Science.gov

Sample records for planck scale physics

  1. Physics at the Planck scale

    SciTech Connect

    Gaillard, M.K. California Univ., Berkeley, CA . Dept. of Physics)

    1990-12-06

    Effective supergravity theories suggested by superstrings can be explored to determine their potential for successfully describing both observed physics at zero temperature and an inflationary cosmology. An important ingredient in this study is the dynamics of gaugino condensation, which has been the subject of recent activity. 33 refs., 2 figs.

  2. Planck scale effects in neutrino physics

    NASA Astrophysics Data System (ADS)

    Akhmedov, E. K.; Senjanovic, G.; Tao, Zhi-Jan; Berezhiani, Z. G.

    1992-08-01

    We study the phenomenology and cosmology of the Majoron (flavon) models of one inert neutrino and three active ones. We pay special attention to the possible (almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton charge. Using Planck scale physics effects, which provide the breaking of the lepton charge, we show how, in this picture, one can incorporate the solutions to some of the central issues in neutrino physics, such as the solar and atmospheric neutrino puzzles, dark matter, and a 17 keV neutrino. These gravitation effects induce tiny Majorana mass terms for neutrinos and considerable masses for flavons. The cosmological demand for the sufficiently fast decay of flavons implies a lower limit on the electron neutrino mass in the range of 0.1-1 eV.

  3. Planck scale effects in neutrino physics

    NASA Astrophysics Data System (ADS)

    Akhmedov, Eugeni Kh.; Berezhiani, Zurab G.; Senjanović, Goran; Tao, Zhijian

    1993-04-01

    We study the phenomenology and cosmology of the Majoron (flavon) models of three active and one inert neutrino paying special attention to the possible (almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton charge. Using Planck scale physics effects which provide the breaking of the lepton charge, we show how in this picture one can incorporate the solutions to some of the central issues in neutrino physics such as the solar and atmospheric neutrino puzzles and the dark matter problem with the possible existence of a heavy (1-10 keV) neutrino. These gravitational effects induce tiny Majorana mass terms for neutrinos and considerable masses for flavons. The cosmological demand for the sufficiently fast decay of flavons implies a lower limit on the electron-neutrino mass in the range of 0.1-1 eV.

  4. Physics Meets Philosophy at the Planck Scale

    NASA Astrophysics Data System (ADS)

    Callender, Craig; Huggett, Nick

    2001-04-01

    Preface; 1. Introduction Craig Callendar and Nick Huggett; Part I. Theories of Quantum Gravity and their Philosophical Dimensions: 2. Spacetime and the philosophical challenge of quantum gravity Jeremy Butterfield and Christopher Isham; 3. Naive quantum gravity Steven Weinstein; 4. Quantum spacetime: what do we know? Carlo Rovelli; Part II. Strings: 5. Reflections on the fate of spacetime Edward Witten; 6. A philosopher looks at string theory Robert Weingard; 7. Black holes, dumb holes, and entropy William G. Unruh; Part III. Topological Quantum Field Theory: 8. Higher-dimensional algebra and Planck scale physics John C. Baez; Part IV. Quantum Gravity and the Interpretation of General Relativity: 9. On general covariance and best matching Julian B. Barbour; 10. Pre-Socratic quantum gravity Gordon Belot and John Earman; 11. The origin of the spacetime metric: Bell's 'Lorentzian Pedagogy' and its significance in general relativity Harvey R. Brown and Oliver Pooley; Part IV. Quantum Gravity and the Interpretation of Quantum Mechanics: 12. Quantum spacetime without observers: ontological clarity and the conceptual foundations of quantum gravity Sheldon Goldstein and Stefan Teufel; 13. On gravity's role in quantum state reduction Roger Penrose; 14. Why the quantum must yield to gravity Joy Christian.

  5. Cosmological texture is incompatible with Planck-scale physics

    NASA Technical Reports Server (NTRS)

    Holman, Richard; Hsu, Stephen D. H.; Kolb, Edward W.; Watkins, Richard; Widrow, Lawrence M.

    1992-01-01

    Nambu-Goldstone modes are sensitive to the effects of physics at energies comparable to the scale of spontaneous symmetry breaking. We show that as a consequence of this the global texture proposal for structure formation requires rather severe assumptions about the nature of physics at the Planck scale.

  6. Beyond the Planck Scale

    SciTech Connect

    Giddings, Steven B.

    2009-12-15

    I outline motivations for believing that important quantum gravity effects lie beyond the Planck scale at both higher energies and longer distances and times. These motivations arise in part from the study of ultra-high energy scattering, and also from considerations in cosmology. I briefly summarize some inferences about such ultra-planckian physics, and clues we might pursue towards the principles of a more fundamental theory addressing the known puzzles and paradoxes of quantum gravity.

  7. Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables

    NASA Astrophysics Data System (ADS)

    Marin, Francesco; Marino, Francesco; Bonaldi, Michele; Cerdonio, Massimo; Conti, Livia; Falferi, Paolo; Mezzena, Renato; Ortolan, Antonello; Prodi, Giovanni A.; Taffarello, Luca; Vedovato, Gabriele; Vinante, Andrea; Zendri, Jean-Pierre

    2013-02-01

    Different approaches to quantum gravity, such as string theory and loop quantum gravity, as well as doubly special relativity and gedanken experiments in black-hole physics, all indicate the existence of a minimal measurable length of the order of the Planck length, . This observation has motivated the proposal of generalized uncertainty relations, which imply changes in the energy spectrum of quantum systems. As a consequence, quantum gravitational effects could be revealed by experiments able to test deviations from standard quantum mechanics, such as those recently proposed on macroscopic mechanical oscillators. Here we exploit the sub-millikelvin cooling of the normal modes of the ton-scale gravitational wave detector AURIGA, to place an upper limit for possible Planck-scale modifications on the ground-state energy of an oscillator. Our analysis calls for the development of a satisfactory treatment of multi-particle states in the framework of quantum gravity models.

  8. [Probing Planck-scale Physics with a Ne-21/He-3 Zeeman Maser

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Ne-21/He-3 Zeeman maser is a recently developed device which employs co-located ensembles of Ne-21 and He-3 atoms to provide sensitive differential measurements of the noble gas nuclear Zeeman splittings as a function of time, thereby greatly attenuating common-mode systematic effects such as uniform magnetic field variations. The Ne-21 maser will serve as a precision magnetometer to stabilize the system's static magnetic field, while the He-3 maser is used as a sensitive probe for violations of CPT and Lorentz symmetry by searching for small variations in the 3He maser frequency as the spatial orientation of the apparatus changes due to the rotation of the Earth (or placement on a rotating table). In the context of a general extension of the Standard Model of particle physics, the Ne-21/He-3 maser will provide the most sensitive search to date for CPT and Lorentz violation of the neutron: better than 10(exp -32) GeV, an improvement of more than an order of magnitude over past experiments. This exceptional precision will offer a rare opportunity to probe physics at the Planck scale. A future space-based Ne-21/He-3 maser or related device could provide even greater sensitivity to violations of CPT and Lorentz symmetry, and hence to Planck-scale physics, because of isolation from dominant systematic effects associated with ground-based operation, and because of access to different positions in space-time.

  9. Structurally Dynamic Cellular Networks as Models for Planck Scale Physics and the Quantum Vacuum

    NASA Astrophysics Data System (ADS)

    Requardt, Manfred

    Starting from the working hypothesis that both physics and the corresponding mathematics have to be described by means of discrete concepts on the Planck scale, one of the many problems one has to face in this enterprise is to find the discrete protoforms of the building blocks of our ordinary continuum physics and mathematics. We regard these continuum concepts and continuum space-time (S-T) in particular as being emergent, coarse-grained and derived relative to an underlying erratic and disordered microscopic substratum which is expected to play by quite different rules. A central role in our analysis is played by a geometric renormalization group which creates (among other things) a kind of sparse translocal network of correlations in classical continuous space-time and underlies in our view such mysterious phenomena as holography and the black hole entropy-area law. The same point of view holds for quantum theory which we also regard as a low-energy, coarse-grained continuum theory, being emergent from something more fundamental.

  10. Phenomenology of a realistic accelerating universe using only planck-scale physics

    PubMed

    Albrecht; Skordis

    2000-03-01

    Modern data are showing increasing evidence that the Universe is accelerating. So far, all attempts to account for the acceleration have required some fundamental dimensionless quantities to be extremely small. We show how a class of scalar field models (which may emerge naturally from superstring theory) can account for acceleration which starts in the present epoch with all the potential parameters O(1) in Planck units. PMID:11017213

  11. Probing the Planck Scale with Proton Decay

    SciTech Connect

    Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi; Thormeier, Marc

    2004-04-28

    We advocate the idea that proton decay may probe physics at the Planck scale instead of the GUT scale. This is possible because supersymmetric theories have dimension-5 operators that can induce proton decay at dangerous rates, even with R-parity conservation. These operators are expected to be suppressed by the same physics that explains the fermion masses and mixings. We present a thorough analysis of nucleon partial lifetimes in models with a string-inspired anomalous U(1)_X family symmetry which is responsible for the fermionic mass spectrum as well as forbidding R-parity violating interactions. Protons and neutrons can decay via R-parity conserving non-renormalizable superpotential terms that are suppressed by the Planck scale and powers of the Cabibbo angle. Many of the models naturally lead to nucleon decay near present limits without any reference to grand unification.

  12. Probing Planck-Scale physics with a Ne-21/He-3 Zeeman maser

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.; Phillips, David

    2004-01-01

    We completed a search for a sidereal annual variation in the frequency difference between co-located Xe-129 and He-3 Zeeman masers. This search sets a stringent limit of approximately 10(exp -27) GeV on boost-dependent Lorentz and CPT violation involving the neutron. A paper reporting this result has been accepted for publication in Physical Review Letters. We also completed detailed modeling and design of the next-generation dual-noble-gas Zeeman maser for an improved test of Lorentz and CPT violation, and begin construction of this device.

  13. Planck 2015 constraints on neutrino physics

    NASA Astrophysics Data System (ADS)

    Lattanzi, Massimiliano

    2016-05-01

    Anisotropies of the cosmic microwave background radiation represent a powerful probe of neutrino physics, complementary to laboratory experiments. Here I review constraints on neutrino properties from the recent 2015 data from the Planck satellite.

  14. Planck scale unification and dynamical symmetry breaking

    SciTech Connect

    Lykken, Joseph D.; Willenbrock, Scott

    1993-09-01

    We explore the possibility of unification of gauge couplings near the Planck scale in models of extended technicolor. We observe that models of the form G X SU(3)_c X SU(2)_L X U(1)_Y cannot be realized, due to the presence of massless neutral Goldstone bosons (axions) and light charged pseudo-Goldstone bosons; thus, unification of the known forces near the Planck scale cannot be achieved. The next simplest possibility, G X SU(4)_{PS} X SU(2)_L X U(1)_{T_{3R}}, cannot lead to unification of the Pati-Salam and weak gauge groups near the Planck scale. However, superstring theory provides relations between couplings at the Planck scale without the need for an underlying grand-unified gauge group, which allows unification of the SU(4)PS and SU(2)L couplings.

  15. Proton Decay and the Planck Scale

    SciTech Connect

    Larson, Daniel T.

    2004-10-02

    Even without grand unification, proton decay can be a powerful probe of physics at the highest energy scales. Supersymmetric theories with conserved R-parity contain Planck-suppressed dimension 5 operators that give important contributions tonucleon decay. These operators are likely controlled by flavor physics, which means current and near future proton decay experiments might yield clues about the fermion mass spectrum. I present a thorough analysis of nucleon partial lifetimes in supersymmetric one-flavon Froggatt-Nielsen models with a single U(1)_X family symmetry which is responsible for the fermionic mass spectrum as well as forbidding R-parity violating interactions. Many of the models naturally lead to nucleon decay near present limits without any reference to grand unification.

  16. Planck-scale corrections to Friedmann equation

    NASA Astrophysics Data System (ADS)

    Awad, Adel; Ali, Ahmed

    2014-04-01

    Recently, Verlinde proposed that gravity is an emergent phenomenon which originates from an entropic force. In this work, we extend Verlinde's proposal to accommodate generalized uncertainty principles (GUP), which are suggested by some approaches to quantum gravity such as string theory, black hole physics and doubly special relativity (DSR). Using Verlinde's proposal and two known models of GUPs, we obtain modifications to Newton's law of gravitation as well as the Friedmann equation. Our modification to the Friedmann equation includes higher powers of the Hubble parameter which is used to obtain a corresponding Raychaudhuri equation. Solving this equation, we obtain a leading Planck-scale correction to Friedmann-Robertson-Walker (FRW) solutions for the p = ωp equation of state.

  17. The Fermilab Holometer: Probing the Planck Scale

    NASA Astrophysics Data System (ADS)

    Kamai, Brittany; Chou, A.; Evans, M.; Glass, H.; Gustafson, R.; Hogan, C. J.; Lanza, R.; McCuller, L.; Meyer, S.; Richardson, J.; Sippel, A.; Steffen, J.; Stoughton, C.; Tomlin, R.; Volk, J.; Waldman, S.; Weiss, R.; Wester, W.; Holometer, Fermilab

    2013-01-01

    Experimentally probing the Planck scale can offer insights into understanding a quantum origin of spacetime. The Fermilab Holometer team will look for a new noise source arising from the Planck scale by using the precision of power-recycled Michelson interferometers. The two nested 40 meter interferometers may have a characteristic power spectral density based on the conjectured frequency independent Planckian noise. By cross-correlating the dark port signal of two nearby interferometers, we can rule out conventional noise sources that are not common to both devices. A common source of noise could be from the underlying spacetime itself. A positive result will lead to insights in theories of an emergent quantum spacetime. The Holometer team has finished construction and begun scientific commissioning. First results of the experiment are expected in Spring 2015.

  18. Physical properties of Planck Cold Dust Clumps

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Liu, T.; Meng, F.; Yuan, J.; Zhang, T.; Chen, P.; Hu, R.; Li, D.; Qin, S.; Ju, B.

    2016-05-01

    To explore physical properties of Planck cold dust clumps, 674 of the pilot samples were observed at the 13.7 m telescope of Purple Mountain Observatory (PMO) in J = 1 - 0 transitions of CO, 13CO and C18O. HCO+, HCN and N2H+ emissions were also observed with PMO 13.7 m and IRAM 30 m telescopes. They are real cold and quiescent with mean Tk ˜ 10 K and mean FWHM of 13CO (1-0) 1.27 km s-1. Column density ranges from 1020 to 1022 cm-2. Gas of the Planck clumps extends molecular space in the Milky Way. Turbulence dominates in cores. Filament structure is the majority and most of the cores are starless. Ten percent of the cores show asymmetric emission features including blue- and red- profiles. Planck clumps include different cold or low luminosity sources. Dense cores constitute an ideal sample for studying initial state of star formation while the diffuse clumps are suitable for investigating the formation of cores.

  19. Holographic Noise in Michelson Interferometers: A Direct Experimental Probe of Unification at the Planck Scale

    ScienceCinema

    Hogan, Craig

    2010-01-08

    Classical spacetime and quantum mass-energy form the basis of all of physics. They become inconsistent at the Planck scale, 5.4 times 10^{-44} seconds, which may signify a need for reconciliation in a unified theory. Although proposals for unified theories exist, a direct experimental probe of this scale, 16 orders of magnitude above Tevatron energy, has seemed hopelessly out of reach. However in a particular interpretation of holographic unified theories, derived from black hole evaporation physics, a world assembled out of Planck-scale waves displays effects of unification with a new kind of uncertainty in position at the Planck diffraction scale, the geometric mean of the Planck length and the apparatus size. In this case a new phenomenon may measurable, an indeterminacy of spacetime position that appears as noise in interferometers. The colloquium will discuss the theory of the effect, and our plans to build a holographic interferometer at Fermilab to measure it.

  20. Max Planck and the ``black year'' of German physics

    NASA Astrophysics Data System (ADS)

    Mulligan, Joseph F.

    1994-12-01

    1994 is the hundredth anniversary of what Max Planck described in 1935 as the ``black year'' of German physics. In the eight months between January 1st and September 8th 1894, Heinrich Hertz, August Kundt, and Hermann von Helmholtz died. This article reviews the lives of these three important physicists, their research contributions, and their unique positions in the German physics community. In conclusion, the relationships of these three physicists to Planck are discussed, and Planck's evaluation of the impact of 1894 on physics in Germany is appraised from our perspective of one hundred years.

  1. Planck-scale-modified dispersion relations in FRW spacetime

    NASA Astrophysics Data System (ADS)

    Rosati, Giacomo; Amelino-Camelia, Giovanni; Marcianò, Antonino; Matassa, Marco

    2015-12-01

    In recent years, Planck-scale modifications of the dispersion relation have been attracting increasing interest also from the viewpoint of possible applications in astrophysics and cosmology, where spacetime curvature cannot be neglected. Nonetheless, the interplay between Planck-scale effects and spacetime curvature is still poorly understood, particularly in cases where curvature is not constant. These challenges have been so far postponed by relying on an ansatz, first introduced by Jacob and Piran. We propose here a general strategy of analysis of the effects of modifications of the dispersion relation in Friedmann-Robertson-Walker spacetimes, applicable both to cases where the relativistic equivalence of frames is spoiled ("preferred-frame scenarios") and to the alternative possibility of "DSR-relativistic theories," theories that are fully relativistic but with relativistic laws deformed so that the modified dispersion relation is observer independent. We show that the Jacob-Piran ansatz implicitly assumes that spacetime translations are not affected by the Planck scale, while under rather general conditions, the same Planck-scale quantum-spacetime structures producing modifications of the dispersion relation also affect translations. Through the explicit analysis of one of the effects produced by modifications of the dispersion relation, an effect amounting to Planck-scale corrections to travel times, we show that our concerns are not merely conceptual but rather can have significant quantitative implications.

  2. Constraining brane inflationary magnetic field from cosmoparticle physics after Planck

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan

    2015-10-01

    In this article, I have studied the cosmological and particle physics constraints on a generic class of large field (|Δ ϕ| > M p ) and small field (|Δ ϕ| < M p ) models of brane inflationary magnetic field from: (1) tensor-to-scalar ratio ( r), (2) reheating, (3) leptogenesis and (4) baryogenesis in case of Randall-Sundrum single braneworld gravity (RSII) framework. I also establish a direct connection between the magnetic field at the present epoch ( B 0) and primordial gravity waves ( r), which give a precise estimate of non-vanishing CP asymmetry ( ɛ CP) in leptogenesis and baryon asymmetry ( η B ) in baryogenesis scenario respectively. Further assuming the conformal invariance to be restored after inflation in the framework of RSII, I have explicitly shown that the requirement of the sub-dominant feature of large scale coherent magnetic field after inflation gives two fold non-trivial characteristic constraints- on equation of state parameter ( w) and the corresponding energy scale during reheating ( ρ rh 1/4 ) epoch. Hence giving the proposal for avoiding the contribution of back-reaction from the magnetic field I have established a bound on the generic reheating characteristic parameter ( R rh ) and its rescaled version ( R sc ), to achieve large scale magnetic field within the prescribed setup and further apply the CMB constraints as obtained from recently observed Planck 2015 data and Planck+BICEP2+Keck Array joint constraints. Using all these derived results I have shown that it is possible to put further stringent constraints on various classes of large and small field inflationary models to break the degeneracy between various cosmological parameters within the framework of RSII. Finally, I have studied the consequences from two specific models of brane inflation-monomial and hilltop, after applying the constraints obtained from inflation and primordial magnetic field.

  3. Statistical measures of Planck scale signal correlations in interferometers

    SciTech Connect

    Hogan, Craig J.; Kwon, Ohkyung

    2015-06-22

    A model-independent statistical framework is presented to interpret data from systems where the mean time derivative of positional cross correlation between world lines, a measure of spreading in a quantum geometrical wave function, is measured with a precision smaller than the Planck time. The framework provides a general way to constrain possible departures from perfect independence of classical world lines, associated with Planck scale bounds on positional information. A parametrized candidate set of possible correlation functions is shown to be consistent with the known causal structure of the classical geometry measured by an apparatus, and the holographic scaling of information suggested by gravity. Frequency-domain power spectra are derived that can be compared with interferometer data. As a result, simple projections of sensitivity for specific experimental set-ups suggests that measurements will directly yield constraints on a universal time derivative of the correlation function, and thereby confirm or rule out a class of Planck scale departures from classical geometry.

  4. Gravitational effects on vanishing Higgs potential at the Planck scale

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Kaneta, Kunio; Takahashi, Ryo; Yamaguchi, Yuya

    2015-01-01

    We investigate gravitational effects on the so-called multiple point criticality principle (MPCP) at the Planck scale. The MPCP requires two degenerate vacua, whose necessary conditions are expressed by vanishing Higgs quartic coupling [λ (MPl)=0 ] and vanishing its β function [βλ(MPl)=0 ]. We discuss a case that a specific form of gravitational corrections are assumed to contribute to β functions of coupling constants [although it is accepted that gravitational corrections do not alter the running of the standard model (SM) couplings]. To satisfy the above two boundary conditions at the Planck scale, we find that the top pole mass and the Higgs mass should be 170.8 GeV ≲Mt≲171.7 GeV and Mh=125.7 ±0.4 GeV , respectively, as well as include suitable magnitude of gravitational effects (a coefficient of gravitational contribution as |aλ|>2 ). In this case, however, since the Higgs quartic coupling λ becomes negative below the Planck scale, two vacua are not degenerate. We find that Mh≳131.5 GeV with Mt≳174 GeV is required by the realization of the MPCP. Therefore, the MPCP at the Planck scale cannot be realized in the SM, and also the SM with gravity since Mh≳131.5 GeV is experimentally ruled out.

  5. Gravitation and Special Relativity from Compton Wave Interactions at the Planck Scale: An Algorithmic Approach

    NASA Technical Reports Server (NTRS)

    Blackwell, William C., Jr.

    2004-01-01

    In this paper space is modeled as a lattice of Compton wave oscillators (CWOs) of near- Planck size. It is shown that gravitation and special relativity emerge from the interaction between particles Compton waves. To develop this CWO model an algorithmic approach was taken, incorporating simple rules of interaction at the Planck-scale developed using well known physical laws. This technique naturally leads to Newton s law of gravitation and a new form of doubly special relativity. The model is in apparent agreement with the holographic principle, and it predicts a cutoff energy for ultrahigh-energy cosmic rays that is consistent with observational data.

  6. Reconciliation of high energy scale models of inflation with Planck

    SciTech Connect

    Ashoorioon, Amjad; Dimopoulos, Konstantinos; Sheikh-Jabbari, M.M.; Shiu, Gary E-mail: konst.dimopoulos@lancaster.ac.uk E-mail: shiu@physics.wisc.edu

    2014-02-01

    The inflationary cosmology paradigm is very successful in explaining the CMB anisotropy to the percent level. Besides the dependence on the inflationary model, the power spectra, spectral tilt and non-Gaussianity of the CMB temperature fluctuations also depend on the initial state of inflation. Here, we examine to what extent these observables are affected by our ignorance in the initial condition for inflationary perturbations, due to unknown new physics at a high scale M. For initial states that satisfy constraints from backreaction, we find that the amplitude of the power spectra could still be significantly altered, while the modification in bispectrum remains small. For such initial states, M has an upper bound of a few tens of H, with H being the Hubble parameter during inflation. We show that for M ∼ 20H, such initial states always (substantially) suppress the tensor to scalar ratio. In particular we show that such a choice of initial conditions can satisfactorily reconcile the simple ½m{sup 2}φ{sup 2} chaotic model with the Planck data [1-3].

  7. Astrophysical constraints on Planck scale dissipative phenomena.

    PubMed

    Liberati, Stefano; Maccione, Luca

    2014-04-18

    The emergence of a classical spacetime from any quantum gravity model is still a subtle and only partially understood issue. If indeed spacetime is arising as some sort of large scale condensate of more fundamental objects, then it is natural to expect that matter, being a collective excitation of the spacetime constituents, will present modified kinematics at sufficiently high energies. We consider here the phenomenology of the dissipative effects necessarily arising in such a picture. Adopting dissipative hydrodynamics as a general framework for the description of the energy exchange between collective excitations and the spacetime fundamental degrees of freedom, we discuss how rates of energy loss for elementary particles can be derived from dispersion relations and used to provide strong constraints on the base of current astrophysical observations of high-energy particles. PMID:24785026

  8. Dual redshift on Planck-scale-curved momentum spaces

    NASA Astrophysics Data System (ADS)

    Amelino-Camelia, Giovanni; Barcaroli, Leonardo; Gubitosi, Giulia; Loret, Niccoló

    2013-12-01

    Several approaches to the investigation of the quantum-gravity problem have provided ‘theoretical evidence’ of a role for the Planck scale in characterizing the geometry of momentum space. One of the main obstructions for a full exploitation of this scenario is the understanding of the role of the Planck-scale-curved geometry of momentum space in the correlations between emission and detection times, the ‘travel times’ for a particle to go from a given emitter to a given detector. These travel times appear to receive Planck-scale corrections for which no standard interpretation is applicable, and the associated implications for spacetime locality gave rise to the notion of ‘relative locality’ which is still in the early stages of investigation. We here show that these Planck-scale corrections to travel times can be described as ‘dual redshift’ (or ‘lateshift’): they are manifestations of momentum-space curvature of the same type already known for ordinary redshift produced by spacetime curvature. In turn, we can identify the novel notion of ‘relative momentum-space locality’ as a known but under-appreciated feature associated with ordinary redshift produced by spacetime curvature, and this can be described in complete analogy with the relative spacetime locality that became of interest in the recent quantum-gravity literature. We also briefly comment on how these findings may be relevant for an approach to the quantum-gravity problem proposed by Max Born in 1938 and centered on Born duality.

  9. Physical Dust Models in the Light of Planck

    NASA Astrophysics Data System (ADS)

    Draine, Bruce T.

    2015-08-01

    The Spitzer, Herschel, and Planck missions have provided observational data that challenge existing models of interstellar dust, and will guide us in the development of a new generation of dust models. The spectacular data from Planck now enable us to characterize the intensity of dust emission at wavelengths from 350um to 3mm, with invaluable measurements of polarized dust emission from 850um to 4mm. Models for interstellar dust are constrained by these new data, and also by many other observational constraints, such as infrared emission at shorter wavelengths, wavelength-dependent extinction and polarization of starlight, scattering of starlight, scattering and extinction of X-rays by dust, and ground-based studies of anomalous microwave emission.A physical dust model consists of dust grains with specified compositions, geometries, and sizes. The assumed physical properties of the dust should be consistent with the laws of physics, our understanding of candidate materials, and interstellar abundance constraints. I will review some contemporary dust models, and discuss how they fare when confronted with available data.

  10. Quantum Geometry and Quantum Dynamics at the Planck Scale

    SciTech Connect

    Bojowald, Martin

    2009-12-15

    Canonical quantum gravity provides insights into the quantum dynamics as well as quantum geometry of space-time by its implications for constraints. Loop quantum gravity in particular requires specific corrections due to its quantization procedure, which also results in a discrete picture of space. The corresponding changes compared to the classical behavior can most easily be analyzed in isotropic models, but perturbations around them are more involved. For one type of corrections, consistent equations have been found which shed light on the underlying space-time structure at the Planck scale: not just quantum dynamics but also the concept of space-time manifolds changes in quantum gravity. Effective line elements provide indications for possible relationships to other frameworks, such as non-commutative geometry.

  11. Planck-scale physics and neutrino masses

    NASA Astrophysics Data System (ADS)

    Akhmedov, Evgenii Kh.; Berezhiani, Zurab G.; Senjanovic, Goran

    1992-11-01

    We discuss gravitationally induced masses and mass splittings of Majorana, Zeldovich-Konopinski-Mahmoud, and Dirac neutrinos. Among other implications, these effects can provide a solution of the solar neutrino puzzle. In particular, we show how this may work in the 17 keV neutrino picture.

  12. Nearby, low-mass Planck clusters and the extension of scaling relations

    NASA Astrophysics Data System (ADS)

    Sun, Ming

    2013-10-01

    In the last several years, tremendous progress from the SZ surveys like Planck, SPT and ACT has made the SZ observation an important means for the studies of the ICM and cluster cosmology. While ground SZ telescopes are generally only sensitive to and are focused on rich clusters, Planck can detect poor clusters and even groups at z<0.05, as shown by the 2013 Planck cluster catalog. We select a sample of 26 poor clusters and groups detected by Planck at z<0.05. Six of them have no XMM or Chandra data and two of these six clusters are not even detected by RASS. We propose to observe these six systems with XMM to have a complete sample of Planck low-mass systems to extend the Planck scaling relations to a mass scale that is 4 - 5 times lower than what was achieved before.

  13. Scale problem in wormhole physics

    SciTech Connect

    Kim, J. E.; Lee, K.

    1989-07-03

    Wormhole physics from the quantum thoery of gravity coupled to the second-rank antisymmetric tensor or Goldstone-boson fields leads to an effective potential for these fields. The cosmological energy-density bound is shown to put an upper bound on the cosmological constant which wormhole physics can make zero. This upper bound, of order 10/sup 11/ GeV, is far smaller than the Planck scale and barely compatible with the possible cosmological constant arising from grand unified theories. In addition, the effect of wormholes on the axion for the strong /ital CP/ problem is discussed.

  14. Spacetime with zero point length is two-dimensional at the Planck scale

    NASA Astrophysics Data System (ADS)

    Padmanabhan, T.; Chakraborty, Sumanta; Kothawala, Dawood

    2016-05-01

    It is generally believed that any quantum theory of gravity should have a generic feature—a quantum of length. We provide a physical ansatz to obtain an effective non-local metric tensor starting from the standard metric tensor such that the spacetime acquires a zero-point-length ℓ _0 of the order of the Planck length LP. This prescription leads to several remarkable consequences. In particular, the Euclidean volume V_D(ℓ ,ℓ _0) in a D-dimensional spacetime of a region of size ℓ scales as V_D(ℓ , ℓ _0) ∝ ℓ _0^{D-2} ℓ ^2 when ℓ ˜ ℓ _0, while it reduces to the standard result V_D(ℓ ,ℓ _0) ∝ ℓ ^D at large scales (ℓ ≫ ℓ _0). The appropriately defined effective dimension, D_eff , decreases continuously from D_eff=D (at ℓ ≫ ℓ _0) to D_eff=2 (at ℓ ˜ ℓ _0). This suggests that the physical spacetime becomes essentially 2-dimensional near Planck scale.

  15. Physics League Across Numerous Countries for Kick-ass Students (PLANCKS)

    NASA Astrophysics Data System (ADS)

    Haasnoot, Irene

    2016-01-01

    Physics League Across Numerous Countries for Kick-ass Students (PLANCKS) is an international theoretical physics competition for bachelor and master students. The intention of PLANCKS is to increase international collaboration and stimulate the personal development of individual contestants. This is done by organizing a three-day-event which take place every year and is hosted by different countries. Besides the contest, social and scientific activities will be organised, including an opening symposium where leading physicists give lectures to inspire the participants.

  16. Planck-scale nonthermal correlations in a noncommutative geometry inspired Vaidya black hole

    NASA Astrophysics Data System (ADS)

    Mehdipour, S. Hamid

    2012-05-01

    Using the noncommutative geometry inspired Vaidya metric obtained in terms of coordinate coherent states and also utilizing the generalized uncertainty principle (GUP), we show that the nonthermal nature of the Hawking spectrum leads to Planck-scale nonthermal correlations between emitted modes of evaporation. Our analysis thus exhibits that owing to self-gravitational effects plus noncommutativity and GUP influences, information can emerge in the form of Planck-scale correlated emissions from the black hole.

  17. Extracting Primordial Non-Gaussianity from Large Scale Structure in the Post-Planck Era

    NASA Astrophysics Data System (ADS)

    Dore, Olivier

    Astronomical observations have become a unique tool to probe fundamental physics. Cosmology, in particular, emerged as a data-driven science whose phenomenological modeling has achieved great success: in the post-Planck era, key cosmological parameters are measured to percent precision. A single model reproduces a wealth of astronomical observations involving very distinct physical processes at different times. This success leads to fundamental physical questions. One of the most salient is the origin of the primordial perturbations that grew to form the large-scale structures we now observe. More and more cosmological observables point to inflationary physics as the origin of the structure observed in the universe. Inflationary physics predict the statistical properties of the primordial perturbations and it is thought to be slightly non-Gaussian. The detection of this small deviation from Gaussianity represents the next frontier in early Universe physics. To measure it would provide direct, unique and quantitative insights about the physics at play when the Universe was only a fraction of a second old, thus probing energies untouchable otherwise. En par with the well-known relic gravitational wave radiation -- the famous ``B-modes'' -- it is one the few probes of inflation. This departure from Gaussianity leads to very specific signature in the large scale clustering of galaxies. Observing large-scale structure, we can thus establish a direct connection with fundamental theories of the early universe. In the post-Planck era, large-scale structures are our most promising pathway to measuring this primordial signal. Current estimates suggests that the next generation of space or ground based large scale structure surveys (e.g. the ESA EUCLID or NASA WFIRST missions) might enable a detection of this signal. This potential huge payoff requires us to solidify the theoretical predictions supporting these measurements. Even if the exact signal we are looking for is of

  18. Possible Evidence for Planck-Scale Resonant Particle Production during Inflation from the CMB Power Spectrum

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Mayukh; Mathews, Grant; Ichiki, Kiyotomo; Kajino, Toshitaka

    2016-03-01

    The power spectrum of the cosmic microwave background from both the Planck and WMAP data exhibits a slight dip for multipoles in the range of l = 10 - 30 . We show that such a dip could be the result of the resonant creation of massive particles that couple to the inflaton field. For our best-fit models, the epoch of resonant particle creation reenters the horizon at a wave number of k* ~ 0 . 00011 +/- 0 . 0004 (h Mpc-1). The amplitude and location of this feature corresponds to the creation of a number of degenerate fermion species of mass ~ (8 - 11) /λ 3 / 2 mpl during inflation where λ ~ (1 . 0 +/- 0 . 5) N - 2 / 5 is the coupling constant between the inflaton field and the created fermion species, while N is the number of degenerate species. Although the evidence is of marginal statistical significance, this could constitute new observational hints of unexplored physics beyond the Planck scale. Work at the University of Notre Dame is supported by the U.S. Department of Energy under Nuclear Theory Grant DE-FG02-95-ER40934. Work at NAOJ was supported in part by Grants-in-Aid for Scientific Research of JSPS (26105517, 24340060). Work at Nagoya Uni.

  19. Absolute Calibration of the Radio Astronomy Flux Density Scale at 22 to 43 GHz Using Planck

    NASA Astrophysics Data System (ADS)

    Partridge, B.; López-Caniego, M.; Perley, R. A.; Stevens, J.; Butler, B. J.; Rocha, G.; Walter, B.; Zacchei, A.

    2016-04-01

    The Planck mission detected thousands of extragalactic radio sources at frequencies from 28 to 857 GHz. Planck's calibration is absolute (in the sense that it is based on the satellite’s annual motion around the Sun and the temperature of the cosmic microwave background), and its beams are well characterized at sub-percent levels. Thus, Planck's flux density measurements of compact sources are absolute in the same sense. We have made coordinated Very Large Array (VLA) and Australia Telescope Compact Array (ATCA) observations of 65 strong, unresolved Planck sources in order to transfer Planck's calibration to ground-based instruments at 22, 28, and 43 GHz. The results are compared to microwave flux density scales currently based on planetary observations. Despite the scatter introduced by the variability of many of the sources, the flux density scales are determined to 1%–2% accuracy. At 28 GHz, the flux density scale used by the VLA runs 2%–3% ± 1.0% below Planck values with an uncertainty of +/- 1.0%; at 43 GHz, the discrepancy increases to 5%–6% ± 1.4% for both ATCA and the VLA.

  20. Planck 2010

    SciTech Connect

    2010-06-02

    Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by ° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, ° the ERC Advanced Grant "MassTeV" 226371, ° and the CERN-TH unit.

  1. Planck 2010

    ScienceCinema

    None

    2011-10-06

    Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by ° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, ° the ERC Advanced Grant "MassTeV" 226371, ° and the CERN-TH unit.

  2. A constraint on Planck-scale modifications to electrodynamics with CMB polarization data

    SciTech Connect

    Gubitosi, Giulia; Pagano, Luca; Amelino-Camelia, Giovanni; Melchiorri, Alessandro; Cooray, Asantha E-mail: luca.pagano@roma1.infn.it E-mail: alessandro.melchiorri@roma1.infn.it

    2009-08-01

    We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by ξ, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate ξ ≅ −0.110±0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to ξ achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-σ confidence of 8.5 × 10{sup −4} (PLANCK), 6.1 × 10{sup −3} (Spider), and 1.0 × 10{sup −5} (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1 × 10{sup −6}.

  3. Planck 2014 and beyond: the CMB polarization at large angular scales

    NASA Astrophysics Data System (ADS)

    Mangilli, Anna

    2015-08-01

    One of the main challenge left for the present and the future CMB experiments is the high precision measurement of the CMB polarization at large angular scales. The reionization bump in the CMB polarization EE and BB power spectra encodes unique informations about the reionization history of the Universe and the inflationary epoch. Such valuable information can be accessed only with an unprecedented accuracy and care on each step of the data analysis and its interpretation. The Planck 2014 release represents a first step towards the accurate characterization of the CMB polarization on the full sky. In this talk I will go through a brief introduction about the CMB polarization mainly focusing on the large angular scales. I will show how the EE and BB spectra at low-l can be used to improve the constraints on the cosmological parameters, in particular those related to the reionization history (τ) and the amount of tensor modes (r). As a Planck Scientist I will present, on behalf of the Planck collaboration, the status of the CMB analysis at large scales after the 2014 release. I will present different methods that can be used for the low-l analysis, focusing on a spectral based approach (Mangilli et al. in preparation). Finally I will present the theoretical implications of the results and the future prospects in view of the Planck release at the end of 2015 and future CMB experiments.

  4. Quantum dynamics via Planck-scale-stepped action-carrying 'Graph Paths'

    SciTech Connect

    Chew, Geoffrey F.

    2003-05-05

    A divergence-free, parameter-free, path-based discrete-time quantum dynamics is designed to not only enlarge the achievements of general relativity and the standard particle model, by approximations at spacetime scales far above Planck scale while far below Hubble scale, but to allow tackling of hitherto inaccessible questions. ''Path space'' is larger than and precursor to Hilbert-space basis. The wave-function-propagating paths are action-carrying structured graphs-cubic and quartic structured vertices connected by structured ''fermionic'' or ''bosonic'' ''particle'' and ''nonparticle'' arcs. A Planck-scale path step determines the gravitational constant while controlling all graph structure. The basis of the theory's (zero-rest-mass) elementary-particle Hilbert space (which includes neither gravitons nor scalar bosons) resides in particle arcs. Nonparticle arcs within a path are responsible for energy and rest mass.

  5. Conjecture on the physical implications of the scale anomaly

    SciTech Connect

    Hill, Christopher T.; /Fermilab

    2005-10-01

    Murray Gell-Mann, after co-inventing QCD, recognized the interplay of the scale anomaly, the renormalization group, and the origin of the strong scale, {Lambda}{sub QCD}. I tell a story, then elaborate this concept, and for the sake of discussion, propose a conjecture that the physical world is scale invariant in the classical, {h_bar}, limit. This principle has implications for the dimensionality of space-time, the cosmological constant, the weak scale, and Planck scale.

  6. SZ/X-ray scaling relations using X-ray data and Planck Nominal maps

    NASA Astrophysics Data System (ADS)

    De Martino, I.; Atrio-Barandela, F.

    2016-09-01

    We determine the relation between the Comptonization parameter predicted using X-ray data YC, Xray and the X-ray luminosity LX, both magnitudes derived from ROSAT data, with the Comptonization parameter YC, SZ measured on Planck 2013 foreground cleaned Nominal maps. The 560 clusters of our sample includes clusters with masses M ≥ 1013 M⊙, one order of magnitude smaller than those used by the Planck Collaboration in a similar analysis. It also contains eight times more clusters in the redshift interval z ≤ 0.3. The prediction of the β = 2/3 model convolved with the Planck antenna beam agrees with the anisotropies measured in foreground cleaned Planck Nominal maps within the X-ray emitting region, confirming the results of an earlier analysis. The universal pressure profile overestimates the signal by a 15-21 per cent depending on the angular aperture. We show that the discrepancy is not due to the presence of cool-core systems but it is an indication of a brake in the LX - M relation towards low mass systems. We show that relation of the Comptonization parameter averaged over the region that emits 99 per cent of the X-ray flux and and the X-ray luminosity is consistent with the predictions of the self-similar model. We confirm previous findings that the scaling relations studied here do not evolve with redshift within the range probed by our catalogue.

  7. Physical properties of Galactic Planck cold cores revealed by the Hi-GAL survey

    NASA Astrophysics Data System (ADS)

    Zahorecz, S.; Jimenez-Serra, I.; Wang, K.; Testi, L.; Tóth, L. V.; Molinari, S.

    2016-06-01

    Context. Previous studies of the initial conditions of massive star and star cluster formation have mainly targeted infrared-dark clouds (or IRDCs) toward the inner Galaxy. This is because IRDCs were first detected in absorption against the bright mid-infrared (IR) background of the inner Galaxy, requiring a favorable location to be observed. By selection, IRDCs therefore represent only a fraction of the Galactic clouds capable of forming massive stars and star clusters. Owing their low dust temperatures, however, IRDCs are bright in the far-IR and millimeter and, thus, observations at these wavelengths have the potential to provide a complete sample of star-forming massive clouds across the Galaxy. Aims: Our aim is to identify the clouds at the initial conditions of massive star and star cluster formation across the Galaxy and compare their physical properties as a function of Galactic longitude and Galactocentric distance. Methods: We have examined the physical properties of a homogeneous Galactic cold core sample obtained with the Planck satellite across the Galactic plane. With the use of Herschel Hi-GAL observations, we characterized the internal structure of the most reliable Galactic cold clumps within the Early Cold Core (ECC) Planck catalog. By using background-subtracted Herschel images, we derived the H2 column density and dust temperature maps for 48 Planck clumps covered by the Herschel Hi-GAL survey. We calculated and analyzed the basic physical parameters (size, mass, and average dust temperature) of these clumps as a function of location within the Galaxy. We also compared these properties with the empirical relation for massive star formation previously derived. Results: Most of the Planck clumps contain signs of star formation. About 25% of the clumps are massive enough to form high-mass stars and star clusters since they exceed the empirical threshold for massive star formation. Planck clumps toward the Galactic center region show higher peak

  8. Planck stars

    NASA Astrophysics Data System (ADS)

    Rovelli, Carlo; Vidotto, Francesca

    2014-12-01

    Quantum-gravitational pressure can stop gravitational collapse and cause a bounce. We observe that: (i) due to the huge time dilation, the process can last micro-seconds in local proper time and billions of years observed from the outside; (ii) the bounce volume can be much larger than planckian, because the onset of quantum-gravity effects is governed by density, not size; (iii) the emerging object can then be bigger than planckian by a factor (m/mP)n, where m is the initial mass, mP is the Planck mass, and n positive; (iv) the interior of an evaporating hole can keep memory of the initial mass, providing an independent scale for the physics of the final explosion. If so, primordial black holes could produce a detectable signal of quantum gravitational origin, which we estimate, under some hypotheses, around the wavelength 10-14 cm.

  9. Demokrit - Planck

    NASA Astrophysics Data System (ADS)

    Rompe, Robert; Treder, Hans-Jürgen

    Es gibt eine Physik, die an die Konstante h gebunden ist und die mit der Atomistik zusammenhängt. Diese h-Physik geht eindeutig auf Planck zurück. Aber, aus dieser Physik folgt die Atomistik als Existenz lokalisierter geladener Teilchen unterschiedlichen Massen nicht, vor allem nicht die des Ladungsquants, so daß also Demokrit mehr behauptet hat, als die Quantenphysik zu beantworten kompetent ist.Translated AbstractDemokrit - PlanckA branch of physics exists closely linked to the constant h and associated with atomism. It is this h-physics that Planck originated. But atomism like existence of localized, charged particles with different masses does not follow from this physics, especially the charge quant. Hence Demokrit asserted more then quantum physics is competent to answer.

  10. On the significance of power asymmetries in Planck CMB data at all scales

    SciTech Connect

    Quartin, Miguel; Notari, Alessio E-mail: notari@ffn.ub.es

    2015-01-01

    We perform an analysis of the CMB temperature data taken by the Planck satellite investigating if there is any significant deviation from cosmological isotropy. We look for differences in the spectrum between two opposite hemispheres and also for dipolar modulations. We propose a new way to avoid biases due to partial-sky coverage by producing a mask symmetrized in antipodal directions, in addition to the standard smoothing procedure. We also properly take into account both Doppler and aberration effects due to our peculiar velocity and the anisotropy of the noise, since these effects induce a significant hemispherical asymmetry. We are thus able to probe scales all the way to ℓ = 2000. After such treatment we find no evidence for significant hemispherical anomalies along any of the analyzed directions (i.e. deviations are less than 1.5σ when summing over all scales). Although among the larger scales there are sometimes higher discrepancies, these are always less than 3σ. We also find results on a dipolar modulation of the power spectrum. Along the hemispheres aligned with the most asymmetric direction for 2 ≤ ℓ ≤ 2000 we find a 3.3σ discrepancy when comparing to simulations. However, if we do not restrict ourselves to Planck's maximal asymmetry axis, which can only be known a posteriori, and compare Planck data with the modulation of simulations along their respective maximal asymmetry directions, the discrepancy goes down to less than 1σ (with, again, almost 3σ discrepancies in some low-ℓ modes). We thus conclude that no significant power asymmetries seem to be present in the full data set. Interestingly, without proper removal of Doppler and aberration effects one would find spurious anomalies at high ℓ, between 3σ and 5σ. Even when considering only ℓ < 600 we find that the boost is non-negligible and alleviates the discrepancy by roughly half-σ.

  11. Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale

    NASA Astrophysics Data System (ADS)

    Gorbunov, Dmitry S.; Sibiryakov, Sergei M.

    2005-09-01

    We present an extension of the Randall-Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam-Veltman-Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances.

  12. Detectability of Planck-scale-induced Blurring with Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Steinbring, Eric

    2015-03-01

    Microscopic fluctuations inherent to the fuzziness of spacetime at the Planck scale might accumulate in wavefronts propagating a cosmological distance and lead to noticeable blurring in an image of a pointlike source. Distant quasars viewed in the optical and ultraviolet with Hubble Space Telescope (HST) may show this weakly, and if real suggests a stronger effect should be seen for gamma-ray bursts (GRBs) in X-rays and γ-rays. Those telescopes, however, operate far from their diffraction limits. A description of how Planck-scale-induced blurring could be sensed at high energy, including with cosmic rays, while still agreeing with the HST results is discussed. It predicts dilated apparent source size and inflated uncertainties in positional centroids, effectively a threshold angular accuracy restricting knowledge of source location on the sky. These outcomes are found to be consistent with an analysis of the 10 highest-redshift GRB detections reported for the Fermi satellite. Confusion with photon cascade and scattering phenomena is also possible; prospects for a definitive multiwavelength measurement are considered.

  13. Radiative electroweak symmetry breaking model perturbative all the way to the Planck scale.

    PubMed

    Chway, Dongjin; Dermíšek, Radovan; Jung, Tae Hyun; Kim, Hyung Do

    2014-08-01

    We discuss an extension of the standard model by fields not charged under standard model gauge symmetry in which the electroweak symmetry breaking is driven by the Higgs quartic coupling itself without the need for a negative mass term in the potential. This is achieved by a scalar field S with a large coupling to the Higgs field at the electroweak scale which is driven to very small values at high energies by the gauge coupling of a hidden symmetry under which S is charged. This model can remain perturbative all the way to the Planck scale. The Higgs boson is fully standard-model-like in its couplings to fermions and gauge bosons. However, the effective cubic and quartic self-couplings of the Higgs boson are significantly enhanced. PMID:25126909

  14. Planck 2013 results. XVII. Gravitational lensing by large-scale structure

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Déchelette, T.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lavabre, A.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Pullen, A. R.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Smith, K.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    On the arcminute angular scales probed by Planck, the cosmic microwave background (CMB) anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217 GHz frequency bands with an overall significance of greater than 25σ. We use thetemperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting ΛCDM model for the Planck temperature power spectrum, showing that this measurement at z = 1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy-breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the root-mean-squared amplitude of matter fluctuations at z ~ 2.

  15. PREFACE: DICE 2012 : Spacetime Matter Quantum Mechanics - from the Planck scale to emergent phenomena

    NASA Astrophysics Data System (ADS)

    Diósi, Lajos; Elze, Hans-Thomas; Fronzoni, Leone; Halliwell, Jonathan; Prati, Enrico; Vitiello, Giuseppe; Yearsley, James

    2013-06-01

    Presented in this volume are the Invited Lectures and the Contributed Papers of the Sixth International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2012, held at Castello Pasquini, Castiglioncello (Tuscany), 17-21 September 2012. These proceedings may document to the interested public and to the wider scientific community the stimulating exchange of ideas at the meeting. The number of participants has been steadily growing over the years, reflecting an increasing attraction, if not need, of such conference. Our very intention has always been to bring together leading researchers, advanced students, and renowned scholars from various areas, in order to stimulate new ideas and their exchange across the borders of specialization. In this way, the series of meetings successfully continued from the beginning with DICE 20021, followed by DICE 20042, DICE 20063, DICE 20084, and DICE 20105, Most recently, DICE 2012 brought together more than 120 participants representing more than 30 countries worldwide. It has been a great honour and inspiration to have Professor Yakir Aharonov (Tel Aviv) with us, who presented the opening Keynote Lecture 'The two-vector quantum formalism'. With the overarching theme 'Spacetime - Matter - Quantum Mechanics - from the Planck scale to emergent phenomena', the conference took place in the very pleasant and inspiring atmosphere of Castello Pasquini - in beautiful surroundings, overlooking a piece of Tuscany's coast. The 5-day program covered these major topics: Quantum Mechanics, Foundations and Quantum-Classical Border Quantum-Classical Hybrids and Many-Body Systems Spectral Geometry, Path Integrals and Experiments Quantum -/- Gravity -/- Spacetime Quantum Mechanics on all Scales? A Roundtable Discussion under the theme 'Nuovi orizzonti nella ricerca scientifica. Ci troviamo di fronte ad una rivoluzione scientifica?' formed an integral part of the program. With participation of E Del Giudice (INFN & Università di

  16. PREFACE: DICE 2012 : Spacetime Matter Quantum Mechanics - from the Planck scale to emergent phenomena

    NASA Astrophysics Data System (ADS)

    Diósi, Lajos; Elze, Hans-Thomas; Fronzoni, Leone; Halliwell, Jonathan; Prati, Enrico; Vitiello, Giuseppe; Yearsley, James

    2013-06-01

    Presented in this volume are the Invited Lectures and the Contributed Papers of the Sixth International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2012, held at Castello Pasquini, Castiglioncello (Tuscany), 17-21 September 2012. These proceedings may document to the interested public and to the wider scientific community the stimulating exchange of ideas at the meeting. The number of participants has been steadily growing over the years, reflecting an increasing attraction, if not need, of such conference. Our very intention has always been to bring together leading researchers, advanced students, and renowned scholars from various areas, in order to stimulate new ideas and their exchange across the borders of specialization. In this way, the series of meetings successfully continued from the beginning with DICE 20021, followed by DICE 20042, DICE 20063, DICE 20084, and DICE 20105, Most recently, DICE 2012 brought together more than 120 participants representing more than 30 countries worldwide. It has been a great honour and inspiration to have Professor Yakir Aharonov (Tel Aviv) with us, who presented the opening Keynote Lecture 'The two-vector quantum formalism'. With the overarching theme 'Spacetime - Matter - Quantum Mechanics - from the Planck scale to emergent phenomena', the conference took place in the very pleasant and inspiring atmosphere of Castello Pasquini - in beautiful surroundings, overlooking a piece of Tuscany's coast. The 5-day program covered these major topics: Quantum Mechanics, Foundations and Quantum-Classical Border Quantum-Classical Hybrids and Many-Body Systems Spectral Geometry, Path Integrals and Experiments Quantum -/- Gravity -/- Spacetime Quantum Mechanics on all Scales? A Roundtable Discussion under the theme 'Nuovi orizzonti nella ricerca scientifica. Ci troviamo di fronte ad una rivoluzione scientifica?' formed an integral part of the program. With participation of E Del Giudice (INFN & Università di

  17. Discrepancies between CFHTLenS cosmic shear and Planck: new physics or systematic effects?

    NASA Astrophysics Data System (ADS)

    Kitching, Thomas D.; Verde, Licia; Heavens, Alan F.; Jimenez, Raul

    2016-06-01

    There is currently a discrepancy in the measured value of the amplitude of matter clustering, parametrized using σ8, inferred from galaxy weak lensing, and cosmic microwave background (CMB) data, which could be an indication of new physics, such as massive neutrinos or a modification to the gravity law, or baryon feedback. In this paper we make the assumption that the cosmological parameters are well determined by Planck, and use weak lensing data to investigate the implications for baryon feedback and massive neutrinos, as well as possible contributions from intrinsic alignments and biases in photometric redshifts. We apply a non-parametric approach to model the baryonic feedback on the dark matter clustering, which is flexible enough to reproduce the OWLS (OverWhelmingly Large Simulations) and Illustris simulation results. The statistic we use, 3D cosmic shear, is a method that extracts cosmological information from weak lensing data using a spherical-Bessel function power spectrum approach. We analyse the CFHTLenS weak lensing data and, assuming best-fitting cosmological parameters from the Planck CMB experiment, find that there is no evidence for baryonic feedback on the dark matter power spectrum, but there is evidence for a bias in the photometric redshifts in the CFHTLenS data, consistent with a completely independent analysis by Choi et al., based on spectroscopic redshifts, and that these conclusions are robust to assumptions about the intrinsic alignment systematic. We also find an upper limit, of <0.28 eV (1σ), to the sum of neutrino masses conditional on other Λ-cold-dark-matter parameters being fixed.

  18. The Emergence of a Root Metaphor in Modern Physics: Max Planck's "Quantum" Metaphor.

    ERIC Educational Resources Information Center

    Johnson-Sheehan, Richard D.

    1997-01-01

    Uses metaphorical analysis to determine whether or not Max Planck invented the quantum postulate. Demonstrates how metaphorical analysis can be used to analyze the rhetoric of revolutionary texts in science. Concludes that, in his original 1900 quantum paper, Planck considered the quantum postulate to be important, but not revolutionary. (PA)

  19. Planck-scale induced left-right gauge theory at LHC and experimental tests

    NASA Astrophysics Data System (ADS)

    Parida, M. K.; Sahoo, Biswonath

    2016-05-01

    Recent measurements at LHC have inspired searches for TeV scale left-right gauge theory originating from grand unified theories. We show that inclusion of Planck-scale induced effects due to dim . 5 operator not only does away with all the additional intermediate symmetries, but also it predicts the minimal set of light Higgs scalars tailored after neutrino masses and dilepton, or trilepton signals. The heavy-light neutrino mixings are predicted from charged fermion mass fits in SO (10) and LFV constraints which lead to new predictions for dilepton or trilepton production signals. Including fine-structure constant matching and two-loop, and threshold effects predict MWR =g2R10 4.3 ± 1.5 ± 0.2 GeV and proton lifetime τp =10 36.15 ± 5.8 ± 0.2 yrs with WR gauge boson coupling g2R = 0.56- 0.57. Predictions on lepton flavour and lepton number violations are accessible to ongoing experiments. Current CMS data on di-electron excess at √{ s} = 8 TeV are found to be consistent with WR gauge boson mass MWR ≥ 1.9- 2.2 TeV which also agrees with the values obtained from dijet resonance production data. We also discuss plausible explanations for diboson production excesses observed at LHC and make predictions expected at √{ s} = 14 TeV.

  20. Models of the LHC diphoton excesses valid up to the Planck scale

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu; Tsumura, Koji

    2016-07-01

    We discuss a possibility to explain the LHC diphoton excesses at 750 GeV by the new scalar X that couples to the gauge bosons through the loop of new massive particles with standard model charges. We assume that the new particles decay into the standard model particles at the tree level. We systematically examine the models that preserve the vacuum stability and the perturbativity up to the Planck scale. When we take scalars for the new particles, we find that only a few diquark and dilepton models can explain the observed diphoton cross section without conflicting the experimental mass bounds. When we take vectorlike fermions for the new particles, we find rather different situations depending on whether their couplings to X are scalar or pseudoscalar type. In the former case, a few models are allowed if we introduce only one species of fermions. The more fermions we introduce, the more models are allowed. In the latter case, most of the models are allowed because of the large coupling between X and photon. It is interesting that the allowed mass regions of the scalar particles might be reached by the next lepton colliders.

  1. Impact of particles on the Planck HFI detectors: Ground-based measurements and physical interpretation

    NASA Astrophysics Data System (ADS)

    Catalano, A.; Ade, P.; Atik, Y.; Benoit, A.; Bréele, E.; Bock, J. J.; Camus, P.; Chabot, M.; Charra, M.; Crill, B. P.; Coron, N.; Coulais, A.; Désert, F.-X.; Fauvet, L.; Giraud-Héraud, Y.; Guillaudin, O.; Holmes, W.; Jones, W. C.; Lamarre, J.-M.; Macías-Pérez, J.; Martinez, M.; Miniussi, A.; Monfardini, A.; Pajot, F.; Patanchon, G.; Pelissier, A.; Piat, M.; Puget, J.-L.; Renault, C.; Rosset, C.; Santos, D.; Sauvé, A.; Spencer, L. D.; Sudiwala, R.

    2014-09-01

    The Planck High Frequency Instrument (HFI) surveyed the sky continuously from August 2009 to January 2012. Its noise and sensitivity performance were excellent (from 11 to 40 aW Hz-1), but the rate of cosmic-ray impacts on the HFI detectors was unexpectedly higher than in other instruments. Furthermore, collisions of cosmic rays with the focal plane produced transient signals in the data (glitches) with a wide range of characteristics and a rate of about one glitch per second. A study of cosmic-ray impacts on the HFI detector modules has been undertaken to categorize and characterize the glitches, to correct the HFI time-ordered data, and understand the residual effects on Planck maps and data products. This paper evaluates the physical origins of glitches observed by the HFI detectors. To better understand the glitches observed by HFI in flight, several ground-based experiments were conducted with flight-spare HFI bolometer modules. The experiments were conducted between 2010 and 2013 with HFI test bolometers in different configurations using varying particles and impact energies. The bolometer modules were exposed to 23 MeV protons from the Orsay IPN Tandem accelerator, and to 241Am and 244Cm α-particle and 55Fe radioactive X-ray sources. The calibration data from the HFI ground-based preflight tests were used to further characterize the glitches and compare glitch rates with statistical expectations under laboratory conditions. Test results provide strong evidence that the dominant family of glitches observed in flight are due to cosmic-ray absorption by the silicon die substrate on which the HFI detectors reside. Glitch energy is propagated to the thermistor by ballistic phonons, while thermal diffusion also contributes. The average ratio between the energy absorbed, per glitch, in the silicon die and thatabsorbed in the bolometer is equal to 650. We discuss the implications of these results for future satellite missions, especially those in the far

  2. Physical interrelation between Fokker-Planck and random walk models with application to Coulomb interactions.

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1971-01-01

    A model of the random walk is formulated to allow a simple computing procedure to replace the difficult problem of solution of the Fokker-Planck equation. The step sizes and probabilities of taking steps in the various directions are expressed in terms of Fokker-Planck coefficients. Application is made to many particle systems with Coulomb interactions. The relaxation of a highly peaked velocity distribution of particles to equilibrium conditions is illustrated.

  3. Using CMB data to constrain non-isotropic Planck-scale modifications to Electrodynamics

    SciTech Connect

    Gubitosi, Giulia; Migliaccio, Marina; Pagano, Luca; Amelino-Camelia, Giovanni; Melchiorri, Alessandro; Natoli, Paolo; Polenta, Gianluca E-mail: Marina.Migliaccio@roma2.infn.it E-mail: giovanni.amelino-camelia@roma1.infn.it E-mail: paolo.natoli@roma2.infn.it

    2011-11-01

    We develop a method to constrain non-isotropic features of Cosmic Microwave Background (CMB) polarization, of a type expected to arise in some models describing quantum gravity effects on light propagation. We describe the expected signatures of this kind of anomalous light propagation on CMB photons, showing that it will produce a non-isotropic birefringence effect, i.e. a rotation of the CMB polarization direction whose observed amount depends in a peculiar way on the observation direction. We also show that the sensitivity levels expected for CMB polarization studies by the Planck satellite are sufficient for testing these effects if, as assumed in the quantum-gravity literature, their magnitude is set by the minute Planck length.

  4. Einstein and Planck

    NASA Astrophysics Data System (ADS)

    Heilbron, John

    2005-03-01

    As an editor of the Annalen der Physik, Max Planck published Einstein's early papers on thermodynamics and on special relativity, which Planck probably was the first major physicist to appreciate. They respected one another not only as physicists but also, for their inspired creation of world pictures, as artists. Planck helped to establish Einstein in a sinecure at the center of German physics, Berlin. Despite their differences in scientific style, social life, politics, and religion, they became fast friends. Their mutual admiration survived World War I, during which Einstein advocated pacifism and Planck signed the infamous Manifesto of the 93 Intellectuals supporting the German invasion of Belgium. It also survived the Weimar Republic, which Einstein favored and Planck disliked. Physics drew them together, as both opposed the Copenhagen Interpretation; so did common decency, as Planck helped to protect Einstein from anti-semitic attacks. Their friendship did not survive the Nazis. As a standing secretary of the Berlin Academy, Planck had to advise Einstein to resign from it before his colleagues, outraged at his criticism of the new Germany from the safety of California, expelled him. Einstein never forgave his old friend and former fellow artist for not protesting publicly against his expulsion and denigration, and other enormities of National Socialism. .

  5. Unveiling acoustic physics of the CMB using nonparametric estimation of the temperature angular power spectrum for Planck

    SciTech Connect

    Aghamousa, Amir; Shafieloo, Arman; Arjunwadkar, Mihir; Souradeep, Tarun E-mail: shafieloo@kasi.re.kr E-mail: tarun@iucaa.ernet.in

    2015-02-01

    Estimation of the angular power spectrum is one of the important steps in Cosmic Microwave Background (CMB) data analysis. Here, we present a nonparametric estimate of the temperature angular power spectrum for the Planck 2013 CMB data. The method implemented in this work is model-independent, and allows the data, rather than the model, to dictate the fit. Since one of the main targets of our analysis is to test the consistency of the ΛCDM model with Planck 2013 data, we use the nuisance parameters associated with the best-fit ΛCDM angular power spectrum to remove foreground contributions from the data at multipoles ℓ ≥50. We thus obtain a combined angular power spectrum data set together with the full covariance matrix, appropriately weighted over frequency channels. Our subsequent nonparametric analysis resolves six peaks (and five dips) up to ℓ ∼1850 in the temperature angular power spectrum. We present uncertainties in the peak/dip locations and heights at the 95% confidence level. We further show how these reflect the harmonicity of acoustic peaks, and can be used for acoustic scale estimation. Based on this nonparametric formalism, we found the best-fit ΛCDM model to be at 36% confidence distance from the center of the nonparametric confidence set—this is considerably larger than the confidence distance (9%) derived earlier from a similar analysis of the WMAP 7-year data. Another interesting result of our analysis is that at low multipoles, the Planck data do not suggest any upturn, contrary to the expectation based on the integrated Sachs-Wolfe contribution in the best-fit ΛCDM cosmology.

  6. Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation: Large-scale behavior of the turbulent transport coefficient

    NASA Astrophysics Data System (ADS)

    Milovanov, Alexander V.

    2001-04-01

    The formulation of the fractional Fokker-Planck-Kolmogorov (FPK) equation [Physica D 76, 110 (1994)] has led to important advances in the description of the stochastic dynamics of Hamiltonian systems. Here, the long-time behavior of the basic transport processes obeying the fractional FPK equation is analyzed. A derivation of the large-scale turbulent transport coefficient for a Hamiltonian system with 112 degrees of freedom is proposed in connection with the fractal structure of the particle chaotic trajectories. The principal transport regimes (i.e., a diffusion-type process, ballistic motion, subdiffusion in the limit of the frozen Hamiltonian, and behavior associated with self-organized criticality) are obtained as partial cases of the generalized transport law. A comparison with recent numerical and experimental studies is given.

  7. Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation: large-scale behavior of the turbulent transport coefficient.

    PubMed

    Milovanov, A V

    2001-04-01

    The formulation of the fractional Fokker-Planck-Kolmogorov (FPK) equation [Physica D 76, 110 (1994)] has led to important advances in the description of the stochastic dynamics of Hamiltonian systems. Here, the long-time behavior of the basic transport processes obeying the fractional FPK equation is analyzed. A derivation of the large-scale turbulent transport coefficient for a Hamiltonian system with 11 / 2 degrees of freedom is proposed in connection with the fractal structure of the particle chaotic trajectories. The principal transport regimes (i.e., a diffusion-type process, ballistic motion, subdiffusion in the limit of the frozen Hamiltonian, and behavior associated with self-organized criticality) are obtained as partial cases of the generalized transport law. A comparison with recent numerical and experimental studies is given. PMID:11308983

  8. Cosmological constraints on neutrinos with Planck data

    SciTech Connect

    Spinelli, M.

    2015-07-15

    Neutrinos take part in the dance of the evolving Universe influencing its history from leptogenesis, to Big Bang nucleosynthesis, until late time structure formation. This makes cosmology, and in particular one of its primary observables the Cosmic Microwave Background (CMB), an unusual but valuable tool for testing Neutrino Physics. The best measurement to date of full-sky CMB anisotropies comes from the Planck satellite launched in 2009 by the European Space Agency (ESA) and successful follower of COBE and WMAP. Testing Planck data against precise theoretical predictions allow us to shed light on various interesting open questions such as the value of the absolute scale of neutrino masses or their energy density. We revise here the results concerning neutrinos obtained by the Planck Collaboration in the 2013 data release.

  9. Cosmological constraints on neutrinos with Planck data

    NASA Astrophysics Data System (ADS)

    Spinelli, M.

    2015-07-01

    Neutrinos take part in the dance of the evolving Universe influencing its history from leptogenesis, to Big Bang nucleosynthesis, until late time structure formation. This makes cosmology, and in particular one of its primary observables the Cosmic Microwave Background (CMB), an unusual but valuable tool for testing Neutrino Physics. The best measurement to date of full-sky CMB anisotropies comes from the Planck satellite launched in 2009 by the European Space Agency (ESA) and successful follower of COBE and WMAP. Testing Planck data against precise theoretical predictions allow us to shed light on various interesting open questions such as the value of the absolute scale of neutrino masses or their energy density. We revise here the results concerning neutrinos obtained by the Planck Collaboration in the 2013 data release.

  10. Associations between Small-scale Structure in Local Galactic Neutral Hydrogen and in the Cosmic Microwave Background Observed by PLANCK

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit L.

    2015-11-01

    High-resolution galactic neutral hydrogen (HI) data obtained with the Green Bank Telescope (GBT) over 56 square degrees of sky around l = 132°, b = 25° are compared with small-scale structure in the Cosmic Microwave Background observed by PLANCK, specifically at 143 and 857 GHz, as well as with 100 μm observations from the IRIS survey. The analysis uses data in 13 2° × 2° sub-areas found in the IRSA database at IPAC. The results confirm what has been reported previously; nearby galactic HI features and high-frequency continuum sources believed to be cosmological are in fact clearly associated. While several attempts strongly suggest that the associations are statistically significant, the key to understanding the phenomenon lies in the fact that in any given area HI is associated with cirrus dust at certain HI velocities and with 143 GHz features at different velocities. At the same time, for the 13 sub-areas studied, there is very little overlap between the dust and 143 GHz features. The data do not imply that the HI itself gives rise to the high-frequency continuum emission. Rather, they appear to indicate undiagnosed brightness enhancements indirectly associated with the HI. If low density interstellar electrons concentrated into clumps, or observed in directions where their integrated line-of-sight column densities are greater than the background in a manner similar to the phenomena that give rise to structure in diffuse HI structure, they will profoundly affect attempts to create a foreground electron mask used for processing PLANCK as well as WMAP data.

  11. Probing Planck's Law at Home

    ERIC Educational Resources Information Center

    Bonnet, I.; Gabelli, J.

    2010-01-01

    We report on the physics around an incandescent lamp. Using a consumer-grade digital camera, we combine electrical and optical measurements to explore Planck's law of black-body radiation. This simple teaching experiment is successfully used to measure both Stefan's and Planck's constants. Our measurements lead to a strikingly accurate value for…

  12. Quantifying Discordance in the 2015 Planck CMB Spectrum

    NASA Astrophysics Data System (ADS)

    Addison, G. E.; Huang, Y.; Watts, D. J.; Bennett, C. L.; Halpern, M.; Hinshaw, G.; Weiland, J. L.

    2016-02-01

    We examine the internal consistency of the Planck 2015 cosmic microwave background (CMB) temperature anisotropy power spectrum. We show that tension exists between cosmological constant cold dark matter ({{Λ }}{CDM}) model parameters inferred from multipoles {\\ell }\\lt 1000 (roughly those accessible to Wilkinson Microwave Anisotropy Probe), and from {\\ell }≥slant 1000, particularly the CDM density, {{{Ω }}}c{h}2, which is discrepant at 2.5σ for a Planck -motivated prior on the optical depth, τ =0.07+/- 0.02. We find some parameter tensions to be larger than previously reported because of inaccuracy in the code used by the Planck Collaboration to generate model spectra. The Planck {\\ell }≥slant 1000 constraints are also in tension with low-redshift data sets, including Planck ’s own measurement of the CMB lensing power spectrum (2.4σ ), and the most precise baryon acoustic oscillation scale determination (2.5σ ). The Hubble constant predicted by Planck from {\\ell }≥slant 1000, {H}0=64.1+/- 1.7 km s{}-1 Mpc-1, disagrees with the most precise local distance ladder measurement of 73.0+/- 2.4 km s{}-1 Mpc-1 at the 3.0σ level, while the Planck value from {\\ell }\\lt 1000, 69.7+/- 1.7 km s{}-1 Mpc-1, is consistent within 1σ . A discrepancy between the Planck and South Pole Telescope high-multipole CMB spectra disfavors interpreting these tensions as evidence for new physics. We conclude that the parameters from the Planck high-multipole spectrum probably differ from the underlying values due to either an unlikely statistical fluctuation or unaccounted-for systematics persisting in the Planck data.

  13. Testing a model of Planck-scale quantum geometry with broadband correlation of colocated 40m interferometers

    NASA Astrophysics Data System (ADS)

    McCuller, Lee Patrick

    The Holometer is designed to test for a Planck diffractive-scaling uncertainty in long-baseline position measurements due to an underlying noncommutative geometry normalized to relate Black hole entropy bounds of the Holographic principle to the now-finite number of position states. The experiment overlaps two independent 40 meter optical Michelson interferometers to detect the proposed uncertainty as a common broadband length fluctuation. 150 hours of instrument cross-correlation data are analyzed to test the prediction of a correlated noise magnitude of 7e-21m/Hz.5 with an effective bandwidth of 750kHz. The interferometers each have a quantum-limited sensitivity of 2.5e-18m/Hz.5, but their correlation with a time-bandwidth product of 4e11 digs between the noise floors in search for the covarying geometric jitter. The data presents an exclusion of 5 standard deviations for the tested model. This exclusion is defended through analysis of the calibration methods for the instrument as well as further sub shot noise characterization of the optical systems to limit spurious background-correlations from undermining the signal.

  14. Testing a Model of Planck-Scale Quantum Geometry With Broadband Correlation of Colocated 40m Interferometers

    SciTech Connect

    McCuller, Lee Patrick

    2015-12-01

    The Holometer is designed to test for a Planck diffractive-scaling uncertainty in long-baseline position measurements due to an underlying noncommutative geometry normalized to relate Black hole entropy bounds of the Holographic principle to the now-finite number of position states. The experiment overlaps two independent 40 meter optical Michelson interferometers to detect the proposed uncertainty as a common broadband length fluctuation. 150 hours of instrument cross-correlation data are analyzed to test the prediction of a correlated noise magnitude of $7\\times10^{−21}$ m/$\\sqrt{\\rm Hz}$ with an effective bandwidth of 750kHz. The interferometers each have a quantum-limited sensitivity of $2.5\\times 10^{−18}$ m/$\\sqrt{\\rm Hz}$, but their correlation with a time-bandwidth product of $4\\times 10^{11}$ digs between the noise floors in search for the covarying geometric jitter. The data presents an exclusion of 5 standard deviations for the tested model. This exclusion is defended through analysis of the calibration methods for the instrument as well as further sub shot noise characterization of the optical systems to limit spurious background-correlations from undermining the signal.

  15. String Theory and its Applications - TASI 2010 From meV to the Planck Scale

    NASA Astrophysics Data System (ADS)

    Dine, Michael; Banks, Thomas; Sachdev, Subir

    Overview. 1. Introduction to gauge/gravity duality / J. Polchinski. 2. TASI lectures on holographic space-time, SUSY, and gravitational effective field theory / T. Banks -- LHC physics. 3. Fundamentals of LHC experiments / J. Nielsen. 4. Theoretical particle physics at hadron colliders: an introduction / M. J. Strassler -- String model building, landscape and phenomenology. 5. TASI lectures: particle physics from perturbative and non-perturbative effects in D-Braneworlds / M. Cvetic and J. Halverson. 6. Supergravity and string vacua in various dimensions / W. Taylor. 7. TASI lectures on complex structures / F. Denef. 8. Supersymmetry from the top down / M. Dine -- AdS/CFT applications. 9. The landscape of the Hubbard model / S. Sachdev. 10. Holography for strongly coupled media / D. T. Son. 11. Collisions in anti-de Sitter space, conformal symmetry, and holographic superconductors / S. S. Gubser. 12. Emergence of supersymmetry, gauge theory and string theory in condensed matter systems / S.-S. Lee. 13. Lectures on holographic non-Fermi liquids and quantum phase transitions / N. Iqbal, H. Liu and M. Mezei. 14. The fluid/gravity correspondence / S. Minwalla, V. E. Hubeny and M. Rangamani.

  16. Planck data reconsidered

    NASA Astrophysics Data System (ADS)

    Spergel, David N.; Flauger, Raphael; Hložek, Renée

    2015-01-01

    The tension between the best fit parameters derived by the Planck team and a number of other astronomical measurements suggests either systematics in the astronomical measurements, systematics in the Planck data, the need for new physics, or a combination thereof. We reanalyze the Planck data and find that the 217 GHz ×217 GHz detector set spectrum used in the Planck analysis is responsible for some of this tension. We use a map-based foreground cleaning procedure, relying on a combination of 353 GHz and 545 GHz maps to reduce residual foregrounds in the intermediate frequency maps used for cosmological inference. For our baseline data analysis, which uses 47% of the sky and makes use of both 353 and 545 GHz data for foreground cleaning, we find the Λ CDM cosmological parameters Ωch2=0.1170 ±0.0025 , ns=0.9686 ±0.0069 , H0=68.0 ±1.1 km s-1 Mpc-1 , Ωbh2=0.02197 ±0.00026 , ln 1010As=3.082 ±0.025 , and τ =0.090 ±0.013 . While in broad agreement with the results reported by the Planck team, these revised parameters imply a universe with a lower matter density of Ωm=0.302 ±0.015 , and parameter values generally more consistent with pre-Planck CMB analyses and astronomical observations. We compare our cleaning procedure with the foreground modeling used by the Planck team and find good agreement. The difference in parameters between our analysis and that of the Planck team is mostly due to our use of cross-spectra from the publicly available survey maps instead of their use of the detector set cross-spectra which include pixels only observed in one of the surveys. We show evidence suggesting residual systematics in the detector set spectra used in the Planck likelihood code, which is substantially reduced for our spectra. Using our cleaned survey cross-spectra, we recompute the limit on neutrino species and find Neff=3.34 ±0.35 . We also recompute limits on the ns-r plane, and neutrino mass constraints.

  17. Limits to Seeing High-Redshift Galaxies Due to Planck-Scale-Induced Blurring

    NASA Astrophysics Data System (ADS)

    Steinbring, Eric

    2015-08-01

    Carefully accounting for cosmological surface-brightness dimming and K-corrections are two important steps in teasing out the underlying properties of evolving high-z galaxy populations. Another potential effect is worthy of scrutiny simply because of its profound physical implications, if seen. In the last decade or so there has been debate over the possibility that the fuzzy quantum nature of spacetime might decohere wavefronts emanating from very distant sources. Consequences of that could be "blurred" or "faded" images of compact structures in galaxies, primarily at z>1 for their emitted X-rays and gamma-rays, but perhaps even in UV through optical light at higher redshift. So far there are only inconclusive hints of this from z~4 active-galactic nucleii and gamma-ray bursts viewed with Fermi and Hubble Space Telescope. If correct though, that would impose a significant, fundamental resolution limit for galaxies out to z~8 in the era of the James Webb Space Telescope and the next generation of ground-based telescopes using adaptive optics. I consider what to look for (and maybe not see).

  18. Planck Surveyor On Its Way to Orbit

    SciTech Connect

    Borrill, Julian

    2009-01-01

    An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center.

  19. Planck Surveyor On Its Way to Orbit

    ScienceCinema

    None

    2010-01-08

    An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center

  20. Planck Surveyor On Its Way to Orbit

    ScienceCinema

    Borrill, Julian

    2013-05-29

    An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center.

  1. Planck Surveyor On Its Way to Orbit

    SciTech Connect

    2009-05-14

    An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center

  2. Cosmological bounds on TeV-scale physics and beyond

    NASA Astrophysics Data System (ADS)

    Afshordi, Niayesh; Nelson, Elliot

    2016-04-01

    We study the influence of the fluctuations of a Lorentz-invariant and conserved vacuum on cosmological metric perturbations, and show that they generically blow up in the IR. We compute this effect using the Källén-Lehmann spectral representation of stress correlators in generic quantum field theories, as well as the holographic bound on their entanglement entropy, both leading to an IR cutoff that scales as the fifth power of the highest UV scale (in Planck units). One may view this as analogous to the Heisenberg uncertainty principle, which is imposed on the phase space of gravitational theories by the Einstein constraint equations. The leading effect on cosmological observables comes from anisotropic vacuum stresses which imply: i) any extension of the standard model of particle physics can only have masses (or resonances) ≲24 TeV , and ii) perturbative quantum field theory or quantum gravity become strongly coupled beyond a UV scale of Λ ≲1 PeV . Such a low strong coupling scale is independently motivated by the Higgs hierarchy problem. This result, which we dub the cosmological nonconstant problem, can be viewed as an extension of the cosmological constant (CC) problem, demonstrating the nontrivial UV-IR coupling and (yet another) limitation of effective field theory in gravity. However, it is more severe than the old CC problem, as vacuum fluctuations cannot be tuned to cancel due to the positivity of spectral densities or entropy. We thus predict that future advances in cosmological observations and collider technology will sandwich from above and below, and eventually discover, new (nonperturbative) physics beyond the standard model within the TeV-PeV energy range.

  3. Development of Physics Self-Efficacy Scale

    NASA Astrophysics Data System (ADS)

    Çalişkan, Serap; Selçuk, Gamze S.; Erol, Mustafa

    2007-04-01

    In this article, we describe development of a Physics Self-Efficacy Scale (PSES) that is a self-administered measure to assess physics self-efficacy beliefs regarding one's ability to successfully perform physics tasks in physics classroom. The scale is initially composed of 56 items prepared following a brief scrutiny of relating literature on self-efficacy. It was initially administered 30 physics teacher candidates and was also examined by 6 experts of physics education, then ambiguous or incomprehensible 6 items were dismissed. This PSES was tested on 558 undergraduate students all completed fundamental physics courses. Cronbach's Alpha reliability coefficient of the PSES was calculated as 0.94. The final version of the PSES contained 30 items with 5 dimensions namely, 1. Self-efficacy towards solving physics problems, 2. Self-efficacy towards physics laboratory, 3. Self-efficacy towards learning physics, 4. Self-efficacy towards application of physics knowledge and 5. Self-efficacy towards memorizing physics knowledge.

  4. Tests of the Lorentz and CPT Symmetries at the Planck Energy Scale from X-Ray and Gamma-Ray Observations

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Kislat, Fabian; Beilicke, Matthias; Zajczyk, Anna

    2014-01-01

    X-ray and gamma-ray observations of astrophysical objects at cosmological distances can be used to probe the energy dependence of the speed of light with high accuracy and to search for violations of Lorentz invariance and CPT symmetry at the Planck energy scale. In this conference contribution, we discuss these searches in the theoretical framework of the Standard-Model Extension. We present new limits on the dispersion relation governed by operators of mass dimension d = 5 and d = 6, and we discuss avenues for future progress.

  5. Planck-suppressed operators

    SciTech Connect

    Assassi, Valentin; Baumann, Daniel; Green, Daniel; McAllister, Liam E-mail: dbaumann@damtp.cam.ac.uk E-mail: mcallister@cornell.edu

    2014-01-01

    We show that the recent Planck limits on primordial non-Gaussianity impose strong constraints on light hidden sector fields coupled to the inflaton via operators suppressed by a high mass scale Λ. We study a simple effective field theory in which a hidden sector field is coupled to a shift-symmetric inflaton via arbitrary operators up to dimension five. Self-interactions in the hidden sector lead to non-Gaussianity in the curvature perturbations. To be consistent with the Planck limit on local non-Gaussianity, the coupling to any hidden sector with light fields and natural cubic couplings must be suppressed by a very high scale Λ > 10{sup 5}H. Even if the hidden sector has Gaussian correlations, nonlinearities in the mixing with the inflaton still lead to non-Gaussian curvature perturbations. In this case, the non-Gaussianity is of the equilateral or orthogonal type, and the Planck data requires Λ > 10{sup 2}H.

  6. Warming up for Planck

    NASA Astrophysics Data System (ADS)

    Bartrum, Sam; Berera, Arjun; Rosa, João G.

    2013-06-01

    The recent Planck results and future releases on the horizon present a key opportunity to address a fundamental question in inflationary cosmology of whether primordial density perturbations have a quantum or thermal origin, i.e. whether particle production may have significant effects during inflation. Warm inflation provides a natural arena to address this issue, with interactions between the scalar inflaton and other degrees of freedom leading to dissipative entropy production and associated thermal fluctuations. In this context, we present relations between CMB observables that can be directly tested against observational data. In particular, we show that the presence of a thermal bath warmer than the Hubble scale during inflation decreases the tensor-to-scalar ratio with respect to the conventional prediction in supercooled inflation, yielding r < 8|nt|, where nt is the tensor spectral index. Focusing on supersymmetric models at low temperatures, we determine consistency relations between the observables characterizing the spectrum of adiabatic scalar and tensor modes, both for generic potentials and particular canonical examples, and which we compare with the WMAP and Planck results. Finally, we include the possibility of producing the observed baryon asymmetry during inflation through dissipative effects, thereby generating baryon isocurvature modes that can be easily accommodated by the Planck data.

  7. Warming up for Planck

    SciTech Connect

    Bartrum, Sam; Berera, Arjun; Rosa, João G. E-mail: ab@ph.ed.ac.uk

    2013-06-01

    The recent Planck results and future releases on the horizon present a key opportunity to address a fundamental question in inflationary cosmology of whether primordial density perturbations have a quantum or thermal origin, i.e. whether particle production may have significant effects during inflation. Warm inflation provides a natural arena to address this issue, with interactions between the scalar inflaton and other degrees of freedom leading to dissipative entropy production and associated thermal fluctuations. In this context, we present relations between CMB observables that can be directly tested against observational data. In particular, we show that the presence of a thermal bath warmer than the Hubble scale during inflation decreases the tensor-to-scalar ratio with respect to the conventional prediction in supercooled inflation, yielding r < 8|n{sub t}|, where n{sub t} is the tensor spectral index. Focusing on supersymmetric models at low temperatures, we determine consistency relations between the observables characterizing the spectrum of adiabatic scalar and tensor modes, both for generic potentials and particular canonical examples, and which we compare with the WMAP and Planck results. Finally, we include the possibility of producing the observed baryon asymmetry during inflation through dissipative effects, thereby generating baryon isocurvature modes that can be easily accommodated by the Planck data.

  8. Small-scale physics of the ocean

    NASA Technical Reports Server (NTRS)

    Caldwell, D. R.

    1983-01-01

    Progress in research on the small-scale physics of the ocean is reviewed. The contribution of such research to the understanding of the large scales is addressed and compared for various depth ranges of the ocean. The traditional framework for discussing small-scale measurements and turbulence is outlined, and recent research in the area is reviewed, citing references. Evidence for the existence of salt fingering in oceanic mixing is discussed. Factors that might inhibit the growth of salt fingers are assessed, and the influence of differences between laboratory tank and ocean in studying the fingers is discussed. The role of salt fingers in creating intrusions is examined. Instruments and methods used to measure the smallest scales at which there is appreciable variation and the stability of the patch of ocean in which the small-scale motions take place are considered.

  9. Planck constraints on monodromy inflation

    SciTech Connect

    Easther, Richard; Flauger, Raphael E-mail: flauger@ias.edu

    2014-02-01

    We use data from the nominal Planck mission to constrain modulations in the primordial power spectrum associated with monodromy inflation. The largest improvement in fit relative to the unmodulated model has Δχ{sup 2} ≈ 10 and we find no evidence for a primordial signal, in contrast to a previous analysis of the WMAP9 dataset, for which Δχ{sup 2} ≈ 20. The Planck and WMAP9 results are broadly consistent on angular scales where they are expected to agree as far as best-fit values are concerned. However, even on these scales the significance of the signal is reduced in Planck relative to WMAP, and is consistent with a fit to the ''noise'' associated with cosmic variance. Our results motivate both a detailed comparison between the two experiments and a more careful study of the theoretical predictions of monodromy inflation.

  10. On physical scales of dark matter halos

    SciTech Connect

    Zemp, Marcel

    2014-09-10

    It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.

  11. Environment-based selection effects of Planck clusters

    NASA Astrophysics Data System (ADS)

    Kosyra, R.; Gruen, D.; Seitz, S.; Mana, A.; Rozo, E.; Rykoff, E.; Sanchez, A.; Bender, R.

    2015-09-01

    We investigate whether the large-scale structure environment of galaxy clusters imprints a selection bias on Sunyaev-Zel'dovich (SZ) catalogues. Such a selection effect might be caused by line of sight (LoS) structures that add to the SZ signal or contain point sources that disturb the signal extraction in the SZ survey. We use the Planck PSZ1 union catalogue in the Sloan Digital Sky Survey (SDSS) region as our sample of SZ-selected clusters. We calculate the angular two-point correlation function (2pcf) for physically correlated, foreground and background structure in the RedMaPPer SDSS DR8 catalogue with respect to each cluster. We compare our results with an optically selected comparison cluster sample and with theoretical predictions. In contrast to the hypothesis of no environment-based selection, we find a mean 2pcf for background structures of -0.049 on scales of ≲40 arcmin, significantly non-zero at ˜4σ, which means that Planck clusters are more likely to be detected in regions of low background density. We hypothesize this effect arises either from background estimation in the SZ survey or from radio sources in the background. We estimate the defect in SZ signal caused by this effect to be negligibly small, of the order of ˜10-4 of the signal of a typical Planck detection. Analogously, there are no implications on X-ray mass measurements. However, the environmental dependence has important consequences for weak lensing follow up of Planck galaxy clusters: we predict that projection effects account for half of the mass contained within a 15 arcmin radius of Planck galaxy clusters. We did not detect a background underdensity of CMASS LRGs, which also leaves a spatially varying redshift dependence of the Planck SZ selection function as a possible cause for our findings.

  12. The Planck aether model for a unified theory of elementary particles

    SciTech Connect

    Winterberg, F. )

    1994-06-01

    A dense assembly of an equal number of two kinds of Planck masses, one having positive and the other one negative kinetic energy, described by a nonrelativistic nonlinear Heisenberg equation with pointlike interactions, is proposed as a model for a unified theory of elementary particles. The dense assembly of Planck masses leads to a vortex field below the Planck scale having the form of a vortex lattice, which can propagate two types of waves, one having the property of Maxwell's electromagnetic and the other one the property of Einstein's gravitational waves. The waves have a cutoff at a wavelength equal to the vortex lattice constant about [approximately] 10[sup 3] times larger than the Planck length, reproducing the GUT scale of elementary particle physics. The vortex lattice has a resonance energy leading to two kinds of quasiparticles, both of which have the property of Dirac spinors. Depending on the resonance energy, estimated to be [approximately] 10[sup 7] times smaller than the Planck energy, the mass of one of these quasiparticles is about equal to the electron mass. The mass of the other particle is much smaller, making it a likely candidate for the much smaller neutrino mass. Larger spinor masses occur as internal excitations, with a maximum of four such excitations corresponding to a maximum of four particle families. Other vortex solutions may describe the quark-lepton symmetries of the standard model. All masses, with the exception of the Planck mass particles, are quasiparticles for which Lorentz invariance holds, with the Galilei invariance at the Planck scale dynamically broken into Lorentz invariance below this scale. The assumed equal number of Planck masses with positive and negative kinetic energy makes the cosmological constant exactly equal to zero.

  13. Planck early results. I. The Planck mission

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Baker, M.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Bennett, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bradshaw, T.; Bremer, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cabella, P.; Cantalupo, C. M.; Cappellini, B.; Cardoso, J.-F.; Carr, R.; Casale, M.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Charra, J.; Chary, R.-R.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Crone, G.; Crook, M.; Cuttaia, F.; Danese, L.; D'Arcangelo, O.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Bruin, J.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dick, J.; Dickinson, C.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Foley, S.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Freschi, M.; Gaier, T. C.; Galeotta, S.; Gallegos, J.; Gandolfo, B.; Ganga, K.; Giard, M.; Giardino, G.; Gienger, G.; Giraud-Héraud, Y.; González, J.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guyot, G.; Haissinski, J.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juillet, J. J.; Juvela, M.; Kangaslahti, P.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Krassenburg, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lange, A. E.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lowe, S.; Lubin, P. M.; Macías-Pérez, J. F.; Maciaszek, T.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McDonald, A.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Mevi, C.; Miniscalco, R.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Morisset, N.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Ortiz, I.; Osborne, S.; Osuna, P.; Oxborrow, C. A.; Pajot, F.; Paladini, R.; Partridge, B.; Pasian, F.; Passvogel, T.; Patanchon, G.; Pearson, D.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Reix, J.-M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Salerno, E.; Sandri, M.; Santos, D.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.; Shellard, P.; Simonetto, A.; Smoot, G. F.; Sozzi, C.; Starck, J.-L.; Sternberg, J.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Stringhetti, L.; Sudiwala, R.; Sunyaev, R.; Sygnet, J.-F.; Tapiador, D.; Tauber, J. A.; Tavagnacco, D.; Taylor, D.; Terenzi, L.; Texier, D.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Türler, M.; Tuttlebee, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Varis, J.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson, C.; White, S. D. M.; White, M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    The European Space Agency's Planck satellite was launched on 14 May 2009, and has been surveying the sky stably and continuously since 13 August 2009. Its performance is well in line with expectations, and it will continue to gather scientific data until the end of its cryogenic lifetime. We give an overview of the history of Planck in its first year of operations, and describe some of the key performance aspects of the satellite. This paper is part of a package submitted in conjunction with Planck's Early Release Compact Source Catalogue, the first data product based on Planck to be released publicly. The package describes the scientific performance of the Planck payload, and presents results on a variety of astrophysical topics related to the sources included in the Catalogue, as well as selected topics on diffuse emission. Corresponding author: J. A. Tauber, e-mail: jtauber@rssd.esa.int

  14. Overview of Icing Physics Relevant to Scaling

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Tsao, Jen-Ching

    2005-01-01

    An understanding of icing physics is required for the development of both scaling methods and ice-accretion prediction codes. This paper gives an overview of our present understanding of the important physical processes and the associated similarity parameters that determine the shape of Appendix C ice accretions. For many years it has been recognized that ice accretion processes depend on flow effects over the model, on droplet trajectories, on the rate of water collection and time of exposure, and, for glaze ice, on a heat balance. For scaling applications, equations describing these events have been based on analyses at the stagnation line of the model and have resulted in the identification of several non-dimensional similarity parameters. The parameters include the modified inertia parameter of the water drop, the accumulation parameter and the freezing fraction. Other parameters dealing with the leading edge heat balance have also been used for convenience. By equating scale expressions for these parameters to the values to be simulated a set of equations is produced which can be solved for the scale test conditions. Studies in the past few years have shown that at least one parameter in addition to those mentioned above is needed to describe surface-water effects, and some of the traditional parameters may not be as significant as once thought. Insight into the importance of each parameter, and the physical processes it represents, can be made by viewing whether ice shapes change, and the extent of the change, when each parameter is varied. Experimental evidence is presented to establish the importance of each of the traditionally used parameters and to identify the possible form of a new similarity parameter to be used for scaling.

  15. Perspective on TeV-scale physics

    SciTech Connect

    Chanowitz, M.S.

    1989-02-01

    These lectures review theoretical motivations and experimental prospects for the study of TeV-scale physics. Three clues to the importance of TeV physics are discussed: implications of quantum corrections for the masses of a fourth generation quark-lepton family, the gauge hierarchy problem and known solutions, and implications of symmetry and unitarity for the symmetry-breaking sector of the electroweak gauge theory. The experimental prospects are reviewed with emphasis on the multi-TeV pp colliders that may be built in the 1990's. The topics include new phenomena that might occur - e.g., a fourth generation, heavy gauge bosons, composite structure, and supersymmetry - as well as the signals of the unknown SU(2)/sub L/ /times/ U(1)/sub Y/ breaking mechanism that must occur within the TeV domain. 96 refs., 21 figs.

  16. Characterization of foreground emission on degree angular scales for CMB B-mode observations . Thermal dust and synchrotron signal from Planck and WMAP data

    NASA Astrophysics Data System (ADS)

    Krachmalnicoff, N.; Baccigalupi, C.; Aumont, J.; Bersanelli, M.; Mennella, A.

    2016-04-01

    We quantify the contamination from polarized diffuse Galactic synchrotron and thermal dust emissions to the B modes of the cosmic microwave background (CMB) anisotropies on the degree angular scale, using data from the Planck and Wilkinson Microwave Anisotropy Probe (WMAP) satellites. We compute power spectra of foreground polarized emissions in 352 circular sky patches located at Galactic latitude | b | > 20°, each of which covers about 1.5% of the sky. We make use of the spectral properties derived from Planck and WMAP data to extrapolate, in frequency, the amplitude of synchrotron and thermal dust B-mode spectra in the multipole bin centered at ℓ ≃ 80. In this way we estimate the amplitude and frequency of the foreground minimum for each analyzed region. We detect both dust and synchrotron signal on degree angular scales and at a 3σ confidence level in 28 regions. Here the minimum of the foreground emission is found at frequencies between 60 and 100 GHz with an amplitude expressed in terms of the equivalent tensor-to-scalar ratio, rFG,min, between ~0.06 and ~1. Some of these regions are located at high Galactic latitudes in areas close to the ones that are being observed by suborbital experiments. In all the other sky patches where synchrotron or dust B modes are not detectable with the required confidence, we put upper limits on the minimum foreground contamination and find values of rFG,min between ~0.05 and ~1.5 in the frequency range 60-90 GHz. Our results indicate that, with the current sensitivity at low frequency, it is not possible to exclude the presence of synchrotron contamination to CMB cosmological B modes at the level requested to measure a gravitational waves signal with r ≃ 0.01 at frequency ≲100 GHz anywhere. Therefore, more accurate data are essential in order to better characterize the synchrotron polarized component and, eventually, to remove its contamination to CMB signal through foreground cleaning.

  17. The Planck Mission and its Products

    NASA Astrophysics Data System (ADS)

    Tauber, Jan A.

    2015-08-01

    Planck (http://www.esa.int/Planck) is an astronomical satellite part of the Scientific Programme of the European Space Agency, which was designed to image the anisotropies of the Cosmic Microwave Background (CMB) over the whole sky, with unprecedented sensitivity and angular resolution. Planck is a major source of information relevant to many cosmological and astrophysical issues. The ability to measure to high accuracy the angular power spectrum of the CMB fluctuations allows the determination of fundamental cosmological parameters with an uncertainty better than a percent. In addition to the main cosmological goals of the mission, the Planck sky survey can be used to study in detail the very sources of emission which "contaminate" the signal due to the CMB, and will result in a wealth of information on the properties of extragalactic sources, and on the dust and gas in our own galaxy.Planck was launched together with Herschel on 14 May 2009. Its payload surveyed the sky continuously between July 2009 and October 2013. In January 2011 the first Planck data product (the Early Release Compact Source Catalogue) and scientific results were released to the public. The second data release took place on March 2013, and included maps of the whole sky at nine frequencies as well as maps of the major physical emission components. The third data release is taking place between February and May 2015, and includes all the data acquired by Planck.I will present - on behalf of the Planck Collaboration - a very brief overview of the Planck mission, its scientific objectives, and also briefly describe its most recent scientific results. Next, I will concentrate on describing the Planck data products that have been publicly released, and how they can serve a wide community of users. This talk is intended to be an appropriate introduction to the IAU GA Focus Meeting “The Legacy of Planck”.

  18. Negative running of the spectral index, hemispherical asymmetry and the consistency of Planck with large r

    SciTech Connect

    McDonald, John

    2014-11-01

    Planck favours a negative running of the spectral index, with the likelihood being dominated by low multipoles l ∼< 50 and no preference for running at higher l. A negative spectral index is also necessary for the 2- Planck upper bound on the tensor-to-scalar ratio r to be consistent with values significantly larger than 0.1. Planck has also observed a hemispherical asymmetry of the CMB power spectrum, again mostly at low multipoles. Here we consider whether the physics responsible for the hemispherical asymmetry could also account for the negative running of the spectral index and the consistency of Planck with a large value of r. A negative running of the spectral index can be generated if the hemispherical asymmetry is due to a scale- and space-dependent modulation which suppresses the CMB power spectrum at low multipoles. We show that the observed hemispherical asymmetry at low l can be generated while satisfying constraints on the asymmetry at higher l and generating a negative spectral index of the right magnitude to account for the Planck observation and to allow Planck to be consistent with a large value of r.

  19. Physical scale experiments on torrential filter structures

    NASA Astrophysics Data System (ADS)

    Chiari, Michael; Moser, Markus; Trojer, Martin; Hübl, Johannes

    2016-04-01

    In the framework of the INTERREG Project "SedAlp" physical scale model experiments are carried out in the hydraulic laboratory of the Institute of Mountain Risk Engineering at the University of Life Sciences in Vienna in order to optimize torrent protection structures. Two different types of check dams are investigated. A screen-dam with inclined vertical beams is compared with a beam-dam with horizontal beams. The experiments evaluate the variation of sediment transport of these structures including the influence of coarse woody debris. Therefore the distance between the steel elements can be adjusted to show their ability to filter sediment. The physical scale of the experiments is 1:30. All experimental runs are Froude scaled. Both dams are tested in elongated and pear-shaped sediment retention basins in order to investigate the shape effect of the deposition area. For a systematic comparison of the two check dams experiments with fluvial bedload transport are made. First a typical hydrograph for an extreme flood with unlimited sediment supply is modelled. A typical torrential sediment mixture with a wide grain-size distribution is fed by a conveyor belt according the transport capacity of the upstream reach. Then the deposition is scanned with a laser-scan device in order to analyse the deposition pattern and the deposited volume. Afterwards a flood with a lower reoccurrence period without sediment transport from upstream is modelled to investigate the ability of the protection structure for self-emptying. To investigate the influence of driftwood on the deposition behaviour experiments with logs are made. Different log diameters and lengths are added upstream the basin. The results show, that the deposition during the experiments was not controlled by sorting-effects at the location of the dam. The deposition always started from upstream, where the transport capacity was reduced due to the milder slope and the widening of the basin. No grain sorting effects

  20. Physics in space-time with scale-dependent metrics

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.

    2013-10-01

    We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.

  1. Initiation and Detonation Physics on Millimeter Scales

    SciTech Connect

    Philllips, D F; Benterou, J J; May, C A

    2012-03-20

    The LLNL Detonation Science Project has a major interest in understanding the physics of detonation on a millimeter scale. This report summarizes the rate stick experiment results of two high explosives. The GO/NO-GO threshold between varying diameters of ultra-fine TATB (ufTATB) and LX-16 were recorded on an electronic streak camera and analyzed. This report summarizes the failure diameters of rate sticks for ufTATB and LX-16. Failure diameter for the ufTATB explosive, with densities at 1.80 g/cc, begin at 2.34 mm (not maintaining detonation velocity over the entire length of the rate stick). ufTATB rate sticks at the larger 3.18 mm diameter maintain a constant detonation velocity over the complete length. The PETN based and LLNL developed explosive, LX-16, with densities at 1.7 g/cc, shows detonation failure between 0.318 mm and 0.365 mm. Additional tests would be required to narrow this failure diameter further. Many of the tested rate sticks were machined using a femtosecond laser focused into a firing tank - in case of accidental detonation.

  2. Deep inelastic scaling in nuclear and particle physics

    SciTech Connect

    West, G.B.

    1988-01-01

    These lectures are intended to be a pedagogical introduction to some of the ideas and concepts concerning scaling phenomena which arise in nuclear and particle physics. Topics discussed are: classical scaling and dimensional analysis; non-relativistic treatment; dynamics and scaling; y-scaling; and relativistic treatment (QCD). 22 refs., 16 figs. (LSP)

  3. The physics of musical scales: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Durfee, Dallin S.; Colton, John S.

    2015-10-01

    The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human perception and provides an interesting application of the physics of waves and sound. We first review the history and physics of musical scales, with an emphasis on four historically important scales: twelve-tone equal temperament, Pythagorean, quarter-comma meantone, and Ptolemaic just intonation. We then present an easy way for students and teachers to directly experience the qualities of different scales using MIDI synthesis.

  4. The Planck Mission: Early Results

    SciTech Connect

    Marco Bersanelli

    2012-03-07

    The ESA Planck space mission, launched on May 14, 2009, is dedicated to high precision measurements of the cosmic microwave background (CMB), the first light of the universe, both in temperature and polarization. The satellite observes the full sky from a far-Earth orbit with two cryogenic instruments in the 30-850 GHz range at the focal plane of a 1.5-meter telescope. The primary objective of Planck is to measure with unprecedented precision the key cosmological parameters and to provide accurate tests of physics in the early universe. Planck has recently completed the fifth full-sky survey. The data analysis is underway. The first cosmology results are expected in early 2013 while a number of astrophysical results have been recently delivered to the community, including galactic and extragalactic astrophysics and a rich catalogue of radio and infrared sources. These results demonstrate the excellent in-orbit performance of the instruments and give excellent prospects for the forthcoming cosmological results.

  5. Lessons Learned from Planck

    NASA Astrophysics Data System (ADS)

    Lawrence, Charles; Planck Collaboration Collaboration

    2016-03-01

    Planck's measurements of the microwave sky at seven frequencies spanning 30 to 353 GHz represent an important advance in our understanding of both the cosmic microwave background (CMB) radiation and the properties of astrophysical foregrounds. I will discuss the lessons learned from Planck for future experiments, particularly in the areas of foreground confusion and systematic errors that will set the ultimate limits to what can learned from CMB polarization.

  6. Reliability and Validity of the Physical Education Activities Scale

    ERIC Educational Resources Information Center

    Thomason, Diane L.; Feng, Du

    2016-01-01

    Background: Measuring adolescent perceptions of physical education (PE) activities is necessary in understanding determinants of school PE activity participation. This study assessed reliability and validity of the Physical Education Activities Scale (PEAS), a 41-item visual analog scale measuring high school adolescent perceptions of school PE…

  7. Development and Validation of the Physics Anxiety Rating Scale

    ERIC Educational Resources Information Center

    Sahin, Mehmet; Caliskan, Serap; Dilek, Ufuk

    2015-01-01

    This study reports the development and validation process for an instrument to measure university students' anxiety in physics courses. The development of the Physics Anxiety Rating Scale (PARS) included the following steps: Generation of scale items, content validation, construct validation, and reliability calculation. The results of construct…

  8. Planck, the Quantum, and the Historians

    NASA Astrophysics Data System (ADS)

    Gearhart, Clayton A.

    2002-05-01

    In late 1900, the German theoretical physicist Max Planck derived an expression for the spectrum of black-body radiation. That derivation was the first step in the introduction of quantum concepts into physics. But how did Planck think about his result in the early years of the twentieth century? Did he assume that his derivation was consistent with the continuous energies inherent in Maxwellian electrodynamics and Newtonian mechanics? Or did he see the beginnings, however tentative and uncertain, of the quantum revolution to come? Historians of physics have debated this question for over twenty years. In this article, I review that debate and, at the same time, present Planck's achievement in its historical context.

  9. Model of cosmology and particle physics at an intermediate scale

    SciTech Connect

    Bastero-Gil, M.; Di Clemente, V.; King, S. F.

    2005-05-15

    We propose a model of cosmology and particle physics in which all relevant scales arise in a natural way from an intermediate string scale. We are led to assign the string scale to the intermediate scale M{sub *}{approx}10{sup 13} GeV by four independent pieces of physics: electroweak symmetry breaking; the {mu} parameter; the axion scale; and the neutrino mass scale. The model involves hybrid inflation with the waterfall field N being responsible for generating the {mu} term, the right-handed neutrino mass scale, and the Peccei-Quinn symmetry breaking scale. The large scale structure of the Universe is generated by the lightest right-handed sneutrino playing the role of a coupled curvaton. We show that the correct curvature perturbations may be successfully generated providing the lightest right-handed neutrino is weakly coupled in the seesaw mechanism, consistent with sequential dominance.

  10. Small-scale physics of the ocean

    NASA Technical Reports Server (NTRS)

    Caldwell, Douglas R.

    1987-01-01

    Observations and theoretical models of small-scale phenomena in the oceans are reviewed, with a focus on progress during the period 1983-1986. Topics examined include surface layers, equatorial turbulence, off-equator mixed layers, the scaling of mixing, turbulence concepts, laboratory results, internal waves and mixing, rings, the nature of the bottom layer, double diffusion and intrusions, salt fingers, and biological interactions. Also discussed are developments in instrumentation (fast sampling profilers with upward-profiling capability, deep profilers, ship-motion correction, horizontal samplers, small submersibles, submarines, towed packages, conductivity sensors, dissolved-oxygen sensors, and acoustic Doppler current profilers) and goals for future research.

  11. Extending Higgs inflation with TeV scale new physics

    SciTech Connect

    He, Hong-Jian; Xianyu, Zhong-Zhi E-mail: xianyuzhongzhi@gmail.com

    2014-10-01

    Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than 2σ deviations, and generally gives a negligible tensor-to-scalar ratio r ∼ 10{sup -3} (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark T and a real scalar S. The presence of singlets (T, S) significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio r=O(0.1)-O(10{sup -3}), consistent with the favored r values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index n{sub s} ≅ 0.96. It allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark T and scalar S at the LHC and future high energy pp colliders.

  12. Extending Higgs inflation with TeV scale new physics

    SciTech Connect

    He, Hong-Jian; Xianyu, Zhong-Zhi

    2014-10-10

    Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than 2σ deviations, and generally gives a negligible tensor-to-scalar ratio r∼10{sup −3} (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark T and a real scalar S . The presence of singlets (T, S) significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio r=O(0.1)−O(10{sup −3}) , consistent with the favored r values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index n{sub s}≃0.96 . It allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark T and scalar S at the LHC and future high energy pp colliders.

  13. Newtons Principia Mathematica Philosophia und Plancks Elementarkonstanten

    NASA Astrophysics Data System (ADS)

    Rompe, R.; Treder, H.-J.

    Die Newtonschen Prinzipien, zusammen mit den Planckschen Elementarkonstanten, erweisen sich als gesichertes Fundament der Physik und der exakten Wissenschaften aller Richtungen.Der Begriffsfundus der Physik ist ausreichend für alle physikalischen aber auch weiterreichenden Probleme anderer Naturwissenschaften und Technik. Es zeigt sich, daß die klassische Physik von vornherein so angelegt wurde, daß sie über die Physik der makroskopischen Körper weit hinaus-greifen kann.Translated AbstractNewton's Principia Mathematica Philosophia and Planck's Elementary ConstantsTogether with Planck's elementary constants Newton's principles prove a guaranteed basis of physics and exact sciences of all directions.The conceptions in physics are competent at all physical problems as well as technology too. Classical physics was founded in such a way to reach far beyond the physics of macroscopic bodies.

  14. Planck 2013 results. XV. CMB power spectra and likelihood

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best estimate of the CMB angular power spectrum from Planck over three decades in multipole moment, ℓ, covering 2 ≤ ℓ ≤ 2500. The main source of uncertainty at ℓ ≲ 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher ℓs. For ℓ < 50, our likelihood exploits all Planck frequency channels from 30 to 353 GHz, separating the cosmological CMB signal from diffuse Galactic foregrounds through a physically motivated Bayesian component separation technique. At ℓ ≥ 50, we employ a correlated Gaussian likelihood approximation based on a fine-grained set of angular cross-spectra derived from multiple detector combinations between the 100, 143, and 217 GHz frequency channels, marginalising over power spectrum foreground templates. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on the final cosmological parameters. We find good internal agreement among the high-ℓ cross-spectra with residuals below a few μK2 at ℓ ≲ 1000, in agreement with estimated calibration uncertainties. We compare our results with foreground-cleaned CMB maps derived from all Planck frequencies, as well as with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. We further show that the best-fit ΛCDM cosmology is in excellent agreement with preliminary PlanckEE and TE polarisation spectra. We find that the standard ΛCDM cosmology is well constrained by Planck from the measurements at ℓ ≲ 1500. One specific example is the

  15. Composite inflation confronts BICEP2 and PLANCK

    NASA Astrophysics Data System (ADS)

    Karwan, Khamphee; Channuie, Phongpichit

    2014-06-01

    We examine observational constraints on single-field inflation in which the inflaton is a composite field stemming from a four-dimensional strongly interacting field theory. We confront the predictions with the Planck and very recent BICEP2 data. In the large non-minimal coupling regions, we discover for the minimal composite inflationary model that the predictions lie well inside the joint 68% CL for the Planck data, but is in tension with the recent BICEP2 observations. In the case of the glueball inflationary model, the predictions satisfy the Planck results. However, this model can produce a large tensor-to-scalar ratio consistent with the recent BICEP2 observations if the number of e-foldings is slightly smaller than the range commonly used. For a super Yang-Mills paradigm, we discover that the predictions satisfy the Planck data, and surprisingly a large tensor-to-scalar ratio consistent with the BICEP2 results can also be produced for an acceptable range of the number of e-foldings and of the confining scale. In the small non-minimal coupling regions, all of the models can satisfy the BICEP2 results. However, the predictions of the glueball and superglueball inflationary models cannot satisfy the observational bound on the amplitude of the curvature perturbation launched by Planck, and the techni-inflaton self-coupling in the minimal composite inflationary model is constrained to be extremely small.

  16. The Planck Legacy Archive

    NASA Astrophysics Data System (ADS)

    Dupac, X.; Arviset, C.; Fernandez Barreiro, M.; Lopez-Caniego, M.; Tauber, J.

    2015-12-01

    The Planck Collaboration has released in 2015 their second major dataset through the Planck Legacy Archive (PLA). It includes cosmological, Extragalactic and Galactic science data in temperature (intensity) and polarization. Full-sky maps are provided with unprecedented angular resolution and sensitivity, together with a large number of ancillary maps, catalogues (generic, SZ clusters and Galactic cold clumps), time-ordered data and other information. The extensive cosmological likelihood package allows cosmologists to fully explore the plausible parameters of the Universe. A new web-based PLA user interface is made public since Dec. 2014, allowing easier and faster access to all Planck data, and replacing the previous Java-based software. Numerous additional improvements to the PLA are also being developed through the so-called PLA Added-Value Interface, making use of an external contract with the Planetek Hellas and Expert Analytics software companies. This will allow users to process time-ordered data into sky maps, separate astrophysical components in existing maps, simulate the microwave and infrared sky through the Planck Sky Model, and use a number of other functionalities.

  17. Psychometric Properties of the Commitment to Physical Activity Scale

    ERIC Educational Resources Information Center

    DeBate, Rita DiGioacchino; Huberty, Jennifer; Pettee, Kelley

    2009-01-01

    Objective: To assess psychometric properties of the Commitment to Physical Activity Scale (CPAS). Methods: Girls in third to fifth grades (n = 932) completed the CPAS before and after a physical activity intervention. Psychometric measures included internal consistency, factor analysis, and concurrent validity. Results: Three CPAS factors emerged:…

  18. Planck 2013 results. XXXI. Consistency of the Planck data

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Pearson, T. J.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Scott, D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    The Planck design and scanning strategy provide many levels of redundancy that can be exploited to provide tests of internal consistency. One of the most important is the comparison of the 70 GHz (amplifier) and 100 GHz (bolometer) channels. Based on different instrument technologies, with feeds located differently in the focal plane, analysed independently by different teams using different software, and near the minimum of diffuse foreground emission, these channels are in effect two different experiments. The 143 GHz channel has the lowest noise level on Planck, and is near the minimum of unresolved foreground emission. In this paper, we analyse the level of consistency achieved in the 2013 Planck data. We concentrate on comparisons between the 70, 100, and 143 GHz channel maps and power spectra, particularly over the angular scales of the first and second acoustic peaks, on maps masked for diffuse Galactic emission and for strong unresolved sources. Difference maps covering angular scales from 8° to 15' are consistent with noise, and show no evidence of cosmic microwave background structure. Including small but important corrections for unresolved-source residuals, we demonstrate agreement (measured by deviation of the ratio from unity) between 70 and 100 GHz power spectra averaged over 70 ≤ ℓ ≤ 390 at the 0.8% level, and agreement between 143 and 100 GHz power spectra of 0.4% over the same ℓ range. These values are within and consistent with the overall uncertainties in calibration given in the Planck 2013 results. We also present results based on the 2013 likelihood analysis showing consistency at the 0.35% between the 100, 143, and 217 GHz power spectra. We analyse calibration procedures and beams to determine what fraction of these differences can be accounted for by known approximations or systematicerrors that could be controlled even better in the future, reducing uncertainties still further. Several possible small improvements are described

  19. The thermal Sunyaev-Zel'dovich effect power spectrum in light of Planck

    NASA Astrophysics Data System (ADS)

    McCarthy, I. G.; Le Brun, A. M. C.; Schaye, J.; Holder, G. P.

    2014-06-01

    The amplitude of the thermal Sunyaev-Zel'dovich effect (tSZ) power spectrum is extremely sensitive to the abundance of the most massive dark matter haloes (galaxy clusters) and therefore to fundamental cosmological parameters that control their growth, such as σ8 and Ωm. Here we explore the sensitivity of the tSZ power spectrum to important non-gravitational (`subgrid') physics by employing the cosmo-OWLS suite of large-volume cosmological hydrodynamical simulations, run in both the Planck and 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) best-fitting cosmologies. On intermediate and small angular scales (ℓ ≳ 1000, or θ≲10 arcmin), accessible with the South Pole Telescope (SPT) and the Atacama Cosmology Telescope (ACT), the predicted tSZ power spectrum is highly model dependent, with gas ejection due to active galactic nuclei (AGN) feedback having a particularly large effect. However, at large scales, observable with the Planck telescope, the effects of subgrid physics are minor. Comparing the simulated tSZ power spectra with observations, we find a significant amplitude offset on all measured angular scales (including large scales), if the Planck best-fitting cosmology is assumed by the simulations. This is shown to be a generic result for all current models of the tSZ power spectrum. By contrast, if the WMAP7 cosmology is adopted, there is full consistency with the Planck tSZ power spectrum measurements on large scales and agreement at the 2σ level with the SPT and ACT measurements at intermediate scales for our fiducial AGN model, which Le Brun et al. have shown reproduces the `resolved' properties of the Local Group and cluster population remarkably well. These findings strongly suggest that there are significantly fewer massive galaxy clusters than expected for the Planck best-fitting cosmology, which is consistent with recent measurements of the tSZ number counts. Our findings therefore pose a significant challenge to the cosmological

  20. Scale Development for Perceived School Climate for Girls’ Physical Activity

    PubMed Central

    Birnbaum, Amanda S.; Evenson, Kelly R.; Motl, Robert W.; Dishman, Rod K.; Voorhees, Carolyn C.; Sallis, James F.; Elder, John P.; Dowda, Marsha

    2008-01-01

    Objectives To test an original scale assessing perceived school climate for girls’ physical activity in middle school girls. Methods Confirmatory factor analysis (CFA) and structural equation modeling (SEM). Results CFA retained 5 of 14 original items. A model with 2 correlated factors, perceptions about teachers’ and boys’ behaviors, respectively, fit the data well in both sixth and eighth graders. SEM detected a positive, significant direct association of the teacher factor, but not the boy factor, with girls’ self-reported physical activity. Conclusions School climate for girls’ physical activity is a measurable construct, and preliminary evidence suggests a relationship with physical activity. PMID:15899688

  1. Associations between small-scale structure in the GALFA survey data of HI in the galactic disk and similar features in the Cosmic Microwave Background observed by PLANCK

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit L.

    2016-01-01

    High-resolution HI data obtained as part of the Arecibo GALFA survey have been compared with PLANCK data at 143 GHz and 857 GHz. The analysis confirms what has been reported previously, that sources of high-frequency continuum radiation exist in the galactic interstellar medium that produce structure that has been incorrectly interpreted as being cosmological in origin. The mechanism appears to be free-free emission from electron concentrations in regions where the dust and HI are similarly clumped or otherwise enhanced due to geometric effects. By comparing model calculations with the data it is concluded that the source of the radiation is relatively close to the sun, or order 25 to 50 pc distant. The required ionization fraction relative to HI is of order 0.05 - 0.08 for the areas tested.

  2. Planck 2013 results. XXII. Constraints on inflation

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Gauthier, C.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Pandolfi, S.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tréguer-Goudineau, J.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.

    2014-11-01

    We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be ns = 0.9603 ± 0.0073, ruling out exact scale invariance at over 5σ.Planck establishes an upper bound on the tensor-to-scalar ratio of r< 0.11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V''< 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n ≥ 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns/ dlnk = - 0.0134 ± 0.0090. We verify these conclusions through a numerical analysis, which makes no slow-roll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by Δχ2eff ≈ 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations

  3. Predicting a prior for Planck

    SciTech Connect

    Hertog, Thomas

    2014-02-01

    The quantum state of the universe combined with the structure of the landscape potential implies a prior that specifies predictions for observations. We compute the prior for CMB related observables given by the no-boundary wave function (NBWF) in a landscape model that includes a range of inflationary patches representative of relatively simple single-field models. In this landscape the NBWF predicts our classical cosmological background emerges from a region of eternal inflation associated with a plateau-like potential. The spectra of primordial fluctuations on observable scales are characteristic of concave potentials, in excellent agreement with the Planck data. By contrast, alternative theories of initial conditions that strongly favor inflation at high values of the potential are disfavored by observations in this landscape.

  4. Scales and scaling in turbulent ocean sciences; physics-biology coupling

    NASA Astrophysics Data System (ADS)

    Schmitt, Francois

    2015-04-01

    Geophysical fields possess huge fluctuations over many spatial and temporal scales. In the ocean, such property at smaller scales is closely linked to marine turbulence. The velocity field is varying from large scales to the Kolmogorov scale (mm) and scalar fields from large scales to the Batchelor scale, which is often much smaller. As a consequence, it is not always simple to determine at which scale a process should be considered. The scale question is hence fundamental in marine sciences, especially when dealing with physics-biology coupling. For example, marine dynamical models have typically a grid size of hundred meters or more, which is more than 105 times larger than the smallest turbulence scales (Kolmogorov scale). Such scale is fine for the dynamics of a whale (around 100 m) but for a fish larvae (1 cm) or a copepod (1 mm) a description at smaller scales is needed, due to the nonlinear nature of turbulence. The same is verified also for biogeochemical fields such as passive and actives tracers (oxygen, fluorescence, nutrients, pH, turbidity, temperature, salinity...) In this framework, we will discuss the scale problem in turbulence modeling in the ocean, and the relation of Kolmogorov's and Batchelor's scales of turbulence in the ocean, with the size of marine animals. We will also consider scaling laws for organism-particle Reynolds numbers (from whales to bacteria), and possible scaling laws for organism's accelerations.

  5. Detection of thermal SZ-CMB lensing cross-correlation in Planck nominal mission data

    SciTech Connect

    Hill, J. Colin; Spergel, David N. E-mail: dns@astro.princeton.edu

    2014-02-01

    The nominal mission maps from the Planck satellite contain a wealth of information about secondary anisotropies in the cosmic microwave background (CMB), including those induced by the thermal Sunyaev-Zel'dovich (tSZ) effect and gravitational lensing. As both the tSZ and CMB lensing signals trace the large-scale matter density field, the anisotropies sourced by these processes are expected to be correlated. We report the first detection of this cross-correlation signal, which we measure at 6.2σ significance using the Planck data. We take advantage of Planck's multifrequency coverage to construct a tSZ map using internal linear combination techniques, which we subsequently cross-correlate with the publicly-released Planck CMB lensing potential map. The cross-correlation is subject to contamination from the cosmic infrared background (CIB), which is known to correlate strongly with CMB lensing. We correct for this contamination via cross-correlating our tSZ map with the Planck 857 GHz map and confirm the robustness of our measurement using several null tests. We interpret the signal using halo model calculations, which indicate that the tSZ-CMB lensing cross-correlation is a unique probe of the physics of intracluster gas in high-redshift, low-mass groups and clusters. Our results are consistent with extrapolations of existing gas physics models to this previously unexplored regime and show clear evidence for contributions from both the one- and two-halo terms, but no statistically significant evidence for contributions from diffuse, unbound gas outside of collapsed halos. We also show that the amplitude of the signal depends rather sensitively on the amplitude of fluctuations (σ{sub 8}) and the matter density (Ω{sub m}), scaling as σ{sub 8}{sup 6.1}Ω{sub m}{sup 1.5} at ℓ = 1000. We constrain the degenerate combination σ{sub 8}(Ω{sub m}/0.282){sup 0.26} = 0.824±0.029, a result that is in less tension with primordial CMB constraints than some recent t

  6. Physical controls of soil moisture variability at multiple scales

    NASA Astrophysics Data System (ADS)

    Jana, R. B.; Mohanty, B.

    2013-12-01

    Understanding what factors drive soil hydrological processes at different scales and their variability is very critical to further our ability to model the various components of the hydrologic cycle more accurately. Soil moisture, and, by association, soil hydraulic parameters have been known to be a function of location, and the support scale at which they are measured. Recent increase in remote sensing platforms necessitates increased calibration/validation efforts of their soil moisture products with ground-based measurements. Such cal/val operations require some form of up- or down-scaling process. Understanding the factors that drive soil hydrological processes at different scales, and their variability, is very critical to minimize errors due to this step in the cal/val procedure. Existing literature provides a description of the different sources of soil moisture variability across a range of resolutions from point to continental scales, classified under four categories: soil texture and structure, topography, vegetation, and meteorological forcings. While it is accepted that a dynamic relationship exists between these physical controls and the soil hydraulic properties across spatial scales, the nature of the relationship is not very well understood. In order to formulate better scaling algorithms, it is first necessary to determine the form and amount of influence exerted by the controlling factors on the variability of the soil moisture or hydraulic parameters at each scale of interest. One method to understand the effect of the physical controls is to analyze the covariance or coherence of the physical controls with the soil hydraulic properties across multiple scales and different hydro-climates. Such a study, using wavelet analysis, is presented here. A variety of datasets from multiple platforms across the globe were employed in this study. The AMSR-E soil moisture product was used as the remotely sensed, coarse resolution dataset. Fine resolution

  7. 2D VARIABLY SATURATED FLOWS: PHYSICAL SCALING AND BAYESIAN ESTIMATION

    EPA Science Inventory

    A novel dimensionless formulation for water flow in two-dimensional variably saturated media is presented. It shows that scaling physical systems requires conservation of the ratio between capillary forces and gravity forces. A direct result of this finding is that for two phys...

  8. Physical-scale models of engineered log jams in rivers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stream restoration and river engineering projects are employing engineered log jams increasingly for stabilization and in-stream improvements. To further advance the design of these structures and their morphodynamic effects on corridors, the basis for physical-scale models of rivers with engineere...

  9. Scale Development for Perceived School Climate for Girls' Physical Activity

    ERIC Educational Resources Information Center

    Birnbaum, Amanda S.; Evenson, Kelly R.; Motl, Robert W.; Dishman, Rod K.; Voorhees, Carolyn C.; Sallis, James F.; Elder, John P.; Dowda, Marsha

    2005-01-01

    Objectives: To test an original scale assessing perceived school climate for girls' physical activity in middle school girls. Methods: Confirmatory factor analysis (CFA) and structural equation modeling (SEM). Results: CFA retained 5 of 14 original items. A model with 2 correlated factors, perceptions about teachers' and boys' behaviors,…

  10. The Basic Psychological Needs in Physical Education Scale

    ERIC Educational Resources Information Center

    Vlachopoulos, Symeon P.; Katartzi, Ermioni S.; Kontou, Maria G.

    2011-01-01

    The present study reported on the modification of the Basic Psychological Needs in Exercise Scale (Vlachopoulos & Michailidou, 2006) to assess students' psychological need fulfillment in elementary school, middle school, and high school compulsory physical education classes. Data were collected from 817 5th and 6th grade students, 862 middle…

  11. Development of the Communication and Physical Environment Scale.

    ERIC Educational Resources Information Center

    Johnson, J. David

    A study developed and tested a communication and physical environment scale (CAPES) that consisted of items formulated from previous theoretical and empirical research. Subjects, 52 workers in a warehouse and its offices, completed questionnaires about information dissemination in their organization, the quality of organizational relationships,…

  12. The Planck Telescope reflectors

    NASA Astrophysics Data System (ADS)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  13. Physical naturalness and dynamical breaking of classical scale invariance

    NASA Astrophysics Data System (ADS)

    Heikinheimo, Matti; Racioppi, Antonio; Spethmann, Christian; Raidal, Martti; Tuominen, Kimmo

    2014-05-01

    We propose a model of a confining dark sector, dark technicolor, that communicates with the Standard Model (SM) through the Higgs portal. In this model electroweak (EW) symmetry breaking and dark matter (DM) share a common origin, and the EW scale is generated dynamically. Our motivation to suggest this model is the absence of evidence for new physics from recent Large Hadron Collider (LHC) data. Although the conclusion is far from certain at this point, this lack of evidence may suggest that no mechanism exists at the EW scale to stabilize the Higgs mass against radiative corrections from ultraviolet (UV) physics. The usual reaction to this puzzling situation is to conclude that the stabilizing new physics is either hidden from us by accident, or that it appears at energies that are currently inaccessible, such that nature is indeed fine-tuned. In order to re-examine the arguments that have led to this dichotomy, we review the concept of naturalness in effective field theories, discussing in particular the role of quadratic divergences in relation to different energy scales. This leads us to suggest classical scale invariance as a guideline for model building, implying that explicit mass scales are absent in the underlying theory.

  14. Reactor Physics Methods and Analysis Capabilities in SCALE

    SciTech Connect

    DeHart, Mark D; Bowman, Stephen M

    2011-01-01

    The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.

  15. Reactor Physics Methods and Analysis Capabilities in SCALE

    SciTech Connect

    Mark D. DeHart; Stephen M. Bowman

    2011-05-01

    The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.

  16. Cosmological Constraints Using Planck 2015 and WMAP Data

    NASA Astrophysics Data System (ADS)

    Bennett, Charles

    We propose to use the newly released 2015 Planck mission data to address the questions: (1) How does Planck CMB lensing impact the optical depth and other parameter constraints? (2) Is the WMAP-derived optical depth too high? (3) Are the WMAP and Planck power spectra consistent? (4) Are the WMAP and Planck LCDM parameter constraints consistent? (5) Can the WMAP and Planck foreground model discrepancies be resolved? While the WMAP and Planck CMB cosmology data sets are broadly consistent with each another, important differences exist. For example, we previously determined that the six LCDM parameters inferred from the 2013 Planck data and the 9-year WMAP data differed by ~6-sigma. The newly-released 2015 Planck power spectrum has shifted from the 2013 spectrum by ~4-sigma, and may have reduced the tension with WMAP. We propose to quantify this reduction and, if possible, combine CMB and other cosmological data to determine the best evidence-based LCDM model parameters. If significant differences persist they may indicate experimental systematic effects or signal new physics. One new area of tension with the 2015 Planck data is the determination of the optical depth to scattering of CMB photons. The optical depth inferred from Planck polarization data is somewhat lower than that inferred from WMAP. When the Planck team uses CMB lensing to constrain the optical depth they obtain an even-lower value, in tension with the optical depth derived from CMB polarization data. We propose to independently assess these results. The foreground emission models inferred by the 2015 Planck and WMAP teams are substantially different. We propose to incorporate new Planck data in the three codes we used to produce foreground models in the 9-year WMAP release. This will allow us to understand if the model differences arise from differences in the data or from differences in the model assumptions made by each team. We will re-run the WMAP likelihood with the Planck lensing band

  17. Planck 2013 results. XXIV. Constraints on primordial non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Heavens, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Smith, K.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG). Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result fNLlocal = 2.7 ± 5.8, fNLequil = -42 ± 75, and fNLorth = -25 ± 39 (68% CL statistical). Non-Gaussianity is detected in the data; using skew-Cℓ statistics we find a nonzero bispectrum from residual point sources, and the integrated-Sachs-Wolfe-lensing bispectrum at a level expected in the ΛCDM scenario. The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are confirmed by skew-Cℓ, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and thus derive constraints on early-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models. These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, cs ≥ 0.02 (95% CL), in an effective field theory parametrization, and the curvaton decay fraction rD ≥ 0.15 (95% CL). The Planck data significantly limit the viable parameter space of the ekpyrotic/cyclic scenarios. The amplitude of the four-point function in the local model τNL< 2800 (95% CL). Taken together, these constraints represent the highest precision tests to date of physical mechanisms for the origin of cosmic structure.

  18. Direct Comparison of Full-Scale Vlasov-Fokker-Planck and Classical Modeling of Megagauss Magnetic Field Generation in Plasma Near Hohlraum Walls From Nanosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Joglekar, Archis; Thomas, Alexander; Read, Martin; Kingham, Robert

    2014-10-01

    Here, we present 2D numerical modeling of near critical density plasma using a fully implicit Vlasov-Fokker-Planck (VFP) code, IMPACTA, with the addition of a ray tracing package. In certain situations, such as those at the critical surface at the walls of a hohlraum, magnetic fields are generated through the crossed temperature and electron density gradients. Modeling shows 0.3 MG fields and the strong heating also results in magnetization of the plasma up to ωτ ~ 5 . In the case without magnetic field generation, the heat flows from the laser heating region are isotropic. Including magnetic fields causes the heat flow to form jets along the wall due to the Righi-Leduc effect. The heating of the wall region causes steeper temperature gradients. This serves as a positive feedback mechanism for the field generation rate resulting in nearly twice the amount of field generated in comparison to the case without magnetic fields over 1 ns. The heat conduction, field generation, and the calculation of other transport quantities, is performed ab-initio due to the nature of the VFP equation set. In order to determine the importance of the kinetic effects from IMPACTA, we perform direct comparison with a classical (Braginskii) transport code with hydrodynamic motion (CTC+). The authors would like to acknowledge DOE Grant #DESC0010621 and Advanced Research Computing, UM-AA.

  19. Physics of Multi-scale Convection In The Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Korenaga, J.; Jordan, T. H.

    We investigate the physics of multi-scale convection in the Earth's mantle, character- ized by the coexistence of large-scale mantle circulation associated plate tectonics and small-scale sublithospheric convection. Several basic scaling laws are derived, using a series of 2-D numerical modeling and 3-D linear stability analyses, for the following three distinct phases of sublithospheric convection: (1) onset of convection, (2) lay- ered convection in the upper mantle, and (3) breakdown of layered convection. First, the onset of convection with temperature-dependent viscosity is studied with 2-D con- vection models. A robust scaling law for onset time is derived by a nonlinear scaling analysis based on the concept of the differential Rayleigh number. Next, the planform of sublithospheric convection is studied by a 3-D linear stability analysis of longitu- dinal rolls in the presence of vertical shear. Finally, the temporal and spatial evolu- tion of sublithospheric convection is studied by 2-D whole-mantle convection models with temperature- and depth-dependent viscosity and an endothermic phase transition. Scaling laws for the breakdown of layered convection as well as the strength of con- vection are derived as a function of viscosity layering, the phase buoyancy parameter, and the thermal Rayleigh number. All of these scaling laws are combined to delineate possible dynamic regimes beneath evolving lithosphere.

  20. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.; Kumar, S.; Lapenta, W.; Li, X.; Matsui, T.; Rienecker, M.; Shen, B.W.; Shi, J.J.; Simpson, J.; Zeng, X.

    2008-01-01

    Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite

  1. Quantum Gravity corrections and entropy at the Planck time

    SciTech Connect

    Basilakos, Spyros; Vagenas, Elias C.; Das, Saurya E-mail: saurya.das@uleth.ca

    2010-09-01

    We investigate the effects of Quantum Gravity on the Planck era of the universe. In particular, using different versions of the Generalized Uncertainty Principle and under specific conditions we find that the main Planck quantities such as the Planck time, length, mass and energy become larger by a factor of order 10−10{sup 4} compared to those quantities which result from the Heisenberg Uncertainty Principle. However, we prove that the dimensionless entropy enclosed in the cosmological horizon at the Planck time remains unchanged. These results, though preliminary, indicate that we should anticipate modifications in the set-up of cosmology since changes in the Planck era will be inherited even to the late universe through the framework of Quantum Gravity (or Quantum Field Theory) which utilizes the Planck scale as a fundamental one. More importantly, these corrections will not affect the entropic content of the universe at the Planck time which is a crucial element for one of the basic principles of Quantum Gravity named Holographic Principle.

  2. Planck CMB Anomalies: Astrophysical and Cosmological Secondary Effects and the Curse of Masking

    NASA Astrophysics Data System (ADS)

    Rassat, Anais

    2016-07-01

    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes are available online.

  3. Planck CMB anomalies: astrophysical and cosmological secondary effects and the curse of masking

    SciTech Connect

    Rassat, A.; Starck, J.-L.; Paykari, P.; Sureau, F.; Bobin, J. E-mail: jstarck@cea.fr E-mail: florent.sureau@cea.fr

    2014-08-01

    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html.

  4. Planck 2013 results. XXIII. Isotropy and statistics of the CMB

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hansen, M.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J. D.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Räth, C.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rotti, A.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Souradeep, T.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    The two fundamental assumptions of the standard cosmological model - that the initial fluctuations are statistically isotropic and Gaussian - are rigorously tested using maps of the cosmic microwave background (CMB) anisotropy from the Planck satellite. The detailed results are based on studies of four independent estimates of the CMB that are compared to simulations using a fiducial ΛCDM model and incorporating essential aspects of the Planck measurement process. Deviations from isotropy have been found and demonstrated to be robust against component separation algorithm, mask choice, and frequency dependence. Many of these anomalies were previously observed in the WMAP data, and are now confirmed at similar levels of significance (about 3σ). However, we find little evidence of non-Gaussianity, with the exception of a few statistical signatures that seem to be associated with specific anomalies. In particular, we find that the quadrupole-octopole alignment is also connected to a low observed variance in the CMB signal. A power asymmetry is now found to persist on scales corresponding to about ℓ = 600 and can be described in the low-ℓ regime by a phenomenological dipole modulation model. However, any primordial power asymmetry is strongly scale-dependent and does not extend toarbitrarily small angular scales. Finally, it is plausible that some of these features may be reflected in the angular power spectrum of the data, which shows a deficit of power on similar scales. Indeed, when the power spectra of two hemispheres defined by a preferred direction are considered separately, one shows evidence of a deficit in power, while its opposite contains oscillations between odd and even modes that may be related to the parity violation and phase correlations also detected in the data. Although these analyses represent a step forward in building an understanding of the anomalies, a satisfactory explanation based on physically motivated models is still lacking.

  5. Extreme Scale Computing for First-Principles Plasma Physics Research

    SciTech Connect

    Chang, Choogn-Seock

    2011-10-12

    World superpowers are in the middle of the “Computnik” race. US Department of Energy (and National Nuclear Security Administration) wishes to launch exascale computer systems into the scientific (and national security) world by 2018. The objective is to solve important scientific problems and to predict the outcomes using the most fundamental scientific laws, which would not be possible otherwise. Being chosen into the next “frontier” group can be of great benefit to a scientific discipline. An extreme scale computer system requires different types of algorithms and programming philosophy from those we have been accustomed to. Only a handful of scientific codes are blessed to be capable of scalable usage of today’s largest computers in operation at petascale (using more than 100,000 cores concurrently). Fortunately, a few magnetic fusion codes are competing well in this race using the “first principles” gyrokinetic equations.These codes are beginning to study the fusion plasma dynamics in full-scale realistic diverted device geometry in natural nonlinear multiscale, including the large scale neoclassical and small scale turbulence physics, but excluding some ultra fast dynamics. In this talk, most of the above mentioned topics will be introduced at executive level. Representative properties of the extreme scale computers, modern programming exercises to take advantage of them, and different philosophies in the data flows and analyses will be presented. Examples of the multi-scale multi-physics scientific discoveries made possible by solving the gyrokinetic equations on extreme scale computers will be described. Future directions into “virtual tokamak experiments” will also be discussed.

  6. Quantifying the BICEP2-Planck tension over gravitational waves.

    PubMed

    Smith, Kendrick M; Dvorkin, Cora; Boyle, Latham; Turok, Neil; Halpern, Mark; Hinshaw, Gary; Gold, Ben

    2014-07-18

    The recent BICEP2 measurement of B-mode polarization in the cosmic microwave background (r = 0.2(-0.05)(+0.07)), a possible indication of primordial gravity waves, appears to be in tension with the upper limit from WMAP (r < 0.13 at 95% C.L.) and Planck (r < 0.11 at 95% C.L.). We carefully quantify the level of tension and show that it is very significant (around 0.1% unlikely) when the observed deficit of large-scale temperature power is taken into account. We show that measurements of TE and EE power spectra in the near future will discriminate between the hypotheses that this tension is either a statistical fluke or a sign of new physics. We also discuss extensions of the standard cosmological model that relieve the tension and some novel ways to constrain them. PMID:25083631

  7. Aspects of New Physics at the TeV Scale

    NASA Astrophysics Data System (ADS)

    Gu, Jiayin

    The Standard Model, despite its great success, is generally considered as an incomplete theory and various reasons suggest that new physics may appear around the TeV scale. The LHC discovered a Standard Model like Higgs boson at around 126 GeV, but has not observed any evidence of new physics yet. As the tension is increasing between the expectation of the TeV scale new physics and the lack of experimental discovery, it is helpful to consider new model building directions and new search strategies. In this thesis, we present a few studies on different aspects of new physics at the TeV scale. First, we present a composite Higgs model based on the top seesaw mechanism. We show that with an approximate U(3)L chiral symmetry, associated with a vector-like quark and the (t, b)L doublet, the lightest CP-even neutral state of the composite scalar sector is lighter than the top quark and can be identified as the newly discovered Higgs boson. Second, we present two studies of search strategies of the stop particle, with the first one focusing on the semi-leptonic channel and the second one focusing on the di-leptonic channel with compressed signal spectra. In both cases, we introduce new kinematic variables which can substantially improve the signal significance. We also present a mass measurement method at hadron colliders for a decay chain of two steps, which ends with a missing particle. We show that it is possible to extract all three invisible particle masses with reasonable accuracies, which was previously thought to be impossible. With the upgrade of the LHC and the possibilities of new larger colliders in the future, the search for new physics will continue on, and our studies can help.

  8. Planck's Constant as a Natural Unit of Measurement

    ERIC Educational Resources Information Center

    Quincey, Paul

    2013-01-01

    The proposed revision of SI units would embed Planck's constant into the definition of the kilogram, as a fixed constant of nature. Traditionally, Planck's constant is not readily interpreted as the size of something physical, and it is generally only encountered by students in the mathematics of quantum physics. Richard Feynman's…

  9. Spectral Imaging of Galaxy Clusters with Planck

    NASA Astrophysics Data System (ADS)

    Bourdin, H.; Mazzotta, P.; Rasia, E.

    2015-12-01

    The Sunyaev-Zeldovich (SZ) effect is a promising tool for detecting the presence of hot gas out to the galaxy cluster peripheries. We developed a spectral imaging algorithm dedicated to the SZ observations of nearby galaxy clusters with Planck, with the aim of revealing gas density anisotropies related to the filamentary accretion of materials, or pressure discontinuities induced by the propagation of shock fronts. To optimize an unavoidable trade-off between angular resolution and precision of the SZ flux measurements, the algorithm performs a multi-scale analysis of the SZ maps as well as of other extended components, such as the cosmic microwave background (CMB) anisotropies and the Galactic thermal dust. The demixing of the SZ signal is tackled through kernel-weighted likelihood maximizations. The CMB anisotropies are further analyzed through a wavelet analysis, while the Galactic foregrounds and SZ maps are analyzed via a curvelet analysis that best preserves their anisotropic details. The algorithm performance has been tested against mock observations of galaxy clusters obtained by simulating the Planck High Frequency Instrument and by pointing at a few characteristic positions in the sky. These tests suggest that Planck should easily allow us to detect filaments in the cluster peripheries and detect large-scale shocks in colliding galaxy clusters that feature favorable geometry.

  10. Microphysics in Multi-scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  11. Neutrinos help reconcile Planck measurements with the local universe.

    PubMed

    Wyman, Mark; Rudd, Douglas H; Vanderveld, R Ali; Hu, Wayne

    2014-02-01

    Current measurements of the low and high redshift Universe are in tension if we restrict ourselves to the standard six-parameter model of flat ΛCDM. This tension has two parts. First, the Planck satellite data suggest a higher normalization of matter perturbations than local measurements of galaxy clusters. Second, the expansion rate of the Universe today, H0, derived from local distance-redshift measurements is significantly higher than that inferred using the acoustic scale in galaxy surveys and the Planck data as a standard ruler. The addition of a sterile neutrino species changes the acoustic scale and brings the two into agreement; meanwhile, adding mass to the active neutrinos or to a sterile neutrino can suppress the growth of structure, bringing the cluster data into better concordance as well. For our fiducial data set combination, with statistical errors for clusters, a model with a massive sterile neutrino shows 3.5σ evidence for a nonzero mass and an even stronger rejection of the minimal model. A model with massive active neutrinos and a massless sterile neutrino is similarly preferred. An eV-scale sterile neutrino mass--of interest for short baseline and reactor anomalies--is well within the allowed range. We caution that (i) unknown astrophysical systematic errors in any of the data sets could weaken this conclusion, but they would need to be several times the known errors to eliminate the tensions entirely; (ii) the results we find are at some variance with analyses that do not include cluster measurements; and (iii) some tension remains among the data sets even when new neutrino physics is included. PMID:24580585

  12. Planck Cosmology, Planck Clusters, and What is to Come

    NASA Astrophysics Data System (ADS)

    Rozo, Eduardo

    2015-08-01

    Planck's view of the Cosmic Microwave Background (CMB) has ushered in a new era of precision cosmology. In the process, hints of tension with local universe cosmological probes have appeared, including not only tension between the CMB and local Hubble constant measurements, but between the CMB and Planck's own analysis of the SZ galaxy clusters discovered by Planck. We will discuss the state of cluster cosmology in light of these results, and comment on what is to come. Should these tensions continue to exist with ever future measurements of ever increasing precision, the current Planck results will stand as some of the first lines of evidence towards finally breaking the standard LCDM cosmological model!

  13. Planck 2013 results. XVI. Cosmological parameters

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Pearson, T. J.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (ℓ ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to

  14. New physics at the TeV scale

    NASA Astrophysics Data System (ADS)

    Chakdar, Shreyashi

    The Standard Model of particle physics is assumed to be a low-energy effective theory with new physics theoretically motivated to be around TeV scale. The thesis presents theories with new physics beyond the Standard Model in the TeV scale testable in the colliders. Work done in chapters 2, 3 and 5 in this thesis present some models incorporating different approaches of enlarging the Standard Model gauge group to a grand unified symmetry with each model presenting its unique signatures in the colliders. The study on leptoquarks gauge bosons in reference to TopSU(5) model in chapter 2 showed that their discovery mass range extends up to 1.5 TeV at 14 TeV LHC with luminosity of 100 fb--1. On the other hand, in chapter 3 we studied the collider phenomenology of TeV scale mirror fermions in Left-Right Mirror model finding that the reaches for the mirror quarks goes upto 750 GeV at the 14 TeV LHC with 300 fb--1 luminosity. In chapter 4 we have enlarged the bosonic symmetry to fermi-bose symmetry e.g. supersymmetry and have shown that SUSY with non-universalities in gaugino or scalar masses within high scale SUGRA set up can still be accessible at LHC with 14 TeV. In chapter 5, we performed a study in respect to the e+e-- collider and find that precise measurements of the higgs boson mass splittings up to ˜ 100 MeV may be possible with high luminosity in the International Linear Collider (ILC). In chapter 6 we have shown that the experimental data on neutrino masses and mixings are consistent with the proposed 4/5 parameter Dirac neutrino models yielding a solution for the neutrino masses with inverted mass hierarchy and large CP violating phase delta and thus can be tested experimentally. Chapter 7 of the thesis incorporates a warm dark matter candidate in context of two Higgs doublet model. The model has several testable consequences at colliders with the charged scalar and pseudoscalar being in few hundred GeV mass range. This thesis presents an endeavor to study

  15. Planck 2013 results. I. Overview of products and scientific results

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bertincourt, B.; Bethermin, M.; Bielewicz, P.; Bikmaev, I.; Blanchard, A.; Bobin, J.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bourdin, H.; Bowyer, J. W.; Bridges, M.; Brown, M. L.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cappellini, B.; Cardoso, J.-F.; Carr, R.; Carvalho, P.; Casale, M.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Church, S.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Déchelette, T.; Delabrouille, J.; Delouis, J.-M.; Démoclès, J.; Désert, F.-X.; Dick, J.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fabre, O.; Falgarone, E.; Falvella, M. C.; Fantaye, Y.; Fergusson, J.; Filliard, C.; Finelli, F.; Flores-Cacho, I.; Foley, S.; Forni, O.; Fosalba, P.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Freschi, M.; Fromenteau, S.; Frommert, M.; Gaier, T. C.; Galeotta, S.; Gallegos, J.; Galli, S.; Gandolfo, B.; Ganga, K.; Gauthier, C.; Génova-Santos, R. T.; Ghosh, T.; Giard, M.; Giardino, G.; Gilfanov, M.; Girard, D.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hamann, J.; Hansen, F. K.; Hansen, M.; Hanson, D.; Harrison, D. L.; Heavens, A.; Helou, G.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huey, G.; Huffenberger, K. M.; Hurier, G.; Ilić, S.; Jaffe, A. H.; Jaffe, T. R.; Jasche, J.; Jewell, J.; Jones, W. C.; Juvela, M.; Kalberla, P.; Kangaslahti, P.; Keihänen, E.; Kerp, J.; Keskitalo, R.; Khamitov, I.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lavabre, A.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Leroy, C.; Lesgourgues, J.; Lewis, A.; Li, C.; Liddle, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lowe, S.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marcos-Caballero, A.; Marinucci, D.; Maris, M.; Marleau, F.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matsumura, T.; Matthai, F.; Maurin, L.; Mazzotta, P.; McDonald, A.; McEwen, J. D.; McGehee, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Millea, M.; Miniscalco, R.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Morisset, N.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Nesvadba, N. P. H.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Orieux, F.; Osborne, S.; O'Sullivan, C.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Pandolfi, S.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Pearson, D.; Pearson, T. J.; Peel, M.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Pullen, A. R.; Rachen, J. P.; Racine, B.; Rahlin, A.; Räth, C.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Riazuelo, A.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Robbers, G.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Rusholme, B.

    2014-11-01

    The European Space Agency's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. In March 2013, ESA and the Planck Collaboration released the initial cosmology products based on the first 15.5 months of Planck data, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the cosmic microwave background (CMB) and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the Sunyaev-Zeldovich effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter ΛCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25σ. Planck finds no evidence for non-Gaussianity in the CMB. Planck's results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations (σ8) derived from

  16. New physics at the weak scale: axigluon models, scale invariance and naturalness, and interacting dark matter

    NASA Astrophysics Data System (ADS)

    Tavares, Gustavo Marques

    The Standard Model of particle physics describes all known elementary particles and their interactions. Despite its great experimental success, we know that the Standard Model is not a complete description of Nature and therefore new phenomena should be observed at higher energies. In the coming years the Large Hadron Collider will test the Standard Model by colliding protons with center of mass energies of up to 14 TeV providing some of the most stringent tests on the Standard Model. Experimental searches for Dark Matter provide a complementary program to test physics at the weak scale. In the near future new experimental data coming from direct detection experiments, and from satellites and telescopes will drastically improve our sensitivity to weak scale dark matter. This could lead to the first direct observation of dark matter, and thus of physics beyond the Standard Model. In this thesis I propose different extensions of the Standard Model and discuss their experimental consequences. I first discuss models for Axigluons, which are spin one particles in the adjoint representation of the SU(3) color gauge group. These models were motivated by the measurement of higher than predicted forward-backward asymmetry in top quark pair production at the Tevatron. I study different scenarios for Axigluon models that can explain the Tevatron result and explore their signatures at the Large Hadron Collider. Second I discuss the implications of ultraviolet scale invariance for the Standard Model, which has been advocated as a solution to the hierarchy problem. I show that in order to solve the hierarchy problem with scale invariance, new physics is required not far from the weak scale. In the last part of this thesis I propose a new model for dark matter, in which dark matter is charged under a hidden non-Abelian gauge group. This leads to modifications in the sensitivity of the usual experimental searches for dark matter in addition to distinct signatures in the Cosmic

  17. Future large scale accelerator projects for particle physics

    NASA Astrophysics Data System (ADS)

    Aleksan, R.

    2013-12-01

    The discovery of a new particle, the properties of which are compatible with the expected Brout-Englert-Higgs scalar field in the Standard Model (SM), is the starting point of an intense program for studying its couplings. With this particle, all the components of the SM have now been unraveled. Yet, the existence of dark matter, baryon asymmetry of the Universe and neutrino mass call for new physics at an energy scale, which is not determined so far. Therefore, new large scale accelerators are needed to investigate these mysteries through ultra-high precision measurements and/or the exploration of higher energy frontiers. In the following, we discuss the various accelerator projects aimed at the achievement of the above objectives. The physics reach of these facilities will be briefly described as well as their main technical features and related challenges, highlighting the importance of accelerator R&D not only for the benefit of particle physics but also for other fields of research, and more generally for the society.

  18. Molecular gas of Planck cold dust clumps

    NASA Astrophysics Data System (ADS)

    Wu, Yuefang

    2015-08-01

    To probe dynamical processes and physical properties of Planck Cold Clumps, survey and mapping of 674 most reliable Planck cold dust clumps with J=1-0 of CO,13CO and C18O were made at PMO 13.7 m telescope. More than 600 molecular cores were obtained, which are mainly located in seven molecular complexes divided by Dame (1987). Parameters of cores in different regions are with some difference, showing different evolutional status and environment of the cores. As a whole they are quiescent. Some are with star forming activities. J=1-0 lines of HCO+ and HCN at CO emission peaks were also observed at PMO, of which 24 were mapped with IRAM 30 m telescope. Several cores were also observed with J=2-1 of CO and 13CO using CSO. Core splits were detected. Combining with infrared data more than 70% of CO cores are identified as starless. Planck cold clumps seem to be ideal samples to search for candidates of massive prestellar cores and pre-clusters.

  19. Measuring Enjoyment of Physical Activity in Children: Validation of the Physical Activity Enjoyment Scale

    PubMed Central

    2009-01-01

    This study sought to determine the reliability and validity of the Physical Activity Enjoyment Scale (PACES) in elementary school children. The sample consisted of 564 3rd grade students (M age = 8.72 ± .54; 268 male, 296 female) surveyed at the beginning of the fall semester. Results indicated that the PACES displayed good internal consistency and item-total correlations. Confirmatory factor analyses supported a unidimensional factor structure. Scores on the PACES were significantly correlated with task goal orientation (r = .65, p < .01), athletic competence (r = .23, p < .01), physical appearance (r = .20, p < .01), and self-reported physical activity (r = .16, p < .01). However, results of invariance analysis suggested the factor structure is variant across sex. The present findings suggest support for the validity of the PACES as a valid measure of enjoyment of physical activity in children; nevertheless, further research examining the invariance of the factor structure across sex is warranted. PMID:20209028

  20. A Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2008-01-01

    Numerical cloud models, which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Because cloud-scale dynamics are treated explicitly, uncertainties stemming from convection that have to be parameterized in (hydrostatic) large-scale models are obviated, or at least mitigated, in cloud models. Global models will use the non-hydrostatic framework when their horizontal resolution becomes about 10 km, the theoretical limit for the hydrostatic approximation. This juncture will be reached one to two decades from now. In recent years, exponentially increasing computer power has extended cloud-resolving-mode1 integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique.

  1. Role of the subgrid-scale physical processes in supermodelling

    NASA Astrophysics Data System (ADS)

    Yano, J.

    2011-12-01

    The basic ides of supermodelling is in overcoming deficits of existing models by combining them together to improve our ability of climate simulations and prediction. However, in order to exploit this method better, we have to pay special attention to the common defects of the current climate models. Representation of subgrid-scale physical processes is such a particular example. . The present talk presents the author's point of view on representation of subgrid-scale processes in the above general question in mind. The focus of the talk will be on interplay between traditional parameterizations and recently proposed superparameterization (also often called "multiscale modelling"), but it also covers the issues of downscaling as well as possibilities of introducing mesh-refinement approaches into the context of subgrid-scale modelling. The author's main perspective is that the subgrid-scale parameterization should not be considered as a distinguished approach in contrast to explicit (more direct) modelling, such as superparameterization, but a hierarchy of modelling approaches should be constructed by taking various intermediate approaches. The mass-flux convection parameterization is taken as an example in order to make this point. It will be shown that at the most basic level, the mass-flux parameterization is equivalent to a finite-volume numerical approach, though various additional approximations and hypotheses must be introduced in order to arrive at a classical mass-flux parameterization. At the mathematical level, the multiresolution analysis based on wavelet provides a basic source of inspirations for developing this general perspective. From this perspective, the issue of parameterization is considered as "compression" of a full explicit model in the same sense as the wavelet can be used for the image compression. This perspective also leads to a concept of compression of physics. Compression of cloud microphysics would be the most urgent issue

  2. Robust weak-lensing mass calibration of Planck galaxy clusters

    NASA Astrophysics Data System (ADS)

    von der Linden, Anja; Mantz, Adam; Allen, Steven W.; Applegate, Douglas E.; Kelly, Patrick L.; Morris, R. Glenn; Wright, Adam; Allen, Mark T.; Burchat, Patricia R.; Burke, David L.; Donovan, David; Ebeling, Harald

    2014-09-01

    In light of the tension in cosmological constraints reported by the Planck team between their Sunyaev-Zel'dovich-selected cluster counts and Cosmic Microwave Background (CMB) temperature anisotropies, we compare the Planck cluster mass estimates with robust, weak-lensing mass measurements from the Weighing the Giants (WtG) project. For the 22 clusters in common between the Planck cosmology sample and WtG, we find an overall mass ratio of = 0.688 ± 0.072. Extending the sample to clusters not used in the Planck cosmology analysis yields a consistent value of = 0.698 ± 0.062 from 38 clusters in common. Identifying the weak-lensing masses as proxies for the true cluster mass (on average), these ratios are ˜1.6σ lower than the default bias factor of 0.8 assumed in the Planck cluster analysis. Adopting the WtG weak-lensing-based mass calibration would substantially reduce the tension found between the Planck cluster count cosmology results and those from CMB temperature anisotropies, thereby dispensing of the need for `new physics' such as uncomfortably large neutrino masses (in the context of the measured Planck temperature anisotropies and other data). We also find modest evidence (at 95 per cent confidence) for a mass dependence of the calibration ratio and discuss its potential origin in light of systematic uncertainties in the temperature calibration of the X-ray measurements used to calibrate the Planck cluster masses. Our results exemplify the critical role that robust absolute mass calibration plays in cluster cosmology, and the invaluable role of accurate weak-lensing mass measurements in this regard.

  3. Signatures of Planck corrections in a spiralling axion inflation model

    NASA Astrophysics Data System (ADS)

    McDonald, John

    2015-05-01

    The minimal sub-Planckian axion inflation model accounts for a large scalar-to-tensor ratio via a spiralling trajectory in the field space of a complex field Φ. Here we consider how the predictions of the model are modified by Planck scale-suppressed corrections. In the absence of Planck corrections the model is equivalent to a phi4/3 chaotic inflation model. Planck corrections become important when the dimensionless coupling ξ of |Φ|2 to the topological charge density of the strongly-coupled gauge sector F tilde F satisfies ξ ~ 1. For values of |Φ| which allow the Planck corrections to be understood via an expansion in powers of |Φ|2/MPl2, we show that their effect is to produce a significant modification of the tensor-to-scalar ratio from its phi4/3 chaotic inflation value without strongly modifying the spectral index. In addition, to leading order in |Φ|2/MPl2, the Planck modifications of ns and r satisfy a consistency relation, Δ ns = -Δr/16. Observation of these modifications and their correlation would allow the model to be distinguished from a simple phi4/3 chaotic inflation model and would also provide a signature for the influence of leading-order Planck corrections.

  4. Signatures of Planck corrections in a spiralling axion inflation model

    SciTech Connect

    McDonald, John

    2015-05-08

    The minimal sub-Planckian axion inflation model accounts for a large scalar-to-tensor ratio via a spiralling trajectory in the field space of a complex field Φ. Here we consider how the predictions of the model are modified by Planck scale-suppressed corrections. In the absence of Planck corrections the model is equivalent to a ϕ{sup 4/3} chaotic inflation model. Planck corrections become important when the dimensionless coupling ξ of |Φ|{sup 2} to the topological charge density of the strongly-coupled gauge sector FF{sup ~} satisfies ξ∼1. For values of |Φ| which allow the Planck corrections to be understood via an expansion in powers of |Φ|{sup 2}/M{sub Pl}{sup 2}, we show that their effect is to produce a significant modification of the tensor-to-scalar ratio from its ϕ{sup 4/3} chaotic inflation value without strongly modifying the spectral index. In addition, to leading order in |Φ|{sup 2}/M{sub Pl}{sup 2}, the Planck modifications of n{sub s} and r satisfy a consistency relation, Δn{sub s}=−Δr/16. Observation of these modifications and their correlation would allow the model to be distinguished from a simple ϕ{sup 4/3} chaotic inflation model and would also provide a signature for the influence of leading-order Planck corrections.

  5. Lattice physics capabilities of the SCALE code system using TRITON

    SciTech Connect

    DeHart, M. D.

    2006-07-01

    This paper describes ongoing calculations used to validate the TRITON depletion module in SCALE for light water reactor (LWR) fuel lattices. TRITON has been developed to provide improved resolution for lattice physics mixed-oxide fuel assemblies as programs to burn such fuel in the United States begin to come online. Results are provided for coupled TRITON/PARCS analyses of an LWR core in which TRITON was employed for generation of appropriately weighted few-group nodal cross-sectional sets for use in core-level calculations using PARCS. Additional results are provided for code-to-code comparisons for TRITON and a suite of other depletion packages in the modeling of a conceptual next-generation boiling water reactor fuel assembly design. Results indicate that the set of SCALE functional modules used within TRITON provide an accurate means for lattice physics calculations. Because the transport solution within TRITON provides a generalized-geometry capability, this capability is extensible to a wide variety of non-traditional and advanced fuel assembly designs. (authors)

  6. On the Einstein-Cartan cosmology vs. Planck data

    NASA Astrophysics Data System (ADS)

    Palle, D.

    2014-04-01

    The first comprehensive analyses of Planck data reveal that the cosmological model with dark energy and cold dark matter can satisfactorily explain the essential physical features of the expanding Universe. However, the inability to simultaneously fit the large and small scale TT power spectrum, the scalar power index smaller than unity, and the observations of the violation of the isotropy found by few statistical indicators of the CMB urge theorists to search for explanations. We show that the model of the Einstein-Cartan cosmology with clustered dark matter halos and their corresponding clustered angular momenta coupled to torsion can account for small-scale-large-scale discrepancy and larger peculiar velocities (bulk flows) for galaxy clusters. The nonvanishing total angular momentum (torsion) of the Universe enters as a negative effective density term in the Einstein-Cartan equations causing partial cancellation of the mass density. The integrated Sachs-Wolfe contribution of the Einstein-Cartan model is negative, and it can therefore provide partial cancellation of the large-scale power of the TT CMB spectrum. The observed violation of the isotropy appears as a natural ingredient of the Einstein-Cartan model caused by the spin densities of light Majorana neutrinos in the early stage of the evolution of the Universe and bound to the lepton CP violation and matter-antimatter asymmetry.

  7. Poisson-Boltzmann-Nernst-Planck model

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Wei, Guo-Wei

    2011-05-01

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  8. Poisson-Boltzmann-Nernst-Planck model.

    PubMed

    Zheng, Qiong; Wei, Guo-Wei

    2011-05-21

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  9. Poisson-Boltzmann-Nernst-Planck model

    SciTech Connect

    Zheng Qiong; Wei Guowei

    2011-05-21

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  10. Planck 2013 results. XXVIII. The Planck Catalogue of Compact Sources

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argüeso, F.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Beelen, A.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Walter, B.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    The Planck Catalogue of Compact Sources (PCCS) is the catalogue of sources detected in the first 15 months of Planck operations, the “nominal” mission. It consists of nine single-frequency catalogues of compact sources, both Galactic and extragalactic, detected over the entire sky. The PCCS covers the frequency range 30-857 GHz with higher sensitivity (it is 90% complete at 180 mJy in the best channel) and better angular resolution (from 32.88' to 4.33') than previous all-sky surveys in this frequency band. By construction its reliability is >80% and more than 65% of the sources have been detected in at least two contiguous Planck channels. In this paper we present the construction and validation of the PCCS, its contents and its statistical characterization.

  11. Planck Visualization Project: Seeing and Hearing the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    van der Veen, J.

    2010-08-01

    The Planck Mission, launched May 14, 2009, will measure the sky over nine frequency channels, with temperature sensitivity of a few microKelvin, and angular resolution of up to 5 arc minutes. Planck is expected to provide the data needed to set tight constraints on cosmological parameters, study the ionization history of the Universe, probe the dynamics of the inflationary era, and test fundamental physics. The Planck Education and Public Outreach collaborators at NASA's Jet Propulsion Laboratory, the University of California, Santa Barbara and Purdue University are preparing a variety of materials to present the science goals of the Planck Mission to the public. Two products currently under development are an interactive simulation of the mission which can be run in a virtual reality environment, and an interactive presentation on interpreting the power spectrum of the Cosmic Microwave Background with music. In this paper we present a brief overview of CMB research and the Planck Mission, and discuss how to explain, to non-technical audiences, the theory of how we derive information about the early universe from the power spectrum of the CMB by using the physics of music.

  12. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2008-01-01

    A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. The following is presented in this report: (1) a brief review of the GCE model and its applications on the impact of aerosols on deep precipitation processes, (2) the Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) a discussion on the Goddard WRF version (its developments and applications).

  13. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2010-01-01

    A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. In this talk, I will present: (1) A brief review on GCE model and its applications on the impact of the aerosol on deep precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications). We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems. In addition, high - resolution (spatial. 2km, and temporal, I minute) visualization showing the model results will be presented.

  14. Polymer physics of chromosome large-scale 3D organisation

    PubMed Central

    Chiariello, Andrea M.; Annunziatella, Carlo; Bianco, Simona; Esposito, Andrea; Nicodemi, Mario

    2016-01-01

    Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of different regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identified by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the effects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding. PMID:27405443

  15. Polymer physics of chromosome large-scale 3D organisation.

    PubMed

    Chiariello, Andrea M; Annunziatella, Carlo; Bianco, Simona; Esposito, Andrea; Nicodemi, Mario

    2016-01-01

    Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of different regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identified by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the effects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding. PMID:27405443

  16. Polymer physics of chromosome large-scale 3D organisation

    NASA Astrophysics Data System (ADS)

    Chiariello, Andrea M.; Annunziatella, Carlo; Bianco, Simona; Esposito, Andrea; Nicodemi, Mario

    2016-07-01

    Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of different regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identified by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the effects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding.

  17. Physical Modeling of Scaled Water Distribution System Networks.

    SciTech Connect

    O'Hern, Timothy J.; Hammond, Glenn Edward; Orear, Leslie ,; van Bloemen Waanders, Bart G.; Paul Molina; Ross Johnson

    2005-10-01

    Threats to water distribution systems include release of contaminants and Denial of Service (DoS) attacks. A better understanding, and validated computational models, of the flow in water distribution systems would enable determination of sensor placement in real water distribution networks, allow source identification, and guide mitigation/minimization efforts. Validation data are needed to evaluate numerical models of network operations. Some data can be acquired in real-world tests, but these are limited by 1) unknown demand, 2) lack of repeatability, 3) too many sources of uncertainty (demand, friction factors, etc.), and 4) expense. In addition, real-world tests have limited numbers of network access points. A scale-model water distribution system was fabricated, and validation data were acquired over a range of flow (demand) conditions. Standard operating variables included system layout, demand at various nodes in the system, and pressure drop across various pipe sections. In addition, the location of contaminant (salt or dye) introduction was varied. Measurements of pressure, flowrate, and concentration at a large number of points, and overall visualization of dye transport through the flow network were completed. Scale-up issues that that were incorporated in the experiment design include Reynolds number, pressure drop across nodes, and pipe friction and roughness. The scale was chosen to be 20:1, so the 10 inch main was modeled with a 0.5 inch pipe in the physical model. Controlled validation tracer tests were run to provide validation to flow and transport models, especially of the degree of mixing at pipe junctions. Results of the pipe mixing experiments showed large deviations from predicted behavior and these have a large impact on standard network operations models.3

  18. String inflation after Planck 2013

    SciTech Connect

    Burgess, C.P.; Cicoli, M.; Quevedo, F. E-mail: mcicoli@ictp.it

    2013-11-01

    We briefly summarize the impact of the recent Planck measurements for string inflationary models, and outline what might be expected to be learned in the near future from the expected improvement in sensitivity to the primordial tensor-to-scalar ratio. We comment on whether these models provide sufficient added value to compensate for their complexity, and ask how they fare in the face of the new constraints on non-gaussianity and dark radiation. We argue that as a group the predictions made before Planck agree well with what has been seen, and draw conclusions from this about what is likely to mean as sensitivity to primordial gravitational waves improves.

  19. The Herschel/planck Programme Planck Pfm Testing Campaign

    NASA Astrophysics Data System (ADS)

    Reix, Jean-Michel; Rideau, Pascal; Gavila, Emmanuel; Chambelland, Jean-Philippe; Collaudin, Bernard; Passvogel, Thomas; Guillaume, Bernard

    2010-04-01

    The two science missions Herschel, an observatory-type mission, and Planck, a survey mission, are combined in one programme within ESAs long-term science programme. The objective for Planck is to image systematically the whole sky simultaneously with two scientific instruments in nine frequency channels between 30 and 900 GHz to unravel the temperature fluctuations, the anisotropy, of the cosmic background radiation. For both satellites, which have now been launched from the European Space Port in Kourou, French Guiana, on a single Ariane 5 launcher, the orbits will be Lissajous orbits around the 2nd Lagrange Point L2 of the Earth-Sun system. Having surpassed the technological problems and more generally the development phase, this paper focuses on the extensive assembly, integration and tests undertaken for the Proto-Flight Model (PFM) of the Planck Satellite. The paper details the early stages of the integration of the PFM until completeness of the assembly. It then describes the logic and the various tests implemented for the acceptance verification of the Planck PFM. It finally depicts the Launch campaign activities up to the launch from Kourou in the first half of May 2009.

  20. Planck Visualization Project: Seeing and Hearing the CMB

    NASA Astrophysics Data System (ADS)

    Van Der Veen, Jatila; Lubin, P. M.; 2; Alper, B.; 3; Smith, W.; 4; McGee, R.; 5; US Planck Collaboration

    2011-01-01

    The Planck Education and Public Outreach collaborators at the University of California, Santa Barbara and Purdue University have prepared a variety of materials to present the science goals of the Planck Mission to the public. Here we present our interactive simulation of the Cosmic Microwave Background, in which the user can change the ingredients of the universe and hear the different harmonics. We also present how we derive information about the early universe from the power spectrum of the CMB by using the physics of music for the public.

  1. Planck early results. XXII. The submillimetre properties of a sample of Galactic cold clumps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Doi, Y.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Ikeda, N.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kitamura, Y.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Malinen, J.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Meny, C.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pagani, L.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Toth, V.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    We perform a detailed investigation of sources from the Cold Cores Catalogue of Planck Objects (C3PO). Our goal is to probe the reliability of the detections, validate the separation between warm and cold dust emission components, provide the first glimpse at the nature, internal morphology and physical characterictics of the Planck-detected sources. We focus on a sub-sample of ten sources from the C3PO list, selected to sample different environments, from high latitude cirrus to nearby (150pc) and remote (2kpc) molecular complexes. We present Planck surface brightness maps and derive the dust temperature, emissivity spectral index, and column densities of the fields. With the help of higher resolution Herschel and AKARI continuum observations and molecular line data, we investigate the morphology of the sources and the properties of the substructures at scales below the Planck beam size. The cold clumps detected by Planck are found to be located on large-scale filamentary (or cometary) structures that extend up to 20pc in the remote sources. The thickness of these filaments ranges between 0.3 and 3pc, for column densities NH2 ~ 0.1 to 1.6 × 1022 cm-2, and with linear mass density covering a broad range, between 15 and 400 M⊙ pc-1. The dust temperatures are low (between 10 and 15K) and the Planck cold clumps correspond to local minima of the line-of-sight averaged dust temperature in these fields. These low temperatures are confirmed when AKARI and Herschel data are added to the spectral energy distributions. Herschel data reveal a wealth of substructure within the Planck cold clumps. In all cases (except two sources harbouring young stellar objects), the substructures are found to be colder, with temperatures as low as 7K. Molecular line observations provide gas column densities which are consistent with those inferred from the dust. The linewidths are all supra-thermal, providing large virial linear mass densities in the range 10 to 300 M⊙ pc-1, comparable

  2. Interstellar dust on the eve of Herschel and Planck

    NASA Astrophysics Data System (ADS)

    Miville-Deschênes, M.-A.

    2008-11-01

    In this contribution I review some of the key scientific questions that animate the interstellar dust community a few months before the launch of Herschel and Planck. Great progress have been made in the past 25 years on the subject of interstellar dust using infrared observations from space. With the advent of sub-millimeter and millimeter observations with Herschel and Planck, new scientific challenges are coming and exciting discoveries are to be expected. In particular Herschel and Planck will bring key information 1) on the growth process of dust grains, the first step toward the formation of planetesimals, 2) on the structure of the interstellar medium and its link with interstellar turbulence, 3) on the physical conditions of the Galactic halo clouds which are thought to have some cold dust, 4) on the properties of the interstellar magnetic field and 5) on the interstellar PAHs using their spinning dust emission in the millimeter.

  3. Physically representative atomistic modeling of atomic-scale friction

    NASA Astrophysics Data System (ADS)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the

  4. New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials

    NASA Astrophysics Data System (ADS)

    Schmuck, M.

    2013-02-01

    We consider the Poisson-Nernst-Planck system which is well-accepted for describing dilute electrolytes as well as transport of charged species in homogeneous environments. Here, we study these equations in porous media whose electric permittivities show a strong contrast compared with the electric permittivity of the electrolyte phase. Our main result is the derivation of convenient low-dimensional equations, that is, of effective macroscopic porous media Poisson-Nernst-Planck equations, which reliably describe ionic transport. The contrast in the electric permittivities between liquid and solid phase and the heterogeneity of the porous medium induce strongly oscillating electric potentials (fields). In order to account for this specific physical scenario, we introduce a modified asymptotic multiple-scale expansion which takes advantage of the nonlinearly coupled structure of the ionic transport equations. This allows for a systematic upscaling resulting in a new effective porous medium formulation which shows a new transport term on the macroscale. Solvability of all arising equations is rigorously verified. The emergence of a new transport term indicates promising physical insights into the influence of the microscale material properties on the macroscale. Hence, systematic upscaling strategies provide a source and a prospective tool to capitalize intrinsic scale effects for scientific, engineering, and industrial applications.

  5. The Physical Character of Small-Scale Interstellar Structures

    NASA Technical Reports Server (NTRS)

    Lauroesch, James T.

    2005-01-01

    The primary objective of this program was to obtain FUSE observations of the multiple interstellar absorption lines of H2 toward the members of 3 resolvable binary/multiple star systems to explore the physical conditions in known interstellar small-scale structures. Each of the selected systems was meant to address a different aspect of the models for the origin of these structures: 1) The stars HD 32039/40 were meant to probe a temporally varying component which probed a cloud with an inferred size of tens to a few hundreds of AU. The goal was to see if there was any significant H2 associated with this component; 2) The star HD 36408B and its companion HD 36408A (observed as part of FUSE GTO program P119) show significant spatial and temporal (proper motion induced) Na I column variations in a strong, relatively isolated component, as well as a relatively simple component structure. The key goal here was to identify any differences in H2 or C I excitation between the sightlines, and to measure the physical conditions (primarily density and temperature) in the temporally varying component; 3) The stars HD 206267C and HD 206267D are highly reddened sightlines which showed significant variations in K I and molecular absorption lines in multiple velocity components. Coupled with FUSE GTO observations of HD 206267A (program P116), the goal was to study the variations in H2 along sightlines which are significantly more distant, with larger separations, and with greater extinctions than the other selected binary systems.

  6. Spectator field models in light of spectral index after Planck

    SciTech Connect

    Kobayashi, Takeshi; Takahashi, Fuminobu; Takahashi, Tomo; Yamaguchi, Masahide E-mail: fumi@tuhep.phys.tohoku.ac.jp E-mail: gucci@phys.titech.ac.jp

    2013-10-01

    We revisit spectator field models including curvaton and modulated reheating scenarios, specifically focusing on their viability in the new Planck era, based on the derived expression for the spectral index in general spectator field models. Importantly, the recent Planck observations give strong preference to a red-tilted power spectrum, while the spectator field models tend to predict a scale-invariant one. This implies that, during inflation, either (i) the Hubble parameter varies significantly as in chaotic inflation, or (ii) a scalar potential for the spectator field has a relatively large negative curvature. Combined with the tight constraint on the non-Gaussianity, the Planck data provides us with rich implications for various spectator field models.

  7. Improving Planck calibration by including frequency-dependent relativistic corrections

    NASA Astrophysics Data System (ADS)

    Quartin, Miguel; Notari, Alessio

    2015-09-01

    The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10-3, due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.

  8. The Physical Origin of Galaxy Morphologies and Scaling Laws

    NASA Technical Reports Server (NTRS)

    Steinmetz, Matthias; Navarro, Julio F.

    2002-01-01

    We propose a numerical study designed to interpret the origin and evolution of galaxy properties revealed by space- and ground-based imaging and spectroscopical surveys. Our aim is to unravel the physical processes responsible for the development of different galaxy morphologies and for the establishment of scaling laws such as the Tully-Fisher relation for spirals and the Fundamental Plane of ellipticals. In particular, we plan to address the following major topics: (1) The morphology and observability of protogalaxies, and in particular the relationship between primordial galaxies and the z approximately 3 'Ly-break' systems identified in the Hubble Deep Field and in ground-based searches; (2) The origin of the disk and spheroidal components in galaxies, the timing and mode of their assembly, the corresponding evolution in galaxy morphologies and its sensitivity to cosmological parameters; (3) The origin and redshift evolution of the scaling laws that link the mass, luminosity size, stellar content, and metal abundances of galaxies of different morphological types. This investigation will use state-of-the-art N-body/gasdynamical codes to provide a spatially resolved description of the galaxy formation process in hierarchically clustering universes. Coupled with population synthesis techniques. our models can be used to provide synthetic 'observations' that can be compared directly with observations of galaxies both nearby and at cosmologically significant distances. This study will thus provide insight into the nature of protogalaxies and into the formation process of galaxies like our own Milky Way. It will also help us to assess the cosmological significance of these observations within the context of hierarchical theories of galaxy formation and will supply a theoretical context within which current and future observations can be interpreted.

  9. Planck 2013 results. XII. Diffuse component separation

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dobler, G.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huey, G.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marcos-Caballero, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Salerno, E.; Sandri, M.; Santos, D.; Savini, G.; Schiavon, F.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Viel, M.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wilkinson, A.; Xia, J.-Q.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    Planck has produced detailed all-sky observations over nine frequency bands between 30 and 857 GHz. These observations allow robust reconstruction of the primordial cosmic microwave background (CMB) temperature fluctuations over nearly the full sky, as well as new constraints on Galactic foregrounds, including thermal dust and line emission from molecular carbon monoxide (CO). This paper describes the component separation framework adopted by Planck for many cosmological analyses, including CMB power spectrum determination and likelihood construction on large angular scales, studies of primordial non-Gaussianity and statistical isotropy, the integrated Sachs-Wolfe effect, gravitational lensing, and searches for topological defects. We test four foreground-cleaned CMB maps derived using qualitatively different component separation algorithms. The quality of our reconstructions is evaluated through detailed simulations and internal comparisons, and shown through various tests to be internally consistent and robust for CMB power spectrum and cosmological parameter estimation up to ℓ = 2000. The parameter constraints on ΛCDM cosmologies derived from these maps are consistent with those presented in the cross-spectrum based Planck likelihood analysis. We choose two of the CMB maps for specific scientific goals. We also present maps and frequency spectra of the Galactic low-frequency, CO, and thermal dust emission. The component maps are found to provide a faithful representation of the sky, as evaluated by simulations, with the largest bias seen in the CO component at 3%. For the low-frequency component, the spectral index varies widely over the sky, ranging from about β = -4 to - 2. Considering both morphology and prior knowledge of the low frequencycomponents, the index map allows us to associate a steep spectral index (β< -3.2) with strong anomalous microwave emission, corresponding to a spinning dust spectrum peaking below 20 GHz, a flat index of β> -2.3 with

  10. Orthogonal non-Gaussianity in DBI galileon: prospect for Planck polarization and post-Planck experiments

    NASA Astrophysics Data System (ADS)

    Koyama, Kazuya; Pettinari, Guido Walter; Mizuno, Shuntaro; Fidler, Christian

    2014-06-01

    In this paper, we study cosmic microwave background (CMB) constraints on primordial non-Gaussianity in Dirac-Born-Infeld (DBI) galileon models in which an induced gravity term is added to the DBI action. In this model, the non-Gaussianity of orthogonal shape can be generated. We provide a relation between theoretical parameters and orthogonal/equilateral nonlinear parameters using the Fisher matrix approach for the CMB bispectrum. In doing so, we include the effect of the CMB transfer functions and experimental noise properties by employing the recently developed second order non-Gaussianity code. The relation is also shown in the language of effective theory so that it can be applied to general single-field models. Using the bispectrum Fisher matrix and the central values for equilateral and orthogonal non-Gaussianities found by the Planck temperature survey, we provide forecasts on the theoretical parameters of the DBI galileon model. We consider the upcoming Planck polarization data and the proposed post-Planck experiments Cosmic Origins Explore (COrE) and Polarized Radiation Imaging and Spectroscopy Mission (PRISM). We find that Planck polarization measurements may provide a hint for a non-canonical sound speed at the 68% confidence level. COrE and PRISM will not only confirm a non-canonical sound speed but also exclude the conventional DBI inflation model at more than the 95% and 99% confidence level respectively, assuming that the central values will not change. This indicates that improving constraints on non-Gaussianity further by future CMB experiments is invaluable to constrain the physics of the early universe.

  11. Planck's radiation law: is a quantum-classical perspective possible?

    NASA Astrophysics Data System (ADS)

    Marrocco, Michele

    2016-05-01

    Planck's radiation law provides the solution to the blackbody problem that marks the decline of classical physics and the rise of the quantum theory of the radiation field. Here, we venture to suggest the possibility that classical physics might be equally suitable to deal with the blackbody problem. A classical version of the Planck's radiation law seems to be achievable if we learn from the quantum-classical correspondence between classical Mie theory and quantum-mechanical wave scattering from spherical scatterers (partial wave analysis). This correspondence designs a procedure for countable energy levels of the radiation trapped within the blackbody treated within the multipole approach of classical electrodynamics (in place of the customary and problematic expansion in terms of plane waves that give rise to the ultraviolet catastrophe). In turn, introducing the Boltzmann discretization of energy levels, the tools of classical thermodynamics and statistical theory become available for the task. On the other hand, the final result depends on a free parameter whose physical units are those of an action. Tuning this parameter on the value given by the Planck constant makes the classical result agree with the canonical Planck's radiation law.

  12. Primordial features and Planck polarization

    NASA Astrophysics Data System (ADS)

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Smoot, George F.; Starobinsky, Alexei A.

    2016-09-01

    With the Planck 2015 Cosmic Microwave Background (CMB) temperature and polarization data, we search for possible features in the primordial power spectrum (PPS). We revisit the Wiggly Whipped Inflation (WWI) framework and demonstrate how generation of some particular primordial features can improve the fit to Planck data. WWI potential allows the scalar field to transit from a steeper potential to a nearly flat potential through a discontinuity either in potential or in its derivatives. WWI offers the inflaton potential parametrizations that generate a wide variety of features in the primordial power spectra incorporating most of the localized and non-local inflationary features that are obtained upon reconstruction from temperature and polarization angular power spectrum. At the same time, in a single framework it allows us to have a background parameter estimation with a nearly free-form primordial spectrum. Using Planck 2015 data, we constrain the primordial features in the context of Wiggly Whipped Inflation and present the features that are supported both by temperature and polarization. WWI model provides more than 13 improvement in χ2 fit to the data with respect to the best fit power law model considering combined temperature and polarization data from Planck and B-mode polarization data from BICEP and Planck dust map. We use 2-4 extra parameters in the WWI model compared to the featureless strict slow roll inflaton potential. We find that the differences between the temperature and polarization data in constraining background cosmological parameters such as baryon density, cold dark matter density are reduced to a good extent if we use primordial power spectra from WWI. We also discuss the extent of bispectra obtained from the best potentials in arbitrary triangular configurations using the BI-spectra and Non-Gaussianity Operator (BINGO).

  13. Primordial power spectrum from Planck

    NASA Astrophysics Data System (ADS)

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun

    2014-11-01

    Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near l ~ 750-850 represents the most prominent feature in the data. Feature near l ~ 1800-2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ~ 2.5%. In this context low-l and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.

  14. Primordial power spectrum from Planck

    SciTech Connect

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun E-mail: arman@apctp.org

    2014-11-01

    Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near ℓ ∼ 750–850 represents the most prominent feature in the data. Feature near ℓ ∼ 1800–2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ∼ 2.5%. In this context low-ℓ and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.

  15. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2010-01-01

    A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. In this talk, I will present: (1) A brief review on GCE model and its applications on the impact of the aerosol on deep precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications). We are also performing the inline tracer calculation to comprehend the ph ysical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.

  16. Characterizing Planck SZ detected clusters with X-ray observations

    NASA Astrophysics Data System (ADS)

    Lovisari, L.; Forman, W.; Jones, C.; Kraft, R.; Randall, S.; Santos, F.

    2016-06-01

    Galaxy clusters are a powerful tool to constrain cosmological parameters. An accurate knowledge of the scaling relations between X-ray observables and cluster mass is a crucial step because it will enable us to compare the theoretical predictions with the real data and with the cosmological models. A complete sample is required for any meaningful study of the scaling properties, otherwise potentially important biases (e.g. Malmquist bias, cool-core and merger fractions) cannot be corrected. The Planck mission provided a nearly complete mass-limited sample of clusters of galaxies. From XMM-Newton and/or Chandra observations of the 165 Planck ESZ clusters at z <0.35, we derived the total mass, gas mass, X-ray luminosity, temperature, and morphology of each cluster. We will show how the cluster properties and morphologies differ for X-ray and SZ selected samples. In particular we will show that the Planck sample has a smaller fraction of cool-core clusters than X-ray selected samples. We will show the derived X-ray scaling relations for the Planck SZ selected sample. Finally, we will show the preliminary results of the cluster mass function.

  17. Universal Landau Pole at the Planck scale

    SciTech Connect

    Andrianov, Alexander A.; Espriu, Domenec; Kurkov, Maxim A.; Lizzi, Fedele

    2014-07-23

    The concept of quantum gravity entails that the usual geometry loses its meaning at very small distances and therefore the grand unification of all gauge interactions with the property of asymptotic freedom happens to be questionable. We propose an unification of all gauge interactions in the form of an “Universal Landau Pole” (ULP), at which all gauge couplings diverge (or, better to say, become very strong). We show that the Higgs quartic coupling also substantially increases whereas the Yukawa couplings tend to zero. Such a singular (or strong coupling) unification is obtained after adding to the Standard Model matter more fermions with vector gauge couplings and hypercharges identical to the SM fermions. The influence of new particles also may prevent the Higgs quartic coupling from crossing zero, thus avoiding the instability (or metastability) of the SM vacuum. As well this fermion pattern opens a way to partially solve the hierarchy problem between masses of quarks and leptons.

  18. Planck 2015 constraints on reionization history

    NASA Astrophysics Data System (ADS)

    Tristram, Matthieu

    2015-08-01

    On behalf of the Planck collaboration, we will show the tightest constraints on cosmic reionization extracted from the CMB polarization at low multipole by Planck.The CMB large scales polarization data can gives strong constraints on the reionization history through the measurement of the reionization optical depth. The Thomson optical depth measured is significantly smaller than previously estimated from CMB polarization data. This result reduces the tension between CMB based analyses and constraints from other astrophysical sources. It highlights the necessity of a deep revision of our view on the history of reionization and the dark age. We also combine constraints from low and high l, in particular from the amplitude of the kinetic Sunyaev Zeld’ovitch effect (kSZ), to derive the time and duration of the reionization epoch. In addition, using both a new two-stage parametrization of the ionization fraction, closer to recent self-regulated simulations, and a non parametric reconstruction, we estimate a more realistic beginning, end, and duration of Reionization.

  19. Planck pre-launch status: The Planck mission

    NASA Astrophysics Data System (ADS)

    Tauber, J. A.; Mandolesi, N.; Puget, J.-L.; Banos, T.; Bersanelli, M.; Bouchet, F. R.; Butler, R. C.; Charra, J.; Crone, G.; Dodsworth, J.; Efstathiou, G.; Gispert, R.; Guyot, G.; Gregorio, A.; Juillet, J. J.; Lamarre, J.-M.; Laureijs, R. J.; Lawrence, C. R.; Nørgaard-Nielsen, H. U.; Passvogel, T.; Reix, J. M.; Texier, D.; Vibert, L.; Zacchei, A.; Ade, P. A. R.; Aghanim, N.; Aja, B.; Alippi, E.; Aloy, L.; Armand, P.; Arnaud, M.; Arondel, A.; Arreola-Villanueva, A.; Artal, E.; Artina, E.; Arts, A.; Ashdown, M.; Aumont, J.; Azzaro, M.; Bacchetta, A.; Baccigalupi, C.; Baker, M.; Balasini, M.; Balbi, A.; Banday, A. J.; Barbier, G.; Barreiro, R. B.; Bartelmann, M.; Battaglia, P.; Battaner, E.; Benabed, K.; Beney, J.-L.; Beneyton, R.; Bennett, K.; Benoit, A.; Bernard, J.-P.; Bhandari, P.; Bhatia, R.; Biggi, M.; Biggins, R.; Billig, G.; Blanc, Y.; Blavot, H.; Bock, J. J.; Bonaldi, A.; Bond, R.; Bonis, J.; Borders, J.; Borrill, J.; Boschini, L.; Boulanger, F.; Bouvier, J.; Bouzit, M.; Bowman, R.; Bréelle, E.; Bradshaw, T.; Braghin, M.; Bremer, M.; Brienza, D.; Broszkiewicz, D.; Burigana, C.; Burkhalter, M.; Cabella, P.; Cafferty, T.; Cairola, M.; Caminade, S.; Camus, P.; Cantalupo, C. M.; Cappellini, B.; Cardoso, J.-F.; Carr, R.; Catalano, A.; Cayón, L.; Cesa, M.; Chaigneau, M.; Challinor, A.; Chamballu, A.; Chambelland, J. P.; Charra, M.; Chiang, L.-Y.; Chlewicki, G.; Christensen, P. R.; Church, S.; Ciancietta, E.; Cibrario, M.; Cizeron, R.; Clements, D.; Collaudin, B.; Colley, J.-M.; Colombi, S.; Colombo, A.; Colombo, F.; Corre, O.; Couchot, F.; Cougrand, B.; Coulais, A.; Couzin, P.; Crane, B.; Crill, B.; Crook, M.; Crumb, D.; Cuttaia, F.; Dörl, U.; da Silva, P.; Daddato, R.; Damasio, C.; Danese, L.; D'Aquino, G.; D'Arcangelo, O.; Dassas, K.; Davies, R. D.; Davies, W.; Davis, R. J.; de Bernardis, P.; de Chambure, D.; de Gasperis, G.; de La Fuente, M. L.; de Paco, P.; de Rosa, A.; de Troia, G.; de Zotti, G.; Dehamme, M.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; di Girolamo, G.; Dickinson, C.; Doelling, E.; Dolag, K.; Domken, I.; Douspis, M.; Doyle, D.; Du, S.; Dubruel, D.; Dufour, C.; Dumesnil, C.; Dupac, X.; Duret, P.; Eder, C.; Elfving, A.; Enßlin, T. A.; Eng, P.; English, K.; Eriksen, H. K.; Estaria, P.; Falvella, M. C.; Ferrari, F.; Finelli, F.; Fishman, A.; Fogliani, S.; Foley, S.; Fonseca, A.; Forma, G.; Forni, O.; Fosalba, P.; Fourmond, J.-J.; Frailis, M.; Franceschet, C.; Franceschi, E.; François, S.; Frerking, M.; Gómez-Reñasco, M. F.; Górski, K. M.; Gaier, T. C.; Galeotta, S.; Ganga, K.; García Lázaro, J.; Garnica, A.; Gaspard, M.; Gavila, E.; Giard, M.; Giardino, G.; Gienger, G.; Giraud-Heraud, Y.; Glorian, J.-M.; Griffin, M.; Gruppuso, A.; Guglielmi, L.; Guichon, D.; Guillaume, B.; Guillouet, P.; Haissinski, J.; Hansen, F. K.; Hardy, J.; Harrison, D.; Hazell, A.; Hechler, M.; Heckenauer, V.; Heinzer, D.; Hell, R.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Herreros, J. M.; Hervier, V.; Heske, A.; Heurtel, A.; Hildebrandt, S. R.; Hills, R.; Hivon, E.; Hobson, M.; Hollert, D.; Holmes, W.; Hornstrup, A.; Hovest, W.; Hoyland, R. J.; Huey, G.; Huffenberger, K. M.; Hughes, N.; Israelsson, U.; Jackson, B.; Jaffe, A.; Jaffe, T. R.; Jagemann, T.; Jessen, N. C.; Jewell, J.; Jones, W.; Juvela, M.; Kaplan, J.; Karlman, P.; Keck, F.; Keihänen, E.; King, M.; Kisner, T. S.; Kletzkine, P.; Kneissl, R.; Knoche, J.; Knox, L.; Koch, T.; Krassenburg, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lagache, G.; Lagorio, E.; Lami, P.; Lande, J.; Lange, A.; Langlet, F.; Lapini, R.; Lapolla, M.; Lasenby, A.; Le Jeune, M.; Leahy, J. P.; Lefebvre, M.; Legrand, F.; Le Meur, G.; Leonardi, R.; Leriche, B.; Leroy, C.; Leutenegger, P.; Levin, S. M.; Lilje, P. B.; Lindensmith, C.; Linden-Vørnle, M.; Loc, A.; Longval, Y.; Lubin, P. M.; Luchik, T.; Luthold, I.; Macias-Perez, J. F.; Maciaszek, T.; MacTavish, C.; Madden, S.; Maffei, B.; Magneville, C.; Maino, D.; Mambretti, A.; Mansoux, B.; Marchioro, D.; Maris, M.; Marliani, F.; Marrucho, J.-C.; Martí-Canales, J.; Martínez-González, E.; Martín-Polegre, A.; Martin, P.; Marty, C.; Marty, W.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McDonald, A.; McGrath, P.; Mediavilla, A.; Meinhold, P. R.; Mélin, J.-B.; Melot, F.; Mendes, L.; Mennella, A.; Mervier, C.; Meslier, L.; Miccolis, M.; Miville-Deschenes, M.-A.; Moneti, A.; Montet, D.; Montier, L.; Mora, J.; Morgante, G.; Morigi, G.; Morinaud, G.; Morisset, N.; Mortlock, D.; Mottet, S.; Mulder, J.; Munshi, D.; Murphy, A.; Murphy, P.; Musi, P.; Narbonne, J.; Naselsky, P.; Nash, A.; Nati, F.; Natoli, P.; Netterfield, B.; Newell, J.; Nexon, M.; Nicolas, C.; Nielsen, P. H.; Ninane, N.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Oldeman, P.; Olivier, P.; Ouchet, L.; Oxborrow, C. A.; Pérez-Cuevas, L.; Pagan, L.; Paine, C.; Pajot, F.; Paladini, R.; Pancher, F.; Panh, J.; Parks, G.; Parnaudeau, P.; Partridge, B.; Parvin, B.; Pascual, J. P.; Pasian, F.; Pearson, D. P.; Pearson, T.; Pecora, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Piersanti, O.; Plaige, E.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poulleau, G.; Poutanen, T.; Prézeau, G.; Pradell, L.; Prina, M.; Prunet, S.; Rachen, J. P.; Rambaud, D.; Rame, F.; Rasmussen, I.; Rautakoski, J.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Reiter, J.; Renault, C.; Ricciardi, S.; Rideau, P.; Riller, T.; Ristorcelli, I.; Riti, J. B.; Rocha, G.; Roche, Y.; Pons, R.; Rohlfs, R.; Romero, D.; Roose, S.; Rosset, C.; Rouberol, S.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusconi, P.; Rusholme, B.; Salama, M.; Salerno, E.; Sandri, M.; Santos, D.; Sanz, J. L.; Sauter, L.; Sauvage, F.; Savini, G.; Schmelzel, M.; Schnorhk, A.; Schwarz, W.; Scott, D.; Seiffert, M. D.; Shellard, P.; Shih, C.; Sias, M.; Silk, J. I.; Silvestri, R.; Sippel, R.; Smoot, G. F.; Starck, J.-L.; Stassi, P.; Sternberg, J.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Stringhetti, L.; Strommen, D.; Stute, T.; Sudiwala, R.; Sugimura, R.; Sunyaev, R.; Sygnet, J.-F.; Türler, M.; Taddei, E.; Tallon, J.; Tamiatto, C.; Taurigna, M.; Taylor, D.; Terenzi, L.; Thuerey, S.; Tillis, J.; Tofani, G.; Toffolatti, L.; Tommasi, E.; Tomasi, M.; Tonazzini, E.; Torre, J.-P.; Tosti, S.; Touze, F.; Tristram, M.; Tuovinen, J.; Tuttlebee, M.; Umana, G.; Valenziano, L.; Vallée, D.; van der Vlis, M.; van Leeuwen, F.; Vanel, J.-C.; van-Tent, B.; Varis, J.; Vassallo, E.; Vescovi, C.; Vezzu, F.; Vibert, D.; Vielva, P.; Vierra, J.; Villa, F.; Vittorio, N.; Vuerli, C.; Wade, L. A.; Walker, A. R.; Wandelt, B. D.; Watson, C.; Werner, D.; White, M.; White, S. D. M.; Wilkinson, A.; Wilson, P.; Woodcraft, A.; Yoffo, B.; Yun, M.; Yurchenko, V.; Yvon, D.; Zhang, B.; Zimmermann, O.; Zonca, A.; Zorita, D.

    2010-09-01

    The European Space Agency's Planck satellite, launched on 14 May 2009, is the third-generation space experiment in the field of cosmic microwave background (CMB) research. It will image the anisotropies of the CMB over the whole sky, with unprecedented sensitivity ({{Δ T}over T} 2 × 10-6) and angular resolution ( 5 arcmin). Planck will provide a major source of information relevant to many fundamental cosmological problems and will test current theories of the early evolution of the Universe and the origin of structure. It will also address a wide range of areas of astrophysical research related to the Milky Way as well as external galaxies and clusters of galaxies. The ability of Planck to measure polarization across a wide frequency range (30-350 GHz), with high precision and accuracy, and over the whole sky, will provide unique insight, not only into specific cosmological questions, but also into the properties of the interstellar medium. This paper is part of a series which describes the technical capabilities of the Planck scientific payload. It is based on the knowledge gathered during the on-ground calibration campaigns of the major subsystems, principally its telescope and its two scientific instruments, and of tests at fully integrated satellite level. It represents the best estimate before launch of the technical performance that the satellite and its payload will achieve in flight. In this paper, we summarise the main elements of the payload performance, which is described in detail in the accompanying papers. In addition, we describe the satellite performance elements which are most relevant for science, and provide an overview of the plans for scientific operations and data analysis.

  20. Planck 2013 results. XXI. Power spectrum and high-order statistics of the Planck all-sky Compton parameter map

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marcos-Caballero, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    We have constructed the first all-sky map of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 100 to 857 GHz frequency channel maps from the Planck survey. This map shows an obvious galaxy cluster tSZ signal that is well matched with blindly detected clusters in the Planck SZ catalogue. To characterize the signal in the tSZ map we have computed its angular power spectrum. At large angular scales (ℓ < 60), the major foreground contaminant is the diffuse thermal dust emission. At small angular scales (ℓ > 500) the clustered cosmic infrared background and residual point sources are the major contaminants. These foregrounds are carefully modelled and subtracted. We thus measure the tSZ power spectrum over angular scales 0.17° ≲ θ ≲ 3.0° that were previously unexplored. The measured tSZ power spectrum is consistent with that expected from the Planck catalogue of SZ sources, with clear evidence of additional signal from unresolved clusters and, potentially, diffuse warm baryons. Marginalized band-powers of the Planck tSZ power spectrum and the best-fit model are given. The non-Gaussianity of the Compton parameter map is further characterized by computing its 1D probability distribution function and its bispectrum. The measured tSZ power spectrum and high order statistics are used to place constraints on σ8.

  1. Rereading Langer's influential 1937 JWKB paper: the unnecessary Langer transformation; the two planck's

    NASA Astrophysics Data System (ADS)

    Koike, Tatsuya; Silverstone, Harris J.

    2009-12-01

    After making the 'Langer transformation', r = ex, ψ(r) = ex/2u(x), Langer found the first-order JWKB hydrogen radial wavefunction to be as if the centrifugal potential were planck2(l + 1/2)2/(2r2), thereby 'justifying' the substitution suggested by Kramers and known to get, in first order, the correct rl + 1 behavior at the origin, the correct phase shift and the exact energy levels. There have been many extensions of the Kramers-Langer substitution: to get the exact origin behavior at any pre-specified higher order; to show that no substitution is necessary at infinite order; to replace planck2l(l + 1) by L2 + planckL, with L set equal to lplanck at the end. Recently, it was discovered that Langer's JWKB solution in x was exactly equivalent to a JWKB solution in r for r-1/2ψ(r): namely the Langer transformation was irrelevant. How can there be many seemingly incompatible JWKB expansions to solve one equation? The key is the ambiguous treatment of planck: in the radial kinetic energy, planck is the expansion parameter; in the centrifugal potential, planck is implicit, passive and not expanded. By designating the implicit plancki by its own symbol, one sees immediately how the different JWKB expansions correspond to different partitions of the centrifugal potential between expansion planck and implicit plancki and therefore solve different equations. The different expansions represent the same physical solution only when plancki = planck. Moreover, in the two-planck notation, 'the generalization' of the Kramers-Langer substitution is made transparently simple: \\hbar ^2l(l+1)\\rightarrow \\hbar _i^2(l+1/2)^2-\\hbar ^2/4. That is, the implicit planck2i/4 that completes the square is compensated by the expansion -planck2/4 that modifies the second-order JWKB wavefunction directly and higher orders indirectly.

  2. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    SciTech Connect

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  3. Development of scales to assess children's perceptions of friend and parental influences on physical activity

    PubMed Central

    Jago, Russell; Fox, Kenneth R; Page, Angie S; Brockman, Rowan; Thompson, Janice L

    2009-01-01

    Background Many children do not meet physical activity guidelines. Parents and friends are likely to influence children's physical activity but there is a shortage of measures that are able to capture these influences. Methods A new questionnaire with the following three scales was developed: 1) Parental influence on physical activity; 2) Motives for activity with friends scale; and 3) Physical activity and sedentary group normative values. Content for each scale was informed by qualitative work. One hundred and seventy three, 10-11 year old children completed the new questionnaire twice, one week apart. Participants also wore an accelerometer for 5 days and mean minutes of moderate to vigorous physical activity, light physical activity and sedentary time per day were obtained. Test-retest reliability of the items was calculated and Principal Component analysis of the scales performed and sub-scales produced. Alphas were calculated for main scales and sub-scales. Correlations were calculated among sub-scales. Correlations between each sub-scale and accelerometer physical activity variables were calculated for all participants and stratified by sex. Results The Parental influence scale yielded four factors which accounted for 67.5% of the variance in the items and had good (α > 0.7) internal consistency. The Motives for physical activity scale yielded four factors that accounted for 66.1% and had good internal consistency. The Physical activity norms scale yielded 4 factors that accounted for 67.4% of the variance, with good internal consistency for the sub-scales and alpha of .642 for the overall scale. Associations between the sub-scales and physical activity differed by sex. Although only 6 of the 11 sub-scales were significantly correlated with physical activity there were a number of associations that were positively correlated >0.15 indicating that these factors may contribute to the explanation of children's physical activity. Conclusion Three scales that

  4. Inflationary paradigm after Planck 2013

    NASA Astrophysics Data System (ADS)

    Guth, Alan H.; Kaiser, David I.; Nomura, Yasunori

    2014-06-01

    Models of cosmic inflation posit an early phase of accelerated expansion of the universe, driven by the dynamics of one or more scalar fields in curved spacetime. Though detailed assumptions about fields and couplings vary across models, inflation makes specific, quantitative predictions for several observable quantities, such as the flatness parameter (Ωk = 1 - Ω) and the spectral tilt of primordial curvature perturbations (ns - 1 = dln ⁡PR / dln ⁡ k), among others-predictions that match the latest observations from the Planck satellite to very good precision. In the light of data from Planck as well as recent theoretical developments in the study of eternal inflation and the multiverse, we address recent criticisms of inflation by Ijjas, Steinhardt, and Loeb. We argue that their conclusions rest on several problematic assumptions, and we conclude that cosmic inflation is on a stronger footing than ever before.

  5. Planck 2015 results and inflation

    NASA Astrophysics Data System (ADS)

    Bouchet, François R.

    2015-12-01

    The Planck mission prime objective was a very accurate and complete measurement of the temperature anisotropies of the Cosmic Microwave Background (CMB). Cosmological results from the intensity data of the nominal mission of a duration of 15 months were disclosed on 21 March 2013. Fortunately, the satellite kept acquiring data for at least twice longer, and we announced in February 2015 new results based on all the data acquired, both in temperature and polarization. I provide a short overview of the latest data and findings of most interest for inflation, as a basis for the other contributions to this volume. This overview is entirely based on the published or submitted works of the Planck collaboration. xml:lang="fr"

  6. Planck intermediate results. IV. The XMM-Newton validation programme for new Planck galaxy clusters

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borgani, S.; Borrill, J.; Bouchet, F. R.; Brown, M. L.; Burigana, C.; Butler, R. C.; Cabella, P.; Carvalho, P.; Catalano, A.; Cayón, L.; Chamballu, A.; Chary, R.-R.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Démoclès, J.; Désert, F.-X.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giraud-Héraud, Y.; González-Nuevo, J.; González-Riestra, R.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juvela, M.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leonardi, R.; Liddle, A.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Luzzi, G.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marleau, F.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Morgante, G.; Mortlock, D.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Osborne, S.; Pajot, F.; Paoletti, D.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Piffaretti, R.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Rocha, G.; Rosset, C.; Rossetti, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Smoot, G. F.; Stanford, A.; Stivoli, F.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Welikala, N.; Weller, J.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2013-02-01

    We present the final results from the XMM-Newton validation follow-up of new Planck galaxy cluster candidates. We observed 15 new candidates, detected with signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck survey. The candidates were selected using ancillary data flags derived from the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the aim of pushing into the low SZ flux, high-z regime and testing RASS flags as indicators of candidate reliability. Fourteen new clusters were detected by XMM-Newton, ten single clusters and two double systems. Redshifts from X-ray spectroscopy lie in the range 0.2 to 0.9, with six clusters at z > 0.5. Estimated masses (M500) range from 2.5 × 1014 to 8 × 1014 M⊙. We discuss our results in the context of the full XMM-Newton validation programme, in which 51 new clusters have been detected. This includes four double and two triple systems, some of which are chance projections on the sky of clusters at different redshifts. We find thatassociation with a source from the RASS-Bright Source Catalogue is a robust indicator of the reliability of a candidate, whereas association with a source from the RASS-Faint Source Catalogue does not guarantee that the SZ candidate is a bona fide cluster. Nevertheless, most Planck clusters appear in RASS maps, with a significance greater than 2σ being a good indication that the candidate is a real cluster. Candidate validation from association with SDSS galaxy overdensity at z > 0.5 is also discussed. The full sample gives a Planck sensitivity threshold of Y500 ~ 4 × 10-4 arcmin2, with indication for Malmquist bias in the YX-Y500 relation below this threshold. The corresponding mass threshold depends on redshift. Systems with M500 > 5 × 1014 M⊙ at z > 0.5 are easily detectable with Planck. The newly-detected clusters follow the YX-Y500 relation derived from X-ray selected samples. Compared to X-ray selected clusters, the new SZ clusters have a

  7. The Planck Compact Source Catalogues

    NASA Astrophysics Data System (ADS)

    Lopez-Caniego, Marcos

    2015-12-01

    The Second Planck Catalogue of Compact Sources is a catalogue of sources observed over the entire sky at nine different frequencies between 30 and 857 GHz. It consists of Galactic and extragalactic objects detected in the Planck single-frequency full mission total intensity maps. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two sub·catalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The PCCS2 covers most of the sky and can be used to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The PCCS2E contains sources located in certain regions where the complex background makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels.

  8. Multi-wavelength characterisation of z ~ 2 clustered, dusty star-forming galaxies discovered by Planck

    NASA Astrophysics Data System (ADS)

    Flores-Cacho, I.; Pierini, D.; Soucail, G.; Montier, L.; Dole, H.; Pointecouteau, E.; Pelló, R.; Le Floc'h, E.; Nesvadba, N.; Lagache, G.; Guery, D.; Cañameras, R.

    2016-01-01

    We report the discovery of PHz G95.5-61.6, a complex structure detected in emission in the Planck all-sky survey that corresponds to two over-densities of high-redshift (i.e. z> 1) galaxies. This is the first source from the Planck catalogue of high-z candidates (proto-clusters and lensed systems) that has been completely characterised with follow-up observations from the optical to the sub-millimetre (sub-mm) domain. Herschel/SPIRE observations at 250, 350, and 500 μm reveal the existence of five sources producing a 500 μm emission excess that spatially corresponds to the candidate proto-clusters discovered by Planck. Further observations at the Canada-France-Hawaii Telescope in the optical bands (g and i) with MegaCam, and in the near infrared (NIR) (J, H and Ks), with WIRCam, plus mid-infrared observations with IRAC/Spitzer (at 3.6 and 4.5 μm), confirm that the sub-mm red excess is associated with an over-density of colour-selected galaxies (i - Ks ~ 2.3 and J - K ~ 0.8 AB-mag). Follow-up spectroscopy of 13 galaxies with VLT/X-Shooter establishes the existence of two high-z structures: one at z ≃ 1.7 (three confirmed member galaxies), the other at z ≃ 2.0 (six confirmed members). The spectroscopic members of each substructure occupy a circular region of comoving radius that is smaller than 1 Mpc, which supports the existence of a physical bond among them. This double structure is also seen in the photometric redshift analysis of a sample of 127 galaxies located inside a circular region of 1'-radius. This contains the five Herschel/SPIRE sources, where we found a double-peaked excess of galaxies at z ≃ 1.7 and z ≃ 2.0 with respect to the surrounding region. These results suggest that PHz G95.5-61.6 corresponds to two accreting nodes, not physically linked to one another, embedded in the large scale structure of the Universe at z ~ 2 and along the same line-of-sight. In conclusion, the data, methods and results illustrated in this pilot project confirm

  9. Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falceta-Gonçalves, D.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Guillet, V.; Harrison, D. L.; Helou, G.; Hennebelle, P.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Ysard, N.; Yvon, D.; Zonca, A.

    2016-02-01

    Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, NH. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10' FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions range from NH≈ 1021 to1023 cm-2, and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called "histogram of relative orientations". Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing NH, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvénic or sub-Alfvénic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. We compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.

  10. Validation of psychosocial scales for physical activity in university students.

    PubMed

    Tassitano, Rafael Miranda; de Farias Júnior, José Cazuza; Rech, Cassiano Ricardo; Tenório, Maria Cecília Marinho; Cabral, Poliana Coelho; da Silva, Giselia Alves Pontes

    2015-01-01

    OBJECTIVE Translate the Patient-centered Assessment and Counseling for Exercise questionnaire, adapt it cross-culturally and identify the psychometric properties of the psychosocial scales for physical activity in young university students. METHODS The Patient-centered Assessment and Counseling for Exercise questionnaire is made up of 39 items divided into constructs based on the social cognitive theory and the transtheoretical model. The analyzed constructs were, as follows: behavior change strategy (15 items), decision-making process (10), self-efficacy (6), support from family (4), and support from friends (4). The validation procedures were conceptual, semantic, operational, and functional equivalences, in addition to the equivalence of the items and of measurements. The conceptual, of items and semantic equivalences were performed by a specialized committee. During measurement equivalence, the instrument was applied to 717 university students. Exploratory factor analysis was used to verify the loading of each item, explained variance and internal consistency of the constructs. Reproducibility was measured by means of intraclass correlation coefficient. RESULTS The two translations were equivalent and back-translation was similar to the original version, with few adaptations. The layout, presentation order of the constructs and items from the original version were kept in the same form as the original instrument. The sample size was adequate and was evaluated by the Kaiser-Meyer-Olkin test, with values between 0.72 and 0.91. The correlation matrix of the items presented r < 0.8 (p < 0.05). The factor loadings of the items from all the constructs were satisfactory (> 0.40), varying between 0.43 and 0.80, which explained between 45.4% and 59.0% of the variance. Internal consistency was satisfactory (α ≥ 0.70), with support from friends being 0.70 and 0.92 for self-efficacy. Most items (74.3%) presented values above 0.70 for the reproducibility test

  11. Validation of psychosocial scales for physical activity in university students

    PubMed Central

    Tassitano, Rafael Miranda; de Farias, José Cazuza; Rech, Cassiano Ricardo; Tenório, Maria Cecília Marinho; Cabral, Poliana Coelho; da Silva, Giselia Alves Pontes

    2015-01-01

    OBJECTIVE Translate the Patient-centered Assessment and Counseling for Exercise questionnaire, adapt it cross-culturally and identify the psychometric properties of the psychosocial scales for physical activity in young university students. METHODS The Patient-centered Assessment and Counseling for Exercise questionnaire is made up of 39 items divided into constructs based on the social cognitive theory and the transtheoretical model. The analyzed constructs were, as follows: behavior change strategy (15 items), decision-making process (10), self-efficacy (6), support from family (4), and support from friends (4). The validation procedures were conceptual, semantic, operational, and functional equivalences, in addition to the equivalence of the items and of measurements. The conceptual, of items and semantic equivalences were performed by a specialized committee. During measurement equivalence, the instrument was applied to 717 university students. Exploratory factor analysis was used to verify the loading of each item, explained variance and internal consistency of the constructs. Reproducibility was measured by means of intraclass correlation coefficient. RESULTS The two translations were equivalent and back-translation was similar to the original version, with few adaptations. The layout, presentation order of the constructs and items from the original version were kept in the same form as the original instrument. The sample size was adequate and was evaluated by the Kaiser-Meyer-Olkin test, with values between 0.72 and 0.91. The correlation matrix of the items presented r < 0.8 (p < 0.05). The factor loadings of the items from all the constructs were satisfactory (> 0.40), varying between 0.43 and 0.80, which explained between 45.4% and 59.0% of the variance. Internal consistency was satisfactory (α ≥ 0.70), with support from friends being 0.70 and 0.92 for self-efficacy. Most items (74.3%) presented values above 0.70 for the reproducibility test

  12. Large Scale Computing and Storage Requirements for High Energy Physics

    SciTech Connect

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes

  13. Visible sector inflation and the right thermal history in light of Planck data

    SciTech Connect

    Wang, Lingfei; Pukartas, Ernestas; Mazumdar, Anupam

    2013-07-01

    Inflation creates perturbations for the large scale structures in the universe, but it also dilutes everything. Therefore it is pertinent that the end of inflation must explain how to excite the Standard Model dof along with the dark matter. In this paper we will briefly discuss the role of visible sector inflaton candidates which are embedded within the Minimal Supersymmetric Standard Model (MSSM) and discuss their merit on how well they match the current data from the Planck. Since the inflaton carries the Standard Model charges their decay naturally produces all the relevant dof with no dark/hidden sector radiation and no isocurvature fluctuations. We will first discuss a single supersymmetric flat direction model of inflation and demonstrate what parameter space is allowed by the Planck and the LHC. We will also consider where the perturbations are created by another light field which decays after inflation, known as a curvaton. The late decay of the curvaton can create observable non-Gaussianity. In the end we will discuss the role of a spectator field whose origin may not lie within the visible sector physics, but its sheer presence during inflation can still create all the perturbations responsible for the large scale structures including possible non-Gaussianity, while the inflaton is embedded within the visible sector which creates all the relevant matter including dark matter, but no dark radiation.

  14.  CMB anomalies after Planck

    NASA Astrophysics Data System (ADS)

    Schwarz, Dominik J.; Copi, Craig J.; Huterer, Dragan; Starkman, Glenn D.

    2016-09-01

    Several unexpected features have been observed in the microwave sky at large angular scales, both by WMAP and by Planck. Among those features is a lack of both variance and correlation on the largest angular scales, alignment of the lowest multipole moments with one another and with the motion and geometry of the solar system, a hemispherical power asymmetry or dipolar power modulation, a preference for odd parity modes and an unexpectedly large cold spot in the Southern hemisphere. The individual p-values of the significance of these features are in the per mille to per cent level, when compared to the expectations of the best-fit inflationary ΛCDM model. Some pairs of those features are demonstrably uncorrelated, increasing their combined statistical significance and indicating a significant detection of CMB features at angular scales larger than a few degrees on top of the standard model. Despite numerous detailed investigations, we still lack a clear understanding of these large-scale features, which seem to imply a violation of statistical isotropy and scale invariance of inflationary perturbations. In this contribution we present a critical analysis of our current understanding and discuss several ideas of how to make further progress.

  15. Global scale, physical models of the F region ionosphere

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.

    1989-01-01

    Consideration is given to the development and verification of global computer models of the F-region which simulate the interactions between physical processes in the ionosphere. The limitations of the physical models are discussed, focusing on the inputs to the ionospheric system such as magnetospheric electric field and auroral precipitation. The possibility of coupling ionospheric models with thermospheric and magnetospheric models is examined.

  16. Planck pre-launch status: The Planck-LFI programme

    NASA Astrophysics Data System (ADS)

    Mandolesi, N.; Bersanelli, M.; Butler, R. C.; Artal, E.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartelmann, M.; Bennett, K.; Bhandari, P.; Bonaldi, A.; Borrill, J.; Bremer, M.; Burigana, C.; Bowman, R. C.; Cabella, P.; Cantalupo, C.; Cappellini, B.; Courvoisier, T.; Crone, G.; Cuttaia, F.; Danese, L.; D'Arcangelo, O.; Davies, R. D.; Davis, R. J.; de Angelis, L.; de Gasperis, G.; de Rosa, A.; de Troia, G.; de Zotti, G.; Dick, J.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Dörl, U.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Falvella, M. C.; Finelli, F.; Frailis, M.; Franceschi, E.; Gaier, T.; Galeotta, S.; Gasparo, F.; Giardino, G.; Gomez, F.; Gonzalez-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F.; Hell, R.; Herranz, D.; Herreros, J. M.; Hildebrandt, S.; Hovest, W.; Hoyland, R.; Huffenberger, K.; Janssen, M.; Jaffe, T.; Keihänen, E.; Keskitalo, R.; Kisner, T.; Kurki-Suonio, H.; Lähteenmäki, A.; Lawrence, C. R.; Leach, S. M.; Leahy, J. P.; Leonardi, R.; Levin, S.; Lilje, P. B.; López-Caniego, M.; Lowe, S. R.; Lubin, P. M.; Maino, D.; Malaspina, M.; Maris, M.; Marti-Canales, J.; Martinez-Gonzalez, E.; Massardi, M.; Matarrese, S.; Matthai, F.; Meinhold, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Morgante, G.; Morigi, G.; Morisset, N.; Moss, A.; Nash, A.; Natoli, P.; Nesti, R.; Paine, C.; Partridge, B.; Pasian, F.; Passvogel, T.; Pearson, D.; Pérez-Cuevas, L.; Perrotta, F.; Polenta, G.; Popa, L. A.; Poutanen, T.; Prezeau, G.; Prina, M.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Ricciardi, S.; Riller, T.; Rocha, G.; Roddis, N.; Rohlfs, R.; Rubiño-Martin, J. A.; Salerno, E.; Sandri, M.; Scott, D.; Seiffert, M.; Silk, J.; Simonetto, A.; Smoot, G. F.; Sozzi, C.; Sternberg, J.; Stivoli, F.; Stringhetti, L.; Tauber, J.; Terenzi, L.; Tomasi, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.; White, M.; White, S.; Wilkinson, A.; Zacchei, A.; Zonca, A.

    2010-09-01

    This paper provides an overview of the Low Frequency Instrument (LFI) programme within the ESA Planck mission. The LFI instrument has been developed to produce high precision maps of the microwave sky at frequencies in the range 27-77 GHz, below the peak of the cosmic microwave background (CMB) radiation spectrum. The scientific goals are described, ranging from fundamental cosmology to Galactic and extragalactic astrophysics. The instrument design and development are outlined, together with the model philosophy and testing strategy. The instrument is presented in the context of the Planck mission. The LFI approach to ground and inflight calibration is described. We also describe the LFI ground segment. We present the results of a number of tests demonstrating the capability of the LFI data processing centre (DPC) to properly reduce and analyse LFI flight data, from telemetry information to calibrated and cleaned time ordered data, sky maps at each frequency (in temperature and polarization), component emission maps (CMB and diffuse foregrounds), catalogs for various classes of sources (the Early Release Compact Source Catalogue and the Final Compact Source Catalogue). The organization of the LFI consortium is briefly presented as well as the role of the core team in data analysis and scientific exploitation. All tests carried out on the LFI flight model demonstrate the excellent performance of the instrument and its various subunits. The data analysis pipeline has been tested and its main steps verified. In the first three months after launch, the commissioning, calibration, performance, and verification phases will be completed, after which Planck will begin its operational life, in which LFI will have an integral part.

  17. Full linearized Fokker-Planck collisions in neoclassical transport simulations

    NASA Astrophysics Data System (ADS)

    Belli, E. A.; Candy, J.

    2012-01-01

    The complete linearized Fokker-Planck collision operator has been implemented in the drift-kinetic code NEO (Belli and Candy 2008 Plasma Phys. Control. Fusion 50 095010) for the calculation of neoclassical transport coefficients and flows. A key aspect of this work is the development of a fast numerical algorithm for treatment of the field particle operator. This Eulerian algorithm can accurately treat the disparate velocity scales that arise in the case of multi-species plasmas. Specifically, a Legendre series expansion in ξ (the cosine of the pitch angle) is combined with a novel Laguerre spectral method in energy to ameliorate the rapid numerical precision loss that occurs for traditional Laguerre spectral methods. We demonstrate the superiority of this approach to alternative spectral and finite-element schemes. The physical accuracy and limitations of more commonly used model collision operators, such as the Connor and Hirshman-Sigmar operators, are studied, and the effects on neoclassical impurity poloidal flows and neoclassical transport for experimental parameters are explored.

  18. Physical meaning of one-machine and multimachine tokamak scalings

    SciTech Connect

    Dnestrovskij, Yu. N. Danilov, A. V.; Dnestrovskij, A. Yu.; Lysenko, S. E.; Ongena, J.

    2013-04-15

    Specific features of energy confinement scalings constructed using different experimental databases for tokamak plasmas are considered. In the multimachine database, some pairs of engineering variables are collinear; e.g., the current I and the input power P both increase with increasing minor radius a. As a result, scalings derived from this database are reliable only for discharges in which such ratios as I/a{sup 2} or P/a{sup 2} are close to their values averaged over the database. The collinearity of variables allows one to exclude the normalized Debye radius d* from the scaling expressed in a nondimensional form. In one-machine databases, the dimensionless variables are functionally dependent, which allow one to cast a scaling without d*. In a database combined from two devices, the collinearity may be absent, so the Debye radius cannot generally be excluded from the scaling. It is shown that the experiments performed in support of the absence of d* in the two-machine scaling are unconvincing. Transformation expressions are given that allow one to compare experiments for the determination of scaling in any set of independent variables.

  19. Higgs vacuum stability and inflationary dynamics after BICEP2 and PLANCK dust polarisation data

    SciTech Connect

    Bhattacharya, Kaushik; Chakrabortty, Joydeep; Das, Suratna; Mondal, Tanmoy E-mail: joydeep@iitk.ac.in E-mail: tanmoym@prl.res.in

    2014-12-01

    If the recent detection of B-mode polarization of the Cosmic Microwave Background by BICEP2 observations, withstand the test of time after the release of recent PLANCK dust polarisation data, then it would surprisingly put the inflationary scale near Grand Unification scale if one considers single-field inflationary models. On the other hand, Large Hadron Collider has observed the elusive Higgs particle whose presently observed mass can lead to electroweak vacuum instability at high scale (∼ O(10{sup 10}) GeV). In this article, we seek for a simple particle physics model which can simultaneously keep the vacuum of the theory stable and yield high-scale inflation successfully. To serve our purpose, we extend the Standard Model of particle physics with a U(1){sub B-L} gauged symmetry which spontaneously breaks down just above the inflationary scale. Such a scenario provides a constrained parameter space where both the issues of vacuum stability and high-scale inflation can be successfully accommodated. The threshold effect on the Higgs quartic coupling due to the presence of the heavy inflaton field plays an important role in keeping the electroweak vacuum stable. Furthermore, this scenario is also capable of reheating the universe at the end of inflation. Though the issues of Dark Matter and Dark Energy, which dominate the late-time evolution of our universe, cannot be addressed within this framework, this model successfully describes the early universe dynamics according to the Big Bang model.

  20. Higgs vacuum stability and inflationary dynamics after BICEP2 and PLANCK dust polarisation data

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Kaushik; Chakrabortty, Joydeep; Das, Suratna; Mondal, Tanmoy

    2014-12-01

    If the recent detection of B-mode polarization of the Cosmic Microwave Background by BICEP2 observations, withstand the test of time after the release of recent PLANCK dust polarisation data, then it would surprisingly put the inflationary scale near Grand Unification scale if one considers single-field inflationary models. On the other hand, Large Hadron Collider has observed the elusive Higgs particle whose presently observed mass can lead to electroweak vacuum instability at high scale (~ Script O(1010) GeV). In this article, we seek for a simple particle physics model which can simultaneously keep the vacuum of the theory stable and yield high-scale inflation successfully. To serve our purpose, we extend the Standard Model of particle physics with a U(1)B-L gauged symmetry which spontaneously breaks down just above the inflationary scale. Such a scenario provides a constrained parameter space where both the issues of vacuum stability and high-scale inflation can be successfully accommodated. The threshold effect on the Higgs quartic coupling due to the presence of the heavy inflaton field plays an important role in keeping the electroweak vacuum stable. Furthermore, this scenario is also capable of reheating the universe at the end of inflation. Though the issues of Dark Matter and Dark Energy, which dominate the late-time evolution of our universe, cannot be addressed within this framework, this model successfully describes the early universe dynamics according to the Big Bang model.

  1. Upward and downward physical appearance comparisons: development of scales and examination of predictive qualities.

    PubMed

    O'Brien, Kerry S; Caputi, Peter; Minto, Rona; Peoples, Gregory; Hooper, Carlie; Kell, Sally; Sawley, Elise

    2009-06-01

    Despite good theoretical and empirical rationale for assessing tendencies to make upward and downward physical appearance comparisons no measure for these specific constructs exists. The present work developed and tested the psychometric properties of upward and downward physical appearance comparison scales. The scales were administered to participants (N=224) along with measures of general appearance comparison tendencies, body image, disordered eating, Antifat and Antigay attitudes. The scales displayed good psychometric properties. Importantly, the upward but not downward physical appearance comparison scale predicted lower Appearance Evaluation and higher EAT-26 scores. Conversely, the downward but not upward physical appearance comparison scale predicted higher Appearance Evaluation and greater Antifat Attitudes (Dislike). The scales were unrelated to a nonappearance related construct. These new measures fill a gap in the literature and may be of benefit to researchers interested in body image, appearance concerns, eating disorders, social comparison, and obesity prejudice. PMID:19447692

  2. Planck early results. XIV. ERCSC validation and extreme radio sources

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Angelakis, E.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Cabella, P.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Fuhrmann, L.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison, D.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Huynh, M.; Jaffe, A. H.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Krichbaum, T. P.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lavonen, N.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marleau, F.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Mingaliev, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Nestoras, I.; Netterfield, C. B.; Nieppola, E.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paladini, R.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Procopio, P.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Riquelme, D.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sajina, A.; Sandri, M.; Savolainen, P.; Scott, D.; Seiffert, M. D.; Sievers, A.; Smoot, G. F.; Sotnikova, Y.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J.-F.; Tammi, J.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Türler, M.; Turunen, M.; Umana, G.; Ungerechts, H.; Valenziano, L.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zensus, J. A.; Zonca, A.

    2011-12-01

    Planck's all-sky surveys at 30-857 GHz provide an unprecedented opportunity to follow the radio spectra of a large sample of extragalactic sources to frequencies 2-20 times higher than allowed by past, large-area, ground-based surveys. We combine the results of the Planck Early Release Compact Source Catalog (ERCSC) with quasi-simultaneous ground-based observations as well as archival data at frequencies below or overlapping Planck frequency bands, to validate the astrometry and photometry of the ERCSC radio sources and study the spectral features shown in this new frequency window opened by Planck. The ERCSC source positions and flux density scales are found to be consistent with the ground-based observations. We present and discuss the spectral energy distributions of a sample of "extreme" radio sources, to illustrate the richness of the ERCSC for the study of extragalactic radio sources. Variability is found to play a role in the unusual spectral features of some of these sources. Corresponding author: B. Partridge, e-mail: bpartrid@haverford.edu

  3. Developing a Rasch Measurement Physical Fitness Scale for Hong Kong Primary School-Aged Students

    ERIC Educational Resources Information Center

    Yan, Zi; Bond, Trevor G.

    2011-01-01

    The main purpose of this study was to develop a Rasch Measurement Physical Fitness Scale (RMPFS) based on physical fitness indicators routinely used in Hong Kong primary schools. A total of 9,439 records of students' performances on physical fitness indicators, retrieved from the database of a Hong Kong primary school, were used to develop the…

  4. Evolving desiderata for validating engineered-physics systems without full-scale testing

    SciTech Connect

    Langenbrunner, James R; Booker, Jane M; Hemez, Francois M; Ross, Timothy J

    2010-01-01

    Theory and principles of engineered-physics designs do not change over time, but the actual engineered product does evolve. Engineered components are prescient to the physics and change with time. Parts are never produced exactly as designed, assembled as designed, or remain unperturbed over time. For this reason, validation of performance may be regarded as evolving over time. Desired use of products evolves with time. These pragmatic realities require flexibility, understanding, and robustness-to-ignorance. Validation without full-scale testing involves engineering, small-scale experiments, physics theory and full-scale computer-simulation validation. We have previously published an approach to validation without full-scale testing using information integration, small-scale tests, theory and full-scale simulations [Langenbrunner et al. 2008]. This approach adds value, but also adds complexity and uncertainty due to inference. We illustrate a validation example that manages evolving desiderata without full-scale testing.

  5. Planck-LFI radiometers tuning

    NASA Astrophysics Data System (ADS)

    Cuttaia, F.; Mennella, A.; Stringhetti, L.; Maris, M.; Terenzi, L.; Tomasi, M.; Villa, F.; Bersanelli, M.; Butler, R. C.; Cappellini, B.; Cuevas, L. P.; D'Arcangelo, O.; Davis, R.; Frailis, M.; Franceschet, C.; Franceschi, E.; Gregorio, A.; Hoyland, R.; Leonardi, R.; Lowe, S.; Mandolesi, N.; Meinhold, P.; Mendes, L.; Roddis, N.; Sandri, M.; Valenziano, L.; Wilkinson, A.; Zacchei, A.; Zonca, A.; Battaglia, P.; De Nardo, S.; Grassi, S.; Lapolla, M.; Leutenegger, P.; Miccolis, M.; Silvestri, R.

    2009-12-01

    This paper describes the Planck Low Frequency Instrument tuning activities performed through the ground test campaigns, from Unit to Satellite Levels. Tuning is key to achieve the best possible instrument performance and tuning parameters strongly depend on thermal and electrical conditions. For this reason tuning has been repeated several times during ground tests and it has been repeated in flight before starting nominal operations. The paper discusses the tuning philosophy, the activities and the obtained results, highlighting developments and changes occurred during test campaigns. The paper concludes with an overview of tuning performed during the satellite cryogenic test campaign (Summer 2008) and of the plans for the just started in-flight calibration.

  6. Reconstruction of broad features in the primordial spectrum and inflaton potential from Planck

    SciTech Connect

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Smoot, George F. E-mail: arman@apctp.org

    2013-12-01

    With the recently published Cosmic Microwave Background data from Planck we address the optimized binning of the primordial power spectrum. As an important modification to the usual binning of the primordial spectrum, along with the spectral amplitude of the bins, we allow the position of the bins also to vary. This technique enables us to address the location of the possible broad physical features in the primordial spectrum with relatively smaller number of bins compared to the analysis performed earlier. This approach is in fact a reconstruction method looking for broad features in the primordial spectrum and avoiding fitting noise in the data. Performing Markov Chain Monte Carlo analysis we present samples of the allowed primordial spectra with broad features consistent with Planck data. To test how realistic it is to have step-like features in primordial spectrum we revisit an inflationary model, proposed by A. A. Starobinsky which can address the similar features obtained from the binning of the spectrum. Using the publicly available code BINGO, we numerically calculate the local f{sub NL} for this model in equilateral and arbitrary triangular configurations of wavevectors and show that the obtained non-Gaussianity for this model is consistent with Planck results. In this paper we have also considered different spectral tilts at different bins to identify the cosmological scale that the spectral index needs to have a red tilt and it is interesting to report that spectral index cannot be well constrained up to k ≈ 0.01Mpc{sup −1}.

  7. Thermal susceptibility of the Planck-LFI receivers

    NASA Astrophysics Data System (ADS)

    Terenzi, L.; Salmon, M. J.; Colin, A.; Mennella, A.; Morgante, G.; Tomasi, M.; Battaglia, P.; Lapolla, M.; Bersanelli, M.; Butler, R. C.; Cuttaia, F.; D'Arcangelo, O.; Davis, R.; Franceschet, C.; Galeotta, S.; Gregorio, A.; Hughes, N.; Jukkala, P.; Kettle, D.; Laaninen, M.; Leutenegger, P.; Leonardi, R.; Mandolesi, N.; Maris, M.; Meinhold, P.; Miccolis, M.; Roddis, N.; Sambo, L.; Sandri, M.; Silvestri, R.; Tuovinen, J.; Valenziano, L.; Varis, J.; Villa, F.; Wilkinson, A.; Zonca, A.

    2009-12-01

    This paper describes the impact of the Planck Low Frequency Instrument front end physical temperature fluctuations on the output signal. The origin of thermal instabilities in the instrument are discussed, and an analytical model of their propagation and impact on the receivers signal is described. The experimental test setup dedicated to evaluate these effects during the instrument ground calibration is reported together with data analysis methods. Finally, main results obtained are discussed and compared to the requirements.

  8. Can basin land use effects on physical characteristics of streams be determined at broad geographic scales?

    PubMed

    Goldstein, Robert M; Carlisle, Daren M; Meador, Michael R; Short, Terry M

    2007-07-01

    The environmental setting (e.g., climate, topography, geology) and land use affect stream physical characteristics singly and cumulatively. At broad geographic scales, we determined the importance of environmental setting and land use in explaining variation in stream physical characteristics. We hypothesized that as the spatial scale decreased from national to regional, land use would explain more of the variation in stream physical characteristics because environmental settings become more homogeneous. At a national scale, stepwise linear regression indicated that environmental setting was more important in explaining variability in stream physical characteristics. Although statistically discernible, the amount of variation explained by land use was not remarkable due to low partial correlations. At level II ecoregion spatial scales (southeastern USA plains, central USA plains, and a combination of the western Cordillera and the western interior basins and ranges), environmental setting variables were again more important predictors of stream physical characteristics, however, as the spatial scale decreased from national to regional, the portion of variability in stream physical characteristics explained by basin land use increased. Development of stream habitat indicators of land use will depend upon an understanding of relations between stream physical characteristics and environmental factors at multiple spatial scales. Smaller spatial scales will be necessary to reduce the confounding effects of variable environmental settings before the effects of land use can be reliably assessed. PMID:17106774

  9. Can basin land use effects on physical characteristics of streams be determined at broad geographic scales?

    USGS Publications Warehouse

    Goldstein, R.M.; Carlisle, D.M.; Meador, M.R.; Short, T.M.

    2007-01-01

    The environmental setting (e.g., climate, topography, geology) and land use affect stream physical characteristics singly and cumulatively. At broad geographic scales, we determined the importance of environmental setting and land use in explaining variation in stream physical characteristics. We hypothesized that as the spatial scale decreased from national to regional, land use would explain more of the variation in stream physical characteristics because environmental settings become more homogeneous. At a national scale, stepwise linear regression indicated that environmental setting was more important in explaining variability in stream physical characteristics. Although statistically discernible, the amount of variation explained by land use was not remarkable due to low partial correlations. At level II ecoregion spatial scales (southeastern USA plains, central USA plains, and a combination of the western Cordillera and the western interior basins and ranges), environmental setting variables were again more important predictors of stream physical characteristics, however, as the spatial scale decreased from national to regional, the portion of variability in stream physical characteristics explained by basin land use increased. Development of stream habitat indicators of land use will depend upon an understanding of relations between stream physical characteristics and environmental factors at multiple spatial scales. Smaller spatial scales will be necessary to reduce the confounding effects of variable environmental settings before the effects of land use can be reliably assessed. ?? Springer Science+Business Media B.V. 2006.

  10. Planck intermediate results. XIII. Constraints on peculiar velocities

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Démoclès, J.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Enßlin, T. A.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Frommert, M.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Gonzáalez-Nuevo, J.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, T. R.; Jaffe, A. H.; Jasche, J.; Jones, W. C.; Juvela, M.; Keihánen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Macías-Pérez, J. F.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Maris, M.; Marleau, F.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pagano, L.; Paoletti, D.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Puisieux, S.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Roman, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Welikala, N.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.

    2014-01-01

    Using Planck data combined with the Meta Catalogue of X-ray detected Clusters of galaxies (MCXC), we address the study of peculiar motions by searching for evidence of the kinetic Sunyaev-Zeldovich effect (kSZ). By implementing various filters designed to extract the kSZ generated at the positions of the clusters, we obtain consistent constraints on the radial peculiar velocity average, root mean square (rms), and local bulk flow amplitude at different depths. For the whole cluster sample of average redshift 0.18, the measured average radial peculiar velocity with respect to the cosmic microwave background (CMB) radiation at that redshift, i.e., the kSZ monopole, amounts to 72 ± 60 km s-1. This constitutes less than 1% of the relative Hubble velocity of the cluster sample with respect to our local CMB frame. While the linear ΛCDM prediction for the typical cluster radial velocity rms at z = 0.15 is close to 230 km s-1, the upper limit imposed by Planck data on the cluster subsample corresponds to 800 km s-1 at 95% confidence level, i.e., about three times higher. Planck data also set strong constraints on the local bulk flow in volumes centred on the Local Group. There is no detection of bulk flow as measured in any comoving sphere extending to the maximum redshift covered by the cluster sample. A blind search for bulk flows in this sample has an upper limit of 254 km s-1 (95% confidence level) dominated by CMB confusion and instrumental noise, indicating that the Universe is largely homogeneous on Gpc scales. In this context, in conjunction with supernova observations, Planck is able to rule out a large class of inhomogeneous void models as alternatives to dark energy or modified gravity. The Planck constraints on peculiar velocities and bulk flows are thus consistent with the ΛCDM scenario.

  11. Vlasov-Fokker-Planck Simulation of a Collisional Ion-Electron Shockwave

    NASA Astrophysics Data System (ADS)

    Taitano, William; Knoll, Dana; Prinja, Anil

    2012-10-01

    There has been recent increased interest in a range of kinetic plasma physics phenomena which may be important in simulating ICF pellet performance. [1] have numerically demonstrated the limitations of the classic Spitzer, Braginski fluid closures in collisional plasmas for shockwave problems. [1] has shown the importance of modeling kinetic effects for scale lengths of shockwave much larger than the ion collision mean free path. In [1], the ions were modeled kinetically using the Fokker-Planck approximation while the electrons were modeled as a fluid. An investigation of a full kinetic treatment of electron with collision is computationally intractable with standard explicit schemes due to collision CFL limitation that requires resolving the electron-electron collision timescale. [2] has developed a new, fully implicit and discretely consistent moment based accelerator method to solve the full ion-electron kinetic Vlasov-Ampere system. A similar moment based accelerator will be extended to a collisionless shock problem in order to accelerate the Fokker-Planck collision source in the kinetic equations. In the presentation, we provide some preliminary results. [4pt] [1] M. Casanova and O. Larroche, Phys. Rev. Let. 67-(16), 1991. [0pt] [2] W.T. Taitano et al. SISC in review.

  12. The Polarization of the CMB with Planck

    NASA Astrophysics Data System (ADS)

    Rocha, Graca; Planck Collaboration

    2016-06-01

    In this talk I will give an overview of Planck data and Cosmological results focusing on the analysis of polarized data. I will present new insights into the polarization of foregrounds rendered by the Planck satelite and an account of current constraints on the optical depth due to reionization, τ, and the scalar to tensor ratio, r.

  13. Planck early results. II. The thermal performance of Planck

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Baker, M.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhandari, P.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borders, J.; Borrill, J.; Bouchet, F. R.; Bowman, B.; Bradshaw, T.; Bréelle, E.; Bucher, M.; Burigana, C.; Butler, R. C.; Cabella, P.; Camus, P.; Cantalupo, C. M.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chambelland, J. P.; Charra, J.; Charra, M.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Collaudin, B.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Crook, M.; Cuttaia, F.; Damasio, C.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dolag, K.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Filliard, C.; Finelli, F.; Foley, S.; Forni, O.; Fosalba, P.; Fourmond, J.-J.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Gavila, E.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guyot, G.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Israelsson, U.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lami, P.; Lasenby, A.; Laureijs, R. J.; Lavabre, A.; Lawrence, C. R.; Leach, S.; Lee, R.; Leonardi, R.; Leroy, C.; Lilje, P. B.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maciaszek, T.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melot, F.; Mendes, L.; Mennella, A.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Mora, J.; Morgante, G.; Morisset, N.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nash, A.; Natoli, P.; Netterfield, C. B.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Pasian, F.; Patanchon, G.; Pearson, D.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prina, M.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stassi, P.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Valenziano, L.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson, C.; White, S. D. M.; Wilkinson, A.; Wilson, P.; Yvon, D.; Zacchei, A.; Zhang, B.; Zonca, A.

    2011-12-01

    The performance of the Planck instruments in space is enabled by their low operating temperatures, 20 K for LFI and 0.1 K for HFI, achieved through a combination of passive radiative cooling and three active mechanical coolers. The scientific requirement for very broad frequency coverage led to two detector technologies with widely different temperature and cooling needs. Active coolers could satisfy these needs; a helium cryostat, as used by previous cryogenic space missions (IRAS, COBE, ISO, Spitzer, AKARI), could not. Radiative cooling is provided by three V-groove radiators and a large telescope baffle. The active coolers are a hydrogen sorption cooler (<20 K), a 4He Joule-Thomson cooler (4.7 K), and a 3He-4He dilution cooler (1.4 K and 0.1 K). The flight system was at ambient temperature at launch and cooled in space to operating conditions. The HFI bolometer plate reached 93 mK on 3 July 2009, 50 days after launch. The solar panel always faces the Sun, shadowing the rest of Planck, andoperates at a mean temperature of 384 K. At the other end of the spacecraft, the telescope baffle operates at 42.3 K and the telescope primary mirror operates at 35.9 K. The temperatures of key parts of the instruments are stabilized by both active and passive methods. Temperature fluctuations are driven by changes in the distance from the Sun, sorption cooler cycling and fluctuations in gas-liquid flow, and fluctuations in cosmic ray flux on the dilution and bolometer plates. These fluctuations do not compromise the science data.

  14. Planck on Radio Sources: Data and Findings

    NASA Astrophysics Data System (ADS)

    Partridge, Robert Bruce

    2015-08-01

    Planck scanned the entire sky every six months at nine frequency bands from 28 to 857 GHz with enough sensitivity to detect over a thousand extragalactic radio sources. It thus provides measurements of the mm and sub-mm spectra of these sources in a regular cadence, even at wavelengths hard to observe from the ground. Polarization measurements (or upper limits) are provided for brighter sources at 28-353 GHz. Finally, Planck is calibrated to <1% accuracy in most of its frequency bands.I will first introduce the valuable data set Planck provides on extragalactic sources, in particular the Second Planck Catalogue of Compact Sources (PCCS2), then more briefly describe some of the scientific conclusions drawn from the Planck measurments.

  15. Planck and the reionization of the universe

    NASA Astrophysics Data System (ADS)

    Crill, Brendan

    2016-03-01

    Planck is the third-generation satellite aimed at measuring the cosmic microwave background, a relic of the hot big bang. Planck's temperature and polarization maps of the millimeter-wave sky have constrained parameters of the standard lambda-CDM model of cosmology to incredible precision, and have provided constraints on inflation in the very early universe. Planck's all-sky survey of polarization in seven frequency bands can remove contamination from nearby Galactic emission and constrain the optical depth of the reionized Universe, giving insight into the properties of the earliest star formation. The final 2016 data release from Planck will include a refined optical depth measurement using the full sensitivity of both the High Frequency and Low Frequency instruments. I present the status of the reionization measurement and discuss future prospects for further measurements of the early Universe with the CMB from Planck and future space and suborbital platforms.

  16. WMAP OBSERVATIONS OF PLANCK ESZ CLUSTERS

    SciTech Connect

    Ma Yinzhe; Hinshaw, Gary; Scott, Douglas

    2013-07-10

    We examine the Sunyaev-Zeldovich (SZ) effect in the seven year Wilkinson Microwave Anisotropy Probe (WMAP) data by cross-correlating it with the Planck Early-release Sunyaev-Zeldovich catalog. Our analysis proceeds in two parts. We first perform a stacking analysis in which the filtered WMAP data are averaged at the locations of the 175 Planck clusters. We then perform a regression analysis to compare the mean amplitude of the SZ signal, Y{sub 500}, in the WMAP data to the corresponding amplitude in the Planck data. The aggregate Planck clusters are detected in the seven year WMAP data with a signal-to-noise ratio of 16.3. In the regression analysis, we find that the SZ amplitude measurements agree to better than 25%: a = 1.23 {+-} 0.18 for the fit Y{sup wmap}{sub 500}= aY{sup planck}{sub 500}.

  17. Compact wire array sources: power scaling and implosion physics.

    SciTech Connect

    Serrano, Jason Dimitri; Chuvatin, Alexander S.; Jones, M. C.; Vesey, Roger Alan; Waisman, Eduardo M.; Ivanov, V. V.; Esaulov, Andrey A.; Ampleford, David J.; Cuneo, Michael Edward; Kantsyrev, Victor Leonidovich; Coverdale, Christine Anne; Rudakov, L. I.; Jones, Brent Manley; Safronova, Alla S.; Vigil, Marcelino Patricio

    2008-09-01

    A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we

  18. Planck priors for dark energy surveys

    SciTech Connect

    Mukherjee, Pia; Parkinson, David; Kunz, Martin; Wang Yun

    2008-10-15

    Although cosmic microwave background anisotropy data alone cannot constrain simultaneously the spatial curvature and the equation of state of dark energy, CMB data provide a valuable addition to other experimental results. However computing a full CMB power spectrum with a Boltzmann code is quite slow; for instance if we want to work with many dark energy and/or modified gravity models, or would like to optimize experiments where many different configurations need to be tested, it is possible to adopt a quicker and more efficient approach. In this paper we consider the compression of the projected Planck cosmic microwave background data into four parameters, R (scaled distance to last scattering surface), l{sub a} (angular scale of sound horizon at last scattering), {omega}{sub b}h{sup 2} (baryon density fraction) and n{sub s} (powerlaw index of primordial matter power spectrum), all of which can be computed quickly. We show that, although this compression loses information compared to the full likelihood, such information loss becomes negligible when more data is added. We also demonstrate that the method can be used for canonical scalar-field dark energy independently of the parametrization of the equation of state, and discuss how this method should be used for other kinds of dark energy models.

  19. Seismic-Scale Rock Physics of Methane Hydrate

    SciTech Connect

    Amos Nur

    2009-01-08

    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  20. Technologies for large-scale physical mapping of human chromosomes

    SciTech Connect

    Beugelsdijk, T.J.

    1994-12-01

    Since its inception 6 years ago, the Human Genome Project has made rapid progress towards its ultimate goal of developing the complete sequence of all human chromosomes. This progress has been made possible through the development of automated devices by laboratories throughout the world that aid the molecular biologist in various phases of the project. The initial phase involves the generation of physical and genetic maps of each chromosome. This task is nearing completion at a low resolution level with several instances of very high detailed maps being developed for isolated chromosomes. In support of the initial mapping thrust of this program, the robotics and automation effort at Los Alamos National Laboratory has developed DNA gridding technologies along with associated database and user interface systems. This paper will discuss these systems in detail and focus on the formalism developed for subsystems which allow for facile system integration.

  1. Cosmological consequences of gravitationally interacting Planck-mass particles

    SciTech Connect

    Srivastava, A.M.

    1987-10-15

    The existence of Planck-mass particles (called geons) in pure gravity is suggested by the work of Friedman and Sorkin. These particles are very peculiar in the sense that they interact only gravitationally. In this paper we show that the existence of Planck-mass unstable geons may have many physically interesting implications. In particular we propose a scenario in which we show the possibility of formation of heavy black holes (with present number density equal to the galactic number density) which will have the capability of providing seeds for the galaxy formation. In this scenario lighter black holes provide the missing mass in the galactic halos. Also in this scenario the early geon-dominated era dilutes grand-unified-theory monopoles sufficiently providing a noninflationary solution to the monopole problem. Unfortunately, however, this scenario is in conflict with the standard calculations of helium synthesis and baryon excess. A scenario consistent with helium synthesis is briefly discussed.

  2. Constraints on Cosmological Parameters: Combining Planck With Other Measurements

    NASA Astrophysics Data System (ADS)

    Freedman, Wendy

    2015-08-01

    The recent measurements from Planck have set a new high bar for accuracy in the measurement of cosmological parameters. In parallel, new and increasingly accurate measurements of Baryon Acoustic Oscillations, Type Ia supernovae, and the Hubble Constant offer independent probes of various cosmological parameters. The increased accuracy in cosmic microwave background fluctuation measurements make direct comparisons with other methods even more critical, given the intrinsic physical degeneracies amongst different cosmological parameters in the acoustic oscillation spectrum. There has been fundamental progress over the last couple of decades in measuring extragalactic distances. I will discuss the current limits, and the prospects for reaching 1% uncertainty in measurement of the Hubble constant, which, combined with measurements from Planck, will be critical for providing independent constraints on dark energy, the geometry, and matter density of the universe.

  3. (Lack of) Cosmological evidence for dark radiation after Planck

    SciTech Connect

    Verde, Licia; Feeney, Stephen M.; Peiris, Hiranya V.; Mortlock, Daniel J. E-mail: stephen.feeney.09@ucl.ac.uk E-mail: h.peiris@ucl.ac.uk

    2013-09-01

    We use Bayesian model comparison to determine whether extensions to Standard-Model neutrino physics — primarily additional effective numbers of neutrinos and/or massive neutrinos — are merited by the latest cosmological data. Given the significant advances in cosmic microwave background (CMB) observations represented by the Planck data, we examine whether Planck temperature and CMB lensing data, in combination with lower redshift data, have strengthened (or weakened) the previous findings. We conclude that the state-of-the-art cosmological data do not show evidence for deviations from the standard (ΛCDM) cosmological model (which has three massless neutrino families). This does not mean that the model is necessarily correct — in fact we know it is incomplete as neutrinos are not massless — but it does imply that deviations from the standard model (e.g., non-zero neutrino mass) are too small compared to the current experimental uncertainties to be inferred from cosmological data alone.

  4. Inflation after false vacuum decay: Observational prospects after Planck

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael; Harlow, Daniel; Senatore, Leonardo

    2015-04-01

    We assess two potential signals of the formation of our universe by the decay of a false vacuum. Negative spatial curvature is one possibility, but the window for its detection is now small. However, another possible signal is a suppression of the cosmic microwave background (CMB) power spectrum at large angles. This arises from the steepening of the effective potential as it interpolates between a flat inflationary plateau and the high barrier separating us from our parent vacuum. We demonstrate that these two effects can be parametrically separated in angular scale. Observationally, the steepening effect appears to be excluded at large ℓ; but it remains consistent with the slight lack of power below ℓ≈30 found by the WMAP and Planck collaborations. We give two simple models which improve the fit to the Planck data; one with observable curvature and one without. Despite cosmic variance, we argue that future CMB polarization and most importantly large-scale structure observations should be able to corroborate the Planck anomaly if it is real. If we further assume the specific theoretical setting of a landscape of metastable vacua, as suggested by string theory, we can estimate the probability of seeing a low-ℓ suppression in the CMB. There are significant theoretical uncertainties in such calculations, but we argue the probability for a detectable suppression may be as large as O (1 ), and in general is significantly larger than the probability of seeing curvature.

  5. De-anthropomorphizing energy and energy conservation: The case of Max Planck and Ernst Mach

    NASA Astrophysics Data System (ADS)

    Wegener, Daan

    Discussions on the relation between Mach and Planck usually focus on their famous controversy, a conflict between 'instrumentalist' and realist philosophies of science that revolved around the specific issue of the existence of atoms. This article approaches their relation from a different perspective, comparing their analyses of energy and energy conservation. It is argued that this reveals a number of striking similarities and differences. Both Mach and Planck agreed that the law was valid, and they sought to purge energy of its anthropomorphic elements. They did so in radically different ways, however, illustrating the differences between Mach's 'historical' and Planck's 'rationalistic' accounts of knowledge. Planck's attempt to de-anthropomorphize energy was part of his attempt to demarcate theoretical physics from other disciplines. Mach's attempt to de-anthropomorphize energy is placed in the context of fin-de-siècle Vienna. By doing so, this article also proposes a new interpretation of Mach as a philosopher, historian and sociologist of science.

  6. Sub-Planck structure in a mixed state

    NASA Astrophysics Data System (ADS)

    Kumari, Asmita; Pan, Alok Kumar; Panigrahi, Prasanta K.

    2015-11-01

    The persistence of sub-Planck structure in phase space with loss of coherence is demonstrated in a mixed state, which comprises two terms in the density matrix. Its utility in carrying out Heisenberg-limited measurement and quantum parameter estimation have been shown. It is also shown that the mixed state performs equally well as the compass state for carrying out precision measurements. The advantage of using mixed state relies on the fact that such a state can be easier to prepare and may appear from pure states after partial loss of coherence. We explicate the effect of environment on these sub-Planck structures in the mixed state and estimates the time scale of complete decoherence.

  7. A physical scaling model for aggregation and disaggregation of field-scale surface soil moisture dynamics

    NASA Astrophysics Data System (ADS)

    Ojha, Richa; Govindaraju, Rao S.

    2015-07-01

    Scaling relationships are needed as measurements and desired predictions are often not available at concurrent spatial support volumes or temporal discretizations. Surface soil moisture values of interest to hydrologic studies are estimated using ground based measurement techniques or utilizing remote sensing platforms. Remote sensing based techniques estimate field-scale surface soil moisture values, but are unable to provide the local-scale soil moisture information that is obtained from local measurements. Further, obtaining field-scale surface moisture values using ground-based measurements is exhaustive and time consuming. To bridge this scale mismatch, we develop analytical expressions for surface soil moisture based on sharp-front approximation of the Richards equation and assumed log-normal distribution of the spatial surface saturated hydraulic conductivity field. Analytical expressions for field-scale evolution of surface soil moisture to rainfall events are utilized to obtain aggregated and disaggregated response of surface soil moisture evolution with knowledge of the saturated hydraulic conductivity. The utility of the analytical model is demonstrated through numerical experiments involving 3-D simulations of soil moisture and Monte-Carlo simulations for 1-D renderings—with soil moisture dynamics being represented by the Richards equation in each instance. Results show that the analytical expressions developed here show promise for a principled way of scaling surface soil moisture.

  8. Solution of the Fokker-Planck equation in a wind turbine array boundary layer

    NASA Astrophysics Data System (ADS)

    Melius, Matthew S.; Tutkun, Murat; Cal, Raúl Bayoán

    2014-07-01

    Hot-wire velocity signals from a model wind turbine array boundary layer flow wind tunnel experiment are analyzed. In confirming Markovian properties, a description of the evolution of the probability density function of velocity increments via the Fokker-Planck equation is attained. Solution of the Fokker-Planck equation is possible due to the direct computation of the drift and diffusion coefficients from the experimental measurement data which were acquired within the turbine canopy. A good agreement is observed in the probability density functions between the experimental data and numerical solutions resulting from the Fokker-Planck equation, especially in the far-wake region. The results serve as a tool for improved estimation of wind velocity within the array and provide evidence that the evolution of such a complex and turbulent flow is also governed by a Fokker-Planck equation at certain scales.

  9. Developing an Attitude Scale for the Profession of Physical Education Teaching (ASPPET)

    ERIC Educational Resources Information Center

    Unlu, Huseyin

    2011-01-01

    In this study, the development of a Likert-type attitude scale for the profession of physical education teaching (ASPPET) was aimed. The group of the study was consisted of totally 556 pre-service physical education teachers. In order to determine the structural validity of ASPPET, an exploratory and confirmative factor analyses were performed. A…

  10. Measuring Psychological and Physical Abuse of Children with the Conflict Tactics Scales.

    ERIC Educational Resources Information Center

    Straus, Murray A.

    Application of the Conflict Tactics Scales (CTS) to the assessment of child abuse is described. The CTS is a brief instrument designed to measure three aspects of parent-to-child behavior: (1) reasoning; (2) psychological aggression; and (3) physical aggression. The psychological and physical aggression indexes are intended to measure the…

  11. Rotating space elevators: Physics of celestial scale spinning strings

    NASA Astrophysics Data System (ADS)

    Knudsen, Steven; Golubović, Leonardo

    2014-11-01

    We explore classical and statistical mechanics of a novel dynamical system, the Rotating Space Elevator (RSE) (L. Golubović, S. Knudsen, EPL 86, 34001 (2009)). The RSE is a double rotating floppy string reaching extraterrestrial locations. Objects sliding along the RSE string (climbers) do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in space elevator science, which is how to supply energy to the climbers moving along space elevator strings. The RSE can be made in various shapes that are stabilized by an approximate equilibrium between the gravitational and inertial forces acting in a double rotating frame associated with the RSE. This dynamical equilibrium is achieved by a special ("magical") form of the RSE mass line density derived in this paper. The RSE exhibits a variety of interesting dynamical phenomena explored here by numerical simulations. Thanks to its special design, the RSE exhibits everlasting double rotating motion. Under some conditions, however, we find that the RSE may undergo a morphological transition to a chaotic state reminiscent of fluctuating directed polymers in the realm of the statistical physics of strings and membranes.

  12. Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Aniano, G.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Draine, B. T.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    We present all-sky modelling of the high resolution Planck, IRAS, and WISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling. The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density ΣMd, the dust optical extinction AV, and the starlight intensity heating the bulk of the dust, parametrized by Umin. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31), the present dust mass estimates agree remarkably well (within 10%) with DL estimates based on independent Spitzer and Herschel data. We compare the DL optical extinction AV for the diffuse interstellar medium (ISM) with optical estimates for approximately 2 × 105 quasi-stellar objects (QSOs) observed inthe Sloan Digital Sky Survey (SDSS). The DL AV estimates are larger than those determined towards QSOs by a factor of about 2, which depends on Umin. The DL fitting parameter Umin, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust grains per unit AV, and not only in the starlight intensity. These results show that some of the physical assumptions of the DL model will need to be revised. To circumvent the model deficiency, we propose an empirical renormalization of the DL AV estimate, dependent of Umin, which compensates for the systematic differences found with QSO observations. This renormalization, made to match the AV estimates towards QSOs, also brings into agreement the DL AV estimates with those derived for

  13. Physical Analysis and Scaling of a Jet and Vortex Actuator

    NASA Technical Reports Server (NTRS)

    Lachowicz, Jason T.; Yao, Chung-Sheng; Joslin, Ronald D.

    2004-01-01

    Our previous studies have shown that the Jet and Vortex Actuator generates free-jet, wall-jet, and near- wall vortex flow fields. That is, the actuator can be operated in different modes by simply varying the driving frequency and/or amplitude. For this study, variations are made in the actuator plate and wide-slot widths and sine/asymmetrical actuator plate input forcing (drivers) to further study the actuator induced flow fields. Laser sheet flow visualization, particle- image velocimetry, and laser velocimetry are used to measure and characterize the actuator induced flow fields. Laser velocimetry measurements indicate that the vortex strength increases with the driver repetition rate for a fixed actuator geometry (wide slot and plate width). For a given driver repetition rate, the vortex strength increases as the plate width decreases provided the wide-slot to plate-width ratio is fixed. Using an asymmetric plate driver, a stronger vortex is generated for the same actuator geometry and a given driver repetition rate. The nondimensional scaling provides the approximate ranges for operating the actuator in the free jet, wall jet, or vortex flow regimes. Finally, phase-locked velocity measurements from particle image velocimetry indicate that the vortex structure is stationary, confirming previous computations. Both the computations and the particle image velocimetry measurements (expectantly) show unsteadiness near the wide-slot opening, which is indicative of mass ejection from the actuator.

  14. Neutrino physics with multi-ton scale liquid xenon detectors

    SciTech Connect

    Baudis, L.; Ferella, A.; Kish, A.; Manalaysay, A.; Undagoitia, T. Marrodán; Schumann, M. E-mail: alfredo.ferella@lngs.infn.it E-mail: aaronm@ucdavis.edu E-mail: marc.schumann@lhep.unibe.ch

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and {sup 7}Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ∼ 2 × 10{sup −48} cm{sup 2} and WIMP masses around 50 GeV⋅c{sup −2}, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ∼ 6 GeV⋅c{sup −2} to cross sections above ∼ 4 × 10{sup −45}cm{sup 2}. DARWIN could reach a competitive half-life sensitivity of 5.6 × 10{sup 26} y to the neutrinoless double beta decay of {sup 136}Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

  15. Effects of pore-scale physics on uranium geochemistry in Hanford sediments

    SciTech Connect

    Hu, Qinhong; Ewing, Robert P.

    2013-11-25

    Overall, this work examines a key scientific issue, mass transfer limitations at the pore-scale, using both new instruments with high spatial resolution, and new conceptual and modeling paradigms. The complementary laboratory and numerical approaches connect pore-scale physics to macroscopic measurements, providing a previously elusive scale integration. This Exploratory research project produced five peer-reviewed journal publications and eleven scientific presentations. This work provides new scientific understanding, allowing the DOE to better incorporate coupled physical and chemical processes into decision making for environmental remediation and long-term stewardship.

  16. VizieR Online Data Catalog: Optical ident. and redshifts of Planck SZ sources (Planck+, 2016)

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Levy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Boehringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burenin, R.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Comis, B.; Crill, B. P.; Curto, A.; Cuttaia, F.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; De Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J. M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T. A.; Eriksen, H. K.; Ferragamo, A.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Galli, S.; Ganga, K.; Genova-Santos, R. T.; Giard, M.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K. M.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.; Hempel, A.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, T. R.; Keihaenen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Leon-Tavares, J.; Levrier, F.; Lietzen, H.; Liguori, M.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P. M.; Macias-Perez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McGehee, P.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschenes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen J. P.; Rebol, O. R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubino-Martin, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Stolyarov, V.; Streblyanska, A.; Sudiwala, R.; Sunyaev, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-04-01

    This article is a companion paper to the Planck catalogue of SZ sources (PSZ1) published in Planck Collaboration XXIX (2014, Cat. J/A+A/581/A14). It contains the results of approximately three years of observations with telescopes at the Canary Islands observatories (IAC80, NOT, INT, TNG, WHT, and GTC), as part of the general optical follow-up programme undertaken by the Planck Collaboration. (2 data files).

  17. Upscaling Physics-based Models to Estimate Catchment Scale Effects of Localised Tree Planting

    NASA Astrophysics Data System (ADS)

    Ballard, C. E.; Bulygina, N.; McIntyre, N.; Wheater, H. S.

    2010-12-01

    Much of our knowledge about the changes in hydrology related to land use and land management is limited to the very small scale (e.g. changes in water retention properties, interception and runoff processes); however, we are generally most interested in the associated changes in flow regime at the catchment scale. A key methodological challenge is therefore how to upscale information about local scale changes. We present a model upscaling procedure that aims to quantify the changes in peak flows at multiple scales related to localised tree planting. The procedure divides the catchment into a number of hydrological response units, which are each classified based on soil types and land management. For each hydrological response unit, a physics-based model is developed, incorporating our understanding of hydrological processes and properties. The outputs from these physics-based models are used to train simpler “meta-models”, which are then incorporated into a semi-distributed catchment model. In this way, our understanding of local changes in physical properties can be incorporated into a more flexible and computationally efficient catchment scale conceptual model. This procedure previously performed well when supported by a multi-scale monitoring programme for a 12km2 catchment. The applicability of the procedure is now examined for a 260km2 catchment without supporting multi-scale monitoring. Without local data, physics-based models are developed a priori using information from the literature and qualitative field observations. We explore the significance of the uncertainties due to this lack of data and also uncertainties related to the upscaling procedure itself, particularly examining the identifiability of the predicted effects at multiple scales. Based on our findings we comment on the strengths and limitations of physics-based modelling and the upscaling procedure in terms of ability to predict catchment-scale impacts of local land management

  18. Study for Planck Cold Clumps with molecular lines

    NASA Astrophysics Data System (ADS)

    Wu, Yuefang

    2014-07-01

    To probe dynamical processes and physical properties of Planck Cold Clumps, we have observed 674 of the most reliable 915 sources with J=1-0 of CO,13CO and C18O using PMO 13.7 m telescope of Purple Mountain Observatory. J=1-0 lines of HCO+ and HCN at CO emission peaks were also observed, of which 24 were mapped with IRAM 30 m telescope. Results show excitation temperatures are from 4 to 17 K, and column densities range from 1020 to 4.5x1023 cm-2. Planck cold clumps have the smallest line width among samples of IRDCs, weak IRAS, EGOs, UC HII candidates and methanol maser chosen cores. However the lines are still wider than those of low-mass cores and have non-thermal supersonic dispersion. Filament is the majority in their morphologies and fragmented structures were found with dense molecular lines. More than 70% of CO cores are starless. Planck cold clumps seem to be ideal samples to search for candidates of massive prestellar cores and pre-clusters.

  19. Planck AN Overview of the Spacecraft

    NASA Astrophysics Data System (ADS)

    Passvogel, T.; Crone, G.; Piersanti, O.; Guillaume, B.; Tauber, J.; Reix, J.-M.; Banos, T.; Rideau, P.; Collaudin, B.

    2010-04-01

    The two science missions Herschel, an observatory-type mission, and Planck, a survey mission, are combined in one program within ESA's long-term science program. This paper deals with Planck. The objective for Planck is to image systematically the whole sky simultaneously with two scientific instruments in nine frequency channels between 30 and 900 GHz to unravel the temperature fluctuations, i.e. the anisotropy, of the cosmic background radiation. Both satellites, have been launched together from the European Space Port in Kourou, French Guiana, on a single Ariane 5 launcher, the orbits will be Lissajous orbits around the 2nd Lagrange Point, ``so called'' L2 of the Earth-Sun system. This paper gives an overview of the Planck spacecraft including the scientific instruments and the on ground testing.

  20. Loop Quantum Gravity and the Planck Regime of Cosmology

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay

    The very early universe provides the best arena we currently have to test quantum gravity theories. The success of the inflationary paradigm in accounting for the observed inhomogeneities in the cosmic microwave background already illustrates this point to a certain extent because the paradigm is based on quantum field theory on the curved cosmological space-times. However, this analysis excludes the Planck era because the background space-time satisfies Einstein's equations all the way back to the big bang singularity. Using techniques from loop quantum gravity, the paradigm has now been extended to a self-consistent theory from the Planck regime to the onset of inflation, covering some 11 orders of magnitude in curvature. In addition, for a narrow window of initial conditions, there are departures from the standard paradigm, with novel effects, such as a modification of the consistency relation involving the scalar and tensor power spectra and a new source for non-Gaussianities. The genesis of the large scale structure of the universe can be traced back to quantum gravity fluctuations in the Planck regime. This report provides a bird's eye view of these developments for the general relativity community.

  1. New constraints on primordial gravitational waves from Planck 2015

    NASA Astrophysics Data System (ADS)

    Pagano, Luca; Salvati, Laura; Melchiorri, Alessandro

    2016-09-01

    We show that the new precise measurements of Cosmic Microwave Background (CMB) temperature and polarization anisotropies made by the Planck satellite significantly improves previous constraints on the cosmic gravitational waves background (CGWB) at frequencies f >10-15 Hz. On scales smaller than the horizon at the time of decoupling, primordial gravitational waves contribute to the total radiation content of the Universe. Considering adiabatic perturbations, CGWB affects temperature and polarization CMB power spectra and matter power spectrum in a manner identical to relativistic particles. Considering the latest Planck results we constrain the CGWB energy density to Ωgwh2 < 1.7 ×10-6 at 95% CL. Combining CMB power spectra with lensing, BAO and primordial Deuterium abundance observations, we obtain Ωgwh2 < 1.2 ×10-6 at 95% CL, improving previous Planck bounds by a factor 3 and the recent direct upper limit from the LIGO and VIRGO experiments a factor 2. A combined analysis of future satellite missions as COrE and EUCLID could improve current bound by more than an order of magnitude.

  2. Social Support and Peer Norms Scales for Physical Activity in Adolescents

    PubMed Central

    Ling, Jiying; Robbins, Lorraine B.; Resnicow, Ken; Bakhoya, Marion

    2015-01-01

    Objectives To evaluate psychometric properties of a Social Support and Peer Norms Scale in 5th-7th grade urban girls. Methods Baseline data from 509 girls and test-retest data from another 94 girls in the Midwestern US were used. Results Cronbach's alpha was .83 for the Social Support Scale and .72 for the Peer Norms Scale, whereas test-re-test reliability was .78 for both scales. Exploratory factor analysis suggested a single factor structure for the Social Support Scale, and a 3-factor structure for the Peer Norms Scale. Social support was correlated with accelerometer-measured physical activity (r = .13, p = .006), and peer norms (r = .50, p < .0001). Conclusions Both scales have adequate psychometric properties. PMID:25207514

  3. HEALPix in Planck and beyond

    NASA Astrophysics Data System (ADS)

    Hivon, Eric; Reinecke, Martin; Gorski, Krzysztof M.

    2015-08-01

    The Hierarchical Equal Area iso-Latitude Pixelation of the Sphere (HEALPix, http://healpix.sf.net) is both a mathematical pixelation of the sphere and a suite of software tools implementing it in many different languages (C, C++, Fortran, IDL/GDL, Java, Python). It has been used in the simulation, observation and analysis of WMAP, Planck and many other CMB and astronomical missions and has become a standard tool used in many different astronomical fields, such as large galaxy surveys (eg, SDSS), 3D structure of the Galaxy (eg, GAIA), high energy cosmic rays (eg, Pierre Auger Observatory), ..., and is fully supported by many Virtual Observatory visualization tools (eg, Aladin).Third party developments have implemented new functionalities like wavelet analysis, Minkowski functionals, structures identification, and propose wrappings or translations of HEALPix functionalities in other languages (eg, Matlab/Octave, Yorick).This talk will review what is currently possible with HEALPix, in terms of simulations, Spherical Harmonics transforms, data processing, visualization, statistical analyses, search of local extrema, pixel queries, I/O, and the projected developments including database storage and queries, multi-resolution dataset (MOC),

  4. Regionalization of subsurface stormflow parameters of hydrologic models: Up-scaling from physically based numerical simulations at hillslope scale

    NASA Astrophysics Data System (ADS)

    Ali, Melkamu; Ye, Sheng; Li, Hong-yi; Huang, Maoyi; Leung, L. Ruby; Fiori, Aldo; Sivapalan, Murugesu

    2014-11-01

    Subsurface stormflow is an important component of the rainfall-runoff response, especially in steep forested regions. However; its contribution is poorly represented in current generation of land surface hydrological models (LSMs) and catchment-scale rainfall-runoff models. The lack of physical basis of common parameterizations precludes a priori estimation (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global models. This paper is aimed at deriving physically based parameterizations of the storage-discharge relationship relating to subsurface flow. These parameterizations are derived through a two-step up-scaling procedure: firstly, through simulations with a physically based (Darcian) subsurface flow model for idealized three dimensional rectangular hillslopes, accounting for within-hillslope random heterogeneity of soil hydraulic properties, and secondly, through subsequent up-scaling to the catchment scale by accounting for between-hillslope and within-catchment heterogeneity of topographic features (e.g., slope). These theoretical simulation results produced parameterizations of the storage-discharge relationship in terms of soil hydraulic properties, topographic slope and their heterogeneities, which were consistent with results of previous studies. Yet, regionalization of the resulting storage-discharge relations across 50 actual catchments in eastern United States, and a comparison of the regionalized results with equivalent empirical results obtained on the basis of analysis of observed streamflow recession curves, revealed a systematic inconsistency. It was found that the difference between the theoretical and empirically derived results could be explained, to first order, by climate in the form of climatic aridity index. This suggests a possible co-dependence of climate, soils, vegetation and topographic properties, and suggests that subsurface flow parameterization needed for ungauged locations

  5. Regionalization of subsurface stormflow parameters of hydrologic models: Up-scaling from physically based numerical simulations at hillslope scale

    SciTech Connect

    Ali, Melkamu; Ye, Sheng; Li, Hongyi; Huang, Maoyi; Leung, Lai-Yung R.; Fiori, Aldo; Sivapalan, Murugesu

    2014-07-19

    Subsurface stormflow is an important component of the rainfall-runoff response, especially in steep forested regions. However; its contribution is poorly represented in current generation of land surface hydrological models (LSMs) and catchment-scale rainfall-runoff models. The lack of physical basis of common parameterizations precludes a priori estimation (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global models. This paper is aimed at deriving physically based parameterizations of the storage-discharge relationship relating to subsurface flow. These parameterizations are derived through a two-step up-scaling procedure: firstly, through simulations with a physically based (Darcian) subsurface flow model for idealized three dimensional rectangular hillslopes, accounting for within-hillslope random heterogeneity of soil hydraulic properties, and secondly, through subsequent up-scaling to the catchment scale by accounting for between-hillslope and within-catchment heterogeneity of topographic features (e.g., slope). These theoretical simulation results produced parameterizations of the storage-discharge relationship in terms of soil hydraulic properties, topographic slope and their heterogeneities, which were consistent with results of previous studies. Yet, regionalization of the resulting storage-discharge relations across 50 actual catchments in eastern United States, and a comparison of the regionalized results with equivalent empirical results obtained on the basis of analysis of observed streamflow recession curves, revealed a systematic inconsistency. It was found that the difference between the theoretical and empirically derived results could be explained, to first order, by climate in the form of climatic aridity index. This suggests a possible codependence of climate, soils, vegetation and topographic properties, and suggests that subsurface flow parameterization needed for ungauged locations must

  6. The Colorado Haemophilia Paediatric Joint Physical Examination Scale: normal values and interrater reliability.

    PubMed

    Hacker, M R; Funk, S M; Manco-Johnson, M J

    2007-01-01

    Persons with haemophilia often experience their first joint haemorrhage in early childhood. Recurrent bleeding into a joint may lead to significant morbidity, specifically haemophilic arthropathy. Early identification of the onset and progression of joint damage is critical to preserving joint structure and function. Physical examination is the most feasible approach to monitor joint health. Our group developed the Colorado Haemophilia Paediatric Joint Physical Examination Scale to identify earlier signs of joint degeneration and incorporate developmentally appropriate tasks for assessing joint function in young children. This study's objectives were to establish normal ranges for this scale and assess interrater reliability. The ankles, knees and elbows of 72 healthy boys aged 1 through 7 years were evaluated by a physical therapist to establish normal ranges. Exactly 10 boys in each age category from 2 to 7 years were evaluated by a second physical therapist to determine interrater reliability. The original scale was modified to account for the finding that mild angulation in the weight-bearing joints is developmentally normal. The interrater reliability of the scale ranged from fair to good, underscoring the need for physical therapists to have specific training in the orthopaedic assessment of very young children and the measurement error inherent in the goniometer. Modifications to axial alignment scoring will allow the scale to distinguish healthy joints from those suffering frequent haemarthroses. PMID:17212728

  7. No-scale inflation

    NASA Astrophysics Data System (ADS)

    Ellis, John; Garcia, Marcos A. G.; Nanopoulos, Dimitri V.; Olive, Keith A.

    2016-05-01

    Supersymmetry is the most natural framework for physics above the TeV scale, and the corresponding framework for early-Universe cosmology, including inflation, is supergravity. No-scale supergravity emerges from generic string compactifications and yields a non-negative potential, and is therefore a plausible framework for constructing models of inflation. No-scale inflation yields naturally predictions similar to those of the Starobinsky model based on R+{R}2 gravity, with a tilted spectrum of scalar perturbations: {n}s∼ 0.96, and small values of the tensor-to-scalar perturbation ratio r\\lt 0.1, as favoured by Planck and other data on the cosmic microwave background (CMB). Detailed measurements of the CMB may provide insights into the embedding of inflation within string theory as well as its links to collider physics.

  8. Planck 2013 results. XIV. Zodiacal emission

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colley, J.-M.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; O'Sullivan, C.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polegre, A. M.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Smoot, G. F.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    The Planck satellite provides a set of all-sky maps at nine frequencies from 30 GHz to 857 GHz. Planets, minor bodies, and diffuse interplanetary dust emission (IPD) are all observed. The IPD can be separated from Galactic and other emissions because Planck views a given point on the celestial sphere multiple times, through different columns of IPD. We use the Planck data to investigate the behaviour of zodiacal emission over the whole sky at sub-millimetre and millimetre wavelengths. We fit the Planck data to find the emissivities of the various components of the COBE zodiacal model - a diffuse cloud, three asteroidal dust bands, a circumsolar ring, and an Earth-trailing feature. The emissivity of the diffuse cloud decreases with increasing wavelength, as expected from earlier analyses. The emissivities of the dust bands, however, decrease less rapidly, indicating that the properties of the grains in the bands are different from those in the diffuse cloud. We fit the small amount of Galactic emission seen through the telescope's far sidelobes, and place limits on possible contamination of the cosmic microwave background (CMB) results from both zodiacal and far-sidelobe emission. When necessary, the results are used in the Planck pipeline to make maps with zodiacal emission and far sidelobes removed. We show that the zodiacal correction to the CMB maps is small compared to the Planck CMB temperature power spectrum and give a list of flux densities for small solar system bodies.

  9. Planck focal plane instruments: advanced modelization and combined analysis

    NASA Astrophysics Data System (ADS)

    Zonca, Andrea; Mennella, Aniello

    2012-08-01

    This thesis is the result of my work as research fellow at IASF-MI, Milan section of the Istituto di Astrofisica Spaziale e Fisica Cosmica, part of INAF, Istituto Nazionale di Astrofisica. This work started in January 2006 in the context of the PhD school program in Astrophysics held at the Physics Department of Universita' degli Studi di Milano under the supervision of Aniello Mennella. The main topic of my work is the software modelling of the Low Frequency Instrument (LFI) radiometers. The LFI is one of the two instruments on-board the European Space Agency Planck Mission for high precision measurements of the anisotropies of the Cosmic Microwave Background (CMB). I was also selected to participate at the International Doctorate in Antiparticles Physics, IDAPP. IDAPP is funded by the Italian Ministry of University and Research (MIUR) and coordinated by Giovanni Fiorentini (Universita' di Ferrara) with the objective of supporting the growing collaboration between the Astrophysics and Particles Physics communities. It is an international program in collaboration with the Paris PhD school, involving Paris VI, VII and XI Universities, leading to a double French-Italian doctoral degree title. My work was performed with the co-tutoring of Jean-Michel Lamarre, Instrument Scientist of the High Frequency Instrument (HFI), the bolometric instrument on-board Planck. Thanks to this collaboration I had the opportunity to work with the HFI team for four months at the Paris Observatory, so that the focus of my activity was broadened and included the study of cross-correlation between HFI and LFI data. Planck is the first CMB mission to have on-board the same satellite very different detection technologies, which is a key element for controlling systematic effects and improve measurements quality.

  10. Probing the scale of New Physics at the LHC: The example of Higgs data

    NASA Astrophysics Data System (ADS)

    Fichet, Sylvain

    2014-07-01

    We present a technique to determine the scale of New Physics (NP) compatible with any set of data, relying on well-defined credibility intervals. Our approach relies on the statistical view of the effective field theory capturing New Physics at low energy. We introduce formally the notion of testable NP and show that it ensures integrability of the posterior distribution. We apply our method to the Standard Model Higgs sector in light of recent LHC data, considering two generic scenarios. In the scenario of democratic higher-dimensional operators generated at one-loop, we find the testable NP scale to lie within [10,260] TeV at 95% Bayesian credibility level. In the scenario of loop-suppressed field strength-Higgs operators, the testable NP scale is within [28,1200] TeV at 95% Bayesian credibility level. More specific UV models are necessary to allow lower values of the NP scale.

  11. Multi-scale/multi-physical modeling in head/disk interface of magnetic data storage

    NASA Astrophysics Data System (ADS)

    Chung, Pil Seung; Smith, Robert; Vemuri, Sesha Hari; Jhon, Young In; Tak, Kyungjae; Moon, Il; Biegler, Lorenz T.; Jhon, Myung S.

    2012-04-01

    The model integration of the head-disk interface (HDI) in the hard disk drive system, which includes the hierarchy of highly interactive layers (magnetic layer, carbon overcoat (COC), lubricant, and air bearing system (ABS)), has recently been focused upon to resolve technical barriers and enhance reliability. Heat-assisted magnetic recording especially demands that the model simultaneously incorporates thermal and mechanical phenomena by considering the enormous combinatorial cases of materials and multi-scale/multi-physical phenomena. In this paper, we explore multi-scale/multi-physical simulation methods for HDI, which will holistically integrate magnetic layers, COC, lubricants, and ABS in non-isothermal conditions.

  12. Psychometric Evaluation of the Physical Activity Enjoyment Scale in Adults with Functional Limitations.

    PubMed

    Murrock, Carolyn J; Bekhet, Abir; Zauszniewski, Jaclene A

    2016-01-01

    Enjoyment is an important construct for understanding physical activity participation, and it has not been examined in adults with functional limitations. This secondary analysis reported the reliability and validity of the Physical Activity Enjoyment Scale (PACES) in a convenience sample of 40 adults with functional limitations. The participants completed the PACES, Center for Epidemiological Studies Depression Scale (CES-D), and the Late Life Function and Disability Instrument (LLFDI) prior to beginning a 12-week feasibility dance intervention study. Results indicated reliability as Cronbach's alpha was .95 and mean inter-item correlation was .52. To further support reliability, homogeneity of the instrument was evaluated using item-to-total scale correlations. Homogeneity was supported as all items had corrected item-to-total correlations greater than .30. For validity, the PACES was significantly related to only the Physical Function component of the LLFDI (r = .38, p = .02), but not the CES-D. Exploratory factor analysis revealed a 3-factor structure that accounted for 73.76% of the variance. This feasibility intervention dance study represented the first attempt to examine the psychometric properties of the PACES in adults with functional limitations. The findings demonstrate support for the scale's reliability and validity among adults with functional limitations. Results are informative as further psychometric testing of the PACES is recommended using randomized clinical trials with larger sample sizes. Enjoyment for physical activity is an important construct for understanding physical activity participation in adults with functional limitations. PMID:26980666

  13. Probing the scale of new physics by Advanced LIGO/VIRGO

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Mazumdar, A.

    2016-05-01

    We show that if the new physics beyond the standard model is associated with a first-order phase transition around 107- 108 GeV , the energy density stored in the resulting stochastic gravitational waves and the corresponding peak frequency are within the projected final sensitivity of the advanced LIGO/VIRGO detectors. We discuss some possible new physics scenarios that could arise at such energies, and in particular, the consequences for Peccei-Quinn and supersymmetry breaking scales.

  14. Sleuth at CDF: A Quasi-model-independent search for new electroweak scale physics

    SciTech Connect

    Choudalakis, Georgios; /MIT, LNS

    2007-10-01

    These proceedings describe Sleuth, a quasi-model-independent search strategy targeting new electroweak scale physics, and its application to 927 pb{sup -1} of CDF II data. Exclusive final states are analyzed for an excess of data beyond the Standard Model prediction at large summed scalar transverse momentum. This analysis of high-pT data represents one of the most encompassing searches so far conducted for new physics at the energy frontier.

  15. Planck 2013 results. XXVI. Background geometry and topology of the Universe

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Fabre, O.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J. D.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Riazuelo, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    .0χrec for the truncated cube; and ℛi> 0.89χrec for the octahedral space. The limit for a wider class of topologies, i.e., those predicting matching pairs of back-to-back circles, among them tori and the three spherical cases listed above, coming from the matched-circles search, is ℛi> 0.94χrec at 99% confidence level. Similar limits apply to a wide, although not exhaustive, range of topologies. We also perform a Bayesian search for an anisotropic global Bianchi VIIh geometry. In the non-physical setting where the Bianchi cosmology is decoupled from the standard cosmology, Planck data favour the inclusion of a Bianchi component with a Bayes factor of at least 1.5 units of log-evidence. Indeed, the Bianchi pattern is quite efficient at accounting for some of the large-scale anomalies found in Planck data. However, the cosmological parameters that generate this pattern are in strong disagreement with those found from CMB anisotropy data alone. In the physically motivated setting where the Bianchi parameters are coupled and fitted simultaneously with the standard cosmological parameters, we find no evidence for a Bianchi VIIh cosmology and constrain the vorticity of such models to (ω/H)0< 8.1 × 10-10 (95% confidence level).

  16. Candidate High Redshift Clusters of Dusty Galaxies from Herschel & Planck

    NASA Astrophysics Data System (ADS)

    Clements, David L.

    2015-08-01

    The cross identification of Planck compact sources with objects in karger area Herschel surveys, such as HerMES and H-ATLAS, has led to the discovery of candidate high redshift (out to z~3) clusters of far-IR luminous star forming galaxies. These objects are not easily reproduced in the current generations of galaxy and large scale formation simulations and are thus a potentially powerful new tool for comnstraining galaxy and cluster formation models. We will review the current results on these sources and examine future prospects for progress in this novel and potentially important new field.

  17. VizieR Online Data Catalog: Updated Planck catalogue PSZ1 (Planck+, 2015)

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.; Bohringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; da Silva, A.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; De Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Democles, J.; Desert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enslin, T. A.; Eriksen, H. K.; Feroz, F.; Ferragamo, A.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Genova-Santos, R. T.; Giard, M.; Giardino, G.; Gilfanov, M.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Groeneboom, N. E.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Hempel, A.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Hurley-Walker, N.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Li, C.; Liddle, A.; Liguori, M.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P. M.; Macias-Perez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martinez-Gonzalez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschenes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nastasi, A.; Nati, F.; Natoli, P.; Nesvadba, N. P. H.; Netterfield, C. B.; Norgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Olamaie, M.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrott, Y. C.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prezeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorce, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J. A.; Rumsey, C.; Rusholme, B.; Sandri, M.; Santos, D.; Saunders, R. D. E.; Savini, G.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shimwel, T. W.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Streblyanska, A.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2015-08-01

    The updated Planck catalogue of SZ sources is available at PLA (http://www.sciops.esa.int/index.php?page= PlanckLegacyArchive&project=planck) and the SZ cluster database (http://szcluster-db.ias.u-psud.fr). The updated PSZ1 gathers in a single table all the entries of the delivered catalogue mainly based on the Planck data and the entries of the external validation information based on ancillary data (Appendices B and C of Planck Collaboration et al. (2014A&A...571A..29P, Cat. VIII/91), respectively). It also contains additional entries. The updated catalogue contains, when available, cluster external identifications8 and consolidated redshifts. We added two new entries: the redshift type and the bibliographic reference. (2 data files).

  18. Physical and computational scaling issues in lattice Boltzmann simulations of binary fluid mixtures.

    PubMed

    Cates, M E; Desplat, J-C; Stansell, P; Wagner, A J; Stratford, K; Adhikari, R; Pagonabarraga, I

    2005-08-15

    We describe some scaling issues that arise when using lattice Boltzmann (LB) methods to simulate binary fluid mixtures--both in the presence and absence of colloidal particles. Two types of scaling problem arise: physical and computational. Physical scaling concerns how to relate simulation parameters to those of the real world. To do this effectively requires careful physics, because (in common with other methods) LB cannot fully resolve the hierarchy of length, energy and time-scales that arise in typical flows of complex fluids. Care is needed in deciding what physics to resolve and what to leave unresolved, particularly when colloidal particles are present in one or both of two fluid phases. This influences steering of simulation parameters such as fluid viscosity and interfacial tension. When the physics is anisotropic (for example, in systems under shear) careful adaptation of the geometry of the simulation box may be needed; an example of this, relating to our study of the effect of colloidal particles on the Rayleigh-Plateau instability of a fluid cylinder, is described. The second and closely related set of scaling issues are computational in nature: how do you scale-up simulations to very large lattice sizes? The problem is acute for systems undergoing shear flow. Here one requires a set of blockwise co-moving frames to the fluid, each connected to the next by a Lees-Edwards like boundary condition. These matching planes lead to small numerical errors whose cumulative effects can become severe; strategies for minimizing such effects are discussed. PMID:16099757

  19. Psychometric Properties of the "Sport Motivation Scale (SMS)" Adapted to Physical Education.

    PubMed

    Granero-Gallegos, Antonio; Baena-Extremera, Antonio; Gómez-López, Manuel; Sánchez-Fuentes, José Antonio; Abraldes, J Arturo

    2014-12-01

    The aim of this study was to investigate the factor structure of a Spanish version of the Sport Motivation Scale adapted to physical education. A second aim was to test which one of three hypothesized models (three, five and seven-factor) provided best model fit. 758 Spanish high school students completed the Sport Motivation Scale adapted for Physical Education and also completed the Learning and Performance Orientation in Physical Education Classes Questionnaire. We examined the factor structure of each model using confirmatory factor analysis and also assessed internal consistency and convergent validity. The results showed that all three models in Spanish produce good indicators of fitness, but we suggest using the seven-factor model (χ(2)/gl = 2.73; ECVI = 1.38) as it produces better values when adapted to physical education, that five-factor model (χ(2)/gl = 2.82; ECVI = 1.44) and three-factor model (χ(2)/gl = 3.02; ECVI = 1.53). Key PointsPhysical education research conducted in Spain has used the version of SMS designed to assess motivation in sport, but validity reliability and validity results in physical education have not been reported.Results of the present study lend support to the factorial validity and internal reliability of three alternative factor structures (3, 5, and 7 factors) of SMS adapted to Physical Education in Spanish.Although all three models in Spanish produce good indicators of fitness, but we suggest using the seven-factor model. PMID:25435772

  20. Psychometric Properties of the “Sport Motivation Scale (SMS)” Adapted to Physical Education

    PubMed Central

    Granero-Gallegos, Antonio; Baena-Extremera, Antonio; Gómez-López, Manuel; Sánchez-Fuentes, José Antonio; Abraldes, J. Arturo

    2014-01-01

    The aim of this study was to investigate the factor structure of a Spanish version of the Sport Motivation Scale adapted to physical education. A second aim was to test which one of three hypothesized models (three, five and seven-factor) provided best model fit. 758 Spanish high school students completed the Sport Motivation Scale adapted for Physical Education and also completed the Learning and Performance Orientation in Physical Education Classes Questionnaire. We examined the factor structure of each model using confirmatory factor analysis and also assessed internal consistency and convergent validity. The results showed that all three models in Spanish produce good indicators of fitness, but we suggest using the seven-factor model (χ2/gl = 2.73; ECVI = 1.38) as it produces better values when adapted to physical education, that five-factor model (χ2/gl = 2.82; ECVI = 1.44) and three-factor model (χ2/gl = 3.02; ECVI = 1.53). Key Points Physical education research conducted in Spain has used the version of SMS designed to assess motivation in sport, but validity reliability and validity results in physical education have not been reported. Results of the present study lend support to the factorial validity and internal reliability of three alternative factor structures (3, 5, and 7 factors) of SMS adapted to Physical Education in Spanish. Although all three models in Spanish produce good indicators of fitness, but we suggest using the seven-factor model. PMID:25435772

  1. Synthesizing in-stream structure design guidelines from small-scale and field-scale physical experiments

    NASA Astrophysics Data System (ADS)

    Kozarek, J. L.; Hill, C.; Plott, J.; Diplas, P.; Sotiropoulos, F.

    2011-12-01

    Rock vanes, cross vanes, bendway weirs and other similar flow control structures have been studied as part of a multifaceted research program to improve quantitative design guidelines for frequently used stream restoration structures. These structures are typically used in stream restoration projects with the intent of protecting unstable streambanks, preventing undesired lateral migration, or improving aquatic habitat. Despite their frequent use, extensive research-based quantitative design guidelines do not readily exist. As part of this project, a series of small-scale physical model experiments were completed in the St. Anthony Falls Laboratory (SAFL) Tilting Bed Flume measuring 3D flow velocities and sediment scour patterns downstream of stream restoration flow control structures. On a larger scale, similar experiments were completed in the SAFL Outdoor StreamLab (OSL), a near full-scale meandering stream research facility. Two final components of this research program, full-scale field monitoring and computational simulations, provide researchers with a multi-scale dataset. A focal point of the analysis lies on the scour patterns induced by these structures, yet transferring these results into engineering design standards remains a challenge. The issues of dealing with multiple scales of flow control structures, the sediment used in these experiments, and the effects they will have in real-world stream restoration applications is a complex problem. The small-scale flume experiments examined single structures in a straight channel with uniform grain sizes. Large-scale OSL experiments were completed in a specific meandering channel geometry and grain sizes unique to that facility. Field monitoring provides data in complex, real-world environments, yet it is unique to specific locations and at a much lower resolution than available from controlled research facilities. The extensive dataset resulting from this research program provides the means to develop

  2. Development of four self-report measures of job stressors and strain: Interpersonal Conflict at Work Scale, Organizational Constraints Scale, Quantitative Workload Inventory, and Physical Symptoms Inventory.

    PubMed

    Spector, P E; Jex, S M

    1998-10-01

    Despite the widespread use of self-report measures of both job-related stressors and strains, relatively few carefully developed scales for which validity data exist are available. In this article, we discuss 3 job stressor scales (Interpersonal Conflict at Work Scale, Organizational Constraints Scale, and Quantitative Workload Inventory) and 1 job strain scale (Physical Symptoms Inventory). Using meta-analysis, we combined the results of 18 studies to provide estimates of relations between our scales and other variables. Data showed moderate convergent validity for the 3 job stressor scales, suggesting some objectively to these self-reports. Norms for each scale are provided. PMID:9805281

  3. A multi-scale approach to the physics of ion beam cancer therapy

    NASA Astrophysics Data System (ADS)

    Solov'yov, A. V.; Surdutovich, E.; Scifoni, E.; Mishustin, I.; Greiner, W.

    2008-12-01

    We are developing a multi-scale approach to understanding the physics related to ion/proton-beam cancer therapy and the calculation of the probability of DNA damage as a result of irradiation of tumours with energetic ions (up to 430 MeV/u). This approach is inclusive with respect to different scales, starting from the long scale, defined by the ion stopping, followed by a smaller scale, defined by secondary electrons and radicals, and ending with the shortest scale, defined by interactions of secondaries with the DNA. We present calculations of the probabilities of single and double strand breaks of DNA and suggest a way to further elaborate on such calculations.

  4. Local topology, multi-scale interactions and stochasticity in space plasma physics

    NASA Astrophysics Data System (ADS)

    Materassi, M.; Consolini, G.

    2014-12-01

    In space physics very important phenomena, as reconnection, are determined by the local topology of the streamlines and magnetic lines of plasma, and by multi-scale interactions. In this work, an attempt is presented to deal with dynamical variables highlighting both the local topology and the role of space scale. In order to promote local topology to the role of a dynamical variable, use is made of the gradients of the velocity and of the magnetic field, through which the description of the local topology becomes very transparent. Such a formulation, well explored in Hydrodynamics, is extended here to the MHD. The new dynamical variables evolve in a finite scale stochastic dynamics: letting the scale appear explicitly as a variable of the problem helps studying inter-scale processes, while statistical aspects of topological variable dynamics are expected to be extremely relevant in the turbulent regime, where a stochastic field scenario is, in practice, taking place.

  5. Affective Response to Physical Activity: Testing for Measurement Invariance of the Physical Activity Affect Scale across Active and Non-Active Individuals

    ERIC Educational Resources Information Center

    Carpenter, Laura C.; Tompkins, Sara Anne; Schmiege, Sarah J.; Nilsson, Renea; Bryan, Angela

    2010-01-01

    Affective responses to physical activity are assumed to play a role in exercise initiation and maintenance. The Physical Activity Affect Scale measures four dimensions of an individual's affective response to exercise. Group differences in the interpretation of scale items can impact the interpretability of mean differences, underscoring the need…

  6. Evaluation of Social Cognitive Scaling Response Options in the Physical Activity Domain

    ERIC Educational Resources Information Center

    Rhodes, Ryan E.; Matheson, Deborah Hunt; Mark, Rachel

    2010-01-01

    The purpose of this study was to compare the reliability, variability, and predictive validity of two common scaling response formats (semantic differential, Likert-type) and two numbers of response options (5-point, 7-point) in the physical activity domain. Constructs of the theory of planned behavior were chosen in this analysis based on its…

  7. The Psychometric Properties of the Physical Education Lesson Attitude Scale for Preservice Classroom Teachers

    ERIC Educational Resources Information Center

    Oncu, Erman

    2013-01-01

    The purpose of this study was to examine the psychometric properties of the Physical Education Attitude Scale for Preservice Classroom Teachers (PEAS-PCT). The study was conducted on 561 Turkish preservice classroom teachers at the end of the 2011-2012 Fall Semester. Exploratory and confirmatory factor analyses were conducted to ascertain the…

  8. Retrospective Assessment of Childhood Sexual and Physical Abuse: A Comparison of Scaled and Behaviorally Specific Approaches

    ERIC Educational Resources Information Center

    DiLillo, David; Fortier, Michelle A.; Hayes, Sarah A.; Trask, Emily; Perry, Andrea R.; Messman-Moore, Terri; Fauchier, Angele; Nash, Cindy

    2006-01-01

    This study compared retrospective reports of childhood sexual and physical abuse as assessed by two measures: the Childhood Trauma Questionnaire (CTQ), which uses a Likert-type scaling approach, and the Computer Assisted Maltreatment Inventory (CAMI), which employs a behaviorally specific means of assessment. Participants included 1,195…

  9. Introduction to SCALE-UP: Student-Centered Activities for Large Enrollment University Physics.

    ERIC Educational Resources Information Center

    Beichner, Robert J.; Saul, Jeffery M.; Allain, Rhett J.; Deardorff, Duane L.; Abbott, David S.

    SCALE-UP is an extension of the highly successful IMPEC (Integrated Math, Physics, Engineering, and Chemistry) project, one of North Carolina State's curricular reform efforts undertaken as part of the SUCCEED coalition. The authors utilize the interactive, collaboratively based instruction that worked well in smaller class settings and find ways…

  10. Reliability and Construct Validity of Turkish Version of Physical Education Activities Scale

    ERIC Educational Resources Information Center

    Memis, Ugur Altay

    2013-01-01

    This research was conducted to examine the reliability and construct validity of Turkish version of physical education activities scale (PEAS) which was developed by Thomason (2008). Participants in this study included 313 secondary and high school students from 7th to 11th grades. To analyse the data, confirmatory factor analysis, post hoc…

  11. The VCOP Scale: A Measure of Overprotection in Parents of Physically Vulnerable Children.

    ERIC Educational Resources Information Center

    Wright, Logan; And Others

    1993-01-01

    Developed Vulnerable Child/Overprotecting Parent Scale to measure overprotecting versus optimal developmental stimulation tendencies for parents of physically vulnerable children. Items were administered to parents whose parenting techniques had been rated as either highly overprotective or as optimal by group of physicians and other…

  12. Soil physical properties of agricultural systems in a large-scale study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A large-scale field study was performed to determine the effects of agricultural management systems on soil physical properties, including their spatial and temporal variations. Replicates were established in 1998 at the Center for Environmental Farming Systems, Goldsboro, North Carolina; replicates...

  13. The Children's Perceived Locus of Causality Scale for Physical Education

    ERIC Educational Resources Information Center

    Pannekoek, Linda; Piek, Jan P.; Hagger, Martin S.

    2014-01-01

    A mixed methods design was applied to evaluate the application of the Perceived Locus of Causality scale (PLOC) to preadolescent samples in physical education settings. Subsequent to minor item adaptations to accommodate the assessment of younger samples, qualitative pilot tests were performed (N = 15). Children's reports indicated the need…

  14. Psychological and Physical Well-Being in the Elderly: The Perceived Well-Being Scale (PWB).

    ERIC Educational Resources Information Center

    Reker, Gary T.; Wong, Paul T. P.

    1984-01-01

    Describes the development of the Perceived Well-Being Scale (PWB), which allows for separate assessment of psychological and physical well-being. Several studies bearing on the psychometric properties and usefulness of the PWB are presented and the implications of the findings are discussed. (Author/CT)

  15. Study of the structure and physical properties of quasicrystals using large scale facilities

    NASA Astrophysics Data System (ADS)

    de Boissieu, Marc

    2012-04-01

    Quasicrystals have been puzzling scientists since their discovery. In this article we review some of the recent advances in this field and show how the use of large scale facilities has brought in decisive information for the understanding of their structure and physical properties.

  16. Gravitational waves: A probe to the physics in the early universe

    NASA Astrophysics Data System (ADS)

    Huang, Qing-Guo

    2015-10-01

    Gravitational waves can escape from the big bang and can be taken as a probe to the physics, in particular the inflation, in the early universe. Planck scale is a fundamental scale for quantum theory of gravity. Requiring the excursion distance of inflaton in the field space during inflation yields an upper bound on the tensor-to-scalar ratio. For example, r < 7 × 10-4 for ns = 0.9645. In the typical inflationary scenario, we predict 1 - 2/N < ns < 1 and - 2/N2 < α s < 0 which are consistent with Planck data released in 2015 quite well. Subtracting the contribution of thermal dust measured by Planck, BICEP2 data implies r ≲ 0.08 which is the tightest bound on the tensor-to-scalar ratio from current experiments.

  17. A Postulation of a Concept in Fundamental Physics

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2006-10-01

    I am postulating that all fermions have a quantum mouth (Planck size) that radiates a flux density of gravitons as a function of the mass of the particle. Nucleons are not hard balls like light bulbs radiating photons challenging Newtonian concepts of centers and surfaces. The hardball analogy is implicit in coupling constants that compare strong force relative to gravity. The radiating mouth is not localized at the center like a hypothetical point size filament of a light bulb with a hard surface. A point invokes mass of zero volume. It is too precise, inconsistent and illogical. Nothing can be localized with more accuracy that Planck length. Substituting the hard glass bulb surface with flexible plastic surface would clearly make the interacting mouths of particles approach each other as close as possible, but no less than the quantum limit of Planck length. Therefore, surface distance in Newtonian gravity would be a close approximation at particle scale and fits Feynman's road map [1]. My postulation reflected by Fig. 2 of gr-qc/0507130 explains observations of increasing values of coupling constants resulting from decreasing values of Planck length (See physics/0210040 v1). Since Planck length is the fundamental unit of length of nature, its variation can impact our observation of the universe and the evolutionary process.

  18. Physics and Dynamics Coupling Across Scales in the Next Generation CESM. Final Report

    SciTech Connect

    Bacmeister, Julio T.

    2015-06-12

    This project examines physics/dynamics coupling, that is, exchange of meteorological profiles and tendencies between an atmospheric model’s dynamical core and its various physics parameterizations. Most model physics parameterizations seek to represent processes that occur on scales smaller than the smallest scale resolved by the dynamical core. As a consequence a key conceptual aspect of parameterizations is an assumption about the subgrid variability of quantities such as temperature, humidity or vertical wind. Most existing parameterizations of processes such as turbulence, convection, cloud, and gravity wave drag make relatively ad hoc assumptions about this variability and are forced to introduce empirical parameters, i.e., “tuning knobs” to obtain realistic simulations. These knobs make systematic dependences on model grid size difficult to quantify.

  19. Constraining models of f(R) gravity with Planck and WiggleZ power spectrum data

    SciTech Connect

    Dossett, Jason; Parkinson, David; Hu, Bin E-mail: hu@lorentz.leidenuniv.nl

    2014-03-01

    In order to explain cosmic acceleration without invoking ''dark'' physics, we consider f(R) modified gravity models, which replace the standard Einstein-Hilbert action in General Relativity with a higher derivative theory. We use data from the WiggleZ Dark Energy survey to probe the formation of structure on large scales which can place tight constraints on these models. We combine the large-scale structure data with measurements of the cosmic microwave background from the Planck surveyor. After parameterizing the modification of the action using the Compton wavelength parameter B{sub 0}, we constrain this parameter using ISiTGR, assuming an initial non-informative log prior probability distribution of this cross-over scale. We find that the addition of the WiggleZ power spectrum provides the tightest constraints to date on B{sub 0} by an order of magnitude, giving log{sub 10}(B{sub 0}) < −4.07 at 95% confidence limit. Finally, we test whether the effect of adding the lensing amplitude A{sub Lens} and the sum of the neutrino mass ∑m{sub ν} is able to reconcile current tensions present in these parameters, but find f(R) gravity an inadequate explanation.

  20. Advanced computations of multi-physics, multi-scale effects in beam dynamics

    SciTech Connect

    Amundson, J.F.; Macridin, A.; Spentzouris, P.; Stern, E.G.; /Fermilab

    2009-01-01

    Current state-of-the-art beam dynamics simulations include multiple physical effects and multiple physical length and/or time scales. We present recent developments in Synergia2, an accelerator modeling framework designed for multi-physics, multi-scale simulations. We summarize recent several recent results in multi-physics beam dynamics, including simulations of three Fermilab accelerators: the Tevatron, the Main Injector and the Debuncher. Early accelerator simulations focused on single-particle dynamics. To a first approximation, the forces on the particles in an accelerator beam are dominated by the external fields due to magnets, RF cavities, etc., so the single-particle dynamics are the leading physical effects. Detailed simulations of accelerators must include collective effects such as the space-charge repulsion of the beam particles, the effects of wake fields in the beam pipe walls and beam-beam interactions in colliders. These simulations require the sort of massively parallel computers that have only become available in recent times. We give an overview of the accelerator framework Synergia2, which was designed to take advantage of the capabilities of modern computational resources and enable simulations of multiple physical effects. We also summarize some recent results utilizing Synergia2 and BeamBeam3d, a tool specialized for beam-beam simulations.

  1. Planck intermediate results. XXVI. Optical identification and redshifts of Planck clusters with the RTT150 telescope

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Carvalho, P.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Chon, G.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Curto, A.; Cuttaia, F.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J. M.; Dole, H.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Gilfanov, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2015-10-01

    We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with the Russian-Turkish 1.5 m telescope (RTT150), as a part of the optical follow-up programme undertaken by the Planck collaboration. During this time period approximately 20% of all dark and grey clear time available at the telescope was devoted to observations of Planck objects. Some observations of distant clusters were also done at the 6 m Bolshoi Telescope Alt-azimutalnyi (BTA) of the Special Astrophysical Observatory of the Russian Academy of Sciences. In total, deep, direct images of more than one hundred fields were obtained in multiple filters. We identified 47 previously unknown galaxy clusters, 41 of which are included in the Planck catalogue of SZ sources. The redshifts of 65 Planck clusters were measured spectroscopically and 14 more were measured photometrically. We discuss the details of cluster optical identifications and redshift measurements. We also present new spectroscopic redshifts for 39 Planck clusters that were not included in the Planck SZ source catalogue and are published here for the first time.

  2. Planck 2013 results. XIX. The integrated Sachs-Wolfe effect

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Ilić, S.; Jaffe, A. H.; Jaffe, T. R.; Jasche, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marcos-Caballero, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Schaefer, B. M.; Schiavon, F.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Viel, M.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; Xia, J.-Q.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    Based on cosmic microwave background (CMB) maps from the 2013 Planck Mission data release, this paper presents the detection of the integrated Sachs-Wolfe (ISW) effect, that is, the correlation between the CMB and large-scale evolving gravitational potentials. The significance of detection ranges from 2 to 4σ, depending on which method is used. We investigated three separate approaches, which essentially cover all previous studies, and also break new ground. (i) We correlated the CMB with the Planck reconstructed gravitational lensing potential (for the first time). This detection was made using the lensing-induced bispectrum between the low-ℓ and high-ℓ temperature anisotropies; the correlation between lensing and the ISW effect has a significance close to 2.5σ. (ii) We cross-correlated with tracers of large-scale structure, which yielded a significance of about 3σ, based on a combination of radio (NVSS) and optical (SDSS) data. (iii) We used aperture photometry on stacked CMB fields at the locations of known large-scale structures, which yielded and confirms a 4σ signal, over a broader spectral range, when using a previously explored catalogue, but shows strong discrepancies in amplitude and scale when compared with expectations. More recent catalogues give more moderate results that range from negligible to 2.5σ at most, but have a more consistent scale and amplitude, the latter being still slightly higher than what is expected from numerical simulations within ΛCMD. Where they can be compared, these measurements are compatible with previous work using data from WMAP, where these scales have been mapped to the limits of cosmic variance. Planck's broader frequency coverage allows for better foreground cleaning and confirms that the signal is achromatic, which makes it preferable for ISW detection. As a final step we used tracers of large-scale structure to filter the CMB data, from which we present maps of the ISW temperature perturbation. These results

  3. Watt balance experiments for the determination of the Planck constant and the redefinition of the kilogram

    NASA Astrophysics Data System (ADS)

    Stock, M.

    2013-02-01

    Since 1889 the international prototype of the kilogram has served as the definition of the unit of mass in the International System of Units (SI). It is the last material artefact to define a base unit of the SI, and it influences several other base units. This situation is no longer acceptable in a time of ever increasing measurement precision. It is therefore planned to redefine the unit of mass by fixing the numerical value of the Planck constant. At the same time three other base units, the ampere, the kelvin and the mole, will be redefined. As a first step, the kilogram redefinition requires a highly accurate determination of the Planck constant in the present SI system, with a relative uncertainty of the order of 1 part in 108. The most promising experiment for this purpose, and for the future realization of the kilogram, is the watt balance. It compares mechanical and electrical power and makes use of two macroscopic quantum effects, thus creating a relationship between a macroscopic mass and the Planck constant. In this paper the background for the choice of the Planck constant for the kilogram redefinition is discussed and the role of the Planck constant in physics is briefly reviewed. The operating principle of watt balance experiments is explained and the existing experiments are reviewed. An overview is given of all presently available experimental determinations of the Planck constant, and it is shown that further investigation is needed before the redefinition of the kilogram can take place. This article is based on a lecture given at the International School of Physics ‘Enrico Fermi’, Course CLXXXV: Metrology and Physical Constants, held in Varenna on 17-27 July 2012. It will also be published in the proceedings of the school, edited by E Bava, M Kühne and A M Rossi (IOS Press, Amsterdam and SIF, Bologna).

  4. On the statistical significance of the bulk flow measured by the Planck satellite

    NASA Astrophysics Data System (ADS)

    Atrio-Barandela, F.

    2013-09-01

    A recent analysis of data collected by the Planck satellite detected a net dipole at the location of X-ray selected galaxy clusters, corresponding to a large-scale bulk flow extending at least to z ~ 0.18, the median redshift of the cluster sample. The amplitude of this flow, as measured with Planck, is consistent with earlier findings based on data from the Wilkinson Microwave Anisotropy Probe (WMAP). However, the uncertainty assigned to the dipole by the Planck team is much larger than that found in the WMAP studies, leading the authors of the Planck study to conclude that the observed bulk flow is not statistically significant. Here, we show that two of the three implementations of random sampling used in the error analysis of the Planck study lead to systematic overestimates in the uncertainty of the measured dipole. Random simulations of the sky do not take into account that the actual realization of the sky leads to filtered data that have a 12% lower root-mean-square dispersion than the average simulation. Using rotations around the Galactic pole (the Z axis), increases the uncertainty of the X and Y components of the dipole and artificially reduces the significance of the dipole detection from 98-99% to less than 90% confidence. When either effect is taken into account, the corrected errors agree with those obtained using random distributions of clusters on Planck data, and the resulting statistical significance of the dipole measured by Planck is consistent with that of the WMAP results.

  5. Planck 2013 results. XXIX. The Planck catalogue of Sunyaev-Zeldovich sources

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Démoclès, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Eisenhardt, P. R. M.; Enßlin, T. A.; Eriksen, H. K.; Feroz, F.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Gilfanov, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Groeneboom, N., E.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Hurley-Walker, N.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Li, C.; Liddle, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nesvadba, N. P. H.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Olamaie, M.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrott, Y. C.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rumsey, C.; Rusholme, B.; Sandri, M.; Santos, D.; Saunders, R. D. E.; Savini, G.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shimwell, T. W.; Spencer, L. D.; Stanford, S. A.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    We describe the all-sky Planck catalogue of clusters and cluster candidates derived from Sunyaev-Zeldovich (SZ) effect detections using the first 15.5 months of Planck satellite observations. The catalogue contains 1227 entries, making it over six times the size of the Planck Early SZ (ESZ) sample and the largest SZ-selected catalogue to date. It contains 861 confirmed clusters, of which 178 have been confirmed as clusters, mostly through follow-up observations, and a further 683 are previously-known clusters. The remaining 366 have the status of cluster candidates, and we divide them into three classes according to the quality of evidence that they are likely to be true clusters. The Planck SZ catalogue is the deepest all-sky cluster catalogue, with redshifts up to about one, and spans the broadest cluster mass range from (0.1 to 1.6) × 1015 M⊙. Confirmation of cluster candidates through comparison with existing surveys or cluster catalogues is extensively described, as is the statistical characterization of the catalogue in terms of completeness and statistical reliability. The outputs of the validation process are provided as additional information. This gives, in particular, an ensemble of 813 cluster redshifts, and for all these Planck clusters we also include a mass estimated from a newly-proposed SZ-mass proxy. A refined measure of the SZ Compton parameter for the clusters with X-ray counter-parts is provided, as is an X-ray flux for all the Planck clusters not previously detected in X-ray surveys. The catalogue of SZ sources is available at Planck Legacy Archive and http://www.sciops.esa.int/index.php?page=Planck_Legacy_Archive&project=planck

  6. Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations

    NASA Astrophysics Data System (ADS)

    Locatelli, R.; Bousquet, P.; Saunois, M.; Chevallier, F.; Cressot, C.

    2015-09-01

    With the densification of surface observing networks and the development of remote sensing of greenhouse gases from space, estimations of methane (CH4) sources and sinks by inverse modeling are gaining additional constraining data but facing new challenges. The chemical transport model (CTM) linking the flux space to methane mixing ratio space must be able to represent these different types of atmospheric constraints for providing consistent flux estimations. Here we quantify the impact of sub-grid-scale physical parameterization errors on the global methane budget inferred by inverse modeling. We use the same inversion setup but different physical parameterizations within one CTM. Two different schemes for vertical diffusion, two others for deep convection, and one additional for thermals in the planetary boundary layer (PBL) are tested. Different atmospheric methane data sets are used as constraints (surface observations or satellite retrievals). At the global scale, methane emissions differ, on average, from 4.1 Tg CH4 per year due to the use of different sub-grid-scale parameterizations. Inversions using satellite total-column mixing ratios retrieved by GOSAT are less impacted, at the global scale, by errors in physical parameterizations. Focusing on large-scale atmospheric transport, we show that inversions using the deep convection scheme of Emanuel (1991) derive smaller interhemispheric gradients in methane emissions, indicating a slower interhemispheric exchange. At regional scale, the use of different sub-grid-scale parameterizations induces uncertainties ranging from 1.2 % (2.7 %) to 9.4 % (14.2 %) of methane emissions when using only surface measurements from a background (or an extended) surface network. Moreover, spatial distribution of methane emissions at regional scale can be very different, depending on both the physical parameterizations used for the modeling of the atmospheric transport and the observation data sets used to constrain the inverse

  7. Using Rasch modeling to re-evaluate three scales related to physical activity: enjoyment, perceived benefits and perceived barriers.

    PubMed

    Heesch, K C; Mâsse, L C; Dunn, A L

    2006-12-01

    Studies suggest that enjoyment, perceived benefits and perceived barriers may be important mediators of physical activity. However, the psychometric properties of these scales have not been assessed using Rasch modeling. The purpose of this study was to use Rasch modeling to evaluate the properties of three scales commonly used in physical activity studies: the Physical Activity Enjoyment Scale, the Benefits of Physical Activity Scale and the Barriers to Physical Activity Scale. The scales were administered to 378 healthy adults, aged 25-75 years (50% women, 62% Whites), at the baseline assessment for a lifestyle physical activity intervention trial. The ConQuest software was used to assess model fit, item difficulty, item functioning and standard error of measurement. For all scales, the partial credit model fit the data. Item content of one scale did not adequately cover all respondents. Response options of each scale were not targeting respondents appropriately, and standard error of measurement varied across the total score continuum of each scale. These findings indicate that each scale's effectiveness at detecting differences among individuals may be limited unless changes in scale content and response format are made. PMID:16849389

  8. Updating constraints on inflationary features in the primordial power spectrum with the Planck data

    NASA Astrophysics Data System (ADS)

    Benetti, Micol

    2013-10-01

    We present new constraints on possible features in the primordial inflationary density perturbation power spectrum in light of the recent cosmic microwave background anisotropy measurements from the Planck satellite. We found that the Planck data hints for the presence of features in two different ranges of angular scales, corresponding to multipoles 10<ℓ<60 and 150<ℓ<300, with a decrease in the best-fit χ2 value with respect to the featureless “vanilla” ΛCDM model of Δχ2≃9 in both cases.

  9. Planck Early Results. XV. Spectral Energy Distributions and Radio Continuum Spectra of Northern Extragalactic Radio Sources

    NASA Technical Reports Server (NTRS)

    Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoit, A.; Berdyugin, A.; Bernard, J. P.; Bersanelli, M.; Bhatia, R.; Bonaldi, A.; Bonavera, L.; Gehrels, N.

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.

  10. How Measuring the Planck Constant gets to an Electronic Kilogram Standard

    SciTech Connect

    Steiner, Richard

    2007-08-01

    The best measurement of the Planck constant is now derived from the watt balance method. This method measures mechanical power, in reference units of the kilogram (artifact mass standard), second (atomic clocks), and meter (lasers), in ratio to electrical power, in reference units of the volt (Josephson effect) and ohm (quantum Hall effect). Of these reference standards, only the kilogram is still an artifact standard. Thus a high precision measurement of the Planck constant is equivalent to monitoring the SI kilogram artifact, and may be used to redefine the kilogram. This talk will summarize the complexity of making a Planck constant measurement, where there are interesting aspects of basic physics that appear when the ultimate precision of the standards laboratory is applied to obtain an uncertainty of 20 parts in a billion.

  11. Neutrino mass as a signal of TeV scale physics

    NASA Astrophysics Data System (ADS)

    Mohapatra, Rabindra N.

    2016-07-01

    If the origin of neutrino masses is due to physics at the TeV scale, it would be of tremendous interest since it can be probed using ongoing collider as well as low energy rare process searches. So, a key question is: could the new physics behind neutrino masses be near the TeV scale? In this brief overview, I present arguments in favor of this possibility by presenting the example of TeV scale left-right symmetric models (LRSM) for neutrino mass based on type I seesaw paradigm. A particular issue with understanding the small neutrino masses in TeV scale LRSM is to understand the suppression of type II seesaw contribution to neutrino masses, which a priori could be much larger than desired. I discuss how using either D-parity breaking or by using supersymmetry, one can suppress these contributions to the desired level in a natural way. Experimental probes of this hypothesis are briefly touched upon. Constraints of supersymmetry and that of successful leptogenesis on the left-right scale are also emphasized. The former provides an upper limit and the latter, a lower limit on mWR.

  12. SCALE-UP Your Astronomy and Physics Undergraduate Courses to Incorporate Heliophysics

    NASA Astrophysics Data System (ADS)

    Al-Rawi, Ahlam N.; Cox, Amanda; Hoshino, Laura; Fitzgerald, Cullen; Cebulka, Rebecca; Rodriguez Garrigues, Alvar; Montgomery, Michele; Velissaris, Chris; Flitsiyan, Elena

    2016-01-01

    Although physics and astronomy courses include heliophysics topics, students still leave these courses without knowing what heliophysics is and how heliophysics relates to their daily lives. To meet goals of NASA's Living With a Star Program of incorporating heliophysics into undergraduate curriculum, UCF Physics has modified courses such as Astronomy (for non-science majors), Astrophysics, and SCALE-UP: Electricity and Magnetism for Engineers and Scientists to incorporate heliophysics topics. In this presentation, we discuss these incorporations and give examples that have been published in NASA Wavelength. In an associated poster, we present data on student learnin

  13. Universality and scaling in the N-body sector of Efimov physics

    NASA Astrophysics Data System (ADS)

    Gattobigio, Mario

    2014-05-01

    In this talk I will illustrate the universal behavior that we have found inside the window of Efimov physics for systems made of N <= 6 particles. We have solved the Schrödinger equation of the few-body systems using different potentials, and we have changed the potential parameters in such a way to explore a range of two-body scattering length, a, around the unitary limit, | a | --> ∞ . The ground- (EN0) and excited-state (EN1) energies have been analyzed by means of a recent-developed method which allows to remove finite-range effects. In this way we show that the calculated ground- and excited-state energies collapse over the same universal curve obtained in the zero-range three-body systems. Universality and scaling are reminiscent of critical phenomena; in that framework, the critical point is mapped onto a fixed point of the Renormalization Group (RG) where the system displays scale-invariant (SI) symmetry. A consequence of SI symmetry is the scaling of the observables: for different materials, in the same class of universality, a selected observable can be represented as a function of the control parameter and, provided that both the observable and the control parameter are scaled by some material-dependent factor, all representations collapse onto a single universal curve. Efimov physics is a more recent example of universality, but in this case the physics is governed by a limit cycle on the RG flow with the emergence of a discrete scale invariance (DSI). The scaling of the few-body energies can be interpreted as follow: few-body systems (at least up to N = 6), inside the Efimov window, belong to the same class of universality, which is governed by the limit cycle. These results can be summarized by the following formula ENn/E2 =tan2 ξκNnaB +ΓNn = e- Δ (ξ) / 2s0 cosξ . where the function Δ (ξ) is universal and it is determined by the three-body physics, and s0 = 1 . 00624 . The parameter κNn appears as a scale parameter and the shift ΓnN is a

  14. Physical aspects of a length scale for the Gulf Stream front

    SciTech Connect

    Kao, T.W.

    1983-07-20

    A discussion is presented of the physical interpretation of the length scale, lambda, introduced in a recent paper by Kao and Cheney (1982) to scale the sea surface height anomaly across the Gulf Stream front. Additional results of sea-surface height anomaly profiles computed from the hydrographic data from Fuglister's GULF STREAM 60 are also included. In all cases the width of the anomaly is spanned rather precisely by 2lambda. The relationship between lambda and the internal Rossby radius of deformation lambda, is discussed.

  15. Planck intermediate results. XXIV. Constraints on variations in fundamental constants

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Couchot, F.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J. M.; Dole, H.; Doré, O.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Fabre, O.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Uzan, J.-P.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2015-08-01

    Any variation in the fundamental physical constants, more particularly in the fine structure constant, α, or in the mass of the electron, me, affects the recombination history of the Universe and cause an imprint on the cosmic microwave background angular power spectra. We show that the Planck data allow one to improve the constraint on the time variation of the fine structure constant at redshift z ~ 103 by about a factor of 5 compared to WMAP data, as well as to break the degeneracy with the Hubble constant, H0. In addition to α, we can set a constraint on the variation in the mass of the electron, me, and in the simultaneous variation of the two constants. We examine in detail the degeneracies between fundamental constants and the cosmological parameters, in order to compare the limits obtained from Planck and WMAP and to determine the constraining power gained by including other cosmological probes. We conclude that independent time variations of the fine structure constant and of the mass of the electron are constrained by Planck to Δα/α = (3.6 ± 3.7) × 10-3 and Δme/me = (4 ± 11) × 10-3 at the 68% confidence level. We also investigate the possibility of a spatial variation of the fine structure constant. The relative amplitude of a dipolar spatial variation in α (corresponding to a gradient across our Hubble volume) is constrained to be δα/α = (-2.4 ± 3.7) × 10-2. Appendices are available in electronic form at http://www.aanda.org

  16. Cosmological Analyses Based On The Combined Planck And WMAP Mission Datasets

    NASA Astrophysics Data System (ADS)

    Bennett, Charles

    We propose to: (1) make a detailed comparison of WMAP, Planck, and other cosmic microwave background (CMB) data to understand areas of conflict, and if possible, resolve them; (2) combine WMAP and Planck data into a unified cosmological dataset; and (3)extend cosmological analyses with the combined data. Recent cosmological measurements have revolutionized cosmology and the CMB has played a crucial role. The Planck mission team just released cosmological data and papers, this on the heels of the WMAP team's release of final nine-year data and papers. This proposal is to compare and attempt to understand the subtle but important differences between the two recently released WMAP and Planck cosmological results, to combine the data so as to benefit from the full available small and larger scale measurements, and to use this to enhance cosmological solutions. The WMAP and Planck CMB cosmology datasets are broadly consistent with one another. Yet, differences exist beyond the fact that Planck data extend to finer angular scales than WMAP data. We propose to go beyond the "quick look" we have done so far to identify and help resolve discrepancies. We provide two examples of the kinds of discrepancies that should be resolved. Even though the Planck data release relied on the absolute calibration established by WMAP the two sets of analyzed data appear to be off by a factor of 0.975. This small but significant discrepancy is difficult to explain and merits investigation. Also, while cosmological parameters from Planck agree with WMAP parameters within 1.1# of the larger WMAP uncertainty, this large a discrepancy is difficult to explain in detail since the cosmic variance uncertainties that play a large role in the parameter uncertainties are common to Planck and WMAP: both missions view the same sky. These are just two examples; additional careful and detailed comparisons are required. Over the course of the last several years a number of scientists around the world

  17. Axion hot dark matter bounds after Planck

    SciTech Connect

    Archidiacono, Maria; Hannestad, Steen; Mirizzi, Alessandro; Raffelt, Georg; Wong, Yvonne Y.Y. E-mail: sth@phys.au.dk E-mail: raffelt@mpp.mpg.de

    2013-10-01

    We use cosmological observations in the post-Planck era to derive limits on thermally produced cosmological axions. In the early universe such axions contribute to the radiation density and later to the hot dark matter fraction. We find an upper limit m{sub a} < 0.67 eV at 95% C.L. after marginalising over the unknown neutrino masses, using CMB temperature and polarisation data from Planck and WMAP respectively, the halo matter power spectrum extracted from SDSS-DR7, and the local Hubble expansion rate H{sub 0} released by the Carnegie Hubble Program based on a recalibration of the Hubble Space Telescope Key Project sample. Leaving out the local H{sub 0} measurement relaxes the limit somewhat to 0.86 eV, while Planck+WMAP alone constrain the axion mass to 1.01 eV, the first time an upper limit on m{sub a} has been obtained from CMB data alone. Our axion limit is therefore not very sensitive to the tension between the Planck-inferred H{sub 0} and the locally measured value. This is in contrast with the upper limit on the neutrino mass sum, which we find here to range from Σ m{sub ν} < 0.27 eV at 95% C.L. combining all of the aforementioned observations, to 0.84 eV from CMB data alone.

  18. Scaling and correlation of human movements in cyberspace and physical space.

    PubMed

    Zhao, Zhi-Dan; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng

    2014-11-01

    Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a superlinear scaling relation between the mean frequency of visit 〈f〉 and its fluctuation σ:σ∼〈f〉^{β} with β≈1.2. The probability distribution of the visiting frequency is found to be a stretched exponential function. We develop a model incorporating two essential ingredients, preferential return and exploration, and show that these are necessary for generating the scaling relation extracted from real data. A striking finding is that human movements in cyberspace and physical space are strongly correlated, indicating a distinctive behavioral identifying characteristic and implying that the behaviors in one space can be used to predict those in the other. PMID:25493727

  19. Scaling and correlation of human movements in cyberspace and physical space

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi-Dan; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng

    2014-11-01

    Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a superlinear scaling relation between the mean frequency of visit and its fluctuation σ :σ ˜β with β ≈1.2 . The probability distribution of the visiting frequency is found to be a stretched exponential function. We develop a model incorporating two essential ingredients, preferential return and exploration, and show that these are necessary for generating the scaling relation extracted from real data. A striking finding is that human movements in cyberspace and physical space are strongly correlated, indicating a distinctive behavioral identifying characteristic and implying that the behaviors in one space can be used to predict those in the other.

  20. Assessment of the physical flood susceptibility of buildings on a large scale - conceptual and methodological frameworks

    NASA Astrophysics Data System (ADS)

    Blanco-Vogt, A.; Schanze, J.

    2014-08-01

    There are various approaches available for assessing the flood vulnerability and damage to buildings and critical infrastructure. They cover pre- and post-event methods for different scales. However, there can hardly be found any method that allows for a large-scale pre-event assessment of the built structures with a high resolution. To make advancements in this respect, the paper presents, first, a conceptual framework for understanding the physical flood susceptibility of buildings and, second, a methodological framework for its assessment. The latter ranges from semi-automatic extraction of buildings, mainly from remote sensing with a subsequent classification and systematic characterisation, to the assessment of the physical flood susceptibility on the basis of depth-impact functions. The work shows results of the methodology's implementation and testing in a settlement of the city of Magangué, along the Magdalena River in Colombia.

  1. Microphysics in the Multi-Scale Modeling Systems with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.

  2. Planck satellite to be presented to media

    NASA Astrophysics Data System (ADS)

    2007-01-01

    Planck will make the most accurate maps yet of the microwave background radiation that fills space. It will be sensitive to temperature variations of a few millionths of a degree and will map the full sky in nine wavelengths. The immediate outcome of the Big Bang and the initial conditions for the evolution in the universe’s structure are the primary target of this important mission. From the results, a great deal more will be learnt not only about the nature and amount of dark matter, the ‘missing mass’ of the universe, but also about the nature of dark energy and the expansion of the universe itself. To address such challenging objectives, Planck will need to operate at very low, stable temperatures. Once in space, its detectors will have to be cooled to temperature levels close to absolute zero (-273.15ºC), ranging from -253ºC to only a few tenths of a degree above absolute zero. The Planck spacecraft thus has to be a marvel of cryotechnology. After integration, Planck will start a series of tests that will continue into early-2008. It will be launched by end-July 2008 in a dual-launch configuration with Herschel, ESA’s mission to study the formation of galaxies, stars and planetary systems in the infrared. Interested media are invited to fill in the reply form below. Note to editors The Planck spacecraft was built by AAS Cannes, the prime contractor, leading a consortium of industrial partners with the AAS industry branch in Turin, Italy, responsible for the satellite’s service module. ESA and the Danish National Space Centre (Copenhagen, Denmark) are responsible for the hardware provision of Planck’s telescope mirrors, manufactured by EADS Astrium (Friedrichshafen, Germany). AAS Cannes is also responsible for the payload module, the platform that hosts the telescope and the two onboard instruments, HFI and LFI. The instruments themselves are being supplied by a consortium of scientists and institutes led by the Institut d'Astrophysique Spatiale

  3. Development and psychometric validation of the Mental, Physical, and Spiritual Well-Being Scale.

    PubMed

    Vella-Brodrick, D A; Allen, F C

    1995-10-01

    Due to the growing interest in holistic health and well-being, the Mental, Physical, and Spiritual Well-being Scale was developed. This well-being scale has 30 items and incorporates mental, physical, and spiritual subscales. An initial set of items was developed and 186 university students responded to these. An exploratory factor analysis was conducted using principal components analysis with varimax rotation (N=100) to reduce the number of items in the scale. Three factors were extracted based on the eigenvalues, loading coefficients exceeding 0.3, and the screen test. Ten items from each of the three factors were selected, reducing the number of items from 66 to 30. Another factor analysis, performed on 129 employees of the Commonwealth Scientific and Industrial Research Organisation and 229 students from Monash University, indicated three factors were representative of the mental, physical, and spiritual subscales. Test-retest reliabilities over 1 mo. ranged from 0.87 to 0.97 for the three subscales whilst internal consistency ranged from 0.75 to 0.85. Concurrent validity was examined using the General Health Questionnaire and the Spiritual Well-being Scale. The discriminant validity of the MPS was also explored using three activity groups nominated as highly physical (weight training) or highly mental (chess) or highly spiritual (prayer). Out of a total of 88 cases, 77.3% of these were correctly classified into their actual activity group based on their scores. Sample sizes were moderate and testing was of limited samples. More psychometric work is needed but preliminary findings indicate an accurate and reliable test. PMID:8559898

  4. Materials Science and Physics at Micro/Nano-Scales. FINAL REPORT

    SciTech Connect

    Wu, Judy Z

    2009-09-07

    The scope of this project is to study nanostructures of semiconductors and superconductors, which have been regarded as promising building blocks for nanoelectronic and nanoelectric devices. The emphasis of this project is on developing novel synthesis approaches for fabrication of nanostructures with desired physical properties. The ultimate goal is to achieve a full control of the nanostructure growth at microscopic scales. The major experimental achievements obtained are summarized

  5. Sensitivity of the recent methane budget to LMDz sub-grid scale physical parameterizations

    NASA Astrophysics Data System (ADS)

    Locatelli, R.; Bousquet, P.; Saunois, M.; Chevallier, F.; Cressot, C.

    2015-04-01

    With the densification of surface observing networks and the development of remote sensing of greenhouse gases from space, estimations of methane (CH4) sources and sinks by inverse modelling face new challenges. Indeed, the chemical transport model used to link the flux space with the mixing ratio space must be able to represent these different types of constraints for providing consistent flux estimations. Here we quantify the impact of sub-grid scale physical parameterization errors on the global methane budget inferred by inverse modelling using the same inversion set-up but different physical parameterizations within one chemical-transport model. Two different schemes for vertical diffusion, two others for deep convection, and one additional for thermals in the planetary boundary layer are tested. Different atmospheric methane datasets are used as constraints (surface observations or satellite retrievals). At the global scale, methane emissions differ, on average, from 4.1 Tg CH4 per year due to the use of different sub-grid scale parameterizations. Inversions using satellite total-column retrieved by GOSAT satellite are less impacted, at the global scale, by errors in physical parameterizations. Focusing on large-scale atmospheric transport, we show that inversions using the deep convection scheme of Emanuel (1991) derive smaller interhemispheric gradient in methane emissions. At regional scale, the use of different sub-grid scale parameterizations induces uncertainties ranging from 1.2 (2.7%) to 9.4% (14.2%) of methane emissions in Africa and Eurasia Boreal respectively when using only surface measurements from the background (extended) surface network. When using only satellite data, we show that the small biases found in inversions using GOSAT-CH4 data and a coarser version of the transport model were actually masking a poor representation of the stratosphere-troposphere gradient in the model. Improving the stratosphere-troposphere gradient reveals a larger

  6. Physical and biological controls on reach to catchment scale nutrient retention and streamwater composition

    NASA Astrophysics Data System (ADS)

    Covino, T. P.; McGlynn, B. L.; Wohl, E.

    2014-12-01

    Physical and biological processes occurring within fluvial networks can have strong influence on catchment scale retention of water and nutrients. Quantifying the physical (i.e., hydrologic exchange) and biological (i.e., nutrient uptake) contributions to total retention and deciphering how they relate to catchment morphology remains a central challenge in the hydrologic and biogeo-sciences. Here we present examples from our research that highlight the interactions between biology, physical hydrology, and geomorphology and how they combine to influence nutrient retention and streamwater compositions. Biological nutrient uptake in streams can have substantial influence on downstream fluxes and induce nutrient transformation along stream networks. Additionally, hydrologic loss of water and associated nutrients from streams to surrounding groundwater systems can greatly elongate water and nutrient retention times. While in-stream nutrient uptake is often associated with hyporheic exchanges that occur at sub-meter scales, these are nested within a larger framework of fluvial exchanges (100s - 1000s of meters). Larger scale exchanges can lead to strong shifts in streamwater composition over relatively short spatial scales (~1km) and are often very pronounced along geomorphic transitions (e.g., mountain to valley) and/or catchment retention zones (e.g., alluvial aquifers, wetlands, lakes). In fact, 50 - 80% of the water in the channel can be exchanged and replaced by different water (i.e., groundwater) along geomorphic transitions/catchment retention zones that are ~1 km in scale. These features can enhance geochemical processing through extended interactions between water, sediment, and nutrients. Accordingly, we suggest that although catchment retention features may be limited in spatial extent (~1km) and frequency they have the capacity to play a disproportionately large role in controlling catchment retention dynamics and setting fluvial network streamwater

  7. High-Fidelity Lattice Physics Capabilities of the SCALE Code System Using TRITON

    SciTech Connect

    DeHart, Mark D

    2007-01-01

    Increasing complexity in reactor designs suggests a need to reexamine of methods applied in spent-fuel characterization. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as space reactors and Generation IV power reactors also require calculational methods that provide accurate prediction of the isotopic inventory. New high-fidelity physics methods will be required to better understand the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light-water reactor designs. The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for reactor physics analysis. This paper provides a detailed description of TRITON in terms of its key components used in reactor calculations.

  8. GENASIS   Basics: Object-oriented utilitarian functionality for large-scale physics simulations

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2015-11-01

    Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual 'unit test' programs and larger example problems demonstrating their use. These classes compose the Basics division of our developing astrophysics simulation code GENASIS  (General Astrophysical Simulation System), but their fundamental nature makes them useful for physics simulations in many fields.

  9. GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations

    SciTech Connect

    Cardall, Christian Y.; Budiardja, Reuben D.

    2015-06-11

    Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. Lastly, these classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes them useful for physics simulations in many fields.

  10. GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations

    DOE PAGESBeta

    Cardall, Christian Y.; Budiardja, Reuben D.

    2015-06-11

    Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. Lastly, these classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes themmore » useful for physics simulations in many fields.« less

  11. ICPP: Numerical Fokker-Planck calculations in nonuniform grids

    NASA Astrophysics Data System (ADS)

    Bizarro, João P. S.

    2000-10-01

    The Fokker-Planck equation arises in a wide class of problems in plasma physics, so numerical schemes that provide efficient, accurate, and stable solutions to that equation are always welcome. One way to accomplish this is via nonuniform grids, which allow the use of different mesh sizes according to the real needs of the physical problem under consideration. The extension of the standard finite-difference approach to general nonuniform grids, taking into account proper weighting coefficients, has already been presented, and the results have been rather conclusive [J. P. S. Bizarro and P. Rodrigues, Nucl. Fusion Vol. 37, 1509 (1997)]. Besides reviewing what has been achieved with nonuniform grids, a numerical scheme that is accurate to second order (both in time step and mesh size) is here extended and detailed. Such an analysis is rigourous for one-dimensional Fokker-Planck equations, and is generalized to two-dimensional equations. The constraints on the design of the nonuniform grid are discussed, as well as the particle and energy conservation properties. The conditions under which the nonuniformity correction in the weighting coefficients is essential to secure physically meaningful solutions are also analyzed. The proposed scheme is shown to efficiently handle both linear and weakly nonlinear problems and, in addition, its ability to provide solutions to stronger nonlinear situations is demonstrated. Some particular problems in the field of plasma physics (e.g., Coulomb collisions, Compton scattering by an electronic population, and the rf heating and current drive of thermonuclear reactors) are solved in order to illustrate several features, most particularly the usefulness of nonuniform grids in reducing computational effort and in increasing accuracy.

  12. Chaotic inflation with right-handed sneutrinos after Planck

    NASA Astrophysics Data System (ADS)

    Nakayama, Kazunori; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2014-03-01

    We propose a chaotic inflation model in which the lightest right-handed sneutrino serves as the inflaton and the predicted values of the spectral index and tensor-to-scalar ratio are consistent with the Planck data. Interestingly, the observed magnitude of primordial density perturbations is naturally explained by the inflaton mass of order 1013 GeV, which is close to the right-handed neutrino mass scale suggested by the seesaw mechanism and the neutrino oscillation experiments. We find that the agreement of the two scales becomes even better in the neutrino mass anarchy. We show that the inflation model can be embedded into supergravity and discuss thermal history of the Universe after inflation such as non-thermal leptogenesis by the right-handed sneutrino decays and the modulus dynamics.

  13. Physical essence of the multibody contact-sliding at atomic scale

    NASA Astrophysics Data System (ADS)

    Han, Xuesong

    2014-01-01

    Investigation the multibody contact-sliding occurred at atomic discrete contact spot will play an important role in determine the origin of tribology behavior and evaluates the micro-mechanical property of nanomaterials and thus optimizing the design of surface texture. This paper carries out large scale parallel molecular dynamics simulation on contact-sliding at atomic scale to uncover the special physical essence. The research shows that some kind of force field exists between nanodot pair and the interaction can be expressed by the linear combination of exponential function while the effective interaction distance limited in 1 angstrom for nanodot with several tens of nanometer diameter. The variation tendency about the interaction force between nanodot array is almost the same between nanodot pairs and thus the interaction between two nanodot array can be characterized by parallel mechanical spring. Multibody effect which dominates the interaction between atoms or molecules will gradually diminish with the increasing of length scales.

  14. Crocodile head scales are not developmental units but emerge from physical cracking.

    PubMed

    Milinkovitch, Michel C; Manukyan, Liana; Debry, Adrien; Di-Poï, Nicolas; Martin, Samuel; Singh, Daljit; Lambert, Dominique; Zwicker, Matthias

    2013-01-01

    Various lineages of amniotes display keratinized skin appendages (feathers, hairs, and scales) that differentiate in the embryo from genetically controlled developmental units whose spatial organization is patterned by reaction-diffusion mechanisms (RDMs). We show that, contrary to skin appendages in other amniotes (as well as body scales in crocodiles), face and jaws scales of crocodiles are random polygonal domains of highly keratinized skin, rather than genetically controlled elements, and emerge from a physical self-organizing stochastic process distinct from RDMs: cracking of the developing skin in a stress field. We suggest that the rapid growth of the crocodile embryonic facial and jaw skeleton, combined with the development of a very keratinized skin, generates the mechanical stress that causes cracking. PMID:23196908

  15. A Validation and Reliability Study of the Physical Activity and Healthy Food Efficacy Scale for Children (PAHFE)

    ERIC Educational Resources Information Center

    Perry, Christina M.; De Ayala, R. J.; Lebow, Ryan; Hayden, Emily

    2008-01-01

    The purpose of this study was to obtain validity evidence for the Physical Activity and Healthy Food Efficacy Scale for Children (PAHFE). Construct validity evidence identifies four subscales: Goal-Setting for Physical Activity, Goal-Setting for Healthy Food Choices, Decision-Making for Physical Activity, and Decision-Making for Healthy Food…

  16. The observational status of Galileon gravity after Planck

    SciTech Connect

    Barreira, Alexandre; Li, Baojiu; Baugh, Carlton M.; Pascoli, Silvia E-mail: baojiu.li@durham.ac.uk E-mail: silvia.pascoli@durham.ac.uk

    2014-08-01

    We use the latest CMB data from Planck, together with BAO measurements, to constrain the full parameter space of Galileon gravity. We constrain separately the three main branches of the theory known as the Cubic, Quartic and Quintic models, and find that all yield a very good fit to these data. Unlike in ΛCDM, the Galileon model constraints are compatible with local determinations of the Hubble parameter and predict nonzero neutrino masses at over 5σ significance. We also identify that the low l part of the CMB lensing spectrum may be able to distinguish between ΛCDM and Galileon models. In the Cubic model, the lensing potential deepens at late times on sub-horizon scales, which is at odds with the current observational suggestion of a positive ISW effect. Compared to ΛCDM, the Quartic and Quintic models predict less ISW power in the low l region of the CMB temperature spectrum, and as such are slightly preferred by the Planck data. We illustrate that residual local modifications to gravity in the Quartic and Quintic models may render the Cubic model as the only branch of Galileon gravity that passes Solar System tests.

  17. Two hydrogen sorption cryocoolers for the Planck mission

    NASA Astrophysics Data System (ADS)

    Morgante, G.; Barber, D.; Bhandari, P.; Bowman, R. C.; Cowgill, P.; Crumb, D.; Loc, T.; Nash, A.; Pearson, D.; Prina, M.; Sirbi, A.; Schemlzel, M.; Sugimura, R.; Wade, L. A.

    2002-05-01

    Two continuous operation 18 K/20 K sorption cryocoolers are being developed by the Jet Propulsion Laboratory (JPL) as a NASA contribution to the European Space Agency (ESA) Planck mission, currently planned for a 2007 launch. Each individual sorption cooler will be capable of providing a total of about 200 mW of cooling power at 18 K and 1.2 W at 20 K, given a passive radiative precooling at 50 K. These coolers work by thermally cycling a metal-hydride to absorb and desorb hydrogen gas, used as the working fluid in a Joule-Thomson (J-T) refrigerator. The major advantage of the sorption coolers is their truly vibration-free operation capability together with the fact that they can be readily scaled to perform over a wide range of cooling powers. The hydrogen sorption coolers will directly cool the Planck Low Frequency Instrument (LFI) HEMT amplifiers to approximately 20 K and will provide precooling at 18 K to the RAL 4 K closed-cycle Helium J-T cooler for the High Frequency Instrument (HFI). The concept design, the cooler operations and the predicted performances of the flight models are here presented. .

  18. DBI Galileon inflation in the light of Planck 2015

    NASA Astrophysics Data System (ADS)

    Sravan Kumar, K.; Bueno Sánchez, Juan C.; Escamilla-Rivera, Celia; Marto, J.; Vargas Moniz, P.

    2016-02-01

    In this work we consider a DBI Galileon (DBIG) inflationary model and constrain its parameter space with the Planck 2015 and BICEP2/Keck array and Planck (BKP) joint analysis data by means of a potential independent analysis. We focus our attention on inflationary solutions characterized by a constant or varying sound speed as well as warp factor. We impose bounds on stringy aspects of the model, such as the warp factor (f) and the induced gravity parameter (tilde m). We study the parameter space of the model and find that the tensor-to-scalar ratio can be as low as r simeq 6 × 10-4 and inflation happens to be at GUT scale. In addition, we obtain the tilt of the tensor power spectrum and test the standard inflationary consistency relation (r = -8nt) against the latest bounds from the combined results of BKP+Laser Interferometer Gravitational-Waves Observatory (LIGO), and find that DBIG inflation predicts a red spectral index for the tensor power spectrum.

  19. Current dependence of spin torque switching rate based on Fokker-Planck approach

    SciTech Connect

    Taniguchi, Tomohiro Imamura, Hiroshi

    2014-05-07

    The spin torque switching rate of an in-plane magnetized system in the presence of an applied field is derived by solving the Fokker-Planck equation. It is found that three scaling currents are necessary to describe the current dependence of the switching rate in the low-current limit. The dependences of these scaling currents on the applied field strength are also studied.

  20. Impacts of Noah model physics on catchment-scale runoff simulations

    NASA Astrophysics Data System (ADS)

    Zheng, Donghai; Van der Velde, Rogier; Su, Zhongbo; Wen, Jun; Wang, Xin; Booij, Martijn J.; Hoekstra, Arjen Y.; Lv, Shihua; Zhang, Yu; Ek, Michael B.

    2016-01-01

    Noah model physics options validated for the source region of the Yellow River (SRYR) are applied to investigate their ability in reproducing runoff at the catchment scale. Three sets of augmentations are implemented affecting descriptions of (i) turbulent and soil heat transport (Noah-H), (ii) soil water flow (Noah-W), and (iii) frozen ground processes (Noah-F). Five numerical experiments are designed with the three augmented versions, a control run with default model physics and a run with all augmentations (Noah-A). Each experiment is set up with vegetation and soil parameters from Weather Research and Forecasting data set, soil organic matter content from China Soil Database, 0.1° atmospheric forcing data from Institute of Tibetan Plateau Research (Chinese Academy of Sciences), and initial equilibrium model states achieved using a single-year recurrent spin-up. In situ heat flux, soil temperature (Ts), and soil moisture (θ) profile measurements are available for point-scale assessment, whereas monthly streamflow is utilized for the catchment-scale evaluation. The comparison with point measurements shows that the augmentations invoked with Noah-H resolve issues with the heat flux and Ts simulation and Noah-W mitigates deficiencies in the θ simulation, while Noah-A yields improvements for both simulated surface energy and water budgets. In contrast, Noah-F has a minor effect. Also, at catchment scale, the best model performance is found for Noah-A leading to a base flow-dominated runoff regime, whereby the surface runoff contribution remains significant. This study highlights the need for a complete description of vertical heat and water exchanges to correctly simulate the runoff in the seasonally frozen and high-altitude SRYR at the catchment scale.

  1. A rock-physical modeling method for carbonate reservoirs at seismic scale

    NASA Astrophysics Data System (ADS)

    Li, Jing-Ye; Chen, Xiao-Hong

    2013-03-01

    Strong heterogeneity and complex pore systems of carbonate reservoir rock make its rock physics model building and fluid substitution difficult and complex. However, rock physics models connect reservoir parameters with seismic parameters and fluid substitution is the most effective tool for reservoir prediction and quantitative characterization. On the basis of analyzing complex carbonate reservoir pore structures and heterogeneity at seismic scale, we use the gridding method to divide carbonate rock into homogeneous blocks with independent rock parameters and calculate the elastic moduli of dry rock units step by step using different rock physics models based on pore origin and structural feature. Then, the elastic moduli of rocks saturated with different fluids are obtained using fluid substitution based on different pore connectivity. Based on the calculated elastic moduli of rock units, the Hashin-Shtrikman-Walpole elastic boundary theory is adopted to calculate the carbonate elastic parameters at seismic scale. The calculation and analysis of carbonate models with different combinations of pore types demonstrate the effects of pore type on rock elastic parameters. The simulated result is consistent with our knowledge of real data.

  2. The physics of energy transfer toward improved subgrid-scale models

    NASA Astrophysics Data System (ADS)

    Cimarelli, Andrea; De Angelis, Elisabetta

    2014-05-01

    Starting from physical insight on the energy transfer phenomena in wall turbulent flows, it is shown how modeling of subgrid stresses in large-eddy simulations can be improved. Each model should aim at reproducing the double feature of energy sink and source of the small scales of wall flows which become relevant when large filter lengths are considered. Here we propose one possible choice where the main ingredient is the coupling of the classical linear formulation of eddy viscosity with the nonlinear anisotropic features of the velocity increments tensor. This approach, which actually presents most of the features of the mixed models, captures the near-wall dynamics for very large filter lengths reproducing the small scales source physics responsible for backward energy transfer. A posteriori tests show excellent agreement with direct numerical simulation of turbulent channel flows even when very coarse grids are considered. The capability of the balance of the filtered second order structure function as a post-processing tool to evaluate the physics of any model is also shown.

  3. A challenge for probing the statistics of interstellar magnetic fields: beyond the Planck resolution with Herschel

    NASA Astrophysics Data System (ADS)

    Bracco, Andrea; André, Philippe; Boulanger, Francois

    2015-08-01

    The recent Planck results in polarization at sub-mm wavelengths allow us to gain insight into the Galactic magnetic field topology, revealing its statistical correlation with matter, from the diffuse interstellar medium (ISM), to molecular clouds (MCs) (Planck intermediate results. XXXII, XXXIII, XXXV). This correlation has a lot to tell us about the dynamics of the turbulent ISM, stressing the importance of considering magnetic fields in the formation of structures, some of which eventually undergo gravitational collapse producing new star-forming cores.Investigating the early phases of star formation has been a fundamental scope of the Herschel Gould Belt survey collaboration (http://gouldbelt-herschel.cea.fr), which, in the last years, has thoroughly characterized, at a resolution of few tens of arcseconds, the statistics of MCs, such as their filamentary structure, kinematics and column density.Although at lower angular resolution, the Planck maps of dust emission at 353GHz, in intensity and polarization, show that all MCs are complex environments, where we observe a non-trivial correlation between the magnetic field and their density structure. This result opens new perspectives on their formation and evolution, which we have started to explore.In this talk, I will present first results of a comparative analysis of the Herschel-Planck data, where we combine the high resolution Herschel maps of some MCs of the Gould Belt with the Planck polarization data, which sample the structure of the field weighted by the density.In particular, I will discuss the large-scale envelopes of the selected MCs, and, given the correlation between magnetic field and matter, I will show how to make use of the high resolution information of the density structure provided by Herschel to investigate the statistics of interstellar magnetic fields in the Planck data.

  4. DAG Software Architectures for Multi-Scale Multi-Physics Problems at Petascale and Beyond

    NASA Astrophysics Data System (ADS)

    Berzins, Martin

    2015-03-01

    The challenge of computations at Petascale and beyond is to ensure how to make possible efficient calculations on possibly hundreds of thousands for cores or on large numbers of GPUs or Intel Xeon Phis. An important methodology for achieving this is at present thought to be that of asynchronous task-based parallelism. The success of this approach will be demonstrated using the Uintah software framework for the solution of coupled fluid-structure interaction problems with chemical reactions. The layered approach of this software makes it possible for the user to specify the physical problems without parallel code, for that specification to be translated into a parallel set of tasks. These tasks are executed using a runtime system that executes tasks asynchronously and sometimes out-of-order. The scalability and portability of this approach will be demonstrated using examples from large scale combustion problems, industrial detonations and multi-scale, multi-physics models. The challenges of scaling such calculations to the next generations of leadership class computers (with more than a hundred petaflops) will be discussed. Thanks to NSF, XSEDE, DOE NNSA, DOE NETL, DOE ALCC and DOE INCITE.

  5. The ellipsoidal universe in the Planck satellite era

    NASA Astrophysics Data System (ADS)

    Cea, Paolo

    2014-06-01

    Recent Planck data confirm that the cosmic microwave background displays the quadrupole power suppression together with large-scale anomalies. Progressing from previous results, that focused on the quadrupole anomaly, we strengthen the proposal that the slightly anisotropic ellipsoidal universe may account for these anomalies. We solved at large scales the Boltzmann equation for the photon distribution functions by taking into account both the effects of the inflation produced primordial scalar perturbations and the anisotropy of the geometry in the ellipsoidal universe. We showed that the low quadrupole temperature correlations allowed us to fix the eccentricity at decoupling, edec = (0.86 ± 0.14) 10-2, and to constraint the direction of the symmetry axis. We found that the anisotropy of the geometry of the universe contributes only to the large-scale temperature anisotropies without affecting the higher multipoles of the angular power spectrum. Moreover, we showed that the ellipsoidal geometry of the universe induces sizeable polarization signal at large scales without invoking the reionization scenario. We explicitly evaluated the quadrupole TE and EE correlations. We found an average large-scale polarization ΔTpol = (1.20 ± 0.38) μK. We point out that great care is needed in the experimental determination of the large-scale polarization correlations since the average temperature polarization could be misinterpreted as foreground emission leading, thereby, to a considerable underestimate of the cosmic microwave background polarization signal.

  6. Distance priors from Planck 2015 data

    NASA Astrophysics Data System (ADS)

    Huang, Qing-Guo; Wang, Ke; Wang, Sai

    2015-12-01

    We update the distance priors by adopting Planck TT,TE,EE+lowP data released in 2015, and our results impose at least 30% tighter constraints than those from Planck TT+lowP. Combining the distance priors with the combination of supernova Union 2.1 compilation of 580 SNe (Union 2.1) and low redshift Baryon Acoustic Oscillation (BAO) data, we constrain the cosmological parameters in the freely binned dark energy (FBDE) and FBDE+Ωk models respectively, and find that the equations of state of dark energy in both models are consistent with w=-1. Furthermore, we show that the tension with the BAO data at z=2.34 from Lyα forest (LyαF) auto-correlation and Combined LyαF cannot be relaxed in the FBDE and FBDE+Ωk models.

  7. Application of Planck's law to thermionic conversion

    SciTech Connect

    Caldwell, F.

    1998-07-01

    A simple, highly accurate, mathematical model of heat-to-electricity conversion is developed from Planck's law for the distribution of the radiant exitance of heat at a selected temperature. An electrical power curve is calculated by integration of the heat law over a selected range of electromagnetic wavelength corresponding to electrical voltage. A novel wavelength-voltage conversion factor, developed from the known wavelength-electron volt conversion factor, establishes the wavelength ({lambda}) for the integration. The Planck law is integrated within the limits {lambda} to 2{lambda}. The integration provides the ideal electrical power that is available from heat at the emitter temperature. When multiplied by a simple ratio, the calculated ideal power closely matches published thermionic converter experimental data. The thermal power model of thermionic conversion is validated by experiments with thermionic emission of ordinary electron tubes. A theoretical basis for the heat law based model of thermionic conversion is found in linear oscillator theory.

  8. Planck 2013 results. III. LFI systematic uncertainties

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dick, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Kangaslahti, P.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Paci, F.; Pagano, L.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Ricciardi, S.; Riller, T.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    We present the current estimate of instrumental and systematic effect uncertainties for the Planck-Low Frequency Instrument relevant to the first release of the Planck cosmological results. We give an overview of the main effects and of the tools and methods applied to assess residuals in maps and power spectra. We also present an overall budget of known systematic effect uncertainties, which are dominated by sidelobe straylight pick-up and imperfect calibration. However, even these two effects are at least two orders of magnitude weaker than the cosmic microwave background fluctuations as measured in terms of the angular temperature power spectrum. A residual signal above the noise level is present in the multipole range ℓ < 20, most notably at 30 GHz, and is probably caused by residual Galactic straylight contamination. Current analysis aims to further reduce the level of spurious signals in the data and to improve the systematic effects modelling, in particular with respect to straylight and calibration uncertainties.

  9. Planck constraints on neutrino isocurvature density perturbations

    NASA Astrophysics Data System (ADS)

    Di Valentino, Eleonora; Melchiorri, Alessandro

    2014-10-01

    The recent cosmic microwave background data from the Planck satellite experiment, when combined with Hubble Space Telescope determinations of the Hubble constant, are compatible with a larger, nonstandard number of relativistic degrees of freedom at recombination, parametrized by the neutrino effective number Neff . In the curvaton scenario, a larger value for Neff could arise from a nonzero neutrino chemical potential connected to residual neutrino isocurvature density (NID) perturbations after the decay of the curvaton field, the component of which is parametrized by the amplitude αNID . Here we present new constraints on Neff and αNID from an analysis of recent cosmological data. We find that the Planck+WMAP polarization data set does not show any indication of a NID component (severely constraining its amplitude), and that current indications for a nonstandard Neff are further relaxed.

  10. On modified Weyl Heisenberg algebras, noncommutativity, matrix-valued Planck constant and QM in Clifford spaces

    NASA Astrophysics Data System (ADS)

    Castro, Carlos

    2006-11-01

    A novel Weyl-Heisenberg algebra in Clifford spaces is constructed that is based on a matrix-valued {\\cal H}^{AB} extension of Planck's constant. As a result of this modified Weyl-Heisenberg algebra one will no longer be able to measure, simultaneously, the pairs of variables (x, px), (x, py), (x, pz), (y, px), ... with absolute precision. New Klein-Gordon and Dirac wave equations and dispersion relations in Clifford spaces are presented. The latter Dirac equation is a generalization of the Dirac-Lanczos-Barut-Hestenes equation. We display the explicit isomorphism between Yang's noncommutative spacetime algebra and the area-coordinates algebra associated with Clifford spaces. The former Yang's algebra involves noncommuting coordinates and momenta with a minimum Planck scale λ (ultraviolet cutoff) and a minimum momentum p = planck/R (maximal length R, infrared cutoff). The double-scaling limit of Yang's algebra λ → 0, R → ∞, in conjunction with the large n → ∞ limit, leads naturally to the area quantization condition λR = L2 = nλ2 (in Planck area units) given in terms of the discrete angular-momentum eigenvalues n. It is shown how modified Newtonian dynamics is also a consequence of Yang's algebra resulting from the modified Poisson brackets. Finally, another noncommutative algebra which differs from Yang's algebra and related to the minimal length uncertainty relations is presented. We conclude with a discussion of the implications of noncommutative QM and QFT's in Clifford spaces.

  11. Planck 2013 results. XIII. Galactic CO emission

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Dempsey, J. T.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Handa, T.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hily-Blant, P.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moore, T. J. T.; Morgante, G.; Morino, J.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nakajima, T.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Okuda, T.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Thomas, H. S.; Toffolatti, L.; Tomasi, M.; Torii, K.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yamamoto, H.; Yoda, T.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    Rotational transition lines of CO play a major role in molecular radio astronomy as a mass tracer and in particular in the study of star formation and Galactic structure. Although a wealth of data exists for the Galactic plane and some well-known molecular clouds, there is no available high sensitivity all-sky survey of CO emission to date. Such all-sky surveys can be constructed using the Planck HFI data because the three lowest CO rotational transition lines at 115, 230 and 345 GHz significantly contribute to the signal of the 100, 217 and 353 GHz HFI channels, respectively. Two different component separation methods are used to extract the CO maps from Planck HFI data. The maps obtained are then compared to one another and to existing external CO surveys. From these quality checks the best CO maps, in terms of signal to noise ratio and/or residual contamination by other emission, are selected. Three different sets of velocity-integrated CO emission maps are produced with different trade-offs between signal-to-noise, angular resolution, and reliability. Maps for the CO J = 1 → 0, J = 2 → 1, and J = 3 → 2 rotational transitions are presented and described in detail. They are shown to be fully compatible with previous surveys of parts of the Galactic plane as well as with undersampled surveys of the high latitude sky. The Planck HFI velocity-integrated CO maps for the J = 1 → 0, J = 2 → 1, and J = 3 →2 rotational transitions provide an unprecedented all-sky CO view of the Galaxy. These maps are also of great interest to monitor potential CO contamination of the Planck studies of the cosmological microwave background.

  12. Planck 2013 results. XXXII. The updated Planck catalogue of Sunyaev-Zeldovich sources

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Démoclès, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Feroz, F.; Ferragamo, A.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Gilfanov, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Groeneboom, N., E.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Hurley-Walker, N.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Li, C.; Liddle, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nastasi, A.; Nati, F.; Natoli, P.; Nesvadba, N. P. H.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Olamaie, M.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrott, Y. C.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rumsey, C.; Rusholme, B.; Sandri, M.; Santos, D.; Saunders, R. D. E.; Savini, G.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shimwell, T. W.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Streblyanska, A.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2015-09-01

    We update the all-sky Planck catalogue of 1227 clusters and cluster candidates (PSZ1) published in March 2013, derived from detections of the Sunyaev-Zeldovich (SZ) effect using the first 15.5 months of Planck satellite observations. As an addendum, we deliver an updated version of the PSZ1 catalogue, reporting the further confirmation of 86 Planck-discovered clusters. In total, the PSZ1 now contains 947 confirmed clusters, of which 214 were confirmed as newly discovered clusters through follow-up observations undertaken by the Planck Collaboration. The updated PSZ1 contains redshifts for 913 systems, of which 736 (~ 80.6%) are spectroscopic, and associated mass estimates derived from the Yz mass proxy. We also provide a new SZ quality flag for the remaining 280 candidates. This flag was derived from a novel artificial neural-network classification of the SZ signal. Based on this assessment, the purity of the updated PSZ1 catalogue is estimated to be 94%. In this release, we provide the full updated catalogue and an additional readme file with further information on the Planck SZ detections. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A14

  13. The Planck List of High-z source candidates: A laboratory for high-z star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Montier, L.

    The Planck satellite (Planck 2015 results. I) has provided the first FIR/submm all-sky survey with a sensitivity allowing us to identify the rarest, most luminous hig-z dusty star-forming sources on the sky. The Planck list of high-z source candidates (PHZ, PIP XXXIX subm) has been built and charcaterized over 25% of the sky by selecting the 2151 brightest red submm sources at a 5' resolution (Montier et al. 2010). Follow-up observations with Herschel/SPIRE over 228 Planck candidates have already shown that 93% of these candidates are actually overdensities of red sources (PIP XXVII 2015), while 12 Planck high-z candidates are identified as strongly lensed star-forming galaxies at redshift between 2.2 and 3.6 (Canameras et al. 2015). The first confirmed Planck proto-cluster candidate has been revealed to be a double structure at z = 1.7 and zz = 2.03 (Flores-Cacho et al. 2015). The PHZ opens a new window on these extreme star-forming systems at high-z, providing a powerful laboratory to study the mechanisms of galaxy evolution and enrichment in the frame of the large scale structure growth.

  14. The VCOP Scale: a measure of overprotection in parents of physically vulnerable children.

    PubMed

    Wright, L; Mullen, T; West, K; Wyatt, P

    1993-11-01

    A scale is developed for measuring the overprotecting vs. optimal developmental stimulation tendencies for parents of physically "vulnerable" children. A series of items were administered to parents whose parenting techniques had been rated as either highly overprotective or as optimal by a group of MDs and other professionals. Correlations were estimated between each of the items and parental tendencies as rated by professionals. Twenty-eight items were selected that provided maximum prediction of over-protection. The resulting R2 was extraordinarily high (.94). Coefficient alpha and test-retest coefficients were acceptable. It is hoped that release of the new instrument (VCOPS) at this time will allow others to join in determining the clinical and experimental validity of this scale. PMID:8300867

  15. On the observed hysteresis in field-scale soil moisture variability and its physical controls

    NASA Astrophysics Data System (ADS)

    Mascaro, G.; Vivoni, E. R.

    2016-08-01

    The spatiotemporal variability of soil moisture (θ) has rarely been studied at the field scale across different seasons and sites. Here, we utilized 9 months of θ data in two semiarid ecosystems of North America to investigate the key relationship between the spatial mean (<θ>) and standard deviation (σ θ ) at the field-scale (∼100 m). Analyses revealed a strong seasonal control on the σ θ versus <θ> relation and the existence of hysteretic cycles where wetting and dry-down phases have notably different behavior. Empirical orthogonal functions (EOFs) showed that θ variability depends on two dominant spatial patterns, with time-stable and seasonally varying contributions in time, respectively. Correlations between EOFs and land surface properties also indicated that θ patterns are linked to vegetation (terrain and soil) factors at the site with higher (lower) vegetation cover. These physical controls explained the observed hysteresis cycles, thus confirming interpretations from previous modeling studies for the first time.

  16. Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces.

    PubMed

    Calle-Vallejo, F; Martínez, J I; García-Lastra, J M; Rossmeisl, J; Koper, M T M

    2012-03-16

    Despite their importance in physics and chemistry, the origin and extent of the scaling relations between the energetics of adsorbed species on surfaces remain elusive. We demonstrate here that scalability is not exclusive to adsorbed atoms and their hydrogenated species but rather a general phenomenon between any set of adsorbates bound similarly to the surface. On the example of the near-surface alloys of Pt, we show that scalability is a result of identical variations of adsorption energies with respect to the valence configuration of both the surface components and the adsorbates. PMID:22540492

  17. Electron electric dipole moment as a sensitive probe of PeV scale physics

    NASA Astrophysics Data System (ADS)

    Ibrahim, Tarek; Itani, Ahmad; Nath, Pran

    2014-09-01

    We give a quantitative analysis of the electric dipole moments as a probe of high scale physics. We focus on the electric dipole moment of the electron since the limit on it is the most stringent. Further, theoretical computations of it are free of QCD uncertainties. The analysis presented here first explores the probe of high scales via electron electric dipole moment (EDM) within minimal supersymmetric standard model where the contributions to the EDM arise from the chargino and the neutralino exchanges in loops. Here it is shown that the electron EDM can probe mass scales from tens of TeV into the PeV range. The analysis is then extended to include a vectorlike generation which can mix with the three ordinary generations. Here new CP phases arise and it is shown that the electron EDM now has not only a supersymmetric (SUSY) contribution from the exchange of charginos and neutralinos but also a nonsupersymmetric contribution from the exchange of W and Z bosons. It is further shown that the interference of the supersymmetric and the nonsupersymmetric contribution leads to the remarkable phenomenon where the electron EDM as a function of the slepton mass first falls and become vanishingly small and then rises again as the slepton mass increases. This phenomenon arises as a consequence of cancellation between the SUSY and the non-SUSY contribution at low scales while at high scales the SUSY contribution dies out and the EDM is controlled by the non-SUSY contribution alone. The high mass scales that can be probed by the EDM are far in excess of what accelerators will be able to probe. The sensitivity of the EDM to CP phases both in the SUSY and the non-SUSY sectors are also discussed.

  18. Fundamental Scalings of Zonal Flows in a Basic Plasma Physics Experiment

    NASA Astrophysics Data System (ADS)

    Sokolov, Vladimir; Wei, Xiao; Sen, Amiya K.

    2007-11-01

    A basic physics experimental study of zonal flows (ZF) associated with ITG (ion temperature gradient) drift modes has been performed in the Columbia Linear Machine (CLM) and ZF has been definitively identified [1]. However, in contrast to most tokamak experiments, the stabilizing effect of ZF shear to ITG appears to be small in CLM. We now report on the study of important scaling behavior of ZF. First and most importantly, we report on the collisional damping scaling of ZF, which is considered to be its saturation mechanism [2]. By varying the sum of ion-ion and ion-neutral collision frequency over nearly half an order of magnitude, we find no change in the amplitude of ZF. Secondly, we study the scaling of ZF amplitude with ITG amplitude via increasing ITG drive though ηi, as well as feedback (stabilizing / destabilizing). We have observed markedly different scaling near and far above marginal stability. [1] V. Sokolov, X. Wei, A.K. Sen and K. Avinash, Plasma Phys.Controlled Fusion 48, S111 (2006). [2] P.H. Diamond, S.-I. Itoh, K.Itoh and T.S. Hahm, Plasma Phys.Controlled Fusion 47, R35 (2005).

  19. Towards physics responsible for large-scale Lyman-α forest bias parameters

    NASA Astrophysics Data System (ADS)

    Cieplak, Agnieszka M.; Slosar, Anže

    2016-03-01

    Using a series of carefully constructed numerical experiments based on hydrodynamic cosmological SPH simulations, we attempt to build an intuition for the relevant physics behind the large scale density (bδ) and velocity gradient (bη) biases of the Lyman-α forest. Starting with the fluctuating Gunn-Peterson approximation applied to the smoothed total density field in real-space, and progressing through redshift-space with no thermal broadening, redshift-space with thermal broadening and hydrodynamically simulated baryon fields, we investigate how approximations found in the literature fare. We find that Seljak's 2012 analytical formulae for these bias parameters work surprisingly well in the limit of no thermal broadening and linear redshift-space distortions. We also show that his bη formula is exact in the limit of no thermal broadening. Since introduction of thermal broadening significantly affects its value, we speculate that a combination of large-scale measurements of bη and the small scale flux PDF might be a sensitive probe of the thermal state of the IGM. We find that large-scale biases derived from the smoothed total matter field are within 10-20% to those based on hydrodynamical quantities, in line with other measurements in the literature.

  20. Towards physics responsible for large-scale Lyman-α forest bias parameters

    DOE PAGESBeta

    Agnieszka M. Cieplak; Slosar, Anze

    2016-03-08

    Using a series of carefully constructed numerical experiments based on hydrodynamic cosmological SPH simulations, we attempt to build an intuition for the relevant physics behind the large scale density (bδ) and velocity gradient (bη) biases of the Lyman-α forest. Starting with the fluctuating Gunn-Peterson approximation applied to the smoothed total density field in real-space, and progressing through redshift-space with no thermal broadening, redshift-space with thermal broadening and hydrodynamically simulated baryon fields, we investigate how approximations found in the literature fare. We find that Seljak's 2012 analytical formulae for these bias parameters work surprisingly well in the limit of no thermalmore » broadening and linear redshift-space distortions. We also show that his bη formula is exact in the limit of no thermal broadening. Since introduction of thermal broadening significantly affects its value, we speculate that a combination of large-scale measurements of bη and the small scale flux PDF might be a sensitive probe of the thermal state of the IGM. Lastly, we find that large-scale biases derived from the smoothed total matter field are within 10–20% to those based on hydrodynamical quantities, in line with other measurements in the literature.« less

  1. Derivation and Inter-relationship of Planck time, the Hubble constant, and Cosmic Microwave Background Radiation from the Neutron and the Quantum Properties of Hydrogen

    NASA Astrophysics Data System (ADS)

    Chakeres, D. W.; Vento, R.; Moses, S. S.; Sauza, J. B.; Andrianarijaona, V. M.

    Planck time, tP, is presently the only fundamental constant that unites the physical domains of c, h, and G, and is therefore a globally defined normalized time constant. This study shows a method to derive tP, H0, G, and the Cosmic Microwave Background Radiation (CMBR) peak spectral radiance from the frequency equivalents of the neutron and the quantum properties of hydrogen such as Rydberg's constant, Bohr radius, electron mass and electron charge. All of the derivations are within the experimental ranges, including errors. Moreover, these results exceed what is experimentally possible because the natural unit data are of high precision. The constants are evaluated within a combined classic integer and harmonic fraction, power law relationship. The logarithmic base of the annihilation frequency of the neutron, approximately 2.27 ×1023 Hz, scales the independent axis to an integer and partial harmonic fraction system. The dependent axis is scaled by the properties of hydrogen. On the line that defines Planck time squared, tP2,there exist unique points directly related to H0, and the CMBR. Therefore these three fundamental cosmic constants are mathematically and conceptually closely inter-related, and each derivable from the others.

  2. NASA/Max Planck Institute Barium Ion Cloud Project.

    NASA Technical Reports Server (NTRS)

    Brence, W. A.; Carr, R. E.; Gerlach, J. C.; Neuss, H.

    1973-01-01

    NASA and the Max Planck Institute for Extraterrestrial Physics (MPE), Munich, Germany, conducted a cooperative experiment involving the release and study of a barium cloud at 31,500 km altitude near the equatorial plane. The release was made near local magnetic midnight on Sept. 21, 1971. The MPE-built spacecraft contained a canister of 16 kg of Ba CuO mixture, a two-axis magnetometer, and other payload instrumentation. The objectives of the experiment were to investigate the interaction of the ionized barium cloud with the ambient medium and to deduce the properties of electric fields in the proximity of the release. An overview of the project is given to briefly summarize the organization, responsibilities, objectives, instrumentation, and operational aspects of the project.

  3. Inflationary Magnetogenesis in R2-Inflation on the light of Planck 2015

    NASA Astrophysics Data System (ADS)

    Aimuhammad, Anwar

    2016-03-01

    We study the primordial magnetic field generated by the simple model f2 FF in Starobinsky, R2-inflationary, model. The scale invariant PMF is achieved at relatively high power index of the coupling function, | α | ~ 7 . 44 . This model does not suffer from the backreaction problem as long as, the rate of inflationary expansion, H, is less than the upper bound reported by Planck (<= 3 . 6 ×10-5MPl) in the observable scales of wave numbers, kη . By using the scale invariant PMF generated by f2 FF , we find that the upper limit of present magnetic field, B0 < 8 . 1 ×10-9 G . It is in the same order of PMF, reported by Planck, 2015.

  4. Pre-Big Bang, fundamental Physics and noncyclic cosmologies. Possible alternatives to standard concepts and laws

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, L.

    2014-04-01

    Detailed analyses of WMAP and Planck data can have significant implications for noncyclic pre-Big Bang approaches incorporating a new fundamental scale beyond the Planck scale and, potentially, new ultimate constituents of matter with unconventional basic properties as compared to standard particles. Cosmic-ray experiments at the highest energies can also yield relevant information. Hopefully, future studies will be able to deal with alternatives: i) to standard physics for the structure of the physical vacuum, the nature of space-time, the validity of quantum field theory and conventional symmetries, the interpretation of string-like theories...; ii) to standard cosmology concerning the origin and evolution of our Universe, unconventional solutions to the cosmological constant problem, the validity of inflationary scenarios, the need for dark matter and dark energy... Lorentz-like symmetries for the properties of matter can then be naturally stable space-time configurations resulting from more general primordial scenarios that incorporate physics beyond the Planck scale and describe the formation and evolution of the physical vacuum. A possible answer to the question of the origin of half-integer spins can be provided by a primordial spinorial space-time with two complex coordinates instead of the conventional four real ones, leading to a really new cosmology. We discuss basic questions and phenomenological topics concerning noncyclic pre-Big Bang cosmologies and potentially related physics.

  5. A new large field inflation constrained by Planck 2015

    NASA Astrophysics Data System (ADS)

    Ferricha-Alami, M.; Mounzi, Z.; Chakir, H.; Bennai, M.

    2016-05-01

    In this work we propose a new large field inflation model, parametrized by a parameter β sharing the same features with T-Model. We apply the slow-roll approximation to investigate the inflationary parameters, and we found that they depend on some value of β and the e-folds number Ne. In this context, we have computed and discussed the perturbation of the scalar curvature and determined the energy scale V0, which we found to be in the GUT regime. We also showed that, in our scenario, the various inflationary spectrum perturbation parameters, the spectral index ns, the ratio of tensor to scalar perturbations r and the running d ns/d ln k, perfectly agree with the recent experimental observations in the event β > 0.5 and Ne˜ 45-60. As a result we have reproduced successfully the main part, ns-r, consistent with Planck data.

  6. Space- and time-dependent scaling of numbers in mathematical structures: effects on physical and geometric quantities

    NASA Astrophysics Data System (ADS)

    Benioff, Paul

    2016-03-01

    The relationship between the foundations of mathematics and physics is a topic of of much interest. This paper continues this exploration by examination of the effect of space- and time- dependent number scaling on theoretical descriptions of some physical and geometric quantities. Fiber bundles provide a good framework to introduce a space- and time- or space-time-dependent number scaling field. The effect of the scaling field on a few nonlocal physical and geometric quantities is described. The effect on gauge theories is to introduce a new complex scalar field into the derivatives appearing in Lagrangians. U(1) invariance of Lagrangian terms does not affect the real part of the scaling field. For this field, any mass is possible. The scaling field is also shown to affect quantum wave packets and path lengths, and geodesic equations even on flat space. Scalar fields described so far in physics are possible candidates for the scaling field. The lack of direct evidence for the field in physics restricts the scaling field in that the gradient of the field must be close to zero in a local region of cosmological space and time. There are no restrictions outside the region. It is also seen that the scaling field does not affect comparisons of computation or measurements outputs with one another. However, it does affect the assignment of numerical values to the outputs of computations or measurements. These are needed because theory predictions are in terms of numerical values.

  7. Planck intermediate results. XXXVII. Evidence of unbound gas from the kinetic Sunyaev-Zeldovich effect

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aubourg, E.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dolag, K.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kitaura, F.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Puget, J.-L.; Puisieux, S.; Rachen, J. P.; Racine, B.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wang, W.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    By looking at the kinetic Sunyaev-Zeldovich effect (kSZ) in Planck nominal mission data, we present a significant detection of baryons participating in large-scale bulk flows around central galaxies (CGs) at redshift z ≈ 0.1. We estimate the pairwise momentum of the kSZ temperature fluctuations at the positions of the Central Galaxy Catalogue (CGC) samples extracted from Sloan Digital Sky Survey (SDSS-DR7) data. For the foreground-cleaned SEVEM, SMICA, NILC, and COMMANDER maps, we find 1.8-2.5σ detections of the kSZ signal, which are consistent with the kSZ evidence found in individualPlanck raw frequency maps, although lower than found in the WMAP-9yr W-band (3.3σ). We further reconstruct the peculiar velocity field from the CG density field, and compute for the first time the cross-correlation function between kSZ temperature fluctuations and estimates of CG radial peculiar velocities. This correlation function yields a 3.0-3.7σ detection of the peculiar motion of extended gas on Mpc scales in flows correlated up to distances of 80-100 h-1 Mpc. Both the pairwise momentum estimates and the kSZ temperature-velocity field correlation find evidence for kSZ signatures out to apertures of 8 arcmin and beyond, corresponding to a physical radius of >1 Mpc, more than twice the mean virial radius of halos. This is consistent with the predictions from hydrodynamical simulations that most of the baryons are outside the virialized halos. We fit a simple model, in which the temperature-velocity cross-correlation is proportional to the signal seen in a semi-analytic model built upon N-body simulations, and interpret the proportionality constant as an effective optical depth to Thomson scattering. We find τT = (1.4 ± 0.5) × 10-4; the simplest interpretation of this measurement is that much of the gas is in a diffuse phase, which contributes little signal to X-ray or thermal Sunyaev-Zeldovich observations.

  8. MOLECULAR ENVIRONMENTS OF 51 PLANCK COLD CLUMPS IN THE ORION COMPLEX

    SciTech Connect

    Liu Tie; Wu Yuefang; Zhang Huawei E-mail: ywu@pku.edu.cn

    2012-09-15

    A mapping survey of 51 Planck cold clumps projected on the Orion complex was performed with J = 1-0 lines of {sup 12}CO and {sup 13}CO with the 13.7 m telescope at the Purple Mountain Observatory. The mean column densities of the Planck gas clumps range from 0.5 to 9.5 Multiplication-Sign 10{sup 21} cm{sup -2}, with an average value of (2.9 {+-} 1.9) Multiplication-Sign 10{sup 21} cm{sup -2}. The mean excitation temperatures of these clumps range from 7.4 to 21.1 K, with an average value of 12.1 {+-} 3.0 K and the average three-dimensional velocity dispersion {sigma}{sub 3D} in these molecular clumps is 0.66 {+-} 0.24 km s{sup -1}. Most of the clumps have {sigma}{sub NT} larger than or comparable to {sigma}{sub Therm}. The H{sub 2} column density of the molecular clumps calculated from molecular lines correlates with the aperture flux at 857 GHz of the dust emission. By analyzing the distributions of the physical parameters, we suggest that turbulent flows can shape the clump structure and dominate their density distribution on large scales, but not function on small scales due to local fluctuations. Eighty-two dense cores are identified in the molecular clumps. The dense cores have an average radius and local thermal equilibrium (LTE) mass of 0.34 {+-} 0.14 pc and 38{sup +5}{sub -30} M{sub Sun }, respectively. The structures of low column density cores are more affected by turbulence, while the structures of high column density cores are more affected by other factors, especially by gravity. The correlation of velocity dispersion versus core size is very weak for the dense cores. The dense cores are found to be most likely gravitationally bounded rather than pressure confined. The relationship between M{sub vir} and M{sub LTE} can be well fitted with a power law. The core mass function here is much flatter than the stellar initial mass function. The lognormal behavior of the core mass distribution is most likely determined by internal turbulence.

  9. Multi-physics and multi-scale characterization of shale anisotropy

    NASA Astrophysics Data System (ADS)

    Sarout, J.; Nadri, D.; Delle Piane, C.; Esteban, L.; Dewhurst, D.; Clennell, M. B.

    2012-12-01

    Shales are the most abundant sedimentary rock type in the Earth's shallow crust. In the past decade or so, they have attracted increased attention from the petroleum industry as reservoirs, as well as more traditionally for their sealing capacity for hydrocarbon/CO2 traps or underground waste repositories. The effectiveness of both fundamental and applied shale research is currently limited by (i) the extreme variability of physical, mechanical and chemical properties observed for these rocks, and by (ii) the scarce data currently available. The variability in observed properties is poorly understood due to many factors that are often irrelevant for other sedimentary rocks. The relationships between these properties and the petrophysical measurements performed at the field and laboratory scales are not straightforward, translating to a scale dependency typical of shale behaviour. In addition, the complex and often anisotropic micro-/meso-structures of shales give rise to a directional dependency of some of the measured physical properties that are tensorial by nature such as permeability or elastic stiffness. Currently, fundamental understanding of the parameters controlling the directional and scale dependency of shale properties is far from complete. Selected results of a multi-physics laboratory investigation of the directional and scale dependency of some critical shale properties are reported. In particular, anisotropic features of shale micro-/meso-structures are related to the directional-dependency of elastic and fluid transport properties: - Micro-/meso-structure (μm to cm scale) characterization by electron microscopy and X-ray tomography; - Estimation of elastic anisotropy parameters on a single specimen using elastic wave propagation (cm scale); - Estimation of the permeability tensor using the steady-state method on orthogonal specimens (cm scale); - Estimation of the low-frequency diffusivity tensor using NMR method on orthogonal specimens (<

  10. A survey of physically-based catchment-scale modeling over the last half century

    NASA Astrophysics Data System (ADS)

    Paniconi, Claudio; Putti, Mario

    2015-04-01

    Integrated, process-based based numerical models in hydrology and connected disciplines (ecohydrology, hydrometeorology, hydrogeomorphology, biogeochemistry, hydrogeophysics, etc) are rapidly evolving, spurred by advances in computer technology, numerical algorithms, and environmental observation, and by the need to better understand the potential impacts of population, land use, and climate change on water and other natural resources. At the catchment scale, simulation models are commonly based on conservation principles for surface and subsurface water flow and mass transport (e.g., the Richards, St. Venant, and advection-dispersion-reaction equations, and approximations thereof), and need to be resolved by robust numerical techniques for space and time discretization, linearization, interpolation, etc. Model development through the years has continually faced physical and numerical challenges arising from heterogeneity and variability in parameters and state variables; nonlinearities and scale effects in process interactions and interface dynamics; and complex or poorly known boundary conditions and initial system states. We give an historical perspective (past 50 years) on some of the key developments in physically-based hydrological modeling, examining how these various challenges have been addressed and providing some insight on future directions as catchment modeling enters a highly interdisciplinary era.

  11. A 100-3000 GHz model of thermal dust emission observed by Planck, DIRBE and IRAS

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. This parametrization of the far-infrared dust spectrum as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody (MBB) dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We also derive full-sky 6.1' resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.1' FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anistropy on small angular scales. We have recently released maps and associated software utilities for obtaining thermal dust emission and reddening predictions using our Planck-based two-component model.

  12. Constraints on cosmological birefringence from PLANCK and Bicep2/Keck data

    NASA Astrophysics Data System (ADS)

    Gruppuso, A.; Gerbino, M.; Natoli, P.; Pagano, L.; Mandolesi, N.; Melchiorri, A.; Molinari, D.

    2016-06-01

    The polarization of cosmic microwave background (CMB) can be used to constrain cosmological birefringence, the rotation of the linear polarization of CMB photons potentially induced by parity violating physics beyond the standard model. This effect produces non-null CMB cross correlations between temperature and B mode-polarization, and between E- and B-mode polarization. Both cross-correlations are otherwise null in the standard cosmological model. We use the recently released 2015 PLANCK likelihood in combination with the Bicep2/Keck/Planck (BKP) likelihood to constrain the birefringence angle α. Our findings, that are compatible with no detection, read α = 0.0° ± 1.3° (stat) ± 1° (sys) for PLANCK data and α = 0.30° ± 0.27° (stat) ± 1° (sys) for BKP data. We finally forecast the expected improvements over present constraints when the PLANCK BB, TB and EB spectra at high l will be included in the analysis.

  13. Modeling the Role of Small Scale Physics in Sediment Transport From Grain Size to Grain Shape

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Holland, K. T.

    2007-12-01

    In recent years work has focused on the detailed physics of sediment transport at or near the grain scale. Although computational resources often restrict the domain size, deterministic models for sediment motions can prove useful in improving our understanding of sediment dynamics. Using a discrete particle model (DPM), we have performed computer simulations that describe the collective and individual motions of sediment grains immersed in fluid in an effort to emulate the physics of the sea floor, at the fluid-sediment interface, in shallow water under forcing from waves and currents. Examples of our DPM (briefly described) are shown for research applications at a range scales from millimeters to meters involving fluid flow models from simple one- dimensional eddy viscosity up to three-dimensional direct numerical simulation. Based on hundreds of different simulations over the past decade, our findings have shown: how a parameterization of pressure gradients or equivalently fluid accelerations on particle motions under waves influences sand bar migration in the surf zone; how grain shape changes bulk bedload transport rates; how efforts to model sediment particle motions in the swash zone can yield insight toward models for shoreline erosion and accretion; how recently simulated bedload transport using bimodal size distributions has uncovered a new power law; how upcoming work focuses on simulating the role of grain size distributions in small-scale sand ripple dynamics. Good agreement is found between comparisons of model output for both bulk transport rates and time dependent concentration profiles with laboratory data. Likewise, parameterizations obtained from simulation results have demonstrated skill in hindcast applications to both field and laboratory measurements. Conclusions will discuss the future role of reductionism in sediment transport modeling.

  14. Physical descriptions of the bacterial nucleoid at large scales, and their biological implications

    NASA Astrophysics Data System (ADS)

    Benza, Vincenzo G.; Bassetti, Bruno; Dorfman, Kevin D.; Scolari, Vittore F.; Bromek, Krystyna; Cicuta, Pietro; Cosentino Lagomarsino, Marco

    2012-07-01

    Recent experimental and theoretical approaches have attempted to quantify the physical organization (compaction and geometry) of the bacterial chromosome with its complement of proteins (the nucleoid). The genomic DNA exists in a complex and dynamic protein-rich state, which is highly organized at various length scales. This has implications for modulating (when not directly enabling) the core biological processes of replication, transcription and segregation. We overview the progress in this area, driven in the last few years by new scientific ideas and new interdisciplinary experimental techniques, ranging from high space- and time-resolution microscopy to high-throughput genomics employing sequencing to map different aspects of the nucleoid-related interactome. The aim of this review is to present the wide spectrum of experimental and theoretical findings coherently, from a physics viewpoint. In particular, we highlight the role that statistical and soft condensed matter physics play in describing this system of fundamental biological importance, specifically reviewing classic and more modern tools from the theory of polymers. We also discuss some attempts toward unifying interpretations of the current results, pointing to possible directions for future investigation.

  15. PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE

    SciTech Connect

    KING,B.J.

    2000-05-05

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e{sup +}e{sup {minus}} and hadron colliders and three {mu}{sup +}{mu}{sup {minus}} colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  16. Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

    NASA Technical Reports Server (NTRS)

    Abazajian, K.N.; Arnold,K.; Austermann, J.; Benson, B.A.; Bischoff, C.; Bock, J.; Bond, J.R.; Borrill, J.; Buder, I.; Burke, D.L.; Calabrese, E.; Carlstrom, J.E.; Carvalho, C.S.; Chang, C.L.; Chiang, H.C.; Church, S.; Cooray, A.; Crawford, T.M.; Crill, B.P.; Dawson, K.S.; Das, S.; Devline, M.J.; Dobbs, M.; Dodelson, S; Wollack, E. J.

    2013-01-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  17. Inflation physics from the cosmic microwave background and large scale structure

    NASA Astrophysics Data System (ADS)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Buder, I.; Burke, D. L.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Crill, B. P.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Feng, J. L.; Fraisse, A.; Gallicchio, J.; Giddings, S. B.; Green, D.; Halverson, N. W.; Hanany, S.; Hanson, D.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Horowitz, G.; Hu, W.; Hubmayr, J.; Irwin, K.; Jackson, M.; Jones, W. C.; Kallosh, R.; Kamionkowski, M.; Keating, B.; Keisler, R.; Kinney, W.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C.-L.; Kusaka, A.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linde, A.; Linder, E.; Lubin, P.; Maldacena, J.; Martinec, E.; McMahon, J.; Miller, A.; Mukhanov, V.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Senatore, L.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.; Zaldarriaga, M.

    2015-03-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments-the theory of cosmic inflation-and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5 σ measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  18. North-South non-Gaussian asymmetry in Planck CMB maps

    SciTech Connect

    Bernui, A.; Oliveira, A.F.; Pereira, T.S. E-mail: adhimar@unifei.edu.br

    2014-10-01

    We report the results of a statistical analysis performed with the four foreground-cleaned Planck maps by means of a suitably defined local-variance estimator. Our analysis shows a clear dipolar structure in Planck's variance map pointing in the direction (l,b) ≅ (220°,-32°), thus consistent with the North-South asymmetry phenomenon. Surprisingly, and contrary to previous findings, removing the CMB quadrupole and octopole makes the asymmetry stronger. Our results show a maximal statistical significance, of 98.1% CL, in the scales ranging from ℓ=4 to ℓ=500. Additionally, through exhaustive analyses of the four foreground-cleaned and individual frequency Planck maps, we find unlikely that residual foregrounds could be causing this dipole variance asymmetry. Moreover, we find that the dipole gets lower amplitudes for larger masks, evidencing that most of the contribution to the variance dipole comes from a region near the galactic plane. Finally, our results are robust against different foreground cleaning procedures, different Planck masks, pixelization parameters, and the addition of inhomogeneous real noise.

  19. Max-Planck-Institut für Astrophysik

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Max-Planck-Institut für Astrophysik, now located in the town of Garching north of Munich in Germany, is one of the more than 70 autonomous research institutes of the Max-Planck-Gesellschaft. It was founded in 1958 under the direction of Ludwig Biermann as part of the Max-Planck-Institut für Physik und Astrophysik, directed at that time by Werner Heisenberg. In 1979, when the headquarters of t...

  20. Evaluating Introductory Physics Classes in Light of the ABET Criteria: An Example from the SCALE-UP Project.

    ERIC Educational Resources Information Center

    Saul, Jeffery M.; Deardorff, Duane L.; Abbott, David S.; Allain, Rhett J.; Beichner, Robert J.

    The Student-Centered Activities for Large Enrollment University Physics (SCALE-UP) project at North Carolina State University (NCSU) is developing a curriculum to promote learning through in-class group activities in introductory physics classes up to 100 students. The authors are currently in Phase II of the project using a specially designed…

  1. The Assessment of Denial and Physical Complaints: The Validity of the Hy Scale and Associated MMPI Signs.

    ERIC Educational Resources Information Center

    McGrath, Robert E.; O'Malley, W. Brian

    1986-01-01

    Using samples of psychiatric, medical, and chronic pain patients, the effectiveness of the Hysteria scale and of various combinations of Minnesota Multiphasic Personality Inventory scales as predictors of the simultaneous occurrence of two characteristics was evaluated: denial of psychological problems and admission of physical problems. The value…

  2. A Scale for Home Visiting Nurses to Identify Risks of Physical Abuse and Neglect among Mothers with Newborn Infants

    ERIC Educational Resources Information Center

    Grietens, Hans; Geeraert, Liesl; Hellinckx, Walter

    2004-01-01

    Objective: The aim was to construct and test the reliability (utility, internal consistency, interrater agreement) and the validity (internal validity, concurrent validity) of a scale for home visiting social nurses to identify risks of physical abuse and neglect in mothers with a newborn child. Method: A 71-item scale was constructed based on a…

  3. Micrometer-Scale Physical Structure and Microbial Composition of Soil Macroaggregates

    SciTech Connect

    Bailey, Vanessa L.; McCue, Lee Ann; Fansler, Sarah J.; Boyanov, Maxim I.; DeCarlo, F.; Kemner, Kenneth M.; Konopka, Allan

    2013-10-01

    Soil macroaggregates are discrete, separable units of soil that we hypothesize contain smaller assemblages of microorganisms than bulk soil, and represent a scale potentially consistent with naturally occurring microbial communities. We posed two questions to explore microbial community composition in the context of the macroaggregate: 1) Is there a relationship between macroaggregate physical structure and microbial community composition in individual macroaggregates? And, 2) How similar are the bacterial communities in individual sub-millimeter soil macroaggregates sampled from the same 5-cm core? To address these questions, individual macroaggregates of three arbitrary size classes (250–425, 425–841, and 841–1000 μm) were sampled from a grassland field. The physical structures of 14 individual macroaggregates were characterized using synchrotron-radiation based transmission X-ray tomography, revealing that a greater proportion of the pore space in the small- and medium-sized macroaggregates is as relatively smaller pores, resulting in greater overall porosity and pore–mineral interface area in these smaller macroaggregates. Microbial community composition was characterized using 16S rRNA pyrosequencing data. Rarefaction analyses indicated that the membership of each macroaggregate was sufficiently sampled with only a few thousand sequences; in addition, the community membership varied widely between macroaggregates and the structure varied from those communities strongly dominated by a few phylotypes to communities that were evenly distributed among several phylotypes. We found no strong relationship of physical structure with community membership; this may be due to the low number of aggregates (10) for which we have both physical and biological data. Our results do support our initial expectation that individual macroaggregate communities were significantly less diverse than bulk soil from the same grassland field site.

  4. Fokker-Planck equation in mirror research

    SciTech Connect

    Post, R.F.

    1983-08-11

    Open confinement systems based on the magnetic mirror principle depend on the maintenance of particle distributions that may deviate substantially from Maxwellian distributions. Mirror research has therefore from the beginning relied on theoretical predictions of non-equilibrium rate processes obtained from solutions to the Fokker-Planck equation. The F-P equation plays three roles: Design of experiments, creation of classical standards against which to compare experiment, and predictions concerning mirror based fusion power systems. Analytical and computational approaches to solving the F-P equation for mirror systems will be reviewed, together with results and examples that apply to specific mirror systems, such as the tandem mirror.

  5. Kähler potentials for Planck inflation

    SciTech Connect

    Roest, Diederik; Scalisi, Marco; Zavala, Ivonne E-mail: m.scalisi@rug.nl

    2013-11-01

    We assess which Kähler potentials in supergravity lead to viable single-field inflationary models that are consistent with Planck. We highlight the role of symmetries, such as shift, Heisenberg and supersymmetry, in these constructions. Also the connections to string theory are pointed out. Finally, we discuss a supergravity model for arbitrary inflationary potentials that is suitable for open string inflation and generalise it to the case of closed string inflation. Our model includes the recently discussed supergravity reformulation of the Starobinsky model of inflation as well as an interesting alternative with comparable predictions.

  6. Planck 2013 results. IX. HFI spectral response

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Santos, D.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (includingthe level of out-of-band signal rejection) of all HFI detectors to a known source of electromagnetic radiation individually. This was determined by measuring the interferometric output of a continuously scanned Fourier transform spectrometer with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. Knowledge of the relative variations in the spectral response between HFI detectors allows for a more thorough analysis of the HFI data. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. While previous papers describe the pre-flight experiments conducted on the Planck HFI, this paper focusses on the analysis of the pre-flight spectral response measurements and the derivation of data products, e.g. band-average spectra, unit conversion coefficients, and colour correction coefficients, all with related uncertainties. Verifications of the HFI spectral response data are provided through comparisons with photometric HFI flight data. This validation includes use of HFI zodiacal emission observations to demonstrate out-of-band spectral signal rejection better than 108. The accuracy of the HFI relative spectral response data is verified through comparison with complementary flight-data based unit conversion coefficients and colour correction

  7. Fokker-Planck model of hydrodynamics.

    PubMed

    Singh, S K; Ansumali, Santosh

    2015-03-01

    We present a phenomenological description of the hydrodynamics in terms of the Fokker-Planck (FP) equation for one-particle distribution function. Similar to the Boltzmann equation or the Bhatnager-Gross-Krook (BGK) model, this approach is thermodynamically consistent and has the H theorem. In this model, transport coefficients as well as the equation of state can be provided independently. This approach can be used as an alternate to BGK-based methods as well as the direct simulation Monte Carlo method for the gaseous flows. PMID:25871242

  8. Teleportation fidelity as a probe of sub-Planck phase-space structure

    SciTech Connect

    Scott, A.J. Caves, Carlton M.

    2008-11-15

    We investigate the connection between sub-Planck structure in the Wigner function and the output fidelity of continuous-variable teleportation protocols. When the teleporting parties share a two-mode squeezed state as an entangled resource, high fidelity in the output state requires a squeezing large enough that the smallest sub-Planck structures in an input pure state are teleported faithfully. We formulate this relationship, which leads to an explicit relation between the fine-scale structure in the Wigner function and large-scale extent of the Wigner function, and we treat specific examples, including coherent, number, and random states and states produced by chaotic dynamics. We generalize the pure-state results to teleportation of mixed states.

  9. Kinematical evidence for physically different classes of large-scale coronal EUV waves

    NASA Astrophysics Data System (ADS)

    Warmuth, A.; Mann, G.

    2011-08-01

    Context. Large-scale wavelike disturbances have been observed in the solar corona in the EUV range since more than a decade. The physical nature of these so-called "EIT waves" is still being debated controversially. The two main contenders are on the one hand MHD waves and/or shocks, and on the other hand magnetic reconfiguration in the framework of an expanding CME. There is a lot of observational evidence backing either one or the other scenario, and no single model has been able to reproduce all observational constraints, which are partly even contradictory. This suggests that there may actually exist different classes of coronal waves that are caused by distinct physical processes. Then, the problems in interpreting coronal waves would be mainly caused by mixing together different physical processes. Aims: We search for evidence for physically different classes of large-scale coronal EUV waves. Methods: Kinematics is the most important characteristic of any moving disturbance, hence we focus on this aspect of coronal waves. Identifying distinct event classes requires a large event sample, which is up to now only available from SOHO/EIT. We analyze the kinematics of a sample of 176 EIT waves. In order to check if the results are severely affected by the low cadence of EIT, we complement this with high-cadence data for 17 events from STEREO/EUVI. In particular, we focus on the wave speeds and their evolution. Results: Based on their kinematical behavior, we find evidence for three distinct populations of coronal EUV waves: initially fast waves (v ≥ 320 km s-1) that show pronounced deceleration (class 1 events), waves with moderate (v ≈ 170-320 km s-1) and nearly constant speeds (class 2), and slow waves (v ≤ 130 km s-1) showing a rather erratic behavior (class 3). Conclusions: The kinematical behavior of the fast decelerating disturbances is consistent with nonlinear large-amplitude waves or shocks that propagate faster than the ambient fast-mode speed and

  10. Scale Development for Measuring and Predicting Adolescents’ Leisure Time Physical Activity Behavior

    PubMed Central

    Ries, Francis; Romero Granados, Santiago; Arribas Galarraga, Silvia

    2009-01-01

    The aim of this study was to develop a scale for assessing and predicting adolescents’ physical activity behavior in Spain and Luxembourg using the Theory of Planned Behavior as a framework. The sample was comprised of 613 Spanish (boys = 309, girls = 304; M age =15.28, SD =1.127) and 752 Luxembourgish adolescents (boys = 343, girls = 409; M age = 14.92, SD = 1.198), selected from students of two secondary schools in both countries, with a similar socio-economic status. The initial 43-items were all scored on a 4-point response format using the structured alternative format and translated into Spanish, French and German. In order to ensure the accuracy of the translation, standardized parallel back-translation techniques were employed. Following two pilot tests and subsequent revisions, a second order exploratory factor analysis with oblimin direct rotation was used for factor extraction. Internal consistency and test-retest reliabilities were also tested. The 4-week test-retest correlations confirmed the items’ time stability. The same five factors were obtained, explaining 63.76% and 63.64% of the total variance in both samples. Internal consistency for the five factors ranged from α = 0.759 to α = 0. 949 in the Spanish sample and from α = 0.735 to α = 0.952 in the Luxembourgish sample. For both samples, inter-factor correlations were all reported significant and positive, except for Factor 5 where they were significant but negative. The high internal consistency of the subscales, the reported item test-retest reliabilities and the identical factor structure confirm the adequacy of the elaborated questionnaire for assessing the TPB-based constructs when used with a population of adolescents in Spain and Luxembourg. The results give some indication that they may have value in measuring the hypothesized TPB constructs for PA behavior in a cross-cultural context. Key points When using the structured alternative format, weak internal consistency was obtained

  11. Physical and timing verification of subwavelength-scale designs: I. Lithography impact on MOSFETs

    NASA Astrophysics Data System (ADS)

    Pack, Robert C.; Axelrad, Valery; Shibkov, Andrei; Boksha, Victor V.; Huckabay, Judy A.; Salik, Rachid; Staud, Wolfgang; Wang, Ruoping; Grobman, Warren D.

    2003-07-01

    Subwavelength lithography at low contrast, or low-k1 factor, leads to new requirements for design, design analysis, and design verification techniques. These techniques must account for inherent physical circuit feature distortions resulting from layout pattern-dependent design-to-silicon patterning processes in this era. These distortions are unavoidable, even in the presence of sophisticated Resolution Enhancement Technologies (RET), and are a 'fact-of-life" for the designer implementing nanometer-scale designs for the foreseeable low-k1 future. The consequence is that fabricated silicon feature shapes and dimensions are in general printed with far less fidelity in comparison to the designer"s desired layout than in past generations and that the designer must consider design within significantly different margins of geometry tolerance. Traditional (Mead-Conway originated) WYSIWYG (what you see is what you get) design methodologies, assume that the designer"s physical circuit element shapes are accurate in comparison to the corresponding shapes on the real fabricated IC, and uses design rules to verify satisfactory fabrication compliance, as the input for both interconnect parasitic loading calculations and to transistor models used for performance simulation. However, these assumptions are increasingly poor ones as k1 decreases to unprecidented levels -- with concomitant increase in patterned feature distortion and fabrication yield failure modes. This paper explores a new paradigm for nanometer-scale design, one in which more advanced models of critical low-k1 lithographic printing effects are incorporated into the design flow to improve upon yield and performance verification accuracy. We start with an analysis of a complex 32-bit adder block circuit design to determine systematic changes in gate length, width and shape variations for each MOSFET in the circuit due to optical proximity effects. The physical gate dimensions for all, as predicted by the

  12. Comte, Mach, Planck, and Eddington: a study of influence across generations

    NASA Astrophysics Data System (ADS)

    Batten, Alan H.

    2016-04-01

    Auguste Comte is frequently ridiculed by astronomers for saying that human beings would never be able to know the physical nature and constitution of the stars. His philosophy, however, influenced scientists throughout his lifetime and for over a century after his death. That influence is traced here in the work of three outstanding scientists who spanned, roughly speaking, three successive generations after his own, namely, Ernst Mach, Max Planck and Arthur Stanley Eddington.

  13. Quasilinear simulation of auroral kilometric radiation by a relativistic Fokker-Planck code

    SciTech Connect

    Matsuda, Y.

    1991-01-01

    An intense terrestrial radiation called the auroral kilometric radiation (AKR) is believed to be generated by cyclotron maser instability. We study a quasilinear evolution of this instability by means of a two-dimensional relativistic Fokker-Planck code which treats waves and distributions self-consistently, including radiation loss and electron source and sink. We compare the distributions and wave amplitude with spacecraft observations to elucidate physical processes involved. 3 refs., 1 fig.

  14. Orbital and physical characteristics of meter-scale impactors from airburst observations

    NASA Astrophysics Data System (ADS)

    Brown, P.; Wiegert, P.; Clark, D.; Tagliaferri, E.

    2016-03-01

    We have analyzed the orbits and ablation characteristics in the atmosphere of 59 Earth-impacting fireballs, produced by meteoroids 1 m in diameter or larger, described here as meter-scale. Using heights at peak luminosity as a proxy for strength, we determine that there is roughly an order of magnitude spread in strengths of the population of meter-scale impactors at the Earth. We use fireballs producing recovered meteorites and well documented fireballs from ground-based camera networks to calibrate our ablation model interpretation of the observed peak height of luminosity as a function of speed. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. This is in contrast to earlier suggestions by Ceplecha (Ceplecha, Z. [1994]. Astron. Astrophys. 286, 967-970) that the majority of meter-tens of meter sized meteoroids are "… cometary bodies of the weakest known structure". We find a lower limit of ∼10-15% of our objects have a possible cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, also show evidence for weaker than average structure. Two events, Sumava and USG 20131121, have exceptionally high (relative to the remainder of the population) heights of peak brightness. These are physically most consistent with high microporosity objects, though both were on asteroidal-type orbits. We also find three events, including the Oct 8, 2009 airburst near Sulawesi, Indonesia, which display comparatively low heights of peak brightness, consistent with strong monolithic stones or iron meteoroids. Based on orbital similarity, we find a probable connection among several events in our population with the Taurid meteoroid complex; no other major meteoroid streams show probable linkages to the orbits of our meter-scale population. Our impactors cover almost four orders of magnitude in mass, but

  15. Hypersonic expansion of the Fokker--Planck equation

    SciTech Connect

    Fernandez-Feria, R.

    1989-02-01

    A systematic study of the hypersonic limit of a heavy species diluted in a much lighter gas is made via the Fokker--Planck equation governing its velocity distribution function. In particular, two different hypersonic expansions of the Fokker--Planck equation are considered, differing from each other in the momentum equation of the heavy gas used as the basis of the expansion: in the first of them, the pressure tensor is neglected in that equation while, in the second expansion, the pressure tensor term is retained. The expansions are valid when the light gas Mach number is O(1) or larger and the difference between the mean velocities of light and heavy components is small compared to the light gas thermal speed. They can be applied away from regions where the spatial gradient of the distribution function is very large, but it is not restricted with respect to the temporal derivative of the distribution function. The hydrodynamic equations corresponding to the lowest order of both expansions constitute two different hypersonic closures of the moment equations. For the subsequent orders in the expansions, closed sets of moment equations (hydrodynamic equations) are given. Special emphasis is made on the order of magnitude of the errors of the lowest-order hydrodynamic quantities. It is shown that if the heat flux vanishes initially, these errors are smaller than one might have expected from the ordinary scaling of the hypersonic closure. Also it is found that the normal solution of both expansions is a Gaussian distribution at the lowest order.

  16. Some aspects of wind tunnel magnetic suspension systems with special application at large physical scales

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.

    1983-01-01

    Wind tunnel magnetic suspension and balance systems (MSBSs) have so far failed to find application at the large physical scales necessary for the majority of aerodynamic testing. Three areas of technology relevant to such application are investigated. Two variants of the Spanwise Magnet roll torque generation scheme are studied. Spanwise Permanent Magnets are shown to be practical and are experimentally demonstrated. Extensive computations of the performance of the Spanwise Iron Magnet scheme indicate powerful capability, limited principally be electromagnet technology. Aerodynamic testing at extreme attitudes is shown to be practical in relatively conventional MSBSs. Preliminary operation of the MSBS over a wide range of angles of attack is demonstrated. The impact of a requirement for highly reliable operation on the overall architecture of Large MSBSs is studied and it is concluded that system cost and complexity need not be seriously increased.

  17. A statistical physics view of financial fluctuations: Evidence for scaling and universality

    NASA Astrophysics Data System (ADS)

    Stanley, H. Eugene; Plerou, Vasiliki; Gabaix, Xavier

    2008-06-01

    The unique scaling behavior of financial time series have attracted the research interest of physicists. Variables such as stock returns, share volume, and number of trades have been found to display distributions that are consistent with a power-law tail. We present an overview of recent research joining practitioners of economic theory and statistical physics to try to understand better some puzzles regarding economic fluctuations. One of these puzzles is how to describe outliers, i.e. phenomena that lie outside of patterns of statistical regularity. We review recent research, which suggests that such outliers may not in fact exist and that the same laws seem to govern outliers as well as day-to-day fluctuations.

  18. The Planck Compact Source Catalogues: present and future.

    NASA Astrophysics Data System (ADS)

    López-Caniego, Marcos

    2015-08-01

    The Planck Collaboration has produced catalogues of radio and sub-mm compact sources at the nine Planck frequencies, Galactic cold clumps catalogues and SZ cluster catalogues. But new catalogues are foreseen. A multifrequency compact source catalogue will be produced selecting sources at radio frequencies and following them across all Planck bands. Multifrequency catalogues can be difficult to produce in experiments like Planck with a large frequency coverage and very different resolutions across bands, but the science that can be extracted from such a catalogue compensates the effort. In addition, for those sources where a clear identification can be made, we will attempt to include flux density information from Herschel and other experiments, in particular for those blazars that are bright in radio, sub-mm and even in gamma-ray frequencies, as seen by Fermi. Moreover, Planck is making available to the community the single survey frequency maps that will allow astronomers to study the long-term variability of their favourite sources. New functionalities will be added to the Planck Legacy Archive, for example a timeline-cutting tool that will allow one to extract maps from the Planck timelines for specific periods of time allowing short-term variability studies of compact sources (e.g., flares). The unique frequency coverage of Planck make these catalogues very valuable for other experiments using the Planck compact source catalogues. For example, experiments like QUIJOTE use Planck selected sources to study the impact of polarized radio source emission on their cosmological fields and other CMB experiments will use Planck polarized compact source information for calibration.

  19. Inflationary paradigm in trouble after Planck2013

    NASA Astrophysics Data System (ADS)

    Ijjas, Anna; Steinhardt, Paul J.; Loeb, Abraham

    2013-06-01

    Recent results from the Planck satellite combined with earlier observations from WMAP, ACT, SPT and other experiments eliminate a wide spectrum of more complex inflationary models and favor models with a single scalar field, as reported by the Planck Collaboration. More important, though, is that all the simplest inflaton models are disfavored statistically relative to those with plateau-like potentials. We discuss how a restriction to plateau-like models has three independent serious drawbacks: it exacerbates both the initial conditions problem and the multiverse-unpredictability problem and it creates a new difficulty that we call the inflationary "unlikeliness problem." Finally, we comment on problems reconciling inflation with a standard model Higgs, as suggested by recent LHC results. In sum, we find that recent experimental data disfavors all the best-motivated inflationary scenarios and introduces new, serious difficulties that cut to the core of the inflationary paradigm. Forthcoming searches for B-modes, non-Gaussianity and new particles should be decisive.

  20. The best inflationary models after Planck

    SciTech Connect

    Martin, Jérôme; Vennin, Vincent; Ringeval, Christophe; Trotta, Roberto E-mail: christophe.ringeval@uclouvain.be E-mail: vennin@iap.fr

    2014-03-01

    We compute the Bayesian evidence and complexity of 193 slow-roll single-field models of inflation using the Planck 2013 Cosmic Microwave Background data, with the aim of establishing which models are favoured from a Bayesian perspective. Our calculations employ a new numerical pipeline interfacing an inflationary effective likelihood with the slow-roll library ASPIC and the nested sampling algorithm MultiNest. The models considered represent a complete and systematic scan of the entire landscape of inflationary scenarios proposed so far. Our analysis singles out the most probable models (from an Occam's razor point of view) that are compatible with Planck data, while ruling out with very strong evidence 34% of the models considered. We identify 26% of the models that are favoured by the Bayesian evidence, corresponding to 15 different potential shapes. If the Bayesian complexity is included in the analysis, only 9% of the models are preferred, corresponding to only 9 different potential shapes. These shapes are all of the plateau type.

  1. Quasar host environments: The view from Planck

    NASA Astrophysics Data System (ADS)

    Verdier, Loïc; Melin, Jean-Baptiste; Bartlett, James G.; Magneville, Christophe; Palanque-Delabrouille, Nathalie; Yèche, Christophe

    2016-04-01

    We measure the far-infrared emission of the general quasar (QSO) population using Planck observations of the Baryon Oscillation Spectroscopic Survey QSO sample. By applying multi-component matched multi-filters to the seven highest Planck frequencies, we extract the amplitudes of dust, synchrotron, and thermal Sunyaev-Zeldovich (SZ) signals for nearly 300 000 QSOs over the redshift range 0.1

  2. Planck Constant Determination from Power Equivalence

    NASA Astrophysics Data System (ADS)

    Newell, David B.

    2000-04-01

    Equating mechanical to electrical power links the kilogram, the meter, and the second to the practical realizations of the ohm and the volt derived from the quantum Hall and the Josephson effects, yielding an SI determination of the Planck constant. The NIST watt balance uses this power equivalence principle, and in 1998 measured the Planck constant with a combined relative standard uncertainty of 8.7 x 10-8, the most accurate determination to date. The next generation of the NIST watt balance is now being assembled. Modification to the experimental facilities have been made to reduce the uncertainty components from vibrations and electromagnetic interference. A vacuum chamber has been installed to reduce the uncertainty components associated with performing the experiment in air. Most of the apparatus is in place and diagnostic testing of the balance should begin this year. Once a combined relative standard uncertainty of one part in 10-8 has been reached, the power equivalence principle can be used to monitor the possible drift in the artifact mass standard, the kilogram, and provide an accurate alternative definition of mass in terms of fundamental constants. *Electricity Division, Electronics and Electrical Engineering Laboratory, Technology Administration, U.S. Department of Commerce. Contribution of the National Institute of Standards and Technology, not subject to copyright in the U.S.

  3. Prediction of full-scale dewatering results of sewage sludges by the physical water distribution.

    PubMed

    Kopp, J; Dichtl, N

    2001-01-01

    The dewaterability of sewage sludge can be described by the total solids concentration of the sludge cake and the polymer-demand for conditioning. The total solids concentration of the sludge cake depends on the physical water distribution. The various types of water in sewage sludge are mainly distinguished by the type and the intensity of their physical bonding to the solids. In a sewage sludge suspension four different types of water can be distinguished. These are the free water, which is not bound to the particles, the interstitial water, which is bound by capillary forces between the sludge flocs, the surface water, which is bound by adhesive forces and intracellular water. Only the share of free water can be separated during mechanical dewatering. It can be shown, that by thermo-gravimeteric measurement of the free water content, an exact prediction of full-scale dewatering results is possible. By separation of all free water during centrifugation the maximum dewatering result is reached. Polymer conditioning increases the velocity of the sludge water release, but the free water content is not influenced by this process. Furthermore it is not possible, to replace the measuring of the water distribution by other individual parameters such as ignition loss. PMID:11443955

  4. Resolving Lyman-alpha Emission On Physical Scales < 270 pc at z > 4

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew

    2014-10-01

    We propose ACS-WFC Ramp narrowband imaging of six strongly lensed Lyman-alpha Emitters (LAEs) at z > 4 that will spatially resolve the Lyman-alpha line emitting regions on scales < 270 pc. The best available observations (HST, Spitzer, 10m ground based telescopes) are unable to provide robust measurements of the structure of these galaxies from blank field studies, but strong gravitational lensing provides a unique opportunity to peer into the heart of young star forming galaxies at high redshift and address outstanding questions regarding their morphology and evolution. Strong lensing magnifies each of our target LAEs, increasing the effective spatial resolution of ACS-WFC such that the point spread function will correspond to physical scales < 270 parsecs within all six z > 4 galaxies. Additionally, the boost in flux due to gravitational lensing makes our proposed targets the brightest sources of their kind at these redshifts, in spite of the fact that they are intrinsically ~L* LAEs. The proposed observations will probe the morphological properties of Lyman-alpha and UV continuum emission in typical/representative high-redshift LAEs with signal-to-noise and spatial resolution comparable to studies of Lyman-alpha emitting galaxies in the z ~ 0.1 universe. The resulting data will bridge the gap between deep ground-based studies of blank field LAEs at high redshift, and detailed studies of low-redshift LAEs.

  5. Scaled-physical-model studies of the steam-drive process. Final report

    SciTech Connect

    Doscher, T.M.

    1982-11-01

    The main goal of this project was to gain an understanding of the influence of controllable, operating practices and of reservoir parameters on the steam drive. The steam drive, because the chief phenomena of fluid flow and heat flow obey the same laws of diffusion, can be physically scaled. The validity of the results of the scaled models is evidenced by the correspondence of the results with those reported in field operations. In order to conserve on resources, this report is limited to a summary statement of the findings and conclusions of the overall project with separate chapters devoted to an account of specific tasks which came to fruition during the latter part of the project. Summary of results are presented for the following projects: gravitational instability of a steam drive; roles of oil viscosity and steam temperature on the production of crude oil when the steam flow is stratified; extension of the steam drive to tars and bitumens; occurrence of the optimum steam injection rate; emulsification and oil productivity; role of reservoir thickness; cyclic injection of steam in a steam drive; high gravity crudes; partial substitution of inert gas for steam. Two projects completed and described in detail are: effect of oil viscosity on reservoir thickness on the steam drive; and anticipated effect of diurnal injection on steam efficiency.

  6. Physical Methods for Intracellular Delivery: Practical Aspects from Laboratory Use to Industrial-Scale Processing

    PubMed Central

    Meacham, J. Mark; Durvasula, Kiranmai; Degertekin, F. Levent; Fedorov, Andrei G.

    2015-01-01

    Effective intracellular delivery is a significant impediment to research and therapeutic applications at all processing scales. Physical delivery methods have long demonstrated the ability to deliver cargo molecules directly to the cytoplasm or nucleus, and the mechanisms underlying the most common approaches (microinjection, electroporation, and sonoporation) have been extensively investigated. In this review, we discuss established approaches, as well as emerging techniques (magnetofection, optoinjection, and combined modalities). In addition to operating principles and implementation strategies, we address applicability and limitations of various in vitro, ex vivo, and in vivo platforms. Importantly, we perform critical assessments regarding (1) treatment efficacy with diverse cell types and delivered cargo molecules, (2) suitability to different processing scales (from single cell to large populations), (3) suitability for automation/integration with existing workflows, and (4) multiplexing potential and flexibility/adaptability to enable rapid changeover between treatments of varied cell types. Existing techniques typically fall short in one or more of these criteria; however, introduction of micro-/nanotechnology concepts, as well as synergistic coupling of complementary method(s), can improve performance and applicability of a particular approach, overcoming barriers to practical implementation. For this reason, we emphasize these strategies in examining recent advances in development of delivery systems. PMID:23813915

  7. Physical methods for intracellular delivery: practical aspects from laboratory use to industrial-scale processing.

    PubMed

    Meacham, J Mark; Durvasula, Kiranmai; Degertekin, F Levent; Fedorov, Andrei G

    2014-02-01

    Effective intracellular delivery is a significant impediment to research and therapeutic applications at all processing scales. Physical delivery methods have long demonstrated the ability to deliver cargo molecules directly to the cytoplasm or nucleus, and the mechanisms underlying the most common approaches (microinjection, electroporation, and sonoporation) have been extensively investigated. In this review, we discuss established approaches, as well as emerging techniques (magnetofection, optoinjection, and combined modalities). In addition to operating principles and implementation strategies, we address applicability and limitations of various in vitro, ex vivo, and in vivo platforms. Importantly, we perform critical assessments regarding (1) treatment efficacy with diverse cell types and delivered cargo molecules, (2) suitability to different processing scales (from single cell to large populations), (3) suitability for automation/integration with existing workflows, and (4) multiplexing potential and flexibility/adaptability to enable rapid changeover between treatments of varied cell types. Existing techniques typically fall short in one or more of these criteria; however, introduction of micro-/nanotechnology concepts, as well as synergistic coupling of complementary method(s), can improve performance and applicability of a particular approach, overcoming barriers to practical implementation. For this reason, we emphasize these strategies in examining recent advances in development of delivery systems. PMID:23813915

  8. Investigation of the physical scaling of sea spray spume droplet production

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Banner, M. L.; Peirson, W. L.; Asher, W.; Morison, R. P.

    2009-10-01

    In this paper we report on a laboratory study, the Spray Production and Dynamics Experiment (SPANDEX), conducted at the University of New South Wales Water Research Laboratory in Australia. The goals of SPANDEX were to illuminate physical aspects of spume droplet production and dispersion; verify theoretical simplifications used to estimate the source function from ambient droplet concentration measurements; and examine the relationship between the implied source strength and forcing parameters such as wind speed, surface turbulent stress, and wave properties. Observations of droplet profiles give reasonable confirmation of the basic power law profile relationship that is commonly used to relate droplet concentrations to the surface source strength. This essentially confirms that, even in a wind tunnel, there is a near balance between droplet production and removal by gravitational settling. The observations also indicate considerable droplet mass may be present for sizes larger than 1.5 mm diameter. Phase Doppler Anemometry observations revealed significant mean horizontal and vertical slip velocities that were larger closer to the surface. The magnitude seems too large to be an acceleration time scale effect. Scaling of the droplet production surface source strength proved to be difficult. The wind speed forcing varied only 23% and the stress increased a factor of 2.2. Yet, the source strength increased by about a factor of 7. We related this to an estimate of surface wave energy flux through calculations of the standard deviation of small-scale water surface disturbance, a wave-stress parameterization, and numerical wave model simulations. This energy index only increased by a factor of 2.3 with the wind forcing. Nonetheless, a graph of spray mass surface flux versus surface disturbance energy is quasi-linear with a substantial threshold.

  9. Large-Scale Physical Modelling of Complex Tsunami-Generated Currents

    NASA Astrophysics Data System (ADS)

    Lynett, P. J.; Kalligeris, N.; Ayca, A.

    2014-12-01

    For tsunamis passing through sharp bathymetric variability, such as a shoal or a harbor entrance channel, z-axis vortical motions are created. These structures are often characterized by a horizontal length scale that is much greater than the local depth and are herein called shallow turbulent coherent structures (TCS). These shallow TCS can greatly increase the drag force on affected infrastructure and the ability of the flow to transport debris and floating objects. Shallow TCS typically manifest as large "whirlpools" during tsunamis, very commonly in ports and harbors. Such structures have been observed numerous times in the tsunamis over the past decade, and are postulated as the cause of large vessels parting their mooring lines due to yaw induced by the rotational eddy. Through the NSF NEES program, a laboratory study to examine a shallow TCS was performed during the summer of 2014. To generate this phenomenon, a 60 second period long wave was created and then interacted with a breakwater in the basin, forcing the generation of a large and stable TCS. The model scale is 1:30, equating to a 5.5 minute period and 0.5 m amplitude in the prototype scale. Surface tracers, dye studies, AVD's, wave gages, and bottom pressure sensors are used to characterize the flow. Complex patterns of surface convergence and divergence are easily seen in the data, indicating three-dimensional flow patterns. Dye studies show areas of relatively high and low spatial mixing. Model vessels are placed in the basin such that ship motion in the presence of these rapidly varying currents might be captured. The data obtained from this laboratory study should permit a better physical understanding of the nearshore currents that tsunamis are known to generate, as well as provide a benchmark for numerical modelers who wish to simulate currents.

  10. Effect of rock fragments on soil physical properties at pore and field scales

    NASA Astrophysics Data System (ADS)

    Gargiulo, Laura; Mele, Giacomo; Coppola, Antonio; De Mascellis, Roberto; Di Matteo, Bruno; Terribile, Fabio; Basile, Angelo

    2016-04-01

    Many soils in Mediterranean area contain high amounts of rock fragments as a result of both natural soil forming processes and human activities. Coarse rock fragments have a controversial role in soils. They are often included as a limiting factor in most Land Evaluation and Land Capability schemes throughout the world, but they also protect against soil erosion and soil physical degradation. Some experiments have showed also that, because of the beneficial effect in reducing bulk density and increasing macroporosity in topsoils, field crushing of stones could be considered a better agricultural practice than removing stones from soils. Although many experimental studies have only focused on the effect of (superficial) rock fragments on hydrological properties, direct measurements using soil image analysis allowed to improve the knowledge of the mechanisms of pore formation due to the presence of rock fragments inside the soil profile. In this work, a lab experimental test with two different soils susceptible to compaction was performed. The soils were added with different concentrations of rock fragments and subjected to several wetting/drying cycles, in order to induce formation of soil structure; then hydrological measurement and soil image analysis were performed. The measured changes in soil pore system and hydro-dispersive properties have been following implemented in simulation models in order to predict the effect of such results at field scale on yields of different crops in variable climatic conditions. Therefore, the aim of this work was to evaluate the effect at different scales (pore vs sample vs field) of rock fragment addition on many processes combining hydrological measurements with soil image analysis and modelling. The obtained results showed the usefulness of the use of image analysis to enhance the parameterization of the hydrological models and allowed to observe the role of different soil types in affecting the effect of rock fragment

  11. Subgrid-scale physical parameterization in atmospheric modeling: How can we make it consistent?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2016-07-01

    Approaches to subgrid-scale physical parameterization in atmospheric modeling are reviewed by taking turbulent combustion flow research as a point of reference. Three major general approaches are considered for its consistent development: moment, distribution density function (DDF), and mode decomposition. The moment expansion is a standard method for describing the subgrid-scale turbulent flows both in geophysics and engineering. The DDF (commonly called PDF) approach is intuitively appealing as it deals with a distribution of variables in subgrid scale in a more direct manner. Mode decomposition was originally applied by Aubry et al (1988 J. Fluid Mech. 192 115-73) in the context of wall boundary-layer turbulence. It is specifically designed to represent coherencies in compact manner by a low-dimensional dynamical system. Their original proposal adopts the proper orthogonal decomposition (empirical orthogonal functions) as their mode-decomposition basis. However, the methodology can easily be generalized into any decomposition basis. Among those, wavelet is a particularly attractive alternative. The mass-flux formulation that is currently adopted in the majority of atmospheric models for parameterizing convection can also be considered a special case of mode decomposition, adopting segmentally constant modes for the expansion basis. This perspective further identifies a very basic but also general geometrical constraint imposed on the massflux formulation: the segmentally-constant approximation. Mode decomposition can, furthermore, be understood by analogy with a Galerkin method in numerically modeling. This analogy suggests that the subgrid parameterization may be re-interpreted as a type of mesh-refinement in numerical modeling. A link between the subgrid parameterization and downscaling problems is also pointed out.

  12. VizieR Online Data Catalog: Planck Early Release Compact Source Catalogue (Planck, 2011)

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Baker, M.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Bennett, K.; Benoit, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bradshaw, T.; Bremer, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cabella, P.; Cantalupo, C. M.; Cappellini, B.; Cardoso, J.-F.; Carr, R.; Casale, M.; Catalano, A.; Cayon, L.; Challinor, A.; Chamballu, A.; Charra, J.; Chary, R.-R.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Crone, G.; Crook, M.; Cuttaia, F.; Danese, L.; D'Arcangelo, O.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Bruin, J.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Desert, F.-X.; Dick, J.; Dickinson, C.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Doerl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Ensslin, T. A.; Eriksen, H. K.; Finelli, F.; Foley, S.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Freschi, M.; Gaier, T.C.; Galeotta, S.; Gallegos, J.; Gandolfo, B.; Ganga, K.; Giard, M.; Giardino, G.; Gienger, G.; Giraud-Heraud, Y.; Gonzalez, J.; Gonzalez-Nuevo, J.; Gorski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guyot, G.; Haissinski, J.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juillet, J. J.; Juvela, M.; Kangaslahti, P.; Keihaenen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Krassenburg, M.; Kurki-Suonio, H.; Lagache, G.; Laehteenmaeki, A.; Lamarre, J.-M.; Lange, A. E.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lowe, S.; Lubin, P. M.; Macias-Perez, J. F.; Maciaszek, T.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Martinez-Gonzalez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McDonald, A.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Mevi, C.; Miniscalco, R.; Mitra, S.; Miville-Deschenes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; sMorisset, N.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Norgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Ortiz, I.; Osborne, S.; Osuna, P.; Oxborrow, C. A.; Pajot, F.; Paladini, R.; Partridge, B.; Pasian, F.; Passvogel, T.; Patanchon, G.; Pearson, D.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Prezeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Reix, J.-M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubino-Martin, J. A.; Rusholme, B.; Salerno, E.; Sandri, M.; Santos, D.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.; Shellard, P.; Simonetto, A.; Smoot, G. F.; Sozzi, C.; Starck, J.-L.; Sternberg, J.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Stringhetti, L.; Sudiwala, R.; Sunyaev, R.; Sygnet, J.-F.; Tapiador, D.; Tauber, J. A.; Tavagnacco, D.; Taylor, D.; Terenzi, L.; Texier, D.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Tuerler, M.; Tuttlebee, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Varis, J.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson, C.; White, S. D. M.; White, M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-01-01

    Planck is a European Space Agency (ESA) mission, with significant contributions from the U.S. National Aeronautics and Space Agency (NASA). It is the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 13 August 2009. Since then, Planck has been continuously measuring the intensity of the sky over a range of frequencies from 30 to 857GHz (wavelengths of 1cm to 350μm) with spatial resolutions ranging from about 33' to 5' respectively. The Low Frequency Instrument (LFI) on Planck provides temperature and polarization information using radiometers which operate between 30 and 70GHz. The High Frequency Instrument (HFI) uses pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353GHz but does not measure polarization information in the two upper HFI bands at 545 and 857GHz. The lowest frequencies overlap with WMAP, and the highest frequencies extend far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck is providing an unprecedented window into dust emission at far-infrared and submillimeter wavelengths. The Planck Early Release Compact Source Catalogue (ERCSC) is a list of all high reliability sources, both Galactic and extragalactic, derived from the first sky coverage. The data that went into this early release comprise all observations undertaken between 13 August 2009 and 6 June 2010, corresponding to Planck operational days 91-389. Since the Planck scan strategy results in the entire sky being observed every 6 months

  13. Equivalence of the Kelvin–Planck statement of the second law and the principle of entropy increase

    NASA Astrophysics Data System (ADS)

    Sarasua, L. G.; Abal, G.

    2016-09-01

    We present a demonstration of the equivalence between the Kelvin–Planck statement of the second law and the principle of entropy increase. Despite the fundamental importance of these two statements, a rigorous treatment to establish their equivalence is missing in standard physics textbooks. The argument is valid under very general conditions, but is simple and suited to an undergraduate course.

  14. The Nature of Light: I. A Historical Survey Up to the Pre-Planck Era and Implications for Teaching

    ERIC Educational Resources Information Center

    Oon, Pey Tee; Subramaniam, R.

    2009-01-01

    The objective of this article is to contribute to the scant literature that exists on historical developments on the nature of light. It traces the nature of light from the times of the ancient Greeks to the classical theories prior to Planck. The development of thought that characterizes the evolution of a concept in physics over time affords…

  15. Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics Talk: Understanding Nano-scale Electronic Systems via Large-scale Computation

    NASA Astrophysics Data System (ADS)

    Cao, Chao

    2009-03-01

    Nano-scale physical phenomena and processes, especially those in electronics, have drawn great attention in the past decade. Experiments have shown that electronic and transport properties of functionalized carbon nanotubes are sensitive to adsorption of gas molecules such as H2, NO2, and NH3. Similar measurements have also been performed to study adsorption of proteins on other semiconductor nano-wires. These experiments suggest that nano-scale systems can be useful for making future chemical and biological sensors. Aiming to understand the physical mechanisms underlying and governing property changes at nano-scale, we start off by investigating, via first-principles method, the electronic structure of Pd-CNT before and after hydrogen adsorption, and continue with coherent electronic transport using non-equilibrium Green’s function techniques combined with density functional theory. Once our results are fully analyzed they can be used to interpret and understand experimental data, with a few difficult issues to be addressed. Finally, we discuss a newly developed multi-scale computing architecture, OPAL, that coordinates simultaneous execution of multiple codes. Inspired by the capabilities of this computing framework, we present a scenario of future modeling and simulation of multi-scale, multi-physical processes.

  16. Fokker-Planck/Transport model for neutral beam driven tokamaks

    SciTech Connect

    Killeen, J.; Mirin, A.A.; McCoy, M.G.

    1980-01-01

    The application of nonlinear Fokker-Planck models to the study of beam-driven plasmas is briefly reviewed. This evolution of models has led to a Fokker-Planck/Transport (FPT) model for neutral-beam-driven Tokamaks, which is described in detail. The FPT code has been applied to the PLT, PDX, and TFTR Tokamaks, and some representative results are presented.

  17. Geometric interpretation of Planck-scale-deformed co-products

    NASA Astrophysics Data System (ADS)

    Lobo, Iarley P.; Palmisano, Giovanni

    2016-03-01

    For theories formulated with a maximally symmetric momentum space we propose a general characterization for the description of interactions in terms of the isometry group of the momentum space. The well known cases of κ-Poincaré-inspired and (2+1)-dimensional gravity-inspired composition laws both satisfy our condition. Future applications might include the proposal of a class of models based on momenta spaces with anti-de Sitter geometry.

  18. Planck-scale modified dispersion relations and Finsler geometry

    SciTech Connect

    Girelli, F.; Liberati, S.; Sindoni, L.

    2007-03-15

    A common feature of all quantum gravity (QG) phenomenology approaches is to consider a modification of the mass-shell condition of the relativistic particle to take into account quantum gravitational effects. The framework for such approaches is therefore usually set up in the cotangent bundle (phase space). However it was recently proposed that this phenomenology could be associated with an energy dependent geometry that has been coined 'rainbow metric'. We show here that the latter actually corresponds to a Finsler geometry, the natural generalization of Riemannian geometry. We provide in this way a new and rigorous framework to study the geometrical structure possibly arising in the semiclassical regime of QG. We further investigate the symmetries in this new context and discuss their role in alternative scenarios like Lorentz violation in emergent spacetimes or deformed special relativity-like models.

  19. Use of Plot Scale Observations to gauge the applicability of Physically-Based Models

    NASA Astrophysics Data System (ADS)

    Kormos, P. R.; McNamara, J. P.; Marks, D. G.; Flores, A. N.; Marshall, H.; Boe, E.

    2011-12-01

    Catchment hydrologic modeling efforts should be initiated with a comparison between a perceptual model of how the basin functions, and what processes the numerical hydrologic model represents. The majority of recent attention in literature has been focused on using this process to inform conceptual model structures aimed at predicting streamflow from precipitation events. However, this method may also be used to assess the applicability of physically-based models when lumped parameter models are insufficient for research questions. Physically-based models are chosen over lumped parameter conceptual models for their ability to provide detailed spatial information on soil moisture, ephemeral streamflow, and differential snow melt. A plot scale study was conducted in a 0.02 km2 headwater catchment to build a perceptual model of the Tree Line (TL) Experimental Catchment within the Dry Creek Experimental Watershed (DCEW) in the semi-arid foothills north of Boise, ID. Overland flow, through flow, and radiation flux measurements were taken in addition to existing weather station variables (air temperature, relative humidity, wind speed and direction, snow depth, and soil moisture) for the 2011 water year. The 2011 water year is typical of this study site and is characterized by a shallow snowpack that lasts from the late fall to early spring and includes several rain-on-snow events. A soil storage field capacity threshold in the upper highly conductive soil (approximately 145 mm) must be crossed before lateral flow is observed. The total soil storage threshold for lateral flow slowly increases from 253 mm during a December rain-on-snow event, to 269 mm during the spring melt event as deeper, less conductive soils wet up. Lateral flow primarily takes place as overland flow and as concentrated flow paths at the soil-bedrock interface, which are controlled by bedrock topography. Results suggest that the watershed models used in TL need to account for unsaturated soil storage

  20. Composite Inflation in the light of 2015 Planck data

    NASA Astrophysics Data System (ADS)

    Channuie, Phongpichit

    2016-08-01

    In this work, we examine cosmological constraints on models of composite inflation based on the slow-roll approximation by using the recent Planck measurement. We compare the spectral index of curvature perturbation (and its running) and the tensor-to-scalar ratio predicted by such models with Planck 2015 data. We find that the predictions of technicolor inflation are nicely consistent with the Planck analysis. Moreover, the predictions from the second model, glueball inflation, are in good agreement with the Planck data at 2σC.L. However, the final two models, super glueball inflation and orientifold inflation, favor only the rather large value of the tensor-to-scalar ratio of which the predictions are in tension with the Planck analysis.

  1. Physical modelling of granular flows at multiple-scales and stress levels

    NASA Astrophysics Data System (ADS)

    Take, Andy; Bowman, Elisabeth; Bryant, Sarah

    2015-04-01

    The rheology of dry granular flows is an area of significant focus within the granular physics, geoscience, and geotechnical engineering research communities. Studies performed to better understand granular flows in manufacturing, materials processing or bulk handling applications have typically focused on the behavior of steady, continuous flows. As a result, much of the research on relating the fundamental interaction of particles to the rheological or constitutive behaviour of granular flows has been performed under (usually) steady-state conditions and low stress levels. However, landslides, which are the primary focus of the geoscience and geotechnical engineering communities, are by nature unsteady flows defined by a finite source volume and at flow depths much larger than typically possible in laboratory experiments. The objective of this paper is to report initial findings of experimental studies currently being conducted using a new large-scale landslide flume (8 m long, 2 m wide slope inclined at 30° with a 35 m long horizontal base section) and at elevated particle self-weight in a 10 m diameter geotechnical centrifuge to investigate the granular flow behavior at multiple-scales and stress levels. The transparent sidewalls of the two flumes used in the experimental investigation permit the combination of observations of particle-scale interaction (using high-speed imaging through transparent vertical sidewalls at over 1000 frames per second) with observations of the distal reach of the landslide debris. These observations are used to investigate the applicability of rheological models developed for steady state flows (e.g. the dimensionless inertial number) in landslide applications and the robustness of depth-averaged approaches to modelling dry granular flow at multiple scales. These observations indicate that the dimensionless inertial number calculated for the flow may be of limited utility except perhaps to define a general state (e.g. liquid

  2. Planck 2013 results. V. LFI calibration

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chen, X.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Kangaslahti, P.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Paci, F.; Pagano, L.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Ricciardi, S.; Riller, T.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    We discuss the methods employed to photometrically calibrate the data acquired by the Low Frequency Instrument on Planck. Our calibration is based on a combination of the orbital dipole plus the solar dipole, caused respectively by the motion of the Planck spacecraft with respect to the Sun and by motion of the solar system with respect to the cosmic microwave background (CMB) rest frame. The latter provides a signal of a few mK with the same spectrum as the CMB anisotropies and is visible throughout the mission. In this data releasewe rely on the characterization of the solar dipole as measured by WMAP. We also present preliminary results (at 44 GHz only) on the study of the Orbital Dipole, which agree with the WMAP value of the solar system speed within our uncertainties. We compute the calibration constant for each radiometer roughly once per hour, in order to keep track of changes in the detectors' gain. Since non-idealities in the optical response of the beams proved to be important, we implemented a fast convolution algorithm which considers the full beam response in estimating the signal generated by the dipole. Moreover, in order to further reduce the impact of residual systematics due to sidelobes, we estimated time variations in the calibration constant of the 30 GHz radiometers (the ones with the largest sidelobes) using the signal of an internal reference load at 4 K instead of the CMB dipole. We have estimated the accuracy of the LFI calibration following two strategies: (1) we have run a set of simulations to assess the impact of statistical errors and systematic effects in the instrument and in the calibration procedure; and (2) we have performed a number of internal consistency checks on the data and on the brightness temperature of Jupiter. Errors in the calibration of this Planck/LFI data release are expected to be about 0.6% at 44 and 70 GHz, and 0.8% at 30 GHz. Both these preliminary results at low and high ℓ are consistent with WMAP results

  3. A neural-network based estimator to search for primordial non-Gaussianity in Planck CMB maps

    NASA Astrophysics Data System (ADS)

    Novaes, C. P.; Bernui, A.; Ferreira, I. S.; Wuensche, C. A.

    2015-09-01

    We present an upgraded combined estimator, based on Minkowski Functionals and Neural Networks, with excellent performance in detecting primordial non-Gaussianity in simulated maps that also contain a weighted mixture of Galactic contaminations, besides real pixel's noise from Planck cosmic microwave background radiation data. We rigorously test the efficiency of our estimator considering several plausible scenarios for residual non-Gaussianities in the foreground-cleaned Planck maps, with the intuition to optimize the training procedure of the Neural Network to discriminate between contaminations with primordial and secondary non-Gaussian signatures. We look for constraints of primordial local non-Gaussianity at large angular scales in the foreground-cleaned Planck maps. For the SMICA map we found fNL = 33 ± 23, at 1σ confidence level, in excellent agreement with the WMAP-9yr and Planck results. In addition, for the other three Planck maps we obtain similar constraints with values in the interval fNL in [33, 41], concomitant with the fact that these maps manifest distinct features in reported analyses, like having different pixel's noise intensities.

  4. Comparison of Sunyaev-Zel'dovich measurements from Planck and from the Arcminute Microkelvin Imager for 99 galaxy clusters

    NASA Astrophysics Data System (ADS)

    Perrott, Y. C.; Olamaie, M.; Rumsey, C.; Brown, M. L.; Feroz, F.; Grainge, K. J. B.; Hobson, M. P.; Lasenby, A. N.; MacTavish, C. J.; Pooley, G. G.; Saunders, R. D. E.; Schammel, M. P.; Scott, P. F.; Shimwell, T. W.; Titterington, D. J.; Waldram, E. M.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aussel, H.; Barrena, R.; Bikmaev, I.; Böhringer, H.; Burenin, R.; Carvalho, P.; Chon, G.; Comis, B.; Dahle, H.; Democles, J.; Douspis, M.; Harrison, D.; Hempel, A.; Hurier, G.; Khamitov, I.; Kneissl, R.; Macías-Pérez, J. F.; Melin, J.-B.; Pointecouteau, E.; Pratt, G. W.; Rubiño-Martín, J. A.; Stolyarov, V.; Sutton, D.

    2015-08-01

    We present observations and analysis of a sample of 123 galaxy clusters from the 2013 Planck catalogue of Sunyaev-Zel'dovich sources with the Arcminute Microkelvin Imager (AMI), a ground-based radio interferometer. AMI provides an independent measurement with higher angular resolution, 3 arcmin compared to the Planck beams of 5-10 arcmin. The AMI observations thus provide validation of the cluster detections, improved positional estimates, and a consistency check on the fitted size (θs) and flux (Ytot) parameters in the generalised Navarro, Frenk and White (GNFW) model. We detect 99 of the clusters. We use the AMI positional estimates to check the positional estimates and error-bars produced by the Planck algorithms PowellSnakes and MMF3. We find that Ytot values as measured by AMI are biased downwards with respect to the Planck constraints, especially for high Planck-S/N clusters. We perform simulations to show that this can be explained by deviation from the universal pressure profile shape used to model the clusters. We show that AMI data can constrain the α and β parameters describing the shape of the profile in the GNFW model for individual clusters provided careful attention is paid to the degeneracies between parameters, but one requires information on a wider range of angular scales than are present in AMI data alone to correctly constrain all parameters simultaneously. Appendices are available in electronic form at http://www.aanda.org

  5. The physics of non-volcanic tremor: insights from laboratory-scale earthquakes

    NASA Astrophysics Data System (ADS)

    di Toro, G.; Meredith, P.

    2012-04-01

    Due to his extensive early experience in field structural geology, Luigi Burlini's experimental research was always aimed at using laboratory techniques and simulations to improve our understanding of the physics of natural rock deformation. Here we present an example of collaborative work from the later part of his scientific career in which the main goal was unravelling the physics of non-volcanic tremor in subduction zones. This was achieved by deforming typical source rocks (serpentinites) under conditions (300 MPa and 600oC) that approach those expected in nature (up to 1 GPa and 500oC). The main technical challenge was to capture deformation-induced microseismicity (in the form of acoustic emissions) released under such extreme conditions by means of in-situ transducers designed to work at only modest temperatures (up to 200oC). The main scientific challenges were (1) to link the acoustic emission output to specific physical processes, such as cracking, fluid flow or fluid-crack interactions, by means of waveform and microstructural analysis; and (2) to extrapolate the laboratory acoustic emission signals (kHz to MHz frequency) associated with mm to cm-scale processes, to natural seismicity (0.1-1 Hz frequency) associated with km-scale rock volumes by means of frequency scaling (Aki and Richards, 1980). Episodic tremor and slip (ETS) has been correlated with rupture phenomena in subducting oceanic lithosphere at 30 to 45 km depth, where high Vp/Vs ratios, suggestive of high-fluid pressure, have also been observed. ETS, by accommodating slip in the down-dip portion of the subduction zone, may trigger megathrust earthquakes up-dip in the locked section. In our experiments we measured the output of acoustic emissions during heating of serpentinite samples to beyond their equilibrium dehydration temperature. Experiments were performed on cores samples 15 mm in diameter by 30 mm long under hydrostatic stresses of 200 or 300 MPa in a Paterson high

  6. History and progress on accurate measurements of the Planck constant

    NASA Astrophysics Data System (ADS)

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10-34 J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, NA. As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 108 from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the improved

  7. History and progress on accurate measurements of the Planck constant.

    PubMed

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10(-34) J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, N(A). As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 10(8) from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the

  8. Emergent behaviour in electrodiffusion: Planck's other quanta

    NASA Astrophysics Data System (ADS)

    Bass, L.; Bracken, A. J.

    2014-02-01

    A well-established nonlinear continuum model of time-independent electrodiffusion describes the migrational and diffusional transport of two ionic species, with equal and opposite valences, across a liquid junction. The ionic charge densities provide the source for a static electric field, which in turn feeds back on the charges to contribute the migrational component of the ionic transport. Underpinning the model is a form of the second Painlevé ordinary differential equation (PII). When Bäcklund transformations, extended from those known in the context of PII, are applied to an exact solution of the model first found by Planck, a sequence of exact solutions emerges. These are characterized by corresponding ionic flux and current densities that are found to be quantized in a particularly simple way. It is argued here that this flux quantization reflects the underlying quantization of charge at the ionic level: the nonlinear continuum model ‘remembers' its discrete roots, leading to this emergent phenomenon.

  9. Bolometric detectors for the Planck surveyor

    NASA Technical Reports Server (NTRS)

    Yun, M.; Koch, T.; Bock, J.; Holmes, W.; Hustead, L.; Wild, L.; Mulder, J.; Turner, A.; Lange, A.; Bhatia, R.

    2002-01-01

    The High Frequency Instrument on the NASA/ESA Planck Surveyor, scheduled for launch in 2007, will map the entire sky in 6 frequency bands ranging from 100 GHz to 857 GHz to probe Cosmic Microwave Background (CMB) anisotropy and polarization with angular resolution ranging from 9' to 5'. The HFI focal plane will contain 48 silicon nitride micromesh bolometers operating from a 100 mK heat sink. Four detectors in each of the 6 bands will detect unpolarized radiation. An additional 4 pairs of detectors will provide sensitivity to linear polarization of emission at 143, 217 and 353 GHz. We report on the development and characterization of these detectors before delivery to the European HFI consortium.

  10. Pore-scaling Modeling of Physical Property Changes During CO2 Injection into Sandstone

    NASA Astrophysics Data System (ADS)

    Keehm, Y.; Yoo, G.

    2009-12-01

    Carbon dioxide is a green-house gas and is believed to be an important factor in global warming and climate change. Many countries around the world are working on reducing and sequestrating CO2 to follow international regulations. One of promising area for CO2 sequestration is the storage in geological formation. To accurately determine the performance of geological injection and storage, quantification and monitoring of the physical property changes are essential. In this paper, we are presenting a new approach for the monitoring of CO2 sequestration in sandstone using pore-scale simulation techniques. The method consists of three steps: 1) acquisition of high-resolution pore microstructures by X-ray micro-tomography; 2) CO2 injection simulation using lattice-Boltzmann (LB) two-phase flow simulation; and 3) FEM property simulations (electrical and elastic) at different CO2 saturations during the injection. We use three different sandstone samples: sand-pack, Berea sandstone, and B2 sandstone from offshore of Korea. The porosity of the sand-pack is 42% and that of two sandstone samples is around 17%. The digital pore structures were obtained by X-ray micro-tomography with a spatial resolution of 2 micron. The LB two-phase flow simulation is then conducted by injecting CO2 into fully water-saturated samples and gives a realistic movement of CO2 in the pore structure. At each CO2 saturation, electrical and elastic properties are determined by pore-scale FEM simulation techniques. The electrical conductivity decreases almost linearly as CO2 saturations increases; however, the P-wave velocity decrease more rapidly at the low CO2 saturation (up to 30%), than at higher saturation. S-wave velocity does not show any significant changes. The higher porosity rock shows more sensitivity to saturation changes. The modeling shows that we can have quantitative relations between physical properties and CO2 saturation, which can be used to determine injection performance and

  11. Issues and perspectives of physically-based ecohydrological modeling: crossing spatial and temporal scales

    NASA Astrophysics Data System (ADS)

    Fatichi, S.

    2011-12-01

    The coupled, spatially-distributed dynamics of hydrological and vegetation have been extremely difficult to address quantitavely. The analyses are particularly challenging because of the spatially and temporally heterogeneous conditions within watersheds, especially when topographically complex landscapes are considered. Nonetheless, a better understanding of ecosystem functioning, and the improvement of our predictive skills are related to providing consistent simulations of hydrological, energy, and carbon fluxes in heterogeneous landscapes. A mechanistic ecohydrological model Tethys-Chloris is used to investigate these complex dynamics in two ecosystems characterized by cold climate and seasonal snow cover. A range of ecohydrological metrics is presented to highlight the model capabilities in reproducing hydrological and vegetation dynamics across spatial and temporal scales. A diverse set of observations is used to confirm the simulated dynamics. Satisfactory results are obtained without significant calibration efforts despite the large phase-space dimensionality of the model, the uncertainty of imposed boundary conditions, and limited data availability. The background rationale is that the structure of a physically-based/mechanistic model leads to a satisfactory performance with a narrow range of possible outcomes. This is possible because the physically-based (i.e., theoretically measurable) nature of the parameters implies narrower bounds of the values they can assume. The direct consequence is a narrower range of possible model results. Nonetheless, major uncertainties remain in simulating hydrological fluxes in subsurface, such as deep soil horizons as well as at the bedrock interface. While the simulated patterns mimic the outcome of hydrological dynamics with high realism, the lack of spatially distributed data prevents a more rigorous assessment; further community efforts are warranted to address the issue that hampers the development and thorough

  12. Astronomical time-scale for physical property records from Quaternary sediments of the northern North Atlantic

    NASA Astrophysics Data System (ADS)

    Mienert, Jürgen; Chi, Jian

    1995-02-01

    Deep sea sediment cores taken between 50° and 75°N in the North Atlantic, in water depths varying between 1340 and 3850 m, were examined to provide an astronomically calibrated late Quaternary time-scale based on physical property records. Magnetic susceptibility and gamma ray attenuation porosity evaluator (GRAPE) density changes of these cores revealed significant responses to orbital forcing in the eccentricity (100 kyr), obliquity (41 kyr) and precessional (23, 19 kyr) bands. At 75°N (Greenland Sea), a response to obliquity forcing was weak despite the fact that it should become more pronounced in sediments at high latitudes. Application of bandpass filtering at the obliquity period (41 kyr), however, showed that variance at this period did exist in the magnetic susceptibility record, but at a very low power. At 50°N stacked curves of magnetic susceptibility correlated strongly with the SPECMAP curve for the past 500 ka. Since about 65 ka, dropstone layers are recorded in both magnetic susceptibility and GRAPE data of Rockall Plateau sediments. Although Rockall Plateau sediments show peaks in physical properties that correlate with Heinrich events (H1, H2, H4, H5, H6), such a relationship was not readily observed in Norwegian-Greenland Sea records. Heinrich events at Rockall Plateau sites indicate a northward flow of icebergs in the eastern North Atlantic. This flow pattern and the presence of Heinrich events during the past 65 ka raise the questions of whether similar events occurred before this time period, and to what kind of ice sheet dynamics and climatic-oceanographic conditions favoured major iceberg surges from the Laurentide ice sheet to the North Atlantic at 50°N.

  13. Use and Abuse of a Fractional Fokker-Planck Dynamics for Time-Dependent Driving

    NASA Astrophysics Data System (ADS)

    Heinsalu, E.; Patriarca, M.; Goychuk, I.; Hänggi, P.

    2007-09-01

    We investigate a subdiffusive, fractional Fokker-Planck dynamics occurring in time-varying potential landscapes and thereby disclose the failure of the fractional Fokker-Planck equation (FFPE) in its commonly used form when generalized in an ad hoc manner to time-dependent forces. A modified FFPE (MFFPE) is rigorously derived, being valid for a family of dichotomously alternating force fields. This MFFPE is numerically validated for a rectangular time-dependent force with zero average bias. For this case, subdiffusion is shown to become enhanced as compared to the force free case. We question, however, the existence of any physically valid FFPE for arbitrary varying time-dependent fields that differ from this dichotomous varying family.

  14. Fractional Fokker-Planck Equation and Black-Scholes Formula in Composite-Diffusive Regime

    NASA Astrophysics Data System (ADS)

    Liang, Jin-Rong; Wang, Jun; Lǔ, Long-Jin; Gu, Hui; Qiu, Wei-Yuan; Ren, Fu-Yao

    2012-01-01

    In statistical physics, anomalous diffusion plays an important role, whose applications have been found in many areas. In this paper, we introduce a composite-diffusive fractional Brownian motion X α, H ( t)= X H ( S α ( t)), 0< α, H<1, driven by anomalous diffusions as a model of asset prices and discuss the corresponding fractional Fokker-Planck equation and Black-Scholes formula. We obtain the fractional Fokker-Planck equation governing the dynamics of the probability density function of the composite-diffusive fractional Brownian motion and find the Black-Scholes differential equation driven by the stock asset X α, H ( t) and the corresponding Black-Scholes formula for the fair prices of European option.

  15. Simulating transient dynamics of the time-dependent time fractional Fokker-Planck systems

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Mei

    2016-09-01

    For a physically realistic type of time-dependent time fractional Fokker-Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker-Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed.

  16. Regional scale landslide risk assessment with a dynamic physical model - development, application and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Luna, Byron Quan; Vidar Vangelsten, Bjørn; Liu, Zhongqiang; Eidsvig, Unni; Nadim, Farrokh

    2013-04-01

    Landslide risk must be assessed at the appropriate scale in order to allow effective risk management. At the moment, few deterministic models exist that can do all the computations required for a complete landslide risk assessment at a regional scale. This arises from the difficulty to precisely define the location and volume of the released mass and from the inability of the models to compute the displacement with a large amount of individual initiation areas (computationally exhaustive). This paper presents a medium-scale, dynamic physical model for rapid mass movements in mountainous and volcanic areas. The deterministic nature of the approach makes it possible to apply it to other sites since it considers the frictional equilibrium conditions for the initiation process, the rheological resistance of the displaced flow for the run-out process and fragility curve that links intensity to economic loss for each building. The model takes into account the triggering effect of an earthquake, intense rainfall and a combination of both (spatial and temporal). The run-out module of the model considers the flow as a 2-D continuum medium solving the equations of mass balance and momentum conservation. The model is embedded in an open source environment geographical information system (GIS), it is computationally efficient and it is transparent (understandable and comprehensible) for the end-user. The model was applied to a virtual region, assessing landslide hazard, vulnerability and risk. A Monte Carlo simulation scheme was applied to quantify, propagate and communicate the effects of uncertainty in input parameters on the final results. In this technique, the input distributions are recreated through sampling and the failure criteria are calculated for each stochastic realisation of the site properties. The model is able to identify the released volumes of the critical slopes and the areas threatened by the run-out intensity. The obtained final outcome is the estimation

  17. Constraining the geometry, size scale and physical conditions of outflowing broad absorption line regions in quasars

    NASA Astrophysics Data System (ADS)

    Woo, Sui Chi

    Quasars are known for generating luminosities of up to 1047 erg s--1 in volumes of scales smaller than 2 x 10 15 cm. The optical/UV continuum emission is generally believed to arise from a rotating accretion disk (AD) surrounding a supermassive black hole (SMBH) of ˜ 108 M⊙ . Such emission can be calculated by treating the AD as a multi-temperature blackbody. While the continuum emitting region is well defined, the properties, location and kinematics of the broad emission line regions (BELRs) and broad absorption line regions (BALRs) remain unclear. On one hand, the reverberation mapping technique can give constraints on the location of the BELRs, but not the kinematics. On the other hand, the line-of-sight kinematics of the BALRs is directly observable, but their locations are not well constrained, resulting in a large range of inferred distances, from 0.01 pc to tens of kpc. Therefore, I combined observational results to investigate the geometry, size, and physical conditions of the BELRs and BALRs. I verified that the Lyalpha and CIV BELRs are located at a similar distance. Using these findings, I was able to constrain the size of the Lyalpha BELR and place a lower limit on the size of the N V BALR. I built an empirical model with the optical/UV continuum emission from the AD, the BELR from the chromosphere of the AD, and the outflowing BALR. In the continuum region, I found that over 95 percent of the total flux comes from the region at ~ 125rg, where rg is the gravitational radius of the SMBH. For the BELRs, I computed a disk-wind model with relativistic effects to explain the often-observed single-peaked BEL profiles. However, I show that such a model cannot explain the observed blue asymmetries in the high-ionization BELs or their blueshifted peaks relative to low-ionization BELs. Using results on time variability of BALR gas, and assuming the variability is caused by the gas moving perpendicular across the line-of-sight over a time scale of about a year

  18. Cosmic ray knee and new physics at the TeV scale

    SciTech Connect

    Barceló, Roberto; Masip, Manuel; Mastromatteo, Iacopo E-mail: masip@ugr.es

    2009-06-01

    We analyze the possibility that the cosmic ray knee appears at an energy threshold where the proton-dark matter cross section becomes large due to new TeV physics. It has been shown that such interactions could break the proton and produce a diffuse gamma ray flux consistent with MILAGRO observations. We argue that this hypothesis implies knees that scale with the atomic mass for the different nuclei, as KASKADE data seem to indicate. We find that to explain the change in the spectral index in the flux from E{sup −2.7} to E{sup −3.1} the cross section must grow like E{sup 0.4+β} above the knee, where β = 0.3–0.6 parametrizes the energy dependence of the age (τ∝E{sup −β}) of the cosmic rays reaching the Earth. The hypothesis also requires mbarn cross sections (that could be modelled with TeV gravity) and large densities of dark matter (that could be clumped around the sources of cosmic rays). We argue that neutrinos would also exhibit a threshold at E = (m{sub χ}/m{sub p}) E{sub knee} ≈ 10{sup 8} GeV where their interaction with a nucleon becomes strong. Therefore, the observation at ICECUBE or ANITA of standard neutrino events above this threshold would disprove the scenario.

  19. Modeling Thermal Dust Emission with Two Components: Application to the Planck High Frequency Instrument Maps

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales.

  20. MODELING THERMAL DUST EMISSION WITH TWO COMPONENTS: APPLICATION TO THE PLANCK HIGH FREQUENCY INSTRUMENT MAPS

    SciTech Connect

    Meisner, Aaron M.; Finkbeiner, Douglas P. E-mail: dfinkbeiner@cfa.harvard.edu

    2015-01-10

    We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales.

  1. NRAO Astronomer Wins Max-Planck Research Award

    NASA Astrophysics Data System (ADS)

    2005-04-01

    Dr. Christopher Carilli, a National Radio Astronomy Observatory (NRAO) astronomer in Socorro, New Mexico, has been chosen to receive the prestigious Max Planck Research Award from the Alexander von Humboldt Foundation and the Max Planck Society in Germany. Christopher Carilli Dr. Christopher Carilli Click on image for more photos CREDIT: NRAO/AUI/NSF Carilli, a radio astronomer, and German particle physicist Christof Wetterich are the 2005 recipients of the award, conferred on "one researcher working in Germany and one working abroad who have already gained an international reputation and who are expected to produce outstanding achievements in the framework of international collaboration," according to an announcement from the Humboldt Foundation. "This is a great honor for Chris, and we are proud to see him receive such important international recognition for the excellence of his research," said NRAO Director Fred K.Y. Lo. Carilli's research has focused on studying very distant galaxies in the early Universe, and a quest to find the first luminous objects, such as stars or galaxies, to emerge. His most recent interests focus on unveiling the mysteries of what cosmologists call the "Epoch of Reionization," when the first stars and galaxies ionized the neutral hydrogen that pervaded the young Universe. Carilli and his research colleagues have used NRAO's Very Large Array and other radio telescopes to discover that the molecular raw material for star formation already was present in a galaxy seen as it was about 800 million years after the Big Bang, less than 1/16 the current age of the Universe. The Max Planck Research Award provides 750,000 Euros (currently about $900,000), to be used over five years, for research. The funding is provided by the German Ministry of Education and Research. Carilli will use the funding to support young researchers and to build scientific instrumentation, with a focus on fostering radio studies of cosmic reionization and the first

  2. Axion cold dark matter: Status after Planck and BICEP2

    NASA Astrophysics Data System (ADS)

    Di Valentino, Eleonora; Giusarma, Elena; Lattanzi, Massimiliano; Melchiorri, Alessandro; Mena, Olga

    2014-08-01

    We investigate the axion dark matter scenario (ADM), in which axions account for all of the dark matter in the Universe, in light of the most recent cosmological data. In particular, we use the Planck temperature data, complemented by WMAP E-polarization measurements, as well as the recent BICEP2 observations of B-modes. Baryon acoustic oscillation data, including those from the baryon oscillation spectroscopic survey, are also considered in the numerical analyses. We find that, in the minimal ADM scenario and for ΛQCD=200 MeV, the full data set implies that the axion mass ma=82.2±1.1 μeV [corresponding to the Peccei-Quinn symmetry being broken at a scale fa=(7.54±0.10)×1010 GeV], or ma=76.6±2.6 μeV [fa=(8.08±0.27)×1010 GeV] when we allow for a nonstandard effective number of relativistic species Neff. We also find a 2σ preference for Neff>3.046. The limit on the sum of neutrino masses is ∑mν<0.25 eV at 95% C.L. for Neff=3.046, or ∑mν<0.47 eV when Neff is a free parameter. Considering extended scenarios where either the dark energy equation-of-state parameter w, the tensor spectral index nt, or the running of the scalar index dns/dlnk is allowed to vary does not change significantly the axion mass-energy density constraints. However, in the case of the full data set exploited here, there is a preference for a nonzero tensor index or scalar running, driven by the different tensor amplitudes implied by the Planck and BICEP2 observations. We also study the effect on our estimates of theoretical uncertainties, in particular the imprecise knowledge of the QCD scale ΛQCD, in the calculation of the temperature-dependent axion mass. We find that in the simplest ADM scenario the Planck +WP data set implies that the axion mass ma=63.7±1.2 μeV for ΛQCD=400 MeV. We also comment on the possibility that axions do not make up for all the dark matter, or that the contribution of string-produced axions has been grossly underestimated; in that case, the values

  3. Universal Scaling Laws in Quantum Theory and Cosmology

    NASA Astrophysics Data System (ADS)

    Rauscher, Elizabeth A.; Hurtak, James J.; Hurtak, D. E.

    2013-09-01

    We have developed a hyperdimensional geometry, Dn or Descartes space of dimensionality of n > 4, for our consideration n = 10. This model introduces a formation in terms of the conditions of constants as the space that allows us to calculate a unique set of scaling laws from the lower end scale of the quantum vacuum foam to the current universe. A group theoretical matrix formalism is made for the ten and eleven dimensional model of this space. For the eleven dimensional expressions of this geometry, a fundamental frequency is introduced and utilized as an additional condition on the topology. The constraints on the Dn space are imposed by the relationship of the universal constraints of nature expressed in terms of physical variables. The quantum foam picture can be related to the Fermi-Dirac vacuum model. Consideration is made for the lower limit of a universal size scaling from the Planck length, l = 10-33 cm, temporal component, t = 10-44 sec, density, 1093 gm/cm3 and additional Planck units of quantized variables. The upper limit of rotational frequency in the Dn space is given as 1043 Hz, as conditions or constraints that apply to the early universe which are expressed uniquely in terms of the universal constants, h, Planck's constant, the G, the gravitational constant and c, the velocity of light. We have developed a scaling law for cosmogenesis from the early universe to our present day universe. We plot the physical variables of the ten and eleven dimensional space versus a temporal evolution of these parameters. From this formalism, in order to maintain the compatibility of Einstein's General Relativity with the current model of cosmology, we replace Guth's inflationary model with a matter creation term. Also we have developed a fundamental scaling relationship between the "size scale" of organized matter with their associated fundamental frequency.

  4. Fractional Fokker-Planck equation for fractal media.

    PubMed

    Tarasov, Vasily E

    2005-06-01

    We consider the fractional generalizations of equation that defines the medium mass. We prove that the fractional integrals can be used to describe the media with noninteger mass dimensions. Using fractional integrals, we derive the fractional generalization of the Chapman-Kolmogorov equation (Smolukhovski equation). In this paper fractional Fokker-Planck equation for fractal media is derived from the fractional Chapman-Kolmogorov equation. Using the Fourier transform, we get the Fokker-Planck-Zaslavsky equations that have fractional coordinate derivatives. The Fokker-Planck equation for the fractal media is an equation with fractional derivatives in the dual space. PMID:16035878

  5. A Job-Seeking Self-Efficacy Scale for People with Physical Disabilities: Preliminary Development and Psychometric Testing.

    ERIC Educational Resources Information Center

    Barlow, Julie; Wright, Chris; Cullen, Lesley

    2002-01-01

    Study sought to develop and conduct preliminary testing of the psychometric properties of a job-seeking self-efficacy (JSS) scale that reflected the experiences of people with physical disabilities. Greater job seeking self-efficacy and perceived ability to manage disability at interview were associated with more positive psychological well-being.…

  6. Post-16 Physics and Chemistry Uptake: Combining Large-Scale Secondary Analysis with In-Depth Qualitative Methods

    ERIC Educational Resources Information Center

    Hampden-Thompson, Gillian; Lubben, Fred; Bennett, Judith

    2011-01-01

    Quantitative secondary analysis of large-scale data can be combined with in-depth qualitative methods. In this paper, we discuss the role of this combined methods approach in examining the uptake of physics and chemistry in post compulsory schooling for students in England. The secondary data analysis of the National Pupil Database (NPD) served…

  7. Cohort Profile of the Goals Study: A Large-Scale Research of Physical Activity in Dutch Students

    ERIC Educational Resources Information Center

    de Groot, Renate H. M.; van Dijk, Martin L.; Kirschner, Paul A.

    2015-01-01

    The GOALS study (Grootschalig Onderzoek naar Activiteiten van Limburgse Scholieren [Large-scale Research of Activities in Dutch Students]) was set up to investigate possible associations between different forms of physical activity and inactivity with cognitive performance, academic achievement and mental well-being. It was conducted at a…

  8. Scaling up of physical activity interventions in Brazil: how partnerships and research evidence contributed to policy action

    PubMed Central

    Hoehner, Christine M.; Hallal, Pedro C.; Reis, Rodrigo S.; Simoes, Eduardo J.; Malta, Deborah C.; Pratt, Michael; Brownson, Ross C.

    2013-01-01

    The global health burden due to physical inactivity is enormous and growing. There is a need to consider new ways of generating evidence and to identify the role of government in promoting physical activity at the population level. In this paper, we summarize key findings from a large-scale cross-national collaboration to understand physical activity promotion in Brazil. We describe the main aspects of the partnership of Project GUIA (Guide for Useful Interventions for Activity in Brazil and Latin America) that sustained the collaborative effort for eight years and describe how the evidence gathered from the collaboration triggered political action in Brazil to scale up a physical activity intervention at the national level. Project GUIA is a cross-national multidisciplinary research partnership designed to understand and evaluate current efforts for physical activity promotion at the community level in Latin America. This example of scaling up is unprecedented for promoting health in the region and is an example that must be followed and evaluated. PMID:24323944

  9. Monitoring Physical and Biogeochemical Dynamics of Uranium Bioremediation at the Intermediate Scale

    NASA Astrophysics Data System (ADS)

    Tarrell, A. N.; Figueroa, L. A.; Rodriguez, D.; Haas, A.; Revil, A.

    2011-12-01

    Subsurface uranium above desired levels for aquifer use categories exists naturally and from historic mining and milling practices. In situ bioimmobilization offers a cost effective alternative to conventional pump and treat methods by stimulating growth of microorganisms that lead to the reduction and precipitation of uranium. Vital to the long-term success of in situ bioimmobilization is the ability to successfully predict and demonstrate treatment effectiveness to assure that regulatory goals are met. However, successfully monitoring the progress over time is difficult and requires long-term stewardship to ensure effective treatment due to complex physical and biogeochemical heterogeneity. In order to better understand these complexities and the resultant effect on uranium immobilization, innovative systematic monitoring approaches with multiple performance indicators must be investigated. A key issue for uranium bioremediation is the long term stability of solid-phase reduction products. It has been shown that a combination of data from electrode-based monitoring, self-potential monitoring, oxidation reduction potential (ORP), and water level sensors provides insight for identifying and localizing bioremediation activity and can provide better predictions of deleterious biogeochemical change such as pore clogging. In order to test the proof-of-concept of these sensing techniques and to deconvolve redox activity from other electric potential changing events, an intermediate scale 3D tank experiment has been developed. Well-characterized materials will be packed into the tank and an artificial groundwater will flow across the tank through a constant-head boundary. The experiment will utilize these sensing methods to image the electrical current produced by bacteria as well as indications of when and where electrical activity is occurring, such as with the reduction of radionuclides. This work will expand upon current knowledge by exploring the behavior of uranium

  10. Scales

    MedlinePlus

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Eczema , ringworm , and psoriasis ...

  11. Geothermal alteration of Kamchatka rock physical properties: experimental and pore-scale modeling study

    NASA Astrophysics Data System (ADS)

    Shanina, Violetta; Gerke, Kirill; Bichkov, Andrey; Korost, Dmitry

    2013-04-01

    X-ray microtomography prior to any alteration and after the experiments. 3D images were used to quantify structural changes and to determine permeability values using a pore-scale modeling approach, as laboratory measurements with through flow are known to have a potential to modify the pore structure. Chemical composition and local mineral formations were investigated using a «Spectroscan Max GV» spectrometer and scanning electron microscope imaging. Our study revealed significant relationships between structure modifications, physical properties and alteration conditions. Main results and conclusions include: 1) initial porosity and its connectivity have substantial effect on alteration dynamics, rocks with higher porosity values and connected pore space exhibit more pronounced alterations; 2) under similar experimental conditions (pressure, temperature, duration) pH plays an important role, acidic conditions result in significant new mineral formation; 3) almost all physical properties, including porosity, permeability, and elastic properties, were seriously modified in the modeled geothermal processes within short (from geological point of view) time frames; 4) X-ray microtomography was found useful for mineral phases distribution and the pore-scale modeling approach was found to be a promising technique to numerically obtain rock properties based on 3D scans; 5) we conclude that alteration and change of reservoir rocks should be taken into account for re-injecting well and geothermal power-plant design.

  12. The Development and Validation of the Physical Self-Concept Scale for Older Adults

    ERIC Educational Resources Information Center

    Hsu, Ya-Wen; Lu, Frank Jing-Horng

    2013-01-01

    Physical self-concept plays a central role in older adults' physical health, mental health and psychological well-being; however, little attention has been paid to the underlying dimensions of physical self-concept in the elderly. The purpose of this study was to develop and validate a new measurement for older adults. First, a qualitative…

  13. New multigroup Monte Carlo scattering algorithm suitable for neutral- and charged-particle Boltzmann and Fokker-Planck calculations

    SciTech Connect

    Sloan, D.P.

    1983-05-01

    Morel (1981) has developed multigroup Legendre cross sections suitable for input to standard discrete ordinates transport codes for performing charged-particle Fokker-Planck calculations in one-dimensional slab and spherical geometries. Since the Monte Carlo neutron transport code, MORSE, uses the same multigroup cross section data that discrete ordinates codes use, it was natural to consider whether Fokker-Planck calculations could be performed with MORSE. In order to extend the unique three-dimensional forward or adjoint capability of MORSE to Fokker-Planck calculations, the MORSE code was modified to correctly treat the delta-function scattering of the energy operator, and a new set of physically acceptable cross sections was derived to model the angular operator. Morel (1979) has also developed multigroup Legendre cross sections suitable for input to standard discrete ordinates codes for performing electron Boltzmann calculations. These electron cross sections may be treated in MORSE with the same methods developed to treat the Fokker-Planck cross sections. The large magnitude of the elastic scattering cross section, however, severely increases the computation or run time. It is well-known that approximate elastic cross sections are easily obtained by applying the extended transport (or delta function) correction to the Legendre coefficients of the exact cross section. An exact method for performing the extended transport cross section correction produces cross sections which are physically acceptable. Sample calculations using electron cross sections have demonstrated this new technique to be very effective in decreasing the large magnitude of the cross sections.

  14. H I in the DRAO Planck Deep Fields

    NASA Astrophysics Data System (ADS)

    Martin, Peter G.; Lockman, F. J.; DPDF Collaboration

    2006-06-01

    Using the DRAO synthesis telescope (1’ resolution) and the GBT (9’ resolution) we have been probing into the relatively unexplored territory of H I in very faint cirrus, in two 25 square degree regions that we dub the DRAO Planck Deep Fields (DPDF). We anticipate an impact in two complementary areas. First, there is the study of the properties of the diffuse cirrus, interesting laboratories for understanding physical processes in the interstellar medium. These regions have both local gas and intermediate velocity (IVC) gas components, and thus complex dynamics. Second, dust usually is present along with the gas, and the dust emission is one of the pesky foregrounds with which both CMB and CIRB studies have to contend. This is challenging when there is more than “normal” cirrus to deal with; here there are IVC and also HVC components, often a prominent fraction of the total H I along these low column density lines of sight. It seems naive to imagine that the dust emission associated with each of these components would be the same, either in emission per unit gas column density or in spectral shape. Using velocity-dependent morphological information we are attempting to examine separately the otherwise superimposed dust emission from the various components.This research is supported by the Natural Scien