Physics Meets Philosophy at the Planck Scale
NASA Astrophysics Data System (ADS)
Callender, Craig; Huggett, Nick
2001-04-01
Preface; 1. Introduction Craig Callendar and Nick Huggett; Part I. Theories of Quantum Gravity and their Philosophical Dimensions: 2. Spacetime and the philosophical challenge of quantum gravity Jeremy Butterfield and Christopher Isham; 3. Naive quantum gravity Steven Weinstein; 4. Quantum spacetime: what do we know? Carlo Rovelli; Part II. Strings: 5. Reflections on the fate of spacetime Edward Witten; 6. A philosopher looks at string theory Robert Weingard; 7. Black holes, dumb holes, and entropy William G. Unruh; Part III. Topological Quantum Field Theory: 8. Higher-dimensional algebra and Planck scale physics John C. Baez; Part IV. Quantum Gravity and the Interpretation of General Relativity: 9. On general covariance and best matching Julian B. Barbour; 10. Pre-Socratic quantum gravity Gordon Belot and John Earman; 11. The origin of the spacetime metric: Bell's 'Lorentzian Pedagogy' and its significance in general relativity Harvey R. Brown and Oliver Pooley; Part IV. Quantum Gravity and the Interpretation of Quantum Mechanics: 12. Quantum spacetime without observers: ontological clarity and the conceptual foundations of quantum gravity Sheldon Goldstein and Stefan Teufel; 13. On gravity's role in quantum state reduction Roger Penrose; 14. Why the quantum must yield to gravity Joy Christian.
Cosmological texture is incompatible with Planck-scale physics
NASA Technical Reports Server (NTRS)
Holman, Richard; Hsu, Stephen D. H.; Kolb, Edward W.; Watkins, Richard; Widrow, Lawrence M.
1992-01-01
Nambu-Goldstone modes are sensitive to the effects of physics at energies comparable to the scale of spontaneous symmetry breaking. We show that as a consequence of this the global texture proposal for structure formation requires rather severe assumptions about the nature of physics at the Planck scale.
Giddings, Steven B.
2009-12-15
I outline motivations for believing that important quantum gravity effects lie beyond the Planck scale at both higher energies and longer distances and times. These motivations arise in part from the study of ultra-high energy scattering, and also from considerations in cosmology. I briefly summarize some inferences about such ultra-planckian physics, and clues we might pursue towards the principles of a more fundamental theory addressing the known puzzles and paradoxes of quantum gravity.
[Probing Planck-scale Physics with a Ne-21/He-3 Zeeman Maser
NASA Technical Reports Server (NTRS)
2003-01-01
The Ne-21/He-3 Zeeman maser is a recently developed device which employs co-located ensembles of Ne-21 and He-3 atoms to provide sensitive differential measurements of the noble gas nuclear Zeeman splittings as a function of time, thereby greatly attenuating common-mode systematic effects such as uniform magnetic field variations. The Ne-21 maser will serve as a precision magnetometer to stabilize the system's static magnetic field, while the He-3 maser is used as a sensitive probe for violations of CPT and Lorentz symmetry by searching for small variations in the 3He maser frequency as the spatial orientation of the apparatus changes due to the rotation of the Earth (or placement on a rotating table). In the context of a general extension of the Standard Model of particle physics, the Ne-21/He-3 maser will provide the most sensitive search to date for CPT and Lorentz violation of the neutron: better than 10(exp -32) GeV, an improvement of more than an order of magnitude over past experiments. This exceptional precision will offer a rare opportunity to probe physics at the Planck scale. A future space-based Ne-21/He-3 maser or related device could provide even greater sensitivity to violations of CPT and Lorentz symmetry, and hence to Planck-scale physics, because of isolation from dominant systematic effects associated with ground-based operation, and because of access to different positions in space-time.
Neutrinos:. Windows to Planck Physics
NASA Astrophysics Data System (ADS)
Ramond, P.
2004-10-01
After recalling some elegant contributions of the late Freydoon Mansouri, we turn to neutrino physics and use a modicum of grand unification to relate quark and lepton mixing matrices. We advocate an expansion for the MNS matrix, à la Wolfenstein, and argue that in a wide class of models, ?13 is a Cabibbo mixing effect. Also the large neutrino mixing angles reflect the mass patterns of the right-handed neutrinos near the Planck scale, and provide evidence for family structure at that scale.
Constraining fundamental physics with Planck
NASA Astrophysics Data System (ADS)
Rocha, Graca
2015-08-01
The ? CDM model assumes the validity of General Relativity on cosmological scales,as well as the physics of the standard model of particle physics. One possible extension, which mayhave motivations in fundamental physics, is to consider variations of dimensionless constants.Such variations can be constrained through tests on astrophysical scales.A number of physical systems have been used, spanning different time scales, to set constraints on variations of the fundamental constants.These range from atomic clocks in the laboratory at a redshift z = 0 to BBN at z ˜10^8 . However,apart from the claims of varying based on high resolution quasar absorption-line spectra,there is no other evidence for time-variable fundamental constants.CMB temperature anisotropies have been used extensively to constrain the variation of fundamental constants over cosmictimescales. In this talk I will present constraints on the temporal and spatial variation of fundamental constants such as fine structure constant, $\\alpha$, mass of the electron, $m_{e }$. etc. using CMB data with special focus on Planck data. I will also investigate the degeneracies with other cosmological parameters such as $H_{0}$ .
NASA Astrophysics Data System (ADS)
Gonzalez-Mestres, L.
2014-04-01
With the present understanding of data, the observed flux suppression for ultra-high energy cosmic rays (UHECR) at energies above 4.1019 eV can be a signature of the Greisen-Zatsepin-Kuzmin (GZK) cutoff or be related to a similar mechanism. But it may also correspond, for instance, to the maximum energies available at the relevant sources. In both cases, violations of special relativity modifying cosmic-ray propagation or acceleration at very high energy can potentially play a role. Other violations of fundamental principles of standard particle physics (quantum mechanics, energy and momentum conservation, vacuum homogeneity and "static" properties, effective space dimensions, quark confinement…) can also be relevant at these energies. In particular, UHECR data would in principle allow to set bounds on Lorentz symmetry violation (LSV) in patterns incorporating a privileged local reference frame (the "vacuum rest frame", VRF). But the precise analysis is far from trivial, and other effects can also be present. The effective parameters can be related to Planckscale physics, or even to physics beyond Planck scale, as well as to the dynamics and effective symmetries of LSV for nucleons, quarks, leptons and the photon. LSV can also be at the origin of GZK-like effects. In the presence of a VRF, and contrary to a "grand unification" view, LSV and other violations of standard principles can modify the internal structure of particles at very high energy and conventional symmetries may cease to be valid at energies close to the Planck scale. We present an updated discussion of these topics, including experimental prospects, new potentialities for high-energy cosmic ray phenomenology and the possible link with unconventional pre-Big Bang scenarios, superbradyon (superluminal preon) patterns… The subject of a possible superluminal propagation of neutrinos at accelerator energies is also dealt with.
Probing the Planck Scale with Proton Decay
Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi; Thormeier, Marc
2004-04-28
We advocate the idea that proton decay may probe physics at the Planck scale instead of the GUT scale. This is possible because supersymmetric theories have dimension-5 operators that can induce proton decay at dangerous rates, even with R-parity conservation. These operators are expected to be suppressed by the same physics that explains the fermion masses and mixings. We present a thorough analysis of nucleon partial lifetimes in models with a string-inspired anomalous U(1)_X family symmetry which is responsible for the fermionic mass spectrum as well as forbidding R-parity violating interactions. Protons and neutrons can decay via R-parity conserving non-renormalizable superpotential terms that are suppressed by the Planck scale and powers of the Cabibbo angle. Many of the models naturally lead to nucleon decay near present limits without any reference to grand unification.
Phenomenology of a realistic accelerating universe using only planck-scale physics
Albrecht; Skordis
2000-03-01
Modern data are showing increasing evidence that the Universe is accelerating. So far, all attempts to account for the acceleration have required some fundamental dimensionless quantities to be extremely small. We show how a class of scalar field models (which may emerge naturally from superstring theory) can account for acceleration which starts in the present epoch with all the potential parameters O(1) in Planck units. PMID:11017213
NASA Astrophysics Data System (ADS)
Iso, Satoshi
The discovery of the Higgs particle at around 126 GeV has given us a big hint towards the origin of the Higgs potential. The running quartic self-coupling decreases and crosses zero somewhere in the very high energy scale. It is usually considered as a signal of the instability of the standard model (SM) vacuum, but it can also indicate a link between the physics in the electroweak scale and the Planck scale. Furthermore, the LHC experiments as well as the flavor physics experiments give strong constraints on the physics beyond the SM. It urges us to reconsider the widely taken approach to the physics beyond the SM (BSM), namely the approach based on the gauge unification below the Planck scale and the resulting hierarchy problem. Motivated by the recent experiments, we first revisit the hierarchy problem and consider an alternative appoach based on a classical conformality of the SM without the Higgs mass term. In this talk, I review our recent proposal of a B-L extension of the SM with a flat Higgs potential at the Planck scale.1,2 This model can be an alternative solution to the hierarchy problem as well as being phenomenologically viable to explain the neutrino oscillations and the baryon asymmetry of the universe. With an assumption that the Higgs has a flat potential at the Planck scale, we show that the B-L symmetry is radiatively broken at the TeV scale via the Coleman-Weinberg mechanism, and it triggers the electroweak symmetry breaking through a radiatively generated scalar mixing. The ratio of these two breaking scales is dynamically determined by the B-L gauge coupling.
Probing Planck-Scale physics with a Ne-21/He-3 Zeeman maser
NASA Technical Reports Server (NTRS)
Walsworth, Ronald L.; Phillips, David
2004-01-01
We completed a search for a sidereal annual variation in the frequency difference between co-located Xe-129 and He-3 Zeeman masers. This search sets a stringent limit of approximately 10(exp -27) GeV on boost-dependent Lorentz and CPT violation involving the neutron. A paper reporting this result has been accepted for publication in Physical Review Letters. We also completed detailed modeling and design of the next-generation dual-noble-gas Zeeman maser for an improved test of Lorentz and CPT violation, and begin construction of this device.
Proton Decay and the Planck Scale
Larson, Daniel T.
2004-10-02
Even without grand unification, proton decay can be a powerful probe of physics at the highest energy scales. Supersymmetric theories with conserved R-parity contain Planck-suppressed dimension 5 operators that give important contributions tonucleon decay. These operators are likely controlled by flavor physics, which means current and near future proton decay experiments might yield clues about the fermion mass spectrum. I present a thorough analysis of nucleon partial lifetimes in supersymmetric one-flavon Froggatt-Nielsen models with a single U(1)_X family symmetry which is responsible for the fermionic mass spectrum as well as forbidding R-parity violating interactions. Many of the models naturally lead to nucleon decay near present limits without any reference to grand unification.
A probe of Planck energy physics
NASA Astrophysics Data System (ADS)
Occhionero, F.
Large scale voids are a very prominent feature in recent redshift surveys: here we attempt an explanation in terms of a first order phase transition occurring during the slow roll epoch of a two field inflation, a process where one field, omega, drives the slow rolling while the other, psi, undergoes quantum tunneling through a potential barrier. The ensuing bubble like perturbations are thought to be the precursors of the voids we observe today, while the zero-point fluctuations of the inflaton are the small, Gaussian perturbations seen by COBE on the large angular scales. The underlying physics is here assumed to be fourth order gravity (FOG, a theory derived from quadratic corrections to the Hilbert--Einstein Lagrangian) for different reasons, foremost among which the simplicity of the (conformal) potential which governs the tunneling and the slow rolling: another advantage of this theory is that one need not postulate an omega to drive inflation because gravity itself takes care of it; in fact, omega, the conformal factor which casts the theory in Einstein's form, is simply related to Ricci's scalar, R. Of course, one can obtain the same results in canonical general relativity by postulating ad hoc fields and potential. Bubbles grow to astrophysically interesting sizes only if they are nucleated a sufficient number of e-folds N before of the end of inflation: FOG can be tuned to achieve an N ~50 (unlike extended inflation, where N ~0). We display bubble spectra that generate the observed large scale structure and yet pass the constraints set by COBE. In fact, we use a toy model of bubbles in the MDE to show that caustics may be easily produced at any given redshift z_*: this may signal the formation of the first generation of galactic objects and the onset of reionization of the cosmic medium. A cosmogony where galaxies are born on spherical shells explains easily the claims of fractality (with D ~2), but only up to a maximal scale (of the order of 100 h^{-1} Mpc), homogeneity being restored thereabove. Another application of primordial bubbles is that they explain why, in apparent conflict with inflation, several authors claim that the Universe is open: it is sufficient that we live in a superhorizon bubble enucleated around N ~60 and that the Universe itself be a collection of such bubbles. Again a model based on FOG can be tuned to yield bubble spectra sharply peaked at Omega_0 .2, so that our probability of living in the right bubble is close to one. By unleashing one's fantasy, one can even envision a sequence of two phase transitions, at N ~60 and N ~50, where bubbles are born within bubbles and the bubbly topology and cosmogony are assigned to the open Universe. In conclusion, the study of the large scale structure may turn out to be a powerful probe -- and most likely the only one -- of Planck scale physics.
The Holometer: A Measurement of Planck Scale Quantum Geometry
NASA Astrophysics Data System (ADS)
Meyer, Stephan
2013-04-01
Direct experiments show that light and matter obey fundamental quantum principles such as nonlocality, superposition and entanglement. On the other hand, standard, experimentally verified particle theory generally assumes that space-time itself obeys classical determinism and locality — an approximation that cannot be reconciled with quantum matter and general relativity at intervals shorter than the Planck scale, or with the theory of black holes. These suggest that geometry has nonlocal quantum states and finite, holographic information content. The hints of new Planck scale physics open up a new experimental path: in some theories of quantum geometry, new degrees of freedom cause fluctuations in position with detectable, uniquely quantum correlations. We are developing an experiment called the Fermilab Holometer, a correlated pair of high-bandwidth Michelson interferometers. It is the first, and at present unique experiment designed to prepare and measure a coherent quantum state of position over an extended region in space. The sensitivity to transverse position noise, expressed in spectral density units, is smaller than a Planck time. When operating at its design noise limit, it will either detect or rule out some candidate forms of holographic quantum geometry.
Hogan, Craig
2010-01-08
Classical spacetime and quantum mass-energy form the basis of all of physics. They become inconsistent at the Planck scale, 5.4 times 10^{-44} seconds, which may signify a need for reconciliation in a unified theory. Although proposals for unified theories exist, a direct experimental probe of this scale, 16 orders of magnitude above Tevatron energy, has seemed hopelessly out of reach. However in a particular interpretation of holographic unified theories, derived from black hole evaporation physics, a world assembled out of Planck-scale waves displays effects of unification with a new kind of uncertainty in position at the Planck diffraction scale, the geometric mean of the Planck length and the apparatus size. In this case a new phenomenon may measurable, an indeterminacy of spacetime position that appears as noise in interferometers. The colloquium will discuss the theory of the effect, and our plans to build a holographic interferometer at Fermilab to measure it.
Max Planck and the ``black year'' of German physics
NASA Astrophysics Data System (ADS)
Mulligan, Joseph F.
1994-12-01
1994 is the hundredth anniversary of what Max Planck described in 1935 as the ``black year'' of German physics. In the eight months between January 1st and September 8th 1894, Heinrich Hertz, August Kundt, and Hermann von Helmholtz died. This article reviews the lives of these three important physicists, their research contributions, and their unique positions in the German physics community. In conclusion, the relationships of these three physicists to Planck are discussed, and Planck's evaluation of the impact of 1894 on physics in Germany is appraised from our perspective of one hundred years.
Testing Planck-scale gravity with accelerators.
Gharibyan, Vahagn
2012-10-01
Quantum or torsion gravity models predict unusual properties of space-time at very short distances. In particular, near the Planck length, around 10(-35)??m, empty space may behave as a crystal, singly or doubly refractive. However, this hypothesis remains uncheckable for any direct measurement, since the smallest distance accessible in experiment is about 10(-19)??m at the LHC. Here I propose a laboratory test to measure the space refractivity and birefringence induced by gravity. A sensitivity from 10(-31)??m down to the Planck length could be reached at existent GeV and future TeV energy lepton accelerators using laser Compton scattering. There are already experimental hints for gravity signature at distances approaching the Planck length by 5-7 orders of magnitude, derived from SLC and HERA data. PMID:23083234
Planck-scale-modified dispersion relations in FRW spacetime
NASA Astrophysics Data System (ADS)
Rosati, Giacomo; Amelino-Camelia, Giovanni; MarcianÃ², Antonino; Matassa, Marco
2015-12-01
In recent years, Planck-scale modifications of the dispersion relation have been attracting increasing interest also from the viewpoint of possible applications in astrophysics and cosmology, where spacetime curvature cannot be neglected. Nonetheless, the interplay between Planck-scale effects and spacetime curvature is still poorly understood, particularly in cases where curvature is not constant. These challenges have been so far postponed by relying on an ansatz, first introduced by Jacob and Piran. We propose here a general strategy of analysis of the effects of modifications of the dispersion relation in Friedmann-Robertson-Walker spacetimes, applicable both to cases where the relativistic equivalence of frames is spoiled ("preferred-frame scenarios") and to the alternative possibility of "DSR-relativistic theories," theories that are fully relativistic but with relativistic laws deformed so that the modified dispersion relation is observer independent. We show that the Jacob-Piran ansatz implicitly assumes that spacetime translations are not affected by the Planck scale, while under rather general conditions, the same Planck-scale quantum-spacetime structures producing modifications of the dispersion relation also affect translations. Through the explicit analysis of one of the effects produced by modifications of the dispersion relation, an effect amounting to Planck-scale corrections to travel times, we show that our concerns are not merely conceptual but rather can have significant quantitative implications.
Statistical measures of Planck scale signal correlations in interferometers
Hogan, Craig J.; Kwon, Ohkyung
2015-06-22
A model-independent statistical framework is presented to interpret data from systems where the mean time derivative of positional cross correlation between world lines, a measure of spreading in a quantum geometrical wave function, is measured with a precision smaller than the Planck time. The framework provides a general way to constrain possible departures from perfect independence of classical world lines, associated with Planck scale bounds on positional information. A parametrized candidate set of possible correlation functions is shown to be consistent with the known causal structure of the classical geometry measured by an apparatus, and the holographic scaling of information suggested by gravity. Frequency-domain power spectra are derived that can be compared with interferometer data. As a result, simple projections of sensitivity for specific experimental set-ups suggests that measurements will directly yield constraints on a universal time derivative of the correlation function, and thereby confirm or rule out a class of Planck scale departures from classical geometry.
Constraining brane inflationary magnetic field from cosmoparticle physics after Planck
NASA Astrophysics Data System (ADS)
Choudhury, Sayantan
2015-10-01
In this article, I have studied the cosmological and particle physics constraints on a generic class of large field (|? ?| > M p ) and small field (|? ?| < M p ) models of brane inflationary magnetic field from: (1) tensor-to-scalar ratio ( r), (2) reheating, (3) leptogenesis and (4) baryogenesis in case of Randall-Sundrum single braneworld gravity (RSII) framework. I also establish a direct connection between the magnetic field at the present epoch ( B 0) and primordial gravity waves ( r), which give a precise estimate of non-vanishing CP asymmetry ( ? CP) in leptogenesis and baryon asymmetry ( ? B ) in baryogenesis scenario respectively. Further assuming the conformal invariance to be restored after inflation in the framework of RSII, I have explicitly shown that the requirement of the sub-dominant feature of large scale coherent magnetic field after inflation gives two fold non-trivial characteristic constraints- on equation of state parameter ( w) and the corresponding energy scale during reheating ( ? rh 1/4 ) epoch. Hence giving the proposal for avoiding the contribution of back-reaction from the magnetic field I have established a bound on the generic reheating characteristic parameter ( R rh ) and its rescaled version ( R sc ), to achieve large scale magnetic field within the prescribed setup and further apply the CMB constraints as obtained from recently observed Planck 2015 data and Planck+BICEP2+Keck Array joint constraints. Using all these derived results I have shown that it is possible to put further stringent constraints on various classes of large and small field inflationary models to break the degeneracy between various cosmological parameters within the framework of RSII. Finally, I have studied the consequences from two specific models of brane inflation-monomial and hilltop, after applying the constraints obtained from inflation and primordial magnetic field.
Planck-scale sensitivity of CMB polarization data
NASA Astrophysics Data System (ADS)
Gubitosi, Giulia; Pagano, Luca
2009-10-01
We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by ?, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate ??-0.097±0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to ? achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-? confidence of 8.5×10 (PLANCK), 6.1×10 (Spider), and 1.0×10 (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1×10.
Corrections to tribimaximal neutrino mixing: Renormalization and Planck scale effects
Dighe, Amol; Goswami, Srubabati; Rodejohann, Werner
2007-04-01
We study corrections to tribimaximal (TBM) neutrino mixing from renormalization group (RG) running and from Planck scale effects. We show that while the RG effects are negligible in the standard model (SM), for quasidegenerate neutrinos and large tan{beta} in the minimal supersymmetric standard model (MSSM) all three mixing angles may change significantly. In both these cases, the direction of the modification of {theta}{sub 12} is fixed, while that of {theta}{sub 23} is determined by the neutrino mass ordering. The Planck scale effects can also change {theta}{sub 12} up to a few degrees in either direction for quasidegenerate neutrinos. These effects may dominate over the RG effects in the SM, and in the MSSM with small tan{beta}. The usual constraints on neutrino masses, Majorana phases or tan{beta} stemming from RG running arguments can then be relaxed. We quantify the extent of Planck scale effects on the mixing angles in terms of 'mismatch phases' which break the symmetries leading to TBM. In particular, we show that when the mismatch phases vanish, the mixing angles are not affected in spite of the Planck scale contribution. Similar statements may be made for {mu}-{tau} symmetric mass matrices.
NASA Technical Reports Server (NTRS)
Blackwell, William C., Jr.
2004-01-01
In this paper space is modeled as a lattice of Compton wave oscillators (CWOs) of near- Planck size. It is shown that gravitation and special relativity emerge from the interaction between particles Compton waves. To develop this CWO model an algorithmic approach was taken, incorporating simple rules of interaction at the Planck-scale developed using well known physical laws. This technique naturally leads to Newton s law of gravitation and a new form of doubly special relativity. The model is in apparent agreement with the holographic principle, and it predicts a cutoff energy for ultrahigh-energy cosmic rays that is consistent with observational data.
Reconciliation of high energy scale models of inflation with Planck
Ashoorioon, Amjad; Dimopoulos, Konstantinos; Sheikh-Jabbari, M.M.; Shiu, Gary E-mail: konst.dimopoulos@lancaster.ac.uk E-mail: shiu@physics.wisc.edu
2014-02-01
The inflationary cosmology paradigm is very successful in explaining the CMB anisotropy to the percent level. Besides the dependence on the inflationary model, the power spectra, spectral tilt and non-Gaussianity of the CMB temperature fluctuations also depend on the initial state of inflation. Here, we examine to what extent these observables are affected by our ignorance in the initial condition for inflationary perturbations, due to unknown new physics at a high scale M. For initial states that satisfy constraints from backreaction, we find that the amplitude of the power spectra could still be significantly altered, while the modification in bispectrum remains small. For such initial states, M has an upper bound of a few tens of H, with H being the Hubble parameter during inflation. We show that for M ? 20H, such initial states always (substantially) suppress the tensor to scalar ratio. In particular we show that such a choice of initial conditions can satisfactorily reconcile the simple ½m{sup 2}?{sup 2} chaotic model with the Planck data [1-3].
Possible cosmogenic neutrino constraints on Planck-scale Lorentz violation
Mattingly, David M.; Maccione, Luca; Galaverni, Matteo; Liberati, Stefano; Sigl, Günter E-mail: luca.maccione@desy.de E-mail: liberati@sissa.it
2010-02-01
We study, within an effective field theory framework, O(E{sup 2}M{sub Pl}{sup 2}) Planck-scale suppressed Lorentz invariance violation (LV) effects in the neutrino sector, whose size we parameterize by a dimensionless parameter ?{sub ?}. We find deviations from predictions of Lorentz invariant physics in the cosmogenic neutrino spectrum. For positive O(1) coefficients no neutrino will survive above 10{sup 19}eV. The existence of this cutoff generates a bump in the neutrino spectrum at energies of 10{sup 17}eV. Although at present no constraint can be cast, as current experiments do not have enough sensitivity to detect ultra-high-energy neutrinos, we show that experiments in construction or being planned have the potential to cast limits as strong as ?{sub ?}?<10{sup ?4} on the neutrino LV parameter, depending on how LV is distributed among neutrino mass states. Constraints on ?{sub ?} < 0 can in principle be obtained with this strategy, but they require a more detailed modeling of how LV affects the neutrino sector.
Astrophysical constraints on Planck scale dissipative phenomena.
Liberati, Stefano; Maccione, Luca
2014-04-18
The emergence of a classical spacetime from any quantum gravity model is still a subtle and only partially understood issue. If indeed spacetime is arising as some sort of large scale condensate of more fundamental objects, then it is natural to expect that matter, being a collective excitation of the spacetime constituents, will present modified kinematics at sufficiently high energies. We consider here the phenomenology of the dissipative effects necessarily arising in such a picture. Adopting dissipative hydrodynamics as a general framework for the description of the energy exchange between collective excitations and the spacetime fundamental degrees of freedom, we discuss how rates of energy loss for elementary particles can be derived from dispersion relations and used to provide strong constraints on the base of current astrophysical observations of high-energy particles. PMID:24785026
Planck measurements of the isotropy and statistics of the large scale structure of the universe.
NASA Astrophysics Data System (ADS)
Gorski, Krzysztof M.
2015-08-01
Planck was originally proposed to deliver definitive measurements of the temperature anisotropy of the cosmic microwave background on angular scales larger than ~5 arcmin. This goal has been met with the 2015 release of the legacy data set comprising full sky maps of the microwave sky at multiple frequencies. One of the fundamental aspects of cosmology is the precision with which we understand the universe itself, and in particular the nature of the structure-seeding primordial perturbations. More specifically, what do their statistical properties and consistency or otherwise with isotropy reveal about early universe physics?I will discuss the phenomenological determination of the isotropy and statistics of the large scale structure of the universe from Planck data. This is likely to remain unsurpassed in the foreseeable future.
Physical Dust Models in the Light of Planck
NASA Astrophysics Data System (ADS)
Draine, Bruce T.
2015-08-01
The Spitzer, Herschel, and Planck missions have provided observational data that challenge existing models of interstellar dust, and will guide us in the development of a new generation of dust models. The spectacular data from Planck now enable us to characterize the intensity of dust emission at wavelengths from 350um to 3mm, with invaluable measurements of polarized dust emission from 850um to 4mm. Models for interstellar dust are constrained by these new data, and also by many other observational constraints, such as infrared emission at shorter wavelengths, wavelength-dependent extinction and polarization of starlight, scattering of starlight, scattering and extinction of X-rays by dust, and ground-based studies of anomalous microwave emission.A physical dust model consists of dust grains with specified compositions, geometries, and sizes. The assumed physical properties of the dust should be consistent with the laws of physics, our understanding of candidate materials, and interstellar abundance constraints. I will review some contemporary dust models, and discuss how they fare when confronted with available data.
NASA Astrophysics Data System (ADS)
Mathews, G. J.; Gangopadhyay, M. R.; Ichiki, K.; Kajino, T.
2015-12-01
The power spectrum of the cosmic microwave background from both the Planck and WMAP data exhibits a slight dip for multipoles in the range of l =10 - 30 . We show that such a dip could be the result of the resonant creation of massive particles that couple to the inflaton field. For our best-fit models, the epoch of resonant particle creation reenters the horizon at a wave number of k*˜0.00011 ±0.0004 (h Mpc-1 ). The amplitude and location of this feature corresponds to the creation of a number of degenerate fermion species of mass ˜(8 - 11 )/?3 /2 mp l during inflation where ? ˜(1.0 ±0.5 )N-2 /5 is the coupling constant between the inflaton field and the created fermion species, while N is the number of degenerate species. Although the evidence is of marginal statistical significance, this could constitute new observational hints of unexplored physics beyond the Planck scale.
Quantum Geometry and Quantum Dynamics at the Planck Scale
Bojowald, Martin
2009-12-15
Canonical quantum gravity provides insights into the quantum dynamics as well as quantum geometry of space-time by its implications for constraints. Loop quantum gravity in particular requires specific corrections due to its quantization procedure, which also results in a discrete picture of space. The corresponding changes compared to the classical behavior can most easily be analyzed in isotropic models, but perturbations around them are more involved. For one type of corrections, consistent equations have been found which shed light on the underlying space-time structure at the Planck scale: not just quantum dynamics but also the concept of space-time manifolds changes in quantum gravity. Effective line elements provide indications for possible relationships to other frameworks, such as non-commutative geometry.
Ultra-high energy physics and standard basic principles. Do Planck units really make sense?
NASA Astrophysics Data System (ADS)
Gonzalez-Mestres, Luis
2014-04-01
It has not yet been elucidated whether the observed flux suppression for ultra-high energy cosmic rays (UHECR) at energies above ? 4 x 1019 eV is a signature of the Greisen-Zatsepin-Kuzmin (GZK) cutoff or a consequence of other phenomena. In both cases, violations of the standard fundamental principles of Physics can be present and play a significant role. They can in particular modify cosmic-ray interactions, propagation or acceleration at very high energy. Thus, in a long-term program, UHECR data can hopefully be used to test relativity, quantum mechanics, energy and momentum conservation, vacuum properties... as well as the elementariness of standard particles. Data on cosmic rays at energies ? 1020 eV may also be sensitive to new physics generated well beyond Planck scale. A typical example is provided by the search for possible signatures of a Lorentz symmetry violation (LSV) associated to a privileged local reference frame (the "vacuum rest frame", VRF). If a VRF exists, the internal structure of standard particles at ultra-high energy can undergo substantial modifications. Similarly, the conventional particle symmetries may cease to be valid at such energies instead of heading to a grand unification and the structure of vacuum may no longer be governed by standard quantum field theory. Then, the question whether the notion of Planck scale still makes sense clearly becomes relevant and the very grounds of Cosmology can undergo essential modifications. UHECR studies naturally interact with the interpretation of WMAP and Planck observations. Recent Planck data analyses tend to confirm the possible existence of a privileged space direction. If the observed phenomenon turns out to be a signature of the spinorial space-time (SST) we suggested in 1996-97, then conventional Particle Physics may correspond to the local properties of standard matter at low enough energy and large enough distances. This would clearly strengthen the cosmological relevance of UHECR phenomenology and weaken the status of the Planck scale hypothesis. Another crucial observation is that, already before incorporating standard matter and relativity, the SST geometry naturally yields a H t = 1 law where t is the age of the Universe and H the ratio between relative speeds and distances at cosmic scale. As standard cosmology is not required to get such a fundamental result, the need for a conventional Planck scale is far from obvious and the study of UHECR can potentially yield evidence for an alternative approach including new physics and new ultimate constituents of matter. UHECR may in particular allow to explore the possible indications of the existence of a transition scale at very high energy where the standard laws would start becoming less and less dominant and new physics would replace the conventional fundamental principles. We discuss prospects of searches for potential signatures of such a phenomenon.
Scale problem in wormhole physics
Kim, J. E.; Lee, K.
1989-07-03
Wormhole physics from the quantum thoery of gravity coupled to the second-rank antisymmetric tensor or Goldstone-boson fields leads to an effective potential for these fields. The cosmological energy-density bound is shown to put an upper bound on the cosmological constant which wormhole physics can make zero. This upper bound, of order 10/sup 11/ GeV, is far smaller than the Planck scale and barely compatible with the possible cosmological constant arising from grand unified theories. In addition, the effect of wormholes on the axion for the strong /ital CP/ problem is discussed.
Does the planck mass run on the cosmological-horizon scale?
Robbers, Georg; Afshordi, Niayesh; Doran, Michael
2008-03-21
Einstein's theory of general relativity contains a universal value of the Planck mass. However, one may envisage that in alternative theories of gravity the effective value of the Planck mass (or Newton's constant), which quantifies the coupling of matter to metric perturbations, can run on the cosmological-horizon scale. In this Letter, we study the consequences of a glitch in the Planck mass from subhorizon to superhorizon scales. We show that current cosmological observations severely constrain this glitch to less than 1.2%. PMID:18517773
Physics League Across Numerous Countries for Kick-ass Students (PLANCKS)
NASA Astrophysics Data System (ADS)
Haasnoot, Irene
2016-01-01
Physics League Across Numerous Countries for Kick-ass Students (PLANCKS) is an international theoretical physics competition for bachelor and master students. The intention of PLANCKS is to increase international collaboration and stimulate the personal development of individual contestants. This is done by organizing a three-day-event which take place every year and is hosted by different countries. Besides the contest, social and scientific activities will be organised, including an opening symposium where leading physicists give lectures to inspire the participants.
A Planck-scale limit on spacetime fuzziness and stochastic Lorentz invariance violation
NASA Astrophysics Data System (ADS)
Vasileiou, Vlasios; Granot, Jonathan; Piran, Tsvi; Amelino-Camelia, Giovanni
2015-04-01
Wheeler’s `spacetime-foam’ picture of quantum gravity (QG) suggests spacetime fuzziness (fluctuations leading to non-deterministic effects) at distances comparable to the Planck length, LPl ~ 1.62 × 10-33 cm, the inverse (in natural units) of the Planck energy, EPl ~ 1.22 × 1019 GeV. The resulting non-deterministic motion of photons on the Planck scale is expected to produce energy-dependent stochastic fluctuations in their speed. Such a stochastic deviation from the well-measured speed of light at low photon energies, c, should be contrasted with the possibility of an energy-dependent systematic, deterministic deviation. Such a systematic deviation, on which observations by the Fermi satellite set Planck-scale limits for linear energy dependence, is more easily searched for than stochastic deviations. Here, for the first time, we place Planck-scale limits on the more generic spacetime-foam prediction of energy-dependent fuzziness in the speed of photons. Using high-energy observations from the Fermi Large Area Telescope (LAT) of gamma-ray burst GRB090510, we test a model in which photon speeds are distributed normally around c with a standard deviation proportional to the photon energy. We constrain the model’s characteristic energy scale beyond the Planck scale at >2.8EPl(>1.6EPl), at 95% (99%) confidence. Our results set a benchmark constraint to be reckoned with by any QG model that features spacetime quantization.
Dynamical Effects of the Neutrino Gravitational Clustering at Planck Angular Scales
NASA Astrophysics Data System (ADS)
Popa, L. A.; Burigana, C.; Mandolesi, N.
2002-11-01
We study the cosmic microwave background (CMB) anisotropy induced by the nonlinear perturbations in the massive neutrino density associated with the nonlinear gravitational clustering process. By using N-body simulations, we compute the imprint left by gravitational clustering on the CMB anisotropy power spectrum for all nonlinear scales, taking into account the time evolution of all nonlinear density perturbations, for a flat, cold, hot dark matter model with cosmological constant (ACHDM) consistent with large-scale structure data and the latest CMB measurements with different neutrino fractions f? corresponding to a neutrino total mass in the range allowed by the neutrino oscillation and double beta decay experiments. We find that the nonlinear time-varying potential induced by the gravitational clustering process generates metric perturbations, leading to a decrease in the CMB anisotropy power spectrum of amplitude ?T/T~10-6 for angular resolutions between ~4' and 20', depending on the cluster mass scale and the neutrino fraction f?. We find a better consistency between the CMB angular power spectrum derived from BOOMERANG data and that derived from MAXIMA-1 and DASI and a slight reduction of the errors on most of the cosmological parameters when the nonlinear effects induced by the gravitational clustering are taken into account. Our results show that, for a neutrino fraction in agreement with that indicated by astroparticle and nuclear physics experiments, and a cosmological accreting mass comparable with the mass of known clusters, the angular resolution and sensitivity of the CMB anisotropy measurements from the Planck satellite will allow the detection of the dynamical effects of gravitational clustering. In addition, including the nonlinear aspects of the neutrino gravitational clustering allows reduction in the errors on ns and ?. This work has been performed within the framework of the Planck LFI activities.
None
2011-10-06
Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by Â° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, Â° the ERC Advanced Grant "MassTeV" 226371, Â° and the CERN-TH unit.
2010-06-02
Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by ° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, ° the ERC Advanced Grant "MassTeV" 226371, ° and the CERN-TH unit.
None
2011-10-06
Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by ° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, ° the ERC Advanced Grant "MassTeV" 226371, ° and the CERN-TH unit.
2010-06-02
Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by Â° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, Â° the ERC Advanced Grant "MassTeV" 226371, Â° and the CERN-TH unit.
Planck-scale Lorentz violation constrained by Ultra-High-Energy Cosmic Rays
Maccione, Luca; Taylor, Andrew M.; Liberati, Stefano; Mattingly, David M. E-mail: andrew.taylor@mpi-hd.mpg.de E-mail: liberati@sissa.it
2009-04-15
We investigate the consequences of higher dimension Lorentz violating, CPT even kinetic operators that couple standard model fields to a non-zero vector field in an Effective Field Theory framework. Comparing the ultra-high energy cosmic ray spectrum reconstructed in the presence of such terms with data from the Pierre Auger observatory allows us to establish two sided bounds on the coefficients of the mass dimension five and six operators for the proton and pion. Our bounds imply that for both protons and pions, the energy scale of Lorentz symmetry breaking must be well above the Planck scale. In particular, the dimension five operators are constrained at the level of 10{sup -3}M{sub Planck}{sup -1}. The magnitude of the dimension six proton coefficient is bounded at the level of 10{sup -6}M{sub Planck}{sup -2} except in a narrow range where the pion and proton coefficients are both negative and nearly equal. In this small area, the magnitude of the dimension six proton coefficient must only be below 10{sup -3}M{sub Planck}{sup -2}. Constraints on the dimension six pion coefficient are found to be much weaker, but still below M{sub Planck}{sup -2}.
A constraint on Planck-scale modifications to electrodynamics with CMB polarization data
Gubitosi, Giulia; Pagano, Luca; Amelino-Camelia, Giovanni; Melchiorri, Alessandro; Cooray, Asantha E-mail: luca.pagano@roma1.infn.it E-mail: alessandro.melchiorri@roma1.infn.it
2009-08-01
We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by ?, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate ? ? ?0.110±0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to ? achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-? confidence of 8.5 × 10{sup ?4} (PLANCK), 6.1 × 10{sup ?3} (Spider), and 1.0 × 10{sup ?5} (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1 × 10{sup ?6}.
A constraint on Planck-scale modifications to electrodynamics with CMB polarization data
NASA Astrophysics Data System (ADS)
Gubitosi, Giulia; Pagano, Luca; Amelino-Camelia, Giovanni; Melchiorri, Alessandro; Cooray, Asantha
2009-08-01
We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by ?, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate ? simeq -0.110±0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to ? achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-? confidence of 8.5 × 10-4 (PLANCK), 6.1 × 10-3 (Spider), and 1.0 × 10-5 (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1 × 10-6.
Quantum dynamics via Planck-scale-stepped action-carrying 'Graph Paths'
Chew, Geoffrey F.
2003-05-05
A divergence-free, parameter-free, path-based discrete-time quantum dynamics is designed to not only enlarge the achievements of general relativity and the standard particle model, by approximations at spacetime scales far above Planck scale while far below Hubble scale, but to allow tackling of hitherto inaccessible questions. ''Path space'' is larger than and precursor to Hilbert-space basis. The wave-function-propagating paths are action-carrying structured graphs-cubic and quartic structured vertices connected by structured ''fermionic'' or ''bosonic'' ''particle'' and ''nonparticle'' arcs. A Planck-scale path step determines the gravitational constant while controlling all graph structure. The basis of the theory's (zero-rest-mass) elementary-particle Hilbert space (which includes neither gravitons nor scalar bosons) resides in particle arcs. Nonparticle arcs within a path are responsible for energy and rest mass.
Effective Planck mass and the scale of inflation
NASA Astrophysics Data System (ADS)
Kleban, Matthew; Mirbabayi, Mehrdad; Porrati, Massimo
2016-01-01
A recent paper argued that it is not possible to infer the energy scale of inflation from the amplitude of tensor fluctuations in the Cosmic Microwave Background, because the usual connection is substantially altered if there are a large number of universally coupled fields present during inflation, with mass less than the inflationary Hubble scale. We give a simple argument demonstrating that this is incorrect.
Inflation from radion gauge-Higgs potential at Planck scale
NASA Astrophysics Data System (ADS)
Abe, Yugo; Inami, Takeo; Kawamura, Yoshiharu; Koyama, Yoji
2015-09-01
We study whether inflation is realized based on the radion gauge-Higgs potential obtained from the one-loop calculation in five-dimensional gravity coupled to a U(1) gauge theory. We show that the gauge-Higgs can give rise to inflation in accord with the astrophysical data and the radion plays a role in fixing the values of physical parameters. We clarify the reason why the radion dominated inflation and the hybrid inflation cannot occur in our framework.
Conjecture on the physical implications of the scale anomaly
Hill, Christopher T.; /Fermilab
2005-10-01
Murray Gell-Mann, after co-inventing QCD, recognized the interplay of the scale anomaly, the renormalization group, and the origin of the strong scale, {Lambda}{sub QCD}. I tell a story, then elaborate this concept, and for the sake of discussion, propose a conjecture that the physical world is scale invariant in the classical, {h_bar}, limit. This principle has implications for the dimensionality of space-time, the cosmological constant, the weak scale, and Planck scale.
BOOK REVIEW Planck Scale Effects in Astrophysics and Cosmology
NASA Astrophysics Data System (ADS)
Padmanabhan, Thanu
2007-08-01
It has been generally agreed that putting together the principles of quantum theory and general relativity will usher the next revolution in physics. The trouble, of course, is that we have been now waiting for several decades for this revolution to take place. While people get excited about different directions of development every once in a while (with some excitements propped up by a larger number of researchers than others), it is probably fair to say that nothing which can be called definitive progress has taken place in the last several decades. Given the state of affairs it is definitely worthwhile to keep an open mind regarding new ideas and have at least a small fraction of researchers working somewhat away from the mainstream. This could possibly lead to new insights which have been missed by the more conventional mainstream approaches and could even finally provide a much awaited breakthrough. The collection of articles in this book should probably be viewed against such a backdrop. A few of the articles contained in the book deal with topics which are probably not mainstream. But all the speakers have presented their ideas clearly and in a proper setting, making many of the articles quite useful for a person who wants to obtain a bird's eye view. The connecting thread is essentially whether some aspects of quantum gravitational physics can lead to potentially observable effects or provide explanations for known effects. The book also contains a few overview articles of exceptional clarity. In particular I would like to mention the one by E Alvarez on quantum gravity, the one by L Smolin on loop quantum gravity and J Martin's article on the origin of cosmological perturbations. The rest of the articles are more focussed on possible quantum gravity phenomenology and discuss diverse topics such as astrophysical bounds of Lorentz violations, doubly special relativity and the role of quantum form in quantum gravity phenomenon. I thoroughly enjoyed reading through the articles in this book and it must have been an exciting conference. (The book under review is based on the lectures given at the 40th Karpacz Winter School.) This is a valuable addition to any library and will serve as a useful source of information for any graduate student or researcher who wants to enter or appreciate this field.
Low and high scale MSSM inflation, gravitational waves and constraints from Planck
Choudhury, Sayantan; Pal, Supratik; Mazumdar, Anupam E-mail: a.mazumdar@lancaster.ac.uk
2013-07-01
In this paper we will analyze generic predictions of an inflection-point model of inflation with Hubble-induced corrections and study them in light of the Planck data. Typically inflection-point models of inflation can be embedded within Minimal Supersymmetric Standard Model (MSSM) where inflation can occur below the Planck scale. The flexibility of the potential allows us to match the observed amplitude of the TT-power spectrum of the cosmic microwave background radiation with low and high multipoles, spectral tilt, and virtually mild running of the spectral tilt, which can put a bound on an upper limit on the tensor-to-scalar ratio, r â‰¤ 0.12. Since the inflaton within MSSM carries the Standard Model charges, therefore it is the minimal model of inflation beyond the Standard Model which can reheat the universe with the right thermal degrees of freedom without any dark-radiation.
NASA Astrophysics Data System (ADS)
Rovelli, Carlo; Vidotto, Francesca
2014-12-01
Quantum-gravitational pressure can stop gravitational collapse and cause a bounce. We observe that: (i) due to the huge time dilation, the process can last micro-seconds in local proper time and billions of years observed from the outside; (ii) the bounce volume can be much larger than planckian, because the onset of quantum-gravity effects is governed by density, not size; (iii) the emerging object can then be bigger than planckian by a factor (m/mP)n, where m is the initial mass, mP is the Planck mass, and n positive; (iv) the interior of an evaporating hole can keep memory of the initial mass, providing an independent scale for the physics of the final explosion. If so, primordial black holes could produce a detectable signal of quantum gravitational origin, which we estimate, under some hypotheses, around the wavelength 10-14 cm.
Production and Evaporation of Planck Scale Black Holes at the Lhc
NASA Astrophysics Data System (ADS)
Nicolini, P.; Mureika, J.; Spallucci, E.; Winstanley, E.; Bleicher, M.
2015-01-01
We review the phenomenology of mini black holes at colliders in light of the latest data from the LHC. By improving the conventional production cross-section, we show that the current non-observation of black hole signals can be explained in terms of quantum gravity effects. In the most optimistic case, black hole production could take place at a scale slightly above the LHC design energy. We also analyse possible new signatures of quantum-corrected Planck-scale black holes: in contrast to the semiclassical scenario the emission would take place in terms of soft particles mostly on the brane.
NASA Astrophysics Data System (ADS)
Rompe, Robert; Treder, Hans-Jürgen
Es gibt eine Physik, die an die Konstante h gebunden ist und die mit der Atomistik zusammenhängt. Diese h-Physik geht eindeutig auf Planck zurück. Aber, aus dieser Physik folgt die Atomistik als Existenz lokalisierter geladener Teilchen unterschiedlichen Massen nicht, vor allem nicht die des Ladungsquants, so daß also Demokrit mehr behauptet hat, als die Quantenphysik zu beantworten kompetent ist.Translated AbstractDemokrit - PlanckA branch of physics exists closely linked to the constant h and associated with atomism. It is this h-physics that Planck originated. But atomism like existence of localized, charged particles with different masses does not follow from this physics, especially the charge quant. Hence Demokrit asserted more then quantum physics is competent to answer.
On the significance of power asymmetries in Planck CMB data at all scales
Quartin, Miguel; Notari, Alessio E-mail: notari@ffn.ub.es
2015-01-01
We perform an analysis of the CMB temperature data taken by the Planck satellite investigating if there is any significant deviation from cosmological isotropy. We look for differences in the spectrum between two opposite hemispheres and also for dipolar modulations. We propose a new way to avoid biases due to partial-sky coverage by producing a mask symmetrized in antipodal directions, in addition to the standard smoothing procedure. We also properly take into account both Doppler and aberration effects due to our peculiar velocity and the anisotropy of the noise, since these effects induce a significant hemispherical asymmetry. We are thus able to probe scales all the way to ? = 2000. After such treatment we find no evidence for significant hemispherical anomalies along any of the analyzed directions (i.e. deviations are less than 1.5? when summing over all scales). Although among the larger scales there are sometimes higher discrepancies, these are always less than 3?. We also find results on a dipolar modulation of the power spectrum. Along the hemispheres aligned with the most asymmetric direction for 2 ? ? ? 2000 we find a 3.3? discrepancy when comparing to simulations. However, if we do not restrict ourselves to Planck's maximal asymmetry axis, which can only be known a posteriori, and compare Planck data with the modulation of simulations along their respective maximal asymmetry directions, the discrepancy goes down to less than 1? (with, again, almost 3? discrepancies in some low-? modes). We thus conclude that no significant power asymmetries seem to be present in the full data set. Interestingly, without proper removal of Doppler and aberration effects one would find spurious anomalies at high ?, between 3? and 5?. Even when considering only ? < 600 we find that the boost is non-negligible and alleviates the discrepancy by roughly half-?.
Hierarchy problem, gauge coupling unification at the Planck scale, and vacuum stability
NASA Astrophysics Data System (ADS)
Haba, Naoyuki; Ishida, Hiroyuki; Takahashi, Ryo; Yamaguchi, Yuya
2015-11-01
From the point of view of the gauge hierarchy problem, introducing an intermediate scale in addition to TeV scale and the Planck scale (MPl = 2.4 ×1018 GeV) is unfavorable. In that way, a gauge coupling unification (GCU) is expected to be realized at MPl. We explore possibilities of GCU at MPl by adding a few extra particles with TeV scale mass into the standard model (SM). When extra particles are fermions and scalars (only fermions) with the same mass, the GCU at MPl can (not) be realized. On the other hand, when extra fermions have different masses, the GCU can be realized around ?{ 8 ? }MPl without extra scalars. This simple SM extension has two advantages that a vacuum becomes stable up to MPl (?{ 8 ? }MPl) and a proton lifetime becomes much longer than an experimental bound.
Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale
NASA Astrophysics Data System (ADS)
Gorbunov, Dmitry S.; Sibiryakov, Sergei M.
2005-09-01
We present an extension of the Randall-Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam-Veltman-Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances.
Purity is not eternal in theories with Planck-scale deformed symmetries
NASA Astrophysics Data System (ADS)
Arzano, Michele
2014-07-01
Theories with Planck-scale-deformed symmetries exhibit quantum time evolution in which purity of the density matrix is not preserved. In particular we show that the nontrivial structure of momentum space of these models is reflected in a deformed action of translation generators on operators. Such action in the case of time-translation generators leads to a Lindblad-like evolution equation for density matrices when expanded at leading order in the Planckian deformation parameter. This evolution equation is covariant under the deformed realization of Lorentz symmetries characterizing these models.
THE Y {sub SZ}-Y{sub X} SCALING RELATION AS DETERMINED FROM PLANCK AND CHANDRA
Rozo, Eduardo; More, Surhud; Vikhlinin, Alexey
2012-11-20
Sunyaev-Zeldovich (SZ) clusters surveys, such as Planck, the South Pole Telescope, and the Atacama Cosmology Telescope, will soon be publishing several hundred SZ-selected systems. The key ingredient required to transport the mass calibration from current X-ray-selected cluster samples to these SZ systems is the Y {sub SZ}-Y{sub X} scaling relation. We constrain the amplitude, slope, and scatter of the Y {sub SZ}-Y{sub X} scaling relation using SZ data from Planck and X-ray data from Chandra. We find a best-fit amplitude of ln (D {sup 2} {sub A} Y {sub SZ}/CY{sub X} ) = -0.202 {+-} 0.024 at the pivot point CY{sub X} = 8 Multiplication-Sign 10{sup -5} Mpc{sup 2}. This corresponds to a Y {sub SZ}/Y{sub X} ratio of 0.82 {+-} 0.024, in good agreement with X-ray expectations after including the effects of gas clumping. The slope of the relation is {alpha} = 0.916 {+-} 0.032, consistent with unity at Almost-Equal-To 2.3{sigma}. We are unable to detect intrinsic scatter, and find no evidence that the scaling relation depends on cluster dynamical state.
Radiative electroweak symmetry breaking model perturbative all the way to the Planck scale.
Chway, Dongjin; Dermíšek, Radovan; Jung, Tae Hyun; Kim, Hyung Do
2014-08-01
We discuss an extension of the standard model by fields not charged under standard model gauge symmetry in which the electroweak symmetry breaking is driven by the Higgs quartic coupling itself without the need for a negative mass term in the potential. This is achieved by a scalar field S with a large coupling to the Higgs field at the electroweak scale which is driven to very small values at high energies by the gauge coupling of a hidden symmetry under which S is charged. This model can remain perturbative all the way to the Planck scale. The Higgs boson is fully standard-model-like in its couplings to fermions and gauge bosons. However, the effective cubic and quartic self-couplings of the Higgs boson are significantly enhanced. PMID:25126909
Planck 2013 results. XVII. Gravitational lensing by large-scale structure
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Déchelette, T.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lavabre, A.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Pullen, A. R.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Smith, K.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
On the arcminute angular scales probed by Planck, the cosmic microwave background (CMB) anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217 GHz frequency bands with an overall significance of greater than 25?. We use thetemperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting ?CDM model for the Planck temperature power spectrum, showing that this measurement at z = 1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy-breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the root-mean-squared amplitude of matter fluctuations at z ~ 2.
NASA Astrophysics Data System (ADS)
DiÃ³si, Lajos; Elze, Hans-Thomas; Fronzoni, Leone; Halliwell, Jonathan; Prati, Enrico; Vitiello, Giuseppe; Yearsley, James
2013-06-01
Presented in this volume are the Invited Lectures and the Contributed Papers of the Sixth International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2012, held at Castello Pasquini, Castiglioncello (Tuscany), 17-21 September 2012. These proceedings may document to the interested public and to the wider scientific community the stimulating exchange of ideas at the meeting. The number of participants has been steadily growing over the years, reflecting an increasing attraction, if not need, of such conference. Our very intention has always been to bring together leading researchers, advanced students, and renowned scholars from various areas, in order to stimulate new ideas and their exchange across the borders of specialization. In this way, the series of meetings successfully continued from the beginning with DICE 20021, followed by DICE 20042, DICE 20063, DICE 20084, and DICE 20105, Most recently, DICE 2012 brought together more than 120 participants representing more than 30 countries worldwide. It has been a great honour and inspiration to have Professor Yakir Aharonov (Tel Aviv) with us, who presented the opening Keynote Lecture 'The two-vector quantum formalism'. With the overarching theme 'Spacetime - Matter - Quantum Mechanics - from the Planck scale to emergent phenomena', the conference took place in the very pleasant and inspiring atmosphere of Castello Pasquini - in beautiful surroundings, overlooking a piece of Tuscany's coast. The 5-day program covered these major topics: Quantum Mechanics, Foundations and Quantum-Classical Border Quantum-Classical Hybrids and Many-Body Systems Spectral Geometry, Path Integrals and Experiments Quantum -/- Gravity -/- Spacetime Quantum Mechanics on all Scales? A Roundtable Discussion under the theme 'Nuovi orizzonti nella ricerca scientifica. Ci troviamo di fronte ad una rivoluzione scientifica?' formed an integral part of the program. With participation of E Del Giudice (INFN & UniversitÃ di Milano), F Guerra (UniversitÃ 'La Sapienza', Roma) and G Vitiello (UniversitÃ di Salerno), this event traditionally dedicated to the public drew a large audience involved in lively discussions until late. The workshop was organized by L DiÃ³si (Budapest), H-T Elze (Pisa, chair), L Fronzoni (Pisa), J J Halliwell (London), E Prati (Milano) and G Vitiello (Salerno), with most essential help from our conference secretaries L Fratino, N Lampo, I Pozzana, and A Sonnellini, all students from Pisa, and from our former secretaries M Pesce-Rollins and L Baldini. Several institutions and sponsors supported the workshop and their representatives and, in particular, the citizens of Rosignano/Castiglioncello are deeply thanked for the generous help and kind hospitality: Comune di Rosignano - A Franchi (Sindaco di Rosignano), S Scarpellini (Segreteria sindaco), L Benini (Assessore ai lavori pubblici), M Pia (Assessore all' urbanistica) REA Rosignano Energia Ambiente s.p.a. - F Ghelardini (Presidente della REA), E Salvadori and C Peccianti (Segreteria) Associazione Armunia - A Nanni (Direttore), G Mannari (Programmazione), C Perna, F Bellini, M Nannerini, P Bruni and L Meucci (Tecnici). Special thanks go to G Mannari and her collaborators for advice and great help in all the practical matters that had to be dealt with, in order to run the meeting at Castello Pasquini smoothly Funds made available by UniversitÃ di Pisa, Domus Galilaeana (Pisa), Centro Interdisciplinare per lo Studio dei Sistemi Complessi - CISSC (Pisa), Dipartimento di Ingegneria Industriale (UniversitÃ di Salerno), Istituto Italiano per gli Studi Filosofici - IISF (Napoli), Solvay Italia SA (Rosignano), Institute of Physics Publishing - IOP (Bristol), Springer Verlag (Heidelberg), and Hungarian Scientific Research Fund OTKA are gratefully acknowledged. Last, but not least, special thanks are due to Laura Pesce (Vitrium Galleria, San Vincenzo) for the exposition of her artwork 'arte e scienza' at Castello Pasquini during the conference. The papers submitted in the wake of the conference have been edited by L DiÃ³si, H-T Elze, L Fronzoni, J J Halliwell, E Prati, G Vitiello and J Yearsley. The proceedings follow essentially the order of presentation during the conference, separating, however, invited lectures and contributed papers6. In the name of all participants, we would like to thank S Toms with her collaborators at IOP Publishing (Bristol) for friendly advice and most valuable immediate help during the editing process and, especially, for their continuing efforts to make the Journal of Physics: Conference Series available to all. Budapest, Pisa, London, Milano, Salerno, Cambridge, April 2013 Lajos DiÃ³si, Hans-Thomas Elze, Leone Fronzoni, Jonathan Halliwell, Enrico Prati, Giuseppe Vitiello and James Yearsley 1 Decoherence and Entropy in Complex Systems ed H-T Elze Lecture Notes in Physics 633 (Berlin: Springer, 2004) 2 Proceedings of the Second International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2004 ed H-T Elze Braz. Journ. Phys. 35 A & 2B (2005) pp 205-529 free access at: www.sbfisica.org.br/bjp 3 Proceedings of the Third International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2006 eds H-T Elze, L DiÃ³si and G Vitiello Journal of Physics: Conference Series 67 (2007); free access at: www.iop.org/EJ/toc/1742-6596/67/1 4 Proceedings of the Fourth International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2008> eds H-T Elze, L DiÃ³si, L Fronzoni, J J Halliwell and G Vitiello Journal of Physics: Conference Series 174 (2009); free access at: http://www.iop.org/EJ/toc/1742-6596/174/1 5 Proceedings of the Fifth International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2010 eds H-T Elze, L DiÃ³si, L Fronzoni, J J Halliwell, E Prati, G Vitiello and J Yearsley Journal of Physics: Conference Series 306 (2011); free access at: http://iopscience.iop.org/1742-6596/306/1 6 We regret that invited lectures by Y Aharonov, J Barbour, G Casati and X-G Wen could not be reproduced here, partly for copyright reasons
Planck intermediate results. X. Physics of the hot gas in the Coma cluster
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Bernard, J.-P.; Bersanelli, M.; Bikmaev, I.; BÃ¶hringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bourdin, H.; Brown, M. L.; Brown, S. D.; Burenin, R.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; CayÃ³n, L.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colafrancesco, S.; Colombo, L. P. L.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; DÃ©moclÃ¨s, J.; DÃ©sert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; DorÃ©, O.; DÃ¶rl, U.; Douspis, M.; Dupac, X.; EnÃŸlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; GÃ©nova-Santos, R. T.; Giard, M.; Gilfanov, M.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, T. R.; Jagemann, T.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Khamitov, I.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marleau, F.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paoletti, D.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Piffaretti, R.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; RubiÃ±o-MartÃn, J. A.; Rudnick, L.; Rusholme, B.; Sandri, M.; Savini, G.; Schaefer, B. M.; Scott, D.; Smoot, G. F.; Stivoli, F.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tuovinen, J.; TÃ¼rler, M.; Umana, G.; Valenziano, L.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Welikala, N.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zaroubi, S.; Zonca, A.
2013-06-01
We present an analysis of Planck satellite data on the Coma cluster observed via the Sunyaev-Zeldovich effect. Thanks to its great sensitivity, Planck is able, for the first time, to detect SZ emission up to r â‰ˆ 3 Ã— R500. We test previously proposed spherically symmetric models for the pressure distribution in clusters against the azimuthally averaged data. In particular, we find that the Arnaud et al. (2010, A&A, 517, A92) "universal" pressure profile does not fit Coma, and that their pressure profile for merging systems provides a reasonable fit to the data only at r < R500; by r = 2 Ã— R500 it underestimates the observed y profile by a factor of â‰ƒ2. This may indicate that at these larger radii either: i) the cluster SZ emission is contaminated by unresolved SZ sources along the line of sight; or ii) the pressure profile of Coma is higher at r > R500 than the mean pressure profile predicted by the simulations used to constrain the models. The Planck image shows significant local steepening of the y profile in two regions about half a degree to the west and to the south-east of the cluster centre. These features are consistent with the presence of shock fronts at these radii, and indeed the western feature was previously noticed in the ROSAT PSPC mosaic as well as in the radio. Using Plancky profiles extracted from corresponding sectors we find pressure jumps of 4.9-0.2+0.4 and 5.0-0.1+1.3 in the west and south-east, respectively. Assuming Rankine-Hugoniot pressure jump conditions, we deduce that the shock waves should propagate with Mach number Mw = 2.03-0.04+0.09 and Mse = 2.05-0.02+0.25 in the west and south-east, respectively. Finally, we find that the y and radio-synchrotron signals are quasi-linearly correlated on Mpc scales, with small intrinsic scatter. This implies either that the energy density of cosmic-ray electrons is relatively constant throughout the cluster, or that the magnetic fields fall off much more slowly with radius than previously thought.
NASA Astrophysics Data System (ADS)
Gooch, C.; Garbini, L.; Abt, I.; Schulz, O.; Palermo, M.; Majorovits, B.; Liao, H.-Y.; Liu, X.; Seitz, H.
2015-05-01
The GeDetgroup at the Max Planck Institute for Physics in Munich, Germany, operates a number of test stands in order to conduct research on novel germanium detectors. The test stands are of a unique design and construction that provide the ability to probe the properties of new detector types. The GALATEA test stand was especially designed for surface scans, specifically a-induced surface events, a problem faced in low background experiments due to unavoidable surface contamination of detectors. A special 19-fold segmented coaxial prototype detector has already been investigated inside GALATEA with an a-source. A top surface scan provided insight into the physics underneath the passivation layer. Detector segmentation provides a direct path towards background identification and characterisation. With this in mind, a 4-fold segmentation scheme was implemented on a broad-energy point-contact detector and is being investigated inside the groups K1 test stand. A cryogenic test-stand where detectors can be submerged directly in liquid nitrogen or argon is also available. The goal is to establish segmentation as a viable option to reduce background in future large scale experiments.
NASA Astrophysics Data System (ADS)
Bartlett, James G.; Planck Collaboration
2015-01-01
As a cosmological probe, galaxy clusters are a powerful complement to the primary cosmic microwave background (CMB) anisotropies. They provide a direct measurement of the density perturbation amplitude at the present epoch that, when combined with primary CMB constraints, tests the validity of the cosmological model. The 2013 Planck analysis uncovered an intriguing tension between the cluster abundance and the primary CMB constraints, a tension that could indicate the need for new physics, such as non-minimal neutrino mass, or an important revision of the cluster mass scale. Unraveling this mystery has been a central focus of cluster cosmology research over the past year. We present our 2014 cluster cosmology analysis based on the full Planck data set. This analysis includes a new cluster catalog and analysis techniques, and incorporates recent results on cluster masses, where significant progress has been made in the past year.
The Emergence of a Root Metaphor in Modern Physics: Max Planck's "Quantum" Metaphor.
ERIC Educational Resources Information Center
Johnson-Sheehan, Richard D.
1997-01-01
Uses metaphorical analysis to determine whether or not Max Planck invented the quantum postulate. Demonstrates how metaphorical analysis can be used to analyze the rhetoric of revolutionary texts in science. Concludes that, in his original 1900 quantum paper, Planck considered the quantum postulate to be important, but not revolutionary. (PA)
Planck’s constant as a natural unit of measurement
NASA Astrophysics Data System (ADS)
Quincey, Paul
2013-09-01
The proposed revision of SI units would embed Planck’s constant into the definition of the kilogram, as a fixed constant of nature. Traditionally, Planck’s constant is not readily interpreted as the size of something physical, and it is generally only encountered by students in the mathematics of quantum physics. Richard Feynman’s path integral formulation of quantum mechanics allows a neat visualization of the constant as the circumference of a surveyor’s wheel for measuring action along each path, making Planck’s constant a natural yardstick, almost literally. This approach is shown to have other benefits in the presentation of other basic quantum phenomena.
Planck-scale modifications to electrodynamics characterized by a spacelike symmetry-breaking vector
Gubitosi, Giulia; Amelino-Camelia, Giovanni; Melchiorri, Alessandro; Genovese, Giuseppe
2010-07-15
In the study of Planck-scale ('quantum-gravity-induced') violations of Lorentz symmetry, an important role was played by the deformed-electrodynamics model introduced by Myers and Pospelov. Its reliance on conventional effective quantum field theory, and its description of symmetry-violation effects simply in terms of a four-vector with a nonzero component only in the time direction, rendered it an ideal target for experimentalists and a natural concept-testing ground for many theorists. At this point however the experimental limits on the single Myers-Pospelov parameter, after improving steadily over these past few years, are 'super-Planckian'; i.e. they take the model out of actual interest from a conventional quantum-gravity perspective. In light of this we here argue that it may be appropriate to move on to the next level of complexity, still with vectorial symmetry violation but adopting a generic four-vector. We also offer a preliminary characterization of the phenomenology of this more general framework, sufficient to expose a rather significant increase in complexity with respect to the original Myers-Pospelov setup. Most of these novel features are linked to the presence of spatial anisotropy, which is particularly pronounced when the symmetry-breaking vector is spacelike, and they are such that they reduce the bound-setting power of certain types of observations in astrophysics.
NASA Astrophysics Data System (ADS)
Catalano, A.; Ade, P.; Atik, Y.; Benoit, A.; Bréele, E.; Bock, J. J.; Camus, P.; Chabot, M.; Charra, M.; Crill, B. P.; Coron, N.; Coulais, A.; Désert, F.-X.; Fauvet, L.; Giraud-Héraud, Y.; Guillaudin, O.; Holmes, W.; Jones, W. C.; Lamarre, J.-M.; Macías-Pérez, J.; Martinez, M.; Miniussi, A.; Monfardini, A.; Pajot, F.; Patanchon, G.; Pelissier, A.; Piat, M.; Puget, J.-L.; Renault, C.; Rosset, C.; Santos, D.; Sauvé, A.; Spencer, L. D.; Sudiwala, R.
2014-09-01
The Planck High Frequency Instrument (HFI) surveyed the sky continuously from August 2009 to January 2012. Its noise and sensitivity performance were excellent (from 11 to 40 aW Hz-1), but the rate of cosmic-ray impacts on the HFI detectors was unexpectedly higher than in other instruments. Furthermore, collisions of cosmic rays with the focal plane produced transient signals in the data (glitches) with a wide range of characteristics and a rate of about one glitch per second. A study of cosmic-ray impacts on the HFI detector modules has been undertaken to categorize and characterize the glitches, to correct the HFI time-ordered data, and understand the residual effects on Planck maps and data products. This paper evaluates the physical origins of glitches observed by the HFI detectors. To better understand the glitches observed by HFI in flight, several ground-based experiments were conducted with flight-spare HFI bolometer modules. The experiments were conducted between 2010 and 2013 with HFI test bolometers in different configurations using varying particles and impact energies. The bolometer modules were exposed to 23 MeV protons from the Orsay IPN Tandem accelerator, and to 241Am and 244Cm ?-particle and 55Fe radioactive X-ray sources. The calibration data from the HFI ground-based preflight tests were used to further characterize the glitches and compare glitch rates with statistical expectations under laboratory conditions. Test results provide strong evidence that the dominant family of glitches observed in flight are due to cosmic-ray absorption by the silicon die substrate on which the HFI detectors reside. Glitch energy is propagated to the thermistor by ballistic phonons, while thermal diffusion also contributes. The average ratio between the energy absorbed, per glitch, in the silicon die and thatabsorbed in the bolometer is equal to 650. We discuss the implications of these results for future satellite missions, especially those in the far-infrared to submillimeter and millimeter regions of the electromagnetic spectrum.
NASA Technical Reports Server (NTRS)
Englert, G. W.
1971-01-01
A model of the random walk is formulated to allow a simple computing procedure to replace the difficult problem of solution of the Fokker-Planck equation. The step sizes and probabilities of taking steps in the various directions are expressed in terms of Fokker-Planck coefficients. Application is made to many particle systems with Coulomb interactions. The relaxation of a highly peaked velocity distribution of particles to equilibrium conditions is illustrated.
NASA Astrophysics Data System (ADS)
Tauber, Jan; sSubmitted Planck Collaboration
2016-01-01
This talk will present an overview of the most recent Planck data and results, with emphasis on polarization.The use of CMB polarization data from Planck confirms the best-fit Lambda-CDM model obtained with Planck temperature-only data, and improves the accuracy with which cosmological parameters are determined. The most recent results based on polarized E-mode and B-mode CMB power spectra at large angular scales will be presented, and their implications for the epoch of reionization and primordial gravitational waves.In this talk I will also present the latest analysis of polarized diffuse galactic foreground emissions based on Planck data. Both the synchrotron and dust emission maps obtained from Planck reveal new facets of the galactic interstellar medium. In particular dust emission holds the promise of providing a model of the large-scale 3D shape of the Galactic magnetic field, as well as its small scale behavior.
SCALING METHODS IN SOIL PHYSICS
Technology Transfer Automated Retrieval System (TEKTRAN)
Soil physical properties are needed to understand and manage natural systems spanning an extremely wide range of scales. Much of soil data are obtained from small soil samples and cores, monoliths, or small field plots, yet the goal is to reconstruct soil physical properties across fields, watershed...
Using CMB data to constrain non-isotropic Planck-scale modifications to Electrodynamics
Gubitosi, Giulia; Migliaccio, Marina; Pagano, Luca; Amelino-Camelia, Giovanni; Melchiorri, Alessandro; Natoli, Paolo; Polenta, Gianluca E-mail: Marina.Migliaccio@roma2.infn.it E-mail: giovanni.amelino-camelia@roma1.infn.it E-mail: paolo.natoli@roma2.infn.it
2011-11-01
We develop a method to constrain non-isotropic features of Cosmic Microwave Background (CMB) polarization, of a type expected to arise in some models describing quantum gravity effects on light propagation. We describe the expected signatures of this kind of anomalous light propagation on CMB photons, showing that it will produce a non-isotropic birefringence effect, i.e. a rotation of the CMB polarization direction whose observed amount depends in a peculiar way on the observation direction. We also show that the sensitivity levels expected for CMB polarization studies by the Planck satellite are sufficient for testing these effects if, as assumed in the quantum-gravity literature, their magnitude is set by the minute Planck length.
NASA Astrophysics Data System (ADS)
Heilbron, John
2005-03-01
As an editor of the Annalen der Physik, Max Planck published Einstein's early papers on thermodynamics and on special relativity, which Planck probably was the first major physicist to appreciate. They respected one another not only as physicists but also, for their inspired creation of world pictures, as artists. Planck helped to establish Einstein in a sinecure at the center of German physics, Berlin. Despite their differences in scientific style, social life, politics, and religion, they became fast friends. Their mutual admiration survived World War I, during which Einstein advocated pacifism and Planck signed the infamous Manifesto of the 93 Intellectuals supporting the German invasion of Belgium. It also survived the Weimar Republic, which Einstein favored and Planck disliked. Physics drew them together, as both opposed the Copenhagen Interpretation; so did common decency, as Planck helped to protect Einstein from anti-semitic attacks. Their friendship did not survive the Nazis. As a standing secretary of the Berlin Academy, Planck had to advise Einstein to resign from it before his colleagues, outraged at his criticism of the new Germany from the safety of California, expelled him. Einstein never forgave his old friend and former fellow artist for not protesting publicly against his expulsion and denigration, and other enormities of National Socialism. .
Aghamousa, Amir; Shafieloo, Arman; Arjunwadkar, Mihir; Souradeep, Tarun E-mail: shafieloo@kasi.re.kr E-mail: tarun@iucaa.ernet.in
2015-02-01
Estimation of the angular power spectrum is one of the important steps in Cosmic Microwave Background (CMB) data analysis. Here, we present a nonparametric estimate of the temperature angular power spectrum for the Planck 2013 CMB data. The method implemented in this work is model-independent, and allows the data, rather than the model, to dictate the fit. Since one of the main targets of our analysis is to test the consistency of the Î›CDM model with Planck 2013 data, we use the nuisance parameters associated with the best-fit Î›CDM angular power spectrum to remove foreground contributions from the data at multipoles â„“Â â‰¥50. We thus obtain a combined angular power spectrum data set together with the full covariance matrix, appropriately weighted over frequency channels. Our subsequent nonparametric analysis resolves six peaks (and five dips) up to â„“Â âˆ¼1850 in the temperature angular power spectrum. We present uncertainties in the peak/dip locations and heights at the 95% confidence level. We further show how these reflect the harmonicity of acoustic peaks, and can be used for acoustic scale estimation. Based on this nonparametric formalism, we found the best-fit Î›CDM model to be at 36% confidence distance from the center of the nonparametric confidence setâ€”this is considerably larger than the confidence distance (9%) derived earlier from a similar analysis of the WMAP 7-year data. Another interesting result of our analysis is that at low multipoles, the Planck data do not suggest any upturn, contrary to the expectation based on the integrated Sachs-Wolfe contribution in the best-fit Î›CDM cosmology.
NASA Astrophysics Data System (ADS)
Aghamousa, Amir; Shafieloo, Arman; Arjunwadkar, Mihir; Souradeep, Tarun
2015-02-01
Estimation of the angular power spectrum is one of the important steps in Cosmic Microwave Background (CMB) data analysis. Here, we present a nonparametric estimate of the temperature angular power spectrum for the Planck 2013 CMB data. The method implemented in this work is model-independent, and allows the data, rather than the model, to dictate the fit. Since one of the main targets of our analysis is to test the consistency of the ?CDM model with Planck 2013 data, we use the nuisance parameters associated with the best-fit ?CDM angular power spectrum to remove foreground contributions from the data at multipoles l >=50. We thus obtain a combined angular power spectrum data set together with the full covariance matrix, appropriately weighted over frequency channels. Our subsequent nonparametric analysis resolves six peaks (and five dips) up to l ~1850 in the temperature angular power spectrum. We present uncertainties in the peak/dip locations and heights at the 95% confidence level. We further show how these reflect the harmonicity of acoustic peaks, and can be used for acoustic scale estimation. Based on this nonparametric formalism, we found the best-fit ?CDM model to be at 36% confidence distance from the center of the nonparametric confidence set—this is considerably larger than the confidence distance (9%) derived earlier from a similar analysis of the WMAP 7-year data. Another interesting result of our analysis is that at low multipoles, the Planck data do not suggest any upturn, contrary to the expectation based on the integrated Sachs-Wolfe contribution in the best-fit ?CDM cosmology.
Influence of Planck foreground masks in the large angular scale quadrant CMB asymmetry
NASA Astrophysics Data System (ADS)
Santos, L.; Cabella, P.; Villela, T.; Zhao, W.
2015-12-01
Context. The measured cosmic microwave background (CMB) angular distribution shows high consistency with the Î›CDM model, which predicts cosmological isotropy as one of its fundamental characteristics. However, isotropy violations were reported in CMB temperature maps of the Wilkinson Microwave Anisotropy Probe (WMAP) and confirmed by Planck satellite data. Aims: Our purpose is to investigate the influence of different sky cuts (masks) employed in the analysis of CMB angular distribution, in particular in the excess of power in the southeastern quadrant (SEQ) and the lack of power in the northeastern quadrant (NEQ), found in both WMAP and Planck data. Methods: We compared the two-point correlation function (TPCF) computed for each quadrant of the CMB foreground-cleaned temperature maps to 1000 Monte Carlo (MC) simulations generated assuming the Î›CDM best-fit power spectrum using four different masks, from the least to the most severe one: mask-rulerminimal, UT78, U73, and U66. In addition to the quadrants and for a better understanding of these anomalies, we computed the TPCF using the mask-rulerminimal for circular regions in the map where the excess and lack of power are present. We also compared, for completeness, the effect of Galactic cuts (+/-10, 20, 25, and 30 degrees above/below the Galactic plane) in the TPCF calculations as compared to the MC simulations. Results: We found consistent results for three masks, namely mask-rulerminimal, U73, and U66. The results indicate that the excess of power in the SEQ tends to vanish as the portion of the sky covered by the mask increases and the lack of power in the NEQ remains virtually unchanged. A different result arises for the newly released UT78 Planck mask. When this mask is applied, the NEQ is no longer anomalous. On the other hand, the excess of power in the SEQ becomes the most significant one among the masks. Nevertheless, the asymmetry between the SEQ and NEQ is independent of the mask and it disagrees with the isotropic model with at least 95% C.L. Conclusions: We find that UT78 disagrees with the other analyzed masks, especially when considering the SEQ and the NEQ individual analysis. Most important, the use of UT78 washes out the anomaly in the NEQ. Furthermore, we find an excess of kurtosis, compared with simulations, in the NEQ for the regions not masked by UT78 but masked by the other masks, indicating that the previous result could be due to unremoved residual foregrounds by UT78.
NASA Astrophysics Data System (ADS)
Milovanov, Alexander V.
2001-04-01
The formulation of the fractional Fokker-Planck-Kolmogorov (FPK) equation [Physica D 76, 110 (1994)] has led to important advances in the description of the stochastic dynamics of Hamiltonian systems. Here, the long-time behavior of the basic transport processes obeying the fractional FPK equation is analyzed. A derivation of the large-scale turbulent transport coefficient for a Hamiltonian system with 112 degrees of freedom is proposed in connection with the fractal structure of the particle chaotic trajectories. The principal transport regimes (i.e., a diffusion-type process, ballistic motion, subdiffusion in the limit of the frozen Hamiltonian, and behavior associated with self-organized criticality) are obtained as partial cases of the generalized transport law. A comparison with recent numerical and experimental studies is given.
Transition physics and scaling overview
Carlstrom, T.N.
1995-12-01
This paper presents an overview of recent experimental progress towards understanding H-mode transition physics and scaling. Terminology and techniques for studying H-mode are reviewed and discussed. The model of shear E x B flow stabilization of edge fluctuations at the L-H transition is gaining wide acceptance and is further supported by observations of edge rotation on a number of new devices. Observations of poloidal asymmetries of edge fluctuations and dephasing of density and potential fluctuations after the transition pose interesting challenges for understanding H-mode physics. Dedicated scans to determine the scaling of the power threshold have now been performed on many machines. A dear B{sub t} dependence is universally observed but dependence on the line averaged density is complicated. Other dependencies are also reported. Studies of the effect of neutrals and error fields on the power threshold are under investigation. The ITER threshold database has matured and offers guidance to the power threshold scaling issues relevant to next-step devices.
Cosmological constraints on neutrinos with Planck data
NASA Astrophysics Data System (ADS)
Spinelli, M.
2015-07-01
Neutrinos take part in the dance of the evolving Universe influencing its history from leptogenesis, to Big Bang nucleosynthesis, until late time structure formation. This makes cosmology, and in particular one of its primary observables the Cosmic Microwave Background (CMB), an unusual but valuable tool for testing Neutrino Physics. The best measurement to date of full-sky CMB anisotropies comes from the Planck satellite launched in 2009 by the European Space Agency (ESA) and successful follower of COBE and WMAP. Testing Planck data against precise theoretical predictions allow us to shed light on various interesting open questions such as the value of the absolute scale of neutrino masses or their energy density. We revise here the results concerning neutrinos obtained by the Planck Collaboration in the 2013 data release.
NASA Astrophysics Data System (ADS)
Verschuur, Gerrit L.
2015-11-01
High-resolution galactic neutral hydrogen (HI) data obtained with the Green Bank Telescope (GBT) over 56 square degrees of sky around l = 132Â°, b = 25Â° are compared with small-scale structure in the Cosmic Microwave Background observed by PLANCK, specifically at 143 and 857 GHz, as well as with 100 Î¼m observations from the IRIS survey. The analysis uses data in 13 2Â° Ã— 2Â° sub-areas found in the IRSA database at IPAC. The results confirm what has been reported previously; nearby galactic HI features and high-frequency continuum sources believed to be cosmological are in fact clearly associated. While several attempts strongly suggest that the associations are statistically significant, the key to understanding the phenomenon lies in the fact that in any given area HI is associated with cirrus dust at certain HI velocities and with 143 GHz features at different velocities. At the same time, for the 13 sub-areas studied, there is very little overlap between the dust and 143 GHz features. The data do not imply that the HI itself gives rise to the high-frequency continuum emission. Rather, they appear to indicate undiagnosed brightness enhancements indirectly associated with the HI. If low density interstellar electrons concentrated into clumps, or observed in directions where their integrated line-of-sight column densities are greater than the background in a manner similar to the phenomena that give rise to structure in diffuse HI structure, they will profoundly affect attempts to create a foreground electron mask used for processing PLANCK as well as WMAP data.
Particle scattering at the Planck scale and the Aichelburg-Sexl geometry
NASA Astrophysics Data System (ADS)
de Vega, H. J.; Sánchez, N.
1989-05-01
At energies of the order or larger than the Planck mass, the curved space-time geometry created by the particles dominates their collision process. The so-called Aichelburg-Sexl (AS) metric is relevant in this problem. We study the exact quantum particle scattering by this geometry in D space-time dimensions. The Klein-Gordon equation is ill defined and a regularization procedure is needed to give a sense to it (this does not happen for string equations). We find the troublesome result that the exact solution depends on the regularization chosen. Continuous regularization yields a scattering phase shift [ ?cont] that agrees with that found by 't Hooft in D=4. Discrete (lattice) regularization yields in the continuum limit a phase-shift ? = 2arctang[ ?cont]. (Actually, the same lattice results hold for the one-dimensional Dirac equation with a Dirac-? potential and for fermionic two-dimensional field-theoretical models.) In the AS metric, we find that the scattering amplitude [ flattice], obtained from lattice regularization, exhibits cuts in both s and t variables, and can be expressed as a coherent superposition of relativistic coulombian amplitudes [ fcont obtained from continuous regularization exhibits poles]. For small s, both fcont and flattice= iGs( ?t) -1 (i.e. the one-graviton exchange amplitude) but for small t, f lattice=i[Gs?t ln 2(- {1}/{4}t)]-1 (f cont=iGs(?t) -1 for both small s and t). We compute and analyze the partial-wave amplitudes. We also compare both amplitudes in the intermediate t region and discuss their connection with the eikonal (and improved eikonal) approximation.
Quantifying Discordance in the 2015 Planck CMB Spectrum
NASA Astrophysics Data System (ADS)
Addison, G. E.; Huang, Y.; Watts, D. J.; Bennett, C. L.; Halpern, M.; Hinshaw, G.; Weiland, J. L.
2016-02-01
We examine the internal consistency of the Planck 2015 cosmic microwave background (CMB) temperature anisotropy power spectrum. We show that tension exists between cosmological constant cold dark matter ({{Î› }}{CDM}) model parameters inferred from multipoles {\\ell }\\lt 1000 (roughly those accessible to Wilkinson Microwave Anisotropy Probe), and from {\\ell }â‰¥slant 1000, particularly the CDM density, {{{Î© }}}c{h}2, which is discrepant at 2.5Ïƒ for a Planck -motivated prior on the optical depth, Ï„ =0.07+/- 0.02. We find some parameter tensions to be larger than previously reported because of inaccuracy in the code used by the Planck Collaboration to generate model spectra. The Planck {\\ell }â‰¥slant 1000 constraints are also in tension with low-redshift data sets, including Planck â€™s own measurement of the CMB lensing power spectrum (2.4Ïƒ ), and the most precise baryon acoustic oscillation scale determination (2.5Ïƒ ). The Hubble constant predicted by Planck from {\\ell }â‰¥slant 1000, {H}0=64.1+/- 1.7 km s{}-1 Mpcâ€‘1, disagrees with the most precise local distance ladder measurement of 73.0+/- 2.4 km s{}-1 Mpcâ€‘1 at the 3.0Ïƒ level, while the Planck value from {\\ell }\\lt 1000, 69.7+/- 1.7 km s{}-1 Mpcâ€‘1, is consistent within 1Ïƒ . A discrepancy between the Planck and South Pole Telescope high-multipole CMB spectra disfavors interpreting these tensions as evidence for new physics. We conclude that the parameters from the Planck high-multipole spectrum probably differ from the underlying values due to either an unlikely statistical fluctuation or unaccounted-for systematics persisting in the Planck data.
ERIC Educational Resources Information Center
Bonnet, I.; Gabelli, J.
2010-01-01
We report on the physics around an incandescent lamp. Using a consumer-grade digital camera, we combine electrical and optical measurements to explore Planck's law of black-body radiation. This simple teaching experiment is successfully used to measure both Stefan's and Planck's constants. Our measurements lead to a strikingly accurate value forâ€¦
ERIC Educational Resources Information Center
Bonnet, I.; Gabelli, J.
2010-01-01
We report on the physics around an incandescent lamp. Using a consumer-grade digital camera, we combine electrical and optical measurements to explore Planck's law of black-body radiation. This simple teaching experiment is successfully used to measure both Stefan's and Planck's constants. Our measurements lead to a strikingly accurate value for…
Activities report of the Max-Planck Institute of Nuclear Physics
NASA Astrophysics Data System (ADS)
Klapdor, H. V.; Jessberger, E. K.
The research work in the field of nuclear physics comprises: (1) technical developments on tandem accelerators, the Heidelberg Heavy ion postaccelerator, the Heildelberg Heavy ion test storage ring, and a source for polarized alkali ions; (2) experimental work on, the development of detectors and experimental set-ups, solids and microstructures, giant resonances and continuum excitations, nuclear spectroscopy, mechanisms of nuclear reactions, fusion and fission, atomic physics and interaction of charged particles with matter, and medium and high energy physics; and (3) theoretical work on a statistical model of nuclei, reactions and solids, nuclear reactions at high energies, many-particles, quantum chromodynamics, and nuclear beta and double beta decay. In the field of cosmophysics, research activities were performed on meteorites and lunar rocks, the gallium solar neutrino experiment, comets, the PHOBOS project, interplanetary and interstellar dust, planetary atmospheres, interstellar medium and cosmic rays, molecular collisions, nuclear geology and geochemistry, and archaeometry.
Limits to Seeing High-Redshift Galaxies Due to Planck-Scale-Induced Blurring
NASA Astrophysics Data System (ADS)
Steinbring, Eric
2015-08-01
Carefully accounting for cosmological surface-brightness dimming and K-corrections are two important steps in teasing out the underlying properties of evolving high-z galaxy populations. Another potential effect is worthy of scrutiny simply because of its profound physical implications, if seen. In the last decade or so there has been debate over the possibility that the fuzzy quantum nature of spacetime might decohere wavefronts emanating from very distant sources. Consequences of that could be "blurred" or "faded" images of compact structures in galaxies, primarily at z>1 for their emitted X-rays and gamma-rays, but perhaps even in UV through optical light at higher redshift. So far there are only inconclusive hints of this from z~4 active-galactic nucleii and gamma-ray bursts viewed with Fermi and Hubble Space Telescope. If correct though, that would impose a significant, fundamental resolution limit for galaxies out to z~8 in the era of the James Webb Space Telescope and the next generation of ground-based telescopes using adaptive optics. I consider what to look for (and maybe not see).
Developmentally Appropriate Physical Education. A Rating Scale.
ERIC Educational Resources Information Center
Stork, Steve; Sanders, Steve
1996-01-01
The purpose of elementary physical education is poorly defined, and the public has low expectations and support for the field. The Developmentally Appropriate Physical Education Practices for Children rating scale emphasizes teaching practices that are appropriate to each student's age and ability. The paper describes use of the scale. (SM)
Planck Surveyor On Its Way to Orbit
None
2010-01-08
An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center
Planck Surveyor On Its Way to Orbit
Borrill, Julian
2009-01-01
An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center.
Planck Surveyor On Its Way to Orbit
Borrill, Julian
2013-05-29
An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center.
Planck Surveyor On Its Way to Orbit
2009-05-14
An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center
Derivation of physically motivated wind speed scales
NASA Astrophysics Data System (ADS)
Dotzek, Nikolai
A class of new wind speed scales is proposed in which the relevant scaling factors are derived from physical quantities like mass flux density, energy density (pressure), or energy flux density. Hence, they are called Energy- or E-scales, and can be applied to wind speeds of any intensity. It is shown that the Mach scale is a special case of an E-scale. Aside from its foundation in physical quantities which allow for a calibration of the scales, the E-scale concept can help to overcome the present plethora of scales for winds in the range from gale to hurricane intensity. A procedure to convert existing data based on the Fujita-scale or other scales (Saffir-Simpson, TORRO, Beaufort) to their corresponding E-scales is outlined. Even for the large US tornado record, the workload of conversion in case of an adoption of the E-scale would in principle remain manageable (if the necessary metadata to do so were available), as primarily the F5 events would have to be re-rated. Compared to damage scales like the "Enhanced Fujita" or EF-scale concept recently implemented in the USA, the E-scales are based on first principles. They can consistently be applied all over the world for the purpose of climatological homogeneity. To account for international variations in building characteristics, one should not adapt wind speed scale thresholds to certain national building characteristics. Instead, one worldwide applicable wind speed scale based on physical principles should rather be complemented by nationally-adapted damage descriptions. The E-scale concept can provide the basis for such a standardised wind speed scale.
NASA Astrophysics Data System (ADS)
Mangano, Gianpiero; Lizzi, Fedele; Porzio, Alberto
2015-12-01
Motivated by the Dirac idea that fundamental constants are dynamical variables and by conjectures on quantum structure of space-time at small distances, we consider the possibility that Planck constant ? is a time depending quantity, undergoing random Gaussian fluctuations around its measured constant mean value, with variance ?2 and a typical correlation timescale ?t. We consider the case of propagation of a free particle and a one-dimensional harmonic oscillator coherent state, and show that the time evolution in both cases is different from the standard behavior. Finally, we discuss how interferometric experiments or exploiting coherent electromagnetic fields in a cavity may put effective bounds on the value of ? = ?2?t.
Assassi, Valentin; Baumann, Daniel; Green, Daniel; McAllister, Liam E-mail: dbaumann@damtp.cam.ac.uk E-mail: mcallister@cornell.edu
2014-01-01
We show that the recent Planck limits on primordial non-Gaussianity impose strong constraints on light hidden sector fields coupled to the inflaton via operators suppressed by a high mass scale Î›. We study a simple effective field theory in which a hidden sector field is coupled to a shift-symmetric inflaton via arbitrary operators up to dimension five. Self-interactions in the hidden sector lead to non-Gaussianity in the curvature perturbations. To be consistent with the Planck limit on local non-Gaussianity, the coupling to any hidden sector with light fields and natural cubic couplings must be suppressed by a very high scale Î›Â >Â 10{sup 5}H. Even if the hidden sector has Gaussian correlations, nonlinearities in the mixing with the inflaton still lead to non-Gaussian curvature perturbations. In this case, the non-Gaussianity is of the equilateral or orthogonal type, and the Planck data requires Î›Â >Â 10{sup 2}H.
CMB lensing and scale dependent new physics
NASA Astrophysics Data System (ADS)
Hojjati, Alireza; Linder, Eric V.
2016-01-01
Cosmic microwave background lensing has become a new cosmological probe, carrying rich information on the matter power spectrum and distances over the redshift range z â‰ˆ1 -4 . We investigate the role of scale dependent new physics, such as from modified gravity, neutrino mass, and cold (low sound speed) dark energy, and its signature on CMB lensing. The distinction between different scale dependences, and the different redshift dependent weighting of the matter power spectrum entering into CMB lensing and other power spectra, imply that CMB lensing can probe simultaneously a diverse range of physics. We highlight the role of arcminute resolution polarization experiments for distinguishing between physical effects.
Bartrum, Sam; Berera, Arjun; Rosa, João G. E-mail: ab@ph.ed.ac.uk
2013-06-01
The recent Planck results and future releases on the horizon present a key opportunity to address a fundamental question in inflationary cosmology of whether primordial density perturbations have a quantum or thermal origin, i.e. whether particle production may have significant effects during inflation. Warm inflation provides a natural arena to address this issue, with interactions between the scalar inflaton and other degrees of freedom leading to dissipative entropy production and associated thermal fluctuations. In this context, we present relations between CMB observables that can be directly tested against observational data. In particular, we show that the presence of a thermal bath warmer than the Hubble scale during inflation decreases the tensor-to-scalar ratio with respect to the conventional prediction in supercooled inflation, yielding r < 8|n{sub t}|, where n{sub t} is the tensor spectral index. Focusing on supersymmetric models at low temperatures, we determine consistency relations between the observables characterizing the spectrum of adiabatic scalar and tensor modes, both for generic potentials and particular canonical examples, and which we compare with the WMAP and Planck results. Finally, we include the possibility of producing the observed baryon asymmetry during inflation through dissipative effects, thereby generating baryon isocurvature modes that can be easily accommodated by the Planck data.
NASA Astrophysics Data System (ADS)
Tristram, Matthieu
2015-08-01
On behalf of the Planck collaboration, I will present the maps from the last Planck release. I will focus on the difference with respect to the 2013 data and in particular describe the polarized maps.Planck uncertainties are dominated by residuals from systematics rather than statistical noise. To achieve this level of sensitivities, Planck is calibrated with an unprecedent precision. This is particularly important given the Planck scanning strategy which induce specific leakage from intensity to polarization.
Absolute Planck Values: Moving Beyond the Arbitrary Assignment of Unity
NASA Astrophysics Data System (ADS)
Laubenstein, John
2008-03-01
Planck Values provide a valuable tool in efforts to understand basic universal relationships; however, they fall short of having any truly intrinsic value. Planck Values come with the assumption that unity can be assigned to up to five of the fundamental universal constants. While constraining these values to unity may be convenient, it by no means ensures that intelligent life anywhere in the universe would make the same assumptions. Further, the peculiar value of the inverse fine structure constant of 137 suggests that it is naive to assume that any of the physical constants are equal to unity or any other simplistic value. Through an analysis of gravitation and electrostatic force, the IWPD Research Center has derived a logical argument for a revised set of Planck Values that represent absolute values with true universal significance. Of greatest importance, is a recalculated Planck Mass that serves as a truly fundamental unit of mass at the quantum scale. This finding contrasts with the significantly large value associated with the current Planck Mass and provides new information that may be critical in the search to unify General Relativity with Quantum Mechanics.
On physical scales of dark matter halos
Zemp, Marcel
2014-09-10
It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.
On Physical Scales of Dark Matter Halos
NASA Astrophysics Data System (ADS)
Zemp, Marcel
2014-09-01
It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions "virial." In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.
Environment-based selection effects of Planck clusters
NASA Astrophysics Data System (ADS)
Kosyra, R.; Gruen, D.; Seitz, S.; Mana, A.; Rozo, E.; Rykoff, E.; Sanchez, A.; Bender, R.
2015-09-01
We investigate whether the large-scale structure environment of galaxy clusters imprints a selection bias on Sunyaev-Zel'dovich (SZ) catalogues. Such a selection effect might be caused by line of sight (LoS) structures that add to the SZ signal or contain point sources that disturb the signal extraction in the SZ survey. We use the Planck PSZ1 union catalogue in the Sloan Digital Sky Survey (SDSS) region as our sample of SZ-selected clusters. We calculate the angular two-point correlation function (2pcf) for physically correlated, foreground and background structure in the RedMaPPer SDSS DR8 catalogue with respect to each cluster. We compare our results with an optically selected comparison cluster sample and with theoretical predictions. In contrast to the hypothesis of no environment-based selection, we find a mean 2pcf for background structures of -0.049 on scales of â‰²40 arcmin, significantly non-zero at Ëœ4Ïƒ, which means that Planck clusters are more likely to be detected in regions of low background density. We hypothesize this effect arises either from background estimation in the SZ survey or from radio sources in the background. We estimate the defect in SZ signal caused by this effect to be negligibly small, of the order of Ëœ10-4 of the signal of a typical Planck detection. Analogously, there are no implications on X-ray mass measurements. However, the environmental dependence has important consequences for weak lensing follow up of Planck galaxy clusters: we predict that projection effects account for half of the mass contained within a 15 arcmin radius of Planck galaxy clusters. We did not detect a background underdensity of CMASS LRGs, which also leaves a spatially varying redshift dependence of the Planck SZ selection function as a possible cause for our findings.
Planck early results. I. The Planck mission
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Baker, M.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Bennett, K.; BenoÃ®t, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bradshaw, T.; Bremer, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cabella, P.; Cantalupo, C. M.; Cappellini, B.; Cardoso, J.-F.; Carr, R.; Casale, M.; Catalano, A.; CayÃ³n, L.; Challinor, A.; Chamballu, A.; Charra, J.; Chary, R.-R.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Crone, G.; Crook, M.; Cuttaia, F.; Danese, L.; D'Arcangelo, O.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Bruin, J.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; DÃ©sert, F.-X.; Dick, J.; Dickinson, C.; Dolag, K.; Dole, H.; Donzelli, S.; DorÃ©, O.; DÃ¶rl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; EnÃŸlin, T. A.; Eriksen, H. K.; Finelli, F.; Foley, S.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Freschi, M.; Gaier, T. C.; Galeotta, S.; Gallegos, J.; Gandolfo, B.; Ganga, K.; Giard, M.; Giardino, G.; Gienger, G.; Giraud-HÃ©raud, Y.; GonzÃ¡lez, J.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guyot, G.; Haissinski, J.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juillet, J. J.; Juvela, M.; Kangaslahti, P.; KeihÃ¤nen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Krassenburg, M.; Kurki-Suonio, H.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lange, A. E.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lowe, S.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maciaszek, T.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McDonald, A.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Mevi, C.; Miniscalco, R.; Mitra, S.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Morisset, N.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Ortiz, I.; Osborne, S.; Osuna, P.; Oxborrow, C. A.; Pajot, F.; Paladini, R.; Partridge, B.; Pasian, F.; Passvogel, T.; Patanchon, G.; Pearson, D.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Reix, J.-M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; RubiÃ±o-MartÃn, J. A.; Rusholme, B.; Salerno, E.; Sandri, M.; Santos, D.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.; Shellard, P.; Simonetto, A.; Smoot, G. F.; Sozzi, C.; Starck, J.-L.; Sternberg, J.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Stringhetti, L.; Sudiwala, R.; Sunyaev, R.; Sygnet, J.-F.; Tapiador, D.; Tauber, J. A.; Tavagnacco, D.; Taylor, D.; Terenzi, L.; Texier, D.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; TÃ¼rler, M.; Tuttlebee, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Varis, J.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson, C.; White, S. D. M.; White, M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2011-12-01
The European Space Agency's Planck satellite was launched on 14 May 2009, and has been surveying the sky stably and continuously since 13 August 2009. Its performance is well in line with expectations, and it will continue to gather scientific data until the end of its cryogenic lifetime. We give an overview of the history of Planck in its first year of operations, and describe some of the key performance aspects of the satellite. This paper is part of a package submitted in conjunction with Planck's Early Release Compact Source Catalogue, the first data product based on Planck to be released publicly. The package describes the scientific performance of the Planck payload, and presents results on a variety of astrophysical topics related to the sources included in the Catalogue, as well as selected topics on diffuse emission. Corresponding author: J. A. Tauber, e-mail: jtauber@rssd.esa.int
Overview of Icing Physics Relevant to Scaling
NASA Technical Reports Server (NTRS)
Anderson, David N.; Tsao, Jen-Ching
2005-01-01
An understanding of icing physics is required for the development of both scaling methods and ice-accretion prediction codes. This paper gives an overview of our present understanding of the important physical processes and the associated similarity parameters that determine the shape of Appendix C ice accretions. For many years it has been recognized that ice accretion processes depend on flow effects over the model, on droplet trajectories, on the rate of water collection and time of exposure, and, for glaze ice, on a heat balance. For scaling applications, equations describing these events have been based on analyses at the stagnation line of the model and have resulted in the identification of several non-dimensional similarity parameters. The parameters include the modified inertia parameter of the water drop, the accumulation parameter and the freezing fraction. Other parameters dealing with the leading edge heat balance have also been used for convenience. By equating scale expressions for these parameters to the values to be simulated a set of equations is produced which can be solved for the scale test conditions. Studies in the past few years have shown that at least one parameter in addition to those mentioned above is needed to describe surface-water effects, and some of the traditional parameters may not be as significant as once thought. Insight into the importance of each parameter, and the physical processes it represents, can be made by viewing whether ice shapes change, and the extent of the change, when each parameter is varied. Experimental evidence is presented to establish the importance of each of the traditionally used parameters and to identify the possible form of a new similarity parameter to be used for scaling.
The Planck Mission and its Products
NASA Astrophysics Data System (ADS)
Tauber, Jan A.
2015-08-01
Planck (http://www.esa.int/Planck) is an astronomical satellite part of the Scientific Programme of the European Space Agency, which was designed to image the anisotropies of the Cosmic Microwave Background (CMB) over the whole sky, with unprecedented sensitivity and angular resolution. Planck is a major source of information relevant to many cosmological and astrophysical issues. The ability to measure to high accuracy the angular power spectrum of the CMB fluctuations allows the determination of fundamental cosmological parameters with an uncertainty better than a percent. In addition to the main cosmological goals of the mission, the Planck sky survey can be used to study in detail the very sources of emission which "contaminate" the signal due to the CMB, and will result in a wealth of information on the properties of extragalactic sources, and on the dust and gas in our own galaxy.Planck was launched together with Herschel on 14 May 2009. Its payload surveyed the sky continuously between July 2009 and October 2013. In January 2011 the first Planck data product (the Early Release Compact Source Catalogue) and scientific results were released to the public. The second data release took place on March 2013, and included maps of the whole sky at nine frequencies as well as maps of the major physical emission components. The third data release is taking place between February and May 2015, and includes all the data acquired by Planck.I will present - on behalf of the Planck Collaboration - a very brief overview of the Planck mission, its scientific objectives, and also briefly describe its most recent scientific results. Next, I will concentrate on describing the Planck data products that have been publicly released, and how they can serve a wide community of users. This talk is intended to be an appropriate introduction to the IAU GA Focus Meeting “The Legacy of Planck”.
Microfluidics: Fluid physics at the nanoliter scale
NASA Astrophysics Data System (ADS)
Squires, Todd M.; Quake, Stephen R.
2005-10-01
Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the Péclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world.
Perspective on TeV-scale physics
Chanowitz, M.S.
1989-02-01
These lectures review theoretical motivations and experimental prospects for the study of TeV-scale physics. Three clues to the importance of TeV physics are discussed: implications of quantum corrections for the masses of a fourth generation quark-lepton family, the gauge hierarchy problem and known solutions, and implications of symmetry and unitarity for the symmetry-breaking sector of the electroweak gauge theory. The experimental prospects are reviewed with emphasis on the multi-TeV pp colliders that may be built in the 1990's. The topics include new phenomena that might occur - e.g., a fourth generation, heavy gauge bosons, composite structure, and supersymmetry - as well as the signals of the unknown SU(2)/sub L/ /times/ U(1)/sub Y/ breaking mechanism that must occur within the TeV domain. 96 refs., 21 figs.
NASA Astrophysics Data System (ADS)
Krachmalnicoff, N.; Baccigalupi, C.; Aumont, J.; Bersanelli, M.; Mennella, A.
2016-04-01
We quantify the contamination from polarized diffuse Galactic synchrotron and thermal dust emissions to the B modes of the cosmic microwave background (CMB) anisotropies on the degree angular scale, using data from the Planck and Wilkinson Microwave Anisotropy Probe (WMAP) satellites. We compute power spectra of foreground polarized emissions in 352 circular sky patches located at Galactic latitude | b | > 20Â°, each of which covers about 1.5% of the sky. We make use of the spectral properties derived from Planck and WMAP data to extrapolate, in frequency, the amplitude of synchrotron and thermal dust B-mode spectra in the multipole bin centered at â„“ â‰ƒ 80. In this way we estimate the amplitude and frequency of the foreground minimum for each analyzed region. We detect both dust and synchrotron signal on degree angular scales and at a 3Ïƒ confidence level in 28 regions. Here the minimum of the foreground emission is found at frequencies between 60 and 100 GHz with an amplitude expressed in terms of the equivalent tensor-to-scalar ratio, rFG,min, between ~0.06 and ~1. Some of these regions are located at high Galactic latitudes in areas close to the ones that are being observed by suborbital experiments. In all the other sky patches where synchrotron or dust B modes are not detectable with the required confidence, we put upper limits on the minimum foreground contamination and find values of rFG,min between ~0.05 and ~1.5 in the frequency range 60-90 GHz. Our results indicate that, with the current sensitivity at low frequency, it is not possible to exclude the presence of synchrotron contamination to CMB cosmological B modes at the level requested to measure a gravitational waves signal with r â‰ƒ 0.01 at frequency â‰²100 GHz anywhere. Therefore, more accurate data are essential in order to better characterize the synchrotron polarized component and, eventually, to remove its contamination to CMB signal through foreground cleaning.
The Planck Catalogue of High-z source candidates
NASA Astrophysics Data System (ADS)
Montier, Ludovic
2015-08-01
The Planck satellite has provided the first FIR/submm all-sky survey with a sensitivity allowing us to identify the rarest, most luminous high-z dusty star-forming sources on the sky. It opens a new window on these extreme star-forming systems at redshift above 1.5, providing a powerful laboratory to study the mechanisms of galaxy evolution and enrichment in the frame of the large scale structure growth.I will describe how the Planck catalogue of high-z source candidates (PHz, Planck 2015 in prep.) has been built and charcaterized over 25% of the sky by selecting the brightest red submm sources at a 5' resolution. Follow-up observations with Herschel/SPIRE over 228 Planck candidates have shown that 93% of these candidates are actually overdensities of red sources with SEDs peaking at 350um (Planck Int. results. XXVII 2014). Complementarily to this population of objects, 12 Planck high-z candidates have been identified as strongly lensed star forming galaxies at redshift lying between 2.2 and 3.6 (Canameras et al 2015 subm.), with flux densities larger than 400 mJy up to 1 Jy at 350um, and strong magnification factors. These Planck lensed star-forming galaxies are the rarest brightest lensed in the submm range, providing a unique opportunity to extend the exploration of the star-forming system in this range of mass and redshift.I will detail further a specific analysis performed on a proto-cluster candidate, PHz G95.5-61.6, identified as a double structure at z=1.7 and z=2.03, using an extensive follow-up program (Flores-Cacho et al 2015 subm.). This is the first Planck proto-cluster candidate with spectroscopic confirmation, which opens a new field of statistical analysis about the evolution of dusty star-forming galaxies in such accreting structures.I will finally discuss how the PHz catalogue may help to answer some of the fundamental questions like: At what cosmic epoch did massive galaxy clusters form most of their stars? Is star formation more or less vigorous in these galaxies compared to field galaxies ? What are the physical conditions of the ISM at high-z ?
McDonald, John
2014-11-01
Planck favours a negative running of the spectral index, with the likelihood being dominated by low multipoles l ?< 50 and no preference for running at higher l. A negative spectral index is also necessary for the 2- Planck upper bound on the tensor-to-scalar ratio r to be consistent with values significantly larger than 0.1. Planck has also observed a hemispherical asymmetry of the CMB power spectrum, again mostly at low multipoles. Here we consider whether the physics responsible for the hemispherical asymmetry could also account for the negative running of the spectral index and the consistency of Planck with a large value of r. A negative running of the spectral index can be generated if the hemispherical asymmetry is due to a scale- and space-dependent modulation which suppresses the CMB power spectrum at low multipoles. We show that the observed hemispherical asymmetry at low l can be generated while satisfying constraints on the asymmetry at higher l and generating a negative spectral index of the right magnitude to account for the Planck observation and to allow Planck to be consistent with a large value of r.
String gas cosmology after Planck
NASA Astrophysics Data System (ADS)
Brandenberger, Robert H.
2015-12-01
We review the status of string gas cosmology (SGC) after the 2015 Planck data release. SGC predicts an almost scale-invariant spectrum of cosmological perturbations with a slight red tilt, like the simplest inflationary models. It also predicts a scale-invariant spectrum of gravitational waves with a slight blue tilt, unlike inflationary models which predict a red tilt of the gravitational wave spectrum. SGC yields two consistency relations which determine the tensor to scalar ratio and the slope of the gravitational wave spectrum given the amplitude and tilt of the scalar spectrum. We show that these consistency relations are in good agreement with the Planck data. We discuss future observations which will be able to differentiate between the predictions of inflation and those of SGC.
NASA Astrophysics Data System (ADS)
Salvio, Alberto
2015-04-01
We study a simple Standard Model (SM) extension, which includes three families of right-handed neutrinos with generic non-trivial flavor structure and an economic implementation of the invisible axion idea. We find that in some regions of the parameter space this model accounts for all experimentally confirmed pieces of evidence for physics beyond the SM: it explains neutrino masses (via the type-I see-saw mechanism), dark matter, baryon asymmetry (through leptogenesis), solves the strong CP problem and has a stable electroweak vacuum. The last property may allow us to identify the Higgs field with the inflaton.
Initiation and Detonation Physics on Millimeter Scales
Philllips, D F; Benterou, J J; May, C A
2012-03-20
The LLNL Detonation Science Project has a major interest in understanding the physics of detonation on a millimeter scale. This report summarizes the rate stick experiment results of two high explosives. The GO/NO-GO threshold between varying diameters of ultra-fine TATB (ufTATB) and LX-16 were recorded on an electronic streak camera and analyzed. This report summarizes the failure diameters of rate sticks for ufTATB and LX-16. Failure diameter for the ufTATB explosive, with densities at 1.80 g/cc, begin at 2.34 mm (not maintaining detonation velocity over the entire length of the rate stick). ufTATB rate sticks at the larger 3.18 mm diameter maintain a constant detonation velocity over the complete length. The PETN based and LLNL developed explosive, LX-16, with densities at 1.7 g/cc, shows detonation failure between 0.318 mm and 0.365 mm. Additional tests would be required to narrow this failure diameter further. Many of the tested rate sticks were machined using a femtosecond laser focused into a firing tank - in case of accidental detonation.
The Planck Mission: Early Results
Marco Bersanelli
2012-03-07
The ESA Planck space mission, launched on May 14, 2009, is dedicated to high precision measurements of the cosmic microwave background (CMB), the first light of the universe, both in temperature and polarization. The satellite observes the full sky from a far-Earth orbit with two cryogenic instruments in the 30-850 GHz range at the focal plane of a 1.5-meter telescope. The primary objective of Planck is to measure with unprecedented precision the key cosmological parameters and to provide accurate tests of physics in the early universe. Planck has recently completed the fifth full-sky survey. The data analysis is underway. The first cosmology results are expected in early 2013 while a number of astrophysical results have been recently delivered to the community, including galactic and extragalactic astrophysics and a rich catalogue of radio and infrared sources. These results demonstrate the excellent in-orbit performance of the instruments and give excellent prospects for the forthcoming cosmological results.
The physics of musical scales: Theory and experiment
NASA Astrophysics Data System (ADS)
Durfee, Dallin S.; Colton, John S.
2015-10-01
The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human perception and provides an interesting application of the physics of waves and sound. We first review the history and physics of musical scales, with an emphasis on four historically important scales: twelve-tone equal temperament, Pythagorean, quarter-comma meantone, and Ptolemaic just intonation. We then present an easy way for students and teachers to directly experience the qualities of different scales using MIDI synthesis.
The Planck Surveyor mission: astrophysical prospects
De Zotti, Gianfranco; Toffolatti, Luigi Toffolatti, Luigi Partridge, R. Bruce
1999-05-01
Although the Planck Surveyor mission is optimized to map the cosmic microwave background anisotropies, it will also provide extremely valuable information on astrophysical phenomena. We review our present understanding of Galactic and extragalactic foregrounds relevant to the mission and discuss on one side, Planck{close_quote}s impact on the study of their properties and, on the other side, to what extent foreground contamination may affect Planck{close_quote}s ability to accurately determine cosmological parameters. Planck{close_quote}s multifrequency surveys will be unique in their coverage of large areas of the sky (actually, of the full sky); this will extend by two or more orders of magnitude the flux density interval over which mm/sub-mm counts of extragalactic sources can be determined by instruments already available (like SCUBA) or planned for the next decade (like the LSA-MMA or the space mission FIRST), which go much deeper but over very limited areas. Planck will thus provide essential complementary information on the epoch-dependent luminosity functions. Bright radio sources will be studied over a poorly explored frequency range where spectral signatures, essential to understand the physical processes that are going on, show up. The Sunyaev-Zeldovich effect, with its extremely rich information content, will be observed in the direction of a large number of rich clusters of Galaxies. Thanks again to its all sky coverage, Planck will provide unique information on the structure and on the emission properties of the interstellar medium in the Galaxy. At the same time, the foregrounds are unlikely to substantially limit Planck{close_quote}s ability to measure the cosmological signals. Even measurements of polarization of the primordial Cosmic Microwave background fluctuations appear to be feasible. {copyright} {ital 1999 American Institute of Physics.}
Development and Validation of the Physics Anxiety Rating Scale
ERIC Educational Resources Information Center
Sahin, Mehmet; Caliskan, Serap; Dilek, Ufuk
2015-01-01
This study reports the development and validation process for an instrument to measure university students' anxiety in physics courses. The development of the Physics Anxiety Rating Scale (PARS) included the following steps: Generation of scale items, content validation, construct validation, and reliability calculation. The results of constructâ€¦
Development of a Physical Education Teaching Efficacy Scale
ERIC Educational Resources Information Center
Humphries, Charlotte A.; Hebert, Edward; Daigle, Kay; Martin, Jeffrey
2012-01-01
Relationships have been found between teacher efficacy and many teaching and learning variables, but few researchers have examined teaching efficacy in physical education. The instrument reported here, the Physical Education Teaching Efficacy Scale, was developed based on the teaching efficacy literature, existing scales, and National Association…
Planck, the Quantum, and the Historians
NASA Astrophysics Data System (ADS)
Gearhart, Clayton A.
2002-05-01
In late 1900, the German theoretical physicist Max Planck derived an expression for the spectrum of black-body radiation. That derivation was the first step in the introduction of quantum concepts into physics. But how did Planck think about his result in the early years of the twentieth century? Did he assume that his derivation was consistent with the continuous energies inherent in Maxwellian electrodynamics and Newtonian mechanics? Or did he see the beginnings, however tentative and uncertain, of the quantum revolution to come? Historians of physics have debated this question for over twenty years. In this article, I review that debate and, at the same time, present Planck's achievement in its historical context.
NASA Astrophysics Data System (ADS)
Dupac, Xavier
2015-08-01
The ESA Planck space telescope collaboration has released its second major dataset on Feb. 5th, 2015.It includes Cosmic Microwave Background full-sky maps from the whole observational dataset of Planck, maps of the extended Galactic foreground emissions, catalogues of Galactic and Extragalactic sources, among others.Full-sky temperature/intensity maps are released at nine frequencies (30 GHz to 857 GHz) with unprecedented angular resolution (4’ for the High-Frequency Instrument higher frequency channels) and sensitivity, and polarization maps are released for the Low-Frequency Instrument (30, 44, 70 GHz) and the 353 GHz channel of the High-Frequency Instrument.In this presentation, I will explain what is in the database and how to search and process data from the Planck Legacy Archive newly-released (Dec. 2014) web-based user interface. I will also present the broader context of the Planck archives and future developments for the next Planck data releases, including the Added-Value Interface that is currently under development at European Space Astronomy Centre.
Extending Higgs inflation with TeV scale new physics
He, Hong-Jian; Xianyu, Zhong-Zhi E-mail: xianyuzhongzhi@gmail.com
2014-10-01
Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than 2? deviations, and generally gives a negligible tensor-to-scalar ratio r ? 10{sup -3} (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark T and a real scalar S. The presence of singlets (T, S) significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio r=O(0.1)-O(10{sup -3}), consistent with the favored r values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index n{sub s} ? 0.96. It allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark T and scalar S at the LHC and future high energy pp colliders.
Extending Higgs inflation with TeV scale new physics
He, Hong-Jian; Xianyu, Zhong-Zhi
2014-10-10
Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than 2Ïƒ deviations, and generally gives a negligible tensor-to-scalar ratio râˆ¼10{sup âˆ’3} (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark T and a real scalar S . The presence of singlets (T, S) significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio r=O(0.1)âˆ’O(10{sup âˆ’3}) , consistent with the favored r values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index n{sub s}â‰ƒ0.96 . It allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark T and scalar S at the LHC and future high energy pp colliders.
Planck 2013 results. XV. CMB power spectra and likelihood
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; DÃ©sert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; EnÃŸlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-HÃ©raud, Y.; GjerlÃ¸w, E.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; LeÃ³n-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; Lindholm, V.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-DeschÃªnes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; RubiÃ±o-MartÃn, J. A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; TÃ¼rler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best estimate of the CMB angular power spectrum from Planck over three decades in multipole moment, â„“, covering 2 â‰¤ â„“ â‰¤ 2500. The main source of uncertainty at â„“ â‰² 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher â„“s. For â„“ < 50, our likelihood exploits all Planck frequency channels from 30 to 353 GHz, separating the cosmological CMB signal from diffuse Galactic foregrounds through a physically motivated Bayesian component separation technique. At â„“ â‰¥ 50, we employ a correlated Gaussian likelihood approximation based on a fine-grained set of angular cross-spectra derived from multiple detector combinations between the 100, 143, and 217 GHz frequency channels, marginalising over power spectrum foreground templates. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on the final cosmological parameters. We find good internal agreement among the high-â„“ cross-spectra with residuals below a few Î¼K2 at â„“ â‰² 1000, in agreement with estimated calibration uncertainties. We compare our results with foreground-cleaned CMB maps derived from all Planck frequencies, as well as with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. We further show that the best-fit Î›CDM cosmology is in excellent agreement with preliminary PlanckEE and TE polarisation spectra. We find that the standard Î›CDM cosmology is well constrained by Planck from the measurements at â„“ â‰² 1500. One specific example is the spectral index of scalar perturbations, for which we report a 5.4Ïƒ deviation from scale invariance, ns = 1. Increasing the multipole range beyond â„“ â‰ƒ 1500 does not increase our accuracy for the Î›CDM parameters, but instead allows us to study extensions beyond the standard model. We find no indication of significant departures from the Î›CDM framework. Finally, we report a tension between the Planck best-fit Î›CDM model and the low-â„“ spectrum in the form of a power deficit of 5-10% at â„“ â‰² 40, with a statistical significance of 2.5-3Ïƒ. Without a theoretically motivated model for this power deficit, we do not elaborate further on its cosmological implications, but note that this is our most puzzling finding in an otherwise remarkably consistent data set.
Composite inflation confronts BICEP2 and PLANCK
Karwan, Khamphee; Channuie, Phongpichit E-mail: phongpichit.ch@wu.ac.th
2014-06-01
We examine observational constraints on single-field inflation in which the inflaton is a composite field stemming from a four-dimensional strongly interacting field theory. We confront the predictions with the Planck and very recent BICEP2 data. In the large non-minimal coupling regions, we discover for the minimal composite inflationary model that the predictions lie well inside the joint 68% CL for the Planck data, but is in tension with the recent BICEP2 observations. In the case of the glueball inflationary model, the predictions satisfy the Planck results. However, this model can produce a large tensor-to-scalar ratio consistent with the recent BICEP2 observations if the number of e-foldings is slightly smaller than the range commonly used. For a super Yang-Mills paradigm, we discover that the predictions satisfy the Planck data, and surprisingly a large tensor-to-scalar ratio consistent with the BICEP2 results can also be produced for an acceptable range of the number of e-foldings and of the confining scale. In the small non-minimal coupling regions, all of the models can satisfy the BICEP2 results. However, the predictions of the glueball and superglueball inflationary models cannot satisfy the observational bound on the amplitude of the curvature perturbation launched by Planck, and the techni-inflaton self-coupling in the minimal composite inflationary model is constrained to be extremely small.
The Planck Radiation Functions.
ERIC Educational Resources Information Center
Larsen, Russell D.
1985-01-01
Blackbody radiation is used as an example to illustrate that oversimplification in teaching quantum ideas can result in later misunderstanding. Although textbooks give Planck's distribution function in terms of wavelength, there are actually 12 different radiation functions. Some of the more interesting ones are given and discussed. (JN)
NASA Astrophysics Data System (ADS)
Dupac, X.; Arviset, C.; Fernandez Barreiro, M.; Lopez-Caniego, M.; Tauber, J.
2015-12-01
The Planck Collaboration has released in 2015 their second major dataset through the Planck Legacy Archive (PLA). It includes cosmological, Extragalactic and Galactic science data in temperature (intensity) and polarization. Full-sky maps are provided with unprecedented angular resolution and sensitivity, together with a large number of ancillary maps, catalogues (generic, SZ clusters and Galactic cold clumps), time-ordered data and other information. The extensive cosmological likelihood package allows cosmologists to fully explore the plausible parameters of the Universe. A new web-based PLA user interface is made public since Dec. 2014, allowing easier and faster access to all Planck data, and replacing the previous Java-based software. Numerous additional improvements to the PLA are also being developed through the so-called PLA Added-Value Interface, making use of an external contract with the Planetek Hellas and Expert Analytics software companies. This will allow users to process time-ordered data into sky maps, separate astrophysical components in existing maps, simulate the microwave and infrared sky through the Planck Sky Model, and use a number of other functionalities.
Development of a Scale Measuring Trait Anxiety in Physical Education
ERIC Educational Resources Information Center
Barkoukis, Vassilis; Rodafinos, Angelos; Koidou, Eirini; Tsorbatzoudis, Haralambos
2012-01-01
The aim of the present study was to examine the validity and reliability of a multi-dimensional measure of trait anxiety specifically designed for the physical education lesson. The Physical Education Trait Anxiety Scale was initially completed by 774 high school students during regular school classes. A confirmatory factor analysis supported theâ€¦
Development of a Scale Measuring Trait Anxiety in Physical Education
ERIC Educational Resources Information Center
Barkoukis, Vassilis; Rodafinos, Angelos; Koidou, Eirini; Tsorbatzoudis, Haralambos
2012-01-01
The aim of the present study was to examine the validity and reliability of a multi-dimensional measure of trait anxiety specifically designed for the physical education lesson. The Physical Education Trait Anxiety Scale was initially completed by 774 high school students during regular school classes. A confirmatory factor analysis supported the…
Psychometric Properties of the Commitment to Physical Activity Scale
ERIC Educational Resources Information Center
DeBate, Rita DiGioacchino; Huberty, Jennifer; Pettee, Kelley
2009-01-01
Objective: To assess psychometric properties of the Commitment to Physical Activity Scale (CPAS). Methods: Girls in third to fifth grades (n = 932) completed the CPAS before and after a physical activity intervention. Psychometric measures included internal consistency, factor analysis, and concurrent validity. Results: Three CPAS factors emerged:…
Planck 2013 results. XXXI. Consistency of the Planck data
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Pearson, T. J.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Scott, D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
The Planck design and scanning strategy provide many levels of redundancy that can be exploited to provide tests of internal consistency. One of the most important is the comparison of the 70 GHz (amplifier) and 100 GHz (bolometer) channels. Based on different instrument technologies, with feeds located differently in the focal plane, analysed independently by different teams using different software, and near the minimum of diffuse foreground emission, these channels are in effect two different experiments. The 143 GHz channel has the lowest noise level on Planck, and is near the minimum of unresolved foreground emission. In this paper, we analyse the level of consistency achieved in the 2013 Planck data. We concentrate on comparisons between the 70, 100, and 143 GHz channel maps and power spectra, particularly over the angular scales of the first and second acoustic peaks, on maps masked for diffuse Galactic emission and for strong unresolved sources. Difference maps covering angular scales from 8° to 15' are consistent with noise, and show no evidence of cosmic microwave background structure. Including small but important corrections for unresolved-source residuals, we demonstrate agreement (measured by deviation of the ratio from unity) between 70 and 100 GHz power spectra averaged over 70 ? ? ? 390 at the 0.8% level, and agreement between 143 and 100 GHz power spectra of 0.4% over the same ? range. These values are within and consistent with the overall uncertainties in calibration given in the Planck 2013 results. We also present results based on the 2013 likelihood analysis showing consistency at the 0.35% between the 100, 143, and 217 GHz power spectra. We analyse calibration procedures and beams to determine what fraction of these differences can be accounted for by known approximations or systematicerrors that could be controlled even better in the future, reducing uncertainties still further. Several possible small improvements are described. Subsequent analysis of the beams quantifies the importance of asymmetry in the near sidelobes, which was not fully accounted for initially, affecting the 70/100 ratio. Correcting for this, the 70, 100, and 143 GHz power spectra agree to 0.4% over the first two acoustic peaks. The likelihood analysis that produced the 2013 cosmological parameters incorporated uncertainties larger than this. We show explicitly that correction of the missing near sidelobe power in the HFI channels would result in shifts in the posterior distributions of parameters of less than 0.3? except for As, the amplitude of the primordial curvature perturbations at 0.05 Mpc-1, which changes by about 1?. We extend these comparisons to include the sky maps from the complete nine-year mission of the Wilkinson Microwave Anisotropy Probe (WMAP), and find a roughly 2% difference between the Planck and WMAP power spectra in the region of the first acoustic peak.
The thermal Sunyaev-Zel'dovich effect power spectrum in light of Planck
NASA Astrophysics Data System (ADS)
McCarthy, I. G.; Le Brun, A. M. C.; Schaye, J.; Holder, G. P.
2014-06-01
The amplitude of the thermal Sunyaev-Zel'dovich effect (tSZ) power spectrum is extremely sensitive to the abundance of the most massive dark matter haloes (galaxy clusters) and therefore to fundamental cosmological parameters that control their growth, such as ?8 and ?m. Here we explore the sensitivity of the tSZ power spectrum to important non-gravitational (`subgrid') physics by employing the cosmo-OWLS suite of large-volume cosmological hydrodynamical simulations, run in both the Planck and 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) best-fitting cosmologies. On intermediate and small angular scales (? ? 1000, or ??10 arcmin), accessible with the South Pole Telescope (SPT) and the Atacama Cosmology Telescope (ACT), the predicted tSZ power spectrum is highly model dependent, with gas ejection due to active galactic nuclei (AGN) feedback having a particularly large effect. However, at large scales, observable with the Planck telescope, the effects of subgrid physics are minor. Comparing the simulated tSZ power spectra with observations, we find a significant amplitude offset on all measured angular scales (including large scales), if the Planck best-fitting cosmology is assumed by the simulations. This is shown to be a generic result for all current models of the tSZ power spectrum. By contrast, if the WMAP7 cosmology is adopted, there is full consistency with the Planck tSZ power spectrum measurements on large scales and agreement at the 2? level with the SPT and ACT measurements at intermediate scales for our fiducial AGN model, which Le Brun et al. have shown reproduces the `resolved' properties of the Local Group and cluster population remarkably well. These findings strongly suggest that there are significantly fewer massive galaxy clusters than expected for the Planck best-fitting cosmology, which is consistent with recent measurements of the tSZ number counts. Our findings therefore pose a significant challenge to the cosmological parameter values preferred (and/or the model adopted) by the Planck primary cosmic microwave background analyses.
Gaussian analyses on PLANCK CMB maps
NASA Astrophysics Data System (ADS)
Bernui, A.
2014-10-01
Extremely precise cosmic background radiation (CMB) data from Planck satellite confirmed the cosmological model ?CDM and established tight constraints for several features of the primary and secondary CMB temperature fluctuations. Possible non-Gaussian (NG) contributions to the CMB field could be originated during (or soon after) primordial cosmic inflation, where the types, scale dependences, and intensities expected depend on the inflationary models. For this, the robust detection -or not- of primordial NG in the CMB signify a unique probe to the early universe, allowing to distinguish between competing models. Recent analyses from Planck CMB data strongly limit the level of NG and show consistency with the Gaussian hypothesis although they do not exclude the presence of weak Gaussian deviations. A problem inherent with the confidence of a positive detection is the possibility that any non-primordial contamination could be mixed with primary contributions leading to qualitative and/or quantitative imprecise detections. A variety of methods are being used to search for different NG signals in CMB data because one does not expect that a single statistical tool can be able to identify all possible forms of Gaussian deviations. Using two directional large-angle NG indicators based on skewness and kurtosis statistical momenta of patches of the CMB sphere, we analyze the three nearly full sky foreground-cleaned Planck maps: smica, nilc, and sevem. Our results show that these foreground-cleaned Planck maps exhibit different levels of NG at large angles, depending on the cut-sky mask used (all of them released by the Planck collaboration). The separation component minimum mask, termed M82, and the U73 mask appear to be equally efficient to Gaussianize all these CMB Planck maps.
NASA Astrophysics Data System (ADS)
Verschuur, Gerrit L.
2016-01-01
High-resolution HI data obtained as part of the Arecibo GALFA survey have been compared with PLANCK data at 143 GHz and 857 GHz. The analysis confirms what has been reported previously, that sources of high-frequency continuum radiation exist in the galactic interstellar medium that produce structure that has been incorrectly interpreted as being cosmological in origin. The mechanism appears to be free-free emission from electron concentrations in regions where the dust and HI are similarly clumped or otherwise enhanced due to geometric effects. By comparing model calculations with the data it is concluded that the source of the radiation is relatively close to the sun, or order 25 to 50 pc distant. The required ionization fraction relative to HI is of order 0.05 - 0.08 for the areas tested.
Planck 2013 results. XXII. Constraints on inflation
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; DÃ©sert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; EnÃŸlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Gauthier, C.; Giard, M.; Giardino, G.; Giraud-HÃ©raud, Y.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Pandolfi, S.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; RubiÃ±o-MartÃn, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; TrÃ©guer-Goudineau, J.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.
2014-11-01
We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be ns = 0.9603 Â± 0.0073, ruling out exact scale invariance at over 5Ïƒ.Planck establishes an upper bound on the tensor-to-scalar ratio of r< 0.11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V''< 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n â‰¥ 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns/ dlnk = - 0.0134 Â± 0.0090. We verify these conclusions through a numerical analysis, which makes no slow-roll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by Î”Ï‡2eff â‰ˆ 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the Ï‡2eff by approximately 4 as a result of slightly lowering the theoretical prediction for the â„“ â‰² 40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions.
Detection of thermal SZ-CMB lensing cross-correlation in Planck nominal mission data
Hill, J. Colin; Spergel, David N. E-mail: dns@astro.princeton.edu
2014-02-01
The nominal mission maps from the Planck satellite contain a wealth of information about secondary anisotropies in the cosmic microwave background (CMB), including those induced by the thermal Sunyaev-Zel'dovich (tSZ) effect and gravitational lensing. As both the tSZ and CMB lensing signals trace the large-scale matter density field, the anisotropies sourced by these processes are expected to be correlated. We report the first detection of this cross-correlation signal, which we measure at 6.2Ïƒ significance using the Planck data. We take advantage of Planck's multifrequency coverage to construct a tSZ map using internal linear combination techniques, which we subsequently cross-correlate with the publicly-released Planck CMB lensing potential map. The cross-correlation is subject to contamination from the cosmic infrared background (CIB), which is known to correlate strongly with CMB lensing. We correct for this contamination via cross-correlating our tSZ map with the Planck 857 GHz map and confirm the robustness of our measurement using several null tests. We interpret the signal using halo model calculations, which indicate that the tSZ-CMB lensing cross-correlation is a unique probe of the physics of intracluster gas in high-redshift, low-mass groups and clusters. Our results are consistent with extrapolations of existing gas physics models to this previously unexplored regime and show clear evidence for contributions from both the one- and two-halo terms, but no statistically significant evidence for contributions from diffuse, unbound gas outside of collapsed halos. We also show that the amplitude of the signal depends rather sensitively on the amplitude of fluctuations (Ïƒ{sub 8}) and the matter density (Î©{sub m}), scaling as Ïƒ{sub 8}{sup 6.1}Î©{sub m}{sup 1.5} at â„“ = 1000. We constrain the degenerate combination Ïƒ{sub 8}(Î©{sub m}/0.282){sup 0.26} = 0.824Â±0.029, a result that is in less tension with primordial CMB constraints than some recent tSZ analyses. We also combine our measurement with the Planck measurement of the tSZ auto-power spectrum to demonstrate a technique that can in principle constrain both cosmology and the physics of intracluster gas simultaneously. Our detection is a direct confirmation that hot, ionized gas traces the dark matter distribution over a wide range of scales in the universe ( âˆ¼ 0.1â€“50Â Mpc/h)
Scales and scaling in turbulent ocean sciences; physics-biology coupling
NASA Astrophysics Data System (ADS)
Schmitt, Francois
2015-04-01
Geophysical fields possess huge fluctuations over many spatial and temporal scales. In the ocean, such property at smaller scales is closely linked to marine turbulence. The velocity field is varying from large scales to the Kolmogorov scale (mm) and scalar fields from large scales to the Batchelor scale, which is often much smaller. As a consequence, it is not always simple to determine at which scale a process should be considered. The scale question is hence fundamental in marine sciences, especially when dealing with physics-biology coupling. For example, marine dynamical models have typically a grid size of hundred meters or more, which is more than 105 times larger than the smallest turbulence scales (Kolmogorov scale). Such scale is fine for the dynamics of a whale (around 100 m) but for a fish larvae (1 cm) or a copepod (1 mm) a description at smaller scales is needed, due to the nonlinear nature of turbulence. The same is verified also for biogeochemical fields such as passive and actives tracers (oxygen, fluorescence, nutrients, pH, turbidity, temperature, salinity...) In this framework, we will discuss the scale problem in turbulence modeling in the ocean, and the relation of Kolmogorov's and Batchelor's scales of turbulence in the ocean, with the size of marine animals. We will also consider scaling laws for organism-particle Reynolds numbers (from whales to bacteria), and possible scaling laws for organism's accelerations.
The Planck Telescope reflectors
NASA Astrophysics Data System (ADS)
Stute, Thomas
2004-09-01
The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.
Planck 2013 results. XXIV. Constraints on primordial non-Gaussianity
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; DÃ©sert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; EnÃŸlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-HÃ©raud, Y.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Heavens, A.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; RubiÃ±o-MartÃn, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Smith, K.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG). Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result fNLlocal = 2.7 Â± 5.8, fNLequil = -42 Â± 75, and fNLorth = -25 Â± 39 (68% CL statistical). Non-Gaussianity is detected in the data; using skew-Câ„“ statistics we find a nonzero bispectrum from residual point sources, and the integrated-Sachs-Wolfe-lensing bispectrum at a level expected in the Î›CDM scenario. The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are confirmed by skew-Câ„“, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and thus derive constraints on early-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models. These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, cs â‰¥ 0.02 (95% CL), in an effective field theory parametrization, and the curvaton decay fraction rD â‰¥ 0.15 (95% CL). The Planck data significantly limit the viable parameter space of the ekpyrotic/cyclic scenarios. The amplitude of the four-point function in the local model Ï„NL< 2800 (95% CL). Taken together, these constraints represent the highest precision tests to date of physical mechanisms for the origin of cosmic structure.
Physical-scale models of engineered log jams in rivers
Technology Transfer Automated Retrieval System (TEKTRAN)
Stream restoration and river engineering projects are employing engineered log jams increasingly for stabilization and in-stream improvements. To further advance the design of these structures and their morphodynamic effects on corridors, the basis for physical-scale models of rivers with engineere...
2D VARIABLY SATURATED FLOWS: PHYSICAL SCALING AND BAYESIAN ESTIMATION
A novel dimensionless formulation for water flow in two-dimensional variably saturated media is presented. It shows that scaling physical systems requires conservation of the ratio between capillary forces and gravity forces. A direct result of this finding is that for two phys...
The Basic Psychological Needs in Physical Education Scale
ERIC Educational Resources Information Center
Vlachopoulos, Symeon P.; Katartzi, Ermioni S.; Kontou, Maria G.
2011-01-01
The present study reported on the modification of the Basic Psychological Needs in Exercise Scale (Vlachopoulos & Michailidou, 2006) to assess students' psychological need fulfillment in elementary school, middle school, and high school compulsory physical education classes. Data were collected from 817 5th and 6th grade students, 862 middle…
Reactor Physics Methods and Analysis Capabilities in SCALE
Mark D. DeHart; Stephen M. Bowman
2011-05-01
The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.
Reactor Physics Methods and Analysis Capabilities in SCALE
DeHart, Mark D; Bowman, Stephen M
2011-01-01
The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.
Large-scale simulations of complex physical systems
NASA Astrophysics Data System (ADS)
Beli?, A.
2007-04-01
Scientific computing has become a tool as vital as experimentation and theory for dealing with scientific challenges of the twenty-first century. Large scale simulations and modelling serve as heuristic tools in a broad problem-solving process. High-performance computing facilities make possible the first step in this process - a view of new and previously inaccessible domains in science and the building up of intuition regarding the new phenomenology. The final goal of this process is to translate this newly found intuition into better algorithms and new analytical results. In this presentation we give an outline of the research themes pursued at the Scientific Computing Laboratory of the Institute of Physics in Belgrade regarding large-scale simulations of complex classical and quantum physical systems, and present recent results obtained in the large-scale simulations of granular materials and path integrals.
Physical scales in the Wigner–Boltzmann equation
Nedjalkov, M.; Selberherr, S.; Ferry, D.K.; Vasileska, D.; Dollfus, P.; Querlioz, D.; Dimov, I.; Schwaha, P.
2013-01-01
The Wigner–Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner–Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. It is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner–Boltzmann evolution is demonstrated. PMID:23504194
Cosmic reionization after Planck
NASA Astrophysics Data System (ADS)
Mitra, Sourav; Choudhury, T. Roy; Ferrara, Andrea
2015-11-01
Cosmic reionization holds the key to understand structure formation in the Universe, and can inform us about the properties of the first sources, as their star formation efficiency and escape fraction of ionizing photons. By combining the recent release of Planck electron scattering optical depth data with observations of high-redshift quasar absorption spectra, we obtain strong constraints on viable reionization histories. We show that inclusion of Planck data favors a reionization scenario with a single stellar population. The mean xH I drops from Ëœ0.8 at z = 10.6 to Ëœ10-4 at z = 5.8 and reionization is completed around 5.8 â‰² z â‰² 8.5 (2Ïƒ), thus indicating a significant reduction in contributions to reionization from high-redshift sources. We can put independent constraints on the escape fraction fesc of ionizing photons by incorporating the high-redshift galaxy luminosity function data into our analysis. We find a non-evolving fesc of Ëœ10 per cent in the redshift range z = 6-9.
Quantum Gravity corrections and entropy at the Planck time
Basilakos, Spyros; Vagenas, Elias C.; Das, Saurya E-mail: saurya.das@uleth.ca
2010-09-01
We investigate the effects of Quantum Gravity on the Planck era of the universe. In particular, using different versions of the Generalized Uncertainty Principle and under specific conditions we find that the main Planck quantities such as the Planck time, length, mass and energy become larger by a factor of order 10?10{sup 4} compared to those quantities which result from the Heisenberg Uncertainty Principle. However, we prove that the dimensionless entropy enclosed in the cosmological horizon at the Planck time remains unchanged. These results, though preliminary, indicate that we should anticipate modifications in the set-up of cosmology since changes in the Planck era will be inherited even to the late universe through the framework of Quantum Gravity (or Quantum Field Theory) which utilizes the Planck scale as a fundamental one. More importantly, these corrections will not affect the entropic content of the universe at the Planck time which is a crucial element for one of the basic principles of Quantum Gravity named Holographic Principle.
Physics of Multi-scale Convection In The Earth's Mantle
NASA Astrophysics Data System (ADS)
Korenaga, J.; Jordan, T. H.
We investigate the physics of multi-scale convection in the Earth's mantle, character- ized by the coexistence of large-scale mantle circulation associated plate tectonics and small-scale sublithospheric convection. Several basic scaling laws are derived, using a series of 2-D numerical modeling and 3-D linear stability analyses, for the following three distinct phases of sublithospheric convection: (1) onset of convection, (2) lay- ered convection in the upper mantle, and (3) breakdown of layered convection. First, the onset of convection with temperature-dependent viscosity is studied with 2-D con- vection models. A robust scaling law for onset time is derived by a nonlinear scaling analysis based on the concept of the differential Rayleigh number. Next, the planform of sublithospheric convection is studied by a 3-D linear stability analysis of longitu- dinal rolls in the presence of vertical shear. Finally, the temporal and spatial evolu- tion of sublithospheric convection is studied by 2-D whole-mantle convection models with temperature- and depth-dependent viscosity and an endothermic phase transition. Scaling laws for the breakdown of layered convection as well as the strength of con- vection are derived as a function of viscosity layering, the phase buoyancy parameter, and the thermal Rayleigh number. All of these scaling laws are combined to delineate possible dynamic regimes beneath evolving lithosphere.
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.; Kumar, S.; Lapenta, W.; Li, X.; Matsui, T.; Rienecker, M.; Shen, B.W.; Shi, J.J.; Simpson, J.; Zeng, X.
2008-01-01
Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.
Urano, S.; Ring, D.; Arnowitt, R.
1996-05-01
It is shown that nonrenormalizable gravitational interactions in the Higgs sector of supersymmetric grand unified theories (GUTs) can produce the breaking of the unifying gauge group {ital G} at the GUT scale {ital M}{sub GUT}{approximately}10{sup 16} GeV. Such a breaking offers an attractive alternative to the traditional method where the superheavy GUT scale mass parameters are added {ital ad} {ital hoc} into the theory. The mechanism also offers a natural explanation for the closeness of the GUT breaking scale to the Planck scale. A study of two simple models endowed with this mechanism is presented. {copyright} {ital 1996 The American Physical Society.}
Planck CMB anomalies: astrophysical and cosmological secondary effects and the curse of masking
Rassat, A.; Starck, J.-L.; Paykari, P.; Sureau, F.; Bobin, J. E-mail: jstarck@cea.fr E-mail: florent.sureau@cea.fr
2014-08-01
Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html.
Planck 2013 results. XXIII. Isotropy and statistics of the CMB
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; BenoÃ®t, A.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; DÃ©sert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; EnÃŸlin, T. A.; Eriksen, H. K.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-HÃ©raud, Y.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hansen, M.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Kim, J.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J. D.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-DeschÃªnes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; RÃ¤th, C.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rotti, A.; Roudier, G.; RubiÃ±o-MartÃn, J. A.; Ruiz-Granados, B.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Souradeep, T.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; TÃ¼rler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
The two fundamental assumptions of the standard cosmological model - that the initial fluctuations are statistically isotropic and Gaussian - are rigorously tested using maps of the cosmic microwave background (CMB) anisotropy from the Planck satellite. The detailed results are based on studies of four independent estimates of the CMB that are compared to simulations using a fiducial Î›CDM model and incorporating essential aspects of the Planck measurement process. Deviations from isotropy have been found and demonstrated to be robust against component separation algorithm, mask choice, and frequency dependence. Many of these anomalies were previously observed in the WMAP data, and are now confirmed at similar levels of significance (about 3Ïƒ). However, we find little evidence of non-Gaussianity, with the exception of a few statistical signatures that seem to be associated with specific anomalies. In particular, we find that the quadrupole-octopole alignment is also connected to a low observed variance in the CMB signal. A power asymmetry is now found to persist on scales corresponding to about â„“ = 600 and can be described in the low-â„“ regime by a phenomenological dipole modulation model. However, any primordial power asymmetry is strongly scale-dependent and does not extend toarbitrarily small angular scales. Finally, it is plausible that some of these features may be reflected in the angular power spectrum of the data, which shows a deficit of power on similar scales. Indeed, when the power spectra of two hemispheres defined by a preferred direction are considered separately, one shows evidence of a deficit in power, while its opposite contains oscillations between odd and even modes that may be related to the parity violation and phase correlations also detected in the data. Although these analyses represent a step forward in building an understanding of the anomalies, a satisfactory explanation based on physically motivated models is still lacking.
Primordial non-Gaussianities after Planck 2015: An introductory review
NASA Astrophysics Data System (ADS)
Renaux-Petel, SÃ©bastien
2015-12-01
Deviations from Gaussian statistics of the cosmological density fluctuations, so-called primordial non-Gaussianities (NG), are one of the most informative fingerprints of the origin of structures in the universe. Indeed, they can probe physics at energy scales inaccessible to laboratory experiments, and are sensitive to the interactions of the field(s) that generated the primordial fluctuations, contrary to the Gaussian linear theory. As a result, they can discriminate between inflationary models that are otherwise almost indistinguishable. In this short review, we explain how to compute the non-Gaussian properties in any inflationary scenario. We review the theoretical predictions of several important classes of models. We then describe the ways NG can be probed observationally, and we highlight the recent constraints from the Planck mission, as well as their implications. We finally identify well motivated theoretical targets for future experiments and discuss observational prospects. xml:lang="fr"
Quantifying the BICEP2-Planck tension over gravitational waves.
Smith, Kendrick M; Dvorkin, Cora; Boyle, Latham; Turok, Neil; Halpern, Mark; Hinshaw, Gary; Gold, Ben
2014-07-18
The recent BICEP2 measurement of B-mode polarization in the cosmic microwave background (r = 0.2(-0.05)(+0.07)), a possible indication of primordial gravity waves, appears to be in tension with the upper limit from WMAP (r < 0.13 at 95% C.L.) and Planck (r < 0.11 at 95% C.L.). We carefully quantify the level of tension and show that it is very significant (around 0.1% unlikely) when the observed deficit of large-scale temperature power is taken into account. We show that measurements of TE and EE power spectra in the near future will discriminate between the hypotheses that this tension is either a statistical fluke or a sign of new physics. We also discuss extensions of the standard cosmological model that relieve the tension and some novel ways to constrain them. PMID:25083631
Vlasov-Fokker-Planck modeling of High Energy Density Plasmas
NASA Astrophysics Data System (ADS)
Tzoufras, Michail; Tableman, Adam; Mori, Warren
2013-10-01
Vlasov-Fokker-Planck simulations can be applied to a wide variety of problems in High-Energy-Density Plasmas. They can be used with an explicit solver to study the physics of waves in plasma media, including Landau Damping, echoes, instabilities etc., just like standard Vlasov codes. Moreover, they allow us to study the effect of collisions on these kinetic phenomena. On the other had, using an implicit solver, they enable kinetic simulations of realistic temporal and spatial scales. Recent simulations with the VFP code OSHUN will be presented for all of the aforementioned problems. The algorithmic improvements that have facilitated these studies will be also be discussed. DOE under Fusion Science Center through a University of Rochester Subcontract No. 415025-G.
Spectral Imaging of Galaxy Clusters with Planck
NASA Astrophysics Data System (ADS)
Bourdin, H.; Mazzotta, P.; Rasia, E.
2015-12-01
The Sunyaev-Zeldovich (SZ) effect is a promising tool for detecting the presence of hot gas out to the galaxy cluster peripheries. We developed a spectral imaging algorithm dedicated to the SZ observations of nearby galaxy clusters with Planck, with the aim of revealing gas density anisotropies related to the filamentary accretion of materials, or pressure discontinuities induced by the propagation of shock fronts. To optimize an unavoidable trade-off between angular resolution and precision of the SZ flux measurements, the algorithm performs a multi-scale analysis of the SZ maps as well as of other extended components, such as the cosmic microwave background (CMB) anisotropies and the Galactic thermal dust. The demixing of the SZ signal is tackled through kernel-weighted likelihood maximizations. The CMB anisotropies are further analyzed through a wavelet analysis, while the Galactic foregrounds and SZ maps are analyzed via a curvelet analysis that best preserves their anisotropic details. The algorithm performance has been tested against mock observations of galaxy clusters obtained by simulating the Planck High Frequency Instrument and by pointing at a few characteristic positions in the sky. These tests suggest that Planck should easily allow us to detect filaments in the cluster peripheries and detect large-scale shocks in colliding galaxy clusters that feature favorable geometry.
Planck's Constant as a Natural Unit of Measurement
ERIC Educational Resources Information Center
Quincey, Paul
2013-01-01
The proposed revision of SI units would embed Planck's constant into the definition of the kilogram, as a fixed constant of nature. Traditionally, Planck's constant is not readily interpreted as the size of something physical, and it is generally only encountered by students in the mathematics of quantum physics. Richard Feynman's…
Planck's Constant as a Natural Unit of Measurement
ERIC Educational Resources Information Center
Quincey, Paul
2013-01-01
The proposed revision of SI units would embed Planck's constant into the definition of the kilogram, as a fixed constant of nature. Traditionally, Planck's constant is not readily interpreted as the size of something physical, and it is generally only encountered by students in the mathematics of quantum physics. Richard Feynman'sâ€¦
Does Planck really rule out monomial inflation?
Enqvist, Kari; Kar?iauskas, Mindaugas E-mail: mindaugas.karciauskas@helsinki.fi
2014-02-01
We consider the modifications of monomial chaotic inflation models due to radiative corrections induced by inflaton couplings to bosons and/or fermions necessary for reheating. To the lowest order, ignoring gravitational corrections and treating the inflaton as a classical background field, they are of the Coleman-Weinberg type and parametrized by the renormalization scale ?. In cosmology, there are not enough measurements to fix ? so that we end up with a family of models, each having a slightly different slope of the potential. We demonstrate by explicit calculation that within the family of chaotic ?{sup 2} models, some may be ruled out by Planck whereas some remain perfectly viable. In contrast, radiative corrections do not seem to help chaotic ?{sup 4} models to meet the Planck constraints.
Microphysics in Multi-scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2012-01-01
Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.
Microphysics in Multi-scale Modeling System with Unified Physics
NASA Astrophysics Data System (ADS)
Tao, W.-K.
2012-04-01
Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.
Microphysics in Multi-scale Modeling Systems with Unified Physics
NASA Astrophysics Data System (ADS)
Tao, W.; Chern, J.; Lang, S.
2011-12-01
A multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling systems will be presented
Physical scales in the Wigner-Boltzmann equation
Nedjalkov, M.; Selberherr, S.; Ferry, D.K.; Vasileska, D.; Dollfus, P.; Querlioz, D.; Dimov, I.; Schwaha, P.
2013-01-15
The Wigner-Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner-Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. It is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner-Boltzmann evolution is demonstrated. - Highlights: Black-Right-Pointing-Pointer Dimensionless parameters determine the ratio of quantum or classical WB evolution. Black-Right-Pointing-Pointer The scaling theorem evaluates the decoherence effect due to scattering. Black-Right-Pointing-Pointer Evolution processes are grouped into classes of equivalence.
The Higgs mass and the scale of new physics
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Gies, Holger; Jaeckel, Joerg; Plehn, Tilman; Scherer, Michael M.; Sondenheimer, RenÃ©
2015-04-01
In view of the measured Higgs mass of 125 GeV, the perturbative renormalization group evolution of the Standard Model suggests that our Higgs vacuum might not be stable. We connect the usual perturbative approach and the functional renormalization group which allows for a straightforward inclusion of higher-dimensional operators in the presence of an ultraviolet cutoff. In the latter framework we study vacuum stability in the presence of higher-dimensional operators. We find that their presence can have a sizable influence on the maximum ultraviolet scale of the Standard Model and the existence of instabilities. Finally, we discuss how such operators can be generated in specific models and study the relation between the instability scale of the potential and the scale of new physics required to avoid instabilities.
Neutrinos help reconcile Planck measurements with the local universe.
Wyman, Mark; Rudd, Douglas H; Vanderveld, R Ali; Hu, Wayne
2014-02-01
Current measurements of the low and high redshift Universe are in tension if we restrict ourselves to the standard six-parameter model of flat ?CDM. This tension has two parts. First, the Planck satellite data suggest a higher normalization of matter perturbations than local measurements of galaxy clusters. Second, the expansion rate of the Universe today, H0, derived from local distance-redshift measurements is significantly higher than that inferred using the acoustic scale in galaxy surveys and the Planck data as a standard ruler. The addition of a sterile neutrino species changes the acoustic scale and brings the two into agreement; meanwhile, adding mass to the active neutrinos or to a sterile neutrino can suppress the growth of structure, bringing the cluster data into better concordance as well. For our fiducial data set combination, with statistical errors for clusters, a model with a massive sterile neutrino shows 3.5? evidence for a nonzero mass and an even stronger rejection of the minimal model. A model with massive active neutrinos and a massless sterile neutrino is similarly preferred. An eV-scale sterile neutrino mass--of interest for short baseline and reactor anomalies--is well within the allowed range. We caution that (i) unknown astrophysical systematic errors in any of the data sets could weaken this conclusion, but they would need to be several times the known errors to eliminate the tensions entirely; (ii) the results we find are at some variance with analyses that do not include cluster measurements; and (iii) some tension remains among the data sets even when new neutrino physics is included. PMID:24580585
Planck 2013 results. XVI. Cosmological parameters
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Pearson, T. J.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (? ? 40) are extremely well described by the standard spatially-flat six-parameter ?CDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be ?? = (1.04147 ± 0.00062) × 10-2, ?bh2 = 0.02205 ± 0.00028, ?ch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, ?m = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ?CDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ?CDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r0.002< 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13-0.10+0.13. We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ?CDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 ? ? ? 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an "anomaly" in an otherwise self-consistent analysis of the Planck temperature data.
Planck 2013 results. I. Overview of products and scientific results
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Battye, R.; Benabed, K.; BenoÃ®t, A.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bertincourt, B.; Bethermin, M.; Bielewicz, P.; Bikmaev, I.; Blanchard, A.; Bobin, J.; Bock, J. J.; BÃ¶hringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bourdin, H.; Bowyer, J. W.; Bridges, M.; Brown, M. L.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cappellini, B.; Cardoso, J.-F.; Carr, R.; Carvalho, P.; Casale, M.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Church, S.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; DÃ©chelette, T.; Delabrouille, J.; Delouis, J.-M.; DÃ©moclÃ¨s, J.; DÃ©sert, F.-X.; Dick, J.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; EnÃŸlin, T. A.; Eriksen, H. K.; Fabre, O.; Falgarone, E.; Falvella, M. C.; Fantaye, Y.; Fergusson, J.; Filliard, C.; Finelli, F.; Flores-Cacho, I.; Foley, S.; Forni, O.; Fosalba, P.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Freschi, M.; Fromenteau, S.; Frommert, M.; Gaier, T. C.; Galeotta, S.; Gallegos, J.; Galli, S.; Gandolfo, B.; Ganga, K.; Gauthier, C.; GÃ©nova-Santos, R. T.; Ghosh, T.; Giard, M.; Giardino, G.; Gilfanov, M.; Girard, D.; Giraud-HÃ©raud, Y.; GjerlÃ¸w, E.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hamann, J.; Hansen, F. K.; Hansen, M.; Hanson, D.; Harrison, D. L.; Heavens, A.; Helou, G.; Hempel, A.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huey, G.; Huffenberger, K. M.; Hurier, G.; IliÄ‡, S.; Jaffe, A. H.; Jaffe, T. R.; Jasche, J.; Jewell, J.; Jones, W. C.; Juvela, M.; Kalberla, P.; Kangaslahti, P.; KeihÃ¤nen, E.; Kerp, J.; Keskitalo, R.; Khamitov, I.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lavabre, A.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; LeÃ³n-Tavares, J.; Leroy, C.; Lesgourgues, J.; Lewis, A.; Li, C.; Liddle, A.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; Lindholm, V.; LÃ³pez-Caniego, M.; Lowe, S.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; MacTavish, C. J.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marcos-Caballero, A.; Marinucci, D.; Maris, M.; Marleau, F.; Marshall, D. J.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matsumura, T.; Matthai, F.; Maurin, L.; Mazzotta, P.; McDonald, A.; McEwen, J. D.; McGehee, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Millea, M.; Miniscalco, R.; Mitra, S.; Miville-DeschÃªnes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Morisset, N.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Nesvadba, N. P. H.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Orieux, F.; Osborne, S.; O'Sullivan, C.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Pandolfi, S.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Pearson, D.; Pearson, T. J.; Peel, M.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Pullen, A. R.; Rachen, J. P.; Racine, B.; Rahlin, A.; RÃ¤th, C.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Riazuelo, A.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Robbers, G.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; RubiÃ±o-MartÃn, J. A.; Ruiz-Granados, B.; Rusholme, B.; Salerno, E.; Sandri, M.; Sanselme, L.; Santos, D.; Savelainen, M.; Savini, G.; Schaefer, B. M.; Schiavon, F.; Scott, D.; Seiffert, M. D.; Serra, P.; Shellard, E. P. S.; Smith, K.; Smoot, G. F.; Souradeep, T.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Taylor, D.; Terenzi, L.; Texier, D.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tucci, M.; Tuovinen, J.; TÃ¼rler, M.; Tuttlebee, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vibert, L.; Viel, M.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson, C.; Watson, R.; Wehus, I. K.; Welikala, N.; Weller, J.; White, M.; White, S. D. M.; Wilkinson, A.; Winkel, B.; Xia, J.-Q.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.
2014-11-01
The European Space Agency's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. In March 2013, ESA and the Planck Collaboration released the initial cosmology products based on the first 15.5 months of Planck data, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the cosmic microwave background (CMB) and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the Sunyaev-Zeldovich effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter Î›CDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25Ïƒ. Planck finds no evidence for non-Gaussianity in the CMB. Planck's results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations (Ïƒ8) derived from CMB data and that derived from Sunyaev-Zeldovich data. The Planck and WMAP power spectra are offset from each other by an average level of about 2% around the first acoustic peak. Analysis of Planck polarization data is not yet mature, therefore polarization results are not released, although the robust detection of E-mode polarization around CMB hot and cold spots is shown graphically.
Integrated physics package of a chip-scale atomic clock
NASA Astrophysics Data System (ADS)
Li, Shao-Liang; Xu, Jing; Zhang, Zhi-Qiang; Zhao, Lu-Bing; Long, Liang; Wu, Ya-Ming
2014-07-01
The physics package of a chip-scale atomic clock (CSAC) has been successfully realized by integrating vertical cavity surface emitting laser (VCSEL), neutral density (ND) filter, Î»/4 wave plate, 87Rb vapor cell, photodiode (PD), and magnetic coil into a cuboid metal package with a volume of about 2.8 cm3. In this physics package, the critical component, 87Rb vapor cell, is batch-fabricated based on MEMS technology and in-situ chemical reaction method. Pt heater and thermistors are integrated in the physics package. A PTFE pillar is used to support the optical elements in the physics package, in order to reduce the power dissipation. The optical absorption spectrum of 87Rb D1 line and the microwave frequency correction signal are successfully observed while connecting the package with the servo circuit system. Using the above mentioned packaging solution, a CSAC with short-term frequency stability of about 7 Ã— 10-10 Ï„-1/2 has been successfully achieved, which demonstrates that this physics package would become one promising solution for the CSAC.
Joint Planck and WMAP assessment of low CMB multipoles
NASA Astrophysics Data System (ADS)
Iqbal, Asif; Prasad, Jayanti; Souradeep, Tarun; Malik, Manzoor A.
2015-06-01
The remarkable progress in cosmic microwave background (CMB) studies over past decade has led to the era of precision cosmology in striking agreement with the ?CDM model. However, the lack of power in the CMB temperature anisotropies at large angular scales (low-l), as has been confirmed by the recent Planck data also (up to 0l=4), although statistically not very strong (less than 3?), is still an open problem. One can avoid to seek an explanation for this problem by attributing the lack of power to cosmic variance or can look for explanations i.e., different inflationary potentials or initial conditions for inflation to begin with, non-trivial topology, ISW effect etc. Features in the primordial power spectrum (PPS) motivated by the early universe physics has been the most common solution to address this problem. In the present work we also follow this approach and consider a set of PPS which have features and constrain the parameters of those using WMAP 9 year and Planck data employing Markov-Chain Monte Carlo (MCMC) analysis. The prominent feature of all the models of PPS that we consider is an infra-red cut off which leads to suppression of power at large angular scales. We consider models of PPS with maximum three extra parameters and use Akaike information criterion (AIC) and Bayesian information criterion (BIC) of model selection to compare the models. For most models, we find good constraints for the cut off scale kc, however, for other parameters our constraints are not that good. We find that sharp cut off model gives best likelihood value for the WMAP 9 year data, but is as good as power law model according to AIC. For the joint WMAP 9 + Planck data set, Starobinsky model is slightly preferred by AIC which is also able to produce CMB power suppression up to 0l<=3 to some extent. However, using BIC criteria, one finds model(s) with least number of parameters (power law model) are always preferred.
Signatures of Planck corrections in a spiralling axion inflation model
McDonald, John
2015-05-08
The minimal sub-Planckian axion inflation model accounts for a large scalar-to-tensor ratio via a spiralling trajectory in the field space of a complex field Î¦. Here we consider how the predictions of the model are modified by Planck scale-suppressed corrections. In the absence of Planck corrections the model is equivalent to a Ï•{sup 4/3} chaotic inflation model. Planck corrections become important when the dimensionless coupling Î¾ of |Î¦|{sup 2} to the topological charge density of the strongly-coupled gauge sector FF{sup ~} satisfies Î¾âˆ¼1. For values of |Î¦| which allow the Planck corrections to be understood via an expansion in powers of |Î¦|{sup 2}/M{sub Pl}{sup 2}, we show that their effect is to produce a significant modification of the tensor-to-scalar ratio from its Ï•{sup 4/3} chaotic inflation value without strongly modifying the spectral index. In addition, to leading order in |Î¦|{sup 2}/M{sub Pl}{sup 2}, the Planck modifications of n{sub s} and r satisfy a consistency relation, Î”n{sub s}=âˆ’Î”r/16. Observation of these modifications and their correlation would allow the model to be distinguished from a simple Ï•{sup 4/3} chaotic inflation model and would also provide a signature for the influence of leading-order Planck corrections.
A Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2008-01-01
Numerical cloud models, which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Because cloud-scale dynamics are treated explicitly, uncertainties stemming from convection that have to be parameterized in (hydrostatic) large-scale models are obviated, or at least mitigated, in cloud models. Global models will use the non-hydrostatic framework when their horizontal resolution becomes about 10 km, the theoretical limit for the hydrostatic approximation. This juncture will be reached one to two decades from now. In recent years, exponentially increasing computer power has extended cloud-resolving-mode1 integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique.
Role of the subgrid-scale physical processes in supermodelling
NASA Astrophysics Data System (ADS)
Yano, J.
2011-12-01
The basic ides of supermodelling is in overcoming deficits of existing models by combining them together to improve our ability of climate simulations and prediction. However, in order to exploit this method better, we have to pay special attention to the common defects of the current climate models. Representation of subgrid-scale physical processes is such a particular example. . The present talk presents the author's point of view on representation of subgrid-scale processes in the above general question in mind. The focus of the talk will be on interplay between traditional parameterizations and recently proposed superparameterization (also often called "multiscale modelling"), but it also covers the issues of downscaling as well as possibilities of introducing mesh-refinement approaches into the context of subgrid-scale modelling. The author's main perspective is that the subgrid-scale parameterization should not be considered as a distinguished approach in contrast to explicit (more direct) modelling, such as superparameterization, but a hierarchy of modelling approaches should be constructed by taking various intermediate approaches. The mass-flux convection parameterization is taken as an example in order to make this point. It will be shown that at the most basic level, the mass-flux parameterization is equivalent to a finite-volume numerical approach, though various additional approximations and hypotheses must be introduced in order to arrive at a classical mass-flux parameterization. At the mathematical level, the multiresolution analysis based on wavelet provides a basic source of inspirations for developing this general perspective. From this perspective, the issue of parameterization is considered as "compression" of a full explicit model in the same sense as the wavelet can be used for the image compression. This perspective also leads to a concept of compression of physics. Compression of cloud microphysics would be the most urgent issue considering its vast complexity as well as its crucial importance in climate feedbacks.
On the Einstein-Cartan cosmology vs. Planck data
NASA Astrophysics Data System (ADS)
Palle, D.
2014-04-01
The first comprehensive analyses of Planck data reveal that the cosmological model with dark energy and cold dark matter can satisfactorily explain the essential physical features of the expanding Universe. However, the inability to simultaneously fit the large and small scale TT power spectrum, the scalar power index smaller than unity, and the observations of the violation of the isotropy found by few statistical indicators of the CMB urge theorists to search for explanations. We show that the model of the Einstein-Cartan cosmology with clustered dark matter halos and their corresponding clustered angular momenta coupled to torsion can account for small-scale-large-scale discrepancy and larger peculiar velocities (bulk flows) for galaxy clusters. The nonvanishing total angular momentum (torsion) of the Universe enters as a negative effective density term in the Einstein-Cartan equations causing partial cancellation of the mass density. The integrated Sachs-Wolfe contribution of the Einstein-Cartan model is negative, and it can therefore provide partial cancellation of the large-scale power of the TT CMB spectrum. The observed violation of the isotropy appears as a natural ingredient of the Einstein-Cartan model caused by the spin densities of light Majorana neutrinos in the early stage of the evolution of the Universe and bound to the lepton CP violation and matter-antimatter asymmetry.
The Planck Catalogue of High-z source candidates : A laboratory for high-z star forming galaxies
NASA Astrophysics Data System (ADS)
Montier, Ludovic
2015-08-01
The Planck satellite has provided the first FIR/submm all-sky survey with a sensitivity allowing us to identify the rarest, most luminous high-z dusty star-forming sources on the sky. It opens a new window on these extreme star-forming systems at redshift above 1.5, providing a powerful laboratory to study the mechanisms of galaxy evolution and enrichment in the frame of the large scale structure growth.I will describe how the Planck catalogue of high-z source candidates (PHz, Planck 2015 in prep.) has been built and charcaterized over 25% of the sky by selecting the brightest red submm sources at a 5' resolution. Follow-up observations with Herschel/SPIRE over 228 Planck candidates have shown that 93% of these candidates are actually overdensities of red sources with SEDs peaking at 350um (Planck Int. results. XXVII 2014). Complementarily to this population of objects, 12 Planck high-z candidates have been identified as strongly lensed star forming galaxies at redshift lying between 2.2 and 3.6 (Canameras et al 2015 subm.), with flux densities larger than 400 mJy up to 1 Jy at 350um, and strong magnification factors. These Planck lensed star-forming galaxies are the rarest brightest lensed in the submm range, providing a unique opportunity to extend the exploration of the star-forming system in this range of mass and redshift.I will detail further a specific analysis performed on a proto-cluster candidate, PHz G95.5-61.6, identified as a double structure at z=1.7 and z=2.03, using an extensive follow-up program (Flores-Cacho et al 2015 subm.). This is the first Planck proto-cluster candidate with spectroscopic confirmation, which opens a new field of statistical analysis about the evolution of dusty star-forming galaxies in such accreting structures.I will finally discuss how the PHz catalogue may help to answer some of the fundamental questions like: At what cosmic epoch did massive galaxy clusters form most of their stars? Is star formation more or less vigorous in these galaxies compared to field galaxies ? What are the physical conditions of the ISM at high-z ?
Lattice physics capabilities of the SCALE code system using TRITON
DeHart, M. D.
2006-07-01
This paper describes ongoing calculations used to validate the TRITON depletion module in SCALE for light water reactor (LWR) fuel lattices. TRITON has been developed to provide improved resolution for lattice physics mixed-oxide fuel assemblies as programs to burn such fuel in the United States begin to come online. Results are provided for coupled TRITON/PARCS analyses of an LWR core in which TRITON was employed for generation of appropriately weighted few-group nodal cross-sectional sets for use in core-level calculations using PARCS. Additional results are provided for code-to-code comparisons for TRITON and a suite of other depletion packages in the modeling of a conceptual next-generation boiling water reactor fuel assembly design. Results indicate that the set of SCALE functional modules used within TRITON provide an accurate means for lattice physics calculations. Because the transport solution within TRITON provides a generalized-geometry capability, this capability is extensible to a wide variety of non-traditional and advanced fuel assembly designs. (authors)
Reconstruction of broad features in the primordial spectrum and inflaton potential from Planck
Hazra, Dhiraj Kumar; Shafieloo, Arman; Smoot, George F. E-mail: arman@apctp.org
2013-12-01
With the recently published Cosmic Microwave Background data from Planck we address the optimized binning of the primordial power spectrum. As an important modification to the usual binning of the primordial spectrum, along with the spectral amplitude of the bins, we allow the position of the bins also to vary. This technique enables us to address the location of the possible broad physical features in the primordial spectrum with relatively smaller number of bins compared to the analysis performed earlier. This approach is in fact a reconstruction method looking for broad features in the primordial spectrum and avoiding fitting noise in the data. Performing Markov Chain Monte Carlo analysis we present samples of the allowed primordial spectra with broad features consistent with Planck data. To test how realistic it is to have step-like features in primordial spectrum we revisit an inflationary model, proposed by A. A. Starobinsky which can address the similar features obtained from the binning of the spectrum. Using the publicly available code BINGO, we numerically calculate the local f{sub NL} for this model in equilateral and arbitrary triangular configurations of wavevectors and show that the obtained non-Gaussianity for this model is consistent with Planck results. In this paper we have also considered different spectral tilts at different bins to identify the cosmological scale that the spectral index needs to have a red tilt and it is interesting to report that spectral index cannot be well constrained up to k ? 0.01Mpc{sup ?1}.
Towards a Fokker-Planck Rheometer
NASA Astrophysics Data System (ADS)
Chinesta, Francisco; Ammar, Amine; Keunings, Roland
2008-07-01
Models of kinetic theory provide a coarse-grained description of molecular configurations wherein atomistic processes are ignored. Kinetic theory models can be very complicated mathematical objects sometimes defined in highly multidimensional spaces including the physical space, the time and the conformational space. In the past, stochastic based simulations were preferred to circumvent or at least alleviate the curse of dimensionality that many kinetic theory models exhibit. Recently, we proposed alternative solution strategies of the kinetic theory models based on the use of model reduction and separated representations for solving generic Fokker-Planck descriptions. These strategies have been successfully applied to solve a large variety of models.
Planck 2013 results. XXVIII. The Planck Catalogue of Compact Sources
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; ArgÃ¼eso, F.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Beelen, A.; Benabed, K.; BenoÃ®t, A.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; DÃ©sert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; EnÃŸlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-HÃ©raud, Y.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; LeÃ³n-Tavares, J.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; RubiÃ±o-MartÃn, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; TÃ¼rler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Walter, B.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
The Planck Catalogue of Compact Sources (PCCS) is the catalogue of sources detected in the first 15 months of Planck operations, the â€œnominalâ€ mission. It consists of nine single-frequency catalogues of compact sources, both Galactic and extragalactic, detected over the entire sky. The PCCS covers the frequency range 30-857 GHz with higher sensitivity (it is 90% complete at 180 mJy in the best channel) and better angular resolution (from 32.88' to 4.33') than previous all-sky surveys in this frequency band. By construction its reliability is >80% and more than 65% of the sources have been detected in at least two contiguous Planck channels. In this paper we present the construction and validation of the PCCS, its contents and its statistical characterization.
Poisson-Boltzmann-Nernst-Planck model.
Zheng, Qiong; Wei, Guo-Wei
2011-05-21
The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external voltages. Extensive numerical experiments show that there is an excellent consistency between the results predicted from the present PBNP model and those obtained from the PNP model in terms of the electrostatic potentials, ion concentration profiles, and current-voltage (I-V) curves. The present PBNP model is further validated by a comparison with experimental measurements of I-V curves under various ion bulk concentrations. Numerical experiments indicate that the proposed PBNP model is more efficient than the original PNP model in terms of simulation time. PMID:21599038
Planck Visualization Project: Seeing and Hearing the Cosmic Microwave Background
NASA Astrophysics Data System (ADS)
van der Veen, J.
2010-08-01
The Planck Mission, launched May 14, 2009, will measure the sky over nine frequency channels, with temperature sensitivity of a few microKelvin, and angular resolution of up to 5 arc minutes. Planck is expected to provide the data needed to set tight constraints on cosmological parameters, study the ionization history of the Universe, probe the dynamics of the inflationary era, and test fundamental physics. The Planck Education and Public Outreach collaborators at NASA's Jet Propulsion Laboratory, the University of California, Santa Barbara and Purdue University are preparing a variety of materials to present the science goals of the Planck Mission to the public. Two products currently under development are an interactive simulation of the mission which can be run in a virtual reality environment, and an interactive presentation on interpreting the power spectrum of the Cosmic Microwave Background with music. In this paper we present a brief overview of CMB research and the Planck Mission, and discuss how to explain, to non-technical audiences, the theory of how we derive information about the early universe from the power spectrum of the CMB by using the physics of music.
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2008-01-01
A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. The following is presented in this report: (1) a brief review of the GCE model and its applications on the impact of aerosols on deep precipitation processes, (2) the Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) a discussion on the Goddard WRF version (its developments and applications).
Countability of Planck Boxes in Quantum Branching Models
NASA Astrophysics Data System (ADS)
Berezin, Alexander A.
2002-04-01
Two popular paradigms of cosmological quantum branching are Many World (MW) model of parallel universes (Everett, Deutsch) and inflationary quantum foam (IQF) model (Guth, Linde). Taking Planck L,T units as physically smallest, our Big Bang miniverse with size 10E28 cm and duration 10E18 sec has some 10E244 (N) elementary 4D Planck Boxes (PB) in its entire spacetime history. Using combinatorics, N! (about 10E10E247) is upper estimate for number of all possible 4D states, i.e. scale of "eternal return" (ER; Nietzsche, Eliade) for such miniverses. To count all states in full Megaverse (all up and down branches of infinite tree of all MW and/or IQF miniverses) we recall that all countable infinities have same (aleph-naught) cardinality (Cantor). Using Godel-type numbering, count PB in our miniverse by primes. This uses first N primes. Both MW and IQF models presume splitting of miniverses as springing (potentially) from each PB, making each PB infinitely rich, inexhaustible and unique. Next branching level is counted by integers p1Ep2, third level by p1Ep2Ep3 integers, etc, ad infinitum. To count in up and down directions from "our" miniverse, different branching subsets of powers of primes can be used at all levels of tower exponentiation. Thus, all PB in all infinitude of MW and/or IQF branches can be uniquely counted by never repeating integers (tower exponents of primes), offering escape from grim ER scenarios.
String inflation after Planck 2013
Burgess, C.P.; Cicoli, M.; Quevedo, F. E-mail: mcicoli@ictp.it
2013-11-01
We briefly summarize the impact of the recent Planck measurements for string inflationary models, and outline what might be expected to be learned in the near future from the expected improvement in sensitivity to the primordial tensor-to-scalar ratio. We comment on whether these models provide sufficient added value to compensate for their complexity, and ask how they fare in the face of the new constraints on non-gaussianity and dark radiation. We argue that as a group the predictions made before Planck agree well with what has been seen, and draw conclusions from this about what is likely to mean as sensitivity to primordial gravitational waves improves.
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2010-01-01
A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. In this talk, I will present: (1) A brief review on GCE model and its applications on the impact of the aerosol on deep precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications). We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems. In addition, high - resolution (spatial. 2km, and temporal, I minute) visualization showing the model results will be presented.
Physical Modeling of Scaled Water Distribution System Networks.
O'Hern, Timothy J.; Hammond, Glenn Edward; Orear, Leslie ,; van Bloemen Waanders, Bart G.; Paul Molina; Ross Johnson
2005-10-01
Threats to water distribution systems include release of contaminants and Denial of Service (DoS) attacks. A better understanding, and validated computational models, of the flow in water distribution systems would enable determination of sensor placement in real water distribution networks, allow source identification, and guide mitigation/minimization efforts. Validation data are needed to evaluate numerical models of network operations. Some data can be acquired in real-world tests, but these are limited by 1) unknown demand, 2) lack of repeatability, 3) too many sources of uncertainty (demand, friction factors, etc.), and 4) expense. In addition, real-world tests have limited numbers of network access points. A scale-model water distribution system was fabricated, and validation data were acquired over a range of flow (demand) conditions. Standard operating variables included system layout, demand at various nodes in the system, and pressure drop across various pipe sections. In addition, the location of contaminant (salt or dye) introduction was varied. Measurements of pressure, flowrate, and concentration at a large number of points, and overall visualization of dye transport through the flow network were completed. Scale-up issues that that were incorporated in the experiment design include Reynolds number, pressure drop across nodes, and pipe friction and roughness. The scale was chosen to be 20:1, so the 10 inch main was modeled with a 0.5 inch pipe in the physical model. Controlled validation tracer tests were run to provide validation to flow and transport models, especially of the degree of mixing at pipe junctions. Results of the pipe mixing experiments showed large deviations from predicted behavior and these have a large impact on standard network operations models.3
Observing the Dark Baryons with Planck
NASA Astrophysics Data System (ADS)
Lavaux, Guilhem
2015-08-01
Planck has offered us an unprecedented view on the early cosmology. However the secondary anisotropy analysis is still not complete though they would give us insights on a totally different part of the history of the Universe. This is the case of the Sunyaev Zel'dovich effects and, in particular, the kinetic component (kSZ) produced by electrons in the halos of galaxies. This effect is sensitive to the electron momentum along the line of sight. Provided the peculiar velocity field is known, it becomes possible to linearly relate the temperature anisotropy to the distribution of baryons around galaxies. I will discuss the detectability prospects, the challenges and the current state of the kSZ analysis based on optimal template fitting on Planck data and futuristic surveys.The kSZ template that I propose are generated based on detailed, statistical, dynamical modeling of the Large Scale structures. The most advanced model involves full Baysian formulation of the formation of Large Scale structure and statistical reconstruction of initial conditions (BORG, Jasche & Wandelt 2013) I will describe these models and how they are related to the kSZ template maps.
Planck Visualization Project: Seeing and Hearing the CMB
NASA Astrophysics Data System (ADS)
Van Der Veen, Jatila; Lubin, P. M.; 2; Alper, B.; 3; Smith, W.; 4; McGee, R.; 5; US Planck Collaboration
2011-01-01
The Planck Education and Public Outreach collaborators at the University of California, Santa Barbara and Purdue University have prepared a variety of materials to present the science goals of the Planck Mission to the public. Here we present our interactive simulation of the Cosmic Microwave Background, in which the user can change the ingredients of the universe and hear the different harmonics. We also present how we derive information about the early universe from the power spectrum of the CMB by using the physics of music for the public.
Planck pre-launch status: Low Frequency Instrument optics
NASA Astrophysics Data System (ADS)
Sandri, M.; Villa, F.; Bersanelli, M.; Burigana, C.; Butler, R. C.; D'Arcangelo, O.; Figini, L.; Gregorio, A.; Lawrence, C. R.; Maino, D.; Mandolesi, N.; Maris, M.; Nesti, R.; Perrotta, F.; Platania, P.; Simonetto, A.; Sozzi, C.; Tauber, J.; Valenziano, L.
2010-09-01
We describe the optical design and optimisation of the Low Frequency Instrument (LFI), one of two instruments onboard the Planck satellite, which will survey the cosmic microwave background with unprecedented accuracy. The LFI covers the 30-70 GHz frequency range with an array of cryogenic radiometers. Stringent optical requirements on angular resolution, sidelobes, main beam symmetry, polarization purity, and feed orientation have been achieved. The optimisation process was carried out by assuming an ideal telescope according to the Planck design and by using both physical optics and multi-reflector geometrical theory of diffraction. This extensive study led to the flight design of the feed horns, their characteristics, arrangement, and orientation, while taking into account the opto-mechanical constraints imposed by complex interfaces in the Planck focal surface.
Improving Planck calibration by including frequency-dependent relativistic corrections
NASA Astrophysics Data System (ADS)
Quartin, Miguel; Notari, Alessio
2015-09-01
The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10?3, due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.
Spectator field models in light of spectral index after Planck
Kobayashi, Takeshi; Takahashi, Fuminobu; Takahashi, Tomo; Yamaguchi, Masahide E-mail: fumi@tuhep.phys.tohoku.ac.jp E-mail: gucci@phys.titech.ac.jp
2013-10-01
We revisit spectator field models including curvaton and modulated reheating scenarios, specifically focusing on their viability in the new Planck era, based on the derived expression for the spectral index in general spectator field models. Importantly, the recent Planck observations give strong preference to a red-tilted power spectrum, while the spectator field models tend to predict a scale-invariant one. This implies that, during inflation, either (i) the Hubble parameter varies significantly as in chaotic inflation, or (ii) a scalar potential for the spectator field has a relatively large negative curvature. Combined with the tight constraint on the non-Gaussianity, the Planck data provides us with rich implications for various spectator field models.
New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials
NASA Astrophysics Data System (ADS)
Schmuck, M.
2013-02-01
We consider the Poisson-Nernst-Planck system which is well-accepted for describing dilute electrolytes as well as transport of charged species in homogeneous environments. Here, we study these equations in porous media whose electric permittivities show a strong contrast compared with the electric permittivity of the electrolyte phase. Our main result is the derivation of convenient low-dimensional equations, that is, of effective macroscopic porous media Poisson-Nernst-Planck equations, which reliably describe ionic transport. The contrast in the electric permittivities between liquid and solid phase and the heterogeneity of the porous medium induce strongly oscillating electric potentials (fields). In order to account for this specific physical scenario, we introduce a modified asymptotic multiple-scale expansion which takes advantage of the nonlinearly coupled structure of the ionic transport equations. This allows for a systematic upscaling resulting in a new effective porous medium formulation which shows a new transport term on the macroscale. Solvability of all arising equations is rigorously verified. The emergence of a new transport term indicates promising physical insights into the influence of the microscale material properties on the macroscale. Hence, systematic upscaling strategies provide a source and a prospective tool to capitalize intrinsic scale effects for scientific, engineering, and industrial applications.
Planck 2013 results. XII. Diffuse component separation
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; DÃ©sert, F.-X.; Dickinson, C.; Diego, J. M.; Dobler, G.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; EnÃŸlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-HÃ©raud, Y.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huey, G.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marcos-Caballero, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-DeschÃªnes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; RubiÃ±o-MartÃn, J. A.; Rusholme, B.; Salerno, E.; Sandri, M.; Santos, D.; Savini, G.; Schiavon, F.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; TÃ¼rler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Viel, M.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wilkinson, A.; Xia, J.-Q.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
Planck has produced detailed all-sky observations over nine frequency bands between 30 and 857 GHz. These observations allow robust reconstruction of the primordial cosmic microwave background (CMB) temperature fluctuations over nearly the full sky, as well as new constraints on Galactic foregrounds, including thermal dust and line emission from molecular carbon monoxide (CO). This paper describes the component separation framework adopted by Planck for many cosmological analyses, including CMB power spectrum determination and likelihood construction on large angular scales, studies of primordial non-Gaussianity and statistical isotropy, the integrated Sachs-Wolfe effect, gravitational lensing, and searches for topological defects. We test four foreground-cleaned CMB maps derived using qualitatively different component separation algorithms. The quality of our reconstructions is evaluated through detailed simulations and internal comparisons, and shown through various tests to be internally consistent and robust for CMB power spectrum and cosmological parameter estimation up to â„“ = 2000. The parameter constraints on Î›CDM cosmologies derived from these maps are consistent with those presented in the cross-spectrum based Planck likelihood analysis. We choose two of the CMB maps for specific scientific goals. We also present maps and frequency spectra of the Galactic low-frequency, CO, and thermal dust emission. The component maps are found to provide a faithful representation of the sky, as evaluated by simulations, with the largest bias seen in the CO component at 3%. For the low-frequency component, the spectral index varies widely over the sky, ranging from about Î² = -4 to - 2. Considering both morphology and prior knowledge of the low frequencycomponents, the index map allows us to associate a steep spectral index (Î²< -3.2) with strong anomalous microwave emission, corresponding to a spinning dust spectrum peaking below 20 GHz, a flat index of Î²> -2.3 with strong free-free emission, and intermediate values with synchrotron emission.
NASA Astrophysics Data System (ADS)
Koyama, Kazuya; Pettinari, Guido Walter; Mizuno, Shuntaro; Fidler, Christian
2014-06-01
In this paper, we study cosmic microwave background (CMB) constraints on primordial non-Gaussianity in Dirac-Born-Infeld (DBI) galileon models in which an induced gravity term is added to the DBI action. In this model, the non-Gaussianity of orthogonal shape can be generated. We provide a relation between theoretical parameters and orthogonal/equilateral nonlinear parameters using the Fisher matrix approach for the CMB bispectrum. In doing so, we include the effect of the CMB transfer functions and experimental noise properties by employing the recently developed second order non-Gaussianity code. The relation is also shown in the language of effective theory so that it can be applied to general single-field models. Using the bispectrum Fisher matrix and the central values for equilateral and orthogonal non-Gaussianities found by the Planck temperature survey, we provide forecasts on the theoretical parameters of the DBI galileon model. We consider the upcoming Planck polarization data and the proposed post-Planck experiments Cosmic Origins Explore (COrE) and Polarized Radiation Imaging and Spectroscopy Mission (PRISM). We find that Planck polarization measurements may provide a hint for a non-canonical sound speed at the 68% confidence level. COrE and PRISM will not only confirm a non-canonical sound speed but also exclude the conventional DBI inflation model at more than the 95% and 99% confidence level respectively, assuming that the central values will not change. This indicates that improving constraints on non-Gaussianity further by future CMB experiments is invaluable to constrain the physics of the early universe.
Physically representative atomistic modeling of atomic-scale friction
NASA Astrophysics Data System (ADS)
Dong, Yalin
Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the interesting physical process is buried between the two contact interfaces, thus makes a direct measurement more difficult. Atomistic simulation is able to simulate the process with the dynamic information of each single atom, and therefore provides valuable interpretations for experiments. In this, we will systematically to apply Molecular Dynamics (MD) simulation to optimally model the Atomic Force Microscopy (AFM) measurement of atomic friction. Furthermore, we also employed molecular dynamics simulation to correlate the atomic dynamics with the friction behavior observed in experiments. For instance, ParRep dynamics (an accelerated molecular dynamic technique) is introduced to investigate velocity dependence of atomic friction; we also employ MD simulation to "see" how the reconstruction of gold surface modulates the friction, and the friction enhancement mechanism at a graphite step edge. Atomic stick-slip friction can be treated as a rate process. Instead of running a direction simulation of the process, we can apply transition state theory to predict its property. We will have a rigorous derivation of velocity and temperature dependence of friction based on the Prandtl-Tomlinson model as well as transition theory. A more accurate relation to prediction velocity and temperature dependence is obtained. Furthermore, we have included instrumental noise inherent in AFM measurement to interpret two discoveries in experiments, suppression of friction at low temperature and the attempt frequency discrepancy between AFM measurement and theoretical prediction. We also discuss the possibility to treat wear as a rate process.
Primordial power spectrum from Planck
Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun E-mail: arman@apctp.org
2014-11-01
Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near â„“Â âˆ¼Â 750â€“850 represents the most prominent feature in the data. Feature near â„“Â âˆ¼Â 1800â€“2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2Ïƒ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of âˆ¼Â 2.5%. In this context low-â„“ and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.
The Physical Origin of Galaxy Morphologies and Scaling Laws
NASA Technical Reports Server (NTRS)
Steinmetz, Matthias; Navarro, Julio F.
2002-01-01
We propose a numerical study designed to interpret the origin and evolution of galaxy properties revealed by space- and ground-based imaging and spectroscopical surveys. Our aim is to unravel the physical processes responsible for the development of different galaxy morphologies and for the establishment of scaling laws such as the Tully-Fisher relation for spirals and the Fundamental Plane of ellipticals. In particular, we plan to address the following major topics: (1) The morphology and observability of protogalaxies, and in particular the relationship between primordial galaxies and the z approximately 3 'Ly-break' systems identified in the Hubble Deep Field and in ground-based searches; (2) The origin of the disk and spheroidal components in galaxies, the timing and mode of their assembly, the corresponding evolution in galaxy morphologies and its sensitivity to cosmological parameters; (3) The origin and redshift evolution of the scaling laws that link the mass, luminosity size, stellar content, and metal abundances of galaxies of different morphological types. This investigation will use state-of-the-art N-body/gasdynamical codes to provide a spatially resolved description of the galaxy formation process in hierarchically clustering universes. Coupled with population synthesis techniques. our models can be used to provide synthetic 'observations' that can be compared directly with observations of galaxies both nearby and at cosmologically significant distances. This study will thus provide insight into the nature of protogalaxies and into the formation process of galaxies like our own Milky Way. It will also help us to assess the cosmological significance of these observations within the context of hierarchical theories of galaxy formation and will supply a theoretical context within which current and future observations can be interpreted.
Time dependent chemistry in Planck cold clouds?
NASA Astrophysics Data System (ADS)
Berczik, Peter; Bertsyk, Peter; Toth, Viktor; Baranyai, Andras
2015-08-01
We present a set of time dependent chemical evolution models based on the 2012 edition of the UMIST Database for Astrochemistry (McElroy et al. 2013) for a wide range of initial physical cloud parameters (10K
Galactic cold cores: Herschel study of first Planck detections
NASA Astrophysics Data System (ADS)
Juvela, M.; Ristorcelli, I.; Montier, L. A.; Marshall, D. J.; Pelkonen, V.-M.; Malinen, J.; Ysard, N.; Tóth, L. V.; Harju, J.; Bernard, J.-P.; Schneider, N.; Verebélyi, E.; Anderson, L.; André, P.; Giard, M.; Krause, O.; Lehtinen, K.; Macias-Perez, J.; Martin, P.; McGehee, P. M.; Meny, C.; Motte, F.; Pagani, L.; Paladini, R.; Reach, W.; Valenziano, L.; Ward-Thompson, D.; Zavagno, A.
2010-07-01
Context. We present the first results from the project Galactic cold cores, where the cold interstellar clouds detected by the Planck satellite are studied with Herschel photometric observations. The final Planck catalogue is expected to contain several thousand sources. The Herschel observations during the science demonstration phase provided the first glimpse into the nature of these sources. Aims: The main goal of the project is to derive the physical properties of the cold core population revealed by Planck. We examine three fields and confirm the Planck detections with Herschel data, which we also use to establish the evolutionary stage of the identified cores. Methods: We study the morphology and spectral energy distribution of the sources using the combined wavelength coverage of Planck and Herschel. The dust colour temperatures and emissivity indices are determined. The masses of the cores are determined with distance estimates which are taken from the literature and are confirmed by kinematic and extinction information. Results: The observations reveal extended regions of cold dust with dust colour temperatures down to Tdust ~ 11 K. The fields represent different evolutionary stages ranging from a quiescent, cold filament in Musca to regions of active star formation in Cepheus. Conclusions: The Herschel observations confirm that the all-sky survey of Planck is capable of making a large number of new cold core detections. Our results suggest that many of the sources may already have left the pre-stellar phase or are at least closely associated with active star formation. High-resolution Herschel observations are needed to establish the true nature of the Planck detections. Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Universal Landau Pole at the Planck scale
Andrianov, Alexander A.; Espriu, Domenec; Kurkov, Maxim A.; Lizzi, Fedele
2014-07-23
The concept of quantum gravity entails that the usual geometry loses its meaning at very small distances and therefore the grand unification of all gauge interactions with the property of asymptotic freedom happens to be questionable. We propose an unification of all gauge interactions in the form of an â€œUniversal Landau Poleâ€ (ULP), at which all gauge couplings diverge (or, better to say, become very strong). We show that the Higgs quartic coupling also substantially increases whereas the Yukawa couplings tend to zero. Such a singular (or strong coupling) unification is obtained after adding to the Standard Model matter more fermions with vector gauge couplings and hypercharges identical to the SM fermions. The influence of new particles also may prevent the Higgs quartic coupling from crossing zero, thus avoiding the instability (or metastability) of the SM vacuum. As well this fermion pattern opens a way to partially solve the hierarchy problem between masses of quarks and leptons.
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2010-01-01
A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. In this talk, I will present: (1) A brief review on GCE model and its applications on the impact of the aerosol on deep precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications). We are also performing the inline tracer calculation to comprehend the ph ysical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; DÃ©sert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; EnÃŸlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; GÃ©nova-Santos, R. T.; Giard, M.; Giardino, G.; Giraud-HÃ©raud, Y.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; LeÃ³n-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marcos-Caballero, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; RubiÃ±o-MartÃn, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
We have constructed the first all-sky map of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 100 to 857 GHz frequency channel maps from the Planck survey. This map shows an obvious galaxy cluster tSZ signal that is well matched with blindly detected clusters in the Planck SZ catalogue. To characterize the signal in the tSZ map we have computed its angular power spectrum. At large angular scales (â„“ < 60), the major foreground contaminant is the diffuse thermal dust emission. At small angular scales (â„“ > 500) the clustered cosmic infrared background and residual point sources are the major contaminants. These foregrounds are carefully modelled and subtracted. We thus measure the tSZ power spectrum over angular scales 0.17Â° â‰² Î¸ â‰² 3.0Â° that were previously unexplored. The measured tSZ power spectrum is consistent with that expected from the Planck catalogue of SZ sources, with clear evidence of additional signal from unresolved clusters and, potentially, diffuse warm baryons. Marginalized band-powers of the Planck tSZ power spectrum and the best-fit model are given. The non-Gaussianity of the Compton parameter map is further characterized by computing its 1D probability distribution function and its bispectrum. The measured tSZ power spectrum and high order statistics are used to place constraints on Ïƒ8.
Planck pre-launch status: The Planck mission
NASA Astrophysics Data System (ADS)
Tauber, J. A.; Mandolesi, N.; Puget, J.-L.; Banos, T.; Bersanelli, M.; Bouchet, F. R.; Butler, R. C.; Charra, J.; Crone, G.; Dodsworth, J.; Efstathiou, G.; Gispert, R.; Guyot, G.; Gregorio, A.; Juillet, J. J.; Lamarre, J.-M.; Laureijs, R. J.; Lawrence, C. R.; NÃ¸rgaard-Nielsen, H. U.; Passvogel, T.; Reix, J. M.; Texier, D.; Vibert, L.; Zacchei, A.; Ade, P. A. R.; Aghanim, N.; Aja, B.; Alippi, E.; Aloy, L.; Armand, P.; Arnaud, M.; Arondel, A.; Arreola-Villanueva, A.; Artal, E.; Artina, E.; Arts, A.; Ashdown, M.; Aumont, J.; Azzaro, M.; Bacchetta, A.; Baccigalupi, C.; Baker, M.; Balasini, M.; Balbi, A.; Banday, A. J.; Barbier, G.; Barreiro, R. B.; Bartelmann, M.; Battaglia, P.; Battaner, E.; Benabed, K.; Beney, J.-L.; Beneyton, R.; Bennett, K.; Benoit, A.; Bernard, J.-P.; Bhandari, P.; Bhatia, R.; Biggi, M.; Biggins, R.; Billig, G.; Blanc, Y.; Blavot, H.; Bock, J. J.; Bonaldi, A.; Bond, R.; Bonis, J.; Borders, J.; Borrill, J.; Boschini, L.; Boulanger, F.; Bouvier, J.; Bouzit, M.; Bowman, R.; BrÃ©elle, E.; Bradshaw, T.; Braghin, M.; Bremer, M.; Brienza, D.; Broszkiewicz, D.; Burigana, C.; Burkhalter, M.; Cabella, P.; Cafferty, T.; Cairola, M.; Caminade, S.; Camus, P.; Cantalupo, C. M.; Cappellini, B.; Cardoso, J.-F.; Carr, R.; Catalano, A.; CayÃ³n, L.; Cesa, M.; Chaigneau, M.; Challinor, A.; Chamballu, A.; Chambelland, J. P.; Charra, M.; Chiang, L.-Y.; Chlewicki, G.; Christensen, P. R.; Church, S.; Ciancietta, E.; Cibrario, M.; Cizeron, R.; Clements, D.; Collaudin, B.; Colley, J.-M.; Colombi, S.; Colombo, A.; Colombo, F.; Corre, O.; Couchot, F.; Cougrand, B.; Coulais, A.; Couzin, P.; Crane, B.; Crill, B.; Crook, M.; Crumb, D.; Cuttaia, F.; DÃ¶rl, U.; da Silva, P.; Daddato, R.; Damasio, C.; Danese, L.; D'Aquino, G.; D'Arcangelo, O.; Dassas, K.; Davies, R. D.; Davies, W.; Davis, R. J.; de Bernardis, P.; de Chambure, D.; de Gasperis, G.; de La Fuente, M. L.; de Paco, P.; de Rosa, A.; de Troia, G.; de Zotti, G.; Dehamme, M.; Delabrouille, J.; Delouis, J.-M.; DÃ©sert, F.-X.; di Girolamo, G.; Dickinson, C.; Doelling, E.; Dolag, K.; Domken, I.; Douspis, M.; Doyle, D.; Du, S.; Dubruel, D.; Dufour, C.; Dumesnil, C.; Dupac, X.; Duret, P.; Eder, C.; Elfving, A.; EnÃŸlin, T. A.; Eng, P.; English, K.; Eriksen, H. K.; Estaria, P.; Falvella, M. C.; Ferrari, F.; Finelli, F.; Fishman, A.; Fogliani, S.; Foley, S.; Fonseca, A.; Forma, G.; Forni, O.; Fosalba, P.; Fourmond, J.-J.; Frailis, M.; Franceschet, C.; Franceschi, E.; FranÃ§ois, S.; Frerking, M.; GÃ³mez-ReÃ±asco, M. F.; GÃ³rski, K. M.; Gaier, T. C.; Galeotta, S.; Ganga, K.; GarcÃa LÃ¡zaro, J.; Garnica, A.; Gaspard, M.; Gavila, E.; Giard, M.; Giardino, G.; Gienger, G.; Giraud-Heraud, Y.; Glorian, J.-M.; Griffin, M.; Gruppuso, A.; Guglielmi, L.; Guichon, D.; Guillaume, B.; Guillouet, P.; Haissinski, J.; Hansen, F. K.; Hardy, J.; Harrison, D.; Hazell, A.; Hechler, M.; Heckenauer, V.; Heinzer, D.; Hell, R.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Herreros, J. M.; Hervier, V.; Heske, A.; Heurtel, A.; Hildebrandt, S. R.; Hills, R.; Hivon, E.; Hobson, M.; Hollert, D.; Holmes, W.; Hornstrup, A.; Hovest, W.; Hoyland, R. J.; Huey, G.; Huffenberger, K. M.; Hughes, N.; Israelsson, U.; Jackson, B.; Jaffe, A.; Jaffe, T. R.; Jagemann, T.; Jessen, N. C.; Jewell, J.; Jones, W.; Juvela, M.; Kaplan, J.; Karlman, P.; Keck, F.; KeihÃ¤nen, E.; King, M.; Kisner, T. S.; Kletzkine, P.; Kneissl, R.; Knoche, J.; Knox, L.; Koch, T.; Krassenburg, M.; Kurki-Suonio, H.; LÃ¤hteenmÃ¤ki, A.; Lagache, G.; Lagorio, E.; Lami, P.; Lande, J.; Lange, A.; Langlet, F.; Lapini, R.; Lapolla, M.; Lasenby, A.; Le Jeune, M.; Leahy, J. P.; Lefebvre, M.; Legrand, F.; Le Meur, G.; Leonardi, R.; Leriche, B.; Leroy, C.; Leutenegger, P.; Levin, S. M.; Lilje, P. B.; Lindensmith, C.; Linden-VÃ¸rnle, M.; Loc, A.; Longval, Y.; Lubin, P. M.; Luchik, T.; Luthold, I.; Macias-Perez, J. F.; Maciaszek, T.; MacTavish, C.; Madden, S.; Maffei, B.; Magneville, C.; Maino, D.; Mambretti, A.; Mansoux, B.; Marchioro, D.; Maris, M.; Marliani, F.; Marrucho, J.-C.; MartÃ-Canales, J.; MartÃnez-GonzÃ¡lez, E.; MartÃn-Polegre, A.; Martin, P.; Marty, C.; Marty, W.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McDonald, A.; McGrath, P.; Mediavilla, A.; Meinhold, P. R.; MÃ©lin, J.-B.; Melot, F.; Mendes, L.; Mennella, A.; Mervier, C.; Meslier, L.; Miccolis, M.; Miville-Deschenes, M.-A.; Moneti, A.; Montet, D.; Montier, L.; Mora, J.; Morgante, G.; Morigi, G.; Morinaud, G.; Morisset, N.; Mortlock, D.; Mottet, S.; Mulder, J.; Munshi, D.; Murphy, A.; Murphy, P.; Musi, P.; Narbonne, J.; Naselsky, P.; Nash, A.; Nati, F.; Natoli, P.; Netterfield, B.; Newell, J.; Nexon, M.; Nicolas, C.; Nielsen, P. H.; Ninane, N.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Oldeman, P.; Olivier, P.; Ouchet, L.; Oxborrow, C. A.; PÃ©rez-Cuevas, L.; Pagan, L.; Paine, C.; Pajot, F.; Paladini, R.; Pancher, F.; Panh, J.; Parks, G.; Parnaudeau, P.; Partridge, B.; Parvin, B.; Pascual, J. P.; Pasian, F.; Pearson, D. P.; Pearson, T.; Pecora, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Piersanti, O.; Plaige, E.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poulleau, G.; Poutanen, T.; PrÃ©zeau, G.; Pradell, L.; Prina, M.; Prunet, S.; Rachen, J. P.; Rambaud, D.; Rame, F.; Rasmussen, I.; Rautakoski, J.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Reiter, J.; Renault, C.; Ricciardi, S.; Rideau, P.; Riller, T.; Ristorcelli, I.; Riti, J. B.; Rocha, G.; Roche, Y.; Pons, R.; Rohlfs, R.; Romero, D.; Roose, S.; Rosset, C.; Rouberol, S.; Rowan-Robinson, M.; RubiÃ±o-MartÃn, J. A.; Rusconi, P.; Rusholme, B.; Salama, M.; Salerno, E.; Sandri, M.; Santos, D.; Sanz, J. L.; Sauter, L.; Sauvage, F.; Savini, G.; Schmelzel, M.; Schnorhk, A.; Schwarz, W.; Scott, D.; Seiffert, M. D.; Shellard, P.; Shih, C.; Sias, M.; Silk, J. I.; Silvestri, R.; Sippel, R.; Smoot, G. F.; Starck, J.-L.; Stassi, P.; Sternberg, J.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Stringhetti, L.; Strommen, D.; Stute, T.; Sudiwala, R.; Sugimura, R.; Sunyaev, R.; Sygnet, J.-F.; TÃ¼rler, M.; Taddei, E.; Tallon, J.; Tamiatto, C.; Taurigna, M.; Taylor, D.; Terenzi, L.; Thuerey, S.; Tillis, J.; Tofani, G.; Toffolatti, L.; Tommasi, E.; Tomasi, M.; Tonazzini, E.; Torre, J.-P.; Tosti, S.; Touze, F.; Tristram, M.; Tuovinen, J.; Tuttlebee, M.; Umana, G.; Valenziano, L.; VallÃ©e, D.; van der Vlis, M.; van Leeuwen, F.; Vanel, J.-C.; van-Tent, B.; Varis, J.; Vassallo, E.; Vescovi, C.; Vezzu, F.; Vibert, D.; Vielva, P.; Vierra, J.; Villa, F.; Vittorio, N.; Vuerli, C.; Wade, L. A.; Walker, A. R.; Wandelt, B. D.; Watson, C.; Werner, D.; White, M.; White, S. D. M.; Wilkinson, A.; Wilson, P.; Woodcraft, A.; Yoffo, B.; Yun, M.; Yurchenko, V.; Yvon, D.; Zhang, B.; Zimmermann, O.; Zonca, A.; Zorita, D.
2010-09-01
The European Space Agency's Planck satellite, launched on 14 May 2009, is the third-generation space experiment in the field of cosmic microwave background (CMB) research. It will image the anisotropies of the CMB over the whole sky, with unprecedented sensitivity ({{Î” T}over T} 2 Ã— 10-6) and angular resolution ( 5 arcmin). Planck will provide a major source of information relevant to many fundamental cosmological problems and will test current theories of the early evolution of the Universe and the origin of structure. It will also address a wide range of areas of astrophysical research related to the Milky Way as well as external galaxies and clusters of galaxies. The ability of Planck to measure polarization across a wide frequency range (30-350 GHz), with high precision and accuracy, and over the whole sky, will provide unique insight, not only into specific cosmological questions, but also into the properties of the interstellar medium. This paper is part of a series which describes the technical capabilities of the Planck scientific payload. It is based on the knowledge gathered during the on-ground calibration campaigns of the major subsystems, principally its telescope and its two scientific instruments, and of tests at fully integrated satellite level. It represents the best estimate before launch of the technical performance that the satellite and its payload will achieve in flight. In this paper, we summarise the main elements of the payload performance, which is described in detail in the accompanying papers. In addition, we describe the satellite performance elements which are most relevant for science, and provide an overview of the plans for scientific operations and data analysis.
Planck 2015 results and inflation
NASA Astrophysics Data System (ADS)
Bouchet, François R.
2015-12-01
The Planck mission prime objective was a very accurate and complete measurement of the temperature anisotropies of the Cosmic Microwave Background (CMB). Cosmological results from the intensity data of the nominal mission of a duration of 15 months were disclosed on 21 March 2013. Fortunately, the satellite kept acquiring data for at least twice longer, and we announced in February 2015 new results based on all the data acquired, both in temperature and polarization. I provide a short overview of the latest data and findings of most interest for inflation, as a basis for the other contributions to this volume. This overview is entirely based on the published or submitted works of the Planck collaboration. xml:lang="fr"
Inflationary paradigm after Planck 2013
NASA Astrophysics Data System (ADS)
Guth, Alan H.; Kaiser, David I.; Nomura, Yasunori
2014-06-01
Models of cosmic inflation posit an early phase of accelerated expansion of the universe, driven by the dynamics of one or more scalar fields in curved spacetime. Though detailed assumptions about fields and couplings vary across models, inflation makes specific, quantitative predictions for several observable quantities, such as the flatness parameter (?k=1-?) and the spectral tilt of primordial curvature perturbations (ns-1=dln PR/dln k), among others-predictions that match the latest observations from the Planck satellite to very good precision. In the light of data from Planck as well as recent theoretical developments in the study of eternal inflation and the multiverse, we address recent criticisms of inflation by Ijjas, Steinhardt, and Loeb. We argue that their conclusions rest on several problematic assumptions, and we conclude that cosmic inflation is on a stronger footing than ever before.
Large Scale Computing and Storage Requirements for Nuclear Physics Research
Gerber, Richard A.; Wasserman, Harvey J.
2012-03-02
IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOEâ€™s Office of Advanced Scientific Computing Research (ASCR) and DOEâ€™s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSCâ€™s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called â€œcase studies,â€ of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, â€œmulti-coreâ€ environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.
NASA Astrophysics Data System (ADS)
Génova-Santos, R.; Atrio-Barandela, F.; Kitaura, F.-S.; Mücket, J. P.
2015-06-01
We cross-correlate foreground cleaned Planck Nominal cosmic microwave background (CMB) maps with two templates constructed from the Two-Micron All-Sky Redshift Survey of galaxies. The first template traces the large-scale filamentary distribution characteristic of the Warm-Hot Intergalactic Medium (WHIM) out to ˜ 90 {{h}-1} Mpc. The second preferentially traces the virialized gas in unresolved halos around galaxies. We find a marginal signal from the correlation of Planck data and the WHIM template with a signal to noise from 0.84 to 1.39 at the different Planck frequencies, and with a frequency dependence compatible with the thermal Sunyaev-Zel’dovich effect. When we restrict our analysis to the 60% of the sky outside the plane of the Galaxy and known point sources and galaxy clusters, the cross-correlation at zero lag is 0.064+/- 0.051 ? K. The correlation extends out to ? 6{}^\\circ , which at the median depth of our template corresponds to a physical length of ˜ 6--8 {{h}-1} Mpc. On the same fraction of the sky, the cross-correlation of the CMB data with the second template is \\lt 0.17 ? K (95% C.L.), providing no statistically significant evidence of a contribution from bound gas to the previous result. This limit translates into a physical constraint on the properties of the shock-heated WHIM of a log-normal model describing the weakly nonlinear density field. We find that our upper limit is compatible with a fraction of 45% of all baryons residing in filaments at overdensities ˜1-100 and with temperatures in the range {{10}4.5}--{{10}7.5} K, in agreement with the detection at redshift z˜ 0.5 of Van Waerbeke et al..
Planck intermediate results. IV. The XMM-Newton validation programme for new Planck galaxy clusters
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borgani, S.; Borrill, J.; Bouchet, F. R.; Brown, M. L.; Burigana, C.; Butler, R. C.; Cabella, P.; Carvalho, P.; Catalano, A.; Cayón, L.; Chamballu, A.; Chary, R.-R.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Démoclès, J.; Désert, F.-X.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giraud-Héraud, Y.; González-Nuevo, J.; González-Riestra, R.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juvela, M.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leonardi, R.; Liddle, A.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Luzzi, G.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marleau, F.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Morgante, G.; Mortlock, D.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Osborne, S.; Pajot, F.; Paoletti, D.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Piffaretti, R.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Rocha, G.; Rosset, C.; Rossetti, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Smoot, G. F.; Stanford, A.; Stivoli, F.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Welikala, N.; Weller, J.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2013-02-01
We present the final results from the XMM-Newton validation follow-up of new Planck galaxy cluster candidates. We observed 15 new candidates, detected with signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck survey. The candidates were selected using ancillary data flags derived from the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the aim of pushing into the low SZ flux, high-z regime and testing RASS flags as indicators of candidate reliability. Fourteen new clusters were detected by XMM-Newton, ten single clusters and two double systems. Redshifts from X-ray spectroscopy lie in the range 0.2 to 0.9, with six clusters at z > 0.5. Estimated masses (M500) range from 2.5 × 1014 to 8 × 1014 M?. We discuss our results in the context of the full XMM-Newton validation programme, in which 51 new clusters have been detected. This includes four double and two triple systems, some of which are chance projections on the sky of clusters at different redshifts. We find thatassociation with a source from the RASS-Bright Source Catalogue is a robust indicator of the reliability of a candidate, whereas association with a source from the RASS-Faint Source Catalogue does not guarantee that the SZ candidate is a bona fide cluster. Nevertheless, most Planck clusters appear in RASS maps, with a significance greater than 2? being a good indication that the candidate is a real cluster. Candidate validation from association with SDSS galaxy overdensity at z > 0.5 is also discussed. The full sample gives a Planck sensitivity threshold of Y500 ~ 4 × 10-4 arcmin2, with indication for Malmquist bias in the YX-Y500 relation below this threshold. The corresponding mass threshold depends on redshift. Systems with M500 > 5 × 1014 M? at z > 0.5 are easily detectable with Planck. The newly-detected clusters follow the YX-Y500 relation derived from X-ray selected samples. Compared to X-ray selected clusters, the new SZ clusters have a lower X-ray luminosity on average for their mass. There is no indication of departure from standard self-similar evolution in the X-ray versus SZ scaling properties. In particular, there is no significant evolution of the YX / Y500 ratio.
The Planck Compact Source Catalogues
NASA Astrophysics Data System (ADS)
Lopez-Caniego, Marcos
2015-12-01
The Second Planck Catalogue of Compact Sources is a catalogue of sources observed over the entire sky at nine different frequencies between 30 and 857 GHz. It consists of Galactic and extragalactic objects detected in the Planck single-frequency full mission total intensity maps. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subÂ·catalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The PCCS2 covers most of the sky and can be used to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The PCCS2E contains sources located in certain regions where the complex background makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels.
Jago, Russell; Fox, Kenneth R; Page, Angie S; Brockman, Rowan; Thompson, Janice L
2009-01-01
Background Many children do not meet physical activity guidelines. Parents and friends are likely to influence children's physical activity but there is a shortage of measures that are able to capture these influences. Methods A new questionnaire with the following three scales was developed: 1) Parental influence on physical activity; 2) Motives for activity with friends scale; and 3) Physical activity and sedentary group normative values. Content for each scale was informed by qualitative work. One hundred and seventy three, 10-11 year old children completed the new questionnaire twice, one week apart. Participants also wore an accelerometer for 5 days and mean minutes of moderate to vigorous physical activity, light physical activity and sedentary time per day were obtained. Test-retest reliability of the items was calculated and Principal Component analysis of the scales performed and sub-scales produced. Alphas were calculated for main scales and sub-scales. Correlations were calculated among sub-scales. Correlations between each sub-scale and accelerometer physical activity variables were calculated for all participants and stratified by sex. Results The Parental influence scale yielded four factors which accounted for 67.5% of the variance in the items and had good (? > 0.7) internal consistency. The Motives for physical activity scale yielded four factors that accounted for 66.1% and had good internal consistency. The Physical activity norms scale yielded 4 factors that accounted for 67.4% of the variance, with good internal consistency for the sub-scales and alpha of .642 for the overall scale. Associations between the sub-scales and physical activity differed by sex. Although only 6 of the 11 sub-scales were significantly correlated with physical activity there were a number of associations that were positively correlated >0.15 indicating that these factors may contribute to the explanation of children's physical activity. Conclusion Three scales that assess how parents, friends and group normative values may be associated with children's physical activity have been shown to be reliable and internally consistent. Examination of the extent to which these new scales improve our understanding of children's physical activity in datasets with a range of participant and family characteristics is needed. PMID:19821970
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; EnÃŸlin, T. A.; Eriksen, H. K.; Falceta-GonÃ§alves, D.; Falgarone, E.; FerriÃ¨re, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; GjerlÃ¸w, E.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Guillet, V.; Harrison, D. L.; Helou, G.; Hennebelle, P.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; RubiÃ±o-MartÃn, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Ysard, N.; Yvon, D.; Zonca, A.
2016-02-01
Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, NH. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10' FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions range from NHâ‰ˆ 1021 to1023 cm-2, and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called "histogram of relative orientations". Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing NH, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of AlfvÃ©nic or sub-AlfvÃ©nic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. We compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.
NASA Astrophysics Data System (ADS)
Flores-Cacho, I.; Pierini, D.; Soucail, G.; Montier, L.; Dole, H.; Pointecouteau, E.; PellÃ³, R.; Le Floc'h, E.; Nesvadba, N.; Lagache, G.; Guery, D.; CaÃ±ameras, R.
2016-01-01
We report the discovery of PHz G95.5-61.6, a complex structure detected in emission in the Planck all-sky survey that corresponds to two over-densities of high-redshift (i.e. z> 1) galaxies. This is the first source from the Planck catalogue of high-z candidates (proto-clusters and lensed systems) that has been completely characterised with follow-up observations from the optical to the sub-millimetre (sub-mm) domain. Herschel/SPIRE observations at 250, 350, and 500 Î¼m reveal the existence of five sources producing a 500 Î¼m emission excess that spatially corresponds to the candidate proto-clusters discovered by Planck. Further observations at the Canada-France-Hawaii Telescope in the optical bands (g and i) with MegaCam, and in the near infrared (NIR) (J, H and Ks), with WIRCam, plus mid-infrared observations with IRAC/Spitzer (at 3.6 and 4.5 Î¼m), confirm that the sub-mm red excess is associated with an over-density of colour-selected galaxies (i - Ks ~ 2.3 and J - K ~ 0.8 AB-mag). Follow-up spectroscopy of 13 galaxies with VLT/X-Shooter establishes the existence of two high-z structures: one at z â‰ƒ 1.7 (three confirmed member galaxies), the other at z â‰ƒ 2.0 (six confirmed members). The spectroscopic members of each substructure occupy a circular region of comoving radius that is smaller than 1 Mpc, which supports the existence of a physical bond among them. This double structure is also seen in the photometric redshift analysis of a sample of 127 galaxies located inside a circular region of 1'-radius. This contains the five Herschel/SPIRE sources, where we found a double-peaked excess of galaxies at z â‰ƒ 1.7 and z â‰ƒ 2.0 with respect to the surrounding region. These results suggest that PHz G95.5-61.6 corresponds to two accreting nodes, not physically linked to one another, embedded in the large scale structure of the Universe at z ~ 2 and along the same line-of-sight. In conclusion, the data, methods and results illustrated in this pilot project confirm that Planck data can be used to detect the emission from clustered, dusty star-forming galaxies at high z, and, thus, to pierce through the early growth of cluster-scale structures.
Visible sector inflation and the right thermal history in light of Planck data
Wang, Lingfei; Pukartas, Ernestas; Mazumdar, Anupam
2013-07-01
Inflation creates perturbations for the large scale structures in the universe, but it also dilutes everything. Therefore it is pertinent that the end of inflation must explain how to excite the Standard Model dof along with the dark matter. In this paper we will briefly discuss the role of visible sector inflaton candidates which are embedded within the Minimal Supersymmetric Standard Model (MSSM) and discuss their merit on how well they match the current data from the Planck. Since the inflaton carries the Standard Model charges their decay naturally produces all the relevant dof with no dark/hidden sector radiation and no isocurvature fluctuations. We will first discuss a single supersymmetric flat direction model of inflation and demonstrate what parameter space is allowed by the Planck and the LHC. We will also consider where the perturbations are created by another light field which decays after inflation, known as a curvaton. The late decay of the curvaton can create observable non-Gaussianity. In the end we will discuss the role of a spectator field whose origin may not lie within the visible sector physics, but its sheer presence during inflation can still create all the perturbations responsible for the large scale structures including possible non-Gaussianity, while the inflaton is embedded within the visible sector which creates all the relevant matter including dark matter, but no dark radiation.
Planck view of the M 82 galaxy
NASA Astrophysics Data System (ADS)
Gurzadyan, V. G.; De Paolis, F.; Nucita, A. A.; Ingrosso, G.; Kashin, A. L.; Khachatryan, H. G.; Sargsyan, S.; Yegorian, G.; Jetzer, Ph.; Qadir, A.; Vetrugno, D.
2015-10-01
Planck data towards the galaxy M 82 are analyzed in the 70, 100 and 143 GHz bands. A substantial north-south and east-west temperature asymmetry is found, extending up to 1° from the galactic center. Being almost frequency-independent, these temperature asymmetries are indicative of a Doppler-induced effect regarding the line-of-sight dynamics on the halo scale, the ejections from the galactic center and, possibly, even the tidal interaction with M 81 galaxy. The temperature asymmetry thus acts as a model-independent tool to reveal the bulk dynamics in nearby edge-on spiral galaxies, like the Sunyaev-Zeldovich effect for clusters of galaxies.
Full-scale physical model of landslide triggering
NASA Astrophysics Data System (ADS)
Lora, M.; Camporese, M.; Salandin, P.
2013-12-01
Landslide triggering induced by high-intensity rainfall infiltration in hillslopes is a complex phenomenon that involves hydrological processes operating at different spatio-temporal scales. Empirical methods give rough information about landslide-prone areas, without investigating the theoretical framework needed to achieve an in-depth understanding of the involved physical processes. In this study, we tackle this issue through physical experiments developed in an artificial hillslope realized in the Department of Civil, Environmental and Architectural Engineering of the University of Padua. The structure consists of a reinforced concrete box containing a soil prism with the following maximum dimensions: 3.5 m high, 6 m long, and 2 m wide. In order to analyze and examine the triggered failure state, the experiments are carried out with intensive monitoring of pore water pressure and moisture content response. Subsurface monitoring instruments are installed at several locations and depths to measure downward infiltration and/or a rising groundwater table. We measure the unsaturated soil water pressure as well as positive pore pressures preceding failure in each experiments with six tensiometers. The volumetric water content is determined through six Time Domain Reflectometry probes. Two pressure transducers are located in observation wells to determine the position of the water table in time. Two stream gauges are positioned at the toeslope, for measuring both runoff and subsurface outflow. All data are collected and recorded by an acquisition data system from Campbell Scientific. The artificial hillslope is characterized by well-known and controlled conditions, which are designed to reproduce an ideal set-up susceptible to heavy rainfall landslide. The hydrologic forcing is generated by a rainfall simulator realized with nozzles from Sprying System and. specifically designed to produce a spatially uniform rainfall of intensity ranging from 50 to 150 mm/h. The aim of our experiments is to reproduce the instability trigger that occurs in saturated or partially unsaturated conditions depending on the specific characteristics of the soil and its initial conditions; the retention curve of fine sand and the initial porosity are taken into account to highlight the hydrological condition of the surface layer during the trigger occurrence. Through our experimental setup we can investigate the succession of phases and their magnitude that cause the landslide trigger, in order to understand the instability mechanism that heavy rainfall can induce in fine sandy hillslopes. Particular attention is given on the role of water pressure head, not only with respect to the violation of Coulomb failure within a sloping soil, but also with respect to the subsequent deformation that involves the upper hillslope layers. In particular, we report here on the characterization of the sandy terrain used in the experiments and the preliminary results, together with a first discussion of the observed data.
Validation of psychosocial scales for physical activity in university students
Tassitano, Rafael Miranda; de Farias, JosÃ© Cazuza; Rech, Cassiano Ricardo; TenÃ³rio, Maria CecÃlia Marinho; Cabral, Poliana Coelho; da Silva, Giselia Alves Pontes
2015-01-01
OBJECTIVE Translate the Patient-centered Assessment and Counseling for Exercise questionnaire, adapt it cross-culturally and identify the psychometric properties of the psychosocial scales for physical activity in young university students. METHODS The Patient-centered Assessment and Counseling for Exercise questionnaire is made up of 39 items divided into constructs based on the social cognitive theory and the transtheoretical model. The analyzed constructs were, as follows: behavior change strategy (15 items), decision-making process (10), self-efficacy (6), support from family (4), and support from friends (4). The validation procedures were conceptual, semantic, operational, and functional equivalences, in addition to the equivalence of the items and of measurements. The conceptual, of items and semantic equivalences were performed by a specialized committee. During measurement equivalence, the instrument was applied to 717 university students. Exploratory factor analysis was used to verify the loading of each item, explained variance and internal consistency of the constructs. Reproducibility was measured by means of intraclass correlation coefficient. RESULTS The two translations were equivalent and back-translation was similar to the original version, with few adaptations. The layout, presentation order of the constructs and items from the original version were kept in the same form as the original instrument. The sample size was adequate and was evaluated by the Kaiser-Meyer-Olkin test, with values between 0.72 and 0.91. The correlation matrix of the items presented r < 0.8 (p < 0.05). The factor loadings of the items from all the constructs were satisfactory (> 0.40), varying between 0.43 and 0.80, which explained between 45.4% and 59.0% of the variance. Internal consistency was satisfactory (Î± â‰¥ 0.70), with support from friends being 0.70 and 0.92 for self-efficacy. Most items (74.3%) presented values above 0.70 for the reproducibility test. CONCLUSIONS The validation process steps were considered satisfactory and adequate for applying to the population. PMID:26270013
Large Scale Computing and Storage Requirements for High Energy Physics
Gerber, Richard A.; Wasserman, Harvey
2010-11-24
The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.
Planck early results. XVI. The Planck view of nearby galaxies
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; CayÃ³n, L.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; DÃ©sert, F.-X.; Dickinson, C.; Dole, H.; Donzelli, S.; DorÃ©, O.; DÃ¶rl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; EnÃŸlin, T. A.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-HÃ©raud, Y.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-VersillÃ©, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; MacTavish, C. J.; Madden, S.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Partridge, B.; Pasian, F.; Patanchon, G.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; RubiÃ±o-MartÃn, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; TÃ¼rler, M.; Umana, G.; Valenziano, L.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2011-12-01
The all-sky coverage of the Planck Early Release Compact Source Catalogue (ERCSC) provides an unsurpassed survey of galaxies at submillimetre (submm) wavelengths, representing a major improvement in the numbers of galaxies detected, as well as the range of far-IR/submm wavelengths over which they have been observed. We here present the first results on the properties of nearby galaxies using these data. We match the ERCSC catalogue to IRAS-detected galaxies in the Imperial IRAS Faint Source Redshift Catalogue (IIFSCz), so that we can measure the spectral energy distributions (SEDs) of these objects from 60 to 850Î¼m. This produces a list of 1717 galaxies with reliable associations between Planck and IRAS, from which we select a subset of 468 for SED studies, namely those with strong detections in the three highest frequency Planck bands and no evidence of cirrus contamination. The SEDs are fitted using parametric dust models to determine the range of dust temperatures and emissivities. We find evidence for colder dust than has previously been found in external galaxies, with T < 20K. Such cold temperatures are found using both the standard single temperature dust model with variable emissivity Î², or a two dust temperature model with Î² fixed at 2. We also compare our results to studies of distant submm galaxies (SMGs) which have been claimed to contain cooler dust than their local counterparts. We find that including our sample of 468 galaxies significantly reduces the distinction between the two populations. Fits to SEDs of selected objects using more sophisticated templates derived from radiative transfer models confirm the presence of the colder dust found through parametric fitting. We thus conclude that cold (T < 20K) dust is a significant and largely unexplored component of many nearby galaxies. Corresponding author: D. L. Clements, e-mail: d.clements@imperial.ac.uk
Planck pre-launch status: The Planck-LFI programme
NASA Astrophysics Data System (ADS)
Mandolesi, N.; Bersanelli, M.; Butler, R. C.; Artal, E.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartelmann, M.; Bennett, K.; Bhandari, P.; Bonaldi, A.; Borrill, J.; Bremer, M.; Burigana, C.; Bowman, R. C.; Cabella, P.; Cantalupo, C.; Cappellini, B.; Courvoisier, T.; Crone, G.; Cuttaia, F.; Danese, L.; D'Arcangelo, O.; Davies, R. D.; Davis, R. J.; de Angelis, L.; de Gasperis, G.; de Rosa, A.; de Troia, G.; de Zotti, G.; Dick, J.; Dickinson, C.; Diego, J. M.; Donzelli, S.; DÃ¶rl, U.; Dupac, X.; EnÃŸlin, T. A.; Eriksen, H. K.; Falvella, M. C.; Finelli, F.; Frailis, M.; Franceschi, E.; Gaier, T.; Galeotta, S.; Gasparo, F.; Giardino, G.; Gomez, F.; Gonzalez-Nuevo, J.; GÃ³rski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F.; Hell, R.; Herranz, D.; Herreros, J. M.; Hildebrandt, S.; Hovest, W.; Hoyland, R.; Huffenberger, K.; Janssen, M.; Jaffe, T.; KeihÃ¤nen, E.; Keskitalo, R.; Kisner, T.; Kurki-Suonio, H.; LÃ¤hteenmÃ¤ki, A.; Lawrence, C. R.; Leach, S. M.; Leahy, J. P.; Leonardi, R.; Levin, S.; Lilje, P. B.; LÃ³pez-Caniego, M.; Lowe, S. R.; Lubin, P. M.; Maino, D.; Malaspina, M.; Maris, M.; Marti-Canales, J.; Martinez-Gonzalez, E.; Massardi, M.; Matarrese, S.; Matthai, F.; Meinhold, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Morgante, G.; Morigi, G.; Morisset, N.; Moss, A.; Nash, A.; Natoli, P.; Nesti, R.; Paine, C.; Partridge, B.; Pasian, F.; Passvogel, T.; Pearson, D.; PÃ©rez-Cuevas, L.; Perrotta, F.; Polenta, G.; Popa, L. A.; Poutanen, T.; Prezeau, G.; Prina, M.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Ricciardi, S.; Riller, T.; Rocha, G.; Roddis, N.; Rohlfs, R.; RubiÃ±o-Martin, J. A.; Salerno, E.; Sandri, M.; Scott, D.; Seiffert, M.; Silk, J.; Simonetto, A.; Smoot, G. F.; Sozzi, C.; Sternberg, J.; Stivoli, F.; Stringhetti, L.; Tauber, J.; Terenzi, L.; Tomasi, M.; Tuovinen, J.; TÃ¼rler, M.; Valenziano, L.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.; White, M.; White, S.; Wilkinson, A.; Zacchei, A.; Zonca, A.
2010-09-01
This paper provides an overview of the Low Frequency Instrument (LFI) programme within the ESA Planck mission. The LFI instrument has been developed to produce high precision maps of the microwave sky at frequencies in the range 27-77 GHz, below the peak of the cosmic microwave background (CMB) radiation spectrum. The scientific goals are described, ranging from fundamental cosmology to Galactic and extragalactic astrophysics. The instrument design and development are outlined, together with the model philosophy and testing strategy. The instrument is presented in the context of the Planck mission. The LFI approach to ground and inflight calibration is described. We also describe the LFI ground segment. We present the results of a number of tests demonstrating the capability of the LFI data processing centre (DPC) to properly reduce and analyse LFI flight data, from telemetry information to calibrated and cleaned time ordered data, sky maps at each frequency (in temperature and polarization), component emission maps (CMB and diffuse foregrounds), catalogs for various classes of sources (the Early Release Compact Source Catalogue and the Final Compact Source Catalogue). The organization of the LFI consortium is briefly presented as well as the role of the core team in data analysis and scientific exploitation. All tests carried out on the LFI flight model demonstrate the excellent performance of the instrument and its various subunits. The data analysis pipeline has been tested and its main steps verified. In the first three months after launch, the commissioning, calibration, performance, and verification phases will be completed, after which Planck will begin its operational life, in which LFI will have an integral part.
Full linearized Fokker-Planck collisions in neoclassical transport simulations
NASA Astrophysics Data System (ADS)
Belli, E. A.; Candy, J.
2012-01-01
The complete linearized Fokker-Planck collision operator has been implemented in the drift-kinetic code NEO (Belli and Candy 2008 Plasma Phys. Control. Fusion 50 095010) for the calculation of neoclassical transport coefficients and flows. A key aspect of this work is the development of a fast numerical algorithm for treatment of the field particle operator. This Eulerian algorithm can accurately treat the disparate velocity scales that arise in the case of multi-species plasmas. Specifically, a Legendre series expansion in ? (the cosine of the pitch angle) is combined with a novel Laguerre spectral method in energy to ameliorate the rapid numerical precision loss that occurs for traditional Laguerre spectral methods. We demonstrate the superiority of this approach to alternative spectral and finite-element schemes. The physical accuracy and limitations of more commonly used model collision operators, such as the Connor and Hirshman-Sigmar operators, are studied, and the effects on neoclassical impurity poloidal flows and neoclassical transport for experimental parameters are explored.
Higgs vacuum stability and inflationary dynamics after BICEP2 and PLANCK dust polarisation data
NASA Astrophysics Data System (ADS)
Bhattacharya, Kaushik; Chakrabortty, Joydeep; Das, Suratna; Mondal, Tanmoy
2014-12-01
If the recent detection of B-mode polarization of the Cosmic Microwave Background by BICEP2 observations, withstand the test of time after the release of recent PLANCK dust polarisation data, then it would surprisingly put the inflationary scale near Grand Unification scale if one considers single-field inflationary models. On the other hand, Large Hadron Collider has observed the elusive Higgs particle whose presently observed mass can lead to electroweak vacuum instability at high scale (~ Script O(1010) GeV). In this article, we seek for a simple particle physics model which can simultaneously keep the vacuum of the theory stable and yield high-scale inflation successfully. To serve our purpose, we extend the Standard Model of particle physics with a U(1)B-L gauged symmetry which spontaneously breaks down just above the inflationary scale. Such a scenario provides a constrained parameter space where both the issues of vacuum stability and high-scale inflation can be successfully accommodated. The threshold effect on the Higgs quartic coupling due to the presence of the heavy inflaton field plays an important role in keeping the electroweak vacuum stable. Furthermore, this scenario is also capable of reheating the universe at the end of inflation. Though the issues of Dark Matter and Dark Energy, which dominate the late-time evolution of our universe, cannot be addressed within this framework, this model successfully describes the early universe dynamics according to the Big Bang model.
Higgs vacuum stability and inflationary dynamics after BICEP2 and PLANCK dust polarisation data
Bhattacharya, Kaushik; Chakrabortty, Joydeep; Das, Suratna; Mondal, Tanmoy E-mail: joydeep@iitk.ac.in E-mail: tanmoym@prl.res.in
2014-12-01
If the recent detection of B-mode polarization of the Cosmic Microwave Background by BICEP2 observations, withstand the test of time after the release of recent PLANCK dust polarisation data, then it would surprisingly put the inflationary scale near Grand Unification scale if one considers single-field inflationary models. On the other hand, Large Hadron Collider has observed the elusive Higgs particle whose presently observed mass can lead to electroweak vacuum instability at high scale (âˆ¼Â O(10{sup 10}) GeV). In this article, we seek for a simple particle physics model which can simultaneously keep the vacuum of the theory stable and yield high-scale inflation successfully. To serve our purpose, we extend the Standard Model of particle physics with a U(1){sub B-L} gauged symmetry which spontaneously breaks down just above the inflationary scale. Such a scenario provides a constrained parameter space where both the issues of vacuum stability and high-scale inflation can be successfully accommodated. The threshold effect on the Higgs quartic coupling due to the presence of the heavy inflaton field plays an important role in keeping the electroweak vacuum stable. Furthermore, this scenario is also capable of reheating the universe at the end of inflation. Though the issues of Dark Matter and Dark Energy, which dominate the late-time evolution of our universe, cannot be addressed within this framework, this model successfully describes the early universe dynamics according to the Big Bang model.
Planck early results. XIV. ERCSC validation and extreme radio sources
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Angelakis, E.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Cabella, P.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; CayÃ³n, L.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; DÃ©sert, F.-X.; Dickinson, C.; Donzelli, S.; DorÃ©, O.; DÃ¶rl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; EnÃŸlin, T. A.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Fuhrmann, L.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-HÃ©raud, Y.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison, D.; Henrot-VersillÃ©, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Huynh, M.; Jaffe, A. H.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Krichbaum, T. P.; Kurki-Suonio, H.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lavonen, N.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; LeÃ³n-Tavares, J.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marleau, F.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Mingaliev, M.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Nestoras, I.; Netterfield, C. B.; Nieppola, E.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paladini, R.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; PrÃ©zeau, G.; Procopio, P.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Riquelme, D.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; RubiÃ±o-MartÃn, J. A.; Rusholme, B.; Sajina, A.; Sandri, M.; Savolainen, P.; Scott, D.; Seiffert, M. D.; Sievers, A.; Smoot, G. F.; Sotnikova, Y.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J.-F.; Tammi, J.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; TÃ¼rler, M.; Turunen, M.; Umana, G.; Ungerechts, H.; Valenziano, L.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zensus, J. A.; Zonca, A.
2011-12-01
Planck's all-sky surveys at 30-857 GHz provide an unprecedented opportunity to follow the radio spectra of a large sample of extragalactic sources to frequencies 2-20 times higher than allowed by past, large-area, ground-based surveys. We combine the results of the Planck Early Release Compact Source Catalog (ERCSC) with quasi-simultaneous ground-based observations as well as archival data at frequencies below or overlapping Planck frequency bands, to validate the astrometry and photometry of the ERCSC radio sources and study the spectral features shown in this new frequency window opened by Planck. The ERCSC source positions and flux density scales are found to be consistent with the ground-based observations. We present and discuss the spectral energy distributions of a sample of "extreme" radio sources, to illustrate the richness of the ERCSC for the study of extragalactic radio sources. Variability is found to play a role in the unusual spectral features of some of these sources. Corresponding author: B. Partridge, e-mail: bpartrid@haverford.edu
Physical meaning of one-machine and multimachine tokamak scalings
Dnestrovskij, Yu. N. Danilov, A. V.; Dnestrovskij, A. Yu.; Lysenko, S. E.; Ongena, J.
2013-04-15
Specific features of energy confinement scalings constructed using different experimental databases for tokamak plasmas are considered. In the multimachine database, some pairs of engineering variables are collinear; e.g., the current I and the input power P both increase with increasing minor radius a. As a result, scalings derived from this database are reliable only for discharges in which such ratios as I/a{sup 2} or P/a{sup 2} are close to their values averaged over the database. The collinearity of variables allows one to exclude the normalized Debye radius d* from the scaling expressed in a nondimensional form. In one-machine databases, the dimensionless variables are functionally dependent, which allow one to cast a scaling without d*. In a database combined from two devices, the collinearity may be absent, so the Debye radius cannot generally be excluded from the scaling. It is shown that the experiments performed in support of the absence of d* in the two-machine scaling are unconvincing. Transformation expressions are given that allow one to compare experiments for the determination of scaling in any set of independent variables.
Constraints on secret neutrino interactions after Planck
NASA Astrophysics Data System (ADS)
Forastieri, Francesco; Lattanzi, Massimiliano; Natoli, Paolo
2015-07-01
Neutrino interactions beyond the standard model of particle physics may affect the cosmological evolution and can be constrained through observations. We consider the possibility that neutrinos possess secret scalar or pseudoscalar interactions mediated by the Nambu-Goldstone boson of a still unknown spontaneously broken global U(1) symmetry, as in, e.g., Majoron models. In such scenarios, neutrinos still decouple at Tsimeq 1 MeV, but become tightly coupled again (``recouple'') at later stages of the cosmological evolution. We use available observations of the cosmic microwave background (CMB) anisotropies, including Planck 2013 and the joint BICEP2/Planck 2015 data, to derive constraints on the quantity ???4, parameterizing the neutrino collision rate due to scalar or pseudoscalar interactions. We consider both a minimal extension of the standard ?CDM model, and more complicated scenarios with extra relativistic degrees of freedom or non-vanishing tensor amplitude. For a wide range of dataset and model combinations, we find a typical constraint ???4 lesssim 0.9× 10-27 (95% C.L.), implying an upper limit on the redshift z?rec of neutrino recoupling 0lesssim 850, leaving open the possibility that the latter occured well before hydrogen recombination. In the framework of Majoron models, the upper limit on ??? roughly translates on a constraint g lesssim 8.2× 10-7 on the Majoron-neutrino coupling constant g. In general, the data show a weak (~ 1?) but intriguing preference for non-zero values of ???4, with best fits in the range ???4 = (0.15-0.35)× 10-27, depending on the particular dataset. This is more evident when either high-resolution CMB observations from the ACT and SPT experiments are included, or the possibility of non-vanishing tensor modes is considered. In particular, for the minimal model ?CDM+??? and including the Planck 2013, ACT and SPT data, we report ???4=(0.44+0.17-0.36)×10-27 (0300 lesssim z?rec lesssim 550) at 68% confidence level.
Developing a Rasch Measurement Physical Fitness Scale for Hong Kong Primary School-Aged Students
ERIC Educational Resources Information Center
Yan, Zi; Bond, Trevor G.
2011-01-01
The main purpose of this study was to develop a Rasch Measurement Physical Fitness Scale (RMPFS) based on physical fitness indicators routinely used in Hong Kong primary schools. A total of 9,439 records of students' performances on physical fitness indicators, retrieved from the database of a Hong Kong primary school, were used to develop theâ€¦
Developing a Rasch Measurement Physical Fitness Scale for Hong Kong Primary School-Aged Students
ERIC Educational Resources Information Center
Yan, Zi; Bond, Trevor G.
2011-01-01
The main purpose of this study was to develop a Rasch Measurement Physical Fitness Scale (RMPFS) based on physical fitness indicators routinely used in Hong Kong primary schools. A total of 9,439 records of students' performances on physical fitness indicators, retrieved from the database of a Hong Kong primary school, were used to develop the…
Thermal susceptibility of the Planck-LFI receivers
NASA Astrophysics Data System (ADS)
Terenzi, L.; Salmon, M. J.; Colin, A.; Mennella, A.; Morgante, G.; Tomasi, M.; Battaglia, P.; Lapolla, M.; Bersanelli, M.; Butler, R. C.; Cuttaia, F.; D'Arcangelo, O.; Davis, R.; Franceschet, C.; Galeotta, S.; Gregorio, A.; Hughes, N.; Jukkala, P.; Kettle, D.; Laaninen, M.; Leutenegger, P.; Leonardi, R.; Mandolesi, N.; Maris, M.; Meinhold, P.; Miccolis, M.; Roddis, N.; Sambo, L.; Sandri, M.; Silvestri, R.; Tuovinen, J.; Valenziano, L.; Varis, J.; Villa, F.; Wilkinson, A.; Zonca, A.
2009-12-01
This paper describes the impact of the Planck Low Frequency Instrument front end physical temperature fluctuations on the output signal. The origin of thermal instabilities in the instrument are discussed, and an analytical model of their propagation and impact on the receivers signal is described. The experimental test setup dedicated to evaluate these effects during the instrument ground calibration is reported together with data analysis methods. Finally, main results obtained are discussed and compared to the requirements.
Evolving desiderata for validating engineered-physics systems without full-scale testing
Langenbrunner, James R; Booker, Jane M; Hemez, Francois M; Ross, Timothy J
2010-01-01
Theory and principles of engineered-physics designs do not change over time, but the actual engineered product does evolve. Engineered components are prescient to the physics and change with time. Parts are never produced exactly as designed, assembled as designed, or remain unperturbed over time. For this reason, validation of performance may be regarded as evolving over time. Desired use of products evolves with time. These pragmatic realities require flexibility, understanding, and robustness-to-ignorance. Validation without full-scale testing involves engineering, small-scale experiments, physics theory and full-scale computer-simulation validation. We have previously published an approach to validation without full-scale testing using information integration, small-scale tests, theory and full-scale simulations [Langenbrunner et al. 2008]. This approach adds value, but also adds complexity and uncertainty due to inference. We illustrate a validation example that manages evolving desiderata without full-scale testing.
Rho-Star Scaling and Physically Realistic Gyrokinetic Simulations of Transport in DIII-D
Waltz, R.E.
2005-10-15
This paper briefly reviews the DIII-D experiments to determine rho-star ({rho}{sub *}) confinement scaling to reactors, the theory of broken gyro-Bohm scaling from local rotational shear stabilization and various nonlocal effects, and how the gyrokinetic code GYRO is being used for physically realistic simulations to understand Bohm scaling in L-modes.
Updating constraints on inflationary features in the primordial power spectrum with the Planck data
NASA Astrophysics Data System (ADS)
Benetti, Micol
2013-10-01
We present new constraints on possible features in the primordial inflationary density perturbation power spectrum in light of the recent cosmic microwave background anisotropy measurements from the Planck satellite. We found that the Planck data hints for the presence of features in two different ranges of angular scales, corresponding to multipoles 10
The Cosmic Microwave Background in the Light of Planck
NASA Astrophysics Data System (ADS)
de Bernardis, P.; Calvo, M.; Giordano, C.; Masi, S.; Nati, F.; Piacentini, F.; Polenta, G.
2009-03-01
The Cosmic Microwave Background (CMB) represents a window on the early universe, and allows observers to test cosmological models and fundamental physics, including neutrino physics. Ground-based, balloon-borne and satellite experiments in the last decade have provided sensitive measurements of the CMB, precision estimates of the cosmological parameters, and strong constraints on neutrino properties. The forthcoming Planck mission of the European Space Agency will provide definitive measurements of the CMB and will allow a clean, unambiguous separation of foreground and background microwave emission. Here we summarize the most recent results and discuss new perspectives in this field and their impact on cosmology and fundamental physics.
The Planck SZ Cluster Catalog: expected X-ray properties
NASA Astrophysics Data System (ADS)
Chamballu, A.; Bartlett, J. G.; Melin, J.-B.
2012-08-01
Surveys based on the Sunyaev-Zel'dovich (SZ) effect provide a fresh view of the galaxy cluster population, one that is complementary to X-ray surveys. To better understand the relation between these two kinds of survey, we construct an empirical cluster model using scaling relations constrained by current X-ray and SZ data. We apply our model to predict the X-ray properties of the Planck SZ Cluster Catalog (PCC) and compare them to existing X-ray cluster catalogs. We find that Planck should significantly extend the depth of the previous all-sky cluster survey, performed in the early 1990s by the ROSAT satellite, and should be particularly effective at finding hot, massive clusters (T > 6 keV) out to redshift unity. These are rare objects, and our findings suggest that Planck could increase the observational sample at z > 0.6 by an order of magnitude. This would open the way for detailed studies of massive clusters out to these higher redshifts. Specifically, we find that the majority of newly-detected Planck clusters should have X-ray fluxes 10-13 erg/s/cm2 < fX [0.5-2 keV] < 10-12 erg/s/cm2, i.e., distributed over the decade in flux just below the ROSAT All Sky Survey limit. This is sufficiently bright for extensive X-ray follow-up campaigns. Once Planck finds these objects, XMM-Newton and Chandra could measure temperatures to 10% for a sample of ~100 clusters in the range 0.5 < z < 1, a valuable increase in the number of massive clusters studied over this range.
Planck intermediate results. XIII. Constraints on peculiar velocities
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Démoclès, J.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Enßlin, T. A.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Frommert, M.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Gonzáalez-Nuevo, J.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, T. R.; Jaffe, A. H.; Jasche, J.; Jones, W. C.; Juvela, M.; Keihánen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Macías-Pérez, J. F.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Maris, M.; Marleau, F.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pagano, L.; Paoletti, D.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Puisieux, S.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Roman, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Welikala, N.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.
2014-01-01
Using Planck data combined with the Meta Catalogue of X-ray detected Clusters of galaxies (MCXC), we address the study of peculiar motions by searching for evidence of the kinetic Sunyaev-Zeldovich effect (kSZ). By implementing various filters designed to extract the kSZ generated at the positions of the clusters, we obtain consistent constraints on the radial peculiar velocity average, root mean square (rms), and local bulk flow amplitude at different depths. For the whole cluster sample of average redshift 0.18, the measured average radial peculiar velocity with respect to the cosmic microwave background (CMB) radiation at that redshift, i.e., the kSZ monopole, amounts to 72 ± 60 km s-1. This constitutes less than 1% of the relative Hubble velocity of the cluster sample with respect to our local CMB frame. While the linear ?CDM prediction for the typical cluster radial velocity rms at z = 0.15 is close to 230 km s-1, the upper limit imposed by Planck data on the cluster subsample corresponds to 800 km s-1 at 95% confidence level, i.e., about three times higher. Planck data also set strong constraints on the local bulk flow in volumes centred on the Local Group. There is no detection of bulk flow as measured in any comoving sphere extending to the maximum redshift covered by the cluster sample. A blind search for bulk flows in this sample has an upper limit of 254 km s-1 (95% confidence level) dominated by CMB confusion and instrumental noise, indicating that the Universe is largely homogeneous on Gpc scales. In this context, in conjunction with supernova observations, Planck is able to rule out a large class of inhomogeneous void models as alternatives to dark energy or modified gravity. The Planck constraints on peculiar velocities and bulk flows are thus consistent with the ?CDM scenario.
Testing Dvali-Gabadadze-Porrati gravity with Planck
NASA Astrophysics Data System (ADS)
Li, Hong; Xia, Jun-Qing
2013-11-01
Recently, the Planck Collaboration has released the first cosmological papers providing the highest resolution, full sky, maps of the cosmic microwave background (CMB) temperature anisotropies. It is crucial to understand that whether the accelerating expansion of our universe at present is driven by an unknown energy component (Dark Energy) or a modification to general relativity (Modified Gravity). In this Letter we study a phenomenological model which interpolates between the pure ?CDM model and the Dvali-Gabadadze-Porrati (DGP) braneworld model with an additional parameter ?. Firstly, we calculate the “distance information” of Planck data which includes the “shift parameter” R, the “acoustic scale” lA, and the photon decoupling epoch z* in different cosmological models and find that this information is almost independent on the input models we use. Then, we compare the constraints on the free parameter ? of the DGP model from the “distance information” of Planck and WMAP data and find that the Planck data with high precision do not improve the constraint on ?, but give the higher median value and the better limit on the current matter density fraction ?m. Then, combining the “distance information” of Planck measurement, baryon acoustic oscillations (BAO), Type Ia supernovae (SNIa) and the prior on the current Hubble constant (HST), we obtain the tight constraint on the parameter ?<0.20 at 95% confidence level, which implies that the flat DGP model has been ruled out by the current cosmological data. Finally, we allow the additional parameter ?<0 in our calculations and interestingly obtain ?=-0.29±0.20 (68% C.L.), which means the current data slightly favor the effective equation of state weff<-1. More importantly, the tension between constraints on H0 from different observational data has been eased.
Vlasov-Fokker-Planck Simulation of a Collisional Ion-Electron Shockwave
NASA Astrophysics Data System (ADS)
Taitano, William; Knoll, Dana; Prinja, Anil
2012-10-01
There has been recent increased interest in a range of kinetic plasma physics phenomena which may be important in simulating ICF pellet performance. [1] have numerically demonstrated the limitations of the classic Spitzer, Braginski fluid closures in collisional plasmas for shockwave problems. [1] has shown the importance of modeling kinetic effects for scale lengths of shockwave much larger than the ion collision mean free path. In [1], the ions were modeled kinetically using the Fokker-Planck approximation while the electrons were modeled as a fluid. An investigation of a full kinetic treatment of electron with collision is computationally intractable with standard explicit schemes due to collision CFL limitation that requires resolving the electron-electron collision timescale. [2] has developed a new, fully implicit and discretely consistent moment based accelerator method to solve the full ion-electron kinetic Vlasov-Ampere system. A similar moment based accelerator will be extended to a collisionless shock problem in order to accelerate the Fokker-Planck collision source in the kinetic equations. In the presentation, we provide some preliminary results. [4pt] [1] M. Casanova and O. Larroche, Phys. Rev. Let. 67-(16), 1991. [0pt] [2] W.T. Taitano et al. SISC in review.
Innovative dimensional metrology of meso-scale physics targets.
Sebring, R. J.; Reinovsky, R. E.; Edwards, J. M.; Nobile, A. , Jr.; Anderson, W. E.; Olson, R. E.
2002-01-01
For Indirect-drive inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF): (1) Shock timing measurement and predictive capabilities must be accurate to - 100 ps. (2) Ablator burn through measurement and predictive capabilities must be accurate to -5%. How accurate are our present capabilities? As a first step, we are using planar ablator samples in 'square pulse' Omega halfraum experiments to validate our measurement and predictive capabilities and our understanding of indirect-drive ablator physics issues.
Scale-invariant dynamical fluctuations in jet physics.
Chekanov, S. V.; High Energy Physics
1999-01-01
An interpretation of scale-invariant multiplicity fluctuations inside hadronic jets is presented. It is based on the branching mechanism with the angular ordering of soft partons in sequential branchings. A relationship with fractal distributions is demonstrated. The model takes into account the finiteness of the number of particles produced in jets (finite energy) and leads to a good description of the multifractal fluctuations observed in processes.
Planck priors for dark energy surveys
Mukherjee, Pia; Parkinson, David; Kunz, Martin; Wang Yun
2008-10-15
Although cosmic microwave background anisotropy data alone cannot constrain simultaneously the spatial curvature and the equation of state of dark energy, CMB data provide a valuable addition to other experimental results. However computing a full CMB power spectrum with a Boltzmann code is quite slow; for instance if we want to work with many dark energy and/or modified gravity models, or would like to optimize experiments where many different configurations need to be tested, it is possible to adopt a quicker and more efficient approach. In this paper we consider the compression of the projected Planck cosmic microwave background data into four parameters, R (scaled distance to last scattering surface), l{sub a} (angular scale of sound horizon at last scattering), {omega}{sub b}h{sup 2} (baryon density fraction) and n{sub s} (powerlaw index of primordial matter power spectrum), all of which can be computed quickly. We show that, although this compression loses information compared to the full likelihood, such information loss becomes negligible when more data is added. We also demonstrate that the method can be used for canonical scalar-field dark energy independently of the parametrization of the equation of state, and discuss how this method should be used for other kinds of dark energy models.
Compact wire array sources: power scaling and implosion physics.
Serrano, Jason Dimitri; Chuvatin, Alexander S.; Jones, M. C.; Vesey, Roger Alan; Waisman, Eduardo M.; Ivanov, V. V.; Esaulov, Andrey A.; Ampleford, David J.; Cuneo, Michael Edward; Kantsyrev, Victor Leonidovich; Coverdale, Christine Anne; Rudakov, L. I.; Jones, Brent Manley; Safronova, Alla S.; Vigil, Marcelino Patricio
2008-09-01
A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we compare this to cylindrical array results in the context of a K-shell yield scaling model. We have also performed an initial study of compact 3 mm diameter cylindrical wire arrays, which are alternate candidates for a multi-pinch vacuum hohlraum concept. These massive 3.4 and 6 mg/cm loads may have been impacted by opacity, producing a maximum x-ray power of 7 TW at 4.5 MA, 45 ns. Future research directions in compact x-ray sources are discussed.
Inflation after false vacuum decay: Observational prospects after Planck
NASA Astrophysics Data System (ADS)
Bousso, Raphael; Harlow, Daniel; Senatore, Leonardo
2015-04-01
We assess two potential signals of the formation of our universe by the decay of a false vacuum. Negative spatial curvature is one possibility, but the window for its detection is now small. However, another possible signal is a suppression of the cosmic microwave background (CMB) power spectrum at large angles. This arises from the steepening of the effective potential as it interpolates between a flat inflationary plateau and the high barrier separating us from our parent vacuum. We demonstrate that these two effects can be parametrically separated in angular scale. Observationally, the steepening effect appears to be excluded at large ?; but it remains consistent with the slight lack of power below ??30 found by the WMAP and Planck collaborations. We give two simple models which improve the fit to the Planck data; one with observable curvature and one without. Despite cosmic variance, we argue that future CMB polarization and most importantly large-scale structure observations should be able to corroborate the Planck anomaly if it is real. If we further assume the specific theoretical setting of a landscape of metastable vacua, as suggested by string theory, we can estimate the probability of seeing a low-? suppression in the CMB. There are significant theoretical uncertainties in such calculations, but we argue the probability for a detectable suppression may be as large as O (1 ), and in general is significantly larger than the probability of seeing curvature.
Searching for non-Gaussianity in the Planck data
NASA Astrophysics Data System (ADS)
Rebouças, Marcelo J.; Bernui, Armando
2014-05-01
The statistical properties of the temperature anisotropies and polarization of the of cosmic microwave background (CMB) radiation offer a powerful probe of the physics of the early universe. In recent works a statistical procedure based upon the calculation of the kurtosis and skewness of the data in patches of CMB sky-sphere has been proposed and used to investigate the large-angle deviation from Gaussianity in WMAP maps. Here we briefly address the question as to how this analysis of Gaussianity is modified if the foreground-cleaned Planck maps are considered. We show that although the foreground-cleaned Planck maps present significant deviation from Gaussianity of different degrees when a less severe mask is used, they become consistent with Gaussianity, as detected by our indicators, when masked with the union mask U73.
Constraints on Cosmological Parameters: Combining Planck With Other Measurements
NASA Astrophysics Data System (ADS)
Freedman, Wendy
2015-08-01
The recent measurements from Planck have set a new high bar for accuracy in the measurement of cosmological parameters. In parallel, new and increasingly accurate measurements of Baryon Acoustic Oscillations, Type Ia supernovae, and the Hubble Constant offer independent probes of various cosmological parameters. The increased accuracy in cosmic microwave background fluctuation measurements make direct comparisons with other methods even more critical, given the intrinsic physical degeneracies amongst different cosmological parameters in the acoustic oscillation spectrum. There has been fundamental progress over the last couple of decades in measuring extragalactic distances. I will discuss the current limits, and the prospects for reaching 1% uncertainty in measurement of the Hubble constant, which, combined with measurements from Planck, will be critical for providing independent constraints on dark energy, the geometry, and matter density of the universe.
Planck and re-ionization history: a model selection view
NASA Astrophysics Data System (ADS)
Mukherjee, Pia; Liddle, Andrew R.
2008-09-01
We use Bayesian model selection tools to forecast the Planck satellite's ability to distinguish between different models for the re-ionization history of the Universe, using the large angular scale signal in the cosmic microwave background polarization spectrum. We find that Planck is not expected to be able to distinguish between an instantaneous re-ionization model and a two-parameter smooth re-ionization model, except for extreme values of the additional re-ionization parameter. If it cannot, then it will be unable to distinguish between different two-parameter models either. However, Bayesian model averaging will be needed to obtain unbiased estimates of the optical depth to re-ionization. We also generalize our results to a hypothetical future cosmic variance limited microwave anisotropy survey, where the outlook is more optimistic.
Seismic-Scale Rock Physics of Methane Hydrate
Amos Nur
2009-01-08
We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.
Technologies for large-scale physical mapping of human chromosomes
Beugelsdijk, T.J.
1994-12-01
Since its inception 6 years ago, the Human Genome Project has made rapid progress towards its ultimate goal of developing the complete sequence of all human chromosomes. This progress has been made possible through the development of automated devices by laboratories throughout the world that aid the molecular biologist in various phases of the project. The initial phase involves the generation of physical and genetic maps of each chromosome. This task is nearing completion at a low resolution level with several instances of very high detailed maps being developed for isolated chromosomes. In support of the initial mapping thrust of this program, the robotics and automation effort at Los Alamos National Laboratory has developed DNA gridding technologies along with associated database and user interface systems. This paper will discuss these systems in detail and focus on the formalism developed for subsystems which allow for facile system integration.
NASA Astrophysics Data System (ADS)
Ojha, Richa; Govindaraju, Rao S.
2015-07-01
Scaling relationships are needed as measurements and desired predictions are often not available at concurrent spatial support volumes or temporal discretizations. Surface soil moisture values of interest to hydrologic studies are estimated using ground based measurement techniques or utilizing remote sensing platforms. Remote sensing based techniques estimate field-scale surface soil moisture values, but are unable to provide the local-scale soil moisture information that is obtained from local measurements. Further, obtaining field-scale surface moisture values using ground-based measurements is exhaustive and time consuming. To bridge this scale mismatch, we develop analytical expressions for surface soil moisture based on sharp-front approximation of the Richards equation and assumed log-normal distribution of the spatial surface saturated hydraulic conductivity field. Analytical expressions for field-scale evolution of surface soil moisture to rainfall events are utilized to obtain aggregated and disaggregated response of surface soil moisture evolution with knowledge of the saturated hydraulic conductivity. The utility of the analytical model is demonstrated through numerical experiments involving 3-D simulations of soil moisture and Monte-Carlo simulations for 1-D renderingsâ€”with soil moisture dynamics being represented by the Richards equation in each instance. Results show that the analytical expressions developed here show promise for a principled way of scaling surface soil moisture.
Ojha, Richa; Govindaraju, Rao S
2015-07-01
Scaling relationships are needed as measurements and desired predictions are often not available at concurrent spatial support volumes or temporal discretizations. Surface soil moisture values of interest to hydrologic studies are estimated using ground based measurement techniques or utilizing remote sensing platforms. Remote sensing based techniques estimate field-scale surface soil moisture values, but are unable to provide the local-scale soil moisture information that is obtained from local measurements. Further, obtaining field-scale surface moisture values using ground-based measurements is exhaustive and time consuming. To bridge this scale mismatch, we develop analytical expressions for surface soil moisture based on sharp-front approximation of the Richards equation and assumed log-normal distribution of the spatial surface saturated hydraulic conductivity field. Analytical expressions for field-scale evolution of surface soil moisture to rainfall events are utilized to obtain aggregated and disaggregated response of surface soil moisture evolution with knowledge of the saturated hydraulic conductivity. The utility of the analytical model is demonstrated through numerical experiments involving 3-D simulations of soil moisture and Monte-Carlo simulations for 1-D renderings-with soil moisture dynamics being represented by the Richards equation in each instance. Results show that the analytical expressions developed here show promise for a principled way of scaling surface soil moisture. PMID:26232974
Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Aniano, G.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Draine, B. T.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; EnÃŸlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; GjerlÃ¸w, E.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; KeihÃ¤nen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; NÃ¸rgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; RubiÃ±o-MartÃn, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-02-01
We present all-sky modelling of the high resolution Planck, IRAS, and WISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling. The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density Î£Md, the dust optical extinction AV, and the starlight intensity heating the bulk of the dust, parametrized by Umin. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31), the present dust mass estimates agree remarkably well (within 10%) with DL estimates based on independent Spitzer and Herschel data. We compare the DL optical extinction AV for the diffuse interstellar medium (ISM) with optical estimates for approximately 2 Ã— 105 quasi-stellar objects (QSOs) observed inthe Sloan Digital Sky Survey (SDSS). The DL AV estimates are larger than those determined towards QSOs by a factor of about 2, which depends on Umin. The DL fitting parameter Umin, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust grains per unit AV, and not only in the starlight intensity. These results show that some of the physical assumptions of the DL model will need to be revised. To circumvent the model deficiency, we propose an empirical renormalization of the DL AV estimate, dependent of Umin, which compensates for the systematic differences found with QSO observations. This renormalization, made to match the AV estimates towards QSOs, also brings into agreement the DL AV estimates with those derived for molecular clouds from the near-IR colours of stars in the 2 micron all sky survey (2MASS). The DL model and the QSOs data are also used to compress the spectral information in the Planck and IRAS observations for the diffuse ISM to a family of 20 SEDs normalized per AV, parameterized by Umin, which may be used to test and empirically calibrate dust models. The family of SEDs and the maps generated with the DL model are made public in the Planck Legacy Archive.
Developing an Attitude Scale for the Profession of Physical Education Teaching (ASPPET)
ERIC Educational Resources Information Center
Unlu, Huseyin
2011-01-01
In this study, the development of a Likert-type attitude scale for the profession of physical education teaching (ASPPET) was aimed. The group of the study was consisted of totally 556 pre-service physical education teachers. In order to determine the structural validity of ASPPET, an exploratory and confirmative factor analyses were performed. Aâ€¦
Rotating space elevators: Physics of celestial scale spinning strings
NASA Astrophysics Data System (ADS)
Knudsen, Steven; GoluboviÄ‡, Leonardo
2014-11-01
We explore classical and statistical mechanics of a novel dynamical system, the Rotating Space Elevator (RSE) (L. GoluboviÄ‡, S. Knudsen, EPL 86, 34001 (2009)). The RSE is a double rotating floppy string reaching extraterrestrial locations. Objects sliding along the RSE string (climbers) do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in space elevator science, which is how to supply energy to the climbers moving along space elevator strings. The RSE can be made in various shapes that are stabilized by an approximate equilibrium between the gravitational and inertial forces acting in a double rotating frame associated with the RSE. This dynamical equilibrium is achieved by a special ("magical") form of the RSE mass line density derived in this paper. The RSE exhibits a variety of interesting dynamical phenomena explored here by numerical simulations. Thanks to its special design, the RSE exhibits everlasting double rotating motion. Under some conditions, however, we find that the RSE may undergo a morphological transition to a chaotic state reminiscent of fluctuating directed polymers in the realm of the statistical physics of strings and membranes.
Physical Analysis and Scaling of a Jet and Vortex Actuator
NASA Technical Reports Server (NTRS)
Lachowicz, Jason T.; Yao, Chung-Sheng; Joslin, Ronald D.
2004-01-01
Our previous studies have shown that the Jet and Vortex Actuator generates free-jet, wall-jet, and near- wall vortex flow fields. That is, the actuator can be operated in different modes by simply varying the driving frequency and/or amplitude. For this study, variations are made in the actuator plate and wide-slot widths and sine/asymmetrical actuator plate input forcing (drivers) to further study the actuator induced flow fields. Laser sheet flow visualization, particle- image velocimetry, and laser velocimetry are used to measure and characterize the actuator induced flow fields. Laser velocimetry measurements indicate that the vortex strength increases with the driver repetition rate for a fixed actuator geometry (wide slot and plate width). For a given driver repetition rate, the vortex strength increases as the plate width decreases provided the wide-slot to plate-width ratio is fixed. Using an asymmetric plate driver, a stronger vortex is generated for the same actuator geometry and a given driver repetition rate. The nondimensional scaling provides the approximate ranges for operating the actuator in the free jet, wall jet, or vortex flow regimes. Finally, phase-locked velocity measurements from particle image velocimetry indicate that the vortex structure is stationary, confirming previous computations. Both the computations and the particle image velocimetry measurements (expectantly) show unsteadiness near the wide-slot opening, which is indicative of mass ejection from the actuator.
Effects of pore-scale physics on uranium geochemistry in Hanford sediments
Hu, Qinhong; Ewing, Robert P.
2013-11-25
Overall, this work examines a key scientific issue, mass transfer limitations at the pore-scale, using both new instruments with high spatial resolution, and new conceptual and modeling paradigms. The complementary laboratory and numerical approaches connect pore-scale physics to macroscopic measurements, providing a previously elusive scale integration. This Exploratory research project produced five peer-reviewed journal publications and eleven scientific presentations. This work provides new scientific understanding, allowing the DOE to better incorporate coupled physical and chemical processes into decision making for environmental remediation and long-term stewardship.
Development of a scale assessing students' Appearance Anxiety in Physical Education.
Kalogiannis, Perikles; Papaioannou, Athanassios
2007-12-01
A 14-item self-report scale was developed to measure students' anxiety about their appearance in physical education lessons. Confirmatory factor analysis on 401 students' responses on the Appearance Anxiety in Physical Education Scale (AAPES) supported the existence of two factors with strong internal consistency: Fear of Negative Evaluation, and Anxiety and Avoidance. Both factors correlated with Social Physique Anxiety and Global and Physical Self Concept, in line with expectations. In addition, students who scored high on Appearance Anxiety proved to be those students with higher percent body fat and lower physical fitness. These findings support the good psychometric properties of the scale, suggesting that it is a reliable and valid tool. PMID:18380102
Study for Planck Cold Clumps with molecular lines
NASA Astrophysics Data System (ADS)
Wu, Yuefang
2014-07-01
To probe dynamical processes and physical properties of Planck Cold Clumps, we have observed 674 of the most reliable 915 sources with J=1-0 of CO,13CO and C18O using PMO 13.7 m telescope of Purple Mountain Observatory. J=1-0 lines of HCO+ and HCN at CO emission peaks were also observed, of which 24 were mapped with IRAM 30 m telescope. Results show excitation temperatures are from 4 to 17 K, and column densities range from 1020 to 4.5x1023 cm-2. Planck cold clumps have the smallest line width among samples of IRDCs, weak IRAS, EGOs, UC HII candidates and methanol maser chosen cores. However the lines are still wider than those of low-mass cores and have non-thermal supersonic dispersion. Filament is the majority in their morphologies and fragmented structures were found with dense molecular lines. More than 70% of CO cores are starless. Planck cold clumps seem to be ideal samples to search for candidates of massive prestellar cores and pre-clusters.
NASA Astrophysics Data System (ADS)
Hivon, Eric; Reinecke, Martin; Gorski, Krzysztof M.
2015-08-01
The Hierarchical Equal Area iso-Latitude Pixelation of the Sphere (HEALPix, http://healpix.sf.net) is both a mathematical pixelation of the sphere and a suite of software tools implementing it in many different languages (C, C++, Fortran, IDL/GDL, Java, Python). It has been used in the simulation, observation and analysis of WMAP, Planck and many other CMB and astronomical missions and has become a standard tool used in many different astronomical fields, such as large galaxy surveys (eg, SDSS), 3D structure of the Galaxy (eg, GAIA), high energy cosmic rays (eg, Pierre Auger Observatory), ..., and is fully supported by many Virtual Observatory visualization tools (eg, Aladin).Third party developments have implemented new functionalities like wavelet analysis, Minkowski functionals, structures identification, and propose wrappings or translations of HEALPix functionalities in other languages (eg, Matlab/Octave, Yorick).This talk will review what is currently possible with HEALPix, in terms of simulations, Spherical Harmonics transforms, data processing, visualization, statistical analyses, search of local extrema, pixel queries, I/O, and the projected developments including database storage and queries, multi-resolution dataset (MOC),
Planck-LFI flight model feed horns
NASA Astrophysics Data System (ADS)
Villa, F.; D'Arcangelo, O.; Pecora, M.; Figini, L.; Nesti, R.; Simonetto, A.; Sozzi, C.; Sandri, M.; Battaglia, P.; Guzzi, P.; Bersanelli, M.; Butler, R. C.; Mandolesi, N.
2009-12-01
The Low Frequency Instrument is optically interfaced with the ESA Planck telescope through 11 corrugated feed horns each connected to the Radiometer Chain Assembly (RCA). This paper describes the design, the manufacturing and the testing of the flight model feed horns. They have been designed to optimize the LFI optical interfaces taking into account the tight mechanical requirements imposed by the Planck focal plane layout. All the eleven units have been successfully tested and integrated with the Ortho Mode transducers.
Social Support and Peer Norms Scales for Physical Activity in Adolescents
Ling, Jiying; Robbins, Lorraine B.; Resnicow, Ken; Bakhoya, Marion
2015-01-01
Objectives To evaluate psychometric properties of a Social Support and Peer Norms Scale in 5th-7th grade urban girls. Methods Baseline data from 509 girls and test-retest data from another 94 girls in the Midwestern US were used. Results Cronbach's alpha was .83 for the Social Support Scale and .72 for the Peer Norms Scale, whereas test-re-test reliability was .78 for both scales. Exploratory factor analysis suggested a single factor structure for the Social Support Scale, and a 3-factor structure for the Peer Norms Scale. Social support was correlated with accelerometer-measured physical activity (r = .13, p = .006), and peer norms (r = .50, p < .0001). Conclusions Both scales have adequate psychometric properties. PMID:25207514
Observational effects of a running Planck mass
NASA Astrophysics Data System (ADS)
Huang, Zhiqi
2016-02-01
We consider observational effects of a running effective Planck mass in the scalar-tensor gravity theory. At the background level, an increasing effective Planck mass allows a larger Hubble constant H0, which is more compatible with the local direct measurements. At the perturbative level, for cosmic microwave background (CMB) anisotropies, an increasing effective Planck mass (i) suppresses the unlensed CMB power at â„“â‰²30 via the integrated Sachs-Wolfe effect and (ii) enhances CMB lensing power. Both effects slightly relax the tension between the current CMB data from the Planck satellite and the standard Î› CDM model predictions. However, these impacts on the CMB secondary anisotropies are subdominant, and the overall constraints are driven by the background measurements. Combining CMB data from the Planck satellite and an H0 prior from Riess et al., we find a Ëœ2 Ïƒ hint of a positive running of the effective Planck mass. However, the hint goes away when we add other low-redshift observational data including type Ia supernovae, baryon acoustic oscillations, and an estimation of the age of the Universe using the old stars.
Planck 2013 results. XIV. Zodiacal emission
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colley, J.-M.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; DÃ©sert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; EnÃŸlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-HÃ©raud, Y.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; O'Sullivan, C.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polegre, A. M.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Smoot, G. F.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
The Planck satellite provides a set of all-sky maps at nine frequencies from 30 GHz to 857 GHz. Planets, minor bodies, and diffuse interplanetary dust emission (IPD) are all observed. The IPD can be separated from Galactic and other emissions because Planck views a given point on the celestial sphere multiple times, through different columns of IPD. We use the Planck data to investigate the behaviour of zodiacal emission over the whole sky at sub-millimetre and millimetre wavelengths. We fit the Planck data to find the emissivities of the various components of the COBE zodiacal model - a diffuse cloud, three asteroidal dust bands, a circumsolar ring, and an Earth-trailing feature. The emissivity of the diffuse cloud decreases with increasing wavelength, as expected from earlier analyses. The emissivities of the dust bands, however, decrease less rapidly, indicating that the properties of the grains in the bands are different from those in the diffuse cloud. We fit the small amount of Galactic emission seen through the telescope's far sidelobes, and place limits on possible contamination of the cosmic microwave background (CMB) results from both zodiacal and far-sidelobe emission. When necessary, the results are used in the Planck pipeline to make maps with zodiacal emission and far sidelobes removed. We show that the zodiacal correction to the CMB maps is small compared to the Planck CMB temperature power spectrum and give a list of flux densities for small solar system bodies.
Ali, Melkamu; Ye, Sheng; Li, Hongyi; Huang, Maoyi; Leung, Lai-Yung R.; Fiori, Aldo; Sivapalan, Murugesu
2014-07-19
Subsurface stormflow is an important component of the rainfall-runoff response, especially in steep forested regions. However; its contribution is poorly represented in current generation of land surface hydrological models (LSMs) and catchment-scale rainfall-runoff models. The lack of physical basis of common parameterizations precludes a priori estimation (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global models. This paper is aimed at deriving physically based parameterizations of the storage-discharge relationship relating to subsurface flow. These parameterizations are derived through a two-step up-scaling procedure: firstly, through simulations with a physically based (Darcian) subsurface flow model for idealized three dimensional rectangular hillslopes, accounting for within-hillslope random heterogeneity of soil hydraulic properties, and secondly, through subsequent up-scaling to the catchment scale by accounting for between-hillslope and within-catchment heterogeneity of topographic features (e.g., slope). These theoretical simulation results produced parameterizations of the storage-discharge relationship in terms of soil hydraulic properties, topographic slope and their heterogeneities, which were consistent with results of previous studies. Yet, regionalization of the resulting storage-discharge relations across 50 actual catchments in eastern United States, and a comparison of the regionalized results with equivalent empirical results obtained on the basis of analysis of observed streamflow recession curves, revealed a systematic inconsistency. It was found that the difference between the theoretical and empirically derived results could be explained, to first order, by climate in the form of climatic aridity index. This suggests a possible codependence of climate, soils, vegetation and topographic properties, and suggests that subsurface flow parameterization needed for ungauged locations must account for both the physics of flow in heterogeneous landscapes, and the co-dependence of soil and topographic properties with climate, including possibly the mediating role of vegetation.
Planck focal plane instruments: advanced modelization and combined analysis
NASA Astrophysics Data System (ADS)
Zonca, Andrea; Mennella, Aniello
2012-08-01
This thesis is the result of my work as research fellow at IASF-MI, Milan section of the Istituto di Astrofisica Spaziale e Fisica Cosmica, part of INAF, Istituto Nazionale di Astrofisica. This work started in January 2006 in the context of the PhD school program in Astrophysics held at the Physics Department of Universita' degli Studi di Milano under the supervision of Aniello Mennella. The main topic of my work is the software modelling of the Low Frequency Instrument (LFI) radiometers. The LFI is one of the two instruments on-board the European Space Agency Planck Mission for high precision measurements of the anisotropies of the Cosmic Microwave Background (CMB). I was also selected to participate at the International Doctorate in Antiparticles Physics, IDAPP. IDAPP is funded by the Italian Ministry of University and Research (MIUR) and coordinated by Giovanni Fiorentini (Universita' di Ferrara) with the objective of supporting the growing collaboration between the Astrophysics and Particles Physics communities. It is an international program in collaboration with the Paris PhD school, involving Paris VI, VII and XI Universities, leading to a double French-Italian doctoral degree title. My work was performed with the co-tutoring of Jean-Michel Lamarre, Instrument Scientist of the High Frequency Instrument (HFI), the bolometric instrument on-board Planck. Thanks to this collaboration I had the opportunity to work with the HFI team for four months at the Paris Observatory, so that the focus of my activity was broadened and included the study of cross-correlation between HFI and LFI data. Planck is the first CMB mission to have on-board the same satellite very different detection technologies, which is a key element for controlling systematic effects and improve measurements quality.
Planck 2013 results. XXVI. Background geometry and topology of the Universe
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; DÃ©sert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; EnÃŸlin, T. A.; Eriksen, H. K.; Fabre, O.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-HÃ©raud, Y.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J. D.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Riazuelo, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
The new cosmic microwave background (CMB) temperature maps from Planck provide the highest-quality full-sky view of the surface of last scattering available to date. This allows us to detect possible departures from the standard model of a globally homogeneous and isotropic cosmology on the largest scales. We search for correlations induced by a possible non-trivial topology with a fundamental domain intersecting, or nearly intersecting, the last scattering surface (at comoving distance Ï‡rec), both via a direct search for matched circular patterns at the intersections and by an optimal likelihood search for specific topologies. For the latter we consider flat spaces with cubic toroidal (T3), equal-sided chimney (T2) and slab (T1) topologies, three multi-connected spaces of constant positive curvature (dodecahedral, truncated cube and octahedral) and two compact negative-curvature spaces. These searches yield no detection of the compact topology with the scale below the diameter of the last scattering surface. For most compact topologies studied the likelihood maximized over the orientation of the space relative to the observed map shows some preference for multi-connected models just larger than the diameter of the last scattering surface. Since this effect is also present in simulated realizations of isotropic maps, we interpret it as the inevitable alignment of mild anisotropic correlations with chance features in a single sky realization; such a feature can also be present, in milder form, when the likelihood is marginalized over orientations. Thus marginalized, the limits on the radius â„›i of the largest sphere inscribed in topological domain (at log-likelihood-ratio Î”ln â„’ > -5 relative to a simply-connected flat Planck best-fit model) are: in a flat Universe, â„›i> 0.92Ï‡rec for the T3 cubic torus; â„›i> 0.71Ï‡rec for the T2 chimney; â„›i> 0.50Ï‡rec for the T1 slab; and in a positively curved Universe, â„›i> 1.03Ï‡rec for the dodecahedral space; â„›i> 1.0Ï‡rec for the truncated cube; and â„›i> 0.89Ï‡rec for the octahedral space. The limit for a wider class of topologies, i.e., those predicting matching pairs of back-to-back circles, among them tori and the three spherical cases listed above, coming from the matched-circles search, is â„›i> 0.94Ï‡rec at 99% confidence level. Similar limits apply to a wide, although not exhaustive, range of topologies. We also perform a Bayesian search for an anisotropic global Bianchi VIIh geometry. In the non-physical setting where the Bianchi cosmology is decoupled from the standard cosmology, Planck data favour the inclusion of a Bianchi component with a Bayes factor of at least 1.5 units of log-evidence. Indeed, the Bianchi pattern is quite efficient at accounting for some of the large-scale anomalies found in Planck data. However, the cosmological parameters that generate this pattern are in strong disagreement with those found from CMB anisotropy data alone. In the physically motivated setting where the Bianchi parameters are coupled and fitted simultaneously with the standard cosmological parameters, we find no evidence for a Bianchi VIIh cosmology and constrain the vorticity of such models to (Ï‰/H)0< 8.1 Ã— 10-10 (95% confidence level).
Strong coupling running, gauge coupling unification and the scale of new physics
NASA Astrophysics Data System (ADS)
Bourilkov, Dimitri
2015-11-01
The apparent unification of gauge couplings in Grand Unified Theories (GUT) around 1016 GeV is one of the strong arguments in favor of Supersymmetric extensions of the Standard Model. In this paper, an analysis of the measurements of the strong coupling running from the CMS experiment at the LHC is combined with a "traditional" gauge coupling unification analysis using data at the Z peak. This approach places powerful constraints on the possible scales of new physics and on the parameters around the unification scale. A supersymmetric analysis without GUT threshold corrections describes the CMS data well and provides perfect unification. The favored scales are M SU SY = 2820 + 650 - 530 GeV and M GU T = 1 .05 ± 0 .07 1016 GeV. For zero or small threshold corrections the scale of new physics may be well within LHC reach.
Candidate High Redshift Clusters of Dusty Galaxies from Herschel & Planck
NASA Astrophysics Data System (ADS)
Clements, David L.
2015-08-01
The cross identification of Planck compact sources with objects in karger area Herschel surveys, such as HerMES and H-ATLAS, has led to the discovery of candidate high redshift (out to z~3) clusters of far-IR luminous star forming galaxies. These objects are not easily reproduced in the current generations of galaxy and large scale formation simulations and are thus a potentially powerful new tool for comnstraining galaxy and cluster formation models. We will review the current results on these sources and examine future prospects for progress in this novel and potentially important new field.
VizieR Online Data Catalog: Updated Planck catalogue PSZ1 (Planck+, 2015)
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.; Bohringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; da Silva, A.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; De Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Democles, J.; Desert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enslin, T. A.; Eriksen, H. K.; Feroz, F.; Ferragamo, A.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Genova-Santos, R. T.; Giard, M.; Giardino, G.; Gilfanov, M.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Groeneboom, N. E.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Hempel, A.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Hurley-Walker, N.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Li, C.; Liddle, A.; Liguori, M.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P. M.; Macias-Perez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martinez-Gonzalez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschenes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nastasi, A.; Nati, F.; Natoli, P.; Nesvadba, N. P. H.; Netterfield, C. B.; Norgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Olamaie, M.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrott, Y. C.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prezeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorce, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J. A.; Rumsey, C.; Rusholme, B.; Sandri, M.; Santos, D.; Saunders, R. D. E.; Savini, G.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shimwel, T. W.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Streblyanska, A.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2015-08-01
The updated Planck catalogue of SZ sources is available at PLA (http://www.sciops.esa.int/index.php?page= PlanckLegacyArchive&project=planck) and the SZ cluster database (http://szcluster-db.ias.u-psud.fr). The updated PSZ1 gathers in a single table all the entries of the delivered catalogue mainly based on the Planck data and the entries of the external validation information based on ancillary data (Appendices B and C of Planck Collaboration et al. (2014A&A...571A..29P, Cat. VIII/91), respectively). It also contains additional entries. The updated catalogue contains, when available, cluster external identifications8 and consolidated redshifts. We added two new entries: the redshift type and the bibliographic reference. (2 data files).
Diagonal scaling and the analysis of polarization experiments in nuclear physics
NASA Astrophysics Data System (ADS)
Meyer, H. O.
1997-10-01
A new method is described to deduce observables from the yields measured in a nuclear physics experiment with polarized beam and target. The method makes use of a formalism, known in the mathematical literature under the name of ``diagonal scaling'' or ``biproportional matrix adjustment,'' which deals with the problem of scaling the rows and columns of a matrix to obtain a new matrix with given row and column sums.
[Validity and reliability of a scale to assess self-efficacy for physical activity in elderly].
Borges, Rossana Arruda; Rech, Cassiano Ricardo; Meurer, Simone Teresinha; Benedetti, Tânia Rosane Bertoldo
2015-04-01
This study aimed to analyze the confirmatory factor validity and reliability of a self-efficacy scale for physical activity in a sample of 118 elderly (78% women) from 60 to 90 years of age. Mplus 6.1 was used to evaluate the confirmatory factor analysis. Reliability was tested by internal consistency and temporal stability. The original scale consisted of five items with dichotomous answers (yes/no), independently for walking and moderate and vigorous physical activity. The analysis excluded the item related to confidence in performing physical activities when on vacation. Two constructs were identified, called "self-efficacy for walking" and "self-efficacy for moderate and vigorous physical activity", with a factor load ? 0.50. Internal consistency was adequate both for walking (> 0.70) and moderate and vigorous physical activity (> 0.80), and temporal stability was adequate for all the items. In conclusion, the self-efficacy scale for physical activity showed adequate validity, reliability, and internal consistency for evaluating this construct in elderly Brazilians. PMID:25945980
Planck intermediate results. VIII. Filaments between interacting clusters
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, J. G. Bartlett E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bourdin, H.; Burenin, R.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Cayón, L.; Chamballu, A.; Chary, R.-R.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombo, L. P. L.; Comis, B.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Démoclès, J.; Désert, F.-X.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Ganga, K.; Génova-Santos, T.; Giard, M.; Gilfanov, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hurier, G.; Jaffe, T. R.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juvela, M.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Luzzi, G.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschènes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Piffaretti, R.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Schaefer, B. M.; Scott, D.; Smoot, G. F.; Starck, J.-L.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Welikala, N.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2013-02-01
Context. About half of the baryons of the Universe are expected to be in the form of filaments of hot and low-density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories, which are limited in sensitivity to the diffuse low-density medium. Aims: The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low-density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters. Methods: Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we selected physical pairs of clusters as candidates. Using the Planck data, we constructed a local map of the tSZ effect centred on each pair of galaxy clusters. ROSAT data were used to construct X-ray maps of these pairs. After modelling and subtracting the tSZ effect and X-ray emission for each cluster in the pair, we studied the residuals on both the SZ and X-ray maps. Results: For the merging cluster pair A399-A401 we observe a significant tSZ effect signal in the intercluster region beyond the virial radii of the clusters. A joint X-ray SZ analysis allows us to constrain the temperature and density of this intercluster medium. We obtain a temperature of kT = 7.1 ± 0.9 keV (consistent with previous estimates) and a baryon density of (3.7 ± 0.2) × 10-4 cm-3. Conclusions: The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas.
NASA Astrophysics Data System (ADS)
Kozarek, J. L.; Hill, C.; Plott, J.; Diplas, P.; Sotiropoulos, F.
2011-12-01
Rock vanes, cross vanes, bendway weirs and other similar flow control structures have been studied as part of a multifaceted research program to improve quantitative design guidelines for frequently used stream restoration structures. These structures are typically used in stream restoration projects with the intent of protecting unstable streambanks, preventing undesired lateral migration, or improving aquatic habitat. Despite their frequent use, extensive research-based quantitative design guidelines do not readily exist. As part of this project, a series of small-scale physical model experiments were completed in the St. Anthony Falls Laboratory (SAFL) Tilting Bed Flume measuring 3D flow velocities and sediment scour patterns downstream of stream restoration flow control structures. On a larger scale, similar experiments were completed in the SAFL Outdoor StreamLab (OSL), a near full-scale meandering stream research facility. Two final components of this research program, full-scale field monitoring and computational simulations, provide researchers with a multi-scale dataset. A focal point of the analysis lies on the scour patterns induced by these structures, yet transferring these results into engineering design standards remains a challenge. The issues of dealing with multiple scales of flow control structures, the sediment used in these experiments, and the effects they will have in real-world stream restoration applications is a complex problem. The small-scale flume experiments examined single structures in a straight channel with uniform grain sizes. Large-scale OSL experiments were completed in a specific meandering channel geometry and grain sizes unique to that facility. Field monitoring provides data in complex, real-world environments, yet it is unique to specific locations and at a much lower resolution than available from controlled research facilities. The extensive dataset resulting from this research program provides the means to develop quantitative design guidelines for practicing engineers, yet the complexity of natural systems will require a substantial effort to overcome challenging issues in scaled model studies to transfer the results to the hydraulic and sediment transport capabilities at field-scale restoration sites.
Psychometric Properties of the “Sport Motivation Scale (SMS)” Adapted to Physical Education
Granero-Gallegos, Antonio; Baena-Extremera, Antonio; Gómez-López, Manuel; Sánchez-Fuentes, José Antonio; Abraldes, J. Arturo
2014-01-01
The aim of this study was to investigate the factor structure of a Spanish version of the Sport Motivation Scale adapted to physical education. A second aim was to test which one of three hypothesized models (three, five and seven-factor) provided best model fit. 758 Spanish high school students completed the Sport Motivation Scale adapted for Physical Education and also completed the Learning and Performance Orientation in Physical Education Classes Questionnaire. We examined the factor structure of each model using confirmatory factor analysis and also assessed internal consistency and convergent validity. The results showed that all three models in Spanish produce good indicators of fitness, but we suggest using the seven-factor model (?2/gl = 2.73; ECVI = 1.38) as it produces better values when adapted to physical education, that five-factor model (?2/gl = 2.82; ECVI = 1.44) and three-factor model (?2/gl = 3.02; ECVI = 1.53). Key Points Physical education research conducted in Spain has used the version of SMS designed to assess motivation in sport, but validity reliability and validity results in physical education have not been reported. Results of the present study lend support to the factorial validity and internal reliability of three alternative factor structures (3, 5, and 7 factors) of SMS adapted to Physical Education in Spanish. Although all three models in Spanish produce good indicators of fitness, but we suggest using the seven-factor model. PMID:25435772
Gravitational waves: A probe to the physics in the early universe
NASA Astrophysics Data System (ADS)
Huang, Qing-Guo
2015-10-01
Gravitational waves can escape from the big bang and can be taken as a probe to the physics, in particular the inflation, in the early universe. Planck scale is a fundamental scale for quantum theory of gravity. Requiring the excursion distance of inflaton in the field space during inflation yields an upper bound on the tensor-to-scalar ratio. For example, r < 7 Ã— 10-4 for ns = 0.9645. In the typical inflationary scenario, we predict 1 - 2/N < ns < 1 and - 2/N2 < Î± s < 0 which are consistent with Planck data released in 2015 quite well. Subtracting the contribution of thermal dust measured by Planck, BICEP2 data implies r â‰² 0.08 which is the tightest bound on the tensor-to-scalar ratio from current experiments.
NASA Astrophysics Data System (ADS)
Saito, Kazuyuki; Yamaguchi, Satoru; Iwata, Hiroki; Harazono, Yoshinobu; Kosugi, Kenji; Lehning, Michael; Shulski, Martha
2012-04-01
Here we have conducted an integral study using site observations and a model with detailed snow dynamics, to examine the capability of the model for deriving a simple relationship between the density and thermal conductivity of the snowpack within different climatic zones used in large-scale climate modeling. Snow and meteorological observations were conducted at multiple sites in different climatic regions (two in Interior Alaska, two in Japan). A series of thermal conductivity measurements in snow pit observations done in Alaska provided useful information for constructing the relationship. The one-dimensional snow dynamics model, SNOWPACK, simulated the evolution of the snowpack and compared observations between all sites. Overall, model simulations tended to underestimate the density and overestimate the thermal conductivity, and failed to foster the relationship evident in the observations from the current and previous research. The causes for the deficiency were analyzed and discussed, regarding a low density of the new snow layer and a slow compaction rate. Our working relationships were compared to the equations derived by previous investigators. Discrepancy from the regression for the melting season observations in Alaska was found in common.
ERIC Educational Resources Information Center
Oncu, Erman
2013-01-01
The purpose of this study was to examine the psychometric properties of the Physical Education Attitude Scale for Preservice Classroom Teachers (PEAS-PCT). The study was conducted on 561 Turkish preservice classroom teachers at the end of the 2011-2012 Fall Semester. Exploratory and confirmatory factor analyses were conducted to ascertain theâ€¦
The Children's Perceived Locus of Causality Scale for Physical Education
ERIC Educational Resources Information Center
Pannekoek, Linda; Piek, Jan P.; Hagger, Martin S.
2014-01-01
A mixed methods design was applied to evaluate the application of the Perceived Locus of Causality scale (PLOC) to preadolescent samples in physical education settings. Subsequent to minor item adaptations to accommodate the assessment of younger samples, qualitative pilot tests were performed (N = 15). Children's reports indicated the need…
Physical Education Teacher Attitudes toward Fitness Tests Scale: Cross-Revalidation and Modification
ERIC Educational Resources Information Center
Keating, Xiaofen D.; Guan, Jianmin; Ferguson, Robert H.; Chen, Li; Bridges, Dwan M.
2008-01-01
This study aimed to provide further evidence of validity and reliability for the Physical Education Teacher Attitudes toward Fitness Tests Scale (PETAFTS), which consisted of affective and cognitive domains. There were two subdomains in the affective domain (i.e., enjoyment of implementing fitness tests and enjoyment of using test results) and oneâ€¦
Relation of Physical Form to Spatial Knowledge in Large-Scale Virtual Environments
ERIC Educational Resources Information Center
Cubukcu, Ebru; Nasar, Jack L.
2005-01-01
This study used a desktop virtual environmental simulation of 18 large-scale residential environments to test effects of plan layout complexity, physical differentiation, and gender on acquired spatial knowledge. One hundred sixty people (95 males and 65 females) were assigned at random to the different conditions. After a learning phase,…
ERIC Educational Resources Information Center
Korell, Diane M.; Safrit, Margaret J.
1977-01-01
Research into statistical validations of constructs in physical education obtained by seriation and multidimensional scaling, revealed that (a) larger matrix sizes produced the most accurate results; (b) as data error introduction was increased, solution accuracy decreased; and (c) seriation produced slightly more accurate results than one- and…
Introduction to SCALE-UP: Student-Centered Activities for Large Enrollment University Physics.
ERIC Educational Resources Information Center
Beichner, Robert J.; Saul, Jeffery M.; Allain, Rhett J.; Deardorff, Duane L.; Abbott, David S.
SCALE-UP is an extension of the highly successful IMPEC (Integrated Math, Physics, Engineering, and Chemistry) project, one of North Carolina State's curricular reform efforts undertaken as part of the SUCCEED coalition. The authors utilize the interactive, collaboratively based instruction that worked well in smaller class settings and find ways…
Reliability and Construct Validity of Turkish Version of Physical Education Activities Scale
ERIC Educational Resources Information Center
Memis, Ugur Altay
2013-01-01
This research was conducted to examine the reliability and construct validity of Turkish version of physical education activities scale (PEAS) which was developed by Thomason (2008). Participants in this study included 313 secondary and high school students from 7th to 11th grades. To analyse the data, confirmatory factor analysis, post hocâ€¦
Reliability and Construct Validity of Turkish Version of Physical Education Activities Scale
ERIC Educational Resources Information Center
Memis, Ugur Altay
2013-01-01
This research was conducted to examine the reliability and construct validity of Turkish version of physical education activities scale (PEAS) which was developed by Thomason (2008). Participants in this study included 313 secondary and high school students from 7th to 11th grades. To analyse the data, confirmatory factor analysis, post hoc…
Psychological and Physical Well-Being in the Elderly: The Perceived Well-Being Scale (PWB).
ERIC Educational Resources Information Center
Reker, Gary T.; Wong, Paul T. P.
1984-01-01
Describes the development of the Perceived Well-Being Scale (PWB), which allows for separate assessment of psychological and physical well-being. Several studies bearing on the psychometric properties and usefulness of the PWB are presented and the implications of the findings are discussed. (Author/CT)
Constraining models of f(R) gravity with Planck and WiggleZ power spectrum data
Dossett, Jason; Parkinson, David; Hu, Bin E-mail: hu@lorentz.leidenuniv.nl
2014-03-01
In order to explain cosmic acceleration without invoking ''dark'' physics, we consider f(R) modified gravity models, which replace the standard Einstein-Hilbert action in General Relativity with a higher derivative theory. We use data from the WiggleZ Dark Energy survey to probe the formation of structure on large scales which can place tight constraints on these models. We combine the large-scale structure data with measurements of the cosmic microwave background from the Planck surveyor. After parameterizing the modification of the action using the Compton wavelength parameter B{sub 0}, we constrain this parameter using ISiTGR, assuming an initial non-informative log prior probability distribution of this cross-over scale. We find that the addition of the WiggleZ power spectrum provides the tightest constraints to date on B{sub 0} by an order of magnitude, giving log{sub 10}(B{sub 0}) < âˆ’4.07 at 95% confidence limit. Finally, we test whether the effect of adding the lensing amplitude A{sub Lens} and the sum of the neutrino mass âˆ‘m{sub Î½} is able to reconcile current tensions present in these parameters, but find f(R) gravity an inadequate explanation.
Management of the Herschel/Planck Programme
NASA Astrophysics Data System (ADS)
Passvogel, Thomas; Crone, Gerald
2010-07-01
The development of the Herschel and Planck Programme, the largest scientific space programme of the European Space Agency (ESA), has culminated in May 2009 with the successful launch of the Herschel and Planck satellites onboard an Ariane 5 from the European Spaceport in Kourou. Both satellites are operating flawlessly since then and the scientific payload instruments provide world-class science. The Herschel/Planck Programme is a multi national cooperation with the managerial lead being taken by the European Space Agency with the major contributions from European industry for the spacecraft development and from scientific institutes, organized in five international consortia, for the payload instruments. The overall programme complexity called for various, adapted, management approaches to resolve technical and programmatic difficulties. Some of the management experiences of over a decade needed to realize such a satellite programme will be presented giving the lessons learnt for future programmes with the similar complexities.
Planck satellite to be presented to media
NASA Astrophysics Data System (ADS)
2007-01-01
Planck will make the most accurate maps yet of the microwave background radiation that fills space. It will be sensitive to temperature variations of a few millionths of a degree and will map the full sky in nine wavelengths. The immediate outcome of the Big Bang and the initial conditions for the evolution in the universe’s structure are the primary target of this important mission. From the results, a great deal more will be learnt not only about the nature and amount of dark matter, the ‘missing mass’ of the universe, but also about the nature of dark energy and the expansion of the universe itself. To address such challenging objectives, Planck will need to operate at very low, stable temperatures. Once in space, its detectors will have to be cooled to temperature levels close to absolute zero (-273.15ºC), ranging from -253ºC to only a few tenths of a degree above absolute zero. The Planck spacecraft thus has to be a marvel of cryotechnology. After integration, Planck will start a series of tests that will continue into early-2008. It will be launched by end-July 2008 in a dual-launch configuration with Herschel, ESA’s mission to study the formation of galaxies, stars and planetary systems in the infrared. Interested media are invited to fill in the reply form below. Note to editors The Planck spacecraft was built by AAS Cannes, the prime contractor, leading a consortium of industrial partners with the AAS industry branch in Turin, Italy, responsible for the satellite’s service module. ESA and the Danish National Space Centre (Copenhagen, Denmark) are responsible for the hardware provision of Planck’s telescope mirrors, manufactured by EADS Astrium (Friedrichshafen, Germany). AAS Cannes is also responsible for the payload module, the platform that hosts the telescope and the two onboard instruments, HFI and LFI. The instruments themselves are being supplied by a consortium of scientists and institutes led by the Institut d'Astrophysique Spatiale at Orsay (France) in the case of HFI, and by the Istituto di Astrofisica Spaziale e Fisica Cosmica (IASF) in Bologna (Italy) in that of LFI. There are also numerous subcontractors spread throughout Europe, with several more in the USA. For further information, please contact: ESA Media Relations Office Tel: +33(0)1.53.69.7155 Fax: +33(0)1.53.69.7690 Press event programme 1 February 2007, 10:00 am Alcatel Alenia Space 100 Boulevard du Midi, Cannes (France) 10:00 - 10:05 - Opening address, by Patrick Maute - Head of Optical Observation and Science Programmes - Alcatel Alenia Space, and by Jacques Louet - Head of Science Projects - ESA 10:05 - 10:15 - Herschel/Planck Mission overview, by Thomas Passvogel - Planck Project Manager - ESA 10:15 - 10:25 - Planck satellite, by Jean-Jacques Juillet - Programme Manager - Alcatel Alenia Space 10:25 - 10:35 - The scientific mission, by Jan Tauber - Planck Project Scientist - ESA 10:35 - 10:45 - The High-Frequency Instrument, by Jean-Loup Puget - HFI Principal Investigator 10:45 - 10:55 - The Low-Frequency Instrument, by Reno Mandolesi - LFI Principal Investigator 10:55 - 11:05 - Special guest - Nobel prize winner G.F. Smoot 11:05 - 11:25 - Questions and answers 11:25 - 12:35 - Visit of the integration room to see Planck spacecraft and face-to-face interviews 12:45 - 14:30 - Lunch hosted by Alcatel Alenia Space.
A Postulation of a Concept in Fundamental Physics
NASA Astrophysics Data System (ADS)
Goradia, Shantilal
2006-10-01
I am postulating that all fermions have a quantum mouth (Planck size) that radiates a flux density of gravitons as a function of the mass of the particle. Nucleons are not hard balls like light bulbs radiating photons challenging Newtonian concepts of centers and surfaces. The hardball analogy is implicit in coupling constants that compare strong force relative to gravity. The radiating mouth is not localized at the center like a hypothetical point size filament of a light bulb with a hard surface. A point invokes mass of zero volume. It is too precise, inconsistent and illogical. Nothing can be localized with more accuracy that Planck length. Substituting the hard glass bulb surface with flexible plastic surface would clearly make the interacting mouths of particles approach each other as close as possible, but no less than the quantum limit of Planck length. Therefore, surface distance in Newtonian gravity would be a close approximation at particle scale and fits Feynman's road map [1]. My postulation reflected by Fig. 2 of gr-qc/0507130 explains observations of increasing values of coupling constants resulting from decreasing values of Planck length (See physics/0210040 v1). Since Planck length is the fundamental unit of length of nature, its variation can impact our observation of the universe and the evolutionary process.
Planck 2013 results. XIX. The integrated Sachs-Wolfe effect
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; DÃ©sert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; EnÃŸlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; GÃ©nova-Santos, R. T.; Giard, M.; Giardino, G.; Giraud-HÃ©raud, Y.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; IliÄ‡, S.; Jaffe, A. H.; Jaffe, T. R.; Jasche, J.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marcos-Caballero, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; RubiÃ±o-MartÃn, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Schaefer, B. M.; Schiavon, F.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Viel, M.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; Xia, J.-Q.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
Based on cosmic microwave background (CMB) maps from the 2013 Planck Mission data release, this paper presents the detection of the integrated Sachs-Wolfe (ISW) effect, that is, the correlation between the CMB and large-scale evolving gravitational potentials. The significance of detection ranges from 2 to 4Ïƒ, depending on which method is used. We investigated three separate approaches, which essentially cover all previous studies, and also break new ground. (i) We correlated the CMB with the Planck reconstructed gravitational lensing potential (for the first time). This detection was made using the lensing-induced bispectrum between the low-â„“ and high-â„“ temperature anisotropies; the correlation between lensing and the ISW effect has a significance close to 2.5Ïƒ. (ii) We cross-correlated with tracers of large-scale structure, which yielded a significance of about 3Ïƒ, based on a combination of radio (NVSS) and optical (SDSS) data. (iii) We used aperture photometry on stacked CMB fields at the locations of known large-scale structures, which yielded and confirms a 4Ïƒ signal, over a broader spectral range, when using a previously explored catalogue, but shows strong discrepancies in amplitude and scale when compared with expectations. More recent catalogues give more moderate results that range from negligible to 2.5Ïƒ at most, but have a more consistent scale and amplitude, the latter being still slightly higher than what is expected from numerical simulations within Î›CMD. Where they can be compared, these measurements are compatible with previous work using data from WMAP, where these scales have been mapped to the limits of cosmic variance. Planck's broader frequency coverage allows for better foreground cleaning and confirms that the signal is achromatic, which makes it preferable for ISW detection. As a final step we used tracers of large-scale structure to filter the CMB data, from which we present maps of the ISW temperature perturbation. These results provide complementary and independent evidence for the existence of a dark energy component that governs the currently accelerated expansion of the Universe.
Physics and Dynamics Coupling Across Scales in the Next Generation CESM. Final Report
Bacmeister, Julio T.
2015-06-12
This project examines physics/dynamics coupling, that is, exchange of meteorological profiles and tendencies between an atmospheric modelâ€™s dynamical core and its various physics parameterizations. Most model physics parameterizations seek to represent processes that occur on scales smaller than the smallest scale resolved by the dynamical core. As a consequence a key conceptual aspect of parameterizations is an assumption about the subgrid variability of quantities such as temperature, humidity or vertical wind. Most existing parameterizations of processes such as turbulence, convection, cloud, and gravity wave drag make relatively ad hoc assumptions about this variability and are forced to introduce empirical parameters, i.e., â€œtuning knobsâ€ to obtain realistic simulations. These knobs make systematic dependences on model grid size difficult to quantify.
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; BÃ¶hringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Carvalho, P.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Chon, G.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Curto, A.; Cuttaia, F.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J. M.; Dole, H.; DorÃ©, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; EnÃŸlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Fromenteau, S.; Galeotta, S.; Ganga, K.; GÃ©nova-Santos, R. T.; Giard, M.; Gilfanov, M.; Giraud-HÃ©raud, Y.; GjerlÃ¸w, E.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Hempel, A.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; NÃ¸rgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; RubiÃ±o-MartÃn, J. A.; Rusholme, B.; Sandri, M.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2015-10-01
We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with the Russian-Turkish 1.5 m telescope (RTT150), as a part of the optical follow-up programme undertaken by the Planck collaboration. During this time period approximately 20% of all dark and grey clear time available at the telescope was devoted to observations of Planck objects. Some observations of distant clusters were also done at the 6 m Bolshoi Telescope Alt-azimutalnyi (BTA) of the Special Astrophysical Observatory of the Russian Academy of Sciences. In total, deep, direct images of more than one hundred fields were obtained in multiple filters. We identified 47 previously unknown galaxy clusters, 41 of which are included in the Planck catalogue of SZ sources. The redshifts of 65 Planck clusters were measured spectroscopically and 14 more were measured photometrically. We discuss the details of cluster optical identifications and redshift measurements. We also present new spectroscopic redshifts for 39 Planck clusters that were not included in the Planck SZ source catalogue and are published here for the first time.
NASA Astrophysics Data System (ADS)
Stock, M.
2013-02-01
Since 1889 the international prototype of the kilogram has served as the definition of the unit of mass in the International System of Units (SI). It is the last material artefact to define a base unit of the SI, and it influences several other base units. This situation is no longer acceptable in a time of ever increasing measurement precision. It is therefore planned to redefine the unit of mass by fixing the numerical value of the Planck constant. At the same time three other base units, the ampere, the kelvin and the mole, will be redefined. As a first step, the kilogram redefinition requires a highly accurate determination of the Planck constant in the present SI system, with a relative uncertainty of the order of 1 part in 108. The most promising experiment for this purpose, and for the future realization of the kilogram, is the watt balance. It compares mechanical and electrical power and makes use of two macroscopic quantum effects, thus creating a relationship between a macroscopic mass and the Planck constant. In this paper the background for the choice of the Planck constant for the kilogram redefinition is discussed and the role of the Planck constant in physics is briefly reviewed. The operating principle of watt balance experiments is explained and the existing experiments are reviewed. An overview is given of all presently available experimental determinations of the Planck constant, and it is shown that further investigation is needed before the redefinition of the kilogram can take place. This article is based on a lecture given at the International School of Physics ‘Enrico Fermi’, Course CLXXXV: Metrology and Physical Constants, held in Varenna on 17-27 July 2012. It will also be published in the proceedings of the school, edited by E Bava, M Kühne and A M Rossi (IOS Press, Amsterdam and SIF, Bologna).
Planck 2013 results. XXIX. The Planck catalogue of Sunyaev-Zeldovich sources
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.; BÃ¶hringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; DÃ©moclÃ¨s, J.; DÃ©sert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Eisenhardt, P. R. M.; EnÃŸlin, T. A.; Eriksen, H. K.; Feroz, F.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; GÃ©nova-Santos, R. T.; Giard, M.; Giardino, G.; Gilfanov, M.; Giraud-HÃ©raud, Y.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Groeneboom, N., E.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Hempel, A.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Hurley-Walker, N.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; LeÃ³n-Tavares, J.; Lesgourgues, J.; Li, C.; Liddle, A.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nesvadba, N. P. H.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Olamaie, M.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrott, Y. C.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; RubiÃ±o-MartÃn, J. A.; Rumsey, C.; Rusholme, B.; Sandri, M.; Santos, D.; Saunders, R. D. E.; Savini, G.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shimwell, T. W.; Spencer, L. D.; Stanford, S. A.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; TÃ¼rler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
We describe the all-sky Planck catalogue of clusters and cluster candidates derived from Sunyaev-Zeldovich (SZ) effect detections using the first 15.5 months of Planck satellite observations. The catalogue contains 1227 entries, making it over six times the size of the Planck Early SZ (ESZ) sample and the largest SZ-selected catalogue to date. It contains 861 confirmed clusters, of which 178 have been confirmed as clusters, mostly through follow-up observations, and a further 683 are previously-known clusters. The remaining 366 have the status of cluster candidates, and we divide them into three classes according to the quality of evidence that they are likely to be true clusters. The Planck SZ catalogue is the deepest all-sky cluster catalogue, with redshifts up to about one, and spans the broadest cluster mass range from (0.1 to 1.6) Ã— 1015 MâŠ™. Confirmation of cluster candidates through comparison with existing surveys or cluster catalogues is extensively described, as is the statistical characterization of the catalogue in terms of completeness and statistical reliability. The outputs of the validation process are provided as additional information. This gives, in particular, an ensemble of 813 cluster redshifts, and for all these Planck clusters we also include a mass estimated from a newly-proposed SZ-mass proxy. A refined measure of the SZ Compton parameter for the clusters with X-ray counter-parts is provided, as is an X-ray flux for all the Planck clusters not previously detected in X-ray surveys. The catalogue of SZ sources is available at Planck Legacy Archive and http://www.sciops.esa.int/index.php?page=Planck_Legacy_Archive&project=planck
Advanced computations of multi-physics, multi-scale effects in beam dynamics
Amundson, J.F.; Macridin, A.; Spentzouris, P.; Stern, E.G.; /Fermilab
2009-01-01
Current state-of-the-art beam dynamics simulations include multiple physical effects and multiple physical length and/or time scales. We present recent developments in Synergia2, an accelerator modeling framework designed for multi-physics, multi-scale simulations. We summarize recent several recent results in multi-physics beam dynamics, including simulations of three Fermilab accelerators: the Tevatron, the Main Injector and the Debuncher. Early accelerator simulations focused on single-particle dynamics. To a first approximation, the forces on the particles in an accelerator beam are dominated by the external fields due to magnets, RF cavities, etc., so the single-particle dynamics are the leading physical effects. Detailed simulations of accelerators must include collective effects such as the space-charge repulsion of the beam particles, the effects of wake fields in the beam pipe walls and beam-beam interactions in colliders. These simulations require the sort of massively parallel computers that have only become available in recent times. We give an overview of the accelerator framework Synergia2, which was designed to take advantage of the capabilities of modern computational resources and enable simulations of multiple physical effects. We also summarize some recent results utilizing Synergia2 and BeamBeam3d, a tool specialized for beam-beam simulations.
Buet, C.; Cordier; Degond, P.; Lemou, M.
1997-05-15
We present fast numerical algorithms to solve the nonlinear Fokker-Planck-Landau equation in 3D velocity space. The discretization of the collision operator preserves the properties required by the physical nature of the Fokker-Planck-Landau equation, such as the conservation of mass, momentum, and energy, the decay of the entropy, and the fact that the steady states are Maxwellians. At the end of this paper, we give numerical results illustrating the efficiency of these fast algorithms in terms of accuracy and CPU time. 20 refs., 7 figs.
Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations
NASA Astrophysics Data System (ADS)
Locatelli, R.; Bousquet, P.; Saunois, M.; Chevallier, F.; Cressot, C.
2015-09-01
With the densification of surface observing networks and the development of remote sensing of greenhouse gases from space, estimations of methane (CH4) sources and sinks by inverse modeling are gaining additional constraining data but facing new challenges. The chemical transport model (CTM) linking the flux space to methane mixing ratio space must be able to represent these different types of atmospheric constraints for providing consistent flux estimations. Here we quantify the impact of sub-grid-scale physical parameterization errors on the global methane budget inferred by inverse modeling. We use the same inversion setup but different physical parameterizations within one CTM. Two different schemes for vertical diffusion, two others for deep convection, and one additional for thermals in the planetary boundary layer (PBL) are tested. Different atmospheric methane data sets are used as constraints (surface observations or satellite retrievals). At the global scale, methane emissions differ, on average, from 4.1 Tg CH4 per year due to the use of different sub-grid-scale parameterizations. Inversions using satellite total-column mixing ratios retrieved by GOSAT are less impacted, at the global scale, by errors in physical parameterizations. Focusing on large-scale atmospheric transport, we show that inversions using the deep convection scheme of Emanuel (1991) derive smaller interhemispheric gradients in methane emissions, indicating a slower interhemispheric exchange. At regional scale, the use of different sub-grid-scale parameterizations induces uncertainties ranging from 1.2 % (2.7 %) to 9.4 % (14.2 %) of methane emissions when using only surface measurements from a background (or an extended) surface network. Moreover, spatial distribution of methane emissions at regional scale can be very different, depending on both the physical parameterizations used for the modeling of the atmospheric transport and the observation data sets used to constrain the inverse system. When using only satellite data from GOSAT, we show that the small biases found in inversions using a coarser version of the transport model are actually masking a poor representation of the stratosphere-troposphere methane gradient in the model. Improving the stratosphere-troposphere gradient reveals a larger bias in GOSAT CH4 satellite data, which largely amplifies inconsistencies between the surface and satellite inversions. A simple bias correction is proposed. The results of this work provide the level of confidence one can have for recent methane inversions relative to physical parameterizations included in CTMs.
NASA Technical Reports Server (NTRS)
Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoit, A.; Berdyugin, A.; Bernard, J. P.; Bersanelli, M.; Bhatia, R.; Bonaldi, A.; Bonavera, L.; Gehrels, N.
2011-01-01
Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.
Blondeel, Evelyne; Depuydt, Veerle; Cornelis, Jasper; Chys, Michael; Verliefde, Arne; Van Hulle, Stijin Wim Henk
2015-01-01
Pilot-scale optimisation of different possible physical-chemical water treatment techniques was performed on the wastewater originating from three different recovery and recycling companies in order to select a (combination of) technique(s) for further full-scale implementation. This implementation is necessary to reduce the concentration of both common pollutants (such as COD, nutrients and suspended solids) and potentially toxic metals, polyaromatic hydrocarbons and poly-chlorinated biphenyls frequently below the discharge limits. The pilot-scale tests (at 250 L h(-1) scale) demonstrate that sand anthracite filtration or coagulation/flocculation are interesting as first treatment techniques with removal efficiencies of about 19% to 66% (sand anthracite filtration), respectively 18% to 60% (coagulation/flocculation) for the above mentioned pollutants (metals, polyaromatic hydrocarbons and poly chlorinated biphenyls). If a second treatment step is required, the implementation of an activated carbon filter is recommended (about 46% to 86% additional removal is obtained). PMID:26191983
Planck All-Sky Surveys and the Sources They Will Reveal
NASA Astrophysics Data System (ADS)
Partridge, R. B.
2004-12-01
In addition to providing high-resolution, whole-sky images of the cosmic microwave background, Planck will provide sensitive all-sky surveys of galactic and extragalactic sources at a range of mm and sub-mm wavelengths. Planck will measure polarizations of these sources in most of its frequency bands, and can measure variability on a range of time scales from minutes to months. We expect Planck to detect more than 104 extragalactic sources (vs. ?200 in the WMAP catalog), most of them dusty galaxies. Planck will thus provide a unique data-base for studies of sources ranging from blazars to the youngest radio sources, and from IRAS galaxies with cold dust to high-redshift, lensed, dusty galaxies. Two catalogs will be prepared: an Early Release Compact Source Catalog (enabling rapid follow-up with Herschel and other observatories) and a later complete catalog of compact sources. In this talk, I will emphasize the science to be gained from Planck measurements of extragalactic sources. I will also describe ground-based and other programs designed to increase our understanding of extragalactic sources before launch and to follow up interesting sources found during the mission.
Chavanis, Pierre-Henri
2003-09-01
We introduce a class of generalized Fokker-Planck equations that conserve energy and mass and increase a generalized entropy functional until a maximum entropy state is reached. Nonlinear Fokker-Planck equations associated with Tsallis entropies are a special case of these equations. Applications of these results to stellar dynamics and vortex dynamics are proposed. Our prime result is a relaxation equation that should offer an easily implementable parametrization of two-dimensional turbulence. Usual parametrizations (including a single turbulent viscosity) correspond to the infinite temperature limit of our model. They forget a fundamental systematic drift that acts against diffusion as in Brownian theory. Our generalized Fokker-Planck equations can have applications in other fields of physics such as chemotaxis for bacterial populations. We propose the idea of a classification of generalized entropies in "classes of equivalence" and provide an aesthetic connection between topics (vortices, stars, bacteria, em leader ) which were previously disconnected. PMID:14524833
How Measuring the Planck Constant gets to an Electronic Kilogram Standard
Steiner, Richard
2007-08-01
The best measurement of the Planck constant is now derived from the watt balance method. This method measures mechanical power, in reference units of the kilogram (artifact mass standard), second (atomic clocks), and meter (lasers), in ratio to electrical power, in reference units of the volt (Josephson effect) and ohm (quantum Hall effect). Of these reference standards, only the kilogram is still an artifact standard. Thus a high precision measurement of the Planck constant is equivalent to monitoring the SI kilogram artifact, and may be used to redefine the kilogram. This talk will summarize the complexity of making a Planck constant measurement, where there are interesting aspects of basic physics that appear when the ultimate precision of the standards laboratory is applied to obtain an uncertainty of 20 parts in a billion.
Planck intermediate results. XXIV. Constraints on variations in fundamental constants
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Couchot, F.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J. M.; Dole, H.; DorÃ©, O.; Dupac, X.; EnÃŸlin, T. A.; Eriksen, H. K.; Fabre, O.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; KeihÃ¤nen, E.; Keskitalo, R.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Mandolesi, N.; Maris, M.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Uzan, J.-P.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Yvon, D.; Zacchei, A.; Zonca, A.
2015-08-01
Any variation in the fundamental physical constants, more particularly in the fine structure constant, Î±, or in the mass of the electron, me, affects the recombination history of the Universe and cause an imprint on the cosmic microwave background angular power spectra. We show that the Planck data allow one to improve the constraint on the time variation of the fine structure constant at redshift z ~ 103 by about a factor of 5 compared to WMAP data, as well as to break the degeneracy with the Hubble constant, H0. In addition to Î±, we can set a constraint on the variation in the mass of the electron, me, and in the simultaneous variation of the two constants. We examine in detail the degeneracies between fundamental constants and the cosmological parameters, in order to compare the limits obtained from Planck and WMAP and to determine the constraining power gained by including other cosmological probes. We conclude that independent time variations of the fine structure constant and of the mass of the electron are constrained by Planck to Î”Î±/Î± = (3.6 Â± 3.7) Ã— 10-3 and Î”me/me = (4 Â± 11) Ã— 10-3 at the 68% confidence level. We also investigate the possibility of a spatial variation of the fine structure constant. The relative amplitude of a dipolar spatial variation in Î± (corresponding to a gradient across our Hubble volume) is constrained to be Î´Î±/Î± = (-2.4 Â± 3.7) Ã— 10-2. Appendices are available in electronic form at http://www.aanda.org
Cosmological Analyses Based On The Combined Planck And WMAP Mission Datasets
NASA Astrophysics Data System (ADS)
Bennett, Charles
We propose to: (1) make a detailed comparison of WMAP, Planck, and other cosmic microwave background (CMB) data to understand areas of conflict, and if possible, resolve them; (2) combine WMAP and Planck data into a unified cosmological dataset; and (3)extend cosmological analyses with the combined data. Recent cosmological measurements have revolutionized cosmology and the CMB has played a crucial role. The Planck mission team just released cosmological data and papers, this on the heels of the WMAP team's release of final nine-year data and papers. This proposal is to compare and attempt to understand the subtle but important differences between the two recently released WMAP and Planck cosmological results, to combine the data so as to benefit from the full available small and larger scale measurements, and to use this to enhance cosmological solutions. The WMAP and Planck CMB cosmology datasets are broadly consistent with one another. Yet, differences exist beyond the fact that Planck data extend to finer angular scales than WMAP data. We propose to go beyond the "quick look" we have done so far to identify and help resolve discrepancies. We provide two examples of the kinds of discrepancies that should be resolved. Even though the Planck data release relied on the absolute calibration established by WMAP the two sets of analyzed data appear to be off by a factor of 0.975. This small but significant discrepancy is difficult to explain and merits investigation. Also, while cosmological parameters from Planck agree with WMAP parameters within 1.1# of the larger WMAP uncertainty, this large a discrepancy is difficult to explain in detail since the cosmic variance uncertainties that play a large role in the parameter uncertainties are common to Planck and WMAP: both missions view the same sky. These are just two examples; additional careful and detailed comparisons are required. Over the course of the last several years a number of scientists around the world independently analyzed the WMAP data. Most reproduced WMAP results, while others uncovered additional useful insights into the data, and still others found issues, which the WMAP team examined more carefully. Independent replication was quite important, as was the work extending the results and calling attention to issues. This process was not only helpful for getting the most out of the WMAP mission results, it was essential for establishing confidence in the mission datasets. WMAP team discussions with independent scientists were fruitful and provided invaluable replication and additional peer-review of the WMAP team work, in addition to new analysis and results. We expect that the Planck team will benefit from similar interactions with independent scientists. WMAP team members are especially important for computing detailed comparisons between Planck and WMAP data. Now that the WMAP project has ended, the WMAP team no longer has funding to carry out this crucial and compelling comparison of WMAP and Planck data at the level of detail needed for precision cosmology. This proposal requests that four of the most active and experienced WMAP team members with specialized knowledge in temperature calibration, beam calibration, foreground separation, simulations, power spectrum computation, and more, be supported to reconcile WMAP and Planck data in detail, to combine the datasets to obtain optimal results, and to produce improved cosmological results.
Axion hot dark matter bounds after Planck
Archidiacono, Maria; Hannestad, Steen; Mirizzi, Alessandro; Raffelt, Georg; Wong, Yvonne Y.Y. E-mail: sth@phys.au.dk E-mail: raffelt@mpp.mpg.de
2013-10-01
We use cosmological observations in the post-Planck era to derive limits on thermally produced cosmological axions. In the early universe such axions contribute to the radiation density and later to the hot dark matter fraction. We find an upper limit m{sub a} < 0.67 eV at 95% C.L. after marginalising over the unknown neutrino masses, using CMB temperature and polarisation data from Planck and WMAP respectively, the halo matter power spectrum extracted from SDSS-DR7, and the local Hubble expansion rate H{sub 0} released by the Carnegie Hubble Program based on a recalibration of the Hubble Space Telescope Key Project sample. Leaving out the local H{sub 0} measurement relaxes the limit somewhat to 0.86 eV, while Planck+WMAP alone constrain the axion mass to 1.01 eV, the first time an upper limit on m{sub a} has been obtained from CMB data alone. Our axion limit is therefore not very sensitive to the tension between the Planck-inferred H{sub 0} and the locally measured value. This is in contrast with the upper limit on the neutrino mass sum, which we find here to range from Î£ m{sub Î½} < 0.27 eV at 95% C.L. combining all of the aforementioned observations, to 0.84 eV from CMB data alone.
Physical habitat monitoring strategy (PHAMS) for reach-scale restoration effectiveness monitoring
Jones, Krista L.; O'Daniel, Scott J.; Beechie, Tim J.; Zakrajsek, John; Webster, John G.
2015-01-01
Habitat restoration efforts by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) have shifted from the site scale (1-10 meters) to the reach scale (100-1,000 meters). This shift was in response to the growing scientific emphasis on process-based restoration and to support from the 2007 Accords Agreement with the Bonneville Power Administration. With the increased size of restoration projects, the CTUIR and other agencies are in need of applicable monitoring methods for assessing large-scale changes in river and floodplain habitats following restoration. The goal of the Physical Habitat Monitoring Strategy is to outline methods that are useful for capturing reach-scale changes in surface and groundwater hydrology, geomorphology, hydrologic connectivity, and riparian vegetation at restoration projects. The Physical Habitat Monitoring Strategy aims to avoid duplication with existing regional effectiveness monitoring protocols by identifying complimentary reach-scale metrics and methods that may improve the ability of CTUIR and others to detect instream and riparian changes at large restoration projects.
SCALE-UP Your Astronomy and Physics Undergraduate Courses to Incorporate Heliophysics
NASA Astrophysics Data System (ADS)
Al-Rawi, Ahlam N.; Cox, Amanda; Hoshino, Laura; Fitzgerald, Cullen; Cebulka, Rebecca; Rodriguez Garrigues, Alvar; Montgomery, Michele; Velissaris, Chris; Flitsiyan, Elena
2016-01-01
Although physics and astronomy courses include heliophysics topics, students still leave these courses without knowing what heliophysics is and how heliophysics relates to their daily lives. To meet goals of NASA's Living With a Star Program of incorporating heliophysics into undergraduate curriculum, UCF Physics has modified courses such as Astronomy (for non-science majors), Astrophysics, and SCALE-UP: Electricity and Magnetism for Engineers and Scientists to incorporate heliophysics topics. In this presentation, we discuss these incorporations and give examples that have been published in NASA Wavelength. In an associated poster, we present data on student learnin
Small-scale biological, physical and chemical signals in the sea
NASA Astrophysics Data System (ADS)
Yen, Jeannette
2010-11-01
Plankton operate at low to intermediate Reynolds numbers, generating watery signals that can be attenuated by viscosity and confused with small-scale turbulence. Yet messages are created, transmitted, perceived and recognized. These messages guide essential survival tasks of aquatic micro crustaceans. Cues created include those of escaping prey, lunging predators, attractive mates, and appropriate hosts. In this presentation, I describe some unusual and some typical examples of small-scale biological-physical-chemical signals in the sea that help to maintain the integrity of our aquatic ecosystems.
Effect of transitions in the Planck mass during inflation on primordial power spectra
NASA Astrophysics Data System (ADS)
Ashoorioon, Amjad; van de Bruck, Carsten; Millington, Peter; Vu, Susan
2014-11-01
We study the effect of sudden transitions in the effective Planck mass during inflation on primordial power spectra. Specifically, we consider models in which this variation results from the nonminimal coupling of a Brans-Dicke type scalar field. We find that the scalar power spectra develop features at the scales corresponding to those leaving the horizon during the transition. In addition, we observe that the tensor perturbations are largely unaffected, so long as the variation of the Planck mass is below the percent level. Otherwise, the tensor power spectra exhibit damped oscillations over the same scales. Due to significant features in the scalar power spectra, the tensor-to-scalar ratio r shows variation over the corresponding scales. Thus, by studying the spectra of both scalar and tensor perturbations, one can constrain sudden but small variations of the Planck mass during inflation. We illustrate these effects with a number of benchmark single- and two-field models. In addition, we comment on their implications and the possibility to alleviate the tension between the observations of the tensor-to-scalar ratio performed by the Planck and BICEP2 experiments.
Microphysics in the Multi-Scale Modeling Systems with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.
2011-01-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.
Chaotic inflation with right-handed sneutrinos after Planck
NASA Astrophysics Data System (ADS)
Nakayama, Kazunori; Takahashi, Fuminobu; Yanagida, Tsutomu T.
2014-03-01
We propose a chaotic inflation model in which the lightest right-handed sneutrino serves as the inflaton and the predicted values of the spectral index and tensor-to-scalar ratio are consistent with the Planck data. Interestingly, the observed magnitude of primordial density perturbations is naturally explained by the inflaton mass of order 1013 GeV, which is close to the right-handed neutrino mass scale suggested by the seesaw mechanism and the neutrino oscillation experiments. We find that the agreement of the two scales becomes even better in the neutrino mass anarchy. We show that the inflation model can be embedded into supergravity and discuss thermal history of the Universe after inflation such as non-thermal leptogenesis by the right-handed sneutrino decays and the modulus dynamics.
GaÃ±Ã¡n-Calvo, Alfonso M
2004-02-01
In a recent work [Phys. Rev. Lett. 87, 274501 (2001)], a method to produce monodisperse microbubbles was described. The physics of the phenomenon was explained in terms of the absolute instabilities of a gas microjet formed when a liquid stream which surrounds a coflowing gas stream is forced through a small orifice. Now, a much more consistent physical picture to describe the phenomenon which corrects prior assumptions is presented. Consequently, a much simpler and universal scaling law for the microbubble size is finally obtained which involves the orifice diameter and the gas/liquid flow rates ratio only. All data shown in prior works, together with newly obtained data sets, have been analyzed anew. These are in remarkable agreement with the here proposed scaling law. PMID:14995592
Scaling and correlation of human movements in cyberspace and physical space.
Zhao, Zhi-Dan; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng
2014-11-01
Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a superlinear scaling relation between the mean frequency of visit âŒ©fâŒª and its fluctuation Ïƒ:Ïƒâˆ¼âŒ©fâŒª^{Î²} with Î²â‰ˆ1.2. The probability distribution of the visiting frequency is found to be a stretched exponential function. We develop a model incorporating two essential ingredients, preferential return and exploration, and show that these are necessary for generating the scaling relation extracted from real data. A striking finding is that human movements in cyberspace and physical space are strongly correlated, indicating a distinctive behavioral identifying characteristic and implying that the behaviors in one space can be used to predict those in the other. PMID:25493727
Scaling and correlation of human movements in cyberspace and physical space
NASA Astrophysics Data System (ADS)
Zhao, Zhi-Dan; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng
2014-11-01
Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a superlinear scaling relation between the mean frequency of visit
ICPP: Numerical Fokker-Planck calculations in nonuniform grids
NASA Astrophysics Data System (ADS)
Bizarro, João P. S.
2000-10-01
The Fokker-Planck equation arises in a wide class of problems in plasma physics, so numerical schemes that provide efficient, accurate, and stable solutions to that equation are always welcome. One way to accomplish this is via nonuniform grids, which allow the use of different mesh sizes according to the real needs of the physical problem under consideration. The extension of the standard finite-difference approach to general nonuniform grids, taking into account proper weighting coefficients, has already been presented, and the results have been rather conclusive [J. P. S. Bizarro and P. Rodrigues, Nucl. Fusion Vol. 37, 1509 (1997)]. Besides reviewing what has been achieved with nonuniform grids, a numerical scheme that is accurate to second order (both in time step and mesh size) is here extended and detailed. Such an analysis is rigourous for one-dimensional Fokker-Planck equations, and is generalized to two-dimensional equations. The constraints on the design of the nonuniform grid are discussed, as well as the particle and energy conservation properties. The conditions under which the nonuniformity correction in the weighting coefficients is essential to secure physically meaningful solutions are also analyzed. The proposed scheme is shown to efficiently handle both linear and weakly nonlinear problems and, in addition, its ability to provide solutions to stronger nonlinear situations is demonstrated. Some particular problems in the field of plasma physics (e.g., Coulomb collisions, Compton scattering by an electronic population, and the rf heating and current drive of thermonuclear reactors) are solved in order to illustrate several features, most particularly the usefulness of nonuniform grids in reducing computational effort and in increasing accuracy.
ERIC Educational Resources Information Center
Heesch, K. C.; Masse, L. C.; Dunn, A. L.
2006-01-01
Studies suggest that enjoyment, perceived benefits and perceived barriers may be important mediators of physical activity. However, the psychometric properties of these scales have not been assessed using Rasch modeling. The purpose of this study was to use Rasch modeling to evaluate the properties of three scales commonly used in physical…
Materials Science and Physics at Micro/Nano-Scales. FINAL REPORT
Wu, Judy Z
2009-09-07
The scope of this project is to study nanostructures of semiconductors and superconductors, which have been regarded as promising building blocks for nanoelectronic and nanoelectric devices. The emphasis of this project is on developing novel synthesis approaches for fabrication of nanostructures with desired physical properties. The ultimate goal is to achieve a full control of the nanostructure growth at microscopic scales. The major experimental achievements obtained are summarized
Sensitivity of the recent methane budget to LMDz sub-grid scale physical parameterizations
NASA Astrophysics Data System (ADS)
Locatelli, R.; Bousquet, P.; Saunois, M.; Chevallier, F.; Cressot, C.
2015-04-01
With the densification of surface observing networks and the development of remote sensing of greenhouse gases from space, estimations of methane (CH4) sources and sinks by inverse modelling face new challenges. Indeed, the chemical transport model used to link the flux space with the mixing ratio space must be able to represent these different types of constraints for providing consistent flux estimations. Here we quantify the impact of sub-grid scale physical parameterization errors on the global methane budget inferred by inverse modelling using the same inversion set-up but different physical parameterizations within one chemical-transport model. Two different schemes for vertical diffusion, two others for deep convection, and one additional for thermals in the planetary boundary layer are tested. Different atmospheric methane datasets are used as constraints (surface observations or satellite retrievals). At the global scale, methane emissions differ, on average, from 4.1 Tg CH4 per year due to the use of different sub-grid scale parameterizations. Inversions using satellite total-column retrieved by GOSAT satellite are less impacted, at the global scale, by errors in physical parameterizations. Focusing on large-scale atmospheric transport, we show that inversions using the deep convection scheme of Emanuel (1991) derive smaller interhemispheric gradient in methane emissions. At regional scale, the use of different sub-grid scale parameterizations induces uncertainties ranging from 1.2 (2.7%) to 9.4% (14.2%) of methane emissions in Africa and Eurasia Boreal respectively when using only surface measurements from the background (extended) surface network. When using only satellite data, we show that the small biases found in inversions using GOSAT-CH4 data and a coarser version of the transport model were actually masking a poor representation of the stratosphere-troposphere gradient in the model. Improving the stratosphere-troposphere gradient reveals a larger bias in GOSAT-CH4 satellite data, which largely amplifies inconsistencies between surface and satellite inversions. A simple bias correction is proposed. The results of this work provide the level of confidence one can have for recent methane inversions relatively to physical parameterizations included in chemical-transport models.
Unified scaling behavior of physical properties of clays in alcohol solutions.
Pujala, Ravi Kumar; Pawar, Nisha; Bohidar, H B
2011-12-15
This paper reports observation of universal scaling of physical properties of clay particles, Laponite (aspect ratio=30) (L) and Na Montmorillonite (MMT, aspect ratio=200), in aqueous alcohol solutions (methanol, ethanol and 1-propanol) with solvent polarity, defined through reaction field factor f(OH)(?(0),n)=[(?(0) - 1/?(0) + 2) - (n(2) - 1/n(2) + 2)], at room temperature (20°C). Here, ?(0) and n are the static dielectric constant and refractive index of the solvent concerned. Physical properties (Z) such as zeta potential, effective aggregate size, viscosity and surface tension scaled with the relative solvent polarity as Z??f(?); ?f=(f(w)(?(0),n) - f(OH)(?(0),n)), where f(w)(?(0),n) is the reaction field factor for water, Z is the normalized physical property, and ? is its characteristic scaling exponent. The value of this exponent was found to be invariant of aspect ratio of the clay but dependent on the solvent polarity only. PMID:21945239
The Physical Activity Support Needs and Strategies Scale: Its Development and Use.
Carbó-Carreté, Maria; Guàrdia-Olmos, Joan; Giné, Climent
2016-02-01
People with intellectual disability (ID) engage in insufficient physical activity which negatively affects their health. In accordance with the present conception of ID and the supports paradigm, the current study aimed to develop and psychometrically assess an instrument examining the support needs and strategies regarding physical activity by using individuals with ID (n = 529), service providers (n = 522), and family members (n = 462) as information sources. The analysis revealed adequate reliability for the proposed instrument, with ? values between .70 and .80, and adequate construct validity for the versions of the scale for the 3 information sources, particularly for service providers. The assessment information can be included in Individualized Support Plans and could be used to design and implement the strategies for facilitating a person's physical activity in their community. PMID:26824132
High-Fidelity Lattice Physics Capabilities of the SCALE Code System Using TRITON
DeHart, Mark D
2007-01-01
Increasing complexity in reactor designs suggests a need to reexamine of methods applied in spent-fuel characterization. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as space reactors and Generation IV power reactors also require calculational methods that provide accurate prediction of the isotopic inventory. New high-fidelity physics methods will be required to better understand the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light-water reactor designs. The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for reactor physics analysis. This paper provides a detailed description of TRITON in terms of its key components used in reactor calculations.
Can There BE Physics Without Experiments? Challenges and Pitfalls
NASA Astrophysics Data System (ADS)
't Hooft, Gerard
2014-03-01
Physicists investigating space, time and matter at the Planck scale will probably have to work with much less guidance from experimental input than has ever happened before in the history of Physics. This may imply that we should insist on much higher demands of logical and mathematical rigour than before. Working with long chains of arguments linking theories to experiment, we must be able to rely on logical precision when and where experimental checks cannot be provided.
The development and validation of the Physical Appearance Comparison Scale-Revised (PACS-R).
Schaefer, Lauren M; Thompson, J Kevin
2014-04-01
The Physical Appearance Comparison Scale (PACS; Thompson, Heinberg, & Tantleff, 1991) was revised to assess appearance comparisons relevant to women and men in a wide variety of contexts. The revised scale (Physical Appearance Comparison Scale-Revised, PACS-R) was administered to 1176 college females. In Study 1, exploratory factor analysis and parallel analysis using one half of the sample suggested a single factor structure for the PACS-R. Study 2 utilized the remaining half of the sample to conduct confirmatory factor analysis, item analysis, and to examine the convergent validity of the scale. These analyses resulted in an 11-item measure that demonstrated excellent internal consistency and convergent validity with measures of body satisfaction, eating pathology, sociocultural influences on appearance, and self-esteem. Regression analyses demonstrated the utility of the PACS-R in predicting body satisfaction and eating pathology. Overall, results indicate that the PACS-R is a reliable and valid tool for assessing appearance comparison tendencies in women. PMID:24854806
Physical properties of a two-component system at the Fermi and Sharvin length scales
NASA Astrophysics Data System (ADS)
Armstrong, Jason N.; Gande, Eric M.; Vinti, John W.; Hua, Susan Z.; Deep Chopra, Harsh
2012-11-01
Previously, we have reported the measurement of various physical properties at the Fermi and Sharvin length scales in pure elements (1-component systems). In the present study, the evolution of physical properties is mapped in a 2-component system at these length scales, using Au-Ag alloys. These alloys are well known to have complete solubility in each other at all compositions in the bulk and an ideal system to vary the surface energy of the alloy simply by changing the alloy composition. At sample sizes where surface effects dominate (less than Ëœ2-3 nm), varying the alloy composition is found to cause dramatic changes in force required to rupture the bonds (strength) as well as atomic cohesion (modulus) and can be directly attributed to segregation of higher surface energy Au from the lower surface energy Ag. In other words, the Au-Ag system with complete solubility in the bulk exhibits segregation at these length scales. This breakdown of bulk solubility rules for alloying (the so-called Hume-Rothery rules) even in near-ideal solid solutions has consequences for future atomic-scale devices.
DBI Galileon inflation in the light of Planck 2015
NASA Astrophysics Data System (ADS)
Sravan Kumar, K.; Bueno SÃ¡nchez, Juan C.; Escamilla-Rivera, Celia; Marto, J.; Vargas Moniz, P.
2016-02-01
In this work we consider a DBI Galileon (DBIG) inflationary model and constrain its parameter space with the Planck 2015 and BICEP2/Keck array and Planck (BKP) joint analysis data by means of a potential independent analysis. We focus our attention on inflationary solutions characterized by a constant or varying sound speed as well as warp factor. We impose bounds on stringy aspects of the model, such as the warp factor (f) and the induced gravity parameter (tilde m). We study the parameter space of the model and find that the tensor-to-scalar ratio can be as low as r simeq 6 Ã— 10â€‘4 and inflation happens to be at GUT scale. In addition, we obtain the tilt of the tensor power spectrum and test the standard inflationary consistency relation (r = â€‘8nt) against the latest bounds from the combined results of BKP+Laser Interferometer Gravitational-Waves Observatory (LIGO), and find that DBIG inflation predicts a red spectral index for the tensor power spectrum.
The observational status of Galileon gravity after Planck
Barreira, Alexandre; Li, Baojiu; Baugh, Carlton M.; Pascoli, Silvia E-mail: baojiu.li@durham.ac.uk E-mail: silvia.pascoli@durham.ac.uk
2014-08-01
We use the latest CMB data from Planck, together with BAO measurements, to constrain the full parameter space of Galileon gravity. We constrain separately the three main branches of the theory known as the Cubic, Quartic and Quintic models, and find that all yield a very good fit to these data. Unlike in Î›CDM, the Galileon model constraints are compatible with local determinations of the Hubble parameter and predict nonzero neutrino masses at over 5Ïƒ significance. We also identify that the low l part of the CMB lensing spectrum may be able to distinguish between Î›CDM and Galileon models. In the Cubic model, the lensing potential deepens at late times on sub-horizon scales, which is at odds with the current observational suggestion of a positive ISW effect. Compared to Î›CDM, the Quartic and Quintic models predict less ISW power in the low l region of the CMB temperature spectrum, and as such are slightly preferred by the Planck data. We illustrate that residual local modifications to gravity in the Quartic and Quintic models may render the Cubic model as the only branch of Galileon gravity that passes Solar System tests.
Crocodile head scales are not developmental units but emerge from physical cracking.
Milinkovitch, Michel C; Manukyan, Liana; Debry, Adrien; Di-Poï, Nicolas; Martin, Samuel; Singh, Daljit; Lambert, Dominique; Zwicker, Matthias
2013-01-01
Various lineages of amniotes display keratinized skin appendages (feathers, hairs, and scales) that differentiate in the embryo from genetically controlled developmental units whose spatial organization is patterned by reaction-diffusion mechanisms (RDMs). We show that, contrary to skin appendages in other amniotes (as well as body scales in crocodiles), face and jaws scales of crocodiles are random polygonal domains of highly keratinized skin, rather than genetically controlled elements, and emerge from a physical self-organizing stochastic process distinct from RDMs: cracking of the developing skin in a stress field. We suggest that the rapid growth of the crocodile embryonic facial and jaw skeleton, combined with the development of a very keratinized skin, generates the mechanical stress that causes cracking. PMID:23196908
VizieR Online Data Catalog: Planck Catalog of Compact Sources Release 1 (Planck, 2013)
NASA Astrophysics Data System (ADS)
Planck Collaboration
2013-03-01
Planck is a European Space Agency (ESA) mission, with significant contributions from the U.S. National Aeronautics and Space Agency (NASA). It is the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 13 August 2009. Since then, Planck has been continuously measuring the intensity of the sky over a range of frequencies from 30 to 857GHz (wavelengths of 1cm to 350?m) with spatial resolutions ranging from about 33' to 5' respectively. The Low Frequency Instrument (LFI) on Planck provides temperature and polarization information using radiometers which operate between 30 and 70GHz. The High Frequency Instrument (HFI) uses pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353GHz but does not measure polarization information in the two upper HFI bands at 545 and 857GHz. The lowest frequencies overlap with WMAP, and the highest frequencies extend far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck is providing an unprecedented window into dust emission at far-infrared and submillimeter wavelengths. The PCCS (Planck Catalog of Compact Sources) is the list of sources detected in the first 15 months of Planck "nominal" mission. It consists of nine single-frequency catalogues of compact sources, both Galactic and extragalactic, detected over the entire sky. The PCCS covers the frequency range 30-857 GHz with higher sensitivity (it is 90% complete at 180mJy in the best channel) and better angular resolution than previous all-sky surveys in the microwave band. By construction its reliability is >80% and more than 65% of the sources have been detected at least in two contiguous Planck channels. Many of the Planck PCCS sources can be associated with stars with dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic interstellar medium features. (12 data files).
ERIC Educational Resources Information Center
Perry, Christina M.; De Ayala, R. J.; Lebow, Ryan; Hayden, Emily
2008-01-01
The purpose of this study was to obtain validity evidence for the Physical Activity and Healthy Food Efficacy Scale for Children (PAHFE). Construct validity evidence identifies four subscales: Goal-Setting for Physical Activity, Goal-Setting for Healthy Food Choices, Decision-Making for Physical Activity, and Decision-Making for Healthy Food…
ERIC Educational Resources Information Center
Perry, Christina M.; De Ayala, R. J.; Lebow, Ryan; Hayden, Emily
2008-01-01
The purpose of this study was to obtain validity evidence for the Physical Activity and Healthy Food Efficacy Scale for Children (PAHFE). Construct validity evidence identifies four subscales: Goal-Setting for Physical Activity, Goal-Setting for Healthy Food Choices, Decision-Making for Physical Activity, and Decision-Making for Healthy Foodâ€¦
NASA Astrophysics Data System (ADS)
Stanchev, Orlin; Veltchev, Todor V.; Kauffmann, Jens; Donkov, Sava; Shetty, Rahul; KÃ¶rtgen, Bastian; Klessen, Ralf S.
2015-07-01
We present an analysis of probability distribution functions (pdfs) of column density in different zones of the star-forming region Perseus and its diffuse environment based on the map of dust opacity at 353 GHz available from the Planck archive. The pdf shape can be fitted by a combination of a lognormal function and an extended power-law tail at high densities, in zones centred at the molecular cloud Perseus. A linear combination of several lognormals fits very well the pdf in rings surrounding the cloud or in zones of its diffuse neighbourhood. The slope of the mean-density scaling law <Ï > LâˆLÎ± is steep (Î± = -1.93) in the former case and rather shallow (Î± = -0.77 Â± 0.11) in the rings delineated around the cloud. We interpret these findings as signatures of two distinct physical regimes: (i) a gravoturbulent one which is characterized by nearly linear scaling of mass and practical lack of velocity scaling; and (ii) a predominantly turbulent one which is best described by steep velocity scaling and by invariant for compressible turbulence < Ï > _L u_L^3/L, describing a scale-independent flux of the kinetic energy per unit volume through turbulent cascade. The gravoturbulent spatial domain can be identified with the molecular cloud Perseus while a relatively sharp transition to predominantly turbulent regime occurs in its vicinity.
Current dependence of spin torque switching rate based on Fokker-Planck approach
Taniguchi, Tomohiro Imamura, Hiroshi
2014-05-07
The spin torque switching rate of an in-plane magnetized system in the presence of an applied field is derived by solving the Fokker-Planck equation. It is found that three scaling currents are necessary to describe the current dependence of the switching rate in the low-current limit. The dependences of these scaling currents on the applied field strength are also studied.
The ellipsoidal universe in the Planck satellite era
NASA Astrophysics Data System (ADS)
Cea, Paolo
2014-06-01
Recent Planck data confirm that the cosmic microwave background displays the quadrupole power suppression together with large-scale anomalies. Progressing from previous results, that focused on the quadrupole anomaly, we strengthen the proposal that the slightly anisotropic ellipsoidal universe may account for these anomalies. We solved at large scales the Boltzmann equation for the photon distribution functions by taking into account both the effects of the inflation produced primordial scalar perturbations and the anisotropy of the geometry in the ellipsoidal universe. We showed that the low quadrupole temperature correlations allowed us to fix the eccentricity at decoupling, edec = (0.86 ± 0.14) 10-2, and to constraint the direction of the symmetry axis. We found that the anisotropy of the geometry of the universe contributes only to the large-scale temperature anisotropies without affecting the higher multipoles of the angular power spectrum. Moreover, we showed that the ellipsoidal geometry of the universe induces sizeable polarization signal at large scales without invoking the reionization scenario. We explicitly evaluated the quadrupole TE and EE correlations. We found an average large-scale polarization ?Tpol = (1.20 ± 0.38) ?K. We point out that great care is needed in the experimental determination of the large-scale polarization correlations since the average temperature polarization could be misinterpreted as foreground emission leading, thereby, to a considerable underestimate of the cosmic microwave background polarization signal.
NASA Astrophysics Data System (ADS)
Bracco, Andrea; AndrÃ©, Philippe; Boulanger, Francois
2015-08-01
The recent Planck results in polarization at sub-mm wavelengths allow us to gain insight into the Galactic magnetic field topology, revealing its statistical correlation with matter, from the diffuse interstellar medium (ISM), to molecular clouds (MCs) (Planck intermediate results. XXXII, XXXIII, XXXV). This correlation has a lot to tell us about the dynamics of the turbulent ISM, stressing the importance of considering magnetic fields in the formation of structures, some of which eventually undergo gravitational collapse producing new star-forming cores.Investigating the early phases of star formation has been a fundamental scope of the Herschel Gould Belt survey collaboration (http://gouldbelt-herschel.cea.fr), which, in the last years, has thoroughly characterized, at a resolution of few tens of arcseconds, the statistics of MCs, such as their filamentary structure, kinematics and column density.Although at lower angular resolution, the Planck maps of dust emission at 353GHz, in intensity and polarization, show that all MCs are complex environments, where we observe a non-trivial correlation between the magnetic field and their density structure. This result opens new perspectives on their formation and evolution, which we have started to explore.In this talk, I will present first results of a comparative analysis of the Herschel-Planck data, where we combine the high resolution Herschel maps of some MCs of the Gould Belt with the Planck polarization data, which sample the structure of the field weighted by the density.In particular, I will discuss the large-scale envelopes of the selected MCs, and, given the correlation between magnetic field and matter, I will show how to make use of the high resolution information of the density structure provided by Herschel to investigate the statistics of interstellar magnetic fields in the Planck data.
On Quantum Fokker-Planck Equation
NASA Astrophysics Data System (ADS)
Yano, Ryosuke
2015-01-01
The quantum Fokker-Planck equation (QFPE) is revisited. Provided that the molecule is the Maxwellian molecule, the quantum Landau-Fokker-Planck equation is divided into characteristic four terms. The characteristics of three terms among four terms are investigated on the basis of Grad's method, whereas the characteristics of the remained term, which is attributed to the collisional term of the QFPE proposed by Kaniadakis-Quarati, when the distribution function of the colliding partner is under the equilibrium state, are numerically investigated. The numerical result indicates that the time evolution of the distribution function obtained using such a remained term is instable, when the equilibrium or nonequilibrium state is given as initial data of the distribution function. Such an instability of the distribution function can be described by analyzing the propagation of the plane harmonic wave in one dimensional velocity space.
Distance priors from Planck 2015 data
NASA Astrophysics Data System (ADS)
Huang, Qing-Guo; Wang, Ke; Wang, Sai
2015-12-01
We update the distance priors by adopting Planck TT,TE,EE+lowP data released in 2015, and our results impose at least 30% tighter constraints than those from Planck TT+lowP. Combining the distance priors with the combination of supernova Union 2.1 compilation of 580 SNe (Union 2.1) and low redshift Baryon Acoustic Oscillation (BAO) data, we constrain the cosmological parameters in the freely binned dark energy (FBDE) and FBDE+Î©k models respectively, and find that the equations of state of dark energy in both models are consistent with w=-1. Furthermore, we show that the tension with the BAO data at z=2.34 from LyÎ± forest (LyÎ±F) auto-correlation and Combined LyÎ±F cannot be relaxed in the FBDE and FBDE+Î©k models.
Planck 2013 results. III. LFI systematic uncertainties
NASA Astrophysics Data System (ADS)
Planck Collaboration; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dick, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; EnÃŸlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-HÃ©raud, Y.; GjerlÃ¸w, E.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Kangaslahti, P.; KeihÃ¤nen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; Lindholm, V.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Paci, F.; Pagano, L.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Ricciardi, S.; Riller, T.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; RubiÃ±o-MartÃn, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; TÃ¼rler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
We present the current estimate of instrumental and systematic effect uncertainties for the Planck-Low Frequency Instrument relevant to the first release of the Planck cosmological results. We give an overview of the main effects and of the tools and methods applied to assess residuals in maps and power spectra. We also present an overall budget of known systematic effect uncertainties, which are dominated by sidelobe straylight pick-up and imperfect calibration. However, even these two effects are at least two orders of magnitude weaker than the cosmic microwave background fluctuations as measured in terms of the angular temperature power spectrum. A residual signal above the noise level is present in the multipole range â„“ < 20, most notably at 30 GHz, and is probably caused by residual Galactic straylight contamination. Current analysis aims to further reduce the level of spurious signals in the data and to improve the systematic effects modelling, in particular with respect to straylight and calibration uncertainties.
Impacts of Noah model physics on catchment-scale runoff simulations
NASA Astrophysics Data System (ADS)
Zheng, Donghai; Van der Velde, Rogier; Su, Zhongbo; Wen, Jun; Wang, Xin; Booij, Martijn J.; Hoekstra, Arjen Y.; Lv, Shihua; Zhang, Yu; Ek, Michael B.
2016-01-01
Noah model physics options validated for the source region of the Yellow River (SRYR) are applied to investigate their ability in reproducing runoff at the catchment scale. Three sets of augmentations are implemented affecting descriptions of (i) turbulent and soil heat transport (Noah-H), (ii) soil water flow (Noah-W), and (iii) frozen ground processes (Noah-F). Five numerical experiments are designed with the three augmented versions, a control run with default model physics and a run with all augmentations (Noah-A). Each experiment is set up with vegetation and soil parameters from Weather Research and Forecasting data set, soil organic matter content from China Soil Database, 0.1Â° atmospheric forcing data from Institute of Tibetan Plateau Research (Chinese Academy of Sciences), and initial equilibrium model states achieved using a single-year recurrent spin-up. In situ heat flux, soil temperature (Ts), and soil moisture (Î¸) profile measurements are available for point-scale assessment, whereas monthly streamflow is utilized for the catchment-scale evaluation. The comparison with point measurements shows that the augmentations invoked with Noah-H resolve issues with the heat flux and Ts simulation and Noah-W mitigates deficiencies in the Î¸ simulation, while Noah-A yields improvements for both simulated surface energy and water budgets. In contrast, Noah-F has a minor effect. Also, at catchment scale, the best model performance is found for Noah-A leading to a base flow-dominated runoff regime, whereby the surface runoff contribution remains significant. This study highlights the need for a complete description of vertical heat and water exchanges to correctly simulate the runoff in the seasonally frozen and high-altitude SRYR at the catchment scale.
Planck 2013 results. XIII. Galactic CO emission
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Dempsey, J. T.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Handa, T.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hily-Blant, P.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moore, T. J. T.; Morgante, G.; Morino, J.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nakajima, T.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Okuda, T.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Thomas, H. S.; Toffolatti, L.; Tomasi, M.; Torii, K.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yamamoto, H.; Yoda, T.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
Rotational transition lines of CO play a major role in molecular radio astronomy as a mass tracer and in particular in the study of star formation and Galactic structure. Although a wealth of data exists for the Galactic plane and some well-known molecular clouds, there is no available high sensitivity all-sky survey of CO emission to date. Such all-sky surveys can be constructed using the Planck HFI data because the three lowest CO rotational transition lines at 115, 230 and 345 GHz significantly contribute to the signal of the 100, 217 and 353 GHz HFI channels, respectively. Two different component separation methods are used to extract the CO maps from Planck HFI data. The maps obtained are then compared to one another and to existing external CO surveys. From these quality checks the best CO maps, in terms of signal to noise ratio and/or residual contamination by other emission, are selected. Three different sets of velocity-integrated CO emission maps are produced with different trade-offs between signal-to-noise, angular resolution, and reliability. Maps for the CO J = 1 ? 0, J = 2 ? 1, and J = 3 ? 2 rotational transitions are presented and described in detail. They are shown to be fully compatible with previous surveys of parts of the Galactic plane as well as with undersampled surveys of the high latitude sky. The Planck HFI velocity-integrated CO maps for the J = 1 ? 0, J = 2 ? 1, and J = 3 ?2 rotational transitions provide an unprecedented all-sky CO view of the Galaxy. These maps are also of great interest to monitor potential CO contamination of the Planck studies of the cosmological microwave background.
Sub-Planck structures and Quantum Metrology
Panigrahi, Prasanta K.; Kumar, Abhijeet; Roy, Utpal; Ghosh, Suranjana
2011-09-23
The significance of sub-Planck structures in relation to quantum metrology is explored, in close contact with experimental setups. It is shown that an entangled cat state can enhance the accuracy of parameter estimations. The possibility of generating this state, in dissipative systems has also been demonstrated. Thereafter, the quantum Cramer-Rao bound for phase estimation through a pair coherent state is calculated, which achieves the maximum possible resolution in an interferometer.
Jimenez-Pardo, J; Holmes, J D; Jenkins, M E; Johnson, A M
2015-07-01
Physical activity is generally thought to be beneficial to individuals with Parkinson's disease (PD). There is, however, limited information regarding current rates of physical activity among individuals with PD, possibly due to a lack of well-validated measurement tools. In the current study we sampled 63 individuals (31 women) living with PD between the ages of 52 and 87 (M = 70.97 years, SD = 7.53), and evaluated the amount of physical activity in which they engaged over a 7-day period using a modified form of the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD). The PASIPD was demonstrated to be a reliable measure within this population, with three theoretically defensible factors: (1) housework and home-based outdoor activities; (2) recreational and fitness activities; and (3) occupational activities. These results suggest that the PASIPD may be useful for monitoring physical activity involvement among individuals with PD, particularly within large-scale questionnaire-based studies. PMID:25184403
Planck 2013 results. XXXII. The updated Planck catalogue of Sunyaev-Zeldovich sources
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.; BÃ¶hringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; DÃ©moclÃ¨s, J.; DÃ©sert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; EnÃŸlin, T. A.; Eriksen, H. K.; Feroz, F.; Ferragamo, A.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; GÃ©nova-Santos, R. T.; Giard, M.; Giardino, G.; Gilfanov, M.; Giraud-HÃ©raud, Y.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Groeneboom, N., E.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Hempel, A.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Hurley-Walker, N.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; LeÃ³n-Tavares, J.; Lesgourgues, J.; Li, C.; Liddle, A.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nastasi, A.; Nati, F.; Natoli, P.; Nesvadba, N. P. H.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Olamaie, M.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrott, Y. C.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; RubiÃ±o-MartÃn, J. A.; Rumsey, C.; Rusholme, B.; Sandri, M.; Santos, D.; Saunders, R. D. E.; Savini, G.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shimwell, T. W.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Streblyanska, A.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Tuovinen, J.; TÃ¼rler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2015-09-01
We update the all-sky Planck catalogue of 1227 clusters and cluster candidates (PSZ1) published in March 2013, derived from detections of the Sunyaev-Zeldovich (SZ) effect using the first 15.5 months of Planck satellite observations. As an addendum, we deliver an updated version of the PSZ1 catalogue, reporting the further confirmation of 86 Planck-discovered clusters. In total, the PSZ1 now contains 947 confirmed clusters, of which 214 were confirmed as newly discovered clusters through follow-up observations undertaken by the Planck Collaboration. The updated PSZ1 contains redshifts for 913 systems, of which 736 (~ 80.6%) are spectroscopic, and associated mass estimates derived from the Yz mass proxy. We also provide a new SZ quality flag for the remaining 280 candidates. This flag was derived from a novel artificial neural-network classification of the SZ signal. Based on this assessment, the purity of the updated PSZ1 catalogue is estimated to be 94%. In this release, we provide the full updated catalogue and an additional readme file with further information on the Planck SZ detections. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A14
DAG Software Architectures for Multi-Scale Multi-Physics Problems at Petascale and Beyond
NASA Astrophysics Data System (ADS)
Berzins, Martin
2015-03-01
The challenge of computations at Petascale and beyond is to ensure how to make possible efficient calculations on possibly hundreds of thousands for cores or on large numbers of GPUs or Intel Xeon Phis. An important methodology for achieving this is at present thought to be that of asynchronous task-based parallelism. The success of this approach will be demonstrated using the Uintah software framework for the solution of coupled fluid-structure interaction problems with chemical reactions. The layered approach of this software makes it possible for the user to specify the physical problems without parallel code, for that specification to be translated into a parallel set of tasks. These tasks are executed using a runtime system that executes tasks asynchronously and sometimes out-of-order. The scalability and portability of this approach will be demonstrated using examples from large scale combustion problems, industrial detonations and multi-scale, multi-physics models. The challenges of scaling such calculations to the next generations of leadership class computers (with more than a hundred petaflops) will be discussed. Thanks to NSF, XSEDE, DOE NNSA, DOE NETL, DOE ALCC and DOE INCITE.
NASA/Max Planck Institute Barium Ion Cloud Project.
NASA Technical Reports Server (NTRS)
Brence, W. A.; Carr, R. E.; Gerlach, J. C.; Neuss, H.
1973-01-01
NASA and the Max Planck Institute for Extraterrestrial Physics (MPE), Munich, Germany, conducted a cooperative experiment involving the release and study of a barium cloud at 31,500 km altitude near the equatorial plane. The release was made near local magnetic midnight on Sept. 21, 1971. The MPE-built spacecraft contained a canister of 16 kg of Ba CuO mixture, a two-axis magnetometer, and other payload instrumentation. The objectives of the experiment were to investigate the interaction of the ionized barium cloud with the ambient medium and to deduce the properties of electric fields in the proximity of the release. An overview of the project is given to briefly summarize the organization, responsibilities, objectives, instrumentation, and operational aspects of the project.
Electron electric dipole moment as a sensitive probe of PeV scale physics
NASA Astrophysics Data System (ADS)
Ibrahim, Tarek; Itani, Ahmad; Nath, Pran
2014-09-01
We give a quantitative analysis of the electric dipole moments as a probe of high scale physics. We focus on the electric dipole moment of the electron since the limit on it is the most stringent. Further, theoretical computations of it are free of QCD uncertainties. The analysis presented here first explores the probe of high scales via electron electric dipole moment (EDM) within minimal supersymmetric standard model where the contributions to the EDM arise from the chargino and the neutralino exchanges in loops. Here it is shown that the electron EDM can probe mass scales from tens of TeV into the PeV range. The analysis is then extended to include a vectorlike generation which can mix with the three ordinary generations. Here new CP phases arise and it is shown that the electron EDM now has not only a supersymmetric (SUSY) contribution from the exchange of charginos and neutralinos but also a nonsupersymmetric contribution from the exchange of W and Z bosons. It is further shown that the interference of the supersymmetric and the nonsupersymmetric contribution leads to the remarkable phenomenon where the electron EDM as a function of the slepton mass first falls and become vanishingly small and then rises again as the slepton mass increases. This phenomenon arises as a consequence of cancellation between the SUSY and the non-SUSY contribution at low scales while at high scales the SUSY contribution dies out and the EDM is controlled by the non-SUSY contribution alone. The high mass scales that can be probed by the EDM are far in excess of what accelerators will be able to probe. The sensitivity of the EDM to CP phases both in the SUSY and the non-SUSY sectors are also discussed.
Fundamental Scalings of Zonal Flows in a Basic Plasma Physics Experiment
NASA Astrophysics Data System (ADS)
Sokolov, Vladimir; Wei, Xiao; Sen, Amiya K.
2007-11-01
A basic physics experimental study of zonal flows (ZF) associated with ITG (ion temperature gradient) drift modes has been performed in the Columbia Linear Machine (CLM) and ZF has been definitively identified [1]. However, in contrast to most tokamak experiments, the stabilizing effect of ZF shear to ITG appears to be small in CLM. We now report on the study of important scaling behavior of ZF. First and most importantly, we report on the collisional damping scaling of ZF, which is considered to be its saturation mechanism [2]. By varying the sum of ion-ion and ion-neutral collision frequency over nearly half an order of magnitude, we find no change in the amplitude of ZF. Secondly, we study the scaling of ZF amplitude with ITG amplitude via increasing ITG drive though ?i, as well as feedback (stabilizing / destabilizing). We have observed markedly different scaling near and far above marginal stability. [1] V. Sokolov, X. Wei, A.K. Sen and K. Avinash, Plasma Phys.Controlled Fusion 48, S111 (2006). [2] P.H. Diamond, S.-I. Itoh, K.Itoh and T.S. Hahm, Plasma Phys.Controlled Fusion 47, R35 (2005).
Towards physics responsible for large-scale Lyman-Î± forest bias parameters
NASA Astrophysics Data System (ADS)
Cieplak, Agnieszka M.; Slosar, AnÅ¾e
2016-03-01
Using a series of carefully constructed numerical experiments based on hydrodynamic cosmological SPH simulations, we attempt to build an intuition for the relevant physics behind the large scale density (bÎ´) and velocity gradient (bÎ·) biases of the Lyman-Î± forest. Starting with the fluctuating Gunn-Peterson approximation applied to the smoothed total density field in real-space, and progressing through redshift-space with no thermal broadening, redshift-space with thermal broadening and hydrodynamically simulated baryon fields, we investigate how approximations found in the literature fare. We find that Seljak's 2012 analytical formulae for these bias parameters work surprisingly well in the limit of no thermal broadening and linear redshift-space distortions. We also show that his bÎ· formula is exact in the limit of no thermal broadening. Since introduction of thermal broadening significantly affects its value, we speculate that a combination of large-scale measurements of bÎ· and the small scale flux PDF might be a sensitive probe of the thermal state of the IGM. We find that large-scale biases derived from the smoothed total matter field are within 10â€“20% to those based on hydrodynamical quantities, in line with other measurements in the literature.
Point source detection using the Spherical Mexican Hat Wavelet on simulated all-sky Planck maps
NASA Astrophysics Data System (ADS)
Vielva, P.; MartÃnez-GonzÃ¡lez, E.; Gallegos, J. E.; Toffolatti, L.; Sanz, J. L.
2003-09-01
We present an estimation of the point source (PS) catalogue that could be extracted from the forthcoming ESA Planck mission data. We have applied the Spherical Mexican Hat Wavelet (SMHW) to simulated all-sky maps that include cosmic microwave background (CMB), Galactic emission (thermal dust, free-free and synchrotron), thermal Sunyaev-Zel'dovich effect and PS emission, as well as instrumental white noise. This work is an extension of the one presented in Vielva et al. We have developed an algorithm focused on a fast local optimal scale determination, that is crucial to achieve a PS catalogue with a large number of detections and a low flux limit. An important effort has been also done to reduce the CPU time processor for spherical harmonic transformation, in order to perform the PS detection in a reasonable time. The presented algorithm is able to provide a PS catalogue above fluxes: 0.48 Jy (857 GHz), 0.49 Jy (545 GHz), 0.18 Jy (353 GHz), 0.12 Jy (217 GHz), 0.13 Jy (143 GHz), 0.16 Jy (100 GHz HFI), 0.19 Jy (100 GHz LFI), 0.24 Jy (70 GHz), 0.25 Jy (44 GHz) and 0.23 Jy (30 GHz). We detect around 27 700 PS at the highest frequency Planck channel and 2900 at the 30-GHz one. The completeness level are: 70 per cent (857 GHz), 75 per cent (545 GHz), 70 per cent (353 GHz), 80 per cent (217 GHz), 90 per cent (143 GHz), 85 per cent (100 GHz HFI), 80 per cent (100 GHz LFI), 80 per cent (70 GHz), 85 per cent (44 GHz) and 80 per cent (30 GHz). In addition, we can find several PS at different channels, allowing the study of the spectral behaviour and the physical processes acting on them. We also present the basic procedure to apply the method in maps convolved with asymmetric beams. The algorithm takes ~72 h for the most CPU time-demanding channel (857 GHz) in a Compaq HPC320 (Alpha EV68 1-GHz processor) and requires 4 GB of RAM memory; the CPU time goes as O[NRoN3/2pix log(Npix)], where Npix is the number of pixels in the map and NRo is the number of optimal scales needed.
MOLECULAR ENVIRONMENTS OF 51 PLANCK COLD CLUMPS IN THE ORION COMPLEX
Liu Tie; Wu Yuefang; Zhang Huawei E-mail: ywu@pku.edu.cn
2012-09-15
A mapping survey of 51 Planck cold clumps projected on the Orion complex was performed with J = 1-0 lines of {sup 12}CO and {sup 13}CO with the 13.7 m telescope at the Purple Mountain Observatory. The mean column densities of the Planck gas clumps range from 0.5 to 9.5 Multiplication-Sign 10{sup 21} cm{sup -2}, with an average value of (2.9 {+-} 1.9) Multiplication-Sign 10{sup 21} cm{sup -2}. The mean excitation temperatures of these clumps range from 7.4 to 21.1 K, with an average value of 12.1 {+-} 3.0 K and the average three-dimensional velocity dispersion {sigma}{sub 3D} in these molecular clumps is 0.66 {+-} 0.24 km s{sup -1}. Most of the clumps have {sigma}{sub NT} larger than or comparable to {sigma}{sub Therm}. The H{sub 2} column density of the molecular clumps calculated from molecular lines correlates with the aperture flux at 857 GHz of the dust emission. By analyzing the distributions of the physical parameters, we suggest that turbulent flows can shape the clump structure and dominate their density distribution on large scales, but not function on small scales due to local fluctuations. Eighty-two dense cores are identified in the molecular clumps. The dense cores have an average radius and local thermal equilibrium (LTE) mass of 0.34 {+-} 0.14 pc and 38{sup +5}{sub -30} M{sub Sun }, respectively. The structures of low column density cores are more affected by turbulence, while the structures of high column density cores are more affected by other factors, especially by gravity. The correlation of velocity dispersion versus core size is very weak for the dense cores. The dense cores are found to be most likely gravitationally bounded rather than pressure confined. The relationship between M{sub vir} and M{sub LTE} can be well fitted with a power law. The core mass function here is much flatter than the stellar initial mass function. The lognormal behavior of the core mass distribution is most likely determined by internal turbulence.
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aubourg, E.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-LÃ©vy, A.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dolag, K.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; EnÃŸlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; GÃ©nova-Santos, R. T.; Giard, M.; GjerlÃ¸w, E.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Kitaura, F.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; LeÃ³n-Tavares, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; MacÃas-PÃ©rez, J. F.; Maffei, B.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Matarrese, S.; McGehee, P.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Puget, J.-L.; Puisieux, S.; Rachen, J. P.; Racine, B.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; RubiÃ±o-MartÃn, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wang, W.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-02-01
By looking at the kinetic Sunyaev-Zeldovich effect (kSZ) in Planck nominal mission data, we present a significant detection of baryons participating in large-scale bulk flows around central galaxies (CGs) at redshift z â‰ˆ 0.1. We estimate the pairwise momentum of the kSZ temperature fluctuations at the positions of the Central Galaxy Catalogue (CGC) samples extracted from Sloan Digital Sky Survey (SDSS-DR7) data. For the foreground-cleaned SEVEM, SMICA, NILC, and COMMANDER maps, we find 1.8-2.5Ïƒ detections of the kSZ signal, which are consistent with the kSZ evidence found in individualPlanck raw frequency maps, although lower than found in the WMAP-9yr W-band (3.3Ïƒ). We further reconstruct the peculiar velocity field from the CG density field, and compute for the first time the cross-correlation function between kSZ temperature fluctuations and estimates of CG radial peculiar velocities. This correlation function yields a 3.0-3.7Ïƒ detection of the peculiar motion of extended gas on Mpc scales in flows correlated up to distances of 80-100 h-1 Mpc. Both the pairwise momentum estimates and the kSZ temperature-velocity field correlation find evidence for kSZ signatures out to apertures of 8 arcmin and beyond, corresponding to a physical radius of >1 Mpc, more than twice the mean virial radius of halos. This is consistent with the predictions from hydrodynamical simulations that most of the baryons are outside the virialized halos. We fit a simple model, in which the temperature-velocity cross-correlation is proportional to the signal seen in a semi-analytic model built upon N-body simulations, and interpret the proportionality constant as an effective optical depth to Thomson scattering. We find Ï„T = (1.4 Â± 0.5) Ã— 10-4; the simplest interpretation of this measurement is that much of the gas is in a diffuse phase, which contributes little signal to X-ray or thermal Sunyaev-Zeldovich observations.
NASA Astrophysics Data System (ADS)
Gonzalez-Mestres, L.
2014-04-01
Detailed analyses of WMAP and Planck data can have significant implications for noncyclic pre-Big Bang approaches incorporating a new fundamental scale beyond the Planck scale and, potentially, new ultimate constituents of matter with unconventional basic properties as compared to standard particles. Cosmic-ray experiments at the highest energies can also yield relevant information. Hopefully, future studies will be able to deal with alternatives: i) to standard physics for the structure of the physical vacuum, the nature of space-time, the validity of quantum field theory and conventional symmetries, the interpretation of string-like theories...; ii) to standard cosmology concerning the origin and evolution of our Universe, unconventional solutions to the cosmological constant problem, the validity of inflationary scenarios, the need for dark matter and dark energy... Lorentz-like symmetries for the properties of matter can then be naturally stable space-time configurations resulting from more general primordial scenarios that incorporate physics beyond the Planck scale and describe the formation and evolution of the physical vacuum. A possible answer to the question of the origin of half-integer spins can be provided by a primordial spinorial space-time with two complex coordinates instead of the conventional four real ones, leading to a really new cosmology. We discuss basic questions and phenomenological topics concerning noncyclic pre-Big Bang cosmologies and potentially related physics.
NASA Astrophysics Data System (ADS)
Benioff, Paul
2015-08-01
The relationship between the foundations of mathematics and physics is a topic of of much interest. This paper continues this exploration by examination of the effect of space- and time- dependent number scaling on theoretical descriptions of some physical and geometric quantities. Fiber bundles provide a good framework to introduce a space- and time- or space-time-dependent number scaling field. The effect of the scaling field on a few nonlocal physical and geometric quantities is described. The effect on gauge theories is to introduce a new complex scalar field into the derivatives appearing in Lagrangians. U(1) invariance of Lagrangian terms does not affect the real part of the scaling field. For this field, any mass is possible. The scaling field is also shown to affect quantum wave packets and path lengths, and geodesic equations even on flat space. Scalar fields described so far in physics are possible candidates for the scaling field. The lack of direct evidence for the field in physics restricts the scaling field in that the gradient of the field must be close to zero in a local region of cosmological space and time. There are no restrictions outside the region. It is also seen that the scaling field does not affect comparisons of computation or measurements outputs with one another. However, it does affect the assignment of numerical values to the outputs of computations or measurements. These are needed because theory predictions are in terms of numerical values.
A 100-3000 GHz model of thermal dust emission observed by Planck, DIRBE and IRAS
NASA Astrophysics Data System (ADS)
Meisner, Aaron M.; Finkbeiner, Douglas P.
2015-01-01
We apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. This parametrization of the far-infrared dust spectrum as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody (MBB) dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We also derive full-sky 6.1' resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100Î¼m data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.1' FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anistropy on small angular scales. We have recently released maps and associated software utilities for obtaining thermal dust emission and reddening predictions using our Planck-based two-component model.
Multi-physics and multi-scale characterization of shale anisotropy
NASA Astrophysics Data System (ADS)
Sarout, J.; Nadri, D.; Delle Piane, C.; Esteban, L.; Dewhurst, D.; Clennell, M. B.
2012-12-01
Shales are the most abundant sedimentary rock type in the Earth's shallow crust. In the past decade or so, they have attracted increased attention from the petroleum industry as reservoirs, as well as more traditionally for their sealing capacity for hydrocarbon/CO2 traps or underground waste repositories. The effectiveness of both fundamental and applied shale research is currently limited by (i) the extreme variability of physical, mechanical and chemical properties observed for these rocks, and by (ii) the scarce data currently available. The variability in observed properties is poorly understood due to many factors that are often irrelevant for other sedimentary rocks. The relationships between these properties and the petrophysical measurements performed at the field and laboratory scales are not straightforward, translating to a scale dependency typical of shale behaviour. In addition, the complex and often anisotropic micro-/meso-structures of shales give rise to a directional dependency of some of the measured physical properties that are tensorial by nature such as permeability or elastic stiffness. Currently, fundamental understanding of the parameters controlling the directional and scale dependency of shale properties is far from complete. Selected results of a multi-physics laboratory investigation of the directional and scale dependency of some critical shale properties are reported. In particular, anisotropic features of shale micro-/meso-structures are related to the directional-dependency of elastic and fluid transport properties: - Micro-/meso-structure (Î¼m to cm scale) characterization by electron microscopy and X-ray tomography; - Estimation of elastic anisotropy parameters on a single specimen using elastic wave propagation (cm scale); - Estimation of the permeability tensor using the steady-state method on orthogonal specimens (cm scale); - Estimation of the low-frequency diffusivity tensor using NMR method on orthogonal specimens (<Î¼m scale). For each of the above properties, leading-edge experimental techniques have been associated with novel interpretation tools. In this contribution, these experimental and interpretation methods are described. Relationships between the measured properties and the corresponding micro-/meso-structural features are discussed. For example, P-wave velocity was measured along 100 different propagation paths on a single cylindrical shale specimen using miniature ultrasonic transducers. Assuming that (i) the elastic tensor of this shale is transversely isotropic; and (i) the sample has been cored perfectly perpendicular to the bedding plane (symmetry plane is horizontal), Thomsen's anisotropy parameters inverted from the measured velocities are: - P-wave velocity along the symmetry axis (perpendicular to the bedding plane) Î±o=3.45km/s; - P-wave anisotropy É›=0.12; - Parameter controlling the wave front geometry Î´=0.058. A novel inversion algorithm allows for recovering these parameters without assuming a priori a horizontal bedding (symmetry) plane. The inversion of the same data set using this algorithm yields (i) Î±o=3.23km/s, É›=0.25 and Î´=0.18, and (ii) the elastic symmetry axis is inclined of Ï‰=30Â° with respect to the specimen's axis. Such difference can have strong impact on field applications (AVO, ray tracing, tomography).
A survey of physically-based catchment-scale modeling over the last half century
NASA Astrophysics Data System (ADS)
Paniconi, Claudio; Putti, Mario
2015-04-01
Integrated, process-based based numerical models in hydrology and connected disciplines (ecohydrology, hydrometeorology, hydrogeomorphology, biogeochemistry, hydrogeophysics, etc) are rapidly evolving, spurred by advances in computer technology, numerical algorithms, and environmental observation, and by the need to better understand the potential impacts of population, land use, and climate change on water and other natural resources. At the catchment scale, simulation models are commonly based on conservation principles for surface and subsurface water flow and mass transport (e.g., the Richards, St. Venant, and advection-dispersion-reaction equations, and approximations thereof), and need to be resolved by robust numerical techniques for space and time discretization, linearization, interpolation, etc. Model development through the years has continually faced physical and numerical challenges arising from heterogeneity and variability in parameters and state variables; nonlinearities and scale effects in process interactions and interface dynamics; and complex or poorly known boundary conditions and initial system states. We give an historical perspective (past 50 years) on some of the key developments in physically-based hydrological modeling, examining how these various challenges have been addressed and providing some insight on future directions as catchment modeling enters a highly interdisciplinary era.
NASA Astrophysics Data System (ADS)
Liu, J.; Hennig, C.; Desai, S.; Hoyle, B.; Koppenhoefer, J.; Mohr, J. J.; Paech, K.; Burgett, W. S.; Chambers, K. C.; Cole, S.; Draper, P. W.; Kaiser, N.; Metcalfe, N.; Morgan, J. S.; Price, P. A.; Stubbs, C. W.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.
2015-06-01
We report results of a study of Planck Sunyaev-Zel'dovich effect selected galaxy cluster candidates using the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS) imaging data. We first examine 150 Planck-confirmed galaxy clusters with spectroscopic redshifts to test our algorithm for identifying optical counterparts and measuring their redshifts; our redshifts have a typical accuracy of ?z/(1+z) ˜ 0.022 for this sample. Using 60 random sky locations, we estimate that our chance of contamination through a random superposition is ˜3 per cent. We then examine an additional 237 Planck galaxy cluster candidates that have no redshift in the source catalogue. Of these 237 unconfirmed cluster candidates we are able to confirm 60 galaxy clusters and measure their redshifts. A further 83 candidates are so heavily contaminated by stars due to their location near the Galactic plane that we do not attempt to identify counterparts. For the remaining 94 candidates, we find no optical counterpart but use the depth of the Pan-STARRS1 data to estimate a redshift lower limit z_{lim(10^{15})} beyond which we would not have expected to detect enough galaxies for confirmation. Scaling from the already published Planck sample, we expect that ˜12 of these unconfirmed candidates may be real clusters.
North-South non-Gaussian asymmetry in Planck CMB maps
Bernui, A.; Oliveira, A.F.; Pereira, T.S. E-mail: adhimar@unifei.edu.br
2014-10-01
We report the results of a statistical analysis performed with the four foreground-cleaned Planck maps by means of a suitably defined local-variance estimator. Our analysis shows a clear dipolar structure in Planck's variance map pointing in the direction (l,b) ? (220°,-32°), thus consistent with the North-South asymmetry phenomenon. Surprisingly, and contrary to previous findings, removing the CMB quadrupole and octopole makes the asymmetry stronger. Our results show a maximal statistical significance, of 98.1% CL, in the scales ranging from ?=4 to ?=500. Additionally, through exhaustive analyses of the four foreground-cleaned and individual frequency Planck maps, we find unlikely that residual foregrounds could be causing this dipole variance asymmetry. Moreover, we find that the dipole gets lower amplitudes for larger masks, evidencing that most of the contribution to the variance dipole comes from a region near the galactic plane. Finally, our results are robust against different foreground cleaning procedures, different Planck masks, pixelization parameters, and the addition of inhomogeneous real noise.
Model-independent forecasts of CMB angular power spectra for the Planck mission
NASA Astrophysics Data System (ADS)
Aghamousa, Amir; Arjunwadkar, Mihir; Souradeep, Tarun
2014-01-01
The Planck mission, designed for making measurements of the cosmic microwave background (CMB) radiation with unprecedented accuracy and angular resolution, is expected to release its entire data in the near future. In this paper, we provide model-independent forecasts for the TT, EE, and TE angular power spectra for the Planck mission using synthetic data based on the best-fit Lambda cold dark matter (Î›CDM) model. The nonparametric function estimation methodology we use here is based on the agnostic viewpoint of allowing the data to speak for themselves rather than letting the models decide what is inferred from the data. Our analysis indicates that the three Planck angular power spectra will be determined sufficiently well for 2â‰¤l â‰²lmax, where lmax=25001ex" (TT1ex" ), 1377(EE), and 1727(TE) respectively. A key signature of reionization, namely, a bump at low values of l, is evident in our forecasts for the EE and TE power spectra. Nonparametric confidence bands in the phase shift (Ï•m) versus acoustic scale (lA) plane, corresponding to the first eight peaks in the TT power spectrum, show a confluence region for 300â‰²lAâ‰²305 which is in good agreement with the estimate lA=300 based on the best-fit Î›CDM model. From our results, we expect that the final Planck data should lead to accurate model-independent estimates of CMB angular power spectra using our nonparametric regression formalism.
Max-Planck-Institut fÃ¼r Astrophysik
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
The Max-Planck-Institut fÃ¼r Astrophysik, now located in the town of Garching north of Munich in Germany, is one of the more than 70 autonomous research institutes of the Max-Planck-Gesellschaft. It was founded in 1958 under the direction of Ludwig Biermann as part of the Max-Planck-Institut fÃ¼r Physik und Astrophysik, directed at that time by Werner Heisenberg. In 1979, when the headquarters of t...
PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE
KING,B.J.
2000-05-05
A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e{sup +}e{sup {minus}} and hadron colliders and three {mu}{sup +}{mu}{sup {minus}} colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.
Physical descriptions of the bacterial nucleoid at large scales, and their biological implications
NASA Astrophysics Data System (ADS)
Benza, Vincenzo G.; Bassetti, Bruno; Dorfman, Kevin D.; Scolari, Vittore F.; Bromek, Krystyna; Cicuta, Pietro; Cosentino Lagomarsino, Marco
2012-07-01
Recent experimental and theoretical approaches have attempted to quantify the physical organization (compaction and geometry) of the bacterial chromosome with its complement of proteins (the nucleoid). The genomic DNA exists in a complex and dynamic protein-rich state, which is highly organized at various length scales. This has implications for modulating (when not directly enabling) the core biological processes of replication, transcription and segregation. We overview the progress in this area, driven in the last few years by new scientific ideas and new interdisciplinary experimental techniques, ranging from high space- and time-resolution microscopy to high-throughput genomics employing sequencing to map different aspects of the nucleoid-related interactome. The aim of this review is to present the wide spectrum of experimental and theoretical findings coherently, from a physics viewpoint. In particular, we highlight the role that statistical and soft condensed matter physics play in describing this system of fundamental biological importance, specifically reviewing classic and more modern tools from the theory of polymers. We also discuss some attempts toward unifying interpretations of the current results, pointing to possible directions for future investigation.
Inflation Physics from the Cosmic Microwave Background and Large Scale Structure
NASA Technical Reports Server (NTRS)
Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Buder, I.; Burke, D. L.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Crill, B. P.; Dawson, K. S.; Das, S.; Devline, M. J.; Dobbs, M.; Dodelson, S.; Dore, O.; Dunkley, J.; Feng, J. L.; Fraisse, A.; Gallicchio, J.; Giddings, S. B.; Green, D.; Halverson, N. W.; Hannany, S.; Hanson, D.; Wollack, E. J.
2014-01-01
Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments-the theory of cosmic inflation-and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5 sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.
Inflation Physics from the Cosmic Microwave Background and Large Scale Structure
NASA Technical Reports Server (NTRS)
Abazajian, K.N.; Arnold,K.; Austermann, J.; Benson, B.A.; Bischoff, C.; Bock, J.; Bond, J.R.; Borrill, J.; Buder, I.; Burke, D.L.; Calabrese, E.; Carlstrom, J.E.; Carvalho, C.S.; Chang, C.L.; Chiang, H.C.; Church, S.; Cooray, A.; Crawford, T.M.; Crill, B.P.; Dawson, K.S.; Das, S.; Devline, M.J.; Dobbs, M.; Dodelson, S; Wollack, E. J.
2013-01-01
Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.
Multi-Scale Multi-Physics Modeling of Matrix Transport Properties in Fractured Shale Reservoirs
NASA Astrophysics Data System (ADS)
Mehmani, A.; Prodanovic, M.
2014-12-01
Understanding the shale matrix flow behavior is imperative in successful reservoir development for hydrocarbon production and carbon storage. Without a predictive model, significant uncertainties in flowback from the formation, the communication between the fracture and matrix as well as proper fracturing practice will ensue. Informed by SEM images, we develop deterministic network models that couple pores from multiple scales and their respective fluid physics. The models are used to investigate sorption hysteresis as an affordable way of inferring the nanoscale pore structure in core scale. In addition, restricted diffusion as a function of pore shape, pore-throat size ratios and network connectivity is computed to make correct interpretation of the 2D NMR maps possible. Our novel pore network models have the ability to match sorption hysteresis measurements without any tuning parameters. The results clarify a common misconception of linking type 3 nitrogen hysteresis curves to only the shale pore shape and show promising sensitivty for nanopore structre inference in core scale. The results on restricted diffusion shed light on the importance of including shape factors in 2D NMR interpretations. A priori "weighting factors" as a function of pore-throat and throat-length ratio are presented and the effect of network connectivity on diffusion is quantitatively assessed. We are currently working on verifying our models with experimental data gathered from the Eagleford formation.
Vaughn, Kristine; Miller, William C.
2012-01-01
Purpose To translate and assess the reliability and validity of a Chinese version of the Physical Activity Scale for the Elderly (PASE). Methods Participants included Chinese individuals >65 living in the community or assistive living facilities. At baseline, 73 subjects completed the translated PASE, and Chinese versions of 3 other scales to evaluate validity; the Timed-Up and Go (TUG), the Older American Resources Services Activities of Daily Living (OARS ADL), and the Activities Balance Confidence Scale (ABC). At follow-up, 66 subjects completed the PASE and a questionnaire to determine if there were any changes in health over the retest period. Results The mean baseline PASE-C score was 76.0 (Â±49.1) at baseline and 78.33 (Â±50.27) at follow up. Correlations between the PASE-C and other variables were: age r= âˆ’0.51; TUG r= âˆ’0.52; OARS ADL r= 0.56 and ABC score r=0.62. The retest reliability was ICC= 0.79 (95% confidence interval 0.68â€“0.86). Conclusion Our results indicate that the PASE-C has acceptable reliability and there is support for validity in the older Chinese population. PMID:22671717
KÃ¤hler potentials for Planck inflation
Roest, Diederik; Scalisi, Marco; Zavala, Ivonne E-mail: m.scalisi@rug.nl
2013-11-01
We assess which KÃ¤hler potentials in supergravity lead to viable single-field inflationary models that are consistent with Planck. We highlight the role of symmetries, such as shift, Heisenberg and supersymmetry, in these constructions. Also the connections to string theory are pointed out. Finally, we discuss a supergravity model for arbitrary inflationary potentials that is suitable for open string inflation and generalise it to the case of closed string inflation. Our model includes the recently discussed supergravity reformulation of the Starobinsky model of inflation as well as an interesting alternative with comparable predictions.
Planck 2013 results. IX. HFI spectral response
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; DÃ©sert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; EnÃŸlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-HÃ©raud, Y.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Santos, D.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (includingthe level of out-of-band signal rejection) of all HFI detectors to a known source of electromagnetic radiation individually. This was determined by measuring the interferometric output of a continuously scanned Fourier transform spectrometer with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. Knowledge of the relative variations in the spectral response between HFI detectors allows for a more thorough analysis of the HFI data. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. While previous papers describe the pre-flight experiments conducted on the Planck HFI, this paper focusses on the analysis of the pre-flight spectral response measurements and the derivation of data products, e.g. band-average spectra, unit conversion coefficients, and colour correction coefficients, all with related uncertainties. Verifications of the HFI spectral response data are provided through comparisons with photometric HFI flight data. This validation includes use of HFI zodiacal emission observations to demonstrate out-of-band spectral signal rejection better than 108. The accuracy of the HFI relative spectral response data is verified through comparison with complementary flight-data based unit conversion coefficients and colour correction coefficients. These coefficients include those based upon HFI observations of CO, dust, and Sunyaev-Zeldovich emission. General agreement is observed between the ground-based spectral characterization of HFI and corresponding in-flight observations, within the quoted uncertainty of each; explanations are provided for any discrepancies.
Teleportation fidelity as a probe of sub-Planck phase-space structure
Scott, A.J. Caves, Carlton M.
2008-11-15
We investigate the connection between sub-Planck structure in the Wigner function and the output fidelity of continuous-variable teleportation protocols. When the teleporting parties share a two-mode squeezed state as an entangled resource, high fidelity in the output state requires a squeezing large enough that the smallest sub-Planck structures in an input pure state are teleported faithfully. We formulate this relationship, which leads to an explicit relation between the fine-scale structure in the Wigner function and large-scale extent of the Wigner function, and we treat specific examples, including coherent, number, and random states and states produced by chaotic dynamics. We generalize the pure-state results to teleportation of mixed states.
ERIC Educational Resources Information Center
Saul, Jeffery M.; Deardorff, Duane L.; Abbott, David S.; Allain, Rhett J.; Beichner, Robert J.
The Student-Centered Activities for Large Enrollment University Physics (SCALE-UP) project at North Carolina State University (NCSU) is developing a curriculum to promote learning through in-class group activities in introductory physics classes up to 100 students. The authors are currently in Phase II of the project using a specially designed…
ERIC Educational Resources Information Center
Kellis I.; Vernadakis N.; Albanidis E.; Derri V.; Kourtesses T.
2010-01-01
The purpose of this study is to develop and validate the structural validity and reliability of a student's behaviors' self-evaluation scale (SBSS) in the physical education class. The SBSS was created in order to evaluate the effect of a physical education program in the context of the multicultural composition of the student population in the…
ERIC Educational Resources Information Center
McGrath, Robert E.; O'Malley, W. Brian
1986-01-01
Using samples of psychiatric, medical, and chronic pain patients, the effectiveness of the Hysteria scale and of various combinations of Minnesota Multiphasic Personality Inventory scales as predictors of the simultaneous occurrence of two characteristics was evaluated: denial of psychological problems and admission of physical problems. The value…
ERIC Educational Resources Information Center
Grietens, Hans; Geeraert, Liesl; Hellinckx, Walter
2004-01-01
Objective: The aim was to construct and test the reliability (utility, internal consistency, interrater agreement) and the validity (internal validity, concurrent validity) of a scale for home visiting social nurses to identify risks of physical abuse and neglect in mothers with a newborn child. Method: A 71-item scale was constructed based on a…
Direct and indirect searches for new physics at the electroweak scale
NASA Astrophysics Data System (ADS)
Miao, Xinyu
The Standard Model (SM) of particle physics is widely taken as an elegant effective theory of nature at the electroweak scale, with new physics expected at higher energy. Collider searches and other experimental inputs play a vital role in our hunt for the unknown physics, offering great insights along the way and eventually establishing the extension to the SM. Here we present our studies on prospects of direct and indirect searches for three types of models beyond the SM. The Inert Doublet Model (IDM) extends the SM electroweak sector by an extra Higgs doublet with a Z2-symmetry. We first examine the IDM dilepton signal at the LHC with a center-of-mass energy of 14 TeV and find it exceeding SM backgrounds at 3sigma-12sigma significance level, with 100 fb-1 integrated luminosity. We further show that it is possible to obtain the IDM trilepton signal at the 5sigma significance level, with an integrated luminosity of 300 fb-1 . The Left-Right Twin Higgs (LRTH) model solves the little Hierarchy problem by taking the SM Higgs as a pseudo-Goldstone boson from the spontaneous breaking of a global symmetry. We focus on the discovery potential of the heavy top quark partner in the LRTH model at the LHC. With a luminosity of 30 fb -1 at the early stage of the LHC operation, we conclude that the heavy top partner could be observed at a significance level above 5sigma. Supersymmetric extensions of the SM enable cancellations among loop corrections to the Higgs mass from bosonic and fermionic degrees of freedom, leading to a solution to the well-known Hierarchy problem. However, the supersymmetry has to be broken by certain mechanism. We present an exploration of the B-physics observables and electroweak precision data in three distinct soft supersymmetry breaking scenarios. Projection for future sensitivities of the precision data is also explored.
Micrometer-Scale Physical Structure and Microbial Composition of Soil Macroaggregates
Bailey, Vanessa L.; McCue, Lee Ann; Fansler, Sarah J.; Boyanov, Maxim I.; DeCarlo, F.; Kemner, Kenneth M.; Konopka, Allan
2013-10-01
Soil macroaggregates are discrete, separable units of soil that we hypothesize contain smaller assemblages of microorganisms than bulk soil, and represent a scale potentially consistent with naturally occurring microbial communities. We posed two questions to explore microbial community composition in the context of the macroaggregate: 1) Is there a relationship between macroaggregate physical structure and microbial community composition in individual macroaggregates? And, 2) How similar are the bacterial communities in individual sub-millimeter soil macroaggregates sampled from the same 5-cm core? To address these questions, individual macroaggregates of three arbitrary size classes (250â€“425, 425â€“841, and 841â€“1000 Î¼m) were sampled from a grassland field. The physical structures of 14 individual macroaggregates were characterized using synchrotron-radiation based transmission X-ray tomography, revealing that a greater proportion of the pore space in the small- and medium-sized macroaggregates is as relatively smaller pores, resulting in greater overall porosity and poreâ€“mineral interface area in these smaller macroaggregates. Microbial community composition was characterized using 16S rRNA pyrosequencing data. Rarefaction analyses indicated that the membership of each macroaggregate was sufficiently sampled with only a few thousand sequences; in addition, the community membership varied widely between macroaggregates and the structure varied from those communities strongly dominated by a few phylotypes to communities that were evenly distributed among several phylotypes. We found no strong relationship of physical structure with community membership; this may be due to the low number of aggregates (10) for which we have both physical and biological data. Our results do support our initial expectation that individual macroaggregate communities were significantly less diverse than bulk soil from the same grassland field site.
Reliability of the American Society of Anesthesiologists physical status scale in clinical practice
Sankar, A.; Johnson, S. R.; Beattie, W. S.; Tait, G.; Wijeysundera, D. N.
2014-01-01
Background Previous studies, which relied on hypothetical cases and chart reviews, have questioned the inter-rater reliability of the ASA physical status (ASA-PS) scale. We therefore conducted a retrospective cohort study to evaluate its inter-rater reliability and validity in clinical practice. Methods The cohort included all adult patients (?18 yr) who underwent elective non-cardiac surgery at a quaternary-care teaching institution in Toronto, Ontario, Canada, from March 2010 to December 2011. We assessed inter-rater reliability by comparing ASA-PS scores assigned at the preoperative assessment clinic vs the operating theatre. We also assessed the validity of the ASA-PS scale by measuring its association with patients' preoperative characteristics and postoperative outcomes. Results The cohort included 10 864 patients, of whom 5.5% were classified as ASA I, 42.0% as ASA II, 46.7% as ASA III, and 5.8% as ASA IV. The ASA-PS score had moderate inter-rater reliability (? 0.61), with 67.0% of patients (n=7279) being assigned to the same ASA-PS class in the clinic and operating theatre, and 98.6% (n=10 712) of paired assessments being within one class of each other. The ASA-PS scale was correlated with patients' age (Spearman's ?, 0.23), Charlson comorbidity index (?=0.24), revised cardiac risk index (?=0.40), and hospital length of stay (?=0.16). It had moderate ability to predict in-hospital mortality (receiver-operating characteristic curve area 0.69) and cardiac complications (receiver-operating characteristic curve area 0.70). Conclusions Consistent with its inherent subjectivity, the ASA-PS scale has moderate inter-rater reliability in clinical practice. It also demonstrates validity as a marker of patients' preoperative health status. PMID:24727705
Ries, Francis; Romero Granados, Santiago; Arribas Galarraga, Silvia
2009-01-01
The aim of this study was to develop a scale for assessing and predicting adolescentsâ€™ physical activity behavior in Spain and Luxembourg using the Theory of Planned Behavior as a framework. The sample was comprised of 613 Spanish (boys = 309, girls = 304; M age =15.28, SD =1.127) and 752 Luxembourgish adolescents (boys = 343, girls = 409; M age = 14.92, SD = 1.198), selected from students of two secondary schools in both countries, with a similar socio-economic status. The initial 43-items were all scored on a 4-point response format using the structured alternative format and translated into Spanish, French and German. In order to ensure the accuracy of the translation, standardized parallel back-translation techniques were employed. Following two pilot tests and subsequent revisions, a second order exploratory factor analysis with oblimin direct rotation was used for factor extraction. Internal consistency and test-retest reliabilities were also tested. The 4-week test-retest correlations confirmed the itemsâ€™ time stability. The same five factors were obtained, explaining 63.76% and 63.64% of the total variance in both samples. Internal consistency for the five factors ranged from Î± = 0.759 to Î± = 0. 949 in the Spanish sample and from Î± = 0.735 to Î± = 0.952 in the Luxembourgish sample. For both samples, inter-factor correlations were all reported significant and positive, except for Factor 5 where they were significant but negative. The high internal consistency of the subscales, the reported item test-retest reliabilities and the identical factor structure confirm the adequacy of the elaborated questionnaire for assessing the TPB-based constructs when used with a population of adolescents in Spain and Luxembourg. The results give some indication that they may have value in measuring the hypothesized TPB constructs for PA behavior in a cross-cultural context. Key points When using the structured alternative format, weak internal consistency was obtained. Rephrasing the items and scoring items on a Likert-type scale enhanced greatly the subscales reliability. Identical factorial structure was extracted for both culturally different samples. The obtained factors, namely perceived physical competence, parentsâ€™ physical activity, perceived resources support, attitude toward physical activity and perceived parental support were hypothesized as for the original TPB constructs. PMID:24149606
The Planck Compact Source Catalogues: present and future.
NASA Astrophysics Data System (ADS)
López-Caniego, Marcos
2015-08-01
The Planck Collaboration has produced catalogues of radio and sub-mm compact sources at the nine Planck frequencies, Galactic cold clumps catalogues and SZ cluster catalogues. But new catalogues are foreseen. A multifrequency compact source catalogue will be produced selecting sources at radio frequencies and following them across all Planck bands. Multifrequency catalogues can be difficult to produce in experiments like Planck with a large frequency coverage and very different resolutions across bands, but the science that can be extracted from such a catalogue compensates the effort. In addition, for those sources where a clear identification can be made, we will attempt to include flux density information from Herschel and other experiments, in particular for those blazars that are bright in radio, sub-mm and even in gamma-ray frequencies, as seen by Fermi. Moreover, Planck is making available to the community the single survey frequency maps that will allow astronomers to study the long-term variability of their favourite sources. New functionalities will be added to the Planck Legacy Archive, for example a timeline-cutting tool that will allow one to extract maps from the Planck timelines for specific periods of time allowing short-term variability studies of compact sources (e.g., flares). The unique frequency coverage of Planck make these catalogues very valuable for other experiments using the Planck compact source catalogues. For example, experiments like QUIJOTE use Planck selected sources to study the impact of polarized radio source emission on their cosmological fields and other CMB experiments will use Planck polarized compact source information for calibration.
Orbital and physical characteristics of meter-scale impactors from airburst observations
NASA Astrophysics Data System (ADS)
Brown, P.; Wiegert, P.; Clark, D.; Tagliaferri, E.
2016-03-01
We have analyzed the orbits and ablation characteristics in the atmosphere of 59 Earth-impacting fireballs, produced by meteoroids 1 m in diameter or larger, described here as meter-scale. Using heights at peak luminosity as a proxy for strength, we determine that there is roughly an order of magnitude spread in strengths of the population of meter-scale impactors at the Earth. We use fireballs producing recovered meteorites and well documented fireballs from ground-based camera networks to calibrate our ablation model interpretation of the observed peak height of luminosity as a function of speed. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. This is in contrast to earlier suggestions by Ceplecha (Ceplecha, Z. [1994]. Astron. Astrophys. 286, 967-970) that the majority of meter-tens of meter sized meteoroids are "â€¦ cometary bodies of the weakest known structure". We find a lower limit of âˆ¼10-15% of our objects have a possible cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, also show evidence for weaker than average structure. Two events, Sumava and USG 20131121, have exceptionally high (relative to the remainder of the population) heights of peak brightness. These are physically most consistent with high microporosity objects, though both were on asteroidal-type orbits. We also find three events, including the Oct 8, 2009 airburst near Sulawesi, Indonesia, which display comparatively low heights of peak brightness, consistent with strong monolithic stones or iron meteoroids. Based on orbital similarity, we find a probable connection among several events in our population with the Taurid meteoroid complex; no other major meteoroid streams show probable linkages to the orbits of our meter-scale population. Our impactors cover almost four orders of magnitude in mass, but no trend in height of peak brightness as a function of mass is evident, suggesting no strong trend in strength with size for meter-scale impactors consistent with the results of Popova et al. (Popova, O.P. et al. [2011]. Meteorit. Planet. Sci. 46, 1525-1550).
NASA Astrophysics Data System (ADS)
Lahav, Ofer; Kiakotou, Angeliki; Abdalla, Filipe B.; Blake, Chris
2010-06-01
We study the prospects for detecting neutrino masses from the galaxy angular power spectrum in photometric redshift shells of the Dark Energy Survey (DES) over a volume of ~20h-3 Gpc3, combined with the cosmic microwave background (CMB) angular fluctuations expected to be measured from the Planck satellite. We find that for a ? cold dark matter concordance model with seven free parameters in addition to a fiducial neutrino mass of M? = 0.24 eV, we recover from DES and Planck the correct value with uncertainty of +/-0.12 eV (95 per cent confidence level; CL), assuming perfect knowledge of the galaxy biasing. If the fiducial total mass is close to zero, then the upper limit is 0.11 eV (95 per cent CL). This upper limit from DES and Planck is over three times tighter than using Planck alone, as DES breaks the parameter degeneracies in a CMB-only analysis. The analysis utlilizes spherical harmonics up to 300, averaged in bin of 10 to mimic the DES sky coverage. The results are similar if we supplement DES bands (grizY) with the Visible and Infra-Red Survey Telescope for Astronomy Hemisphere Survey (VHS) near-infrared band (JHK). The result is robust to uncertainties in non-linear fluctuations and redshift distortions. However, the result is sensitive to the assumed galaxy biasing schemes and it requires accurate prior knowledge of the biasing. To summarize, if the total neutrino mass in nature is greater than 0.1 eV, we should be able to detect it with DES and Planck, a result with great importance to fundamental physics.
NASA Astrophysics Data System (ADS)
Planck Collaboration; Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Berdyugin, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Burrows, D. N.; Cabella, P.; Capalbi, M.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Cavazzuti, E.; CayÃ³n, L.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Couchot, F.; Coulais, A.; Cutini, S.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Dickinson, C.; Dole, H.; Donzelli, S.; DorÃ©, O.; DÃ¶rl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; EnÃŸlin, T. A.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Fuhrmann, L.; Galeotta, S.; Ganga, K.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Giard, M.; Giardino, G.; Giglietto, N.; Giommi, P.; Giordano, F.; Giraud-HÃ©raud, Y.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison, D.; Henrot-VersillÃ©, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Juvela, M.; KeihÃ¤nen, E.; Keskitalo, R.; King, O.; Kisner, T. S.; Kneissl, R.; Knox, L.; Krichbaum, T. P.; Kurki-Suonio, H.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lavonen, N.; Lawrence, C. R.; Leach, S.; Leonardi, R.; LeÃ³n-Tavares, J.; Linden-VÃ¸rnle, M.; Lindfors, E.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Max-Moerbeck, W.; Mazziotta, M. N.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Michelson, P. F.; Mingaliev, M.; Mitra, S.; Miville-DeschÃªnes, M.-A.; Moneti, A.; Monte, C.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Nestoras, I.; Netterfield, C. B.; Nieppola, E.; Nilsson, K.; NÃ¸rgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Partridge, B.; Pasian, F.; Patanchon, G.; Pavlidou, V.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perri, M.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; PrÃ©zeau, G.; Procopio, P.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; RainÃ², S.; Reach, W. T.; Readhead, A.; Rebolo, R.; Reeves, R.; Reinecke, M.; Reinthal, R.; Renault, C.; Ricciardi, S.; Richards, J.; Riller, T.; Riquelme, D.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; RubiÃ±o-MartÃn, J. A.; Rusholme, B.; Saarinen, J.; Sandri, M.; Savolainen, P.; Scott, D.; Seiffert, M. D.; Sievers, A.; SillanpÃ¤Ã¤, A.; Smoot, G. F.; Sotnikova, Y.; Starck, J.-L.; Stevenson, M.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J.-F.; Takalo, L.; Tammi, J.; Tauber, J. A.; Terenzi, L.; Thompson, D. J.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Torre, J.-P.; Tosti, G.; Tramacere, A.; Tristram, M.; Tuovinen, J.; TÃ¼rler, M.; Turunen, M.; Umana, G.; Ungerechts, H.; Valenziano, L.; Valtaoja, E.; Varis, J.; Verrecchia, F.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Wu, J.; Yvon, D.; Zacchei, A.; Zensus, J. A.; Zhou, X.; Zonca, A.
2011-12-01
Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper, physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law indexaround 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shocks. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission. Tables 1 and 4, Figs. 18-121 are available in electronic form at http://www.aanda.org
Inflationary paradigm in trouble after Planck2013
NASA Astrophysics Data System (ADS)
Ijjas, Anna; Steinhardt, Paul J.; Loeb, Abraham
2013-06-01
Recent results from the Planck satellite combined with earlier observations from WMAP, ACT, SPT and other experiments eliminate a wide spectrum of more complex inflationary models and favor models with a single scalar field, as reported by the Planck Collaboration. More important, though, is that all the simplest inflaton models are disfavored statistically relative to those with plateau-like potentials. We discuss how a restriction to plateau-like models has three independent serious drawbacks: it exacerbates both the initial conditions problem and the multiverse-unpredictability problem and it creates a new difficulty that we call the inflationary "unlikeliness problem." Finally, we comment on problems reconciling inflation with a standard model Higgs, as suggested by recent LHC results. In sum, we find that recent experimental data disfavors all the best-motivated inflationary scenarios and introduces new, serious difficulties that cut to the core of the inflationary paradigm. Forthcoming searches for B-modes, non-Gaussianity and new particles should be decisive.
The best inflationary models after Planck
Martin, Jérôme; Vennin, Vincent; Ringeval, Christophe; Trotta, Roberto E-mail: christophe.ringeval@uclouvain.be E-mail: vennin@iap.fr
2014-03-01
We compute the Bayesian evidence and complexity of 193 slow-roll single-field models of inflation using the Planck 2013 Cosmic Microwave Background data, with the aim of establishing which models are favoured from a Bayesian perspective. Our calculations employ a new numerical pipeline interfacing an inflationary effective likelihood with the slow-roll library ASPIC and the nested sampling algorithm MultiNest. The models considered represent a complete and systematic scan of the entire landscape of inflationary scenarios proposed so far. Our analysis singles out the most probable models (from an Occam's razor point of view) that are compatible with Planck data, while ruling out with very strong evidence 34% of the models considered. We identify 26% of the models that are favoured by the Bayesian evidence, corresponding to 15 different potential shapes. If the Bayesian complexity is included in the analysis, only 9% of the models are preferred, corresponding to only 9 different potential shapes. These shapes are all of the plateau type.
Quasar host environments: The view from Planck
NASA Astrophysics Data System (ADS)
Verdier, LoÃ¯c; Melin, Jean-Baptiste; Bartlett, James G.; Magneville, Christophe; Palanque-Delabrouille, Nathalie; YÃ¨che, Christophe
2016-04-01
We measure the far-infrared emission of the general quasar (QSO) population using Planck observations of the Baryon Oscillation Spectroscopic Survey QSO sample. By applying multi-component matched multi-filters to the seven highest Planck frequencies, we extract the amplitudes of dust, synchrotron, and thermal Sunyaev-Zeldovich (SZ) signals for nearly 300 000 QSOs over the redshift range 0.1
NASA Astrophysics Data System (ADS)
Toth, L. Viktor; Juvela, Mika; Pelkonen, Veli-Matti; Ristorcelli, Isabelle
2015-08-01
I present recent results on star-forming clouds, obtained especially in connection with the project "Galactic Cold Cores".While most of the galactic interstellar medium and star formation research have been confined to a small number of nearby regions, the all-sky Planck catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015) allows an almost unbiased study of the early phases of star-formation in our Galaxy.The Herschel Key Program "Galactic Cold Cores" (PI. M. Juvela) explored about 350 Planck Galactic Cold Clumps, sampling Planck clumps with a broad range of physical parameters and environments. Planck and Herschel data have revealed a clear evolution of dust that is parallel to the star formation process. This is visible as increased dust opacity and opacity spectral index towards the cold clumps. In addition to the Herschel, we have performed NIR and optical observations, cm and mm-line radio follow-ups, and utilized further archival data. We have derived the density and velocity distributions as well as the stages of the associated star formation from gravitationally bound cores to YSOs. The nature of Planck clumps varies from IRDCs to tiny nearby cold clouds. Thus our studies reveal the rich structure of both star forming and starless clouds. Some of the clumps are embedded in large complexes, even close to OB associations, while others are isolated and lay far from UV luminous objects. Detailed study of dense cloud cores in Planck clumps has provided estimates of the critical density of star-formation and the mass function of cores.The presentation is given on behalf of the project Galactic Cold Cores.
NASA Technical Reports Server (NTRS)
Britcher, C. P.
1983-01-01
Wind tunnel magnetic suspension and balance systems (MSBSs) have so far failed to find application at the large physical scales necessary for the majority of aerodynamic testing. Three areas of technology relevant to such application are investigated. Two variants of the Spanwise Magnet roll torque generation scheme are studied. Spanwise Permanent Magnets are shown to be practical and are experimentally demonstrated. Extensive computations of the performance of the Spanwise Iron Magnet scheme indicate powerful capability, limited principally be electromagnet technology. Aerodynamic testing at extreme attitudes is shown to be practical in relatively conventional MSBSs. Preliminary operation of the MSBS over a wide range of angles of attack is demonstrated. The impact of a requirement for highly reliable operation on the overall architecture of Large MSBSs is studied and it is concluded that system cost and complexity need not be seriously increased.
Full-Scale Physical Modeling Of The System "Granular Mediaâ€”Steel Sheet Piling"
NASA Astrophysics Data System (ADS)
Dubrovskyy, M. P.; Meshcheryakov, G. N.; Petrosyan, V. N.; Dubrovska, O. M.
2011-12-01
This paper considers the problem of determination of real parameters of the cross-sectional values of sheet piling walls made of U-profile piles (moment of inertia and section modulus) and their drivability regarding piles interaction with granular media (for example, sandy soil). Among main factors which influence on this one can mention soil friction in the interlocks and the transmission of longitudinal shear forces in the interlocks of the sheet piles. In reality granular media-interlock interaction depends mainly on installation method and properties of the granular media. Study of dependencies between applied forces and friction in the interlocks by full-scale physical modeling during press-in regarding pile-pile interaction and granular media properties was aiming to refine calculation model as well as to provide reliable numerical modeling and design of the considered system.
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bourdin, H.; Burenin, R.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Cayón, L.; Chamballu, A.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Colombo, L. P. L.; Comis, B.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Démoclès, J.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Gilfanov, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Heinämäki, P.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hurier, G.; Jaffe, T. R.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juvela, M.; Keihänen, E.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lilje, P. B.; López-Caniego, M.; Luzzi, G.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Mei, S.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Piffaretti, R.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Smoot, G. F.; Starck, J.-L.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tuovinen, J.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Welikala, N.; Yvon, D.; Zacchei, A.; Zaroubi, S.; Zonca, A.
2013-02-01
The survey of galaxy clusters performed by Planck through the Sunyaev-Zeldovich effect has already discovered many interesting objects, thanks to its full sky coverage. One of the SZ candidates detected inthe early months of the mission near to the signal-to-noise threshold, PLCKG214.6+37.0, was later revealed by XMM-Newton to be a triple system of galaxy clusters. We present the results from a deep XMM-Newton re-observation of PLCKG214.6+37.0, part of a multi-wavelength programme to investigate Planck discovered superclusters. The characterisation of the physical properties of the three components has allowed us to build a template model to extract the total SZ signal of this system with Planck data. We have partly reconciled the discrepancy between the expected SZ signal derived from X-rays and the observed one, which are now consistent within 1.2?. We measured the redshift of the three components with the iron lines in the X-ray spectrum, and confirm that the three clumps are likely part of the same supercluster structure. The analysis of the dynamical state of the three components, as well as the absence of detectable excess X-ray emission, suggests that we are witnessing the formation of a massive cluster at an early phase of interaction.
VizieR Online Data Catalog: Planck Early Release Compact Source Catalogue (Planck, 2011)
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Baker, M.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Bennett, K.; Benoit, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bradshaw, T.; Bremer, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cabella, P.; Cantalupo, C. M.; Cappellini, B.; Cardoso, J.-F.; Carr, R.; Casale, M.; Catalano, A.; Cayon, L.; Challinor, A.; Chamballu, A.; Charra, J.; Chary, R.-R.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Crone, G.; Crook, M.; Cuttaia, F.; Danese, L.; D'Arcangelo, O.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Bruin, J.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Desert, F.-X.; Dick, J.; Dickinson, C.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Doerl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Ensslin, T. A.; Eriksen, H. K.; Finelli, F.; Foley, S.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Freschi, M.; Gaier, T.C.; Galeotta, S.; Gallegos, J.; Gandolfo, B.; Ganga, K.; Giard, M.; Giardino, G.; Gienger, G.; Giraud-Heraud, Y.; Gonzalez, J.; Gonzalez-Nuevo, J.; Gorski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guyot, G.; Haissinski, J.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juillet, J. J.; Juvela, M.; Kangaslahti, P.; Keihaenen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Krassenburg, M.; Kurki-Suonio, H.; Lagache, G.; Laehteenmaeki, A.; Lamarre, J.-M.; Lange, A. E.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lowe, S.; Lubin, P. M.; Macias-Perez, J. F.; Maciaszek, T.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Martinez-Gonzalez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McDonald, A.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Mevi, C.; Miniscalco, R.; Mitra, S.; Miville-Deschenes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; sMorisset, N.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Norgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Ortiz, I.; Osborne, S.; Osuna, P.; Oxborrow, C. A.; Pajot, F.; Paladini, R.; Partridge, B.; Pasian, F.; Passvogel, T.; Patanchon, G.; Pearson, D.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Prezeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Reix, J.-M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubino-Martin, J. A.; Rusholme, B.; Salerno, E.; Sandri, M.; Santos, D.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.; Shellard, P.; Simonetto, A.; Smoot, G. F.; Sozzi, C.; Starck, J.-L.; Sternberg, J.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Stringhetti, L.; Sudiwala, R.; Sunyaev, R.; Sygnet, J.-F.; Tapiador, D.; Tauber, J. A.; Tavagnacco, D.; Taylor, D.; Terenzi, L.; Texier, D.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Tuerler, M.; Tuttlebee, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Varis, J.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson, C.; White, S. D. M.; White, M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2011-01-01
Planck is a European Space Agency (ESA) mission, with significant contributions from the U.S. National Aeronautics and Space Agency (NASA). It is the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 13 August 2009. Since then, Planck has been continuously measuring the intensity of the sky over a range of frequencies from 30 to 857GHz (wavelengths of 1cm to 350Î¼m) with spatial resolutions ranging from about 33' to 5' respectively. The Low Frequency Instrument (LFI) on Planck provides temperature and polarization information using radiometers which operate between 30 and 70GHz. The High Frequency Instrument (HFI) uses pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353GHz but does not measure polarization information in the two upper HFI bands at 545 and 857GHz. The lowest frequencies overlap with WMAP, and the highest frequencies extend far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck is providing an unprecedented window into dust emission at far-infrared and submillimeter wavelengths. The Planck Early Release Compact Source Catalogue (ERCSC) is a list of all high reliability sources, both Galactic and extragalactic, derived from the first sky coverage. The data that went into this early release comprise all observations undertaken between 13 August 2009 and 6 June 2010, corresponding to Planck operational days 91-389. Since the Planck scan strategy results in the entire sky being observed every 6 months, the data considered in this release correspond to more than the first sky coverage. The source lists have reliability goals of >90% across the entire sky and >95% at high Galactic latitude. The goals on photometric accuracy are 30% while the positional accuracy goal translates to a positional root mean square (RMS) uncertainty that is less than 1/5 of the beam full width at half maximum (FWHM). Detailed explanations about the mission and the catalogs included here can be found in the "Explanatory supplement" (file "ercsc4_3.pdf"). Skymaps of the sources can be found in the "skymaps" subdirectory; postage stamps of the sources in the ECC (Early Cold Cores) catalog and in the different filters are located in the "stamps" subdirectory. The "Byte-by-byte Description" below contain column names standardized according to the conventions used at CDS; the original column names, as defined in the FITS files, are listed, enclosed within parentheses, at the end of the explanations. (16 data files).
Particle and String Scattering at the Planck Scale
NASA Astrophysics Data System (ADS)
Lousto, C. O.; SÁNchez, N.
1998-04-01
The ultrarelativistic limit of the Kerr - Newman geometry is studied in detail. We find the corresponding gravitational shock wave background associated with this limit. Interestingly, this allows us to find the source of the Kerr - Newman geometry in the ultrarelativistic regime. We study the scattering of scalar fields in the gravitational shock wave geometries, and discuss the presence of the poles iGs = n = 0,1,2, ... , already present in the Aichelburg - Sexl metric. We compare this with the scattering by ultrarelativistic extended sources, for which such poles do not appear and with the scattering of fundamental strings. We also study planckian energy string collisions in flat spacetime as the scattering of a string in the effective curved background produced by the others as the impact parameter b decreases. We find the effective energy density distribution ?(?) ˜ exp{-?2/?2}, generated by these collisions. Two different regimes can be studied: intermediate impact parameters {x^d} ? b ? ? {{? ^'}ln s} \\cong ? /2, (xd characterizing the string fluctuations) and large impact parameters, b ? ? {{? ^'}ln s} \\cong ? /2 ? {x^d}. The effective metric generated by these collisions is a gravitational shock wave of profile f(?) ˜ p?4-D , i.e. the Aichelburg - Sexl geometry for a point-like particle of momentum p for large b. For intermediate b, f(?) ˜ q?2, corresponding to an extended source of momentum q. The scattering matrix in this geometry and its implications for the string collision process are analysed. We show that the poles iGs = n , n = 0,1, 2..., characteristic of the scattering by the A - S geometry are absent here, due to the extended nature of the effective source. We finally study the emergence of string instabilities in D - dimensional black hole spacetimes (Schwarzschild and Reissner - Nordstrom), and De Sitter space (in static coordinates to allow a better comparison with the black hole case). We solve the first order string fluctuations around the center of mass motion at spatial infinity, near the horizon and at the spacetime singularity. We find that the time components are always well behaved in the three regions and in the three backgrounds. The radial components are unstable: imaginary frequencies develop in the oscillatory modes near the horizon, and the evolution is like (? - ?0)-P, (P > 0), near the spacetime singularity, r ? 0, where the world - sheet time (? - ?0) ? 0, and the proper string length grows infinitely. In the Schwarzschild black hole, the angular components are always well - behaved, while in the Reissner - Nordström case they develop instabilities inside the horizon, near r ? 0 where the repulsive effects of the charge dominate over those of the mass. In general, whenever large enough repulsive effects in the gravitational background are present, string instabilities develop. In De Sitter space, all the spatial components exhibit instability. The infalling of the string to the black hole singularity is like the motion of a particle in a potential ?(? - ?0)-2 where ? depends on the D spacetime dimensions and string angular momentum, with ? > 0 for Schwarzschild and ? < 0 for Reissner - Nordström black holes. For (? - ?0) ? 0 the string ends trapped by the black hole singularity.
A note on Planck scale corrections to bouncing universe
NASA Astrophysics Data System (ADS)
Kamali, A. D.; Sabounchi, P.
2016-02-01
In this paper, we investigate the effect modified dispersion relation (MDR) on the entropy-area relation of FRW universe, leading to the modification of Friedmann equations. In this regard, we show that limitations imposed by MDR leads to certain modifications of bouncing universe thermodynamics.
The Nature of Light: I. A Historical Survey Up to the Pre-Planck Era and Implications for Teaching
ERIC Educational Resources Information Center
Oon, Pey Tee; Subramaniam, R.
2009-01-01
The objective of this article is to contribute to the scant literature that exists on historical developments on the nature of light. It traces the nature of light from the times of the ancient Greeks to the classical theories prior to Planck. The development of thought that characterizes the evolution of a concept in physics over time affords…
NASA Astrophysics Data System (ADS)
Planck Collaboration; AMI Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bourdin, H.; Brown, M. L.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Cabella, P.; Carvalho, P.; Catalano, A.; Cayón, L.; Chamballu, A.; Chary, R.-R.; Chiang, L.-Y.; Chon, G.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Démoclès, J.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Feroz, F.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Grainge, K. J. B.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Hurier, G.; Hurley-Walker, N.; Jagemann, T.; Juvela, M.; Keihänen, E.; Khamitov, I.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leonardi, R.; Liddle, A.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Luzzi, G.; Macías-Pérez, J. F.; MacTavish, C. J.; Maino, D.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes, M.-A.; Montier, L.; Morgante, G.; Munshi, D.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Olamaie, M.; Osborne, S.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perrott, Y. C.; Perrotta, F.; Piacentini, F.; Pierpaoli, E.; Platania, P.; Pointecouteau, E.; Polenta, G.; Popa, L.; Poutanen, T.; Pratt, G. W.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Rodríguez-Gonzálvez, C.; Rosset, C.; Rossetti, M.; Rubiño-Martín, J. A.; Rumsey, C.; Rusholme, B.; Sandri, M.; Saunders, R. D. E.; Savini, G.; Schammel, M. P.; Scott, D.; Shimwell, T. W.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2013-02-01
A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferometer, the Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric Generalised Navarro, Frenk and White (GNFW) model for the cluster gas pressure profile, we jointly constrain the integrated Compton-Y parameter (Y500) and the scale radius (?500) of each cluster. Our resulting constraints in the Y500 - ?500 2D parameter space derived from the two instruments overlap significantly for eight of the clusters, although, overall, there is a tendency for AMI to find the Sunyaev-Zeldovich signal to be smaller in angular size and fainter than Planck. Significant discrepancies exist for the three remaining clusters in the sample, namely A1413, A1914, and the newly-discovered Planck cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the Planck and AMI data is demonstrated through the use of detailed simulations, which also discount confusion from residual point (radio) sources and from diffuse astrophysical foregrounds as possible explanations for the discrepancies found. For a subset of our cluster sample, we have investigated the dependence of our results on the assumed pressure profile by repeating the analysis adopting the best-fitting GNFW profile shape which best matches X-ray observations. Adopting the best-fitting profile shape from the X-ray data does not, in general, resolve the discrepancies found in this subset of five clusters. Though based on a small sample, our results suggest that the adopted GNFW model may not be sufficiently flexible to describe clusters universally.
Constraining nonminimal DBI inflation with Planck2015 results
NASA Astrophysics Data System (ADS)
Nozari, Kourosh; Asadi, Kosar; Rashidi, Narges
2015-11-01
We study cosmological inflation and perturbations in a nonminimally coupled Dirac-Born-Infeld setup in the light of the recent observational data reported by Planck collaboration. By adopting some important inflationary potentials, we analyze the scalar spectral index and the tensor-to-scalar ratio in confrontation with Planck 2015 data. In this manner we obtain severe constraints on the model's parameters.
Meacham, J. Mark; Durvasula, Kiranmai; Degertekin, F. Levent; Fedorov, Andrei G.
2015-01-01
Effective intracellular delivery is a significant impediment to research and therapeutic applications at all processing scales. Physical delivery methods have long demonstrated the ability to deliver cargo molecules directly to the cytoplasm or nucleus, and the mechanisms underlying the most common approaches (microinjection, electroporation, and sonoporation) have been extensively investigated. In this review, we discuss established approaches, as well as emerging techniques (magnetofection, optoinjection, and combined modalities). In addition to operating principles and implementation strategies, we address applicability and limitations of various in vitro, ex vivo, and in vivo platforms. Importantly, we perform critical assessments regarding (1) treatment efficacy with diverse cell types and delivered cargo molecules, (2) suitability to different processing scales (from single cell to large populations), (3) suitability for automation/integration with existing workflows, and (4) multiplexing potential and flexibility/adaptability to enable rapid changeover between treatments of varied cell types. Existing techniques typically fall short in one or more of these criteria; however, introduction of micro-/nanotechnology concepts, as well as synergistic coupling of complementary method(s), can improve performance and applicability of a particular approach, overcoming barriers to practical implementation. For this reason, we emphasize these strategies in examining recent advances in development of delivery systems. PMID:23813915
Physics-based scaling laws for confined and unconfined transverse jets
NASA Astrophysics Data System (ADS)
Forliti, D. J.; Salazar, D. V.; Bishop, A. J.
2015-02-01
An experimental study was conducted to explore the mixing properties of single and multiple confined transverse jets. A new physics-based scaling law variable was developed based on unconfined transverse jet trajectories. This variable accounts for both entrainment and drag momentum transport mechanisms that cause the jet deflection. The utility of this parameter under confined conditions was considered. It was observed that this new scaling parameter does correlate both qualitative and quantitative measures of the mean mixture properties, in particular prior to any jet-wall interactions. It was found that no local optimum mixing condition was present for two and three jets. For six jets, the behavior changed dramatically, with the emergence of a local optimum mixing state that is consistent with previous data collected for gas turbine geometries (Holdeman in Prog Energy Combust Sci 19:31-70, 1993). It is apparent that the local optimum observed for six jets involves jet penetration to a finite radial position while spreading in the cross plane, leading to the jets blending together resulting in a highly uniform mean mixture fraction distribution. When the number of jets is three or less, this blending process cannot occur due to the excessive distance between the jets. Jet impaction at the pipe center facilitates mixing for two and three jets, while degrading uniformity for six jets.
Scaling of hollow cathode magnetrons for ionized metal physical vapor deposition
Vyas, Vivek; Kushner, Mark J.
2006-09-15
Ionized metal physical vapor deposition is being increasingly used to deposit diffusion barriers and Cu seed layers into high aspect ratio trenches for microelectronics fabrication. Hollow cathode magnetrons (HCMs) represent a technology capable of depositing metal over large areas at pressures of a few millitorrs. The fundamental mechanisms of these devices are not well understood and so their optimization is difficult. In this article, results from a two-dimensional computational investigation of HCMs are discussed to illuminate scaling issues. The hybrid model incorporates algorithms whereby transport coefficients for use in fluid equations are derived using a kinetic simulation. The goal is to enable the fluid algorithms in the model to be able to more accurately represent low pressure operation. The consequences of power, pressure, and magnitude and orientation of applied magnetic fields were investigated. The authors found that the magnetic field configuration significantly affects the magnitude and distribution of fluxes incident on the substrate. A study of the Cu seed layer deposition process, carried out using a feature scale model, correlates changes in plasma properties with conformal deposition into trenches.
Scaled-physical-model studies of the steam-drive process. Final report
Doscher, T.M.
1982-11-01
The main goal of this project was to gain an understanding of the influence of controllable, operating practices and of reservoir parameters on the steam drive. The steam drive, because the chief phenomena of fluid flow and heat flow obey the same laws of diffusion, can be physically scaled. The validity of the results of the scaled models is evidenced by the correspondence of the results with those reported in field operations. In order to conserve on resources, this report is limited to a summary statement of the findings and conclusions of the overall project with separate chapters devoted to an account of specific tasks which came to fruition during the latter part of the project. Summary of results are presented for the following projects: gravitational instability of a steam drive; roles of oil viscosity and steam temperature on the production of crude oil when the steam flow is stratified; extension of the steam drive to tars and bitumens; occurrence of the optimum steam injection rate; emulsification and oil productivity; role of reservoir thickness; cyclic injection of steam in a steam drive; high gravity crudes; partial substitution of inert gas for steam. Two projects completed and described in detail are: effect of oil viscosity on reservoir thickness on the steam drive; and anticipated effect of diurnal injection on steam efficiency.
Scalable DAG-Based PDE Frameworks for Multi-Scale Multi-Physics Problems
NASA Astrophysics Data System (ADS)
Berzins, Martin
2012-02-01
The task-based approach to software and parallelism is well-known and has been proposed as a potential candidate, named the silver model, for exascale software. This approach is not yet widely used in the large-scale multi-core parallel computing of complex systems of partial differential equations. The central idea is to use a Directed Acyclic Graph (DAG) based approach to express the structure of the underlying software. The aim of this talk is to explore the usefulness of DAG based approaches, using recent developments in the parallel Uintah software framework for partial differential equations to assess how well the DAG type approach works on present-day large-scale architectures for complex multi-physics multiscale applications up to 200K cores. As a result of these investigations, a preliminary and tentative evaluation of the DAG type approach for PDE software infrastructures will be given. The conclusion is that these approaches show great promise for petascale but that considerable algorithmic challenges remain.
A Physical Scaling Relation Between the Size of an Earthquake and its Nucleation Zone Size
NASA Astrophysics Data System (ADS)
Ohnaka, M.
A specific model of the earthquake nucleation that proceeds on a non-uniform fault is put forward to explain seismological data on the nucleation in terms of the underlying physics. The model is compatible with Gutenberg-Richter's similarity law for earthquake frequency-magnitude relation. A theoretical approach in the framework of fracture mechanics, based on a laboratory-based slip-dependent constitutive law, leads to the conclusion that the earthquake moment Mo scales with the third power of the critical slip displacement Dc and the critical size 2Lc (Lc, half-length) of the nucleation zone. This scaling relation quantitatively explains seismological data published, and it predicts that 2Lc is of the order of 10 km for earthquakes with Mo = 1021 Nm, 1 km for earthquakes with Mo = 1018 Nm, and 100 m for earthquakes with Mo = 1015 Nm, under the assumption that the breakdown stress drop ? ? b = 10 MPa. However, Lc depends on not only Dc but also ? ? b, so that the scaling relation between Lc and Dc may be violated by ? ? b, because ? ? b potentially takes any value in a wide range from 1 to 102 MPa, depending on the seismogenic environment. The good agreement between the theoretical relation and observed results suggests that a large earthquake may result from the failure of a large patch of high rupture growth resistance, whereas a small earthquake may result from the breakdown of a small patch of high rupture growth resistance. The present result encourages one to pursue the prediction capability for large earthquakes.
Large-Scale Physical Modelling of Complex Tsunami-Generated Currents
NASA Astrophysics Data System (ADS)
Lynett, P. J.; Kalligeris, N.; Ayca, A.
2014-12-01
For tsunamis passing through sharp bathymetric variability, such as a shoal or a harbor entrance channel, z-axis vortical motions are created. These structures are often characterized by a horizontal length scale that is much greater than the local depth and are herein called shallow turbulent coherent structures (TCS). These shallow TCS can greatly increase the drag force on affected infrastructure and the ability of the flow to transport debris and floating objects. Shallow TCS typically manifest as large "whirlpools" during tsunamis, very commonly in ports and harbors. Such structures have been observed numerous times in the tsunamis over the past decade, and are postulated as the cause of large vessels parting their mooring lines due to yaw induced by the rotational eddy. Through the NSF NEES program, a laboratory study to examine a shallow TCS was performed during the summer of 2014. To generate this phenomenon, a 60 second period long wave was created and then interacted with a breakwater in the basin, forcing the generation of a large and stable TCS. The model scale is 1:30, equating to a 5.5 minute period and 0.5 m amplitude in the prototype scale. Surface tracers, dye studies, AVD's, wave gages, and bottom pressure sensors are used to characterize the flow. Complex patterns of surface convergence and divergence are easily seen in the data, indicating three-dimensional flow patterns. Dye studies show areas of relatively high and low spatial mixing. Model vessels are placed in the basin such that ship motion in the presence of these rapidly varying currents might be captured. The data obtained from this laboratory study should permit a better physical understanding of the nearshore currents that tsunamis are known to generate, as well as provide a benchmark for numerical modelers who wish to simulate currents.
NASA Astrophysics Data System (ADS)
Verkhodanov, O. V.; Majorova, E. K.; Zhelenkova, O. P.; Solovyov, D. I.; Khabibullina, M. L.
2015-09-01
We have investigated the regions of cosmic microwave background maps from the Planck experiment in the neighborhoods of radio sources from the RCR catalog. Based on the measurements of sources from the Planck catalog, we have constructed the calibration curves to determine the brightness of objects. For 34 steep-spectrum objects, for the first time we have estimated the flux densities at millimeter and submillimeter wavelengths, constructed the spectra, made identifications, and gathered information available in databases. Faint, difficult-to-clean, microwave sources make an additional contribution to the secondary anisotropy on angular scales <7'.
Planck 2013 results. V. LFI calibration
NASA Astrophysics Data System (ADS)
Planck Collaboration; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; BenoÃ®t, A.; Benoit-LÃ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chen, X.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; DorÃ©, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; EnÃŸlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-HÃ©raud, Y.; GjerlÃ¸w, E.; GonzÃ¡lez-Nuevo, J.; GÃ³rski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-VersillÃ©, S.; HernÃ¡ndez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Kangaslahti, P.; KeihÃ¤nen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; LÃ¤hteenmÃ¤ki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-VÃ¸rnle, M.; LÃ³pez-Caniego, M.; Lubin, P. M.; MacÃas-PÃ©rez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; MartÃnez-GonzÃ¡lez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; NÃ¸rgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Paci, F.; Pagano, L.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; PrÃ©zeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Ricciardi, S.; Riller, T.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; RubiÃ±o-MartÃn, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; TÃ¼rler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
We discuss the methods employed to photometrically calibrate the data acquired by the Low Frequency Instrument on Planck. Our calibration is based on a combination of the orbital dipole plus the solar dipole, caused respectively by the motion of the Planck spacecraft with respect to the Sun and by motion of the solar system with respect to the cosmic microwave background (CMB) rest frame. The latter provides a signal of a few mK with the same spectrum as the CMB anisotropies and is visible throughout the mission. In this data releasewe rely on the characterization of the solar dipole as measured by WMAP. We also present preliminary results (at 44 GHz only) on the study of the Orbital Dipole, which agree with the WMAP value of the solar system speed within our uncertainties. We compute the calibration constant for each radiometer roughly once per hour, in order to keep track of changes in the detectors' gain. Since non-idealities in the optical response of the beams proved to be important, we implemented a fast convolution algorithm which considers the full beam response in estimating the signal generated by the dipole. Moreover, in order to further reduce the impact of residual systematics due to sidelobes, we estimated time variations in the calibration constant of the 30 GHz radiometers (the ones with the largest sidelobes) using the signal of an internal reference load at 4 K instead of the CMB dipole. We have estimated the accuracy of the LFI calibration following two strategies: (1) we have run a set of simulations to assess the impact of statistical errors and systematic effects in the instrument and in the calibration procedure; and (2) we have performed a number of internal consistency checks on the data and on the brightness temperature of Jupiter. Errors in the calibration of this Planck/LFI data release are expected to be about 0.6% at 44 and 70 GHz, and 0.8% at 30 GHz. Both these preliminary results at low and high â„“ are consistent with WMAP results within uncertainties and comparison of power spectra indicates good consistency in the absolute calibration with HFI (0.3%) and a 1.4Ïƒ discrepancy with WMAP (0.9%).
NASA Astrophysics Data System (ADS)
Perrott, Y. C.; Olamaie, M.; Rumsey, C.; Brown, M. L.; Feroz, F.; Grainge, K. J. B.; Hobson, M. P.; Lasenby, A. N.; MacTavish, C. J.; Pooley, G. G.; Saunders, R. D. E.; Schammel, M. P.; Scott, P. F.; Shimwell, T. W.; Titterington, D. J.; Waldram, E. M.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aussel, H.; Barrena, R.; Bikmaev, I.; Böhringer, H.; Burenin, R.; Carvalho, P.; Chon, G.; Comis, B.; Dahle, H.; Democles, J.; Douspis, M.; Harrison, D.; Hempel, A.; Hurier, G.; Khamitov, I.; Kneissl, R.; Macías-Pérez, J. F.; Melin, J.-B.; Pointecouteau, E.; Pratt, G. W.; Rubiño-Martín, J. A.; Stolyarov, V.; Sutton, D.
2015-08-01
We present observations and analysis of a sample of 123 galaxy clusters from the 2013 Planck catalogue of Sunyaev-Zel'dovich sources with the Arcminute Microkelvin Imager (AMI), a ground-based radio interferometer. AMI provides an independent measurement with higher angular resolution, 3 arcmin compared to the Planck beams of 5-10 arcmin. The AMI observations thus provide validation of the cluster detections, improved positional estimates, and a consistency check on the fitted size (?s) and flux (Ytot) parameters in the generalised Navarro, Frenk and White (GNFW) model. We detect 99 of the clusters. We use the AMI positional estimates to check the positional estimates and error-bars produced by the Planck algorithms PowellSnakes and MMF3. We find that Ytot values as measured by AMI are biased downwards with respect to the Planck constraints, especially for high Planck-S/N clusters. We perform simulations to show that this can be explained by deviation from the universal pressure profile shape used to model the clusters. We show that AMI data can constrain the ? and ? parameters describing the shape of the profile in the GNFW model for individual clusters provided careful attention is paid to the degeneracies between parameters, but one requires information on a wider range of angular scales than are present in AMI data alone to correctly constrain all parameters simultaneously. Appendices are available in electronic form at http://www.aanda.org
A neural-network based estimator to search for primordial non-Gaussianity in Planck CMB maps
NASA Astrophysics Data System (ADS)
Novaes, C. P.; Bernui, A.; Ferreira, I. S.; Wuensche, C. A.
2015-09-01
We present an upgraded combined estimator, based on Minkowski Functionals and Neural Networks, with excellent performance in detecting primordial non-Gaussianity in simulated maps that also contain a weighted mixture of Galactic contaminations, besides real pixel's noise from Planck cosmic microwave background radiation data. We rigorously test the efficiency of our estimator considering several plausible scenarios for residual non-Gaussianities in the foreground-cleaned Planck maps, with the intuition to optimize the training procedure of the Neural Network to discriminate between contaminations with primordial and secondary non-Gaussian signatures. We look for constraints of primordial local non-Gaussianity at large angular scales in the foreground-cleaned Planck maps. For the SMICA map we found fNL = 33 Â± 23, at 1Ïƒ confidence level, in excellent agreement with the WMAP-9yr and Planck results. In addition, for the other three Planck maps we obtain similar constraints with values in the interval fNL in [33, 41], concomitant with the fact that these maps manifest distinct features in reported analyses, like having different pixel's noise intensities.
Physical modelling of granular flows at multiple-scales and stress levels
NASA Astrophysics Data System (ADS)
Take, Andy; Bowman, Elisabeth; Bryant, Sarah
2015-04-01
The rheology of dry granular flows is an area of significant focus within the granular physics, geoscience, and geotechnical engineering research communities. Studies performed to better understand granular flows in manufacturing, materials processing or bulk handling applications have typically focused on the behavior of steady, continuous flows. As a result, much of the research on relating the fundamental interaction of particles to the rheological or constitutive behaviour of granular flows has been performed under (usually) steady-state conditions and low stress levels. However, landslides, which are the primary focus of the geoscience and geotechnical engineering communities, are by nature unsteady flows defined by a finite source volume and at flow depths much larger than typically possible in laboratory experiments. The objective of this paper is to report initial findings of experimental studies currently being conducted using a new large-scale landslide flume (8 m long, 2 m wide slope inclined at 30Â° with a 35 m long horizontal base section) and at elevated particle self-weight in a 10 m diameter geotechnical centrifuge to investigate the granular flow behavior at multiple-scales and stress levels. The transparent sidewalls of the two flumes used in the experimental investigation permit the combination of observations of particle-scale interaction (using high-speed imaging through transparent vertical sidewalls at over 1000 frames per second) with observations of the distal reach of the landslide debris. These observations are used to investigate the applicability of rheological models developed for steady state flows (e.g. the dimensionless inertial number) in landslide applications and the robustness of depth-averaged approaches to modelling dry granular flow at multiple scales. These observations indicate that the dimensionless inertial number calculated for the flow may be of limited utility except perhaps to define a general state (e.g. liquid regime) for the material due to the high slip velocity encountered in the granular flows. Further, the depth-averaged approach to providing an empirically-calibrated estimate of landslide travel distance was observed to match all configurations tested using a single set of empirically back-calculated frictional properties. The empirically derived basal interface friction was found to be lower than the static interface friction determined by conventional testing, suggesting that new methods are needed for the a priori determination of suitable rheological parameters for high-speed dry granular flows.
NASA Astrophysics Data System (ADS)
Chavanis, P. H.
2008-03-01
We study a general class of nonlinear mean field Fokker-Planck equations in relation with an effective generalized thermodynamical (E.G.T.) formalism. We show that these equations describe several physical systems such as: chemotaxis of bacterial populations, Bose-Einstein condensation in the canonical ensemble, porous media, generalized Cahn-Hilliard equations, Kuramoto model, BMF model, Burgers equation, Smoluchowski-Poisson system for self-gravitating Brownian particles, Debye-HÃ¼ckel theory of electrolytes, two-dimensional turbulence... In particular, we show that nonlinear mean field Fokker-Planck equations can provide generalized Keller-Segel models for the chemotaxis of biological populations. As an example, we introduce a new model of chemotaxis incorporating both effects of anomalous diffusion and exclusion principle (volume filling). Therefore, the notion of generalized thermodynamics can have applications for concrete physical systems. We also consider nonlinear mean field Fokker-Planck equations in phase space and show the passage from the generalized Kramers equation to the generalized Smoluchowski equation in a strong friction limit. Our formalism is simple and illustrated by several explicit examples corresponding to Boltzmann, Tsallis, Fermi-Dirac and Bose-Einstein entropies among others.
Bolometric detectors for the Planck surveyor
NASA Technical Reports Server (NTRS)
Yun, M.; Koch, T.; Bock, J.; Holmes, W.; Hustead, L.; Wild, L.; Mulder, J.; Turner, A.; Lange, A.; Bhatia, R.
2002-01-01
The High Frequency Instrument on the NASA/ESA Planck Surveyor, scheduled for launch in 2007, will map the entire sky in 6 frequency bands ranging from 100 GHz to 857 GHz to probe Cosmic Microwave Background (CMB) anisotropy and polarization with angular resolution ranging from 9' to 5'. The HFI focal plane will contain 48 silicon nitride micromesh bolometers operating from a 100 mK heat sink. Four detectors in each of the 6 bands will detect unpolarized radiation. An additional 4 pairs of detectors will provide sensitivity to linear polarization of emission at 143, 217 and 353 GHz. We report on the development and characterization of these detectors before delivery to the European HFI consortium.
Planck's High Temperature Catastrophe in Observational Astronomy:- (NASA proves Planck wrong)
NASA Astrophysics Data System (ADS)
Gall, Clarence A.
2009-03-01
Planck's black body radiation law ( IP=c1 Î»^51e^c2Î»T -1) predicts that a hotter body (higher T) should always emit more intensely than a colder body (lower T) throughout the entire EMR spectrum. However, space age infrared astronomy contradicts this prediction! It is now known that as observation moves from the visible to the near-, mid- and far infrared; increasingly cold celestial objects come into view while hotter ones fade and disappear (http://coolcosmos.ipac.caltech.edu/cosmicclassroom/irtutori al/irregions.html). Were Planck's law valid, the hottest stars would never disappear; and colder objects would not be detected. This can only be described as a high temperature catastrophe (BAPS, April Meeting 2008, H12.3, St Louis, MO) for Planck's law! On the other hand, Gall's black body radiation law ( IG=ÏƒT^6b^2Î»e^-Î»Tb) (http://sites.google.com/site/purefieldphysics) predicts that as wavelength increases, there is a crossover point above which a colder object will emit more intensely than a hotter one. Hence colder objects will appear and hotter ones will eventually disappear from view. The crossover point for black bodies at 6000K and 100K is 12.066 microns. These calculations with Gall's law are in overall agreement with observational infrared astronomy.
NASA Astrophysics Data System (ADS)
Li, Dongqing; Guo, Hongbo; Peng, Hui; Gong, Shengkai; Xu, Huibin
2013-10-01
The cyclic oxidation behavior of Dy/Hf-doped Î²-NiAl coatings produced by electron beam physical vapor deposition (EB-PVD) was investigated. For the undoped NiAl coating, numerous voids were formed at the alumina scale/coating interface and large rumpling developed in the scale, leading to premature oxide spallation. The addition of Dy and Hf both improved scale adhesion and the alumina scale grown on the NiAl-Hf coating showed better adhesion than that on the NiAl-Dy coating, although the suppressing effect on interfacial void formation and the scale rumpling resistance were stronger in the NiAl-Dy coating. It is proposed that the segregation of Dy and Hf ions at the scale/coating interfaces not only prevent interfacial sulfur segregation but also may directly enhance interfacial adhesion by participating in bonding across the interfaces, and this strengthening effect is relatively stronger for Hf ionic segregation.
Meisner, Aaron M.; Finkbeiner, Douglas P. E-mail: dfinkbeiner@cfa.harvard.edu
2015-01-10
We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000Â GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857Â GHz along with DIRBE/IRAS 100 Î¼m data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000Â GHz. We find that, in diffuse sky regions, our two-component 100-217Â GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100Â GHz, 12.6% at 143Â GHz, and 7.9% at 217Â GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales.
NASA Astrophysics Data System (ADS)
Meisner, Aaron M.; Finkbeiner, Douglas P.
2015-01-01
We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 Î¼m data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales.
NASA Astrophysics Data System (ADS)
Luna, Byron Quan; Vidar Vangelsten, Bjørn; Liu, Zhongqiang; Eidsvig, Unni; Nadim, Farrokh
2013-04-01
Landslide risk must be assessed at the appropriate scale in order to allow effective risk management. At the moment, few deterministic models exist that can do all the computations required for a complete landslide risk assessment at a regional scale. This arises from the difficulty to precisely define the location and volume of the released mass and from the inability of the models to compute the displacement with a large amount of individual initiation areas (computationally exhaustive). This paper presents a medium-scale, dynamic physical model for rapid mass movements in mountainous and volcanic areas. The deterministic nature of the approach makes it possible to apply it to other sites since it considers the frictional equilibrium conditions for the initiation process, the rheological resistance of the displaced flow for the run-out process and fragility curve that links intensity to economic loss for each building. The model takes into account the triggering effect of an earthquake, intense rainfall and a combination of both (spatial and temporal). The run-out module of the model considers the flow as a 2-D continuum medium solving the equations of mass balance and momentum conservation. The model is embedded in an open source environment geographical information system (GIS), it is computationally efficient and it is transparent (understandable and comprehensible) for the end-user. The model was applied to a virtual region, assessing landslide hazard, vulnerability and risk. A Monte Carlo simulation scheme was applied to quantify, propagate and communicate the effects of uncertainty in input parameters on the final results. In this technique, the input distributions are recreated through sampling and the failure criteria are calculated for each stochastic realisation of the site properties. The model is able to identify the released volumes of the critical slopes and the areas threatened by the run-out intensity. The obtained final outcome is the estimation of individual building damage and total economic risk. The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement No 265138 New Multi-HAzard and MulTi-RIsK Assessment MethodS for Europe (MATRIX).
NASA Astrophysics Data System (ADS)
Woo, Sui Chi
Quasars are known for generating luminosities of up to 1047 erg s--1 in volumes of scales smaller than 2 x 10 15 cm. The optical/UV continuum emission is generally believed to arise from a rotating accretion disk (AD) surrounding a supermassive black hole (SMBH) of Ëœ 108 MâŠ™ . Such emission can be calculated by treating the AD as a multi-temperature blackbody. While the continuum emitting region is well defined, the properties, location and kinematics of the broad emission line regions (BELRs) and broad absorption line regions (BALRs) remain unclear. On one hand, the reverberation mapping technique can give constraints on the location of the BELRs, but not the kinematics. On the other hand, the line-of-sight kinematics of the BALRs is directly observable, but their locations are not well constrained, resulting in a large range of inferred distances, from 0.01 pc to tens of kpc. Therefore, I combined observational results to investigate the geometry, size, and physical conditions of the BELRs and BALRs. I verified that the Lyalpha and CIV BELRs are located at a similar distance. Using these findings, I was able to constrain the size of the Lyalpha BELR and place a lower limit on the size of the N V BALR. I built an empirical model with the optical/UV continuum emission from the AD, the BELR from the chromosphere of the AD, and the outflowing BALR. In the continuum region, I found that over 95 percent of the total flux comes from the region at ~ 125rg, where rg is the gravitational radius of the SMBH. For the BELRs, I computed a disk-wind model with relativistic effects to explain the often-observed single-peaked BEL profiles. However, I show that such a model cannot explain the observed blue asymmetries in the high-ionization BELs or their blueshifted peaks relative to low-ionization BELs. Using results on time variability of BALR gas, and assuming the variability is caused by the gas moving perpendicular across the line-of-sight over a time scale of about a year, I conclude that the BALR gas is clumpy or filamentary, with the clumps having a size scale of ~ 10--3 pc.
Universal Scaling Laws in Quantum Theory and Cosmology
NASA Astrophysics Data System (ADS)
Rauscher, Elizabeth A.; Hurtak, James J.; Hurtak, D. E.
2013-09-01
We have developed a hyperdimensional geometry, Dn or Descartes space of dimensionality of n > 4, for our consideration n = 10. This model introduces a formation in terms of the conditions of constants as the space that allows us to calculate a unique set of scaling laws from the lower end scale of the quantum vacuum foam to the current universe. A group theoretical matrix formalism is made for the ten and eleven dimensional model of this space. For the eleven dimensional expressions of this geometry, a fundamental frequency is introduced and utilized as an additional condition on the topology. The constraints on the Dn space are imposed by the relationship of the universal constraints of nature expressed in terms of physical variables. The quantum foam picture can be related to the Fermi-Dirac vacuum model. Consideration is made for the lower limit of a universal size scaling from the Planck length, l = 10-33 cm, temporal component, t = 10-44 sec, density, 1093 gm/cm3 and additional Planck units of quantized variables. The upper limit of rotational frequency in the Dn space is given as 1043 Hz, as conditions or constraints that apply to the early universe which are expressed uniquely in terms of the universal constants, h, Planck's constant, the G, the gravitational constant and c, the velocity of light. We have developed a scaling law for cosmogenesis from the early universe to our present day universe. We plot the physical variables of the ten and eleven dimensional space versus a temporal evolution of these parameters. From this formalism, in order to maintain the compatibility of Einstein's General Relativity with the current model of cosmology, we replace Guth's inflationary model with a matter creation term. Also we have developed a fundamental scaling relationship between the "size scale" of organized matter with their associated fundamental frequency.
NRAO Astronomer Wins Max-Planck Research Award
NASA Astrophysics Data System (ADS)
2005-04-01
Dr. Christopher Carilli, a National Radio Astronomy Observatory (NRAO) astronomer in Socorro, New Mexico, has been chosen to receive the prestigious Max Planck Research Award from the Alexander von Humboldt Foundation and the Max Planck Society in Germany. Christopher Carilli Dr. Christopher Carilli Click on image for more photos CREDIT: NRAO/AUI/NSF Carilli, a radio astronomer, and German particle physicist Christof Wetterich are the 2005 recipients of the award, conferred on "one researcher working in Germany and one working abroad who have already gained an international reputation and who are expected to produce outstanding achievements in the framework of international collaboration," according to an announcement from the Humboldt Foundation. "This is a great honor for Chris, and we are proud to see him receive such important international recognition for the excellence of his research," said NRAO Director Fred K.Y. Lo. Carilli's research has focused on studying very distant galaxies in the early Universe, and a quest to find the first luminous objects, such as stars or galaxies, to emerge. His most recent interests focus on unveiling the mysteries of what cosmologists call the "Epoch of Reionization," when the first stars and galaxies ionized the neutral hydrogen that pervaded the young Universe. Carilli and his research colleagues have used NRAO's Very Large Array and other radio telescopes to discover that the molecular raw material for star formation already was present in a galaxy seen as it was about 800 million years after the Big Bang, less than 1/16 the current age of the Universe. The Max Planck Research Award provides 750,000 Euros (currently about $900,000), to be used over five years, for research. The funding is provided by the German Ministry of Education and Research. Carilli will use the funding to support young researchers and to build scientific instrumentation, with a focus on fostering radio studies of cosmic reionization and the first galaxies. "The phone call from Prof. Fruehwald, president of the Humboldt Foundation, was quite a shock, and overwhelming, but much appreciated," Carilli said. "Now I just have to make good on their investment. Fortunately, I have a lot of help. I consider this award a recognition of our team's efforts over the last few years." The team includes collaborators in Bonn, Profs. Karl Menten and Frank Bertoldi; Heidelberg, Drs. Fabian Walter and Eva Schinnerer; and in France, Dr. Pierre Cox and Prof. Alain Omont. Carilli added: "In an era of big international telescope projects, I think we have set the standard for successful international research collaborations. These folks are not only my professional colleagues, but good friends." Carilli received a B.A. in Physics and Astronomy from the University of Pennsylvania and, in 1989, a Ph.D. in Physics from the Massachusetts Institute of Technology. After serving in research positions at NRAO in Socorro, the Harvard-Smithsonian Center for Astrophysics, and Leiden Observatory in the Netherlands, Carilli joined NRAO's permanent scientific staff in 1996. He also was a visiting Humboldt fellow in Bonn in 1999. He serves on a number of scientific advisory committees, and recently was chair of the international science advisory committee for the Square Kilometer Array project. He has co-edited five books and authored numerous research papers in a wide variety of scientific journals. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Axion cold dark matter: Status after Planck and BICEP2
NASA Astrophysics Data System (ADS)
Di Valentino, Eleonora; Giusarma, Elena; Lattanzi, Massimiliano; Melchiorri, Alessandro; Mena, Olga
2014-08-01
We investigate the axion dark matter scenario (ADM), in which axions account for all of the dark matter in the Universe, in light of the most recent cosmological data. In particular, we use the Planck temperature data, complemented by WMAP E-polarization measurements, as well as the recent BICEP2 observations of B-modes. Baryon acoustic oscillation data, including those from the baryon oscillation spectroscopic survey, are also considered in the numerical analyses. We find that, in the minimal ADM scenario and for ?QCD=200 MeV, the full data set implies that the axion mass ma=82.2±1.1 ?eV [corresponding to the Peccei-Quinn symmetry being broken at a scale fa=(7.54±0.10)×1010 GeV], or ma=76.6±2.6 ?eV [fa=(8.08±0.27)×1010 GeV] when we allow for a nonstandard effective number of relativistic species Neff. We also find a 2? preference for Neff>3.046. The limit on the sum of neutrino masses is ?m?<0.25 eV at 95% C.L. for Neff=3.046, or ?m?<0.47 eV when Neff is a free parameter. Considering extended scenarios where either the dark energy equation-of-state parameter w, the tensor spectral index nt, or the running of the scalar index dns/dlnk is allowed to vary does not change significantly the axion mass-energy density constraints. However, in the case of the full data set exploited here, there is a preference for a nonzero tensor index or scalar running, driven by the different tensor amplitudes implied by the Planck and BICEP2 observations. We also study the effect on our estimates of theoretical uncertainties, in particular the imprecise knowledge of the QCD scale ?QCD, in the calculation of the temperature-dependent axion mass. We find that in the simplest ADM scenario the Planck +WP data set implies that the axion mass ma=63.7±1.2 ?eV for ?QCD=400 MeV. We also comment on the possibility that axions do not make up for all the dark matter, or that the contribution of string-produced axions has been grossly underestimated; in that case, the values that we find for the mass can conservatively be considered as lower limits. Dark matter axions with mass in the 60-80 ?eV (corresponding to an axion-photon coupling Ga??˜10-14 GeV-1) range can, in principle, be detected by looking for axion-to-photon conversion occurring inside a tunable microwave cavity permeated by a high-intensity magnetic field, and operating at a frequency ? ?15-20 GHz. This is out of the reach of current experiments like the axion dark matter experiment (limited to a maximum frequency of a few GHzs), but is, on the other hand, within the reach of the upcoming axion dark matter experiment-high frequency experiment that will explore the 4-40 GHz frequency range and then be sensitive to axion masses up to ˜160 ?eV.
Cosmic ray knee and new physics at the TeV scale
BarcelÃ³, Roberto; Masip, Manuel; Mastromatteo, Iacopo E-mail: masip@ugr.es
2009-06-01
We analyze the possibility that the cosmic ray knee appears at an energy threshold where the proton-dark matter cross section becomes large due to new TeV physics. It has been shown that such interactions could break the proton and produce a diffuse gamma ray flux consistent with MILAGRO observations. We argue that this hypothesis implies knees that scale with the atomic mass for the different nuclei, as KASKADE data seem to indicate. We find that to explain the change in the spectral index in the flux from E{sup âˆ’2.7} to E{sup âˆ’3.1} the cross section must grow like E{sup 0.4+Î²} above the knee, where Î² = 0.3â€“0.6 parametrizes the energy dependence of the age (Ï„âˆE{sup âˆ’Î²}) of the cosmic rays reaching the Earth. The hypothesis also requires mbarn cross sections (that could be modelled with TeV gravity) and large densities of dark matter (that could be clumped around the sources of cosmic rays). We argue that neutrinos would also exhibit a threshold at E = (m{sub Ï‡}/m{sub p}) E{sub knee} â‰ˆ 10{sup 8} GeV where their interaction with a nucleon becomes strong. Therefore, the observation at ICECUBE or ANITA of standard neutrino events above this threshold would disprove the scenario.
Cuevas, Ricardo; SÃ¡nchez-Oliva, David; Bartholomew, Kimberley J; Ntoumanis, Nikos; GarcÃa-Calvo, TomÃ¡s
2015-01-01
Drawing from self-determination theory (SDT; Deci & Ryan, 1985; Ryan & Deci, 2002), the aim of the study was to adapt and validate a Spanish version of the Psychological Need Thwarting Scale (PNTS; Bartholomew, Ntoumanis, Ryan, & ThÃ¸rgersen-Ntoumani, 2011) in the educational domain. Psychological need thwarting and burnout were assessed in 619 physical education teachers from several high schools in Spain. Overall, the adapted measure demonstrated good content, factorial (Ï‡2/gl = 4.87, p < .01, CFI = .95, IFI = .96, TLI = .94, RMSEA = .08, SRMR = .05), and external validity, as well as internal consistency (Î± â‰¥ .81) and invariance across gender. Moreover, burnout was strongly predicted by teachers' perceptions of competence (Î² = .53, p â‰¤ .01), autonomy (Î² = .34, p â‰¤ .01), and relatedness (Î² = .31, p â‰¤ .01) need thwarting. In conclusion, these results support the Spanish version of the PNTS as a valid and reliable instrument for assessing the understudied concept of psychological need thwarting in teachers. PMID:26190416
Cosmic ray knee and new physics at the TeV scale
NASA Astrophysics Data System (ADS)
Barceló, Roberto; Masip, Manuel; Mastromatteo, Iacopo
2009-06-01
We analyze the possibility that the cosmic ray knee appears at an energy threshold where the proton-dark matter cross section becomes large due to new TeV physics. It has been shown that such interactions could break the proton and produce a diffuse gamma ray flux consistent with MILAGRO observations. We argue that this hypothesis implies knees that scale with the atomic mass for the different nuclei, as KASKADE data seem to indicate. We find that to explain the change in the spectral index in the flux from E-2.7 to E-3.1 the cross section must grow like E0.4+? above the knee, where ? = 0.3-0.6 parametrizes the energy dependence of the age (?proptoE-?) of the cosmic rays reaching the Earth. The hypothesis also requires mbarn cross sections (that could be modelled with TeV gravity) and large densities of dark matter (that could be clumped around the sources of cosmic rays). We argue that neutrinos would also exhibit a threshold at E = (m?/mp) Eknee approx 108 GeV where their interaction with a nucleon becomes strong. Therefore, the observation at ICECUBE or ANITA of standard neutrino events above this threshold would disprove the scenario.
Cosmological evidence for leptonic asymmetry after Planck
Caramete, A.; Popa, L.A. E-mail: lpopa@spacescience.ro
2014-02-01
Recently, the PLANCK satellite found a larger and most precise value of the matter energy density, that impacts on the present values of other cosmological parameters such as the Hubble constant H{sub 0}, the present cluster abundances S{sub 8}, and the age of the Universe t{sub U}. The existing tension between PLANCK determination of these parameters in the frame of the base Î›CDM model and their determination from other measurements generated lively discussions, one possible interpretation being that some sources of systematic errors in cosmological measurements are not completely understood. An alternative interpretation is related to the fact that the CMB observations, that probe the high redshift Universe are interpreted in terms of cosmological parameters at present time by extrapolation within the base Î›CDM model that can be inadequate or incomplete. In this paper we quantify this tension by exploring several extensions of the base Î›CDM model that include the leptonic asymmetry. We set bounds on the radiation content of the Universe and neutrino properties by using the latest cosmological measurements, imposing also self-consistent BBN constraints on the primordial helium abundance. For all asymmetric cosmological models we find the preference of cosmological data for smaller values of active and sterile neutrino masses. This increases the tension between cosmological and short baseline neutrino oscillation data that favors a sterile neutrino with the mass of around 1 eV. For the case of degenerate massive neutrinos, we find that the discrepancies with the local determinations of H{sub 0}, and t{sub U} are alleviated at âˆ¼ 1.3Ïƒ level while S{sub 8} is in agreement with its determination from CFHTLenS survey data at âˆ¼ 1Ïƒ and with the prediction of cluster mass-observation relation at âˆ¼ 0.5Ïƒ. We also find 2Ïƒ statistical preference of the cosmological data for the leptonic asymmetric models involving three massive neutrino species and neutrino direct mass hierarchy. We conclude that the current cosmological data favor the leptonic asymmetric extension of the base Î›CDM model and normal neutrino mass hierarchy over the models with additional sterile neutrino species and/or inverted neutrino mass hierarchy.
Cohort Profile of the Goals Study: A Large-Scale Research of Physical Activity in Dutch Students
ERIC Educational Resources Information Center
de Groot, Renate H. M.; van Dijk, Martin L.; Kirschner, Paul A.
2015-01-01
The GOALS study (Grootschalig Onderzoek naar Activiteiten van Limburgse Scholieren [Large-scale Research of Activities in Dutch Students]) was set up to investigate possible associations between different forms of physical activity and inactivity with cognitive performance, academic achievement and mental well-being. It was conducted at a…
Cohort Profile of the Goals Study: A Large-Scale Research of Physical Activity in Dutch Students
ERIC Educational Resources Information Center
de Groot, Renate H. M.; van Dijk, Martin L.; Kirschner, Paul A.
2015-01-01
The GOALS study (Grootschalig Onderzoek naar Activiteiten van Limburgse Scholieren [Large-scale Research of Activities in Dutch Students]) was set up to investigate possible associations between different forms of physical activity and inactivity with cognitive performance, academic achievement and mental well-being. It was conducted at aâ€¦
ERIC Educational Resources Information Center
Hampden-Thompson, Gillian; Lubben, Fred; Bennett, Judith
2011-01-01
Quantitative secondary analysis of large-scale data can be combined with in-depth qualitative methods. In this paper, we discuss the role of this combined methods approach in examining the uptake of physics and chemistry in post compulsory schooling for students in England. The secondary data analysis of the National Pupil Database (NPD) served…
ERIC Educational Resources Information Center
Hampden-Thompson, Gillian; Lubben, Fred; Bennett, Judith
2011-01-01
Quantitative secondary analysis of large-scale data can be combined with in-depth qualitative methods. In this paper, we discuss the role of this combined methods approach in examining the uptake of physics and chemistry in post compulsory schooling for students in England. The secondary data analysis of the National Pupil Database (NPD) servedâ€¦
The Planck-LFI Radiometer Electronics Box Assembly
NASA Astrophysics Data System (ADS)
Herreros, J. M.; Gómez, M. F.; Rebolo, R.; Chulani, H.; Rubiño-Martin, J. A.; Hildebrandt, S. R.; Bersanelli, M.; Butler, R. C.; Miccolis, M.; Peña, A.; Pereira, M.; Torrero, F.; Franceschet, C.; López, M.; Alcalá, C.
2009-12-01
The Radiometer Electronics Box Assembly (REBA) is the control and data processing on board computer of the Low Frequency Instrument (LFI) of the Planck mission (ESA). The REBA was designed and built incorporating state of the art processors, communication interfaces and real time operating system software in order to meet the scientific performance of the LFI. We present a technical summary of the REBA, including a physical, functional, electrical, mechanical and thermal description. Aspects of the design and development, the assembly, the integration and the verification of the equipment are provided. A brief description of the LFI on board software is given including the Low-Level Software and the main functionalities and architecture of the Application Software. The compressor module, which has been developed as an independent product, later integrated in the application, is also described in this paper. Two identical engineering models EM and AVM, the engineering qualification model EQM, the flight model FM and flight spare have been manufactured and tested. Low-level and Application software have been developed. Verification activities demonstrated that the REBA hardware and software fulfil all the specifications and perform as required for flight operation.
Sloan, D.P.
1983-05-01
Morel (1981) has developed multigroup Legendre cross sections suitable for input to standard discrete ordinates transport codes for performing charged-particle Fokker-Planck calculations in one-dimensional slab and spherical geometries. Since the Monte Carlo neutron transport code, MORSE, uses the same multigroup cross section data that discrete ordinates codes use, it was natural to consider whether Fokker-Planck calculations could be performed with MORSE. In order to extend the unique three-dimensional forward or adjoint capability of MORSE to Fokker-Planck calculations, the MORSE code was modified to correctly treat the delta-function scattering of the energy operator, and a new set of physically acceptable cross sections was derived to model the angular operator. Morel (1979) has also developed multigroup Legendre cross sections suitable for input to standard discrete ordinates codes for performing electron Boltzmann calculations. These electron cross sections may be treated in MORSE with the same methods developed to treat the Fokker-Planck cross sections. The large magnitude of the elastic scattering cross section, however, severely increases the computation or run time. It is well-known that approximate elastic cross sections are easily obtained by applying the extended transport (or delta function) correction to the Legendre coefficients of the exact cross section. An exact method for performing the extended transport cross section correction produces cross sections which are physically acceptable. Sample calculations using electron cross sections have demonstrated this new technique to be very effective in decreasing the large magnitude of the cross sections.
NASA Astrophysics Data System (ADS)
Chen, X.; Chary, R.; Pearson, T. J.; McGehee, P.; Fowler, J. W.; Helou, G.
2016-03-01
The Planck Early Release Compact Source Catalogue (ERCSC) includes nine lists of highly reliable sources, individually extracted at each of the nine Planck frequency channels. To facilitate the study of the Planck sources, especially their spectral behaviour across the radio/infrared frequencies, we provide a "bandmerged" catalogue of the ERCSC sources. This catalogue consists of 15191 entries, with 79 sources detected in all nine frequency channels of Planck and 6818 sources detected in only one channel. We describe the bandmerging algorithm, including the various steps used to disentangle sources in confused regions. The multi-frequency matching allows us to develop spectral energy distributions of sources between 30 and 857 GHz, in particular across the 100 GHz band, where the energetically important CO J=1â†’0 line enters the Planck bandpass. We find Ëœ3 - 5Ïƒ evidence for contribution to the 100 GHz intensity from foreground CO along the line of sight to 147 sources with |b| > 30Â°. The median excess contribution is 4.5Â±0.9% of their measured 100 GHz flux density which cannot be explained by calibration or beam uncertainties. This translates to 0.5Â±0.1 K km s-1 of CO which must be clumped on the scale of the Planck 100 GHz beam, i.e., Ëœ10'. If this is due to a population of low mass (Ëœ15 MâŠ™) molecular gas clumps, the total mass in these clumps may be more than 2000 MâŠ™. Further, high-spatial-resolution, ground-based observations of the high-latitude sky will help shed light on the origin of this diffuse, clumpy CO emission.
Ismail, Norliana; Hairi, Farizah; Choo, Wan Yuen; Hairi, Noran Naqiah; Peramalah, Devi; Bulgiba, Awang
2015-11-01
Physical Activity Scale for the Elderly (PASE) is among the frequently used self-reported physical activity assessment for older adults. This study aims to assess the validity and reliability of a Malay version of this scale (PASE-M). A total of 408 community-dwelling older adults were enrolled. Concurrent validity was evaluated by Spearman's rank correlation coefficients between PASE with physical and psychosocial measures. Test-retest reliability was determined by the intraclass correlation coefficient (ICC). The mean PASE-M scores at baseline and follow-up were 94.96 (SD 62.82) and 92.19 (SD 64.02). Fair to moderate correlation were found between PASE-M and physical function scale, IADL (rs = 0.429, P < .001), walking speed (rs = 0.270, P < .001), grip strength (rs = 0.313-0.339, P < .001), and perceived health status (rs = -0.124, P = .016). Test-retest reliability was adequate (ICC = 0.493). The Malay version of PASE was shown to have acceptable validity and reliability. This tool is useful for assessing the physical activity level of elderly Malaysians. PMID:26058900
Hoehner, Christine M.; Hallal, Pedro C.; Reis, Rodrigo S.; Simoes, Eduardo J.; Malta, Deborah C.; Pratt, Michael; Brownson, Ross C.
2013-01-01
The global health burden due to physical inactivity is enormous and growing. There is a need to consider new ways of generating evidence and to identify the role of government in promoting physical activity at the population level. In this paper, we summarize key findings from a large-scale cross-national collaboration to understand physical activity promotion in Brazil. We describe the main aspects of the partnership of Project GUIA (Guide for Useful Interventions for Activity in Brazil and Latin America) that sustained the collaborative effort for eight years and describe how the evidence gathered from the collaboration triggered political action in Brazil to scale up a physical activity intervention at the national level. Project GUIA is a cross-national multidisciplinary research partnership designed to understand and evaluate current efforts for physical activity promotion at the community level in Latin America. This example of scaling up is unprecedented for promoting health in the region and is an example that must be followed and evaluated. PMID:24323944
NASA Astrophysics Data System (ADS)
Planck Collaboration; Arnaud, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Buemi, C. S.; Burigana, C.; Cardoso, J.-F.; Casassus, S.; Catalano, A.; Cerrigone, L.; Chamballu, A.; Chiang, H. C.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hora, J. L.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Leto, P.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Martin, P. G.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Peel, M.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Procopio, P.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Trigilio, C.; Tristram, M.; Trombetti, T.; Tucci, M.; Umana, G.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Zacchei, A.; Zijlstra, A.; Zonca, A.
2015-01-01
Late stages of stellar evolution are characterized by copious mass-loss events whose signature is the formation of circumstellar envelopes (CSE). Planck multi-frequency measurements have provided relevant information on a sample of Galactic planetary nebulae (PNe) in the important and relatively unexplored observational band between 30 and 857 GHz. Planck enables the assembly of comprehensive PNe spectral energy distributions (SEDs) from radio to far-IR frequencies. Modelling the derived SEDs provides us with information on physical properties of CSEs and the mass content of both main components: ionized gas, traced by the free-free emission at cm-mm waves; and thermal dust, traced by the millimetre and far-IR emission. In particular, the amount of ionized gas and dust has been derived here. Such quantities have also been estimated for the very young PN CRL 618, where the strong variability observed in its radio and millimetre emission has previously prevented constructing its SED. A morphological study of the Helix Nebula was also performed. Planck maps reveal, for the first time, the spatial distribution of the dust inside the envelope, allowing us to identify different components, the most interesting of which is a very extended component (up to 1 pc) that may be related to a region where the slow expanding envelope is interacting with the surrounding interstellar medium.
NASA Astrophysics Data System (ADS)
Malinen, Johanna
2016-01-01
The nearby high-latitude cloud L1642 is one of only two known very high latitude (|b| > 30 deg) clouds actively forming stars. This cloud is a rare example of star formation in isolated conditions, and can reveal important details of star formation in general, e.g., of the effect of magnetic fields. We compare Herschel dust emission structures and magnetic field orientation revealed by Planck polarization maps in L1642, and also combine these with dynamic information from molecular line observations. The high-resolution Herschel data reveal a complex structure including a dense, compressed central blob with elongated extensions, low density striations, "fishbone" like structures with a spine and perpendicular striations, and a spiraling "tail". The Planck polarization data reveal an ordered magnetic field that pervades the cloud and is aligned with the surrounding low density striations. We show that there is a complex interplay between the cloud structure and large scale magnetic fields revealed by Planck polarization data at 10' resolution. This suggests that the magnetic field is closely linked to the formation and evolution of the cloud. We see a clear transition from aligned to perpendicular structures approximately at a column density of NH = 2x10^21 cm-2. We conclude that Planck polarization data revealing the large scale magnetic field orientation can be very useful even when comparing to the finest structures in higher resolution data, e.g. Herschel at ~18" resolution.
A statistical physics approach to scale-free networks and their behaviors
NASA Astrophysics Data System (ADS)
Wu, Fang
This thesis studies five problems of network properties from a unified local-to-global viewpoint of statistical physics: (1) We propose an algorithm that allows the discovery of communities within graphs of arbitrary size, based on Kirchhoff theory of electric networks. Its time complexity scales linearly with the network size. We additionally show how this algorithm allows for the swift discovery of the community surrounding a given node without having to extract all the communities out of a graph. (2) We present a dynamical theory of opinion formation that takes explicitly into account the structure of the social network in which individuals are embedded. We show that the weighted fraction of the population that holds a certain opinion is a martingale. We show that the importance of a given node is proportional to its degree. We verify our predictions by simulations. (3) We show that, when the information transmissibility decays with distance, the epidemic spread on a scale-free network has a finite threshold. We test our predictions by measuring the spread of messages in an organization and by numerical experiments. (4) Suppose users can switch between two behaviors when entering a queueing system: one that never restarts an initial request and one that restarts infinitely often. We show the existence of two thresholds. When the system load is below the lower threshold, it is always better off to be impatient. When above, it is always better off to be patient. Between the two thresholds there exists a homogeneous Nash equilibrium with non-trivial properties. We obtain exact solutions for the two thresholds. (5) We study the endogenous dynamics of reputations in a system consisting of firms with long horizons that provide services with varying levels of quality, and customers who assign to them reputations on the basis of the quality levels that they experience when interacting with them. We show that the dynamics can lead to either well defined equilibria or persistent nonlinear oscillations in the number of customers visiting a firm, implying unstable reputations. We establish the stable criteria.
Principal component analysis of the reionization history from Planck 2015 data
NASA Astrophysics Data System (ADS)
Dai, Wei-Ming; Guo, Zong-Kuan; Cai, Rong-Gen
2015-12-01
The simple assumption of an instantaneous reionization of the Universe may bias estimates of cosmological parameters. In this paper a model-independent principal component method for the reionization history is applied to give constraints on the cosmological parameters from recent Planck 2015 data. We find that the Universe is not completely reionized at redshifts z ?8.5 at 95% C.L. Both the reionization optical depth and matter fluctuation amplitude are higher than but consistent with those obtained in the standard instantaneous reionization scheme. The high estimated value of the matter fluctuation amplitude strengthens the tension between Planck cosmic microwave background observations and some astrophysical data, such as cluster counts and weak lensing. The tension can be significantly relieved if the neutrino masses are allowed to vary. Thanks to a high scalar spectral index, the low-scale spontaneously broken supersymmetry inflationary model can fit the data well, which is marginally disfavored at 95% C.L. in the Planck analysis.
Lu Benzhuo; Andrew McCammon, J.; Zhou, Y.C.
2010-09-20
In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for simulating electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems.
The Simultaneous Medicina-Planck Experiment: data acquisition, reduction and first results
NASA Astrophysics Data System (ADS)
Procopio, P.; Massardi, M.; Righini, S.; Zanichelli, A.; Ricciardi, S.; Libardi, P.; Burigana, C.; Cuttaia, F.; Mack, K.-H.; Terenzi, L.; Villa, F.; Bonavera, L.; Morgante, G.; Trigilio, C.; Trombetti, T.; Umana, G.
2011-10-01
The Simultaneous Medicina-Planck Experiment (SiMPlE) is aimed at observing a selected sample of 263 extragalactic and Galactic sources with the Medicina 32-m single-dish radio telescope in the same epoch as the Planck satellite observations. The data, acquired with a frequency coverage down to 5 GHz and combined with Planck at frequencies above 30 GHz, will constitute a useful reference catalogue of bright sources over the whole Northern hemisphere. Furthermore, source observations performed in different epochs and comparisons with other catalogues will allow the investigation of source variabilities on different time-scales. In this work, we describe the sample selection, the ongoing data acquisition campaign, the data reduction procedures, the developed tools and the comparison with other data sets. We present 5 and 8.3 GHz data for the SiMPlE Northern sample, consisting of 79 sources with Î´â‰¥ 45Â° selected from our catalogue and observed during the first 6 months of the project. A first analysis of their spectral behaviour and long-term variability is also presented.
The Atacama Cosmology Telescope: cross correlation with Planck maps
NASA Astrophysics Data System (ADS)
Louis, Thibaut; Addison, Graeme E.; Hasselfield, Matthew; Bond, J. Richard; Calabrese, Erminia; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dünner, Rolando; Gralla, Megan; Hajian, Amir; Hincks, Adam D.; Hlozek, Renée; Huffenberger, Kevin; Infante, Leopoldo; Kosowsky, Arthur; Marriage, Tobias A.; Moodley, Kavilan; Næss, Sigurd; Niemack, Michael D.; Nolta, Michael R.; Page, Lyman A.; Partridge, Bruce; Sehgal, Neelima; Sievers, Jonathan L.; Spergel, David N.; Staggs, Suzanne T.; Walter, Benjamin Z.; Wollack, Edward J.
2014-07-01
We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping regions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACT × Planck cross-spectra. We use these cross-correlations to measure the calibration of the ACT data at 148 and 218 GHz relative to Planck, to 0.7% and 2% precision respectively. We find no evidence for anisotropy in the calibration parameter. We compare the Planck 353 GHz power spectrum with the measured amplitudes of dust and cosmic infrared background (CIB) of ACT data at 148 and 218 GHz. We also compare planet and point source measurements from the two experiments.
Determining Planck's Constant Using a Light-emitting Diode.
ERIC Educational Resources Information Center
Sievers, Dennis; Wilson, Alan
1989-01-01
Describes a method for making a simple, inexpensive apparatus which can be used to determine Planck's constant. Provides illustrations of a circuit diagram using one or more light-emitting diodes and a BASIC computer program for simplifying calculations. (RT)
The Atacama Cosmology Telescope: cross correlation with Planck maps
Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna; NÃ¦ss, Sigurd; Addison, Graeme E.; Hincks, Adam D.; Hasselfield, Matthew; Hlozek, RenÃ©e; Bond, J. Richard; Hajian, Amir; Das, Sudeep; Devlin, Mark J.; DÃ¼nner, Rolando; Infante, Leopoldo; Gralla, Megan; Marriage, Tobias A.; Huffenberger, Kevin; Kosowsky, Arthur; Moodley, Kavilan; Niemack, Michael D.; and others
2014-07-01
We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping regions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACT Ã— Planck cross-spectra. We use these cross-correlations to measure the calibration of the ACT data at 148 and 218 GHz relative to Planck, to 0.7% and 2% precision respectively. We find no evidence for anisotropy in the calibration parameter. We compare the Planck 353 GHz power spectrum with the measured amplitudes of dust and cosmic infrared background (CIB) of ACT data at 148 and 218 GHz. We also compare planet and point source measurements from the two experiments.
Gómez, Aina G; Bárcena, Javier F; Juanes, José A; Ondiviela, Bárbara; Sámano, María L
2014-04-01
Physical descriptors that characterize Heavily Modified Water Bodies (HMWB) based on the presence of ports should assess the degree of water exchange. The main goal of this study is to determine the optimal procedure for estimating Transport Time Scales (TTS) as physical descriptors in order to characterize and manage HMWB near ports in coastal zones. Flushing Time (FT) and Residence Time (RT), using different approaches-analytical and exponential function methods-and different hydrodynamic scenarios, were computed using numerical models. El Musel (Port of Gijon) was selected to test different transport time scales (FT and RT), methods (analytical and exponential function methods) and hydrodynamic conditions (wind and tidal forcings). FT, estimated by the exponential function method while taking into account a real tidal wave and a mean annual regime of wind as hydrodynamic forcing, was determined to be the optimal physical descriptor to characterize HMWB. PMID:24568939
Measurement of CIB power spectra with CAM-SPEC from Planck HFI maps
NASA Astrophysics Data System (ADS)
Mak, Suet Ying; Challinor, Anthony; Efstathiou, George; Lagache, Guilaine
2015-08-01
We present new measurements of the cosmic infrared background (CIB) anisotropies and its first likelihood using Planck HFI data at 353, 545, and 857 GHz. The measurements are based on cross-frequency power spectra and likelihood analysis using the CAM-SPEC package, rather than map based template removal of foregrounds as done in previous Planck CIB analysis. We construct the likelihood of the CIB temperature fluctuations, an extension of CAM-SPEC likelihood as used in CMB analysis to higher frequency, and use it to drive the best estimate of the CIB power spectrum over three decades in multiple moment, l, covering 50 ? l ? 2500. We adopt parametric models of the CIB and foreground contaminants (Galactic cirrus, infrared point sources, and cosmic microwave background anisotropies), and calibrate the dataset uniformly across frequencies with known Planck beam and noise properties in the likelihood construction. We validate our likelihood through simulations and extensive suite of consistency tests, and assess the impact of instrumental and data selection effects on the final CIB power spectrum constraints. Two approaches are developed for interpreting the CIB power spectrum. The first approach is based on simple parametric model which model the cross frequency power using amplitudes, correlation coefficients, and known multipole dependence. The second approach is based on the physical models for galaxy clustering and the evolution of infrared emission of galaxies. The new approaches fit all auto- and cross- power spectra very well, with the best fit of ?2? = 1.04 (parametric model). Using the best foreground solution, we find that the cleaned CIB power spectra are in good agreement with previous Planck and Herschel measurements.
Evolution of large-scale plasma structures in comets: Kinematics and physics
NASA Technical Reports Server (NTRS)
Brandt, John C.
1993-01-01
Cometary and solar wind data from December 1985 through April 1986 are presented for the purpose of determining the solar wind conditions associated with comet plasma tail disconnection events (DE's). The cometary data are from The International Halley Watch Atlas of Large-Scale Phenomena (Brandt, Niedner, and Rahe, 1992). In addition, we present the kinematic analysis of 4 DE's, those of Dec. 13.5 and 31.2, 1985, and Feb. 21.7 and 28.7, 1986. The circumstances of these DE's clearly illustrate the need to analyze DE's in groups. In situ solar wind measurements from IMP-8, ICE, and PVO were used to construct the variation of solar wind speed, density, and dynamic pressure during this interval. Data from these same spacecraft plus Vega-1 were used to determine the time of 48 current sheet crossings. These data were fitted to heliospheric current sheet curves extrapolated from the corona into the heliosphere in order to determine the best-fit source surface radius for each Carrington rotation. Comparison of the solar wind conditions and 16 DE's in Halley's comet (the four DE's discussed in this paper and 12 DE's in the literature) leaves little doubt that DE's are associated primarily with crossings of the heliospheric current sheet and apparently not with any other property of the solar wind. If we assume that there is a single or primary physical mechanism and that Halley's DE's are representative, efforts at simulation should concentrate on conditions at current sheet crossings. The mechanisms consistent with this result are sunward magnetic reconnection and tailward magnetic reconnection, if tailward reconnection can be triggered by the sector boundary crossing.
The Development and Validation of the Physical Self-Concept Scale for Older Adults
ERIC Educational Resources Information Center
Hsu, Ya-Wen; Lu, Frank Jing-Horng
2013-01-01
Physical self-concept plays a central role in older adults' physical health, mental health and psychological well-being; however, little attention has been paid to the underlying dimensions of physical self-concept in the elderly. The purpose of this study was to develop and validate a new measurement for older adults. First, a qualitativeâ€¦
Detecting primordial B-modes after Planck
NASA Astrophysics Data System (ADS)
Creminelli, Paolo; LÃ³pez Nacir, Diana; SimonoviÄ‡, Marko; Trevisan, Gabriele; Zaldarriaga, Matias
2015-11-01
We update the forecasts for the measurement of the tensor-to-scalar ratio r for various ground-based experiments (AdvACT, CLASS, Keck/BICEP3, Simons Array, SPT-3G), balloons (EBEX 10k and Spider) and satellites (CMBPol, COrE and LiteBIRD), taking into account the recent Planck data on polarized dust and using a component separation method. The forecasts do not change significantly with respect to previous estimates when at least three frequencies are available, provided foregrounds can be accurately described by few parameters. We argue that a theoretically motivated goal for future experiments is r~2Ã—10-3, and that this is achievable if the noise is reduced to ~1 Î¼K-arcmin and lensing is reduced to 10% in power. We study the constraints experiments will be able to put on the frequency and l-dependence of the tensor signal as a check of its primordial origin. Futuristic ground-based and balloon experiments can have good constraints on these parameters, even for r~2Ã—10-3. For the same value of r, satellites will marginally be able to detect the presence of the recombination bump, the most distinctive feature of the primordial signal.
Post-Planck dark energy constraints
NASA Astrophysics Data System (ADS)
Hazra, Dhiraj Kumar; Majumdar, Subhabrata; Pal, Supratik; Panda, Sudhakar; Sen, Anjan A.
2015-04-01
We constrain plausible dark energy models using the recently published cosmic microwave background (CMB) temperature anisotropy data from Planck together with WMAP9 low-? polarization data and the data from low redshift surveys. To circumvent the limitations of any particular equation of state toward describing all existing dark energy models, we work with three different equations of state covering a wider class of dark energy models and hence provide more robust and generic constraints on the dark energy behavior. We show that a possible tension exists between constraints from CMB and non-CMB observations when one allows for both phantom and nonphantom behavior for the dark energy. Further, we reconstruct the equation of state of dark energy as a function of redshift using the combined CMB and non-CMB data and show that cosmological constant behavior is disallowed at the 68.3% confidence level. A fully nonphantom history is also disallowed at the 68.3% confidence level, and a considerable fine-tuning is also needed to keep it inside the 95.5% confidence limit. This result might motivate one to construct phantom models for dark energy, which may be achievable in the presence of higher derivative operators as in string theory. However, for a theoretical model that allows only nonphantom behavior, both CMB and non-CMB data sets agree on the dark energy constraint with the mean equation of state being very close to the cosmological constant.
Planck-LFI radiometers' spectral response
NASA Astrophysics Data System (ADS)
Zonca, A.; Franceschet, C.; Battaglia, P.; Villa, F.; Mennella, A.; D'Arcangelo, O.; Silvestri, R.; Bersanelli, M.; Artal, E.; Butler, R. C.; Cuttaia, F.; Davis, R. J.; Galeotta, S.; Hughes, N.; Jukkala, P.; KilpiÃ¤, V.-H.; Laaninen, M.; Mandolesi, N.; Maris, M.; Mendes, L.; Sandri, M.; Terenzi, L.; Tuovinen, J.; Varis, J.; Wilkinson, A.
2009-12-01
The Low Frequency Instrument (LFI) is an array of pseudo-correlation radiometers on board the Planck satellite, the ESA mission dedicated to precision measurements of the Cosmic Microwave Background. The LFI covers three bands centred at 30, 44 and 70 GHz, with a goal bandwidth of 20% of the central frequency. The characterization of the broadband frequency response of each radiometer is necessary to understand and correct for systematic effects, particularly those related to foreground residuals and polarization measurements. In this paper we present the measured band shape of all the LFI channels and discuss the methods adopted for their estimation. The spectral characterization of each radiometer was obtained by combining the measured spectral response of individual units through a dedicated RF model of the LFI receiver scheme. As a consistency check, we also attempted end-to-end spectral measurements of the integrated radiometer chain in a cryogenic chamber. However, due to systematic effects in the measurement setup, only