are at some variance with analyses that do not include cluster measurements; and (iii) some tension remains among the data sets even when new neutrino physics is included. PMID:24580585

Wyman, Mark; Rudd, Douglas H; Vanderveld, R Ali; Hu, Wayne

2014-02-01

163

Localizability and the planck mass  

SciTech Connect

The author combines the assumption of environmental decoherence, as the mechanism generating the classical (i.e. no quantum interferences) nature of spacetime, with the limit on its other classical feature, point-like continuity, namely Planck length. As a result, quantum extended objects with masses larger than Planck mass have to derive their quantum behavior from long-range correlations; objects with masses smaller than Planck mass cannot display classical behavior.

Ne`eman, Y. [Tel-Aviv Univ. (Israel). Sackler Faculty of Exact Sciences]|[Univ. of Texas, Austin, TX (United States). Center for Particle Physics

1993-06-01

164

Physical meaning of one-machine and multimachine tokamak scalings  

SciTech Connect

Specific features of energy confinement scalings constructed using different experimental databases for tokamak plasmas are considered. In the multimachine database, some pairs of engineering variables are collinear; e.g., the current I and the input power P both increase with increasing minor radius a. As a result, scalings derived from this database are reliable only for discharges in which such ratios as I/a{sup 2} or P/a{sup 2} are close to their values averaged over the database. The collinearity of variables allows one to exclude the normalized Debye radius d* from the scaling expressed in a nondimensional form. In one-machine databases, the dimensionless variables are functionally dependent, which allow one to cast a scaling without d*. In a database combined from two devices, the collinearity may be absent, so the Debye radius cannot generally be excluded from the scaling. It is shown that the experiments performed in support of the absence of d* in the two-machine scaling are unconvincing. Transformation expressions are given that allow one to compare experiments for the determination of scaling in any set of independent variables.

Dnestrovskij, Yu. N., E-mail: dnyn@nfi.kiae.ru; Danilov, A. V.; Dnestrovskij, A. Yu.; Lysenko, S. E. [National Research Centre Kurchatov Institute, Institute of Tokamak Physics (Russian Federation)] [National Research Centre Kurchatov Institute, Institute of Tokamak Physics (Russian Federation); Ongena, J. [Euratom-Belgium State Association, Laboratory for Plasma Physics (Belgium)] [Euratom-Belgium State Association, Laboratory for Plasma Physics (Belgium)

2013-04-15

165

Large Scale Computing and Storage Requirements for High Energy Physics  

E-print Network

CDF is a legacy project completing its physics analysis ofat Fermilab (CDF). The work involves both the analysis ofCDF is unlikely to benefit much from increases on the five- year timescale as their analysis

Gerber, Richard A.

2011-01-01

166

Planck pre-launch status: The Planck mission  

Microsoft Academic Search

The European Space Agency's Planck satellite, launched on 14 May 2009, is the third-generation space experiment in the field of cosmic microwave background (CMB) research. It will image the anisotropies of the CMB over the whole sky, with unprecedented sensitivity ({{Delta T}over T} 2 × 10-6) and angular resolution ( 5 arcmin). Planck will provide a major source of information

J. A. Tauber; N. Mandolesi; J.-L. Puget; T. Banos; M. Bersanelli; F. R. Bouchet; R. C. Butler; J. Charra; G. Crone; J. Dodsworth; G. Efstathiou; R. Gispert; G. Guyot; A. Gregorio; J. J. Juillet; J.-M. Lamarre; R. J. Laureijs; C. R. Lawrence; H. U. Nørgaard-Nielsen; T. Passvogel; J. M. Reix; D. Texier; L. Vibert; A. Zacchei; P. A. R. Ade; N. Aghanim; B. Aja; E. Alippi; L. Aloy; P. Armand; M. Arnaud; A. Arondel; A. Arreola-Villanueva; E. Artal; E. Artina; A. Arts; M. Ashdown; J. Aumont; M. Azzaro; A. Bacchetta; C. Baccigalupi; M. Baker; M. Balasini; A. Balbi; A. J. Banday; G. Barbier; R. B. Barreiro; M. Bartelmann; P. Battaglia; E. Battaner; K. Benabed; J.-L. Beney; R. Beneyton; K. Bennett; A. Benoit; J.-P. Bernard; P. Bhandari; R. Bhatia; M. Biggi; R. Biggins; G. Billig; Y. Blanc; H. Blavot; J. J. Bock; A. Bonaldi; R. Bond; J. Bonis; J. Borders; J. Borrill; L. Boschini; F. Boulanger; J. Bouvier; M. Bouzit; R. Bowman; E. Bréelle; T. Bradshaw; M. Braghin; M. Bremer; D. Brienza; D. Broszkiewicz; C. Burigana; M. Burkhalter; P. Cabella; T. Cafferty; M. Cairola; S. Caminade; P. Camus; C. M. Cantalupo; B. Cappellini; J.-F. Cardoso; R. Carr; A. Catalano; L. Cayón; M. Cesa; M. Chaigneau; A. Challinor; A. Chamballu; J. P. Chambelland; M. Charra; L.-Y. Chiang; G. Chlewicki; P. R. Christensen; S. Church; E. Ciancietta; M. Cibrario; R. Cizeron; D. Clements; B. Collaudin; J.-M. Colley; S. Colombi; A. Colombo; F. Colombo; O. Corre; F. Couchot; B. Cougrand; A. Coulais; P. Couzin; B. Crane; B. Crill; M. Crook; D. Crumb; F. Cuttaia; U. Dörl; P. da Silva; R. Daddato; C. Damasio; L. Danese; G. D'Aquino; O. D'Arcangelo; K. Dassas; R. D. Davies; W. Davies; R. J. Davis; P. de Bernardis; D. de Chambure; G. de Gasperis; M. L. de La Fuente; P. de Paco; A. de Rosa; G. de Troia; G. de Zotti; M. Dehamme; J. Delabrouille; J.-M. Delouis; F.-X. Désert; G. di Girolamo; C. Dickinson; E. Doelling; K. Dolag; I. Domken; M. Douspis; D. Doyle; S. Du; D. Dubruel; C. Dufour; C. Dumesnil; X. Dupac; P. Duret; C. Eder; A. Elfving; T. A. Enßlin; K. English; H. K. Eriksen; P. Estaria; M. C. Falvella; F. Ferrari; F. Finelli; A. Fishman; S. Fogliani; S. Foley; A. Fonseca; G. Forma; O. Forni; P. Fosalba; J.-J. Fourmond; M. Frailis; C. Franceschet; E. Franceschi; S. François; M. Frerking; M. F. Gómez-Reñasco; K. M. Górski; T. C. Gaier; S. Galeotta; K. Ganga; J. García Lázaro; A. Garnica; M. Gaspard; E. Gavila; M. Giard; G. Giardino; G. Gienger; Y. Giraud-Heraud; J.-M. Glorian; M. Griffin; A. Gruppuso; L. Guglielmi; D. Guichon; B. Guillaume; P. Guillouet; J. Haissinski; F. K. Hansen; J. Hardy; D. Harrison; A. Hazell; M. Hechler; V. Heckenauer; D. Heinzer; R. Hell; S. Henrot-Versillé; C. Hernández-Monteagudo; D. Herranz; J. M. Herreros; V. Hervier; A. Heske; A. Heurtel; S. R. Hildebrandt; R. Hills; E. Hivon; M. Hobson; D. Hollert; W. Holmes; A. Hornstrup; W. Hovest; R. J. Hoyland; G. Huey; K. M. Huffenberger; N. Hughes; U. Israelsson; B. Jackson; A. Jaffe; T. R. Jaffe; T. Jagemann; N. C. Jessen; J. Jewell; W. Jones; M. Juvela; J. Kaplan; P. Karlman; F. Keck; E. Keihänen; M. King; T. S. Kisner; P. Kletzkine; R. Kneissl; J. Knoche; L. Knox; T. Koch; M. Krassenburg; H. Kurki-Suonio; A. Lähteenmäki; G. Lagache; E. Lagorio; P. Lami; J. Lande; A. Lange; F. Langlet; R. Lapini; M. Lapolla; A. Lasenby; M. Le Jeune; J. P. Leahy; M. Lefebvre; F. Legrand; G. Le Meur; R. Leonardi; B. Leriche; C. Leroy; P. Leutenegger; S. M. Levin; P. B. Lilje; C. Lindensmith; M. Linden-Vørnle; A. Loc; Y. Longval; P. M. Lubin; T. Luchik; I. Luthold; J. F. Macias-Perez; T. Maciaszek; C. MacTavish; S. Madden; B. Maffei; C. Magneville; D. Maino; A. Mambretti; B. Mansoux; D. Marchioro; M. Maris; F. Marliani; J.-C. Marrucho; J. Martí-Canales; E. Martínez-González; A. Martín-Polegre; P. Martin; C. Marty; W. Marty; S. Masi; M. Massardi; S. Matarrese; F. Matthai; P. Mazzotta; A. McDonald; P. McGrath; A. Mediavilla; P. R. Meinhold; J.-B. Mélin; F. Melot; L. Mendes; A. Mennella; C. Mervier; L. Meslier; M. Miccolis; M.-A. Miville-Deschenes; A. Moneti; D. Montet; L. Montier; J. Mora; G. Morgante; G. Morigi; G. Morinaud; N. Morisset; D. Mortlock; S. Mottet; J. Mulder; D. Munshi; A. Murphy; P. Murphy; P. Musi; J. Narbonne; P. Naselsky; A. Nash; F. Nati; P. Natoli; B. Netterfield; J. Newell; M. Nexon; C. Nicolas; P. H. Nielsen; N. Ninane; F. Noviello; D. Novikov; I. Novikov; I. J. O'Dwyer; P. Oldeman; P. Olivier; L. Ouchet; C. A. Oxborrow; L. Pérez-Cuevas; L. Pagan; C. Paine; F. Pajot; R. Paladini; F. Pancher; J. Panh; G. Parks; P. Parnaudeau; B. Partridge; B. Parvin; J. P. Pascual; F. Pasian; D. P. Pearson; T. Pearson; M. Pecora; O. Perdereau; L. Perotto; F. Perrotta; F. Piacentini; M. Piat; E. Pierpaoli; O. Piersanti; E. Plaige; S. Plaszczynski; P. Platania; E. Pointecouteau; G. Polenta; N. Ponthieu; L. Popa; G. Poulleau; T. Poutanen

2010-01-01

167

Dust emission of the Milky Way and Magellanic Clouds with PLANCK  

NASA Astrophysics Data System (ADS)

Observations of the dust emission in the Far-IR have made tremendous progress over the past 30 years, starting with airborne and ground-based instruments, which were quickly made obsolete by satellite observations. Simultaneously, balloon-borne experiments allowed us to track the dust emission up to the sub-mm domain, at angular resolutions comparable to that of IRAS. Most recently, the advent of the Herschel Space Observatory and of the Planck satellite has fully opened the FIR-mm observation window. I will review some of the recent Planck results related to the physics of large dust grains in our galaxy and the nearby Large and Small Magellanic Clouds. These results largely confirm those obtained with earlier missions. In particular that the dust SED is flatter than expected and shows variations with wavelength and potentially with dust temperature, environment and metalicity. These results indicate that the FIR-submm emission of thermal dust is complex and variable. The possible reasons for that, such as the presence of very cold dust, spinning dust, the mechanical structure of dust grains, the aggregation of dust particles will be discussed. I will also discuss the use of the Planck data to trace total gas column density in our galaxy, which evidences the existence of an elusive ``Dark-Gas'' component not traced by the available large-scale gas surveys. Finally, I will talk about the prospect of dust polarization measurements with Planck and what they will bring to our understanding of dust physics and magnetic structure of the ISM. These themes are not only important to our understanding of dust properties in distant galaxies, but also to the removal of galactic foreground emission for CMB cosmology.

Bernard, Jean-Philippe

2012-07-01

168

Influence of large scale topography on gravitational rock mass movements: New insights from physical modeling  

NASA Astrophysics Data System (ADS)

Gravitational slope failures and associated rock mass movements can be observed at various scales in the same area. It seems obvious that the different movement scales should be interrelated, but their relationships are poorly understood. We address this problem using 3-D physical modeling. Experiments were conducted with mechanically homogeneous models with two-scale topographic features. A large scale corresponds to the whole mountain (several kilometers), and a smaller one to a part of a mountain slope (~one kilometer). Results show that large scale relief induces large-scale (large volume) gravitational movements. Introduction of small-scale topographic features results not only in the generation of smaller-scale landslides, but also in considerable changes in the deformation pattern. The various-scale processes occur simultaneously and affect each other. To predict the evolution of a landslide, it is therefore necessary to take into account the topography and deformation pattern at various scales.

Bachmann, D.; Bouissou, S.; Chemenda, A.

2006-11-01

169

Does Planck really rule out monomial inflation?  

NASA Astrophysics Data System (ADS)

We consider the modifications of monomial chaotic inflation models due to radiative corrections induced by inflaton couplings to bosons and/or fermions necessary for reheating. To the lowest order, ignoring gravitational corrections and treating the inflaton as a classical background field, they are of the Coleman-Weinberg type and parametrized by the renormalization scale ?. In cosmology, there are not enough measurements to fix ? so that we end up with a family of models, each having a slightly different slope of the potential. We demonstrate by explicit calculation that within the family of chaotic phi2 models, some may be ruled out by Planck whereas some remain perfectly viable. In contrast, radiative corrections do not seem to help chaotic phi4 models to meet the Planck constraints.

Enqvist, Kari; Kar?iauskas, Mindaugas

2014-02-01

170

Microfluidics: Fluid physics at the nanoliter scale Todd M. Squires*  

E-print Network

promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah number: Free-surface deformations 989 1. Droplet formation in two-phase flows 989 2. Fluid control using

Quake, Stephen R.

171

The physical basis of glacier volume-area scaling  

Microsoft Academic Search

Ice volumes are known for only a few of the roughly 160,000 glaciers worldwide but are important components of many climate and sea level studies which require water flux estimates. A scaling analysis of the mass and momentum conservation equations shows that glacier volumes can be related by a power law to more easily observed glacier surface areas. The relationship

David B. Bahr; Mark F. Meier; Scott D. Peckham

1997-01-01

172

Planck 2013 results. I. Overview of products and scientific results  

NASA Astrophysics Data System (ADS)

The European Space Agency's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. In March 2013, ESA and the Planck Collaboration released the initial cosmology products based on the first 15.5 months of Planck data, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the cosmic microwave background (CMB) and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the Sunyaev-Zeldovich effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter ?CDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25?. Planck finds no evidence for non-Gaussianity in the CMB. Planck's results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations (?8) derived from CMB data and that derived from Sunyaev-Zeldovich data. The Planck and WMAP power spectra are offset from each other by an average level of about 2% around the first acoustic peak. Analysis of Planck polarization data is not yet mature, therefore polarization results are not released, although the robust detection of E-mode polarization around CMB hot and cold spots is shown graphically.

Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bertincourt, B.; Bethermin, M.; Bielewicz, P.; Bikmaev, I.; Blanchard, A.; Bobin, J.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bourdin, H.; Bowyer, J. W.; Bridges, M.; Brown, M. L.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cappellini, B.; Cardoso, J.-F.; Carr, R.; Carvalho, P.; Casale, M.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Church, S.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Déchelette, T.; Delabrouille, J.; Delouis, J.-M.; Démoclès, J.; Désert, F.-X.; Dick, J.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fabre, O.; Falgarone, E.; Falvella, M. C.; Fantaye, Y.; Fergusson, J.; Filliard, C.; Finelli, F.; Flores-Cacho, I.; Foley, S.; Forni, O.; Fosalba, P.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Freschi, M.; Fromenteau, S.; Frommert, M.; Gaier, T. C.; Galeotta, S.; Gallegos, J.; Galli, S.; Gandolfo, B.; Ganga, K.; Gauthier, C.; Génova-Santos, R. T.; Ghosh, T.; Giard, M.; Giardino, G.; Gilfanov, M.; Girard, D.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hamann, J.; Hansen, F. K.; Hansen, M.; Hanson, D.; Harrison, D. L.; Heavens, A.; Helou, G.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huey, G.; Huffenberger, K. M.; Hurier, G.; Ili?, S.; Jaffe, A. H.; Jaffe, T. R.; Jasche, J.; Jewell, J.; Jones, W. C.; Juvela, M.; Kalberla, P.; Kangaslahti, P.; Keihänen, E.; Kerp, J.; Keskitalo, R.; Khamitov, I.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lavabre, A.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Leroy, C.; Lesgourgues, J.; Lewis, A.; Li, C.; Liddle, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lowe, S.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marcos-Caballero, A.; Marinucci, D.; Maris, M.; Marleau, F.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matsumura, T.; Matthai, F.; Maurin, L.; Mazzotta, P.; McDonald, A.; McEwen, J. D.; McGehee, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Millea, M.; Miniscalco, R.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Morisset, N.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Nesvadba, N. P. H.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Orieux, F.; Osborne, S.; O'Sullivan, C.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Pandolfi, S.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Pearson, D.; Pearson, T. J.; Peel, M.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Pullen, A. R.; Rachen, J. P.; Racine, B.; Rahlin, A.; Räth, C.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Riazuelo, A.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Robbers, G.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Rusholme, B.

2014-11-01

173

Physical Insights Into the Scaling of At-Site Hydraulic Geometry and Scaling of Flood Peaks  

Microsoft Academic Search

The dependencies between channel properties and river flows known for a long time as at-station hydraulic geometry (HG: power laws connecting discharge to stream geometry) have been recently shown to systematically vary with scale (contributing area), and a model based on the multiscaling framework has been proposed to statistically describe this scale-dependence (Dodov and Foufoula Georgiou, AGU Fall meeting 2002).

B. A. Dodov; E. Foufoula-Georgiou

2003-01-01

174

Vacuum Polarization in High Energy Physics: (MZ) and at ILC scale 1. Introduction  

E-print Network

Vacuum Polarization in High Energy Physics: (MZ) and at ILC scale 1. Introduction 2. (MZ. The running electric charge at high energies 179-1 #12;Physics of vacuum polarization ... 1. Introduction Non" (E) (charge screening by vacuum polarization) Of particular interest: (MZ) and aµ (g - 2)µ/2 (mµ

Röder, Beate

175

Crocodile Head Scales Are Not Developmental Units But Emerge from Physical Cracking  

NSDL National Science Digital Library

In most amniotes, keratinized structures like scales, hair, and feathers are formed from primordia, developmental nodes distributed in a predictable pattern. In their Report, Milinkovitch and colleagues show that the scales on the face and jaws of crocodiles do not develop in a predictable pattern but instead are the result of a physical cracking process.

Michel C. Milinkovitch (University of Geneva, Sciences III, 30, Quai Ernest-Ansermet, 1211 Geneva, Switzerland; Laboratory of Artificial and Natural Evolution (LANE), Department of Genetics and Evolution)

2012-11-29

176

The effect of chronic diseases on physical function. Comparison between activities of daily living scales and the Physical Performance Test  

Microsoft Academic Search

Aim: to verify the capacity of basic and instrumental activities of daily living (BADL and IADL) disability scales and of a performance-based test (Physical Performance Test; PPT) to detect the effect on the functional capacity of several common chronic conditions in elderly people. Method: a cross-sectional survey of the entire population aged 70 and over, living in Ospitaletto (Brescia, northern

RENZO ROZZINI; GIOVANNI B. FRISONI; LUIGI FERRUCCI; PIERA BARBISONI; BRUNO BERTOZZI; MARCO TRABUCCHI

1997-01-01

177

A simulation pipeline for the Planck mission  

E-print Network

We describe an assembly of numerical tools to model the output data of the Planck satellite. These start with the generation of a CMB sky in a chosen cosmology, add in various foreground sources, convolve the sky signal with arbitrary, even non-symmetric and polarised beam patterns, derive the time ordered data streams measured by the detectors depending on the chosen satellite-scanning strategy, and include noise signals for the individual detectors and electronic systems. The simulation products are needed to develop, verify, optimise, and characterise the accuracy and performance of all data processing and scientific analysis steps of the Planck mission, including data handling, data integrity checking, calibration, map making, physical component separation, and power spectrum estimation. In addition, the simulations allow detailed studies of the impact of many stochastic and systematic effects on the scientific results. The efficient implementation of the simulation allows the build-up of extended statistics of signal variances and co-variances. Although being developed specifically for the Planck mission, it is expected that the employed framework as well as most of the simulation tools will be of use for other experiments and CMB-related science in general.

Martin Reinecke; Klaus Dolag; Reinhard Hell; Matthias Bartelmann; Torsten Ensslin

2005-08-24

178

Robust weak-lensing mass calibration of Planck galaxy clusters  

NASA Astrophysics Data System (ADS)

In light of the tension in cosmological constraints reported by the Planck team between their Sunyaev-Zel'dovich-selected cluster counts and Cosmic Microwave Background (CMB) temperature anisotropies, we compare the Planck cluster mass estimates with robust, weak-lensing mass measurements from the Weighing the Giants (WtG) project. For the 22 clusters in common between the Planck cosmology sample and WtG, we find an overall mass ratio of = 0.688 ± 0.072. Extending the sample to clusters not used in the Planck cosmology analysis yields a consistent value of = 0.698 ± 0.062 from 38 clusters in common. Identifying the weak-lensing masses as proxies for the true cluster mass (on average), these ratios are ˜1.6? lower than the default bias factor of 0.8 assumed in the Planck cluster analysis. Adopting the WtG weak-lensing-based mass calibration would substantially reduce the tension found between the Planck cluster count cosmology results and those from CMB temperature anisotropies, thereby dispensing of the need for `new physics' such as uncomfortably large neutrino masses (in the context of the measured Planck temperature anisotropies and other data). We also find modest evidence (at 95 per cent confidence) for a mass dependence of the calibration ratio and discuss its potential origin in light of systematic uncertainties in the temperature calibration of the X-ray measurements used to calibrate the Planck cluster masses. Our results exemplify the critical role that robust absolute mass calibration plays in cluster cosmology, and the invaluable role of accurate weak-lensing mass measurements in this regard.

von der Linden, Anja; Mantz, Adam; Allen, Steven W.; Applegate, Douglas E.; Kelly, Patrick L.; Morris, R. Glenn; Wright, Adam; Allen, Mark T.; Burchat, Patricia R.; Burke, David L.; Donovan, David; Ebeling, Harald

2014-09-01

179

Compact wire array sources: power scaling and implosion physics.  

SciTech Connect

A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we compare this to cylindrical array results in the context of a K-shell yield scaling model. We have also performed an initial study of compact 3 mm diameter cylindrical wire arrays, which are alternate candidates for a multi-pinch vacuum hohlraum concept. These massive 3.4 and 6 mg/cm loads may have been impacted by opacity, producing a maximum x-ray power of 7 TW at 4.5 MA, 45 ns. Future research directions in compact x-ray sources are discussed.

Serrano, Jason Dimitri; Chuvatin, Alexander S. (Laboratoire du Centre National de la Recherche Scientifique Ecole Polytechnique, Palaiseau, France); Jones, M. C.; Vesey, Roger Alan; Waisman, Eduardo M.; Ivanov, V. V. (University of Nevada - Reno, Reno, NV); Esaulov, Andrey A. (University of Nevada - Reno, Reno, NV); Ampleford, David J.; Cuneo, Michael Edward; Kantsyrev, Victor Leonidovich (University of Nevada - Reno, Reno, NV); Coverdale, Christine Anne; Rudakov, L. I. (Icarus Research, Bethesda, MD); Jones, Brent Manley; Safronova, Alla S. (University of Nevada - Reno, Reno, NV); Vigil, Marcelino Patricio

2008-09-01

180

max planck institut Bericht 2009/2010  

E-print Network

max planck institut informatik Bericht 2009/2010 #12;max planck institut informatik #12;........................................................................................................................................................ 5I N H A L T E ....... VORWORT DAS MAX-PLANCK-INSTITUT FÃ?R INFORMATIK: EIN Ã?BERBLICK DIE ABTEILUNGEN DATENBANKEN UND INFORMATIONSSYSTEME DIE FORSCHUNGSGRUPPEN FG . 1 AUTOMATISIERUNG DER LOGIK DAS MAX PLANCK

181

Max-Planck-Institut fr molekulare Genetik  

E-print Network

Max-Planck-Institut für molekulare Genetik Software Praktikum, 1.2.2013 Folie 1 Functional Genomics with R Alena van Bömmel Max Planck Institute for Molecular Genetics #12;Max-Planck-Institut für molekulare Genetik Software Praktikum, 1.2.2013 Folie 2 Transcriptional Regulation #12;Max-Planck

Spang, Rainer

182

max planck institut Bericht 2007/2008  

E-print Network

max planck institut informatik Bericht 2007/2008 07 08 09 10 11 #12;max planck institut informatik;........................................................................................................................................................ 5I N H A L T E ....... VORWORT DAS MAX-PLANCK-INSTITUT FÃ?R INFORMATIK: EIN Ã?BERBLICK DIE ABTEILUNGEN AUTOMATISIERUNG DER LOGIK UFG . 1 INFORMATIK FÃ?R DIE GENOMFORSCHUNG UND EPIDEMIOLOGIE DAS MAX PLANCK CENTER DIE

183

PERSPEKTIVEN Neues Max Planck Center in London  

E-print Network

PERSPEKTIVEN Neues Max Planck Center in London Am 1. April 2014 fand in den Räumen der Royal Society in London die Eröffnungsfeier des neuen Max Planck UCL Cen- tre for Computational Psychiatry Neuroscience Unit (Peter Dayan), das Max-Planck-Institut für Bildungsforschung (Ulman Linden- berger), das Max-Planck

184

PERSPECTIVES Max Planck Institute in Florida Opened  

E-print Network

PERSPECTIVES Max Planck Institute in Florida Opened The Max Planck Florida Institute for Neuroscience (MPFI) was inaugurated in an opening ceremony on December 6, 2012. This is the first Max Planck of Education and Research, and former Governor of Florida Jeb Bush. Max Planck Society President Peter Gruss

185

max planck institut Bericht 2005/2006  

E-print Network

max planck institut informatik Bericht 2005/2006 #12;max planck institut informatik #12;........................................................................................................................................................ 5I N H A L T E ....... VORWORT DAS MAX-PLANCK-INSTITUT FÃ?R INFORMATIK: EIN Ã?BERBLICK DIE ABTEILUNGEN INFORMATIONSSYSTEME DIE FORSCHUNGSGRUPPEN FG . 1 AUTOMATISIERUNG DER LOGIK FG . 2 MASCHINELLES LERNEN DAS MAX PLANCK

186

Regelung fr Max-Planck-Forschungsgruppen Beschluss des Senats der Max-Planck-Gesellschaft  

E-print Network

Regelung für Max-Planck-Forschungsgruppen ­ Beschluss des Senats der Max-Planck-Gesellschaft vom 11. März 1994 in der Fassung vom 20. November 2009 ­ Werden an einem Max-Planck-Institut Max-Planck-Forschungsgruppen eingerichtet, so gelten für sie folgende Regeln: 1. Max-Planck-Forschungsgruppen dienen der Förderung begabter

Falge, Eva

187

Seismic-Scale Rock Physics of Methane Hydrate  

SciTech Connect

We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

Amos Nur

2009-01-08

188

Technologies for large-scale physical mapping of human chromosomes  

SciTech Connect

Since its inception 6 years ago, the Human Genome Project has made rapid progress towards its ultimate goal of developing the complete sequence of all human chromosomes. This progress has been made possible through the development of automated devices by laboratories throughout the world that aid the molecular biologist in various phases of the project. The initial phase involves the generation of physical and genetic maps of each chromosome. This task is nearing completion at a low resolution level with several instances of very high detailed maps being developed for isolated chromosomes. In support of the initial mapping thrust of this program, the robotics and automation effort at Los Alamos National Laboratory has developed DNA gridding technologies along with associated database and user interface systems. This paper will discuss these systems in detail and focus on the formalism developed for subsystems which allow for facile system integration.

Beugelsdijk, T.J.

1994-12-01

189

Planck Visualization Project: Seeing and Hearing the Cosmic Microwave Background  

NASA Astrophysics Data System (ADS)

The Planck Mission, launched May 14, 2009, will measure the sky over nine frequency channels, with temperature sensitivity of a few microKelvin, and angular resolution of up to 5 arc minutes. Planck is expected to provide the data needed to set tight constraints on cosmological parameters, study the ionization history of the Universe, probe the dynamics of the inflationary era, and test fundamental physics. The Planck Education and Public Outreach collaborators at NASA's Jet Propulsion Laboratory, the University of California, Santa Barbara and Purdue University are preparing a variety of materials to present the science goals of the Planck Mission to the public. Two products currently under development are an interactive simulation of the mission which can be run in a virtual reality environment, and an interactive presentation on interpreting the power spectrum of the Cosmic Microwave Background with music. In this paper we present a brief overview of CMB research and the Planck Mission, and discuss how to explain, to non-technical audiences, the theory of how we derive information about the early universe from the power spectrum of the CMB by using the physics of music.

van der Veen, J.

2010-08-01

190

Max-Planck-Institut fr molekulare Genetik  

E-print Network

Max-Planck-Institut für molekulare Genetik EBSV06 Martin Vingron Max-Planck-Institut für molekulare;Max-Planck-Institut für molekulare Genetik EBSV06 Amino Acid Replacement #12;Max-Planck-Institut für molekulare Genetik EBSV06 Degree of Divergence #12;Max-Planck-Institut für molekulare Genetik EBSV06 Markov

Spang, Rainer

191

Rotating space elevators: Physics of celestial scale spinning strings  

NASA Astrophysics Data System (ADS)

We explore classical and statistical mechanics of a novel dynamical system, the Rotating Space Elevator (RSE) (L. Golubovi?, S. Knudsen, EPL 86, 34001 (2009)). The RSE is a double rotating floppy string reaching extraterrestrial locations. Objects sliding along the RSE string (climbers) do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in space elevator science, which is how to supply energy to the climbers moving along space elevator strings. The RSE can be made in various shapes that are stabilized by an approximate equilibrium between the gravitational and inertial forces acting in a double rotating frame associated with the RSE. This dynamical equilibrium is achieved by a special ("magical") form of the RSE mass line density derived in this paper. The RSE exhibits a variety of interesting dynamical phenomena explored here by numerical simulations. Thanks to its special design, the RSE exhibits everlasting double rotating motion. Under some conditions, however, we find that the RSE may undergo a morphological transition to a chaotic state reminiscent of fluctuating directed polymers in the realm of the statistical physics of strings and membranes.

Knudsen, Steven; Golubovi?, Leonardo

2014-11-01

192

Physical Analysis and Scaling of a Jet and Vortex Actuator  

NASA Technical Reports Server (NTRS)

Our previous studies have shown that the Jet and Vortex Actuator generates free-jet, wall-jet, and near- wall vortex flow fields. That is, the actuator can be operated in different modes by simply varying the driving frequency and/or amplitude. For this study, variations are made in the actuator plate and wide-slot widths and sine/asymmetrical actuator plate input forcing (drivers) to further study the actuator induced flow fields. Laser sheet flow visualization, particle- image velocimetry, and laser velocimetry are used to measure and characterize the actuator induced flow fields. Laser velocimetry measurements indicate that the vortex strength increases with the driver repetition rate for a fixed actuator geometry (wide slot and plate width). For a given driver repetition rate, the vortex strength increases as the plate width decreases provided the wide-slot to plate-width ratio is fixed. Using an asymmetric plate driver, a stronger vortex is generated for the same actuator geometry and a given driver repetition rate. The nondimensional scaling provides the approximate ranges for operating the actuator in the free jet, wall jet, or vortex flow regimes. Finally, phase-locked velocity measurements from particle image velocimetry indicate that the vortex structure is stationary, confirming previous computations. Both the computations and the particle image velocimetry measurements (expectantly) show unsteadiness near the wide-slot opening, which is indicative of mass ejection from the actuator.

Lachowicz, Jason T.; Yao, Chung-Sheng; Joslin, Ronald D.

2004-01-01

193

Neutrino physics with multi-ton scale liquid xenon detectors  

NASA Astrophysics Data System (ADS)

We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and 7Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~ 2 × 10?48 cm2 and WIMP masses around 50 GeV?c?2, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ~ 6 GeV?c?2 to cross sections above ~ 4 × 10?45cm2. DARWIN could reach a competitive half-life sensitivity of 5.6 × 1026 y to the neutrinoless double beta decay of 136Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

Baudis, L.; Ferella, A.; Kish, A.; Manalaysay, A.; Marrodán Undagoitia, T.; Schumann, M.

2014-01-01

194

Neutrino physics with multi-ton scale liquid xenon detectors  

E-print Network

We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2-30 keV, where the sensitivity to solar pp and $^7$Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below $\\sim$2$\\times$10$^{-48}$ cm$^2$ and WIMP masses around 50 GeV$\\cdot$c$^{-2}$, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below $\\sim$6 GeV$\\cdot$c$^{-2}$ to cross sections above $\\sim$4$\\times$10$^{-45}$cm$^2$. DARWIN could reach a competitive half-life sensitivity of 5.6$\\times$10$^{26}$ y to the neutrinoless double beta decay of $^{136}$Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

L. Baudis; A. Ferella; A. Kish; A. Manalaysay; T. Marrodan Undagoitia; M. Schumann

2014-02-07

195

Planck early results. XXII. The submillimetre properties of a sample of Galactic cold clumps  

NASA Astrophysics Data System (ADS)

We perform a detailed investigation of sources from the Cold Cores Catalogue of Planck Objects (C3PO). Our goal is to probe the reliability of the detections, validate the separation between warm and cold dust emission components, provide the first glimpse at the nature, internal morphology and physical characterictics of the Planck-detected sources. We focus on a sub-sample of ten sources from the C3PO list, selected to sample different environments, from high latitude cirrus to nearby (150pc) and remote (2kpc) molecular complexes. We present Planck surface brightness maps and derive the dust temperature, emissivity spectral index, and column densities of the fields. With the help of higher resolution Herschel and AKARI continuum observations and molecular line data, we investigate the morphology of the sources and the properties of the substructures at scales below the Planck beam size. The cold clumps detected by Planck are found to be located on large-scale filamentary (or cometary) structures that extend up to 20pc in the remote sources. The thickness of these filaments ranges between 0.3 and 3pc, for column densities NH2 ~ 0.1 to 1.6 × 1022 cm-2, and with linear mass density covering a broad range, between 15 and 400 M? pc-1. The dust temperatures are low (between 10 and 15K) and the Planck cold clumps correspond to local minima of the line-of-sight averaged dust temperature in these fields. These low temperatures are confirmed when AKARI and Herschel data are added to the spectral energy distributions. Herschel data reveal a wealth of substructure within the Planck cold clumps. In all cases (except two sources harbouring young stellar objects), the substructures are found to be colder, with temperatures as low as 7K. Molecular line observations provide gas column densities which are consistent with those inferred from the dust. The linewidths are all supra-thermal, providing large virial linear mass densities in the range 10 to 300 M? pc-1, comparable within factors of a few, to the gas linear mass densities. The analysis of this small set of cold clumps already probes a broad variety of structures in the C3PO sample, probably associated with different evolutionary stages, from cold and starless clumps, to young protostellar objects still embedded in their cold surrounding cloud. Because of the all-sky coverage and its sensitivity, Planck is able to detect and locate the coldest spots in massive elongated structures that may be the long-searched for progenitors of stellar clusters. Appendix A is available in electronic form at http://www.aanda.orgCorresponding author: I. Ristorcelli, e-mail: isabelle.ristorcelli@irap.omp.eu

Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Doi, Y.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Ikeda, N.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kitamura, Y.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Malinen, J.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Meny, C.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pagani, L.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Toth, V.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.

2011-12-01

196

Poisson–Boltzmann–Nernst–Planck model  

PubMed Central

The Poisson–Nernst–Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst–Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst–Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst–Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson–Boltzmann and Nernst–Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external voltages. Extensive numerical experiments show that there is an excellent consistency between the results predicted from the present PBNP model and those obtained from the PNP model in terms of the electrostatic potentials, ion concentration profiles, and current–voltage (I–V) curves. The present PBNP model is further validated by a comparison with experimental measurements of I–V curves under various ion bulk concentrations. Numerical experiments indicate that the proposed PBNP model is more efficient than the original PNP model in terms of simulation time. PMID:21599038

Zheng, Qiong; Wei, Guo-Wei

2011-01-01

197

Poisson-Boltzmann-Nernst-Planck model  

NASA Astrophysics Data System (ADS)

The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external voltages. Extensive numerical experiments show that there is an excellent consistency between the results predicted from the present PBNP model and those obtained from the PNP model in terms of the electrostatic potentials, ion concentration profiles, and current-voltage (I-V) curves. The present PBNP model is further validated by a comparison with experimental measurements of I-V curves under various ion bulk concentrations. Numerical experiments indicate that the proposed PBNP model is more efficient than the original PNP model in terms of simulation time.

Zheng, Qiong; Wei, Guo-Wei

2011-05-01

198

EJTP 4, No. 16(II) (2007) 187274 Electronic Journal of Theoretical Physics Scale Relativity: A Fractal Matrix for Organization  

E-print Network

EJTP 4, No. 16(II) (2007) 187­274 Electronic Journal of Theoretical Physics Scale Relativity in the construction of the theory of scale relativity. The aim of this theory is to derive the physical behavior the constraint of the principle of relativity of all scales in nature. The first step of this construction

Nottale, Laurent

199

Universal Landau Pole at the Planck scale  

NASA Astrophysics Data System (ADS)

The concept of quantum gravity entails that the usual geometry loses its meaning at very small distances and therefore the grand unification of all gauge interactions with the property of asymptotic freedom happens to be questionable. We propose an unification of all gauge interactions in the form of an "Universal Landau Pole" (ULP), at which all gauge couplings diverge (or, better to say, become very strong). We show that the Higgs quartic coupling also substantially increases whereas the Yukawa couplings tend to zero. Such a singular (or strong coupling) unification is obtained after adding to the Standard Model matter more fermions with vector gauge couplings and hypercharges identical to the SM fermions. The influence of new particles also may prevent the Higgs quartic coupling from crossing zero, thus avoiding the instability (or metastability) of the SM vacuum. As well this fermion pattern opens a way to partially solve the hierarchy problem between masses of quarks and leptons.

Andrianov, Alexander A.; Espriu, Domenec; Kurkov, Maxim A.; Lizzi, Fedele

2014-07-01

200

Probing the scale of New Physics at the LHC: The example of Higgs data  

NASA Astrophysics Data System (ADS)

We present a technique to determine the scale of New Physics (NP) compatible with any set of data, relying on well-defined credibility intervals. Our approach relies on the statistical view of the effective field theory capturing New Physics at low energy. We introduce formally the notion of testable NP and show that it ensures integrability of the posterior distribution. We apply our method to the Standard Model Higgs sector in light of recent LHC data, considering two generic scenarios. In the scenario of democratic higher-dimensional operators generated at one-loop, we find the testable NP scale to lie within [10,260] TeV at 95% Bayesian credibility level. In the scenario of loop-suppressed field strength-Higgs operators, the testable NP scale is within [28,1200] TeV at 95% Bayesian credibility level. More specific UV models are necessary to allow lower values of the NP scale.

Fichet, Sylvain

2014-07-01

201

Planck Visualization Project: Seeing and Hearing the CMB  

NASA Astrophysics Data System (ADS)

The Planck Education and Public Outreach collaborators at the University of California, Santa Barbara and Purdue University have prepared a variety of materials to present the science goals of the Planck Mission to the public. Here we present our interactive simulation of the Cosmic Microwave Background, in which the user can change the ingredients of the universe and hear the different harmonics. We also present how we derive information about the early universe from the power spectrum of the CMB by using the physics of music for the public.

Van Der Veen, Jatila; Lubin, P. M.; 2; Alper, B.; 3; Smith, W.; 4; McGee, R.; 5; US Planck Collaboration

2011-01-01

202

Development of Four Self-Report Measures of Job Stressors and Strain: Interpersonal Conflict at Work Scale, Organizational Constraints Scale, Quantitative Workload Inventory, and Physical Symptoms Inventory  

Microsoft Academic Search

Despite the widespread use of self-report measures of both job-related stressors and strains, relatively few carefully developed scales for which validity data exist are available. In this article, we discuss 3 job stressor scales (Interpersonal Conflict at Work Scale, Organizational Constraints Scale, and Quantitative Workload Inventory) and 1 job strain scale (Physical Symptoms Inventory). Using meta-analysis, we combined the results

Paul E. Spector; Steve M. Jex

1998-01-01

203

An introduction to inflation after Planck: from theory to observations  

E-print Network

These lecture notes have been written for a short introductory course on the status of inflation after Planck and BICEP2, given at the Xth Modave School of Mathematical Physics. The first objective is to give an overview of the theory of inflation: motivations, homogeneous scalar field dynamics, slow-roll approximation, linear theory of cosmological perturbations, classification of single field potentials and their observable predictions. This includes a pedagogical derivation of the primordial scalar and tensor power spectra for any effective single field potential. The second goal is to present the most recent results of Planck and BICEP2 and to discuss their implications for inflation. Bayesian statistical methods are introduced as a tool for model analysis and comparison. Based on the recent work of J. Martin et al., the best inflationary models after Planck and BICEP2 are presented. Finally a series of open questions and issues related to inflation are mentioned and briefly discussed.

Clesse, Sebastien

2015-01-01

204

Planck 2015 results. XVIII. Background geometry & topology  

E-print Network

Full-sky CMB maps from the 2015 Planck release allow us to detect departures from global isotropy on the largest scales. We present the first searches using CMB polarization for correlations induced by a non-trivial topology with a fundamental domain intersecting, or nearly intersecting, the last scattering surface (at comoving distance $\\chi_{rec}$). We specialize to flat spaces with toroidal and slab topologies, finding that explicit searches for the latter are sensitive to other topologies with antipodal symmetry. These searches yield no detection of a compact topology at a scale below the diameter of the last scattering surface. The limits on the radius $R_i$ of the largest sphere inscribed in the topological domain (at log-likelihood-ratio $\\Delta\\ln{L}>-5$ relative to a simply-connected flat Planck best-fit model) are $R_i>0.97\\chi_{rec}$ for the cubic torus and $R_i>0.56\\chi_{rec}$ for the slab. The limit for the cubic torus from the matched-circles search is numerically equivalent, $R_i>0.97\\chi_{rec}...

Ade, P A R; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Désert, F -X; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Feeney, S; Fergusson, J; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; McEwen, J D; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Peiris, H V; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pogosyan, D; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rowan-Robinson, M; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Yvon, D; Zacchei, A; Zonca, A

2015-01-01

205

Spectator field models in light of spectral index after Planck  

SciTech Connect

We revisit spectator field models including curvaton and modulated reheating scenarios, specifically focusing on their viability in the new Planck era, based on the derived expression for the spectral index in general spectator field models. Importantly, the recent Planck observations give strong preference to a red-tilted power spectrum, while the spectator field models tend to predict a scale-invariant one. This implies that, during inflation, either (i) the Hubble parameter varies significantly as in chaotic inflation, or (ii) a scalar potential for the spectator field has a relatively large negative curvature. Combined with the tight constraint on the non-Gaussianity, the Planck data provides us with rich implications for various spectator field models.

Kobayashi, Takeshi [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 3H8 (Canada); Takahashi, Fuminobu [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Takahashi, Tomo [Department of Physics, Saga University, Saga 840-8502 (Japan); Yamaguchi, Masahide, E-mail: takeshi@cita.utoronto.ca, E-mail: fumi@tuhep.phys.tohoku.ac.jp, E-mail: tomot@cc.saga-u.ac.jp, E-mail: gucci@phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)

2013-10-01

206

Implications of SCUBA observations for the Planck Surveyor  

E-print Network

We investigate the implications for the Planck Surveyor of the recent sub-millimetre number counts obtained using the SCUBA camera. Since it observes at the same frequency as one of the higher frequency science channels on Planck, SCUBA can provide constraints on the point-source contribution to the CMB angular power spectrum, which require no extrapolation in frequency. We have calculated the two-point function of these sub-millimetre sources, using a Poisson model normalized to the observed counts. While the current data are uncertain, under reasonable assumptions the point-source contribution to the anisotropy is comparable to the noise in the 353GHz channel. The clustering of these sources is currently unknown, however if they cluster like the z~3 Lyman-break galaxies their signal would be larger than the primary anisotropy signal on scales smaller than about 10 arcmin. We expect the intensity of these sources to decrease for wavelengths longward of 850 microns. At the next lowest Planck frequency, 217GHz, the contribution from both the clustered and Poisson terms are dramatically reduced. Hence we do not expect these sources to seriously affect Planck's main science goal, the determination of the primordial anisotropy power spectrum. Rather, the potential determination of the distribution of sub-mm sources is a further piece of cosmology that Planck may be able to tackle.

Douglas Scott; Martin White

1998-08-01

207

Brief scales to assess physical activity and sedentary equipment in the home  

PubMed Central

Background Sedentary behaviors such as TV viewing are associated with childhood obesity, while physical activity promotes healthy weight. The role of the home environment in shaping these behaviors among youth is poorly understood. The study purpose was to examine the reliability of brief parental proxy-report and adolescent self-report measures of electronic equipment and physical activity equipment in the home and to assess the construct validity of these scales by examining their relationship to physical activity, sedentary behavior, and weight status of children and adolescents. Methods Participants were adolescents (n = 189; mean age = 14.6), parents of adolescents (n = 171; mean age = 45.0), and parents of younger children (n = 116; parents mean age = 39.6; children's mean age = 8.3) who completed two surveys approximately one month apart. Measures included a 21-item electronic equipment scale (to assess sedentary behavior facilitators in the home, in the child or adolescent's bedroom, and portable electronics) and a 14-item home physical activity equipment scale. Home environment factors were examined as correlates of children's and adolescents' physical activity, sedentary behavior, and weight status after adjusting for child age, sex, race/ethnicity, household income, and number of children in the home. Results Most scales had acceptable test-retest reliability (intraclass correlations were .54 - .92). Parent and adolescent reports were correlated. Electronic equipment in adolescents' bedrooms was positively related to sedentary behavior. Activity equipment in the home was inversely associated with television time in adolescents and children, and positively correlated with adolescents' physical activity. Children's BMI z-score was positively associated with having a television in their bedroom. Conclusions The measures of home electronic equipment and activity equipment were similarly reliable when reported by parents and by adolescents. Home environment attributes were related to multiple obesity-related behaviors and to child weight status, supporting the construct validity of these scales. PMID:20181057

2010-01-01

208

Higgs vacuum stability and inflationary dynamics after BICEP2 and PLANCK dust polarisation data  

E-print Network

If the recent detection of $B-$mode polarization of the Cosmic Microwave Background by BICEP2 observations, withstand the test of time after the release of recent PLANCK dust polarisation data, then it would surprisingly put the inflationary scale near Grand Unification scale if one considers single-field inflationary models. On the other hand, Large Hadron Collider has observed the elusive Higgs particle whose presently observed mass can lead to electroweak vacuum instability at high scale $(\\sim{\\mathcal O}(10^{10})$ GeV). In this article, we seek for a simple particle physics model which can simultaneously keep the vacuum of the theory stable and yield high-scale inflation successfully. To serve our purpose, we extend the Standard Model of particle physics with a $U(1)_{B-L}$ gauged symmetry which spontaneously breaks down just above the inflationary scale. Such a scenario provides a constrained parameter space where both the issues of vacuum stability and high-scale inflation can be successfully accommodated. The threshold effect on the Higgs quartic coupling due to the presence of the heavy inflaton field plays an important role in keeping the electroweak vacuum stable. Furthermore, this scenario is also capable of reheating the universe at the end of inflation. Though the issues of Dark Matter and Dark Energy, which dominate the late-time evolution of our universe, cannot be addressed within this framework, this model successfully describes the early universe dynamics according to the Big Bang model.

Kaushik Bhattacharya; Joydeep Chakrabortty; Suratna Das; Tanmoy Mondal

2014-11-17

209

Higgs vacuum stability and inflationary dynamics after BICEP2 and PLANCK dust polarisation data  

NASA Astrophysics Data System (ADS)

If the recent detection of B-mode polarization of the Cosmic Microwave Background by BICEP2 observations, withstand the test of time after the release of recent PLANCK dust polarisation data, then it would surprisingly put the inflationary scale near Grand Unification scale if one considers single-field inflationary models. On the other hand, Large Hadron Collider has observed the elusive Higgs particle whose presently observed mass can lead to electroweak vacuum instability at high scale (~ Script O(1010) GeV). In this article, we seek for a simple particle physics model which can simultaneously keep the vacuum of the theory stable and yield high-scale inflation successfully. To serve our purpose, we extend the Standard Model of particle physics with a U(1)B-L gauged symmetry which spontaneously breaks down just above the inflationary scale. Such a scenario provides a constrained parameter space where both the issues of vacuum stability and high-scale inflation can be successfully accommodated. The threshold effect on the Higgs quartic coupling due to the presence of the heavy inflaton field plays an important role in keeping the electroweak vacuum stable. Furthermore, this scenario is also capable of reheating the universe at the end of inflation. Though the issues of Dark Matter and Dark Energy, which dominate the late-time evolution of our universe, cannot be addressed within this framework, this model successfully describes the early universe dynamics according to the Big Bang model.

Bhattacharya, Kaushik; Chakrabortty, Joydeep; Das, Suratna; Mondal, Tanmoy

2014-12-01

210

Psychometric Properties of the “Sport Motivation Scale (SMS)” Adapted to Physical Education  

PubMed Central

The aim of this study was to investigate the factor structure of a Spanish version of the Sport Motivation Scale adapted to physical education. A second aim was to test which one of three hypothesized models (three, five and seven-factor) provided best model fit. 758 Spanish high school students completed the Sport Motivation Scale adapted for Physical Education and also completed the Learning and Performance Orientation in Physical Education Classes Questionnaire. We examined the factor structure of each model using confirmatory factor analysis and also assessed internal consistency and convergent validity. The results showed that all three models in Spanish produce good indicators of fitness, but we suggest using the seven-factor model (?2/gl = 2.73; ECVI = 1.38) as it produces better values when adapted to physical education, that five-factor model (?2/gl = 2.82; ECVI = 1.44) and three-factor model (?2/gl = 3.02; ECVI = 1.53). Key Points Physical education research conducted in Spain has used the version of SMS designed to assess motivation in sport, but validity reliability and validity results in physical education have not been reported. Results of the present study lend support to the factorial validity and internal reliability of three alternative factor structures (3, 5, and 7 factors) of SMS adapted to Physical Education in Spanish. Although all three models in Spanish produce good indicators of fitness, but we suggest using the seven-factor model. PMID:25435772

Granero-Gallegos, Antonio; Baena-Extremera, Antonio; Gómez-López, Manuel; Sánchez-Fuentes, José Antonio; Abraldes, J. Arturo

2014-01-01

211

Psychometric Properties of the "Sport Motivation Scale (SMS)" Adapted to Physical Education.  

PubMed

The aim of this study was to investigate the factor structure of a Spanish version of the Sport Motivation Scale adapted to physical education. A second aim was to test which one of three hypothesized models (three, five and seven-factor) provided best model fit. 758 Spanish high school students completed the Sport Motivation Scale adapted for Physical Education and also completed the Learning and Performance Orientation in Physical Education Classes Questionnaire. We examined the factor structure of each model using confirmatory factor analysis and also assessed internal consistency and convergent validity. The results showed that all three models in Spanish produce good indicators of fitness, but we suggest using the seven-factor model (?(2)/gl = 2.73; ECVI = 1.38) as it produces better values when adapted to physical education, that five-factor model (?(2)/gl = 2.82; ECVI = 1.44) and three-factor model (?(2)/gl = 3.02; ECVI = 1.53). Key PointsPhysical education research conducted in Spain has used the version of SMS designed to assess motivation in sport, but validity reliability and validity results in physical education have not been reported.Results of the present study lend support to the factorial validity and internal reliability of three alternative factor structures (3, 5, and 7 factors) of SMS adapted to Physical Education in Spanish.Although all three models in Spanish produce good indicators of fitness, but we suggest using the seven-factor model. PMID:25435772

Granero-Gallegos, Antonio; Baena-Extremera, Antonio; Gómez-López, Manuel; Sánchez-Fuentes, José Antonio; Abraldes, J Arturo

2014-12-01

212

Affective Response to Physical Activity: Testing for Measurement Invariance of the Physical Activity Affect Scale Across Active and Non-Active Individuals  

Microsoft Academic Search

Affective responses to physical activity are assumed to play a role in exercise initiation and maintenance. The Physical Activity Affect Scale measures four dimensions of an individual's affective response to exercise. Group differences in the interpretation of scale items can impact the interpretability of mean differences, underscoring the need to examine whether measurement structure holds across groups (e.g., active vs.

Laura C. Carpenter; Sara Anne Tompkins; Sarah J. Schmiege; Renea Nilsson; Angela Bryan

2010-01-01

213

Affective Response to Physical Activity: Testing for Measurement Invariance of the Physical Activity Affect Scale across Active and Non-Active Individuals  

ERIC Educational Resources Information Center

Affective responses to physical activity are assumed to play a role in exercise initiation and maintenance. The Physical Activity Affect Scale measures four dimensions of an individual's affective response to exercise. Group differences in the interpretation of scale items can impact the interpretability of mean differences, underscoring the need…

Carpenter, Laura C.; Tompkins, Sara Anne; Schmiege, Sarah J.; Nilsson, Renea; Bryan, Angela

2010-01-01

214

Quasilinear approximations for the propagator of the Fokker-Planck equation  

NASA Astrophysics Data System (ADS)

Four novel classes of the approximate Fokker-Planck propagators are developed by means of a decoupling operator treatment. For a small time increment t these are correct at least through second order t. The propagators have an Ornstein-Uhlenbeck form, thus leading to novel discrete path integrals with a linear reference system. Their ambiguities are characterized by an arbitrary function of the time increment, and by a matrix and a vector field which may be both time- and state-dependent. The efficiency of the treatment used is very sensitive to the choice of these functions, several forms of which are proposed. The power of the treatment is illustrated by a physically meaningful Fokker-Planck equation relevant to laser physics. Being used as the global approximations, the approximate propagators obtained are shown to provide a correct description of a bistable system in the entire time domain. A scaling theory of Suzuki, including its unified version, emerges from them in a very natural way. Another attractive feature of our general treatment when compared to the others known in the literature, is that it allows for equations with singular diffusion matrices, two of which, a Kramers equation and a colored-noise problem, are considered.

Drozdov, Alexander N.

1993-06-01

215

Interesting relationships between plasma Important length scales in plasma physics can often be represented as a  

E-print Network

Interesting relationships between plasma lengths Important length scales in plasma physics can often be represented as a ratio of a velocity to a frequency. For the ions with thermal speed vi we have pe ce, SSX is referred to as "over-dense". For the electrons with thermal speed ve we have

Brown, Michael R.

216

Reliability and Construct Validity of Turkish Version of Physical Education Activities Scale  

ERIC Educational Resources Information Center

This research was conducted to examine the reliability and construct validity of Turkish version of physical education activities scale (PEAS) which was developed by Thomason (2008). Participants in this study included 313 secondary and high school students from 7th to 11th grades. To analyse the data, confirmatory factor analysis, post hoc…

Memis, Ugur Altay

2013-01-01

217

Relation of Physical Form to Spatial Knowledge in Large-Scale Virtual Environments  

ERIC Educational Resources Information Center

This study used a desktop virtual environmental simulation of 18 large-scale residential environments to test effects of plan layout complexity, physical differentiation, and gender on acquired spatial knowledge. One hundred sixty people (95 males and 65 females) were assigned at random to the different conditions. After a learning phase,…

Cubukcu, Ebru; Nasar, Jack L.

2005-01-01

218

Visible sector inflation and the right thermal history in light of Planck data  

SciTech Connect

Inflation creates perturbations for the large scale structures in the universe, but it also dilutes everything. Therefore it is pertinent that the end of inflation must explain how to excite the Standard Model dof along with the dark matter. In this paper we will briefly discuss the role of visible sector inflaton candidates which are embedded within the Minimal Supersymmetric Standard Model (MSSM) and discuss their merit on how well they match the current data from the Planck. Since the inflaton carries the Standard Model charges their decay naturally produces all the relevant dof with no dark/hidden sector radiation and no isocurvature fluctuations. We will first discuss a single supersymmetric flat direction model of inflation and demonstrate what parameter space is allowed by the Planck and the LHC. We will also consider where the perturbations are created by another light field which decays after inflation, known as a curvaton. The late decay of the curvaton can create observable non-Gaussianity. In the end we will discuss the role of a spectator field whose origin may not lie within the visible sector physics, but its sheer presence during inflation can still create all the perturbations responsible for the large scale structures including possible non-Gaussianity, while the inflaton is embedded within the visible sector which creates all the relevant matter including dark matter, but no dark radiation.

Wang, Lingfei; Pukartas, Ernestas; Mazumdar, Anupam [Consortium for Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

2013-07-01

219

Scale invariability  

E-print Network

I recently demonstrated that the Earth is a mechanical oscillator in which springtide induced magnification of all-masses resonance forces tectonics. I here generalize this georesonator concept so to make it apply to any body, anywhere in all the universes, and at all times. It turns out that there is no distinction between physics at intergalactic, mechanist, quantum, and smaller scales. Instead of being a constant (of proportionality of physics at all scales), G is a parameter of most general form: G = s e^2, nonlinearly varying amongst different scales s. The so called scale variability of physics but not of G, imagined as such by Planck and Einstein, is due to springtide-induced extreme resonance of Earth masses critically impeding terrestrial experiments for estimating G, while providing artificial settings for quantum experiments to all trivially "work". Thus the derived equation is that of levitation. Reality is a system of near infinitely many magnifying oscillators, where permanent energy decay of all oscillation forbids constancy of known "physical constants". This hyperresonator concept explains the magnetism (as every forced oscillator feature), as well as the gravitation (as forward propagation of mechanical vibrations along the aether i.e. throughout the vacuum structure). To test my claim I propose a Space mission to collect on site measurements of eigenperiods of the Sun, its planets, and their satellites. The levitation equitation enables propulsionless Space travel via gravity sailing: Space vehicle hull ought to be engineered so as to automatically adjust its grave mode, to the vehicle instant gravitational surroundings, akin to trout up swimming.

M. Omerbashich

2008-01-06

220

Scaling Properties of Rainfall-Induced Landslides Predicted by a Physically Based Model  

E-print Network

Natural landslides exhibit scaling properties, including the frequency of the size of the landslides, and the rainfall conditions responsible for landslides. Reasons for the scaling behavior of landslides are poorly known, and only a few attempts were made to describe the empirical evidences of the self-similar scaling behavior of landslides with physically based models. We investigate the possibility of using the TRIGRS code, a consolidated, physically motivated, numerical model to describe the stability conditions of natural slopes forced by rainfall, to determine the frequency of the area of the unstable slopes and the rainfall intensity-duration (I-D) conditions that result in landslides in a region.We apply TRIGRS in a portion of the Upper Tiber River Basin, Central Italy. The spatially distributed model predicts the stability conditions of individual grid cells, given the terrain and rainfall conditions. We run TRIGRS using multiple rainfall histories, and we compare the results to empirical evidences o...

Alvioli, M; Rossi, M

2013-01-01

221

Orthogonal non-Gaussianity in DBI galileon: prospect for Planck polarization and post-Planck experiments  

NASA Astrophysics Data System (ADS)

In this paper, we study cosmic microwave background (CMB) constraints on primordial non-Gaussianity in Dirac-Born-Infeld (DBI) galileon models in which an induced gravity term is added to the DBI action. In this model, the non-Gaussianity of orthogonal shape can be generated. We provide a relation between theoretical parameters and orthogonal/equilateral nonlinear parameters using the Fisher matrix approach for the CMB bispectrum. In doing so, we include the effect of the CMB transfer functions and experimental noise properties by employing the recently developed second order non-Gaussianity code. The relation is also shown in the language of effective theory so that it can be applied to general single-field models. Using the bispectrum Fisher matrix and the central values for equilateral and orthogonal non-Gaussianities found by the Planck temperature survey, we provide forecasts on the theoretical parameters of the DBI galileon model. We consider the upcoming Planck polarization data and the proposed post-Planck experiments Cosmic Origins Explore (COrE) and Polarized Radiation Imaging and Spectroscopy Mission (PRISM). We find that Planck polarization measurements may provide a hint for a non-canonical sound speed at the 68% confidence level. COrE and PRISM will not only confirm a non-canonical sound speed but also exclude the conventional DBI inflation model at more than the 95% and 99% confidence level respectively, assuming that the central values will not change. This indicates that improving constraints on non-Gaussianity further by future CMB experiments is invaluable to constrain the physics of the early universe.

Koyama, Kazuya; Pettinari, Guido Walter; Mizuno, Shuntaro; Fidler, Christian

2014-06-01

222

Advanced computations of multi-physics, multi-scale effects in beam dynamics  

SciTech Connect

Current state-of-the-art beam dynamics simulations include multiple physical effects and multiple physical length and/or time scales. We present recent developments in Synergia2, an accelerator modeling framework designed for multi-physics, multi-scale simulations. We summarize recent several recent results in multi-physics beam dynamics, including simulations of three Fermilab accelerators: the Tevatron, the Main Injector and the Debuncher. Early accelerator simulations focused on single-particle dynamics. To a first approximation, the forces on the particles in an accelerator beam are dominated by the external fields due to magnets, RF cavities, etc., so the single-particle dynamics are the leading physical effects. Detailed simulations of accelerators must include collective effects such as the space-charge repulsion of the beam particles, the effects of wake fields in the beam pipe walls and beam-beam interactions in colliders. These simulations require the sort of massively parallel computers that have only become available in recent times. We give an overview of the accelerator framework Synergia2, which was designed to take advantage of the capabilities of modern computational resources and enable simulations of multiple physical effects. We also summarize some recent results utilizing Synergia2 and BeamBeam3d, a tool specialized for beam-beam simulations.

Amundson, J.F.; Macridin, A.; Spentzouris, P.; Stern, E.G.; /Fermilab

2009-01-01

223

Max-Planck-Institut fr biologische Kybernetik Max Planck Institute for Biological Cybernetics  

E-print Network

Max-Planck-Institut für biologische Kybernetik Max Planck Institute for Biological Cybernetics Tel Engineering (Automotive) The Max Planck Institute for Biological Cybernetics in Tübingen, Germany launches. The Max Planck Society is an equal opportunity employer: Handicapped individuals are strongly encouraged

224

Max-Planck-Institut fr biologische Kybernetik Max Planck Institute for Biological Cybernetics  

E-print Network

Max-Planck-Institut für biologische Kybernetik Max Planck Institute for Biological Cybernetics at the department of "Physiology of Cognitive Processes" at the Max Planck Institute for Biological Cybernetics of the PhD. The Max Planck Society is an equal opportunity employer: Handicapped individuals are strongly

225

Max-Planck-Institut fr biologische Kybernetik Max Planck Institute for Biological Cybernetics  

E-print Network

Max-Planck-Institut für biologische Kybernetik Max Planck Institute for Biological Cybernetics Tel Position in Human Motion Simulation The Max Planck Institute for Biological Cybernetics in Tübingen/Importance to overall motion perception (largest effect). #12;The Max Planck Society is an equal opportunity employer

226

Max-Planck-Institut fr biologische Kybernetik Max Planck Institute for Biological Cybernetics  

E-print Network

Max-Planck-Institut für biologische Kybernetik Max Planck Institute for Biological Cybernetics, Cognition and Action of the Max Planck Institute for Biological Cybernetics (Prof. Heinrich H. Bülthoff of the student's university, but it will approximately last 6 to 9 months. The Max Planck Society is an equal

227

Max-Planck-Institut fr biologische Kybernetik Max Planck Institute for Biological Cybernetics  

E-print Network

Max-Planck-Institut für biologische Kybernetik Max Planck Institute for Biological Cybernetics Tel Mathematics The Max Planck Institute for Biological Cybernetics in Tübingen, Germany launches a research, with the possibility of extension, starting as soon as possible. The Max Planck Society is an equal opportunity

228

Max-Planck-Institut fr biologische Kybernetik Max Planck Institute for Biological Cybernetics  

E-print Network

Max-Planck-Institut für biologische Kybernetik Max Planck Institute for Biological Cybernetics / 601 - 520 www.kyb.tuebingen.mpg.de Group Leader for MR Research The Max Planck Institute for five years. The Max Planck Society is an equal opportunity employer: Handicapped individuals

229

Max-Planck-Institut fr biologische Kybernetik Max Planck Institute for Biological Cybernetics  

E-print Network

Max-Planck-Institut für biologische Kybernetik Max Planck Institute for Biological Cybernetics and Biological Principles for Sensorimotor Learning" at the Max-Planck- Institute for Biological Cybernetics by an excellence programme of the Deutsche Forschungsgemeinschaft (DFG). The setting in the Max-Planck

230

Max-Planck-Institut fr biologische Kybernetik Max Planck Institute for Biological Cybernetics  

E-print Network

Max-Planck-Institut für biologische Kybernetik Max Planck Institute for Biological Cybernetics Tel Engineering (Aeronautics) The Max Planck Institute for Biological Cybernetics in Tübingen, Germany launches. The Max Planck Society is an equal opportunity employer: Handicapped individuals are strongly encouraged

231

Planck early results. II. The thermal performance of Planck  

Microsoft Academic Search

The performance of the Planck instruments in space is enabled by their low operating temperatures, 20 K for LFI and 0.1 K for HFI, achieved through a combination of passive radiative cooling and three active mechanical coolers. The scientific requirement for very broad frequency coverage led to two detector technologies with widely different temperature and cooling needs. Active coolers could

P. A. R. Ade; N. Aghanim; M. Arnaud; M. Ashdown; J. Aumont; C. Baccigalupi; M. Baker; A. Balbi; A. J. Banday; R. B. Barreiro; E. Battaner; K. Benabed; A. Benoît; J.-P. Bernard; M. Bersanelli; P. Bhandari; R. Bhatia; J. J. Bock; A. Bonaldi; J. R. Bond; J. Borders; J. Borrill; B. Bowman; T. Bradshaw; E. Bréelle; M. Bucher; C. Burigana; R. C. Butler; P. Cabella; C. M. Cantalupo; B. Cappellini; J.-F. Cardoso; A. Catalano; L. Cayón; A. Challinor; A. Chamballu; J. P. Chambelland; J. Charra; M. Charra; L.-Y. Chiang; C. Chiang; P. R. Christensen; D. L. Clements; B. Collaudin; S. Colombi; F. Couchot; A. Coulais; B. P. Crill; M. Crook; F. Cuttaia; C. Damasio; L. Danese; R. D. Davies; R. J. Davis; P. de Bernardis; G. de Gasperis; A. de Rosa; J. Delabrouille; J.-M. Delouis; F.-X. Désert; K. Dolag; S. Donzelli; O. Doré; U. Dörl; M. Douspis; X. Dupac; G. Efstathiou; T. A. Enßlin; H. K. Eriksen; C. Filliard; F. Finelli; S. Foley; O. Forni; P. Fosalba; J.-J. Fourmond; M. Frailis; E. Franceschi; S. Galeotta; K. Ganga; E. Gavila; M. Giard; G. Giardino; Y. Giraud-Héraud; J. González-Nuevo; K. M. Górski; S. Gratton; A. Gregorio; A. Gruppuso; G. Guyot; D. Harrison; G. Helou; S. Henrot-Versillé; C. Hernández-Monteagudo; D. Herranz; S. R. Hildebrandt; E. Hivon; M. Hobson; A. Hornstrup; W. Hovest; R. J. Hoyland; K. M. Huffenberger; U. Israelsson; A. H. Jaffe; W. C. Jones; M. Juvela; E. Keihänen; R. Keskitalo; T. S. Kisner; R. Kneissl; L. Knox; H. Kurki-Suonio; G. Lagache; J.-M. Lamarre; P. Lami; A. Lasenby; R. J. Laureijs; A. Lavabre; C. R. Lawrence; S. Leach; R. Lee; R. Leonardi; C. Leroy; P. B. Lilje; M. López-Caniego; P. M. Lubin; J. F. Macías-Pérez; T. Maciaszek; C. J. MacTavish; B. Maffei; D. Maino; N. Mandolesi; R. Mann; M. Maris; E. Martínez-González; S. Masi; S. Matarrese; F. Matthai; P. Mazzotta; P. McGehee; P. R. Meinhold; A. Melchiorri; F. Melot; L. Mendes; A. Mennella; M.-A. Miville-Deschênes; A. Moneti; L. Montier; J. Mora; G. Morgante; N. Morisset; D. Mortlock; D. Munshi; A. Murphy; P. Naselsky; A. Nash; P. Natoli; C. B. Netterfield; D. Novikov; I. Novikov; I. J. O'Dwyer; S. Osborne; F. Pajot; F. Pasian; G. Patanchon; D. Pearson; O. Perdereau; L. Perotto; F. Perrotta; F. Piacentini; M. Piat; S. Plaszczynski; P. Platania; E. Pointecouteau; G. Polenta; N. Ponthieu; T. Poutanen; G. Prézeau; M. Prina; S. Prunet; J.-L. Puget; J. P. Rachen; R. Rebolo; M. Reinecke; C. Renault; S. Ricciardi; T. Riller; I. Ristorcelli; G. Rocha; C. Rosset; J. A. Rubiño-Martín; B. Rusholme; M. Sandri; D. Santos; G. Savini; B. M. Schaefer; D. Scott; M. D. Seiffert; P. Shellard; G. F. Smoot; J.-L. Starck; P. Stassi; F. Stivoli; V. Stolyarov; R. Stompor; R. Sudiwala; J.-F. Sygnet; J. A. Tauber; L. Terenzi; L. Toffolatti; M. Tomasi; J.-P. Torre; M. Tristram; J. Tuovinen; L. Valenziano; L. Vibert; P. Vielva; F. Villa; N. Vittorio; A. Wilkinson; B. D. Wandelt; C. Watson; S. D. M. White; P. Wilson; D. Yvon; A. Zacchei; B. Zhang; A. Zonca

2011-01-01

232

Planck pre-launch status: The Planck-LFI programme  

Microsoft Academic Search

This paper provides an overview of the Low Frequency Instrument (LFI) programme within the ESA Planck mission. The LFI instrument has been developed to produce high precision maps of the microwave sky at frequencies in the range 27-77 GHz, below the peak of the cosmic microwave background (CMB) radiation spectrum. The scientific goals are described, ranging from fundamental cosmology to

N. Mandolesi; M. Bersanelli; R. C. Butler; E. Artal; C. Baccigalupi; A. Balbi; A. J. Banday; R. B. Barreiro; M. Bartelmann; K. Bennett; P. Bhandari; A. Bonaldi; J. Borrill; M. Bremer; C. Burigana; R. C. Bowman; P. Cabella; C. Cantalupo; B. Cappellini; T. Courvoisier; G. Crone; F. Cuttaia; L. Danese; O. D'Arcangelo; R. D. Davies; R. J. Davis; L. de Angelis; G. de Gasperis; A. de Rosa; G. de Troia; G. de Zotti; J. Dick; C. Dickinson; J. M. Diego; S. Donzelli; U. Dörl; X. Dupac; T. A. Enßlin; H. K. Eriksen; M. C. Falvella; F. Finelli; M. Frailis; E. Franceschi; T. Gaier; S. Galeotta; F. Gasparo; G. Giardino; F. Gomez; J. Gonzalez-Nuevo; K. M. Górski; A. Gregorio; A. Gruppuso; F. Hansen; R. Hell; D. Herranz; J. M. Herreros; S. Hildebrandt; W. Hovest; R. Hoyland; K. Huffenberger; M. Janssen; T. Jaffe; E. Keihänen; R. Keskitalo; T. Kisner; H. Kurki-Suonio; A. Lähteenmäki; C. R. Lawrence; S. M. Leach; J. P. Leahy; R. Leonardi; S. Levin; P. B. Lilje; M. López-Caniego; S. R. Lowe; P. M. Lubin; D. Maino; M. Malaspina; M. Maris; J. Marti-Canales; E. Martinez-Gonzalez; M. Massardi; S. Matarrese; F. Matthai; P. Meinhold; A. Melchiorri; L. Mendes; A. Mennella; G. Morgante; G. Morigi; N. Morisset; A. Moss; A. Nash; P. Natoli; R. Nesti; C. Paine; B. Partridge; F. Pasian; T. Passvogel; D. Pearson; L. Pérez-Cuevas; F. Perrotta; G. Polenta; L. A. Popa; T. Poutanen; G. Prezeau; M. Prina; J. P. Rachen; R. Rebolo; M. Reinecke; S. Ricciardi; T. Riller; G. Rocha; N. Roddis; R. Rohlfs; J. A. Rubiño-Martin; E. Salerno; M. Sandri; D. Scott; M. Seiffert; J. Silk; A. Simonetto; G. F. Smoot; C. Sozzi; J. Sternberg; F. Stivoli; L. Stringhetti; J. Tauber; L. Terenzi; M. Tomasi; J. Tuovinen; M. Türler; L. Valenziano; J. Varis; P. Vielva; F. Villa; N. Vittorio; L. Wade; M. White; S. White; A. Wilkinson; A. Zacchei; A. Zonca

2010-01-01

233

What is Special About the Planck Mass?  

E-print Network

Planck introduced his famous units of mass, length and time a hundred years ago. The many interesting facets of the Planck mass and length are explored. The Planck mass ubiquitously occurs in astrophysics, cosmology, quantum gravity, string theory, etc. Current aspects of its implications for unification of fundamental interactions, energy dependence of coupling constants, dark energy, etc. are discussed.

C. Sivaram

2007-06-30

234

Max-Planck-Institut f ur Mathematik  

E-print Network

Max-Planck-Institut f ur Mathematik in den Naturwissenschaften Leipzig Time-space discretization through grants AFOSR/MURI (F 49602-98-1-0433), by the Max Planck Society and by the NSF through grant DMS and by the Max Planck Society. 1 #12; 2 CARSTEN CARSTENSEN AND GEORG DOLZMANN the deformation u, the deformation

235

Max-Planck-Haus Spemannstr.36  

E-print Network

Im Rotbad MPIK MRZ Max-Planck-Haus Spemannstr.36 Hotel am Schloss Burgsteige 18 Hotel Katharina Lessingweg 3 Uni Gästehaus Lessingweg 2 Uni - Klinik AufderMorgenstelle 3 4 Max Planck Institute Bus StopMax Planck Institute Parking One-Way StreetH H H H H 3 4 6 17 How to get Downtown by bus

236

MAX-PLANCK-INSTITUT FR QUANTENOPTIK  

E-print Network

MAX-PLANCK-INSTITUT F�R QUANTENOPTIK Garching, 5. Mai 2014 Presse-Information Professor Theodor, Direktor am Max-Planck-Institut für Quantenop- tik in Garching, wurde im Rahmen einer Festveranstaltung am Frequenzkammtechnik gewürdigt wurde. Seit 2006 wird seine Forschung von der Max- Planck-Förderstiftung und der Carl

Hänsch, Theodor W.

237

max planck institut Faster Algorithms for Computing  

E-print Network

max planck institut informatik Faster Algorithms for Computing Longest Common Increasing Martin Kutz Max-Planck Institut für Informatik Saarbrücken, Germany Martin Kutz: Faster Algorithms for Longest Common Increasing Subsequences ­ p. #12;max planck institut informatik The Longest

Lonardi, Stefano

238

Max-Planck-Institut fur Mathematik  

E-print Network

Max-Planck-Institut fur Mathematik in den Naturwissenschaften Leipzig A new approach to variational * The research of G.A. was supported by the Max Planck Institute for Mathematics in the Sciences in Leipzig, and by Max Planck prize and the University of Freiburg. Part of this work was done during a joint stay

239

Max-Planck-Institut fur Mathematik  

E-print Network

Max-Planck-Institut f¨ur Mathematik in den Naturwissenschaften Leipzig The tensor with high-dimensional parameters Sergey V. Dolgova,1 , Vladimir A. Kazeevb,1 , Boris N. Khoromskijc a Max-Planck¨ur Angewandte Mathematik, ETH Z¨urich. R¨amistrasse 101, 8092 Z¨urich, Switzerland. c Max-Planck-Institut f

240

Max-Planck-Institut für Astronomie  

Microsoft Academic Search

Founded by the Senate of the Max Planck Society in 1967, it is one of 68 Max-Planck-Institutes in Germany. The Max-Planck-Institut für Astronomie has its headquarters in Heidelberg, where new buildings were erected between 1971 and 1975 on a 5.2 hectare site alongside the State Observatory....

P. Murdin

2000-01-01

241

Max-Planck-Institut f ur Mathematik  

E-print Network

Max-Planck-Institut fË? ur Mathematik in den Naturwissenschaften Leipzig Discrepancy of Symmetric Hebbinghaus 3 January 6, 2006 1 Max--Planck--Institut fË?ur Informatik, SaarbrË?ucken, Germany. 2 Institut f by the Deutsche Forschungsgemein­ schaft, Grant SR7/10­1. 3 Max--Planck--Institut fË?ur Informatik

242

Max-Planck-Institut fr molekulare Genetik  

E-print Network

Max-Planck-Institut für molekulare Genetik Algorithmic Systems Biology 2009 Molecular Networks, Network Characterization & Graph Models Thomas Manke Max Planck Institute for Molecular Genetics, Berlin #12;Max-Planck-Institut für molekulare Genetik Outline · From expression data (reverse engineering

Spang, Rainer

243

Universality and scaling in the N-body sector of Efimov physics  

NASA Astrophysics Data System (ADS)

Universal behavior has been found inside the window of Efimov physics for systems with N =4,5,6 particles. Efimov physics refers to the emergence of a number of three-body states in systems of identical bosons interacting via a short-range interaction becoming infinite at the verge of binding two particles. These Efimov states display a discrete scale invariance symmetry, with the scaling factor independent of the microscopic interaction. Their energies in the limit of zero-range interaction can be parametrized, as a function of the scattering length, by a universal function. We have found, using the form of finite-range scaling introduced by A. Kievsky and M. Gattobigio [Phys. Rev A 87, 052719 (2013), 10.1103/PhysRevA.87.052719], that the same universal function can be used to parametrize the ground and excited energy of N ?6 systems inside the Efimov-physics window. Moreover, we show that the same finite-scale analysis reconciles experimental measurements of three-body binding energies with the universal theory.

Gattobigio, M.; Kievsky, A.

2014-07-01

244

MAX-PLANCK-INSTITUT INFORMATIK  

E-print Network

_ _ _ _ _ _ _ _ __ Im Stadtwald W 6600 Saarbrücken Germany #12;Fast Integer Merging on the EREW PRAM Torben Hagerup on the EREW PRAM Torben Hagerup'" Max-Planck-Institut für Informatik, . Im Stadtwald, D-W-6600 Saarbrücken

245

Using Rasch Modeling to Re-Evaluate Three Scales Related to Physical Activity: Enjoyment, Perceived Benefits and Perceived Barriers  

ERIC Educational Resources Information Center

Studies suggest that enjoyment, perceived benefits and perceived barriers may be important mediators of physical activity. However, the psychometric properties of these scales have not been assessed using Rasch modeling. The purpose of this study was to use Rasch modeling to evaluate the properties of three scales commonly used in physical

Heesch, K. C.; Masse, L. C.; Dunn, A. L.

2006-01-01

246

Primordial power spectrum from Planck  

NASA Astrophysics Data System (ADS)

Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near l ~ 750-850 represents the most prominent feature in the data. Feature near l ~ 1800-2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2? C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ~ 2.5%. In this context low-l and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.

Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun

2014-11-01

247

Small-scale biological, physical and chemical signals in the sea  

NASA Astrophysics Data System (ADS)

Plankton operate at low to intermediate Reynolds numbers, generating watery signals that can be attenuated by viscosity and confused with small-scale turbulence. Yet messages are created, transmitted, perceived and recognized. These messages guide essential survival tasks of aquatic micro crustaceans. Cues created include those of escaping prey, lunging predators, attractive mates, and appropriate hosts. In this presentation, I describe some unusual and some typical examples of small-scale biological-physical-chemical signals in the sea that help to maintain the integrity of our aquatic ecosystems.

Yen, Jeannette

2010-11-01

248

Perfectly monodisperse microbubbling by capillary flow focusing: an alternate physical description and universal scaling.  

PubMed

In a recent work [Phys. Rev. Lett. 87, 274501 (2001)], a method to produce monodisperse microbubbles was described. The physics of the phenomenon was explained in terms of the absolute instabilities of a gas microjet formed when a liquid stream which surrounds a coflowing gas stream is forced through a small orifice. Now, a much more consistent physical picture to describe the phenomenon which corrects prior assumptions is presented. Consequently, a much simpler and universal scaling law for the microbubble size is finally obtained which involves the orifice diameter and the gas/liquid flow rates ratio only. All data shown in prior works, together with newly obtained data sets, have been analyzed anew. These are in remarkable agreement with the here proposed scaling law. PMID:14995592

Gañán-Calvo, Alfonso M

2004-02-01

249

Scaling and correlation of human movements in cyberspace and physical space  

NASA Astrophysics Data System (ADS)

Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a superlinear scaling relation between the mean frequency of visit and its fluctuation ? :? ˜? with ? ?1.2 . The probability distribution of the visiting frequency is found to be a stretched exponential function. We develop a model incorporating two essential ingredients, preferential return and exploration, and show that these are necessary for generating the scaling relation extracted from real data. A striking finding is that human movements in cyberspace and physical space are strongly correlated, indicating a distinctive behavioral identifying characteristic and implying that the behaviors in one space can be used to predict those in the other.

Zhao, Zhi-Dan; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng

2014-11-01

250

Scaling and correlation of human movements in cyberspace and physical space.  

PubMed

Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a superlinear scaling relation between the mean frequency of visit ?f? and its fluctuation ?:???f?^{?} with ??1.2. The probability distribution of the visiting frequency is found to be a stretched exponential function. We develop a model incorporating two essential ingredients, preferential return and exploration, and show that these are necessary for generating the scaling relation extracted from real data. A striking finding is that human movements in cyberspace and physical space are strongly correlated, indicating a distinctive behavioral identifying characteristic and implying that the behaviors in one space can be used to predict those in the other. PMID:25493727

Zhao, Zhi-Dan; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng

2014-11-01

251

Materials Science and Physics at Micro/Nano-Scales. FINAL REPORT  

SciTech Connect

The scope of this project is to study nanostructures of semiconductors and superconductors, which have been regarded as promising building blocks for nanoelectronic and nanoelectric devices. The emphasis of this project is on developing novel synthesis approaches for fabrication of nanostructures with desired physical properties. The ultimate goal is to achieve a full control of the nanostructure growth at microscopic scales. The major experimental achievements obtained are summarized

Wu, Judy Z

2009-09-07

252

Planck pre-launch status: The Planck mission  

NASA Astrophysics Data System (ADS)

The European Space Agency's Planck satellite, launched on 14 May 2009, is the third-generation space experiment in the field of cosmic microwave background (CMB) research. It will image the anisotropies of the CMB over the whole sky, with unprecedented sensitivity ({{? T}over T} 2 × 10-6) and angular resolution ( 5 arcmin). Planck will provide a major source of information relevant to many fundamental cosmological problems and will test current theories of the early evolution of the Universe and the origin of structure. It will also address a wide range of areas of astrophysical research related to the Milky Way as well as external galaxies and clusters of galaxies. The ability of Planck to measure polarization across a wide frequency range (30-350 GHz), with high precision and accuracy, and over the whole sky, will provide unique insight, not only into specific cosmological questions, but also into the properties of the interstellar medium. This paper is part of a series which describes the technical capabilities of the Planck scientific payload. It is based on the knowledge gathered during the on-ground calibration campaigns of the major subsystems, principally its telescope and its two scientific instruments, and of tests at fully integrated satellite level. It represents the best estimate before launch of the technical performance that the satellite and its payload will achieve in flight. In this paper, we summarise the main elements of the payload performance, which is described in detail in the accompanying papers. In addition, we describe the satellite performance elements which are most relevant for science, and provide an overview of the plans for scientific operations and data analysis.

Tauber, J. A.; Mandolesi, N.; Puget, J.-L.; Banos, T.; Bersanelli, M.; Bouchet, F. R.; Butler, R. C.; Charra, J.; Crone, G.; Dodsworth, J.; Efstathiou, G.; Gispert, R.; Guyot, G.; Gregorio, A.; Juillet, J. J.; Lamarre, J.-M.; Laureijs, R. J.; Lawrence, C. R.; Nørgaard-Nielsen, H. U.; Passvogel, T.; Reix, J. M.; Texier, D.; Vibert, L.; Zacchei, A.; Ade, P. A. R.; Aghanim, N.; Aja, B.; Alippi, E.; Aloy, L.; Armand, P.; Arnaud, M.; Arondel, A.; Arreola-Villanueva, A.; Artal, E.; Artina, E.; Arts, A.; Ashdown, M.; Aumont, J.; Azzaro, M.; Bacchetta, A.; Baccigalupi, C.; Baker, M.; Balasini, M.; Balbi, A.; Banday, A. J.; Barbier, G.; Barreiro, R. B.; Bartelmann, M.; Battaglia, P.; Battaner, E.; Benabed, K.; Beney, J.-L.; Beneyton, R.; Bennett, K.; Benoit, A.; Bernard, J.-P.; Bhandari, P.; Bhatia, R.; Biggi, M.; Biggins, R.; Billig, G.; Blanc, Y.; Blavot, H.; Bock, J. J.; Bonaldi, A.; Bond, R.; Bonis, J.; Borders, J.; Borrill, J.; Boschini, L.; Boulanger, F.; Bouvier, J.; Bouzit, M.; Bowman, R.; Bréelle, E.; Bradshaw, T.; Braghin, M.; Bremer, M.; Brienza, D.; Broszkiewicz, D.; Burigana, C.; Burkhalter, M.; Cabella, P.; Cafferty, T.; Cairola, M.; Caminade, S.; Camus, P.; Cantalupo, C. M.; Cappellini, B.; Cardoso, J.-F.; Carr, R.; Catalano, A.; Cayón, L.; Cesa, M.; Chaigneau, M.; Challinor, A.; Chamballu, A.; Chambelland, J. P.; Charra, M.; Chiang, L.-Y.; Chlewicki, G.; Christensen, P. R.; Church, S.; Ciancietta, E.; Cibrario, M.; Cizeron, R.; Clements, D.; Collaudin, B.; Colley, J.-M.; Colombi, S.; Colombo, A.; Colombo, F.; Corre, O.; Couchot, F.; Cougrand, B.; Coulais, A.; Couzin, P.; Crane, B.; Crill, B.; Crook, M.; Crumb, D.; Cuttaia, F.; Dörl, U.; da Silva, P.; Daddato, R.; Damasio, C.; Danese, L.; D'Aquino, G.; D'Arcangelo, O.; Dassas, K.; Davies, R. D.; Davies, W.; Davis, R. J.; de Bernardis, P.; de Chambure, D.; de Gasperis, G.; de La Fuente, M. L.; de Paco, P.; de Rosa, A.; de Troia, G.; de Zotti, G.; Dehamme, M.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; di Girolamo, G.; Dickinson, C.; Doelling, E.; Dolag, K.; Domken, I.; Douspis, M.; Doyle, D.; Du, S.; Dubruel, D.; Dufour, C.; Dumesnil, C.; Dupac, X.; Duret, P.; Eder, C.; Elfving, A.; Enßlin, T. A.; Eng, P.; English, K.; Eriksen, H. K.; Estaria, P.; Falvella, M. C.; Ferrari, F.; Finelli, F.; Fishman, A.; Fogliani, S.; Foley, S.; Fonseca, A.; Forma, G.; Forni, O.; Fosalba, P.; Fourmond, J.-J.; Frailis, M.; Franceschet, C.; Franceschi, E.; François, S.; Frerking, M.; Gómez-Reñasco, M. F.; Górski, K. M.; Gaier, T. C.; Galeotta, S.; Ganga, K.; García Lázaro, J.; Garnica, A.; Gaspard, M.; Gavila, E.; Giard, M.; Giardino, G.; Gienger, G.; Giraud-Heraud, Y.; Glorian, J.-M.; Griffin, M.; Gruppuso, A.; Guglielmi, L.; Guichon, D.; Guillaume, B.; Guillouet, P.; Haissinski, J.; Hansen, F. K.; Hardy, J.; Harrison, D.; Hazell, A.; Hechler, M.; Heckenauer, V.; Heinzer, D.; Hell, R.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Herreros, J. M.; Hervier, V.; Heske, A.; Heurtel, A.; Hildebrandt, S. R.; Hills, R.; Hivon, E.; Hobson, M.; Hollert, D.; Holmes, W.; Hornstrup, A.; Hovest, W.; Hoyland, R. J.; Huey, G.; Huffenberger, K. M.; Hughes, N.; Israelsson, U.; Jackson, B.; Jaffe, A.; Jaffe, T. R.; Jagemann, T.; Jessen, N. C.; Jewell, J.; Jones, W.; Juvela, M.; Kaplan, J.; Karlman, P.; Keck, F.; Keihänen, E.; King, M.; Kisner, T. S.; Kletzkine, P.; Kneissl, R.; Knoche, J.; Knox, L.; Koch, T.; Krassenburg, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lagache, G.; Lagorio, E.; Lami, P.; Lande, J.; Lange, A.; Langlet, F.; Lapini, R.; Lapolla, M.; Lasenby, A.; Le Jeune, M.; Leahy, J. P.; Lefebvre, M.; Legrand, F.; Le Meur, G.; Leonardi, R.; Leriche, B.; Leroy, C.; Leutenegger, P.; Levin, S. M.; Lilje, P. B.; Lindensmith, C.; Linden-Vørnle, M.; Loc, A.; Longval, Y.; Lubin, P. M.; Luchik, T.; Luthold, I.; Macias-Perez, J. F.; Maciaszek, T.; MacTavish, C.; Madden, S.; Maffei, B.; Magneville, C.; Maino, D.; Mambretti, A.; Mansoux, B.; Marchioro, D.; Maris, M.; Marliani, F.; Marrucho, J.-C.; Martí-Canales, J.; Martínez-González, E.; Martín-Polegre, A.; Martin, P.; Marty, C.; Marty, W.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McDonald, A.; McGrath, P.; Mediavilla, A.; Meinhold, P. R.; Mélin, J.-B.; Melot, F.; Mendes, L.; Mennella, A.; Mervier, C.; Meslier, L.; Miccolis, M.; Miville-Deschenes, M.-A.; Moneti, A.; Montet, D.; Montier, L.; Mora, J.; Morgante, G.; Morigi, G.; Morinaud, G.; Morisset, N.; Mortlock, D.; Mottet, S.; Mulder, J.; Munshi, D.; Murphy, A.; Murphy, P.; Musi, P.; Narbonne, J.; Naselsky, P.; Nash, A.; Nati, F.; Natoli, P.; Netterfield, B.; Newell, J.; Nexon, M.; Nicolas, C.; Nielsen, P. H.; Ninane, N.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Oldeman, P.; Olivier, P.; Ouchet, L.

2010-09-01

253

Planck early results. XVI. The Planck view of nearby galaxies  

Microsoft Academic Search

The all-sky coverage of the Planck Early Release Compact Source Catalogue (ERCSC) provides an unsurpassed survey of galaxies at submillimetre (submm) wavelengths, representing a major improvement in the numbers of galaxies detected, as well as the range of far-IR\\/submm wavelengths over which they have been observed. We here present the first results on the properties of nearby galaxies using these

P. A. R. Ade; N. Aghanim; M. Arnaud; M. Ashdown; J. Aumont; C. Baccigalupi; A. Balbi; A. J. Banday; R. B. Barreiro; J. G. Bartlett; E. Battaner; K. Benabed; A. Benoît; J.-P. Bernard; M. Bersanelli; R. Bhatia; J. J. Bock; A. Bonaldi; J. R. Bond; J. Borrill; M. Bucher; C. Burigana; P. Cabella; J.-F. Cardoso; A. Catalano; L. Cayón; A. Challinor; A. Chamballu; R.-R. Chary; L.-Y. Chiang; P. R. Christensen; D. L. Clements; S. Colombi; F. Couchot; A. Coulais; B. P. Crill; F. Cuttaia; L. Danese; R. D. Davies; R. J. Davis; P. de Bernardis; G. de Gasperis; A. de Rosa; G. de Zotti; J. Delabrouille; J.-M. Delouis; F.-X. Désert; C. Dickinson; H. Dole; S. Donzelli; O. Doré; U. Dörl; M. Douspis; X. Dupac; G. Efstathiou; T. A. Enßlin; F. Finelli; O. Forni; M. Frailis; E. Franceschi; S. Galeotta; K. Ganga; M. Giard; G. Giardino; Y. Giraud-Héraud; J. González-Nuevo; K. M. Górski; S. Gratton; A. Gregorio; A. Gruppuso; F. K. Hansen; D. Harrison; G. Helou; S. Henrot-Versillé; D. Herranz; S. R. Hildebrandt; E. Hivon; M. Hobson; W. A. Holmes; W. Hovest; R. J. Hoyland; K. M. Huffenberger; A. H. Jaffe; W. C. Jones; M. Juvela; E. Keihänen; R. Keskitalo; T. S. Kisner; R. Kneissl; L. Knox; H. Kurki-Suonio; G. Lagache; A. Lähteenmäki; J.-M. Lamarre; A. Lasenby; R. J. Laureijs; C. R. Lawrence; S. Leach; R. Leonardi; M. Linden-Vørnle; M. López-Caniego; P. M. Lubin; J. F. Macías-Pérez; C. J. MacTavish; S. Madden; B. Maffei; D. Maino; N. Mandolesi; R. Mann; M. Maris; E. Martínez-González; S. Masi; S. Matarrese; F. Matthai; P. Mazzotta; A. Melchiorri; L. Mendes; A. Mennella; M.-A. Miville-Deschênes; A. Moneti; L. Montier; G. Morgante; D. Mortlock; D. Munshi; A. Murphy; P. Naselsky; P. Natoli; C. B. Netterfield; H. U. Nørgaard-Nielsen; F. Noviello; D. Novikov; I. Novikov; S. Osborne; F. Pajot; B. Partridge; F. Pasian; G. Patanchon; M. Peel; O. Perdereau; L. Perotto; F. Perrotta; F. Piacentini; M. Piat; S. Plaszczynski; E. Pointecouteau; G. Polenta; N. Ponthieu; T. Poutanen; G. Prézeau; S. Prunet; J.-L. Puget; W. T. Reach; R. Rebolo; M. Reinecke; C. Renault; S. Ricciardi; T. Riller; I. Ristorcelli; G. Rocha; C. Rosset; M. Rowan-Robinson; J. A. Rubiño-Martín; B. Rusholme; M. Sandri; G. Savini; D. Scott; M. D. Seiffert; P. Shellard; G. F. Smoot; J.-L. Starck; F. Stivoli; V. Stolyarov; R. Sudiwala; J.-F. Sygnet; J. A. Tauber; L. Terenzi; L. Toffolatti; M. Tomasi; J.-P. Torre; M. Tristram; J. Tuovinen; M. Türler; G. Umana; L. Valenziano; J. Varis; P. Vielva; F. Villa; N. Vittorio; L. A. Wade; B. D. Wandelt; D. Yvon; A. Zacchei; A. Zonca

2011-01-01

254

Flipped SU(5), see-saw scale physics and degenerate vacua  

E-print Network

We investigate the requirement of the existence of two degenerate vacua of the effective potential as a function of the Weinberg-Salam Higgs scalar field norm, as suggested by the multiple point principle, in an extension of the Standard Model including see-saw scale physics. Results are presented from an investigation of an extension of the Standard Model to the gauge symmetry group SU(3)_C\\times SU(2)_L\\times U(1)'\\times \\tilde U(1), where two groups U(1)' and \\tilde U(1) originate at the see-saw scale M_{SS}, when heavy (right-handed) neutrinos appear. The consequent unification of the group SU(3)_C\\times SU(2)_L\\times U(1)' into the flipped SU(5) at the GUT scale leads to the group SU(5)\\times \\tilde U(1). We assume the position of the second minimum of the effective potential coincides with the fundamental scale, here taken to be the GUT scale. We solve the renormalization group equations in the one-loop approximation and obtain a top-quark mass of 171\\pm 3 GeV and a Higgs mass of 129\\pm 4 GeV, in the case when the Yukawa couplings of the neutrinos are less than half that of the top quark at the GUT scale.

C. R. Das; C. D. Froggatt; L. V. Laperashvili; H. B. Nielsen

2005-07-15

255

High-Fidelity Lattice Physics Capabilities of the SCALE Code System Using TRITON  

SciTech Connect

Increasing complexity in reactor designs suggests a need to reexamine of methods applied in spent-fuel characterization. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as space reactors and Generation IV power reactors also require calculational methods that provide accurate prediction of the isotopic inventory. New high-fidelity physics methods will be required to better understand the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light-water reactor designs. The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for reactor physics analysis. This paper provides a detailed description of TRITON in terms of its key components used in reactor calculations.

DeHart, Mark D [ORNL

2007-01-01

256

The development and validation of the Physical Appearance Comparison Scale-Revised (PACS-R).  

PubMed

The Physical Appearance Comparison Scale (PACS; Thompson, Heinberg, & Tantleff, 1991) was revised to assess appearance comparisons relevant to women and men in a wide variety of contexts. The revised scale (Physical Appearance Comparison Scale-Revised, PACS-R) was administered to 1176 college females. In Study 1, exploratory factor analysis and parallel analysis using one half of the sample suggested a single factor structure for the PACS-R. Study 2 utilized the remaining half of the sample to conduct confirmatory factor analysis, item analysis, and to examine the convergent validity of the scale. These analyses resulted in an 11-item measure that demonstrated excellent internal consistency and convergent validity with measures of body satisfaction, eating pathology, sociocultural influences on appearance, and self-esteem. Regression analyses demonstrated the utility of the PACS-R in predicting body satisfaction and eating pathology. Overall, results indicate that the PACS-R is a reliable and valid tool for assessing appearance comparison tendencies in women. PMID:24854806

Schaefer, Lauren M; Thompson, J Kevin

2014-04-01

257

Planck's constant measurement for dummies  

E-print Network

A simple experimental setup for measuring the Planck's constant, using Landauer quantization of the conductance of touching gold wires, is described. It consists of two gold wires with thickness of 500 micron and 1.5cm length, and a fast operational amplifier. The setup costs less than \\$30 and can be realized in every teaching laboratory in 10 days. The usage of oscilloscope is required.

Damyanov, Desislav S; Ilieva, Simona I; Gourev, Vassil N; Yordanov, Vasil G; Mishonov, Todor M

2015-01-01

258

New test of quantum mechanics: Is Planck's constant unique  

SciTech Connect

We discuss the possibility that different realms of physics are described by distinct quantization constants. From the consistency of existing data, we infer limits on the differences between hypothetically distinct quantization constants for different elementary particles. Since the existence of multiple Planck constants implies violations of space-time symmetries, these limits may be viewed as precise tests of fundamental conservation laws, including the conservation of linear momentum and energy.

Fischbach, E. (Department of Physics, Purdue University, West Lafayette, Indiana 47907 (US)); Greene, G.L. (National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (USA)); Hughes, R.J. (Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (USA))

1991-01-21

259

Factorial Validity and Internal Consistency of the Motivational Climate in Physical Education Scale  

PubMed Central

The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key Points This study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories. The statistical fit of the four-factor model of the MCPES consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. Additionally, the results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate. Autonomy, social relatedness, and task climate were significantly and strongly correlated with each other, whereas the ego climate factor had low or negligible correlations with the other three factors. PMID:24570617

Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo

2014-01-01

260

Research Report 2008 Max Planck Institute  

E-print Network

Research Report 2008 Max Planck Institute for Dynamics and Self-Organization MAX - P L A N C K- G E S E L LS C H A F T #12;Max Planck Institute for Dynamics and Self-Organization Bunsenstra�e 10 ­ D, Göttingen Printed by: Goltze Druck, Göttingen © January 2008 #12;Max Planck Institute for Dynamics and Self

Timme, Marc

261

Physics of large-scale star formation: The GAS-Dynamic aspect  

NASA Astrophysics Data System (ADS)

The subject of the review is the nature of regions of large-scale starbursts in galaxies. Theoretical investigations are presented and discussed, for the most part. Principal attention is devoted to the gas-dynamic approach to the problem. The review has the following plan. First we give a brief summary of empirical data on superassociations as regions of collective star formation on the largest scale in disk and irregular galaxies (Sec. 2); we then describe one possible gas-dynamic scenario for the origin of these objects (Sec. 3); the key physical mechanism on which the scenario is based — a collision of shock waves — is studied on the basis of general considerations (Sec. 4), as well as using computer simulation (Sec. 5) and laboratory experiments with shock waves (Sec. 6); the possibilities for the occurrence of this process under the specific conditions of the interstellar medium in disk and irregular galaxies are discussed in Sec. 7; in Sec. 8 we then consider features of large-scale collective star formation in barred galaxies; the evolution of spiral shocks that can initiate this process is the subject of Sec. 9; possible means of generation of large-scale regions of star formation like superassociations at the center of a bar (Sec. 10) and near its ends (Sec. 11) are then described; a brief conclusion is given in Sec. 12.

Chernin, A. D.

1996-10-01

262

New Potential of Black Holes : Quest for TeV-Scale Physics by Measuring Top Quark Sector using Black Holes  

Microsoft Academic Search

If TeV-scale gravity models are correct, the production of black holes will be the first signal of new physics. Once black holes are produced, they will give us much information about TeV-scale new physics directly. But such black holes can also be used for the precision measurements of the Standard Model (SM). The SM is nothing but a theory which

Yosuke Uehara

2002-01-01

263

Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes  

NASA Astrophysics Data System (ADS)

We argue that the basic properties of rain and cloud fields (particularly their scaling and intermittency) are best understood in terms of coupled (anisotropic and scaling) cascade processes. We show how such cascades provide a framework not only for theoretically and empirically investigating these fields, but also for constructing physically based stochastic models. This physical basis is provided by cascade scaling and intermittency, which is of broadly the same sort as that specified by the dynamical (nonlinear, partial differential) equations. Theoretically, we clarify the links between the divergence of high-order statistical moments, the multiple scaling and dimensions of the fields, and the multiplicative and anisotropic nature of the cascade processes themselves. We show how such fields can be modeled by fractional integration of the product of appropriate powers of conserved but highly intermittent fluxes. We also empirically test these ideas by exploiting high-resolution radar rain reflectivities. The divergence of moments is established by direct use of probability distributions, whereas the multiple scaling and dimensions required the development of new empirical techniques. The first of these estimates the "trace moments" of rain reflectivities, which are used to determine a moment-dependent exponent governing the variation of the various statistical moments with scale. This exponent function in turn is used to estimate the dimension function of the moments. A second technique called "functional box counting," is a generalization of a method first developed for investigating strange sets and permits the direct evaluation of another dimension function, this time associated with the increasingly intense regions. We further show how the different intensities are related to singularities of different orders in the field. This technique provides the basis for another new technique, called "elliptical dimensional sampling," which permits the elliptical dimension rain (describing its stratification) to be directly estimated: it yields del = 2.22 ± 0.07, which is less than that of an isotropic rain field (del = 3), but significantly greater than that of a completely flat (stratified) two-dimensional field (del = 2).

Schertzer, Daniel; Lovejoy, Shaun

1987-08-01

264

Guidelines for Doctoral Training at Max Planck Institutes Preamble  

E-print Network

Guidelines for Doctoral Training at Max Planck Institutes Preamble The following Guidelines for Doctoral Training at Max Planck Institutes supplement they are incompatible with these regulations. 1. The Max Planck Society is committed

265

Max Planck Society for the Advancement of Science  

E-print Network

Max Planck Society for the Advancement of Science Pressand Editor: Dr. Andreas Trepte (-1238) Online-Editor: Michael Frewin (-1273) ISSN 0170-4656 MAX PLANCK neurological and psychological disturbances - and even to plan neurosurgery. Researchers from the Max Planck

266

Cosmological science enabled by Planck  

E-print Network

Planck will be the first mission to map the entire cosmic microwave background (CMB) sky with mJy sensitivity and resolution better than 10'. The science enabled by such a mission spans many areas of astrophysics and cosmology. In particular it will lead to a revolution in our understanding of primary and secondary CMB anisotropies, the constraints on many key cosmological parameters will be improved by almost an order of magnitude (to sub-percent levels) and the shape and amplitude of the mass power spectrum at high redshift will be tightly constrained.

Martin White

2006-06-27

267

Multi-physics and multi-scale characterization of shale anisotropy  

NASA Astrophysics Data System (ADS)

Shales are the most abundant sedimentary rock type in the Earth's shallow crust. In the past decade or so, they have attracted increased attention from the petroleum industry as reservoirs, as well as more traditionally for their sealing capacity for hydrocarbon/CO2 traps or underground waste repositories. The effectiveness of both fundamental and applied shale research is currently limited by (i) the extreme variability of physical, mechanical and chemical properties observed for these rocks, and by (ii) the scarce data currently available. The variability in observed properties is poorly understood due to many factors that are often irrelevant for other sedimentary rocks. The relationships between these properties and the petrophysical measurements performed at the field and laboratory scales are not straightforward, translating to a scale dependency typical of shale behaviour. In addition, the complex and often anisotropic micro-/meso-structures of shales give rise to a directional dependency of some of the measured physical properties that are tensorial by nature such as permeability or elastic stiffness. Currently, fundamental understanding of the parameters controlling the directional and scale dependency of shale properties is far from complete. Selected results of a multi-physics laboratory investigation of the directional and scale dependency of some critical shale properties are reported. In particular, anisotropic features of shale micro-/meso-structures are related to the directional-dependency of elastic and fluid transport properties: - Micro-/meso-structure (?m to cm scale) characterization by electron microscopy and X-ray tomography; - Estimation of elastic anisotropy parameters on a single specimen using elastic wave propagation (cm scale); - Estimation of the permeability tensor using the steady-state method on orthogonal specimens (cm scale); - Estimation of the low-frequency diffusivity tensor using NMR method on orthogonal specimens (scale). For each of the above properties, leading-edge experimental techniques have been associated with novel interpretation tools. In this contribution, these experimental and interpretation methods are described. Relationships between the measured properties and the corresponding micro-/meso-structural features are discussed. For example, P-wave velocity was measured along 100 different propagation paths on a single cylindrical shale specimen using miniature ultrasonic transducers. Assuming that (i) the elastic tensor of this shale is transversely isotropic; and (i) the sample has been cored perfectly perpendicular to the bedding plane (symmetry plane is horizontal), Thomsen's anisotropy parameters inverted from the measured velocities are: - P-wave velocity along the symmetry axis (perpendicular to the bedding plane) ?o=3.45km/s; - P-wave anisotropy ?=0.12; - Parameter controlling the wave front geometry ?=0.058. A novel inversion algorithm allows for recovering these parameters without assuming a priori a horizontal bedding (symmetry) plane. The inversion of the same data set using this algorithm yields (i) ?o=3.23km/s, ?=0.25 and ?=0.18, and (ii) the elastic symmetry axis is inclined of ?=30° with respect to the specimen's axis. Such difference can have strong impact on field applications (AVO, ray tracing, tomography).

Sarout, J.; Nadri, D.; Delle Piane, C.; Esteban, L.; Dewhurst, D.; Clennell, M. B.

2012-12-01

268

The Fokker-Planck equation for a bistable potential  

NASA Astrophysics Data System (ADS)

The Fokker-Planck equation is studied through its relation to a Schrödinger-type equation. The advantage of this combination is that we can construct the probability distribution of the Fokker-Planck equation by using well-known solutions of the Schrödinger equation. By making use of such a combination, we present the solution of the Fokker-Planck equation for a bistable potential related to a double oscillator. Thus, we can observe the temporal evolution of the system describing its dynamic properties such as the time ? to overcome the barrier. By calculating the rates k=1/? as a function of the inverse scaled temperature 1/D, where D is the diffusion coefficient, we compare the aspect of the curve k×1/D, with the ones obtained from other studies related to four different kinds of activated process. We notice that there are similarities in some ranges of the scaled temperatures, where the different processes follow the Arrhenius behavior. We propose that the type of bistable potential used in this study may be used, qualitatively, as a simple model, whose rates share common features with the rates of some single rate-limited thermally activated processes.

Caldas, Denise; Chahine, Jorge; Filho, Elso Drigo

2014-10-01

269

Evaluating Introductory Physics Classes in Light of the ABET Criteria: An Example from the SCALE-UP Project.  

ERIC Educational Resources Information Center

The Student-Centered Activities for Large Enrollment University Physics (SCALE-UP) project at North Carolina State University (NCSU) is developing a curriculum to promote learning through in-class group activities in introductory physics classes up to 100 students. The authors are currently in Phase II of the project using a specially designed…

Saul, Jeffery M.; Deardorff, Duane L.; Abbott, David S.; Allain, Rhett J.; Beichner, Robert J.

270

PHYSICAL REVIEW E 85, 036706 (2012) Finite-size scaling for quantum criticality using the finite-element method  

E-print Network

PHYSICAL REVIEW E 85, 036706 (2012) Finite-size scaling for quantum criticality using the finite-element, the finite-element method was shown to be a powerful numerical method for ab initio electronic parameters by combining the finite-element method (FEM) with finite size scaling (FSS) using different ab

Kais, Sabre

271

The Assessment of Denial and Physical Complaints: The Validity of the Hy Scale and Associated MMPI Signs.  

ERIC Educational Resources Information Center

Using samples of psychiatric, medical, and chronic pain patients, the effectiveness of the Hysteria scale and of various combinations of Minnesota Multiphasic Personality Inventory scales as predictors of the simultaneous occurrence of two characteristics was evaluated: denial of psychological problems and admission of physical problems. The value…

McGrath, Robert E.; O'Malley, W. Brian

1986-01-01

272

(Lack of) Cosmological evidence for dark radiation after Planck  

SciTech Connect

We use Bayesian model comparison to determine whether extensions to Standard-Model neutrino physics — primarily additional effective numbers of neutrinos and/or massive neutrinos — are merited by the latest cosmological data. Given the significant advances in cosmic microwave background (CMB) observations represented by the Planck data, we examine whether Planck temperature and CMB lensing data, in combination with lower redshift data, have strengthened (or weakened) the previous findings. We conclude that the state-of-the-art cosmological data do not show evidence for deviations from the standard (?CDM) cosmological model (which has three massless neutrino families). This does not mean that the model is necessarily correct — in fact we know it is incomplete as neutrinos are not massless — but it does imply that deviations from the standard model (e.g., non-zero neutrino mass) are too small compared to the current experimental uncertainties to be inferred from cosmological data alone.

Verde, Licia [ICREA and ICC, Institut de Ciencies del Cosmos, Universitat de Barcelona (IEEC-UB), Marti i Franques 1, Barcelona 08028 (Spain); Feeney, Stephen M.; Peiris, Hiranya V. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Mortlock, Daniel J., E-mail: liciaverde@icc.ub.edu, E-mail: stephen.feeney.09@ucl.ac.uk, E-mail: mortlock@ic.ac.uk, E-mail: h.peiris@ucl.ac.uk [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom)

2013-09-01

273

Local variance asymmetries in Planck temperature anisotropy maps  

NASA Astrophysics Data System (ADS)

Recently, it was shown that local variance maps of temperature anisotropy are simple and useful tools for the study of large-scale hemispherical power asymmetry. This was done by studying the distribution of dipoles of the local variance maps. In this work, we extend the study of the dipolar asymmetry in local variance maps using foreground cleaned Planck 143 GHz and 217 GHz data to smaller scales. In doing so, we include the effect of the CMB Doppler dipole. Further, we show that it is possible to use local variance maps to measure the Doppler dipole in these Planck channel maps, after removing large-scale features (up to l = 600), at a significance of about 3?. At these small scales, we do not find any power asymmetry in the direction of the anomalous large-scale power asymmetry beyond that expected from cosmic variance. At large scales, we verify previous results, i.e. the presence of hemispherical power asymmetry at a significance of at least 3.3?.

Adhikari, Saroj

2015-02-01

274

Planck priors for dark energy surveys  

SciTech Connect

Although cosmic microwave background anisotropy data alone cannot constrain simultaneously the spatial curvature and the equation of state of dark energy, CMB data provide a valuable addition to other experimental results. However computing a full CMB power spectrum with a Boltzmann code is quite slow; for instance if we want to work with many dark energy and/or modified gravity models, or would like to optimize experiments where many different configurations need to be tested, it is possible to adopt a quicker and more efficient approach. In this paper we consider the compression of the projected Planck cosmic microwave background data into four parameters, R (scaled distance to last scattering surface), l{sub a} (angular scale of sound horizon at last scattering), {omega}{sub b}h{sup 2} (baryon density fraction) and n{sub s} (powerlaw index of primordial matter power spectrum), all of which can be computed quickly. We show that, although this compression loses information compared to the full likelihood, such information loss becomes negligible when more data is added. We also demonstrate that the method can be used for canonical scalar-field dark energy independently of the parametrization of the equation of state, and discuss how this method should be used for other kinds of dark energy models.

Mukherjee, Pia; Parkinson, David [Astronomy Centre, University of Sussex, Brighton BN1 9QH (United Kingdom); Kunz, Martin [Astronomy Centre, University of Sussex, Brighton BN1 9QH (United Kingdom); Department of Theoretical Physics, University of Geneva, 24 Quai E. Ansermet, 1211 Geneve 4 (Switzerland); Wang Yun [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks Street, Norman, Oklahoma (United States)

2008-10-15

275

Planck priors for dark energy surveys  

NASA Astrophysics Data System (ADS)

Although cosmic microwave background anisotropy data alone cannot constrain simultaneously the spatial curvature and the equation of state of dark energy, CMB data provide a valuable addition to other experimental results. However computing a full CMB power spectrum with a Boltzmann code is quite slow; for instance if we want to work with many dark energy and/or modified gravity models, or would like to optimize experiments where many different configurations need to be tested, it is possible to adopt a quicker and more efficient approach. In this paper we consider the compression of the projected Planck cosmic microwave background data into four parameters, R (scaled distance to last scattering surface), la (angular scale of sound horizon at last scattering), ?bh2 (baryon density fraction) and ns (powerlaw index of primordial matter power spectrum), all of which can be computed quickly. We show that, although this compression loses information compared to the full likelihood, such information loss becomes negligible when more data is added. We also demonstrate that the method can be used for canonical scalar-field dark energy independently of the parametrization of the equation of state, and discuss how this method should be used for other kinds of dark energy models.

Mukherjee, Pia; Kunz, Martin; Parkinson, David; Wang, Yun

2008-10-01

276

Planck priors for dark energy surveys  

E-print Network

Although cosmic microwave background (CMB) anisotropy data alone cannot constrain simultaneously the spatial curvature and the equation of state of dark energy, CMB data provide a valuable addition to other experimental results. However computing a full CMB power spectrum with a Boltzmann code is quite slow; for instance if we want to work with many dark energy and/or modified gravity models, or would like to optimize experiments where many different configurations need to be tested, it is possible to adopt a quicker and more efficient approach. In this paper we consider the compression of the projected Planck CMB data into four parameters, R (scaled distance to last scattering surface), l_a (angular scale of sound horizon at last scattering), Omega_b h^2 (baryon density fraction) and n_s (powerlaw index of primordial matter power spectrum), all of which can be computed quickly. We show that, although this compression loses information compared to the full likelihood, such information loss becomes negligible when more data is added. We also demonstrate that the method can be used for scalar field dark energy independently of the parametrisation of the equation of state, and discuss how this method should be used for other kinds of dark energy models.

Pia Mukherjee; Martin Kunz; David Parkinson; Yun Wang

2008-03-11

277

Can There BE Physics Without Experiments? Challenges and Pitfalls  

NASA Astrophysics Data System (ADS)

Physicists investigating space, time and matter at the Planck scale will probably have to work with much less guidance from experimental input than has ever happened before in the history of Physics. This may imply that we should insist on much higher demands of logical and mathematical rigour than before. Working with long chains of arguments linking theories to experiment, we must be able to rely on logical precision when and where experimental checks cannot be provided.

't Hooft, Gerard

2014-03-01

278

Inflation physics from the cosmic microwave background and large scale structure  

NASA Astrophysics Data System (ADS)

Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments-the theory of cosmic inflation-and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5? measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Buder, I.; Burke, D. L.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Crill, B. P.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Feng, J. L.; Fraisse, A.; Gallicchio, J.; Giddings, S. B.; Green, D.; Halverson, N. W.; Hanany, S.; Hanson, D.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Horowitz, G.; Hu, W.; Hubmayr, J.; Irwin, K.; Jackson, M.; Jones, W. C.; Kallosh, R.; Kamionkowski, M.; Keating, B.; Keisler, R.; Kinney, W.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C.-L.; Kusaka, A.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linde, A.; Linder, E.; Lubin, P.; Maldacena, J.; Martinec, E.; McMahon, J.; Miller, A.; Mukhanov, V.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Senatore, L.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.; Zaldarriaga, M.

2015-03-01

279

Inflation Physics from the Cosmic Microwave Background and Large Scale Structure  

NASA Technical Reports Server (NTRS)

Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

Abazajian, K.N.; Arnold,K.; Austermann, J.; Benson, B.A.; Bischoff, C.; Bock, J.; Bond, J.R.; Borrill, J.; Buder, I.; Burke, D.L.; Calabrese, E.; Carlstrom, J.E.; Carvalho, C.S.; Chang, C.L.; Chiang, H.C.; Church, S.; Cooray, A.; Crawford, T.M.; Crill, B.P.; Dawson, K.S.; Das, S.; Devline, M.J.; Dobbs, M.; Dodelson, S; Wollack, E. J.

2013-01-01

280

Heat Hyperbolic Diffusion in Planck Gas  

E-print Network

In this paper we investigate the diffusion of the thermal pulse in Planck Gas. We show that the Fourier diffusion equation gives the speed of diffusion, v > c and breaks the causality of the thermal processes in Planck gas .For hyperbolic heat transport v

Miroslaw Kozlowski; Janina Marciak-Kozlowska

2006-07-06

281

MaxPlanckInstitut fur Mathematik  

E-print Network

Max­Planck­Institut f¨ur Mathematik in den Naturwissenschaften Leipzig Pathologies in Aleksandrov. In the first we give a CAT (\\Gamma1)­space A, which is homeomorphic to R n ; n â?? 5, while its hyperbolic bound the author enjoyed the hospitality of the Max Planck Institute f¨ur Mathematik in Leipzig. Date: September 22

282

Stability, Higgs boson mass, and new physics.  

PubMed

Assuming that the particle with mass ?126??GeV discovered at LHC is the standard model Higgs boson, we find that the stability of the electroweak (EW) vacuum strongly depends on new physics interaction at the Planck scale MP, despite of the fact that they are higher-dimensional interactions, apparently suppressed by inverse powers of MP. In particular, for the present experimental values of the top and Higgs boson masses, if ? is the lifetime of the EW vacuum, new physics can turn ? from ??TU to ??TU, where TU is the age of the Universe, thus, weakening the conclusions of the so called metastability scenario. PMID:24483644

Branchina, Vincenzo; Messina, Emanuele

2013-12-13

283

New physics from the Cosmic Microwave Background  

E-print Network

I review the present status of the Cosmic Microwave Background, with some emphasis on the current and future implications for particle physics. Conclusions are: gravitational instability in a dark matter dominated universe grew today's structure; the Universe remained neutral until z<~50; the CMB power spectrum peaks at 150<~l<~350; the large-scale structure of spacetime appears to be simple; something like inflation is something like proven; we will learn a great deal about cosmology, astrophysics and particle physics from MAP and Planck.

Douglas Scott

1999-11-17

284

Inflation as a probe of new physics  

E-print Network

In this paper we consider inflation as a probe of new physics near the string or Planck scale. We discuss how new physics can be captured by the choice of vacuum, and how this leads to modifications of the primordial spectrum as well as the way in which the universe expands during inflation. Provided there is a large number of fields contributing to the vacuum energy -- as typically is expected in string theory -- we will argue that both types of effects can be present simultaneously and be of observational relevance. Our conclusion is that the ambiguity in choice of vacuum is an interesting new parameter in serious model building.

Ulf H. Danielsson

2005-11-27

285

Micrometer-Scale Physical Structure and Microbial Composition of Soil Macroaggregates  

SciTech Connect

Soil macroaggregates are discrete, separable units of soil that we hypothesize contain smaller assemblages of microorganisms than bulk soil, and represent a scale potentially consistent with naturally occurring microbial communities. We posed two questions to explore microbial community composition in the context of the macroaggregate: 1) Is there a relationship between macroaggregate physical structure and microbial community composition in individual macroaggregates? And, 2) How similar are the bacterial communities in individual sub-millimeter soil macroaggregates sampled from the same 5-cm core? To address these questions, individual macroaggregates of three arbitrary size classes (250–425, 425–841, and 841–1000 ?m) were sampled from a grassland field. The physical structures of 14 individual macroaggregates were characterized using synchrotron-radiation based transmission X-ray tomography, revealing that a greater proportion of the pore space in the small- and medium-sized macroaggregates is as relatively smaller pores, resulting in greater overall porosity and pore–mineral interface area in these smaller macroaggregates. Microbial community composition was characterized using 16S rRNA pyrosequencing data. Rarefaction analyses indicated that the membership of each macroaggregate was sufficiently sampled with only a few thousand sequences; in addition, the community membership varied widely between macroaggregates and the structure varied from those communities strongly dominated by a few phylotypes to communities that were evenly distributed among several phylotypes. We found no strong relationship of physical structure with community membership; this may be due to the low number of aggregates (10) for which we have both physical and biological data. Our results do support our initial expectation that individual macroaggregate communities were significantly less diverse than bulk soil from the same grassland field site.

Bailey, Vanessa L.; McCue, Lee Ann; Fansler, Sarah J.; Boyanov, Maxim I.; DeCarlo, F.; Kemner, Kenneth M.; Konopka, Allan

2013-10-01

286

Physics of vacuum polarization ... Lectures on the physics of vacuum polarization: from GeV to TeV scale  

E-print Network

Physics of vacuum polarization ... Lectures on the physics of vacuum polarization: from GeV to Te Frascati, Frascati, Italy ­ November 9-13, 2009 ­ #12;Physics of vacuum polarization ... Outline of Lecture: x Introduction, theory tools, non-perturbative and perturbative aspects y Vacuum Polarization in Low

Röder, Beate

287

Planck 2013 results. XXVI. Background geometry and topology of the Universe  

NASA Astrophysics Data System (ADS)

The new cosmic microwave background (CMB) temperature maps from Planck provide the highest-quality full-sky view of the surface of last scattering available to date. This allows us to detect possible departures from the standard model of a globally homogeneous and isotropic cosmology on the largest scales. We search for correlations induced by a possible non-trivial topology with a fundamental domain intersecting, or nearly intersecting, the last scattering surface (at comoving distance ?rec), both via a direct search for matched circular patterns at the intersections and by an optimal likelihood search for specific topologies. For the latter we consider flat spaces with cubic toroidal (T3), equal-sided chimney (T2) and slab (T1) topologies, three multi-connected spaces of constant positive curvature (dodecahedral, truncated cube and octahedral) and two compact negative-curvature spaces. These searches yield no detection of the compact topology with the scale below the diameter of the last scattering surface. For most compact topologies studied the likelihood maximized over the orientation of the space relative to the observed map shows some preference for multi-connected models just larger than the diameter of the last scattering surface. Since this effect is also present in simulated realizations of isotropic maps, we interpret it as the inevitable alignment of mild anisotropic correlations with chance features in a single sky realization; such a feature can also be present, in milder form, when the likelihood is marginalized over orientations. Thus marginalized, the limits on the radius ?i of the largest sphere inscribed in topological domain (at log-likelihood-ratio ?ln ? > -5 relative to a simply-connected flat Planck best-fit model) are: in a flat Universe, ?i> 0.92?rec for the T3 cubic torus; ?i> 0.71?rec for the T2 chimney; ?i> 0.50?rec for the T1 slab; and in a positively curved Universe, ?i> 1.03?rec for the dodecahedral space; ?i> 1.0?rec for the truncated cube; and ?i> 0.89?rec for the octahedral space. The limit for a wider class of topologies, i.e., those predicting matching pairs of back-to-back circles, among them tori and the three spherical cases listed above, coming from the matched-circles search, is ?i> 0.94?rec at 99% confidence level. Similar limits apply to a wide, although not exhaustive, range of topologies. We also perform a Bayesian search for an anisotropic global Bianchi VIIh geometry. In the non-physical setting where the Bianchi cosmology is decoupled from the standard cosmology, Planck data favour the inclusion of a Bianchi component with a Bayes factor of at least 1.5 units of log-evidence. Indeed, the Bianchi pattern is quite efficient at accounting for some of the large-scale anomalies found in Planck data. However, the cosmological parameters that generate this pattern are in strong disagreement with those found from CMB anisotropy data alone. In the physically motivated setting where the Bianchi parameters are coupled and fitted simultaneously with the standard cosmological parameters, we find no evidence for a Bianchi VIIh cosmology and constrain the vorticity of such models to (?/H)0< 8.1 × 10-10 (95% confidence level).

Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Fabre, O.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J. D.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Riazuelo, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

2014-11-01

288

A statistical physics view of financial fluctuations: Evidence for scaling and universality  

NASA Astrophysics Data System (ADS)

The unique scaling behavior of financial time series have attracted the research interest of physicists. Variables such as stock returns, share volume, and number of trades have been found to display distributions that are consistent with a power-law tail. We present an overview of recent research joining practitioners of economic theory and statistical physics to try to understand better some puzzles regarding economic fluctuations. One of these puzzles is how to describe outliers, i.e. phenomena that lie outside of patterns of statistical regularity. We review recent research, which suggests that such outliers may not in fact exist and that the same laws seem to govern outliers as well as day-to-day fluctuations.

Stanley, H. Eugene; Plerou, Vasiliki; Gabaix, Xavier

2008-06-01

289

Some aspects of wind tunnel magnetic suspension systems with special application at large physical scales  

NASA Technical Reports Server (NTRS)

Wind tunnel magnetic suspension and balance systems (MSBSs) have so far failed to find application at the large physical scales necessary for the majority of aerodynamic testing. Three areas of technology relevant to such application are investigated. Two variants of the Spanwise Magnet roll torque generation scheme are studied. Spanwise Permanent Magnets are shown to be practical and are experimentally demonstrated. Extensive computations of the performance of the Spanwise Iron Magnet scheme indicate powerful capability, limited principally be electromagnet technology. Aerodynamic testing at extreme attitudes is shown to be practical in relatively conventional MSBSs. Preliminary operation of the MSBS over a wide range of angles of attack is demonstrated. The impact of a requirement for highly reliable operation on the overall architecture of Large MSBSs is studied and it is concluded that system cost and complexity need not be seriously increased.

Britcher, C. P.

1983-01-01

290

Quantum Physics: An Introduction  

NSDL National Science Digital Library

Introduction to Quantum Physics concepts with an activity demonstrating Heisenberg's Uncertainty Principle, wave/particle duality, Planck's Constant, de Broglie wavelength, and how Newton's Laws go right out the window on a quantum level.

291

On the physics of radio haloes in galaxy clusters: scaling relations and luminosity functions  

NASA Astrophysics Data System (ADS)

The underlying physics of giant and mini radio haloes in galaxy clusters is still an open question. We find that mini haloes (such as in Perseus and Ophiuchus) can be explained by radio-emitting electrons that are generated in hadronic cosmic ray (CR) interactions with protons of the intracluster medium. By contrast, the hadronic model either fails to explain the extended emission of giant radio haloes (as in Coma at low frequencies) or would require a flat CR profile, which can be realized through outward streaming and diffusion of CRs (in Coma and A2163 at 1.4 GHz). We suggest that a second leptonic component could be responsible for the missing flux in the outer parts of giant haloes within a new hybrid scenario and we describe its possible observational consequences. To study the hadronic emission component of the radio-halo population statistically, we use a cosmological mock galaxy cluster catalogue built from the MultiDark simulation. Because of the properties of CR streaming and the different scalings of the X-ray luminosity (LX) and the Sunyaev-Zel'dovich flux (Y) with gas density, our model can simultaneously reproduce the observed bimodality of radio-loud and radio-quiet clusters at the same LX as well as the unimodal distribution of radio-halo luminosity versus Y; thereby suggesting a physical solution to this apparent contradiction. We predict radio-halo emission down to the mass scale of galaxy groups, which highlights the unique prospects for low-frequency radio surveys (such as the Low Frequency Array Tier 1 survey) to increase the number of detected radio haloes by at least an order of magnitude.

Zandanel, Fabio; Pfrommer, Christoph; Prada, Francisco

2014-02-01

292

Study for Planck Cold Clumps with molecular lines  

NASA Astrophysics Data System (ADS)

To probe dynamical processes and physical properties of Planck Cold Clumps, we have observed 674 of the most reliable 915 sources with J=1-0 of CO,13CO and C18O using PMO 13.7 m telescope of Purple Mountain Observatory. J=1-0 lines of HCO+ and HCN at CO emission peaks were also observed, of which 24 were mapped with IRAM 30 m telescope. Results show excitation temperatures are from 4 to 17 K, and column densities range from 1020 to 4.5x1023 cm-2. Planck cold clumps have the smallest line width among samples of IRDCs, weak IRAS, EGOs, UC HII candidates and methanol maser chosen cores. However the lines are still wider than those of low-mass cores and have non-thermal supersonic dispersion. Filament is the majority in their morphologies and fragmented structures were found with dense molecular lines. More than 70% of CO cores are starless. Planck cold clumps seem to be ideal samples to search for candidates of massive prestellar cores and pre-clusters.

Wu, Yuefang

2014-07-01

293

A physics-based stochastic approach to representing unresolved scales in ocean models  

NASA Astrophysics Data System (ADS)

Recently, there has been an enormous development to represent unresolved scales by stochastic processes. But current stochastic techniques remain imperfect because the physical properties of the subgridscale processes are either introduced a posteriori as in data-based approaches, or they are prescribed ad hoc by Gaussian closures as in order reduction techniques. In a unifying approach, we combine elements from deterministic physics-based parameterizations and stochastic techniques to give a self-contained stochastic representation of subgridscale interactions. In a nutshell, the largely fixed spatial patterns of the subgridscale interactions are represented by the interactions of the most-unstable modes, whereas the amplitudes of these interactions are assumed to be stochastic with their statistics given via the amplitude equations of the most-unstable modes. For an efficient implementation, we exploit new, powerful tools such as generalized eigenvalue solvers suited to compute targeted eigenmodes of large dimensional systems, and the Dynamical Orthogonal Field method to solve the stochastic differential equations which yields the entire probability distribution of the flow field. As a first demonstration, we discuss the stochastic representation of baroclinic turbulence in the double gyre circulation.

Viebahn, Jan; Dijkstra, Henk A.

2014-05-01

294

Scalable DAG-Based PDE Frameworks for Multi-Scale Multi-Physics Problems  

NASA Astrophysics Data System (ADS)

The task-based approach to software and parallelism is well-known and has been proposed as a potential candidate, named the silver model, for exascale software. This approach is not yet widely used in the large-scale multi-core parallel computing of complex systems of partial differential equations. The central idea is to use a Directed Acyclic Graph (DAG) based approach to express the structure of the underlying software. The aim of this talk is to explore the usefulness of DAG based approaches, using recent developments in the parallel Uintah software framework for partial differential equations to assess how well the DAG type approach works on present-day large-scale architectures for complex multi-physics multiscale applications up to 200K cores. As a result of these investigations, a preliminary and tentative evaluation of the DAG type approach for PDE software infrastructures will be given. The conclusion is that these approaches show great promise for petascale but that considerable algorithmic challenges remain.

Berzins, Martin

2012-02-01

295

Pore-scale Analysis on Physics Property Changes of CO2 Bleached Sandstone, Entrada Fromation, Utah  

NASA Astrophysics Data System (ADS)

Since carbon dioxide injected into geological formations can cause a variety of physical and chemical reaction with minerals, it is important to evaluate the characteristics and aspects of these effects in CO2 geological sequestration. For the analog of the phenomena, we conducted pore-scale analysis on porosity and permeability changes and their characteristics for CO2-bleached Entrada formation, Utah due to natural leakage of CO2. From thin section analysis, we observed mineralogical and pore-shape changes: precipitation of carbonate minerals. Then, we estimated porosity and permeability from thin section, using a computational rock physics technique. The estimated porosity of unbleached sample is approximately 13% and that of bleached sample is around 10%, which implies the precipitation of carbonate minerals. The estimated permeability showed a little differences between two samples. This observations seems to imply that the precipitation would occur where permeability is not significantly affected: grain contacts. For more systematic analysis, we obtained 3D pore microstructures by X-ray microtomography technique. The preliminary analysis using the 3D pore microstructures showed similar results to what we found in the thin-section analysis. And a set of simulations for porosity and permeability are now being conducted. The final result will help understand how injected CO2 changes pore structures and physical properties such as porosity and permeability, and will also help accurate monitoring of geological storage sites. Acknowledgement: This work was supported by the Energy Resources R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2010201020001A).

Han, J.; Keehm, Y.

2012-12-01

296

Pre-Big Bang, fundamental Physics and noncyclic cosmologies. Possible alternatives to standard concepts and laws  

NASA Astrophysics Data System (ADS)

Detailed analyses of WMAP and Planck data can have significant implications for noncyclic pre-Big Bang approaches incorporating a new fundamental scale beyond the Planck scale and, potentially, new ultimate constituents of matter with unconventional basic properties as compared to standard particles. Cosmic-ray experiments at the highest energies can also yield relevant information. Hopefully, future studies will be able to deal with alternatives: i) to standard physics for the structure of the physical vacuum, the nature of space-time, the validity of quantum field theory and conventional symmetries, the interpretation of string-like theories...; ii) to standard cosmology concerning the origin and evolution of our Universe, unconventional solutions to the cosmological constant problem, the validity of inflationary scenarios, the need for dark matter and dark energy... Lorentz-like symmetries for the properties of matter can then be naturally stable space-time configurations resulting from more general primordial scenarios that incorporate physics beyond the Planck scale and describe the formation and evolution of the physical vacuum. A possible answer to the question of the origin of half-integer spins can be provided by a primordial spinorial space-time with two complex coordinates instead of the conventional four real ones, leading to a really new cosmology. We discuss basic questions and phenomenological topics concerning noncyclic pre-Big Bang cosmologies and potentially related physics.

Gonzalez-Mestres, L.

2014-04-01

297

Extended Fokker Planck model: properties and solutions  

E-print Network

In the current paper Fokker Planck model of random walks has been extended to non conservative cases characterized by explicit dependence of diffusion and energy on time. A given generalization allows describing of such non equilibrium processes as Levy flights in a classical differential form without use of fractal PDE. Besides it takes into account mixing properties that are obligatory for a certain class of chaotic systems such as Kolmogorov K system. It was shown that an abnormal transport is a consequence of the equilibrium distortion and not stationary diffusion. The particular case of fixed boundaries was considered. According to the received solutions it was shown that a system structure can resist a weak disturbance in the vicinity of the discrete regimes, defined by a system scale and its nonlinear properties. These regimes correspond to the exponential increase of quasi regular structure fluctuations. Only fast disruption of regime is possible for other states of the system. It leads to an immediate transition to the chaos.

Sergey Kamenshchikov

2014-01-20

298

Regionale Verteilung der Forschungseinrichtungen der Max-Planck-Gesellschaft *  

E-print Network

Regionale Verteilung der Forschungseinrichtungen der Max-Planck-Gesellschaft * Stand: Juni 2011 Baden-Württemberg - Max-Planck-Institut für Astronomie, Heidelberg - Max-Planck-Institut für Entwicklungsbiologie, Tübingen - Max-Planck-Institut für Festkörperforschung, Stuttgart - Friedrich

299

PERSPEKTIVEN Max-Planck-Institut in Florida erffnet  

E-print Network

PERSPEKTIVEN Max-Planck-Institut in Florida eröffnet Im Rahmen eines Festakts wurde das Max Planck Max-Planck-Gesellschaft in den USA. An der Eröffnungszeremonie nahmen unter anderen teil Jeff Atwater Max-Planck-Gesellschaft Peter Gruss hob die Vorteile des Standorts hervor: ,,In Jupiter finden unsere

Falge, Eva

300

Max Planck InstItute for Molecular GenetIcs  

E-print Network

Max Planck InstItute for Molecular GenetIcs research report 2006 Max Planck Institute for Molecular Genetics, Berlin #12;Imprint | Research Report 2006 Published by the Max Planck Institute for Molecular see our website: www.molgen.mpg.de #12;table of contents The Max Planck Institute for Molecular

Spang, Rainer

301

Improved alumina scale adhesion of electron beam physical vapor deposited Dy/Hf-doped ?-NiAl coatings  

NASA Astrophysics Data System (ADS)

The cyclic oxidation behavior of Dy/Hf-doped ?-NiAl coatings produced by electron beam physical vapor deposition (EB-PVD) was investigated. For the undoped NiAl coating, numerous voids were formed at the alumina scale/coating interface and large rumpling developed in the scale, leading to premature oxide spallation. The addition of Dy and Hf both improved scale adhesion and the alumina scale grown on the NiAl-Hf coating showed better adhesion than that on the NiAl-Dy coating, although the suppressing effect on interfacial void formation and the scale rumpling resistance were stronger in the NiAl-Dy coating. It is proposed that the segregation of Dy and Hf ions at the scale/coating interfaces not only prevent interfacial sulfur segregation but also may directly enhance interfacial adhesion by participating in bonding across the interfaces, and this strengthening effect is relatively stronger for Hf ionic segregation.

Li, Dongqing; Guo, Hongbo; Peng, Hui; Gong, Shengkai; Xu, Huibin

2013-10-01

302

UP Modelling System for large scale hydrology: deriving large-scale physically-based parameters for the Arkansas-Red River basin  

NASA Astrophysics Data System (ADS)

The UP modelling system has been applied to the 570,000 km2 Arkansas-Red River Basin (ARRB) as part of the UK NERC Terrestrial initiative in Global Environmental Research (TIGER). The model can be run as a stand-alone basin hydrology model or be linked to existing climate and weather forecasting models. It runs on a grid comprising 1923 UP elements, each 17km by 17km in area, and each containing five water storage compartments: one each for the snowpack, vegetation canopy, surface water, root zone and groundwater. All the main transfers and processes of the terrestrial phase of the hydrological cycle are represented, including river network routing of the runoff from the UP elements. The parameters of the ARRB model are physically-based, being derived either from fine-scale, sub-grid, data on the topography and physical properties of the soils, aquifers and vegetation of the basin, or from the results of fine-scale physically-based simulations. With the approach, the parameters account for the effects of sub-grid variations in moisture status and spatial distribution and are sensitive to changes in the fine-scale property data. This sensitivity is either absent or less directly represented in existing large-scale hydrology models, yet it plays a central role in studies of the impact of changes in climate and land-use. The ARRB model, as described here and in Kilsby et al. (1999), is a first attempt at large-scale physically-based hydrological modelling of the type outlined in the "blueprint" for the UP system (Ewen, 1997), and gives a clear, positive, indication of the nature and quality of what is currently practical with the approach.

Ewen, J.; Sloan, W. T.; Kilsby, C. G.; O'Connell, P. E.

303

Planck focal plane instruments: advanced modelization and combined analysis  

NASA Astrophysics Data System (ADS)

This thesis is the result of my work as research fellow at IASF-MI, Milan section of the Istituto di Astrofisica Spaziale e Fisica Cosmica, part of INAF, Istituto Nazionale di Astrofisica. This work started in January 2006 in the context of the PhD school program in Astrophysics held at the Physics Department of Universita' degli Studi di Milano under the supervision of Aniello Mennella. The main topic of my work is the software modelling of the Low Frequency Instrument (LFI) radiometers. The LFI is one of the two instruments on-board the European Space Agency Planck Mission for high precision measurements of the anisotropies of the Cosmic Microwave Background (CMB). I was also selected to participate at the International Doctorate in Antiparticles Physics, IDAPP. IDAPP is funded by the Italian Ministry of University and Research (MIUR) and coordinated by Giovanni Fiorentini (Universita' di Ferrara) with the objective of supporting the growing collaboration between the Astrophysics and Particles Physics communities. It is an international program in collaboration with the Paris PhD school, involving Paris VI, VII and XI Universities, leading to a double French-Italian doctoral degree title. My work was performed with the co-tutoring of Jean-Michel Lamarre, Instrument Scientist of the High Frequency Instrument (HFI), the bolometric instrument on-board Planck. Thanks to this collaboration I had the opportunity to work with the HFI team for four months at the Paris Observatory, so that the focus of my activity was broadened and included the study of cross-correlation between HFI and LFI data. Planck is the first CMB mission to have on-board the same satellite very different detection technologies, which is a key element for controlling systematic effects and improve measurements quality.

Zonca, Andrea; Mennella, Aniello

2012-08-01

304

MaxPlanckForschungberichtetberaktuelleForschungsarbeitenan den Max-Planck-Instituten und richtet sich an ein breites wissen-  

E-print Network

MaxPlanckForschungberichtetüberaktuelleForschungsarbeitenan den Max-Planck-Instituten und richtet englischer Sprache (MaxPlanckResearch)jeweilsmitvierAusgabenproJahr;dieAuflage dieser Ausgabe beträgt 85000 Exemplare (MaxPlanckResearch: 10000 Exemplare). Der Bezug ist kostenlos. Ein Nachdruck der Texte ist nur mit

305

MAX-PLANCK-INSTITUT FR AUSLNDISCHES UND INTERNATIONALES SOZIALRECHT MAX PLANCK INSTITUTE FOR FOREIGN AND INTERNATIONAL SOCIAL LAW  

E-print Network

MAX-PLANCK-INSTITUT F�R AUSL�NDISCHES UND INTERNATIONALES SOZIALRECHT MAX PLANCK INSTITUTE FOR FOREIGN AND INTERNATIONAL SOCIAL LAW Henning Frankenberger FaMI-Ausbildung in der Max-Planck-Gesellschaft 21. Oktober 2008 Ausbildertreffen im Max-Planck-Institut für Mathematik in den Naturwissenschaften

306

Max-Planck-Institut fr Mathematik Das Max-Planck-Institut fr Mathematik in Bonn sucht befristet vom  

E-print Network

Max-Planck-Institut für Mathematik Das Max-Planck-Institut für Mathematik in Bonn sucht befristet nach den MPG-Richtlinien zur Förderung des wissenschaftlichen Nachwuchses. Die Max-Planck ausdrücklich aufgefordert, sich zu bewerben. Die Max-Planck-Gesellschaft ist bemüht, mehr schwerbehinderte

Bovier, Anton

307

Hydrogen Sorption Cryocoolers for the Planck Mission  

NASA Technical Reports Server (NTRS)

Two continuous opertation 18K/20K sorption coolers are being developed by the Jet Propulsion Laboratory (JPL) as a NASA contribution to the European Space Agency (ESA) Planck mission that is currently planned for a 2007 launch.

Wade, L.; Bhandari, P.; Bowman, R.; Paine, C.; Morgante, G.; Lindensmith, C.; Crumb, D.; Prina, M.; Sugimura, R.; Rapp, D.

1999-01-01

308

Max-Planck-Institut fur Mathematik  

E-print Network

efficient way. We test the algorithm on a number of high­dimensional problems, including the non.S. was with the Institute of Numerical Mathematics RAS, Moscow. Max-Planck-Institut für Mathematik in den

309

Max-Planck-Institut fur Mathematik  

E-print Network

Universal Approximation in Embodied Systems by Guido Mont´ufar, Nihat Ay, and Keyan Ghazi-Zahedi Preprint no Institute nay@mis.mpg.de Keyan Ghazi-Zahedi Max Planck Institute for Mathematics in the Sciences zahedi

310

Max-Planck-Institut fur Mathematik  

E-print Network

Max-Planck-Institut f¨ur Mathematik in den Naturwissenschaften Leipzig Natural statistics. In such a way, they reproduced filter shapes of the cat's cochlear nerve. These results were recently extended

311

Max-Planck-Institut fur Mathematik  

E-print Network

Max-Planck-Institut f¨ur Mathematik in den Naturwissenschaften Leipzig Genuine Multipartite such as in Schr¨odinger cat para- dox and quantum no-cloning theorem [3]. The existence of superposed quantum

312

The physics of non-volcanic tremor: insights from laboratory-scale earthquakes  

NASA Astrophysics Data System (ADS)

Due to his extensive early experience in field structural geology, Luigi Burlini's experimental research was always aimed at using laboratory techniques and simulations to improve our understanding of the physics of natural rock deformation. Here we present an example of collaborative work from the later part of his scientific career in which the main goal was unravelling the physics of non-volcanic tremor in subduction zones. This was achieved by deforming typical source rocks (serpentinites) under conditions (300 MPa and 600oC) that approach those expected in nature (up to 1 GPa and 500oC). The main technical challenge was to capture deformation-induced microseismicity (in the form of acoustic emissions) released under such extreme conditions by means of in-situ transducers designed to work at only modest temperatures (up to 200oC). The main scientific challenges were (1) to link the acoustic emission output to specific physical processes, such as cracking, fluid flow or fluid-crack interactions, by means of waveform and microstructural analysis; and (2) to extrapolate the laboratory acoustic emission signals (kHz to MHz frequency) associated with mm to cm-scale processes, to natural seismicity (0.1-1 Hz frequency) associated with km-scale rock volumes by means of frequency scaling (Aki and Richards, 1980). Episodic tremor and slip (ETS) has been correlated with rupture phenomena in subducting oceanic lithosphere at 30 to 45 km depth, where high Vp/Vs ratios, suggestive of high-fluid pressure, have also been observed. ETS, by accommodating slip in the down-dip portion of the subduction zone, may trigger megathrust earthquakes up-dip in the locked section. In our experiments we measured the output of acoustic emissions during heating of serpentinite samples to beyond their equilibrium dehydration temperature. Experiments were performed on cores samples 15 mm in diameter by 30 mm long under hydrostatic stresses of 200 or 300 MPa in a Paterson high-pressure/high-temperature, internally-heated gas apparatus. Acoustic emission (AE) output was recorded via two piezoelectric transducers embedded within the sample end caps and a third remote transducer located outside the pressure vessel. Drained and undrained experimental conditions were achieved by placing either permeable or impermeable ceramic discs at the samples ends. At 200 MPa, serpentinite dehydrates to talc + olivine + water around 5000C. Associated microseismicity, in the form of high-energy AE events, was confined to a narrow temperature interval just above the equilibrium dehydration temperature. This temperature overstep is expected, and is due to the heating rate in our experiments being much higher than for equilibrium studies. The high-energy AE events were characterised by very long durations, which is typical of a cascade of multiple, overlapping, shorter events that cannot be individually discriminated. Under drained conditions, the serpentinite samples showed a clear volume reduction following dehydration and subsequent compaction. By contrast, under undrained conditions, the samples maintained the same dimensions, but lost weight, implying that no compaction occurred during dehydration. Our results therefore demonstrate conclusively that seismicity can be generated by dehydration reactions even in the absence of a deviatoric stress. This observation is consistent with recent finding that tremor activity in nature has a strong tidal periodicity, indicating that tidal forces modulate slip velocity and suggesting near lithostatic fluid pressures at hypocentral depths. Furthermore, we suggest that the cascades of events that follow the onset of dehydration may well be related to the low-amplitude long-duration seismic events (seismic tremor) that characterize the seismic activity in subduction zones and that has been tentatively interpreted as being caused by dehydration of the subducting slab. Our laboratory observations support this hypothesis, since our low-amplitude, long-duration events were correlated with outflow of water from the samples through the p

di Toro, G.; Meredith, P.

2012-04-01

313

Planck 2013 results. XIV. Zodiacal emission  

NASA Astrophysics Data System (ADS)

The Planck satellite provides a set of all-sky maps at nine frequencies from 30 GHz to 857 GHz. Planets, minor bodies, and diffuse interplanetary dust emission (IPD) are all observed. The IPD can be separated from Galactic and other emissions because Planck views a given point on the celestial sphere multiple times, through different columns of IPD. We use the Planck data to investigate the behaviour of zodiacal emission over the whole sky at sub-millimetre and millimetre wavelengths. We fit the Planck data to find the emissivities of the various components of the COBE zodiacal model - a diffuse cloud, three asteroidal dust bands, a circumsolar ring, and an Earth-trailing feature. The emissivity of the diffuse cloud decreases with increasing wavelength, as expected from earlier analyses. The emissivities of the dust bands, however, decrease less rapidly, indicating that the properties of the grains in the bands are different from those in the diffuse cloud. We fit the small amount of Galactic emission seen through the telescope's far sidelobes, and place limits on possible contamination of the cosmic microwave background (CMB) results from both zodiacal and far-sidelobe emission. When necessary, the results are used in the Planck pipeline to make maps with zodiacal emission and far sidelobes removed. We show that the zodiacal correction to the CMB maps is small compared to the Planck CMB temperature power spectrum and give a list of flux densities for small solar system bodies.

Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colley, J.-M.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; O'Sullivan, C.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polegre, A. M.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Smoot, G. F.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

2014-11-01

314

Surprisingly Long Length Scales for Semiclassical Loop Quantum Gravity and Their Physical Consequences  

E-print Network

When gauge field theory coherent states for loop quantum gravity (LQG) were introduced, an optimized semiclassical proper length emerged, corresponding to the edge length $\\epsilon$ of a graph embedded in a given classical geometry. Here $\\epsilon$ is explored in more detail. $\\epsilon$ at the Earth's surface is found to lie between 100 $\\mu $m and 0.7 m. The implied quantum fluctuating space-time strain amplitude and noise spectrum are estimated to be $4\\; 1/2$ orders smaller than the current experimental detectability. However, such a macroscopic $\\epsilon $ makes regularization of the semiclassical electromagnetic Hamiltonian problematic for photon wavelengths shorter than $\\epsilon$. The origin of a large $\\epsilon$ is traced to an edge-wise tensor product of independent edge-based coherent states for the whole graph state. This provides physical grounds for recently proposed collective coherent states, where $\\epsilon$ acquires the interpretation of a sliding scale. A new proper distance $\\xi$ emerges as the characteristic length of semiclassical LQG. $\\xi$ will affect the LQG photon vacuum dispersion relations, and is also accessible to current measurements of space-time strain. Matter interactions may also affect $\\xi$.

Paul G. N. de Vegvar

2014-02-19

315

Physical Review E 61, 81 (2000) 81 Scaling of waves in the Bak-Tang-Wiesenfeld sandpile model  

E-print Network

Physical Review E 61, 81 (2000) 81 Scaling of waves in the Bak-Tang-Wiesenfeld sandpile model D. V, 141980 Russia (June 30, 1999) We study probability distributions of waves of topplings in the Bak-Tang The sandpile model was introduced by Bak, Tang, and Wiesenfeld (BTW) [1] as a simple example of a slowly driven

Lübeck, Sven

316

Impact of Event Scale Prediction of DSM-IV PTSD and Physical Symptoms in Gulf War Veterans  

Microsoft Academic Search

This study examined the effectiveness of the Impact of Event Scale (IES; Horowitz, Wilner, & Alvarez, 1979) variables in detecting posttraumatic stress and physical symptoms in relevant groups of Gulf War veterans. A large sample of Gulf War veterans were administered the the IES, a semi-structured interview (PSS-I; Foa, Riggs, Dancu, & Rothbaum, 1993) on DSM-IV (American Psychiatric Association, 1994)

Patrick Sloan; Linda Arsenault; Mark J. Hilsenroth

2005-01-01

317

Progress of Theoretical Physics Supplement No. 161, 2006 385 A Large Scale Dynamical System Immune Network Model  

E-print Network

Progress of Theoretical Physics Supplement No. 161, 2006 385 A Large Scale Dynamical System Immune that in immune systems there generally exist several kinds of immune cells which can recognize any particular with only a small number of randomly selected other components. One such system is the immune network

Coolen, ACC "Ton"

318

Accounting for spatially variable resolution in electrical resistivity tomography through field-scale rock-physics relations  

E-print Network

Accounting for spatially variable resolution in electrical resistivity tomography through field of the voltages measured in an electrical resistivity tomography ERT survey produces maps of electrical-scale rock-physics relations Kamini Singha1 and Stephen Moysey2 ABSTRACT A number of issues impact electrical

Singha, Kamini

319

FPPAC: a two-dimensional multispecies nonlinear Fokker-Planck package  

SciTech Connect

The complete nonlinear multispecies Fokker-Planck collision operator for a plasma in two-dimensional velocity space is solved. The operator is expressed in terms of spherical coordinates (v = speed, theta = angle between velocity and magnetic field directions, phi = azimuthal angle) under the assumption of azimuthal symmetry. Provision is made for additional physics contributions.

McCoy, M.G.; Mirin, A.A.; Killeen, J.

1981-03-01

320

Watt balance experiments for the determination of the Planck constant and the redefinition of the kilogram  

NASA Astrophysics Data System (ADS)

Since 1889 the international prototype of the kilogram has served as the definition of the unit of mass in the International System of Units (SI). It is the last material artefact to define a base unit of the SI, and it influences several other base units. This situation is no longer acceptable in a time of ever increasing measurement precision. It is therefore planned to redefine the unit of mass by fixing the numerical value of the Planck constant. At the same time three other base units, the ampere, the kelvin and the mole, will be redefined. As a first step, the kilogram redefinition requires a highly accurate determination of the Planck constant in the present SI system, with a relative uncertainty of the order of 1 part in 108. The most promising experiment for this purpose, and for the future realization of the kilogram, is the watt balance. It compares mechanical and electrical power and makes use of two macroscopic quantum effects, thus creating a relationship between a macroscopic mass and the Planck constant. In this paper the background for the choice of the Planck constant for the kilogram redefinition is discussed and the role of the Planck constant in physics is briefly reviewed. The operating principle of watt balance experiments is explained and the existing experiments are reviewed. An overview is given of all presently available experimental determinations of the Planck constant, and it is shown that further investigation is needed before the redefinition of the kilogram can take place. This article is based on a lecture given at the International School of Physics ‘Enrico Fermi’, Course CLXXXV: Metrology and Physical Constants, held in Varenna on 17-27 July 2012. It will also be published in the proceedings of the school, edited by E Bava, M Kühne and A M Rossi (IOS Press, Amsterdam and SIF, Bologna).

Stock, M.

2013-02-01

321

Scaling up of physical activity interventions in Brazil: how partnerships and research evidence contributed to policy action  

PubMed Central

The global health burden due to physical inactivity is enormous and growing. There is a need to consider new ways of generating evidence and to identify the role of government in promoting physical activity at the population level. In this paper, we summarize key findings from a large-scale cross-national collaboration to understand physical activity promotion in Brazil. We describe the main aspects of the partnership of Project GUIA (Guide for Useful Interventions for Activity in Brazil and Latin America) that sustained the collaborative effort for eight years and describe how the evidence gathered from the collaboration triggered political action in Brazil to scale up a physical activity intervention at the national level. Project GUIA is a cross-national multidisciplinary research partnership designed to understand and evaluate current efforts for physical activity promotion at the community level in Latin America. This example of scaling up is unprecedented for promoting health in the region and is an example that must be followed and evaluated. PMID:24323944

Hoehner, Christine M.; Hallal, Pedro C.; Reis, Rodrigo S.; Simoes, Eduardo J.; Malta, Deborah C.; Pratt, Michael; Brownson, Ross C.

2013-01-01

322

Transport time scales as physical descriptors to characterize heavily modified water bodies near ports in coastal zones.  

PubMed

Physical descriptors that characterize Heavily Modified Water Bodies (HMWB) based on the presence of ports should assess the degree of water exchange. The main goal of this study is to determine the optimal procedure for estimating Transport Time Scales (TTS) as physical descriptors in order to characterize and manage HMWB near ports in coastal zones. Flushing Time (FT) and Residence Time (RT), using different approaches-analytical and exponential function methods-and different hydrodynamic scenarios, were computed using numerical models. El Musel (Port of Gijon) was selected to test different transport time scales (FT and RT), methods (analytical and exponential function methods) and hydrodynamic conditions (wind and tidal forcings). FT, estimated by the exponential function method while taking into account a real tidal wave and a mean annual regime of wind as hydrodynamic forcing, was determined to be the optimal physical descriptor to characterize HMWB. PMID:24568939

Gómez, Aina G; Bárcena, Javier F; Juanes, José A; Ondiviela, Bárbara; Sámano, María L

2014-04-01

323

Heterogeneity, permeability patterns, and permeability upscaling: Physical characterization of a block of Massillon sandstone exhibiting nested scales of heterogeneity  

SciTech Connect

Over 75,000 permeability measurements were collected from a meter-scale block of Massillon sandstone, characterized by conspicuous cross bedding that forms two distinct nested-scales of heterogeneity. With the aid of a gas minipermeameter, spatially exhaustive fields of permeability data were acquired at each of five different sample supports (i.e. sample volumes) from each block face. These data provide a unique opportunity to physically investigate the relationship between the multi-scale cross-stratified attributes of the sandstone and the corresponding statistical characteristics of the permeability. These data also provide quantitative physical information concerning the permeability upscaling of a complex heterogeneous medium. Here, a portion of the data taken from a single block face cut normal to stratification is analyzed. Results indicate a strong relationship between the calculated summary statistics and the cross-stratified structural features visible evident in the sandstone sample. Specifically, the permeability fields and semivariograms are characterized by two nested scales of heterogeneity, including a large-scale structure defined by the cross-stratified sets (delineated by distinct bounding surfaces) and a small-scale structure defined by the low-angle cross-stratification within each set. The permeability data also provide clear evidence of upscaling. That is, each calculated summary statistic exhibits distinct and consistent trends with increasing sample support. Among these trends are an increasing mean, decreasing variance, and an increasing semivariogram range. Results also clearly indicate that the different scales of heterogeneity upscale differently, with the small-scale structure being preferentially filtered from the data while the large-scale structure is preserved. Finally, the statistical and upscaling characteristics of individual cross-stratified sets were found to be very similar owing to their shared depositional environment; however, some differences were noted that are likely the result of minor variations in the sediment load and/or flow conditions between depositional events.

TIDWELL,VINCENT C.; WILSON,JOHN L.

2000-04-20

324

Growth index after the Planck results  

NASA Astrophysics Data System (ADS)

The growth index ?L was proposed to investigate the possible deviation from the standard ?CDM model and Einstein’s gravity theory in a dynamical perspective. Recently, thanks to the measurement of the cosmic growth rate via the redshift-space distortion, one can understand the evolution of the density contrast through f?8(z), where f(z)=dln??/dln?a is the growth rate of matter and ?8(z) is the rms amplitude of the density contrast ? at the comoving 8h-1Mpc scale. In this paper, we use the redshift-space distortion data points to study the growth index on the bases of Einstein’s gravity theory and a modified gravity theory under the assumption of f=?m(a)?L. The cosmic background evolution is fixed by the cosmic observations from the type Ia supernovae SNLS3 data, cosmic microwave background radiation data from Planck, and baryon acoustic oscillations. Via the Markov Chain Monte Carlo method, we find the following ?L values for Einstein’s gravity with a cosmological constant (w=const) dark energy and a modified gravity theory in the 1, 2, and 3? regions, respectively: 0.675-0.0662-0.120-0.155+0.0611+0.129+0.178, 0.745-0.0819-0.146-0.190+0.0755+0.157+0.205, and 0.555-0.0167-0.0373-0.0516+0.0193+0.0335+0.0436. In Einstein’s gravity theory, the values of the growth index ?L show an almost 2? deviation from the theoretical prediction of 6/11 for the ?CDM model. However, in the modified gravity framework, a deviation from Einstein’s relativity is not detected in the 1? region. This implies that the currently available cosmic observations do not predict an alternative modified gravity theory beyond the ?CDM model under Einstein’s gravity, but that the simple assumption of f=?m?L should be improved.

Xu, Lixin

2013-10-01

325

PRISM: Recovery of the primordial spectrum from Planck data  

E-print Network

The primordial power spectrum describes the initial perturbations that seeded the large-scale structure we observe today. It provides an indirect probe of inflation or other structure-formation mechanisms. In this letter, using our recently published PRISM algorithm, we recover the primordial power spectrum from Planck PR1 dataset. PRISM is a sparsity-based inversion method, which aims at recovering features in the primordial power spectrum from the empirical power spectrum of the Cosmic Microwave Background (CMB). The ill-posed inverse problem involved is regularised using a sparsity prior on features in the primordial power spectrum in a wavelet dictionary. Although this non-parametric method does not assume a strong prior on the shape of the primordial power spectrum, it is able to recover both its global shape and localised features. As a results, this approach presents a robust way of detecting deviations from the currently favoured scale-invariant spectrum. We apply PRISM to 100 Planck simulated data to...

Lanusse, F; Starck, J -L; Sureau, F; Bobin, J

2014-01-01

326

Dust in High-Velocity Clouds relevance for Planck  

E-print Network

The recent detection of dust emission in Complex C, the largest High-Velocity Cloud (HVC) on the sky, opens a very interesting perspective for Planck. The HVC dust temperature determined using IRAS and Spitzer observations is low (T~10.7 K) in accordance with its great distance from the Galaxy (> 5 kpc). Peak column density in 30 arcmin beam is NH ~10^20 cm-2 which is typical of HVCs and similar to cirrus column density in diffuse regions. On the other hand HVCs appear to be very clumpy at smaller angular scales; several observations at the arcminute scale resolution show significant structure and higher brightness contrasts than in typical cirrus emission. In this contribution we show that, even with their moderate column density, the cold temperature, high emissivity and high column density contrast of HVCs should lead to significant and detectable emission in the Planck-HFI frequency range. In order to separate the HVC emission from the Galactic cirrus emission, the use of 21 cm observations will be mandat...

Miville-Deschênes, M A; Martin, P G; Lockman, F J; Reach, W T; Noriega-Crespo, A

2006-01-01

327

Planck 2015 results. XIX. Constraints on primordial magnetic fields  

E-print Network

We predict and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB spectra; the effect on CMB polarization induced by Faraday rotation; magnetically-induced non-Gaussianities; and the magnetically-induced breaking of statistical isotropy. Overall, Planck data constrain the amplitude of PMFs to less than a few nanogauss. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are $B_{1\\,\\mathrm{Mpc}}< 4.4$ nG (where $B_{1\\,\\mathrm{Mpc}}$ is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity, and $B_{1\\,\\mathrm{Mpc}}< 5.6$ nG when we consider a maximally helical field. For nearly scale-invariant PMFs we obtain $B_{1\\,\\mathrm{Mpc}}<2.1$ nG and $B_{1\\,\\mathrm{Mpc}}<0.7$ nG if the impact of PMFs on the ionization history of the Universe is included in the analysis...

Ade, P A R; Arnaud, M; Arroja, F; Ashdown, M; Aumont, J; Baccigalupi, C; Ballardini, M; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Chamballu, A; Chiang, H C; Chluba, J; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Désert, F -X; Diego, J M; Dolag, K; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Fergusson, J; Finelli, F; Florido, E; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Hanson, D; Harrison, D L; Helou, G; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kim, J; Kisner, T S; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leahy, J P; Leonardi, R; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Molinari, D; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Oppermann, N; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Ruiz-Granados, B; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Shiraishi, M; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Yvon, D; Zacchei, A; Zonca, A

2015-01-01

328

Higgs boson mass and new physics  

E-print Network

We discuss the lower Higgs boson mass bounds which come from the absolute stability of the Standard Model (SM) vacuum and from the Higgs inflation, as well as the prediction of the Higgs boson mass coming from asymptotic safety of the SM. We account for the 3-loop renormalization group evolution of the couplings of the Standard Model and for a part of two-loop corrections that involve the QCD coupling alpha_s to initial conditions for their running. This is one step above the current state of the art procedure ("one-loop matching--two-loop running"). This results in reduction of the theoretical uncertainties in the Higgs boson mass bounds and predictions, associated with the Standard Model physics, to 1-2 GeV. We find that with the account of existing experimental uncertainties in the mass of the top quark and alpha_s (taken at 2sigma level) the bound reads M_H>=M_min (equality corresponds to the asymptotic safety prediction), where M_min=129+-6 GeV. We argue that the discovery of the SM Higgs boson in this range would be in agreement with the hypothesis of the absence of new energy scales between the Fermi and Planck scales, whereas the coincidence of M_H with M_min would suggest that the electroweak scale is determined by Planck physics. In order to clarify the relation between the Fermi and Planck scale a construction of an electron-positron or muon collider with a center of mass energy ~200+200 GeV (Higgs and t-quark factory) would be needed.

Fedor Bezrukov; Mikhail Yu. Kalmykov; Bernd A. Kniehl; Mikhail Shaposhnikov

2012-05-13

329

Evolution of large-scale plasma structures in comets: Kinematics and physics  

NASA Technical Reports Server (NTRS)

Cometary and solar wind data from December 1985 through April 1986 are presented for the purpose of determining the solar wind conditions associated with comet plasma tail disconnection events (DE's). The cometary data are from The International Halley Watch Atlas of Large-Scale Phenomena (Brandt, Niedner, and Rahe, 1992). In addition, we present the kinematic analysis of 4 DE's, those of Dec. 13.5 and 31.2, 1985, and Feb. 21.7 and 28.7, 1986. The circumstances of these DE's clearly illustrate the need to analyze DE's in groups. In situ solar wind measurements from IMP-8, ICE, and PVO were used to construct the variation of solar wind speed, density, and dynamic pressure during this interval. Data from these same spacecraft plus Vega-1 were used to determine the time of 48 current sheet crossings. These data were fitted to heliospheric current sheet curves extrapolated from the corona into the heliosphere in order to determine the best-fit source surface radius for each Carrington rotation. Comparison of the solar wind conditions and 16 DE's in Halley's comet (the four DE's discussed in this paper and 12 DE's in the literature) leaves little doubt that DE's are associated primarily with crossings of the heliospheric current sheet and apparently not with any other property of the solar wind. If we assume that there is a single or primary physical mechanism and that Halley's DE's are representative, efforts at simulation should concentrate on conditions at current sheet crossings. The mechanisms consistent with this result are sunward magnetic reconnection and tailward magnetic reconnection, if tailward reconnection can be triggered by the sector boundary crossing.

Brandt, John C.

1993-01-01

330

Application of two physically-based sediment yield models at plot and field scales  

Microsoft Academic Search

Two different sediment yield models (SHE and MULTSED) are used to assess the degree to which model parameters calibrated at a small spatial scale remain representative at a large scale. The test data are taken from the Reynolds Creek rangeland research basin near Boise, Idaho, USA. At the smallest scale the water and sediment yield components of both models were

J. M. WICKS; J. C. BATHURST; C. W. JOHNSON

1988-01-01

331

Progress on accurate measurement of the Planck constant: Watt balance and counting atoms  

NASA Astrophysics Data System (ADS)

The Planck constant h is one of the most significant constants in quantum physics. Recently, the precision measurement of the value of h has been a hot issue due to its important role for the establishment of both a new SI and a revised fundamental physical constant system. Up to date, two approaches, the watt balance and counting atoms, have been employed to determine the Planck constant at a level of several parts in 108. In this paper, the principle and progress on precision measurement of the Planck constant using watt balance and counting atoms at national metrology institutes are reviewed. Further improvement in determining the Planck constant and possible developments of a revised physical constant system in future are discussed. Project supported by the National Natural Science Foundation of China (Grant No. 51477160), the National Department Public Benefit Research Foundation of China (Grant No. 201010010), and the National Key Technology R&D Program of China (Grant No. 2006BAF06B01)

Li, Shi-Song; Zhang, Zhong-Hua; Zhao, Wei; Li, Zheng-Kun; Huang, Song-Ling

2015-01-01

332

Modeling of laser plasma interaction on hydrodynamic scales: Physics development and comparison with experiments  

NASA Astrophysics Data System (ADS)

The forthcoming laser installations related to inertial confinement fusion, Laser Mégajoule (LMJ) (France) and National Ignition Facility (NIF) (USA), require multidimensional numerical simulation tools for interpreting current experimental data and to perform predictive modeling for future experiments. Simulations of macroscopic plasma volumes of the order of 1 mm3 and laser exposure times of the order of hundreds of picoseconds are necessary. We present recent developments in the PARAX code towards this goal. The laser field is treated in a standard paraxial approximation in three dimensions. The plasma response is described by single-fluid, two-temperature, fully nonlinear hydrodynamical equations in the plane transverse to the laser propagation axis. The code also accounts for the dominant nonlocal transport terms in spectral form originating from a linearized solution to the Fokker Planck equation. The simulations of interest are hohlraum plasmas in the case of indirect drive or the plasma corona for direct drive. Recent experimental results on plasma-induced smoothing of RPP laser beams are used to validate the code.

Weber, S.; Riazuelo, G.; Michel, P.; Loubère, R.; Walraet, F.; Tikhonchuk, V. T.; Malka, V.; Ovadia, J.; Bonnaud, G.

2004-06-01

333

Measurement properties of physical function scales validated for use in patients with rheumatoid arthritis: A systematic review of the literature  

PubMed Central

Background The aim of this study was to systematically review the content validity and measurement properties of all physical function (PF) scales which are currently validated for use with patients with rheumatoid arthritis (RA). Methods Systematic literature searches were performed in the Scopus and PubMed databases to identify articles on the development or psychometric evaluation of PF scales for patients with RA. The content validity of included scales was evaluated by linking their items to the International Classification of Functioning Disability and Health (ICF). Furthermore, available evidence of the reliability, validity, responsiveness, and interpretability of the included scales was rated according to published quality criteria. Results The search identified 26 questionnaires with PF scales. Ten questionnaires were rated to have adequate content validity. Construct validity, internal consistency, test-retest reliability and responsiveness was rated favourably for respectively 15, 11, 5, and 6 of the investigated scales. Information about the absolute measurement error and minimal important change scores were rarely reported. Conclusion Based on this literature review, the disease-specificHAQ and the generic SF-36 can currently be most confidently recommended to measure PF in RA for most research purposes. The HAQ, however, was frequently associated with considerable ceiling effects while the SF-36 has limited content coverage. Alternative scales that might be better suited for specific research purposes are identified along with future directions for research. PMID:22059801

2011-01-01

334

Planck 2013 results. IX. HFI spectral response  

E-print Network

The Planck HFI spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests is to measure the relative spectral response (including the level of out-of-band signal rejection) of all HFI detectors to a known source of electromagnetic radiation individually. This was determined by measuring the output of all detection channels for radiation propagated through a continuously scanned polarizing Fourier transform spectrometer. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. The spectral response of the HFI is used in Planck component separation and data analysis; this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have als...

Ade, P A R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, L -Y; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Comis, B; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Giard, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leahy, J P; Leonardi, R; Leroy, C; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; McGehee, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; North, C; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Santos, D; Savini, G; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Yvon, D; Zacchei, A; Zonca, A

2014-01-01

335

Scale  

ERIC Educational Resources Information Center

The common approach to scaling, according to Christopher Dede, a professor of learning technologies at the Harvard Graduate School of Education, is to jump in and say, "Let's go out and find more money, recruit more participants, hire more people. Let's just keep doing the same thing, bigger and bigger." That, he observes, "tends to fail, and fail…

Schaffhauser, Dian

2009-01-01

336

Current dependence of spin torque switching rate based on Fokker-Planck approach  

SciTech Connect

The spin torque switching rate of an in-plane magnetized system in the presence of an applied field is derived by solving the Fokker-Planck equation. It is found that three scaling currents are necessary to describe the current dependence of the switching rate in the low-current limit. The dependences of these scaling currents on the applied field strength are also studied.

Taniguchi, Tomohiro, E-mail: tomohiro-taniguchi@aist.go.jp; Imamura, Hiroshi [National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center, Tsukuba 305-8568 (Japan)

2014-05-07

337

Max Planck Institute of Economics Evolutionary Economics Group  

E-print Network

Max Planck Institute of Economics Evolutionary Economics Group Kahlaische Str. 10 07745 Jena Classification B41, B52, C63 *Corresponding author: Max Planck Institute of Economics, Jena (Germany), email

Tesfatsion, Leigh

338

Quantum Signature of Cosmological Large Scale Structures  

E-print Network

We demonstrate that to all large scale cosmological structures where gravitation is the only overall relevant interaction assembling the system (e.g. galaxies), there is associated a characteristic unit of action per particle whose order of magnitude coincides with the Planck action constant $h$. This result extends the class of physical systems for which quantum coherence can act on macroscopic scales (as e.g. in superconductivity) and agrees with the absence of screening mechanisms for the gravitational forces, as predicted by some renormalizable quantum field theories of gravity. It also seems to support those lines of thought invoking that large scale structures in the Universe should be connected to quantum primordial perturbations as requested by inflation, that the Newton constant should vary with time and distance and, finally, that gravity should be considered as an effective interaction induced by quantization.

Salvatore Capozziello; Salvatore De Martino; Silvio De Siena; Fabrizio Illuminati

1998-09-17

339

Influence of basin-scale physical variables on life history characteristics of cutthroat trout in Yellowstone Lake  

USGS Publications Warehouse

Individual spawning populations of Yellowstone cutthroat trout Oncorhynchus clarki bouvieri differ in life history characteristics associated with broad spatial and temporal environmental patterns, but relationships between specific life history characteristics of Yellowstone cutthroat trout and physical aspects of the environment are poorly understood. We examined basin-scale physical characteristics of tributary drainages and subbasins of Yellowstone Lake in relation to timing (peak and duration) of lacustrinea??adfluvial Yellowstone cutthroat trout spawning migrations and mean length of cutthroat trout spawners in 27 tributaries to the lake. Stream drainages varied along gradients that can be described by mean aspect, mean elevation, and drainage and stream size. Approximately two-thirds of the variation in the timing of the peak of the annual cutthroat trout spawning migrations and average length of spawners was explained by third-order polynomial regressions with mean aspect and basin area as predictor variables. Because most cutthroat trout ascend tributaries soon after peak runoff, it appears that the influence of basin-scale physical variables on the date of the migration peak is manifested by the pattern of stream discharge. Spawner length does not seem to be a direct function of stream size in the Yellowstone Lake watershed, and aspect of the tributary basin seems to have a greater influence on the body length of cutthroat trout spawners than does stream size. Mechanisms that explain how the interaction of basin-scale physical variables influence spawner length were not investigated directly; however, we found evidence of distinct aggregations of cutthroat trout that are related to physical and limnological characteristics of the lake subbasins, and there is some indication that lake residence may be related to tributary location.

Gresswell, Robert E.; Liss, W.J.; Larson, Gary L.; Bartlein, P.J.

1997-01-01

340

PHYSICAL REVIEW E 83, 021402 (2011) Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering  

E-print Network

PHYSICAL REVIEW E 83, 021402 (2011) Particle-scale structure in frozen colloidal suspensions from, New Haven, Connecticut 06520, USA S. G. J. Mochrie Department of Physics, Yale University, New Haven, New Haven, Connecticut 06520, USA; Department of Physics, Yale University, New Haven, Connecticut

Wettlaufer, John S.

341

International Max Planck Research School for Ultrafast Imaging & Structural Dynamics  

E-print Network

International Max Planck Research School for Ultrafast Imaging & Structural Dynamics The International Max Planck Research School for Ultrafast Imaging and Structural Dynamics (IMPRS-UFAST) is a joint enterprise of Deutsches Elektronen Synchrotron (DESY), the Max Planck Research Department for Structural

342

MAX-PLANCK-INSTITUT Harmonie Analysis, Real Approximation,  

E-print Network

MAX-PLANCK-INSTITUT ·· FUR INFORMATIK Harmonie Analysis, Real Approximation, and the Communieation Complexity of Boolean Funetions Technical Report No. MPII-1993-161 Vince Grolmusz Max Planck Institute for Complexity of Boolean Functions Technical Report No. MPll-1993-161 Vince Grolmusz Max Planck Institute

343

Seite 1 von 3 Max-Planck-Forschungspreis  

E-print Network

Seite 1 von 3 Max-Planck-Forschungspreis Hinweise für eine vollständige Nominierung Erforderliche Sie dabei besonders auf folgende Punkte: Die Alexander von Humboldt-Stiftung und die Max-Planck-Gesellschaft verleihen gemeinsam den vom Bundesministerium für Bildung und Forschung gestifteten Max-Planck

344

QUANTUM MECHANICS When German physicist Max Planck became the  

E-print Network

QUANTUM MECHANICS When German physicist Max Planck became the father of quantum theory in 1900, he and recentlyofGermany'sMaxPlanckInstitute.Ateam of computational scientists led by Dr. Roscilde is using the Oak under your arm. Planck had a much more modest and immediate need

Haas, Stephan

345

Research Report 2009 Max Planck Institute for Molecular Genetics, Berlin  

E-print Network

Research Report 2009 Max Planck Institute for Molecular Genetics, Berlin #12;Imprint | Research Report 2009 Published by the Max Planck Institute for Molecular Genetics (MPIMG), Berlin, Germany: MPIMG Production: Thomas Didier, Meta Data Contact: Max Planck Institute for Molecular Genetics Ihnestr

Spang, Rainer

346

PICT 2014 CATEGORIA III -COOPERACIN INTERNACIONAL MAX PLANCK Caractersticas Generales  

E-print Network

PICT 2014 CATEGORIA III - COOPERACI�N INTERNACIONAL MAX PLANCK Características Generales Los proyectos PICT 2014 Max Planck se encuadran en el marco general del Programa de Cooperación entre el MINCYT y la Sociedad Max Planck, cuyo fundamento es apoyar proyectos de investigación científica y

Santos, Juan

347

plasticity sculpts Max Planck Institute of Human development and  

E-print Network

Frequency plasticity sculpts the Max Planck Institute of Human development and The relation between and sculpts spontaneous correlation the Human Cortex Dipanjan Roy Max Planck Institute of Human development (Tea/Coffee at 11:15 AM) , TCIS and correlation in Max Planck Institute of Human development

Shyamasundar, R.K.

348

MAX-PLANCK-INSTITUT Circuits and Multi-Party Protocols  

E-print Network

MAX-PLANCK-INSTITUT ·· FUR INFORMATIK '\\ Circuits and Multi-Party Protocols - technical report No. 104- Vmce Grolmusz Max.Planck Institute for Computer Science and Eötvös University January 30, 1992 o - technical report No. 104- Vince Grolmusz Max Planck Institute for Computer Science and Eötvös University We

349

MAX-PLANCK-INSTITUT On Multi-Party Communication Complexity  

E-print Network

MAX-PLANCK-INSTITUT ·· FUR INFORMATIK On Multi-Party Communication Complexity of Random Functions Technical Report No. MPII-1993.....162 Vince Grolmusz Max Planck Institute for Computer Science and Eötvös-162 Vince Grolmusz Max Planck Institute {or Computer Science and Eötvös University December 1, 1993 #12;On

350

Max Planck Society for the Advancement of Science  

E-print Network

Max Planck Society for the Advancement of Science Pressand Abrell (-1416) ISSN 0170-4656 MAX PLANCK SOCIETY Press Release B / 2009 (31) Regions of the brain can of nerves in the brain can fundamentally reorganize as required Scientists at the Max Planck Institute

351

Doktorandenstelle in Ultraschneller Nanophysik Max-Planck-Institut fr Quantenoptik  

E-print Network

Doktorandenstelle in Ultraschneller Nanophysik am Max-Planck-Institut für Quantenoptik Eine Krausz am Max-Planck- Institut für Quantentoptik (MPQ) in Garching verfügbar. Die Stelle ist im Rahmen in die "International Max Planck Research School of Advanced Photon Science" (IMPRS-APS) aufgenommen zu

Kersting, Roland

352

Page 1 of 3 Max Planck Research Award  

E-print Network

Page 1 of 3 Max Planck Research Award Notes on submitting a complete nomination Documents required of the following points: The Max Planck Research Award funded by the German Federal Ministry for Education and Research is presented jointly by the Alexander von Humboldt Foundation and the Max Planck Society

353

MAX-PLANCK-INSTITUT An Abstract Program Generation Logic  

E-print Network

MAX-PLANCK-INSTITUT FUR INFORMATIK An Abstract Program Generation Logic David A. Plaisted MPI{I{94 David Plaisted Max-Planck-Institut fur Informatik Im Stadtwald D-66123 Saarbrucken Germany plaisted the author was on sabbatical and leave of absence at the Max Planck Institute in Saarbrucken, Germany

354

Max-Planck-Institut zur Erforschung von Gemeinschaftsgtern  

E-print Network

Max-Planck-Institut zur Erforschung von Gemeinschaftsgütern Zum 1. April 2014 suchen wir mehrere einzuarbeiten? Dann freuen wir uns über Ihre Bewerbung! Das Max-Planck-Institut zur Erforschung von Qualifikation ausdrücklich auf sich zu bewerben. Die Max-Planck-Gesellschaft ist bemüht, mehr schwerbehinderte

Rauhut, Holger

355

Max Planck Society for the Advancement of Science  

E-print Network

Max Planck Society for the Advancement of Science Pressand Abrell (-1416) ISSN 0170-4656 MAX PLANCK SOCIETY Press Release B/2009 (27) Here's looking at you, fellow humans and monkeys really are. Scientists at the Max Planck Institute for Biological Cybernetics have now

356

Scaling of the Multilevel Physical Optics parallel algorithm on a large grid  

Microsoft Academic Search

The MultiLevel fast Physical Optics (MLPO) algorithm allows to perform Physical Optics integrals with a computational complexity comparable to that of the Fast Fourier Transform (FFT). The multilevel scheme is based on hierarchical domain decomposition and phase compensated interpolation approach. An optimized distributed memory parallelized MLPO algorithm has been designed by partitioning not only the radiating aperture but also the

Christian Parrot; Daniel Millont; Christine Letrou; Amir Boag

2010-01-01

357

Adolescents' Self-Efficacy to Overcome Barriers to Physical Activity Scale  

ERIC Educational Resources Information Center

This paper describes a revised measure of self-efficacy to overcome barriers to moderate and vigorous physical activity in a sample of 484 high school students in Toronto, Ontario. The students had a mean age of 15.3 years. Principal axis factoring with oblique rotation yielded five factors: self-efficacy to overcome internal, harassment, physical

Dwyer, John J. M.; Chulak, Tala; Maitland, Scott; Allison, Kenneth R.; Lysy, Daria C.; Faulkner, Guy E. J.; Sheeshka, Judy

2012-01-01

358

Physics on the Smallest Scales: An Introduction to Minimal Length Phenomenology  

ERIC Educational Resources Information Center

Many modern theories which try to unify gravity with the Standard Model of particle physics, such as e.g. string theory, propose two key modifications to the commonly known physical theories: the existence of additional space dimensions; the existence of a minimal length distance or maximal resolution. While extra dimensions have received a wide…

Sprenger, Martin; Nicolini, Piero; Bleicher, Marcus

2012-01-01

359

The ellipsoidal universe in the Planck satellite era  

NASA Astrophysics Data System (ADS)

Recent Planck data confirm that the cosmic microwave background displays the quadrupole power suppression together with large-scale anomalies. Progressing from previous results, that focused on the quadrupole anomaly, we strengthen the proposal that the slightly anisotropic ellipsoidal universe may account for these anomalies. We solved at large scales the Boltzmann equation for the photon distribution functions by taking into account both the effects of the inflation produced primordial scalar perturbations and the anisotropy of the geometry in the ellipsoidal universe. We showed that the low quadrupole temperature correlations allowed us to fix the eccentricity at decoupling, edec = (0.86 ± 0.14) 10-2, and to constraint the direction of the symmetry axis. We found that the anisotropy of the geometry of the universe contributes only to the large-scale temperature anisotropies without affecting the higher multipoles of the angular power spectrum. Moreover, we showed that the ellipsoidal geometry of the universe induces sizeable polarization signal at large scales without invoking the reionization scenario. We explicitly evaluated the quadrupole TE and EE correlations. We found an average large-scale polarization ?Tpol = (1.20 ± 0.38) ?K. We point out that great care is needed in the experimental determination of the large-scale polarization correlations since the average temperature polarization could be misinterpreted as foreground emission leading, thereby, to a considerable underestimate of the cosmic microwave background polarization signal.

Cea, Paolo

2014-06-01

360

Evolving Planck Constant Measurements into the SI Kilogram Standard  

NASA Astrophysics Data System (ADS)

This is a very brief 100 year history of measuring 2e/h (pre-and post-Josephson), with a little on e^2/h (quantum Hall Effect, QHE), and then on to a direct measure of Planck constant h, where the watt balance technique combines four basic standards, i.e., physical constants of time, length, voltage, and resistance into a mass redefinition. There are parallels between old and new controversies. In the 1970's and 80's the controversy was in the changeover from standard cells to the Josephson effect as voltage reference. A slightly similar and briefer one concerned the ohm and QHE. Today's discussion is about changing definitions from an artifact mass standard to the Planck constant (or Avogadro constant) using the different methods as realization. The mass redefinition concerns are two orders of magnitude down from those of voltage, and the discrepancies between h are probably more systemic rather than artifact related (or not) as compared to the Josephson effect testing. This shows how far electronic metrology has progressed but also that is it not completed research. The conclusion summarizes the latest efforts on the watt balances.

Steiner, Richard

2012-02-01

361

Scales  

SciTech Connect

Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

Murray Gibson

2007-04-27

362

Max-Planck-Institut fur Mathematik  

E-print Network

. Auera a Max-Planck-Institut for Chemical Energy Conversion, Stiftstra�e 34-36, D-45470 M¨ulheim a methods can directly or indirectly be identified as tensor decomposition techniques of one kind or another Techniques in post-Hartree Fock Methods: Matrix Product State Tensor Format (revised version: February 2013

363

Nonminimal GUT inflation after Planck results  

E-print Network

In the present work we study GUT Coleman-Weinberg inflation with a nonminimal coupling to gravity. In this kind of model one usually finds that either the nonminimal coupling is large or the inflaton self-coupling in unnaturally small. We have shown here that the model is in agreement with the recent results from Planck for natural values of the couplings.

Panotopoulos, Grigoris

2014-01-01

364

MAX-PLANCK-INSTITUT Terminological Representation,  

E-print Network

& Relation Algebra Renate A. Schmidt MPI­I­92­246 October 1992 k I N F O R M A T I K Im Stadtwald W 6600 Saarbr¨ucken Germany #12;Author's Address Max-Planck-Institut f¨ur Informatik, Im Stadtwald, W-6600

365

MAX-PLANCK-INSTITUT Towards Automating Duality  

E-print Network

& Hans J¨urgen Ohlbach MPI­I­93­220 May 1993 k I N F O R M A T I K Im Stadtwald W 6600 Saarbr@doc.ic.ac.uk Hans J¨urgen Ohlbach Max­Planck­Institut f¨ur Informatik Im Stadtwald D-6600 Saarbr¨ucken 11 F. R

366

MAX-PLANCK-INSTITUT Metalogical Frameworks  

E-print Network

. Constable MPI­I­92­205 February 1992 k I N F O R M A T I K Im Stadtwald W 6600 Saarbr¨ucken Germany #12;Authors' Addresses David Basin, Max-Planck-Institut f¨ur Informatik Im Stadtwald, D-6600 Saarbr

367

MAX-PLANCK-INSTITUT Difference Matching  

E-print Network

­211 March 1992 k I N F O R M A T I K Im Stadtwald W 6600 Saarbr¨ucken Germany #12;Authors' Addresses David Basin, Max-Planck-Institut f¨ur Informatik Im Stadtwald, D-6600 Saarbr¨ucken, Germany basin

368

Massively parallel Fokker-Planck calculations epilogue  

SciTech Connect

The purpose of this writeup is to supplement the publication, Massively Parallel Fokker-Planck Calculations,'' which appeared in the Proceedings of the Fifth Distributed Memory Computing Conference. Results obtained subsequent to that presentation are reported. This work is not self-contained; the reader should refer to that publication.

Mirin, A.A.

1990-10-16

369

Max-Planck-Institut fur Mathematik  

E-print Network

regularity and blow-up analysis for solutions of this boundary value problem. 1. Introduction In [JWZ1], weMax-Planck-Institut f¨ur Mathematik in den Naturwissenschaften Leipzig The Boundary Value Problem, and Miaomiao Zhu Preprint no.: 60 2011 #12;#12;THE BOUNDARY VALUE PROBLEM FOR THE SUPER-LIOUVILLE EQUATION J

370

Max-Planck-Institut fur Mathematik  

E-print Network

Max-Planck-Institut f¨ur Mathematik in den Naturwissenschaften Leipzig A notion of nonpositive spaces. Similarly to the definitions of Busemann and CAT(0) spaces, it is based on comparing triangles is implied by the CAT(0) property, but not by nonpositive curvature in the sense of Busemann. In Riemann- ian

371

Max-Planck-Institut fur Mathematik  

E-print Network

Max-Planck-Institut f¨ur Mathematik in den Naturwissenschaften Leipzig Note on a compactness on domains of curvature bounded above. Geom. Dedicata, 2010], the authors study a pursuit-evasion game in CAT(0) spaces and arrive at the following topological characterization of the underlying CAT(0) space

372

Max-Planck-Institut fur Mathematik  

E-print Network

Max-Planck-Institut f¨ur Mathematik in den Naturwissenschaften Leipzig Alternating projections CAT;#12;ALTERNATING PROJECTIONS IN CAT(0) SPACES MIROSLAV BAC´AK, IAN SEARSTON, AND BRAILEY SIMS Dedicated to Jon the idea of weak convergence into CAT(0) space we prove the convergence of the alternating projection

373

Max-Planck-Institut fur Mathematik  

E-print Network

Max-Planck-Institut f¨ur Mathematik in den Naturwissenschaften Leipzig Convergence of nonlinear the sense of Alexandrov), or that it is a CAT(0) space. A complete CAT(0) space is called an Hadamard space, the Hilbert ball, CAT(0) comp

374

Max-Planck-Institut fur Mathematik  

E-print Network

Max-Planck-Institut fur Mathematik in den Naturwissenschaften Leipzig Pathologies in Aleksandrov. In the rst we give a CAT(;1)-space A, which is homeomorphic to Rn n 5, while its hyperbolic bound- ary Institute fur Mathematik in Leipzig. Date: September 22, 2001. 1 #12;2 V.N. BERESTOVSKII For a point p

375

Max-Planck-Institut fur Mathematik  

E-print Network

Max-Planck-Institut f¨ur Mathematik in den Naturwissenschaften Leipzig Linear and projective. General construction 3 3. Quasi-isometries 8 4. Boundary at infinity and angular metric in a CAT(0) space the notion of ends: In 1973 Eberlein and O'Neill [EO73] constructed the boundary at infinity of a CAT(0

376

Axion hot dark matter bounds after Planck  

SciTech Connect

We use cosmological observations in the post-Planck era to derive limits on thermally produced cosmological axions. In the early universe such axions contribute to the radiation density and later to the hot dark matter fraction. We find an upper limit m{sub a} < 0.67 eV at 95% C.L. after marginalising over the unknown neutrino masses, using CMB temperature and polarisation data from Planck and WMAP respectively, the halo matter power spectrum extracted from SDSS-DR7, and the local Hubble expansion rate H{sub 0} released by the Carnegie Hubble Program based on a recalibration of the Hubble Space Telescope Key Project sample. Leaving out the local H{sub 0} measurement relaxes the limit somewhat to 0.86 eV, while Planck+WMAP alone constrain the axion mass to 1.01 eV, the first time an upper limit on m{sub a} has been obtained from CMB data alone. Our axion limit is therefore not very sensitive to the tension between the Planck-inferred H{sub 0} and the locally measured value. This is in contrast with the upper limit on the neutrino mass sum, which we find here to range from ? m{sub ?} < 0.27 eV at 95% C.L. combining all of the aforementioned observations, to 0.84 eV from CMB data alone.

Archidiacono, Maria; Hannestad, Steen [Department of Physics and Astronomy, University of Aarhus DK-8000 Aarhus C (Denmark); Mirizzi, Alessandro [II. Institut für Theoretische Physik, Universität Hamburg Luruper Chaussee 149, D-22761 Hamburg (Germany); Raffelt, Georg [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Föhringer Ring 6, D-80805 München (Germany); Wong, Yvonne Y.Y., E-mail: archi@phys.au.dk, E-mail: sth@phys.au.dk, E-mail: alessandro.mirizzi@desy.de, E-mail: raffelt@mpp.mpg.de, E-mail: yvonne.y.wong@unsw.edu.au [School of Physics, The University of New South Wales Sydney NSW 2052 (Australia)

2013-10-01

377

PREFACE: Conference of Theoretical Physics and Nonlinear Phenomena (CTPNP) 2014: ''From Universe to String's Scale''  

NASA Astrophysics Data System (ADS)

Theoretical physics is the first step for the development of science and technology. For more than 100 years it has delivered new and sophisticated discoveries which have changed human views of their surroundings and universe. Theoretical physics has also revealed that the governing law in our universe is not deterministic, and it is undoubtedly the foundation of our modern civilization. Contrary to its importance, research in theoretical physics is not well advanced in some developing countries such as Indonesia. This workshop provides the formal meeting in Indonesia devoted to the field of theoretical physics and is organized to cover all subjects of theoretical physics as well as nonlinear phenomena in order to create a gathering place for the theorists in Indonesia and surrounding countries, to motivate young physicists to keep doing active researches in the field and to encourage constructive communication among the community members. Following the success of the tenth previous meetings in this conference series, the eleventh conference was held in Sebelas Maret University (UNS), Surakarta, Indonesia on 15 February 2014. In addition, the conference was proceeded by School of Advance Physics at Gadjah Mada University (UGM), Yogyakarta, on 16–17 February 2014. The conference is expected to provide distinguished experts and students from various research fields of theoretical physics and nonlinear phenomena in Indonesia as well as from other continents the opportunities to present their works and to enhance contacts among them. The introduction to the conference is continued in the pdf.

2014-10-01

378

MOLECULAR ENVIRONMENTS OF 51 PLANCK COLD CLUMPS IN THE ORION COMPLEX  

SciTech Connect

A mapping survey of 51 Planck cold clumps projected on the Orion complex was performed with J = 1-0 lines of {sup 12}CO and {sup 13}CO with the 13.7 m telescope at the Purple Mountain Observatory. The mean column densities of the Planck gas clumps range from 0.5 to 9.5 Multiplication-Sign 10{sup 21} cm{sup -2}, with an average value of (2.9 {+-} 1.9) Multiplication-Sign 10{sup 21} cm{sup -2}. The mean excitation temperatures of these clumps range from 7.4 to 21.1 K, with an average value of 12.1 {+-} 3.0 K and the average three-dimensional velocity dispersion {sigma}{sub 3D} in these molecular clumps is 0.66 {+-} 0.24 km s{sup -1}. Most of the clumps have {sigma}{sub NT} larger than or comparable to {sigma}{sub Therm}. The H{sub 2} column density of the molecular clumps calculated from molecular lines correlates with the aperture flux at 857 GHz of the dust emission. By analyzing the distributions of the physical parameters, we suggest that turbulent flows can shape the clump structure and dominate their density distribution on large scales, but not function on small scales due to local fluctuations. Eighty-two dense cores are identified in the molecular clumps. The dense cores have an average radius and local thermal equilibrium (LTE) mass of 0.34 {+-} 0.14 pc and 38{sup +5}{sub -30} M{sub Sun }, respectively. The structures of low column density cores are more affected by turbulence, while the structures of high column density cores are more affected by other factors, especially by gravity. The correlation of velocity dispersion versus core size is very weak for the dense cores. The dense cores are found to be most likely gravitationally bounded rather than pressure confined. The relationship between M{sub vir} and M{sub LTE} can be well fitted with a power law. The core mass function here is much flatter than the stellar initial mass function. The lognormal behavior of the core mass distribution is most likely determined by internal turbulence.

Liu Tie; Wu Yuefang; Zhang Huawei, E-mail: liutiepku@gmail.com, E-mail: ywu@pku.edu.cn [Department of Astronomy, Peking University, 100871 Beijing (China)

2012-09-15

379

Max-Planck-Gesellschaft Rede des Prsidenten zur Festversammlung 2011 62. Jahresversammlung der Max-Planck-Gesellschaft  

E-print Network

Max-Planck-Gesellschaft Rede des Präsidenten zur Festversammlung 2011 1 62. Jahresversammlung der Max-Planck-Gesellschaft Rede des Präsidenten, Prof. Peter Gruss zur Festversammlung der Max #12;Max-Planck-Gesellschaft Rede des Präsidenten zur Festversammlung 2011 2 Wissenschaftler

Falge, Eva

380

High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems  

PubMed Central

An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250

Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul

2014-01-01

381

High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems.  

PubMed

An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250

Mahadevan, Vijay S; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul

2014-08-01

382

Physical modeling of wind turbine generators in a small scale analog system  

E-print Network

This project represents the physical modeling and experimental test of a Doubly-fed Induction Machine (DFIM), in order to substantially analyze the characteristic behaviors of wind turbines and its use in the micro-grid ...

Wang, Xuntuo

2014-01-01

383

Development of a Fast and Detailed Model of Urban-Scale Chemical and Physical Processing  

E-print Network

A reduced form metamodel has been produced to simulate the effects of physical, chemical, and meteorological processing of highly reactive trace species in hypothetical urban areas, which is capable of efficiently simulating ...

Prinn, Ronald G.

384

Connecting the power-law scaling structure of peak-discharges to spatially variable rainfall and catchment physical properties  

NASA Astrophysics Data System (ADS)

We have conducted extensive hydrologic simulation experiments in order to investigate how the flood scaling parameters in the power-law relationship Q(A)=?A?, between peak-discharges resulting from a single rainfall-runoff event Q(A) and upstream area A, change as a function of rainfall, runoff coefficient (Cr) that we use as a proxy for catchment antecedent moisture state, hillslope overland flow velocity (vh), and channel flow velocity (vc), all of which are variable in space. We use a physically-based distributed numerical framework that is based on an accurate representation of the drainage network and apply it to the Cedar River basin (A=16,861 km), which is located in Eastern Iowa, USA. Our work is motivated by seminal empirical studies that show that the flood scaling parameters ? and ? change from event to event. Uncovering the underlying physical mechanism behind the event-to-event variability of ? and ? in terms of catchment physical processes and rainfall properties would significantly improve our ability to predict peak-discharge in ungauged basins (PUB). The simulation results demonstrate how both ? and ? are systematically controlled by the interplay among rainfall duration T, spatially averaged rainfall intensity E[I], as well as E[Cr], E[vh], and vc. Specifically, we found that the value of ? generally decreases with increasing values of E[I], E[Cr], and E[vh], whereas its value generally increases with increasing T. Moreover, while ? is primarily controlled by E[I], it increases with increasing E[Cr] and E[vh]. These results highlight the fact that the flood scaling parameters are able to be estimated from the aforementioned catchment rainfall and physical variables, which can be measured either directly or indirectly.

Ayalew, Tibebu B.; Krajewski, Witold F.; Mantilla, Ricardo

2014-09-01

385

Scale-free brain dynamics under physical and psychological distress: Pre-treatment effects in women diagnosed with breast cancer.  

PubMed

Stressful life events are related to negative outcomes, including physical and psychological manifestations of distress, and behavioral deficits. Patients diagnosed with breast cancer report impaired attention and working memory prior to adjuvant therapy, which may be induced by distress. In this article, we examine whether brain dynamics show systematic changes due to the distress associated with cancer diagnosis. We hypothesized that impaired working memory is associated with suppression of "long-memory" neuronal dynamics; we tested this by measuring scale-free ("fractal") brain dynamics, quantified by the Hurst exponent (H). Fractal scaling refers to signals that do not occur at a specific time-scale, possessing a spectral power curve P(f)?f-?; they are "long-memory" processes, with significant autocorrelations. In a BOLD functional magnetic resonance imaging study, we scanned three groups during a working memory task: women scheduled to receive chemotherapy or radiotherapy and aged-matched controls. Surprisingly, patients' BOLD signal exhibited greater H with increasing intensity of anticipated treatment. However, an analysis of H and functional connectivity against self-reported measures of psychological distress (Worry, Anxiety, Depression) and physical distress (Fatigue, Sleep problems) revealed significant interactions. The modulation of (Worry, Anxiety) versus (Fatigue, Sleep Problems, Depression) showed the strongest effect, where higher worry and lower fatigue was related to reduced H in regions involved in visuospatial search, attention, and memory processing. This is also linked to decreased functional connectivity in these brain regions. Our results indicate that the distress associated with cancer diagnosis alters BOLD scaling, and H is a sensitive measure of the interaction between psychological versus physical distress. Hum Brain Mapp 36:1077-1092, 2015. © 2014 Wiley Periodicals, Inc. PMID:25388082

Churchill, Nathan W; Cimprich, Bernadine; Askren, Mary K; Reuter-Lorenz, Patricia A; Jung, Mi Sook; Peltier, Scott; Berman, Marc G

2015-03-01

386

Efficiency of Parallel Machine for Large-Scale Simulation in Computational Physics  

Microsoft Academic Search

In this paper, we report on the efficiency of parallelization for atomistic-level large-scale simulations. Tight-binding and ab-initio molecular dynamics simulations are carried out on a supercomputer HITAC S-3800\\/380 and on a parallel computer HITAC SR2201. We compare the efficiencies of the two different machines based on large scale simulations to investigate advantages and disadvantages of parallel architecture.

Hiroshi Mizuseki; Keivan Esfarjani; Zhi-qiang Li; Kaoru Ohno; Yoko Akiyama; Kyoko Ichinoseki; Yoshiyuki Kawazoe

1997-01-01

387

Regionalization of meso-scale physically based nitrogen modeling outputs to the macro-scale by the use of regression trees  

NASA Astrophysics Data System (ADS)

In this paper, a method is presented to estimate excess nitrogen on large scales considering single field processes. The approach was implemented by using the physically based model J2000-S to simulate the nitrogen balance as well as the hydrological dynamics within meso-scale test catchments. The model input data, the parameterization, the results and a detailed system understanding were used to generate the regression tree models with GUIDE (Loh, 2002). For each landscape type in the federal state of Thuringia a regression tree was calibrated and validated using the model data and results of excess nitrogen from the test catchments. Hydrological parameters such as precipitation and evapotranspiration were also used to predict excess nitrogen by the regression tree model. Hence they had to be calculated and regionalized as well for the state of Thuringia. Here the model J2000g was used to simulate the water balance on the macro scale. With the regression trees the excess nitrogen was regionalized for each landscape type of Thuringia. The approach allows calculating the potential nitrogen input into the streams of the drainage area. The results show that the applied methodology was able to transfer the detailed model results of the meso-scale catchments to the entire state of Thuringia by low computing time without losing the detailed knowledge from the nitrogen transport modeling. This was validated with modeling results from Fink (2004) in a catchment lying in the regionalization area. The regionalized and modeled excess nitrogen correspond with 94%. The study was conducted within the framework of a project in collaboration with the Thuringian Environmental Ministry, whose overall aim was to assess the effect of agro-environmental measures regarding load reduction in the water bodies of Thuringia to fulfill the requirements of the European Water Framework Directive (Bäse et al., 2007; Fink, 2006; Fink et al., 2007).

Künne, A.; Fink, M.; Kipka, H.; Krause, P.; Flügel, W.-A.

2012-06-01

388

Adolescents' self-efficacy to overcome barriers to Physical Activity Scale.  

PubMed

This paper describes a revised measure of self-efficacy to overcome barriers to moderate and vigorous physical activity in a sample of 484 high school students in Toronto, Ontario. The students had a mean age of 15.3 years. Principal axis factoring with oblique rotation yielded five factors: self-efficacy to overcome internal, harassment, physical environment, social environment, and responsibilities barriers. Two problematic items were removed, which resulted in a 22-item measure. Subsequent analyses were conducted on responses to this shortened measure. Confirmatory factor analysis supported the five-factor model and demonstrated age- and sex-invariance. The subscales had good internal consistency reliability. Structural regressions demonstrated a strong relationship between the resulting factors and a physical activity measure (energy expenditure), showing predictive validity. PMID:23367813

Dwyer, John J M; Chulak, Tala; Maitland, Scott; Allison, Kenneth R; Lysy, Daria C; Faulkner, Guy E J; Sheeshka, Judy

2012-12-01

389

A Fokker-Planck Model of Rotating Stellar Clusters  

E-print Network

We have developed a two-dimensional orbit averaged Fokker-Planck model of stellar clusters which expands on spherically symmetric one-dimensional models to include rotation and ellipticity. Physical effects such as collisions, finite stellar lifetimes and bar formation (i.e., a non-axisymmetric component of the potential) can also be included. The first use of the model is to study the evolution of dense clusters (rho(r=0)=~10^7 M_sun/pc^3) that may be expected to have existed at the centres of newly-forming galaxies, with the goal of verifying that angular momentum can be removed from the core of the cluster quickly enough so that rotation no longer prevents the formation of a massive (~10^2 M_sun) object. This could act as the seed black hole for the formation of an AGN.

J. Girash

1997-04-05

390

NASA/Max Planck Institute Barium Ion Cloud Project.  

NASA Technical Reports Server (NTRS)

NASA and the Max Planck Institute for Extraterrestrial Physics (MPE), Munich, Germany, conducted a cooperative experiment involving the release and study of a barium cloud at 31,500 km altitude near the equatorial plane. The release was made near local magnetic midnight on Sept. 21, 1971. The MPE-built spacecraft contained a canister of 16 kg of Ba CuO mixture, a two-axis magnetometer, and other payload instrumentation. The objectives of the experiment were to investigate the interaction of the ionized barium cloud with the ambient medium and to deduce the properties of electric fields in the proximity of the release. An overview of the project is given to briefly summarize the organization, responsibilities, objectives, instrumentation, and operational aspects of the project.

Brence, W. A.; Carr, R. E.; Gerlach, J. C.; Neuss, H.

1973-01-01

391

Construction of large-scale simulation codes using ALPAL (A Livermore Physics Applications Language)  

SciTech Connect

A Livermore Physics Applications Language (ALPAL) is a new computer tool that is designed to leverage the abilities and creativity of computational scientist. Some of the ways that ALPAL provides this leverage are: first, it eliminates many sources of errors; second, it permits building code modules with far greater speed than is otherwise possible; third, it provides a means of specifying almost any numerical algorithm; and fourth, it is a language that is close to a journal-style presentation of physics models and numerical methods for solving them. 13 refs., 9 figs.

Cook, G.

1990-10-01

392

Computing generalized Langevin equations and generalized Fokker–Planck equations  

PubMed Central

The Mori–Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker–Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori–Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems. PMID:19549838

Darve, Eric; Solomon, Jose; Kia, Amirali

2009-01-01

393

A 100-3000 GHz model of thermal dust emission observed by Planck, DIRBE and IRAS  

NASA Astrophysics Data System (ADS)

We apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. This parametrization of the far-infrared dust spectrum as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody (MBB) dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We also derive full-sky 6.1' resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100?m data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.1' FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anistropy on small angular scales. We have recently released maps and associated software utilities for obtaining thermal dust emission and reddening predictions using our Planck-based two-component model.

Meisner, Aaron M.; Finkbeiner, Douglas P.

2015-01-01

394

Expanding interval maps with intermittent-like behaviour. Physical measures and scales of time.  

E-print Network

the Lebesgue measure, or a Riemannian volume), one wants to call physical measure an invariant measure that have special properties with respect to the reference measure. For expanding maps under the Lebesgue to the Lebesgue measure, a.c.i.p. (See Lasota, Yorke, 1973 ; Walters, 1975). In the case of uniformly hyperbolic

Provence Aix-Marseille I, Université de

395

Large-scale soilstructure physical model (1g) assessment of structure  

E-print Network

. The vertical displacement was applied by an electric jack. The physical model is used to reproduce ground void ratio eh horizontal strain emax maximum void ratio emin minimum void ratio H depth of the cavity I the subsidence of ground surface. The occurrence of subsidence of the ground surface can be very damaging

Paris-Sud XI, Université de

396

Using the RPE-Talk Scale to Individualize Physical Activity for Students  

ERIC Educational Resources Information Center

For some students, self-selecting a pace during exercise may not provide enough of a physical challenge. Others push themselves so hard that they tire out before they can experience the benefits of exercise. In order to improve self-monitoring of exercise intensity, a variety of tools using the perception of effort and the ability to talk while…

Nye, Susan B.; Todd, M. Kent

2013-01-01

397

IMPORTANCE OF PHYSICAL SCALING FACTORS TO BENTHIC MARINE INVERTEBRATE RECOLONIZATION OF LABORATORY MICROCOSMS  

EPA Science Inventory

Five laboratory studies of benthic macroinvertebrate recolonization were conducted for 6-wk periods to evaluate the effects of physical factors (i.e., microcosm size, seawater flow rates and sediment depth) on benthic community structure. esign variables included4 open-faced acry...

398

Brief scales to assess physical activity and sedentary equipment in the home  

E-print Network

sports equipment, swimming pool, roller skates, fixed play equipment, home aerobic equipment, weight lifting equipment, water or snow equipment, yoga/Sports equip Swimming pool Physical activity equipment Roller skates Fixed play equipment Aerobic equip Weight lifting Water/snow equip Yoga/

2010-01-01

399

On two intrinsic length scales in polymer physics: topological constraints vs. entanglement length  

Microsoft Academic Search

The interplay of topological constraints, excluded volume interactions, persis- tence length and dynamical entanglement length in solutions and melts of linear chains and ring polymers is investigated by means of kinetic Monte Carlo simulations of a three dimen- sional lattice model. In unknotted and unconcatenated rings, topological constraints manifest themselves in the static properties above a typical length scale dt

J.-L. Barrat; Staudinger Weg

400

Criterion validity of a 10-category scale for ranking physical activity in Norwegian women  

E-print Network

their overall PA level on a 10-category scale (1 being a "very low" and 10 being a "very high" PA level) and performed an 8-minute step-test to estimate aerobic fitness (VO2max). After each visit, the women wore a combined heart rate and movement sensor for 4...

Borch, Kristin B; Ekelund, Ulf; Brage, Soren; Lund, Eiliv

2012-01-19

401

Spatial-Scale Effects on Relative Importance of Physical Habitat Predictors of Stream Health  

NASA Astrophysics Data System (ADS)

A common theme in recent landscape studies is the comparison of riparian and watershed land use as predictors of stream health. The objective of this study was to compare the performance of reach-scale habitat and remotely assessed watershed-scale habitat as predictors of stream health over varying spatial extents. Stream health was measured with scores on a fish index of biotic integrity (IBI) using data from 95 stream reaches in the Eastern Corn Belt Plain (ECBP) ecoregion of Indiana. Watersheds hierarchically nested within the ecoregion were used to regroup sampling locations to represent varying spatial extents. Reach habitat was represented by metrics of a qualitative habitat evaluation index, whereas watershed variables were represented by riparian forest, geomorphology, and hydrologic indices. The importance of reach- versus watershed-scale variables was measured by multiple regression model adjusted-R2 and best subset comparisons in the general linear statistical framework. Watershed models had adjusted-R2 ranging from 0.25 to 0.93 and reach models had adjusted-R2 ranging from 0.09 to 0.86. Better-fitting models were associated with smaller spatial extents. Watershed models explained about 15% more variation in IBI scores than reach models on average. Variety of surficial geology contributed to decline in model predictive power. Results should be interpreted bearing in mind that reach habitat was qualitatively measured and only fish assemblages were used to measure stream health. Riparian forest and length-slope (LS) factor were the most important watershed-scale variables and mostly positively correlated with IBI scores, whereas substrate and riffle-pool quality were the important reach-scale variables in the ECBP.

Frimpong, Emmanuel A.; Sutton, Trent M.; Engel, Bernard A.; Simon, Thomas P.

2005-12-01

402

North-South non-Gaussian asymmetry in Planck CMB maps  

NASA Astrophysics Data System (ADS)

We report the results of a statistical analysis performed with the four foreground-cleaned Planck maps by means of a suitably defined local-variance estimator. Our analysis shows a clear dipolar structure in Planck's variance map pointing in the direction (l,b) simeq (220°,-32°), thus consistent with the North-South asymmetry phenomenon. Surprisingly, and contrary to previous findings, removing the CMB quadrupole and octopole makes the asymmetry stronger. Our results show a maximal statistical significance, of 98.1% CL, in the scales ranging from l=4 to l=500. Additionally, through exhaustive analyses of the four foreground-cleaned and individual frequency Planck maps, we find unlikely that residual foregrounds could be causing this dipole variance asymmetry. Moreover, we find that the dipole gets lower amplitudes for larger masks, evidencing that most of the contribution to the variance dipole comes from a region near the galactic plane. Finally, our results are robust against different foreground cleaning procedures, different Planck masks, pixelization parameters, and the addition of inhomogeneous real noise.

Bernui, A.; Oliveira, A. F.; Pereira, T. S.

2014-10-01

403

Fokker-Planck response of stochastic satellites  

NASA Technical Reports Server (NTRS)

The present investigation is concerned with the effects of stochastic geometry and random environmental torques on the pointing accuracy of spinning and three-axis stabilized satellites. The study of pointing accuracies requires a knowledge of the rates of error growth over and above any criteria for the asymptotic stability of the satellites. For this reason the investigation is oriented toward the determination of the statistical properties of the responses of the satellites. The geometries of the satellites are considered stochastic so as to have a phenomenological model of the motions of the flexible structural elements of the satellites. A widely used method of solving stochastic equations is the Fokker-Planck approach where the equations are assumed to define a Markoff process and the transition probability densities of the responses are computed directly as a function of time. The Fokker-Planck formulation is used to analyze the response vector of a rigid satellite.

Huang, T. C.; Das, A.

1982-01-01

404

Teleportation fidelity as a probe of sub-Planck phase-space structure  

E-print Network

We investigate the connection between sub-Planck structure in the Wigner function and the output fidelity of continuous-variable teleportation protocols. When the teleporting parties share a two-mode squeezed state as an entangled resource, high fidelity in the output state requires a squeezing large enough that the smallest sub-Planck structures in an input pure state are teleported faithfully. We formulate this relationship, which leads to an explicit relation between the fine-scale structure in the Wigner function and large-scale extent of the Wigner function, and we treat specific examples, including coherent, number, and random states and states produced by chaotic dynamics. We generalize the pure-state results to teleportation of mixed states.

A. J. Scott; Carlton M. Caves

2008-01-08

405

Angular momentum quantization from Planck's energy quantization  

E-print Network

We present in this work a pedagogical way of quantizing the atomic orbit for the hydrogen's atom model proposed by Bohr without using his hypothesis of angular momentum quantization. In contrast to the usual treatment for the orbital quantization, we show that using energy conservation, correspondence principle and Plank's energy quantization Bohr's hypothesis can be deduced from and is a consequence of the Planck's energy quantization.

Sales, J H O; Bonafe, D S

2007-01-01

406

Sub-Planck structures and Quantum Metrology  

SciTech Connect

The significance of sub-Planck structures in relation to quantum metrology is explored, in close contact with experimental setups. It is shown that an entangled cat state can enhance the accuracy of parameter estimations. The possibility of generating this state, in dissipative systems has also been demonstrated. Thereafter, the quantum Cramer-Rao bound for phase estimation through a pair coherent state is calculated, which achieves the maximum possible resolution in an interferometer.

Panigrahi, Prasanta K. [Indian Institute of Science Education and Research-Kolkata (India); Kumar, Abhijeet [Indian Institute of Science Education and Research, Pune (India); Roy, Utpal; Ghosh, Suranjana [Indian Institute of Technology Patna (India)

2011-09-23

407

A Small-scale Physical Model of the Lower Mississippi River for Studying the Potential of Medium- and Large-scale Diversions  

NASA Astrophysics Data System (ADS)

Over the past several thousand years the Mississippi River has formed one of the world's largest deltas and much of the Louisiana coast. However, in the last 100 years or so, anthropogenic controls have been placed on the system to maintain important navigation routes and for flood control resulting in the loss of the natural channel shifting necessary for replenishment of the deltaic coast with fresh sediment and resources. In addition, the high relative sea level rise in the lowermost portion of the river is causing a change in the distributary flow patterns of the river and deposition center. River and sediment diversions are being proposed as way to re-create some of the historical distribution of river water and sediments into the delta region. In response to a need for improving the understanding of the potential for medium- and large-scale river and sediment diversions, the state of Louisiana funded the construction of a small-scale physical model (SSPM) of the lower ~76 river miles (RM). The SSPM is a 1:12,000 horizontal, 1:500 vertical, highly-distorted, movable bed physical model designed to provide qualitative and semi-quantitative results regarding bulk noncohesive sediment transport characteristics in the river and through medium- and large-scale diversion structures. The SSPM was designed based on Froude similarity for the hydraulics and Shields similarity for sand transport and has a sediment time scale of 1 year prototype to 30 minutes model allowing for decadal length studies of the land building potential of diversions. Annual flow and sediment hydrographs were developed from historical records and a uniform relative sea level rise of 3 feet in 100 years is used to account for the combined effects of eustatic sea level rise and subsidence. Data collected during the experiments include river stages, dredging amounts and high-resolution video of transport patterns within the main channel and photographs of the sand deposition patterns in the diversion receiving areas. First, the similarity analysis that went into the model design along with a discussion of the resulting limitations will be presented. Next, calibration and validation results will be shown demonstrating the ability of the SSPM to capture the general lower Mississippi River sediment transport trends and deposition patterns. Third, results from a series of diversion experiments will be presented to semi-quantitatively show the effectiveness of diversion locations, sizes, and operating strategies on the quantities of sand diverted from the main river and the changes in main channel dredging volumes. These results will are then correlated with recent field and numerical studies of the study area. This talk will then close with a brief discussion of a new and improved physical model that will cover a larger domain and be designed to provide more quantitative results.

Willson, C. S.

2011-12-01

408

Planck-scale modified dispersion relations and Finsler geometry  

SciTech Connect

A common feature of all quantum gravity (QG) phenomenology approaches is to consider a modification of the mass-shell condition of the relativistic particle to take into account quantum gravitational effects. The framework for such approaches is therefore usually set up in the cotangent bundle (phase space). However it was recently proposed that this phenomenology could be associated with an energy dependent geometry that has been coined 'rainbow metric'. We show here that the latter actually corresponds to a Finsler geometry, the natural generalization of Riemannian geometry. We provide in this way a new and rigorous framework to study the geometrical structure possibly arising in the semiclassical regime of QG. We further investigate the symmetries in this new context and discuss their role in alternative scenarios like Lorentz violation in emergent spacetimes or deformed special relativity-like models.

Girelli, F.; Liberati, S.; Sindoni, L. [SISSA, Via Beirut 2-4, 34014 Trieste (Italy) and INFN, Sezione di Trieste (Italy)

2007-03-15

409

New Limits on Planck Scale Lorentz Violation in QED  

Microsoft Academic Search

Constraints on possible Lorentz symmetry violation (LV) of order E\\/MPlanck for electrons and photons in the framework of effective field theory (EFT) are discussed. Using (i) the report of polarized MeV emission from GRB021206 and (ii) the absence of vacuum Cerenkov radiation from synchrotron electrons in the Crab Nebula, we improve previous bounds by 10-10 and 10-2, respectively. We also

T. Jacobson; S. Liberati; D. Mattingly; F. W. Stecker

2004-01-01

410

MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes  

Microsoft Academic Search

Mass spectrometry (MS)-based proteomics has become a powerful technology to map the protein composition of organelles, cell types and tissues. In our department, a large-scale effort to map these proteomes is complemented by the Max-Planck Unified (MAPU) proteome database. MAPU contains several body fluid proteomes; including plasma, urine, and cerebrospinal fluid. Cell lines have been mapped to a depth of

Yanling Zhang; Yong Zhang; Jun Adachi; Jesper V. Olsen; Rong Shi; Gustavo De Souza; Erica Pasini; Leonard J. Foster; Boris Macek; Alexandre Zougman; Chanchal Kumar; Jacek R. Wisniewski; Jan Wang; Matthias Mann

2007-01-01

411

A Physical-Experimental Model for Small-Scale Basaltic Vulcanian Eruptions  

Microsoft Academic Search

In the last period of its summer 2001 flank activity Mt. Etna produced ash explosions not common at this basaltic volcano. The explosions took place at a new vent at 2550 m.a.s.l. and followed Strombolian and effusive activity. At first the ash erupted as a continuous, pulsing plume a few km high, occasionally undergoing small-scale, partial collapses. Afterward the frequency

P. Scarlato; J. Taddeucci; O. Spieler; B. Kennedy; D. B. Dingwell; M. Pompilio

2003-01-01

412

On two intrinsic length scales in polymer physics: Topological constraints vs. entanglement length  

Microsoft Academic Search

The interplay of topological constraints, excluded-volume interactions, persistence length and dynamical entanglement length in solutions and melts of linear chains and ring polymers is investigated by means of kinetic Monte Carlo simulations of a three-dimensional lattice model. In unknotted and unconcatenated rings, topological constraints manifest themselves in the static properties above a typical length scale dt ? 1\\/(l?)1\\/2 (? being

J. P. Wittmer; J.-L. Barrat

2000-01-01

413

The Nature of Light: I. A Historical Survey Up to the Pre-Planck Era and Implications for Teaching  

ERIC Educational Resources Information Center

The objective of this article is to contribute to the scant literature that exists on historical developments on the nature of light. It traces the nature of light from the times of the ancient Greeks to the classical theories prior to Planck. The development of thought that characterizes the evolution of a concept in physics over time affords…

Oon, Pey Tee; Subramaniam, R.

2009-01-01

414

A state estimation method with matching between a physical energy quantity and a decibel scaled noisy observation for a sound environmental system  

Microsoft Academic Search

A state estimation method for an energy stochastic system with a decibel observation mechanism is presented. The problem is to get a decibel-valued estimate of an energy state variable by using the decibel-valued noisy observation data, where the stochastic system of concern is physically driven on energy scale. The main attention is paid to matching between the physical energy principle

E. Uchino; M. Ohta; K. Hatakeyama

1992-01-01

415

Particle Physics in the Sky and Astrophysics Underground: Connecting the Universe's Largest and Smallest Scales  

E-print Network

Particles have tremendous potential as astronomical messengers, and conversely, studying the universe as a whole also teaches us about particle physics. This thesis encompasses both of these research directions. Many models predict a diffuse flux of high energy neutrinos from active galactic nuclei and other astrophysical sources. The "Astrophysics Underground" portion of this thesis describes a search for this neutrino flux performed by looking for very high energy upward-going muons using the Super-K detector. In addition to using particles to do astronomy, we can also use the universe itself as a particle physics lab. The "Particle Physics in the Sky" portion of this thesis focuses on extracting cosmological information from galaxy surveys. To overcome technical challenges faced by the latest galaxy surveys, we produced a comprehensive upgrade to mangle, a software package that processes the angular masks defining the survey area on the sky. We added dramatically faster algorithms and new useful features that are necessary for managing complex masks of current and next-generation galaxy surveys. With this software in hand, we utilized SDSS data to investigate the relation between galaxies and dark matter by studying relative bias, i.e., the relation between different types of galaxies. Separating galaxies by their luminosities and colors reveals a complicated picture: red galaxies are clustered more strongly than blue galaxies, with both the brightest and the faintest red galaxies showing the strongest clustering. Furthermore, red and blue galaxies tend to occupy different regions of space. In order to make precise measurements from the next generation of galaxy surveys, it will be essential to account for this complexity.

Molly E. C. Swanson

2008-08-01

416

Living and working in Germany A guide for international scientists at Max Planck Institutes  

E-print Network

Living and working in Germany A guide for international scientists at Max Planck Institutes #12 to the Max Planck Society and am very pleased that you have selected a Max Planck institute for your research Planck Society is Germany's most successful scientific or- ganisation in basic research. Max Planck

417

Singular perturbation analysis of the steady-state Poisson–Nernst–Planck system: Applications to ion channels  

PubMed Central

Ion channels are proteins with a narrow hole down their middle that control a wide range of biological function by controlling the flow of spherical ions from one macroscopic region to another. Ion channels do not change their conformation on the biological time scale once they are open, so they can be described by a combination of Poisson and drift-diffusion (Nernst–Planck) equations called PNP in biophysics. We use singular perturbation techniques to analyse the steady-state PNP system for a channel with a general geometry and a piecewise constant permanent charge profile. We construct an outer solution for the case of a constant permanent charge density in three dimensions that is also a valid solution of the one-dimensional system. The asymptotical current–voltage (I–V ) characteristic curve of the device (obtained by the singular perturbation analysis) is shown to be a very good approximation of the numerical I–V curve (obtained by solving the system numerically). The physical constraint of non-negative concentrations implies a unique solution, i.e., for each given applied potential there corresponds a unique electric current (relaxing this constraint yields non-physical multiple solutions for sufficiently large voltages). PMID:19809600

SINGER, A.; GILLESPIE, D.; NORBURY, J.; EISENBERG, R. S.

2009-01-01

418

Bernstein Center for Computational Neuroscience (BCCN) Gttingen Georg-August-Universitt Gttingen, Max-Planck-Institut fr Dynamik und Selbstorganisation, Max-Planck-Institut fr biophysikalische Chemie, Max-Planck-Institut fr experimentelle Medizin,  

E-print Network

, Max-Planck-Institut für Dynamik und Selbstorganisation, Max-Planck-Institut für biophysikalische Chemie, Max-Planck-Institut für experimentelle Medizin, Deutsches Primatenzentrum, Otto Bock HealthCare GmbH Bernstein Focus Neurotechnology (BFNT) Göttingen Georg-August-Universität Göttingen, Max-Planck

Gollisch, Tim

419

Validity and reliability of the index of self-regulation scale for physical activity in older korean americans.  

PubMed

The Korean version of the index of self-regulation (KISR) is a nine-item scale designed to measure individuals' level of self-regulation for physical activity. The purpose of this study was to test the psychometric properties of the KISR, including reliability and validity, in a group of older Korean Americans. The KISR was administered to a sample of older Korean Americans at a baseline interview (Time 1) and 12 week followup (Time 2). The internal consistency of the KISR was high at both time points, with Cronbach's alphas of .94 and .95, respectively. The test-retest reliability was moderate-to-high at .68. There was evidence of construct validity of the KISR based on its moderate to high significant correlations with theoretically relevant variables, including motivational appraisal and self-efficacy for physical activity. A principal axis factoring with an oblique rotation resulted in two factors, explaining 89% of the variance. The KISR is a reliable and valid measure to assess the level of self-regulation for physical activity behavior in older Korean Americans. PMID:21994821

Yeom, Hye-A; Fleury, Julie

2011-01-01

420

A Statistical Physics View of Pitch Fluctuations in the Classical Music from Bach to Chopin: Evidence for Scaling  

PubMed Central

Because classical music has greatly affected our life and culture in its long history, it has attracted extensive attention from researchers to understand laws behind it. Based on statistical physics, here we use a different method to investigate classical music, namely, by analyzing cumulative distribution functions (CDFs) and autocorrelation functions of pitch fluctuations in compositions. We analyze 1,876 compositions of five representative classical music composers across 164 years from Bach, to Mozart, to Beethoven, to Mendelsohn, and to Chopin. We report that the biggest pitch fluctuations of a composer gradually increase as time evolves from Bach time to Mendelsohn/Chopin time. In particular, for the compositions of a composer, the positive and negative tails of a CDF of pitch fluctuations are distributed not only in power laws (with the scale-free property), but also in symmetry (namely, the probability of a treble following a bass and that of a bass following a treble are basically the same for each composer). The power-law exponent decreases as time elapses. Further, we also calculate the autocorrelation function of the pitch fluctuation. The autocorrelation function shows a power-law distribution for each composer. Especially, the power-law exponents vary with the composers, indicating their different levels of long-range correlation of notes. This work not only suggests a way to understand and develop music from a viewpoint of statistical physics, but also enriches the realm of traditional statistical physics by analyzing music. PMID:23544047

Liu, Lu; Wei, Jianrong; Zhang, Huishu; Xin, Jianhong; Huang, Jiping

2013-01-01

421

Web-based assessments of physical activity in youth: considerations for design and scale calibration.  

PubMed

This paper describes the design and methods involved in calibrating a Web-based self-report instrument to estimate physical activity behavior. The limitations of self-report measures are well known, but calibration methods enable the reported information to be equated to estimates obtained from objective data. This paper summarizes design considerations for effective development and calibration of physical activity self-report measures. Each of the design considerations is put into context and followed by a practical application based on our ongoing calibration research with a promising online self-report tool called the Youth Activity Profile (YAP). We first describe the overall concept of calibration and how this influences the selection of appropriate self-report tools for this population. We point out the advantages and disadvantages of different monitoring devices since the choice of the criterion measure and the strategies used to minimize error in the measure can dramatically improve the quality of the data. We summarize strategies to ensure quality control in data collection and discuss analytical considerations involved in group- vs individual-level inference. For cross-validation procedures, we describe the advantages of equivalence testing procedures that directly test and quantify agreement. Lastly, we introduce the unique challenges encountered when transitioning from paper to a Web-based tool. The Web offers considerable potential for broad adoption but an iterative calibration approach focused on continued refinement is needed to ensure that estimates are generalizable across individuals, regions, seasons and countries. PMID:25448192

Saint-Maurice, Pedro F; Welk, Gregory J

2014-01-01

422

Web-Based Assessments of Physical Activity in Youth: Considerations for Design and Scale Calibration  

PubMed Central

This paper describes the design and methods involved in calibrating a Web-based self-report instrument to estimate physical activity behavior. The limitations of self-report measures are well known, but calibration methods enable the reported information to be equated to estimates obtained from objective data. This paper summarizes design considerations for effective development and calibration of physical activity self-report measures. Each of the design considerations is put into context and followed by a practical application based on our ongoing calibration research with a promising online self-report tool called the Youth Activity Profile (YAP). We first describe the overall concept of calibration and how this influences the selection of appropriate self-report tools for this population. We point out the advantages and disadvantages of different monitoring devices since the choice of the criterion measure and the strategies used to minimize error in the measure can dramatically improve the quality of the data. We summarize strategies to ensure quality control in data collection and discuss analytical considerations involved in group- vs individual-level inference. For cross-validation procedures, we describe the advantages of equivalence testing procedures that directly test and quantify agreement. Lastly, we introduce the unique challenges encountered when transitioning from paper to a Web-based tool. The Web offers considerable potential for broad adoption but an iterative calibration approach focused on continued refinement is needed to ensure that estimates are generalizable across individuals, regions, seasons and countries. PMID:25448192

2014-01-01

423

Testing modified gravity with Planck: The case of coupled dark energy  

NASA Astrophysics Data System (ADS)

The Planck collaboration has recently published maps of the cosmic microwave background (CMB) radiation, in good agreement with a ?CDM model, a fit especially valid for multipoles ?>40. We explore here the possibility that dark energy is dynamical and gravitational attraction between dark matter particles is effectively different from the standard one in general relativity: this is the case of coupled dark energy models, where dark matter particles feel the presence of a fifth force, larger than gravity by a factor 2?2, defining an effective gravitational constant Geff=G(1+2?2). We investigate constraints on the strength of the coupling ? in view of Planck data. Interestingly, we show that a nonzero coupling is compatible with data and find a likelihood peak at ?=0.036±0.016 [Planck+WMAPpolarization(WP)+baryonicacousticoscillations(BAO)] (compatible with zero at 2.2?). The significance of the peak increases to ?=0.066±0.018 [Planck+WP+HubbleSpaceTelescope(HST)] (around 3.6? from zero coupling) when Planck is combined to HST data by . This peak comes mostly from the small difference between the Hubble parameter determined with CMB measurements and the one coming from astrophysics measurements and is already present in the combination with BAO. Future observations and further tests of current observations are needed to determine whether the discrepancy is due to systematics in any of the data sets. Our aim here is not to claim new physics but rather to show that a clear understanding of such tension has a considerable impact on dark energy models: it can be used to provide information on dynamical dark energy and modified gravity, allowing us to test the strength of an effective fifth force.

Pettorino, Valeria

2013-09-01

424

Forecasting neutrino masses from galaxy clustering in the Dark Energy Survey combined with the Planck measurements  

NASA Astrophysics Data System (ADS)

We study the prospects for detecting neutrino masses from the galaxy angular power spectrum in photometric redshift shells of the Dark Energy Survey (DES) over a volume of ~20h-3 Gpc3, combined with the cosmic microwave background (CMB) angular fluctuations expected to be measured from the Planck satellite. We find that for a ? cold dark matter concordance model with seven free parameters in addition to a fiducial neutrino mass of M? = 0.24 eV, we recover from DES and Planck the correct value with uncertainty of +/-0.12 eV (95 per cent confidence level; CL), assuming perfect knowledge of the galaxy biasing. If the fiducial total mass is close to zero, then the upper limit is 0.11 eV (95 per cent CL). This upper limit from DES and Planck is over three times tighter than using Planck alone, as DES breaks the parameter degeneracies in a CMB-only analysis. The analysis utlilizes spherical harmonics up to 300, averaged in bin of 10 to mimic the DES sky coverage. The results are similar if we supplement DES bands (grizY) with the Visible and Infra-Red Survey Telescope for Astronomy Hemisphere Survey (VHS) near-infrared band (JHK). The result is robust to uncertainties in non-linear fluctuations and redshift distortions. However, the result is sensitive to the assumed galaxy biasing schemes and it requires accurate prior knowledge of the biasing. To summarize, if the total neutrino mass in nature is greater than 0.1 eV, we should be able to detect it with DES and Planck, a result with great importance to fundamental physics.

Lahav, Ofer; Kiakotou, Angeliki; Abdalla, Filipe B.; Blake, Chris

2010-06-01

425

Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources  

NASA Astrophysics Data System (ADS)

Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper, physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law indexaround 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shocks. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission. Tables 1 and 4, Figs. 18-121 are available in electronic form at http://www.aanda.org

Planck Collaboration; Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Berdyugin, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Burrows, D. N.; Cabella, P.; Capalbi, M.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Cavazzuti, E.; Cayón, L.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Couchot, F.; Coulais, A.; Cutini, S.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Dickinson, C.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Fuhrmann, L.; Galeotta, S.; Ganga, K.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Giard, M.; Giardino, G.; Giglietto, N.; Giommi, P.; Giordano, F.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison, D.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Juvela, M.; Keihänen, E.; Keskitalo, R.; King, O.; Kisner, T. S.; Kneissl, R.; Knox, L.; Krichbaum, T. P.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lavonen, N.; Lawrence, C. R.; Leach, S.; Leonardi, R.; León-Tavares, J.; Linden-Vørnle, M.; Lindfors, E.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Max-Moerbeck, W.; Mazziotta, M. N.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Michelson, P. F.; Mingaliev, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Monte, C.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Nestoras, I.; Netterfield, C. B.; Nieppola, E.; Nilsson, K.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Partridge, B.; Pasian, F.; Patanchon, G.; Pavlidou, V.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perri, M.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Procopio, P.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rainò, S.; Reach, W. T.; Readhead, A.; Rebolo, R.; Reeves, R.; Reinecke, M.; Reinthal, R.; Renault, C.; Ricciardi, S.; Richards, J.; Riller, T.; Riquelme, D.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Saarinen, J.; Sandri, M.; Savolainen, P.; Scott, D.; Seiffert, M. D.; Sievers, A.; Sillanpää, A.; Smoot, G. F.; Sotnikova, Y.; Starck, J.-L.; Stevenson, M.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J.-F.; Takalo, L.; Tammi, J.; Tauber, J. A.; Terenzi, L.; Thompson, D. J.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Torre, J.-P.; Tosti, G.; Tramacere, A.; Tristram, M.; Tuovinen, J.; Türler, M.; Turunen, M.; Umana, G.; Ungerechts, H.; Valenziano, L.; Valtaoja, E.; Varis, J.; Verrecchia, F.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Wu, J.; Yvon, D.; Zacchei, A.; Zensus, J. A.; Zhou, X.; Zonca, A.

2011-12-01

426

Low-scale SUSY breaking and the (s)goldstino physics  

NASA Astrophysics Data System (ADS)

For a 4D N=1 supersymmetric model with a low SUSY breaking scale (f) and general Kahler potential K(?i,?j†) and superpotential W(?i) we study, in an effective theory approach, the relation of the goldstino superfield to the (Ferrara-Zumino) superconformal symmetry breaking chiral superfield X. In the presence of more sources of supersymmetry breaking, we verify the conjecture that the goldstino superfield is the (infrared) limit of X for zero-momentum and ??? (? is the effective cut-off scale). We then study the constraint X2=0, which in the one-field case is known to decouple a massive sgoldstino and thus provide an effective superfield description of the Akulov-Volkov action for the goldstino. In the presence of additional fields that contribute to SUSY breaking we identify conditions for which X2=0 remains valid, in the effective theory below a large but finite sgoldstino mass. The conditions ensure that the effective expansion (in 1/?) of the initial Lagrangian is not in conflict with the decoupling limit of the sgoldstino (1/m˜?/f, f

Antoniadis, I.; Ghilencea, D. M.

2013-05-01

427

Small Scale Structure at High Redshift II. Physical Properties of the CIV Absorbing Clouds  

E-print Network

Keck HIRES spectra were obtained of the separate images of three gravitationally lensed QSOs (UM 673, Q1104-1804, and Q1422+2309). We studied the velocity and column density differences in CIV doublets in each QSO. Unlike the low ionization gas clouds typical of the interstellar gas in the Galaxy or damped Ly alpha galaxies, the spatial density distribution of CIV absorbing gas clouds turns out to be mostly featureless on scales up to a few hundred parsecs, with column density differences rising to 50 percent or more over separations beyond a few kpc. Similarly, velocity shear becomes detectable only over distances larger than a few hundred pc, rising to 70 km/s at a few kpc. The energy transmitted to the gas is substantially less than in present day star-forming regions, and the gas is less turbulent on a given spatial scale than, e.g., local HII regions. The quiescence of CIV clouds, taken with their probable low density, imply that these objects are not internal to galaxies. The CIV absorbers could be gas ...

Rauch, M; Barlow, T A; Rauch, Michael; Sargent, Wallace L.W.; Barlow, Thomas A.

2001-01-01

428

News about TeV-scale Black Holes  

E-print Network

Collider produced black holes are the most exciting prediction from models with large extra dimensions. These black holes exist in an extreme region, in which gravity meets quantum field theory, particle physics, and thermodynamics. An investigation of the formation and decay processes can therefore provide us with important insights about the underlying theory and open a window to the understanding of Physics at the Planck scale. The production and the evaporation of TeV-scale black holes yields distinct signatures that have been examined closely during the last years, with analytical approaches as well as by use of numerical simulations. I present new results for the LHC, which take into account that, instead of a final decay, a black hole remnant can be left. This is a summary of the talk given at the Quark Matter 2005, Budapest, Hungary, Aug. 2005.

S. Hossenfelder

2005-10-18

429

Physics  

NSDL National Science Digital Library

Physics is the scientific study of the basic principles of the universe, including matter, energy, motion and force, and their interactions. Major topics include classical mechanics, thermodynamics, light and optics, electromagnetism and relativity.

K-12 Outreach,

430

Scale-invariant resonance tagging in multijet events and new physics in Higgs pair production  

NASA Astrophysics Data System (ADS)

We study resonant pair production of heavy particles in fully hadronic final states by means of jet substructure techniques. We propose a new resonance tagging strategy that smoothly interpolates between the highly boosted and fully resolved regimes, leading to uniform signal efficiencies and background rejection rates across a broad range of masses. Our method makes it possible to efficiently replace independent experimental searches, based on different final state topologies, with a single common analysis. As a case study, we apply our technique to pair production of Higgs bosons decaying into pairs in generic New Physics scenarios. We adopt as benchmark models radion and massive KK graviton production in warped extra dimensions. We find that despite the overwhelming QCD background, the 4 b final state has enough sensitivity to provide a complementary handle in searches for enhanced Higgs pair production at the LHC.

Gouzevitch, Maxime; Oliveira, Alexandra; Rojo, Juan; Rosenfeld, Rogerio; Salam, Gavin P.; Sanz, Veronica

2013-07-01

431

Perturbed Physics Ensemble Simulations of Cirrus on the Cloud System-resolving Scale  

SciTech Connect

In this study, the effect of uncertainties in the parameterization of ice microphysical processes and initial conditions on the variability of cirrus microphysical and radiative properties are investigated in a series of cloud system-resolving perturbed physics ensemble (PPE) and initial condition ensemble (ICE) simulations. Three cirrus cases representative of mid-latitude, subtropical and tropical cirrus are examined. It is found that the variability in cirrus properties induced by perturbing uncertain parameters in ice microphysics parameterizations outweighs the variability induced by perturbing the initial conditions in midlatitude and subtropical cirrus. However, in tropical anvil cirrus the variability in the PPE and ICE simulations is about the same order of magnitude. The cirrus properties showing the largest sensitivity are ice water content (IWC) and cloud thickness whereas the averaged high cloud cover is only marginally affected. Changes in cirrus ice water path and outgoing longwave radiation are controlled primarily by changes in IWC and cloud thickness but not by changes is the averaged high cloud cover. The change in the vertical distribution of cloud fraction and cloud thickness is caused by changes in cirrus cloud base whereas cloud top is not sensitive to either perturbed physics or perturbed initial conditions. In all cirrus cases, the top three parameters controlling the microphysical variability and radiative impact of cirrus clouds are ice fall speeds, ice autoconversion size thresholds and heterogeneous ice nucleation. Changes in the ice deposition coefficient do not affect the ice water path and outgoing longwave radiation. Similarly, changes in the number concentration of aerosols available for homogeneous freezing have virtually no effect on the microphysical and radiative properties of midlatitude and subtropical cirrus but only little impact on tropical anvil cirrus. Overall, the sensitivity of cirrus microphysical and radiative properties to uncertainties in ice microphysics is largest for midlatitude cirrus and smallest for tropical anvil cirrus.

Muhlbauer, Andreas; Berry, Elizabeth; Comstock, Jennifer M.; Mace, Gerald G.

2014-04-16

432

Understanding the Physical Properties that Control Protein Crystallization by Analysis of Large-Scale Experimental Data  

SciTech Connect

Crystallization is the most serious bottleneck in high-throughput protein-structure determination by diffraction methods. We have used data mining of the large-scale experimental results of the Northeast Structural Genomics Consortium and experimental folding studies to characterize the biophysical properties that control protein crystallization. This analysis leads to the conclusion that crystallization propensity depends primarily on the prevalence of well-ordered surface epitopes capable of mediating interprotein interactions and is not strongly influenced by overall thermodynamic stability. We identify specific sequence features that correlate with crystallization propensity and that can be used to estimate the crystallization probability of a given construct. Analyses of entire predicted proteomes demonstrate substantial differences in the amino acid-sequence properties of human versus eubacterial proteins, which likely reflect differences in biophysical properties, including crystallization propensity. Our thermodynamic measurements do not generally support previous claims regarding correlations between sequence properties and protein stability.

Price, W.; Chen, Y; Handelman, S; Neely, H; Manor, P; Karlin, R; Nair, R; Montelione, G; Hunt, J; et. al.

2008-01-01

433

Black hole physics. Black hole lightning due to particle acceleration at subhorizon scales.  

PubMed

Supermassive black holes with masses of millions to billions of solar masses are commonly found in the centers of galaxies. Astronomers seek to image jet formation using radio interferometry but still suffer from insufficient angular resolution. An alternative method to resolve small structures is to measure the time variability of their emission. Here we report on gamma-ray observations of the radio galaxy IC 310 obtained with the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes, revealing variability with doubling time scales faster than 4.8 min. Causality constrains the size of the emission region to be smaller than 20% of the gravitational radius of its central black hole. We suggest that the emission is associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the radio jet. PMID:25378461

Aleksi?, J; Ansoldi, S; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; Barrio, J A; Becerra González, J; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; de Oña Wilhelmi, E; Delgado Mendez, C; Dominis Prester, D; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; García López, R J; Garczarczyk, M; Garrido Terrats, D; Gaug, M; Godinovi?, N; González Muñoz, A; Gozzini, S R; Hadasch, D; Hanabata, Y; Hayashida, M; Herrera, J; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Prada Moroni, P G; Prandini, E; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rodriguez Garcia, J; Rügamer, S; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzi?, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Zanin, R; Kadler, M; Schulz, R; Ros, E; Bach, U; Krauß, F; Wilms, J

2014-11-28

434

Scale-free flow of life: on the biology, economics, and physics of the cell  

PubMed Central

The present work is intended to demonstrate that most of the paradoxes, controversies, and contradictions accumulated in molecular and cell biology over many years of research can be readily resolved if the cell and living systems in general are re-interpreted within an alternative paradigm of biological organization that is based on the concepts and empirical laws of nonequilibrium thermodynamics. In addition to resolving paradoxes and controversies, the proposed re-conceptualization of the cell and biological organization reveals hitherto unappreciated connections among many seemingly disparate phenomena and observations, and provides new and powerful insights into the universal principles governing the emergence and organizational dynamics of living systems on each and every scale of biological organizational hierarchy, from proteins and cells to economies and ecologies. PMID:19416527

Kurakin, Alexei

2009-01-01

435

Detection of hidden structures for arbitrary scales in complex physical systems  

PubMed Central

Recent decades have experienced the discovery of numerous complex materials. At the root of the complexity underlying many of these materials lies a large number of contending atomic- and largerscale configurations. In order to obtain a more detailed understanding of such systems, we need tools that enable the detection of pertinent structures on all spatial and temporal scales. Towards this end, we suggest a new method that applies to both static and dynamic systems which invokes ideas from network analysis and information theory. Our approach efficiently identifies basic unit cells, topological defects, and candidate natural structures. The method is particularly useful where a clear definition of order is lacking, and the identified features may constitute a natural point of departure for further analysis. PMID:22461970

Ronhovde, P.; Chakrabarty, S.; Hu, D.; Sahu, M.; Sahu, K. K.; Kelton, K. F.; Mauro, N. A.; Nussinov, Z.

2012-01-01

436

Physical and Numerical Modelling of a Two-Well Tracer Test at the Laboratory Scale  

NASA Astrophysics Data System (ADS)

Two-well tracer tests were performed at the laboratory scale on a large hand-compacted Bruxellian sand sample (about 2 m3), using electrical sensors buried in the soil and placed in piezometers to monitor solute concentrations. First, heterogeneity within the soil was investigated using simple one-dimensional transport experiments. Deduced perme ability values showed some non-negligible variations, that had to be taken into account when interpreting two-dimensional experiments. A numerical model was then developed under Modflow®, in order to simulate two-well tracer test recovery curves under heterogeneous soil conditions. Comparison of numerical results and experimental data highlighted the need for a sufficiently refined measurement grid, as phenomena occurring in zones where fewer sensors were installed were not well simulated.

Frippiat, Christophe; Wauters, Benoît; Feller, Vincent; Conde, Patrick; Talbaoui, Mohammed; Holeyman, Alain

437

Small Scale Structure at High Redshift: II. Physical Properties of the CIV Absorbing Clouds  

E-print Network

Keck HIRES spectra were obtained of the separate images of three gravitationally lensed QSOs (UM 673, Q1104-1804, and Q1422+2309). We studied the velocity and column density differences in CIV doublets in each QSO. Unlike the low ionization gas clouds typical of the interstellar gas in the Galaxy or damped Ly alpha galaxies, the spatial density distribution of CIV absorbing gas clouds turns out to be mostly featureless on scales up to a few hundred parsecs, with column density differences rising to 50 percent or more over separations beyond a few kpc. Similarly, velocity shear becomes detectable only over distances larger than a few hundred pc, rising to 70 km/s at a few kpc. The energy transmitted to the gas is substantially less than in present day star-forming regions, and the gas is less turbulent on a given spatial scale than, e.g., local HII regions. The quiescence of CIV clouds, taken with their probable low density, imply that these objects are not internal to galaxies. The CIV absorbers could be gas expelled recently to large radii and raining back onto its parent galaxy, or pre-enriched gas from an earlier (population III) episode of star formation, falling into the nearest mass concentration. However, while the metals in the gas may have been formed at higher redshifts, the residual turbulence in the clouds and the minimum coherence length measured here imply that the gas was stirred more recently, possibly by star formation events recurring on a timescale on the order of 10-100 Million years (abstract abbreviated).

Michael Rauch; Wallace L. W. Sargent; Thomas A. Barlow

2001-04-12

438

Influence of weathering and pre-existing large scale fractures on gravitational slope failure: insights from 3-D physical modelling  

NASA Astrophysics Data System (ADS)

Using a new 3-D physical modelling technique we investigated the initiation and evolution of large scale landslides in presence of pre-existing large scale fractures and taking into account the slope material weakening due to the alteration/weathering. The modelling technique is based on the specially developed properly scaled analogue materials, as well as on the original vertical accelerator device enabling increases in the "gravity acceleration" up to a factor 50. The weathering primarily affects the uppermost layers through the water circulation. We simulated the effect of this process by making models of two parts. The shallower one represents the zone subject to homogeneous weathering and is made of low strength material of compressive strength ?l. The deeper (core) part of the model is stronger and simulates intact rocks. Deformation of such a model subjected to the gravity force occurred only in its upper (low strength) layer. In another set of experiments, low strength (?w) narrow planar zones sub-parallel to the slope surface (?wscale fractures play a more passive role and can only influence the shape and the volume of the sliding units.

Bachmann, D.; Bouissou, S.; Chemenda, A.

2004-11-01

439

Max Planck Prince of Asturia Mobility Programme The Max-Planck-Gesellschaft was presented with the Prince of Asturias Award in  

E-print Network

Max Planck Prince of Asturia Mobility Programme The Max-Planck-Gesellschaft was presented, Spain. The Max-Planck-Gesellschaft is doubling the 50,000 prize money to establish a grant programme to fund research residencies for Spanish doctoral students and postdocs at a Max Planck Institute

440

Max Planck PhDnet | Doktorandennetzwerk der Max-Planck-Gesellschaft Executive Summary of the 2009 PhDnet Doctoral Student Survey  

E-print Network

Max Planck PhDnet | Doktorandennetzwerk der Max-Planck-Gesellschaft Executive Summary of the 2009 PhDnet Doctoral Student Survey Doctoral training and working conditions in the Max Planck Society by the excellent scientific reputation of the Max Planck Institutes, most students are very satisfied with their Ph