Science.gov

Sample records for plane arrays based

  1. Optical-based spectral modeling of infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Mouzali, Salima; Lefebvre, Sidonie; Rommeluère, Sylvain; Ferrec, Yann; Primot, Jérôme

    2016-07-01

    We adopt an optical approach in order to model and predict the spectral signature of an infrared focal plane array. The modeling is based on a multilayer description of the structure and considers a one-dimensional propagation. It provides a better understanding of the physical phenomena occurring within the pixels, which is useful to perform radiometric measurements, as well as to reliably predict the spectral sensitivity of the detector. An exhaustive model is presented, covering the total spectral range of the pixel response. A heuristic model is also described, depicting a complementary approach that separates the different optical phenomena inside the pixel structure. Promising results are presented, validating the models through comparison with experimental results. Finally, advantages and limitations of this approach are discussed.

  2. Improved interframe registration based nonuniformity correction for focal plane arrays

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Chen, Qian; Gu, Guohua; Sui, Xiubao; Ren, Jianle

    2012-07-01

    In this paper, an improved interframe registration based nonuniformity correction algorithm for focal plane arrays is proposed. The method simultaneously estimates detector parameters and carries out the nonuniformity correction by minimizing the mean square error between the two properly registered image frames. A new masked phase correlation algorithm is introduced to obtain reliable shift estimates in the presence of fixed pattern noise. The use of an outliers exclusion scheme, together with a variable step size strategy, could not only promote the correction precision considerably, but also eliminate ghosting artifacts effectively. The performance of the proposed algorithm is evaluated with clean infrared image sequences with simulated nonuniformity and real pattern noise. We also apply the method to a real-time imaging system to show how effective it is in reducing noise and the ghosting artifacts.

  3. Focal plane array based infrared thermography in fine physical experiment

    NASA Astrophysics Data System (ADS)

    Vainer, Boris G.

    2008-03-01

    By two examples of dissimilar physical phenomena causing thermophysical effects, the unique capabilities of one of the up-to-date methods of experimental physics—focal plane array (FPA) based infrared (IR) thermography (IRT), are demonstrated distinctly. Experimenters inexperienced in IRT can grasp how this method provides a means for combining real-time visualization with quantitative analysis. A narrow-band short-wavelength IR camera was used in the experiments. It is discussed and stated that IRT is best matched and suited to the next two test conditions—when a heated specimen is thin and when heat is generated in the immediate region of a surface of a solid. The first prerequisite is realized in the search for directional patterns of combined low-power radiation sources with the use of the IRT-aided method. The second one is realized in studies of water vapour adsorption on uneven (irregular) surfaces of solid materials. With multiple swatches taken from a set of different fabrics and used as experimental samples, a sharp distinction between adsorptivities of their surfaces is strikingly illustrated by IRT time-domain measurements exhibiting the associated thermal effect ranging within an order of magnitude. It is justified that the described IRT-aided test can find practical implementation at least in the light industry. Emissivities of different fabrics are evaluated experimentally with the described reflection method based on the narrow spectral range of IRT. On the basis of direct IR observations, attention is paid to the need for close control over the surface temperature increase while the adsorption isotherms are being measured. Sensitivity of the FPA-based IRT method, as applied to examine the kinetics of initial stages of adsorption of gaseous molecules on the solid surface, is evaluated analytically and quantitatively. The relationship between the amount of adsorbate and the measurable excess of adsorbent temperature is found. It is discovered

  4. Compact polarimeters based on polarization-sensitive focal plane arrays

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Ninkov, Zoran

    2014-08-01

    We report on the design, fabrication and performance of the Rochester Institute of Technology Polarization Imaging Camera (RITPIC). Despite great advances in astronomical (and terrestrial remote sensing) instrumentation, the measurement of polarization of light remains challenging and infrequent. Recently, the fabrication of micropolarizer arrays has allowed the development of compact polarimeters which promise to make polarimetry more accessible. These devices are capable of measuring the degree of polarization (DoP) and angle of polarization (AoP) across a scene using a single exposure ("snapshot"). They are compact, light-weight and mechanically robust, making them ideal for deployment on space-based platforms. We present the performance of such a polarimeter and describe the kind of science that is possible with RITPIC and future generations of these revolutionary devices.

  5. Performance of ground-based high-frequency receiving arrays with electrically-small ground planes

    NASA Astrophysics Data System (ADS)

    Weiner, M. M.

    1991-09-01

    Electrically-small ground planes degrade the performance of ground-based high-frequency receiving arrays because the arrays are more susceptible to earth multipath, ground losses, and external currents on element feed cables. Performance degradations include a reduction in element directive gain near the horizon, distortion of the element azimuthal pattern, an increase in the system internal noise factor, and increases in the array factor root-mean-squared (rms) phase error and beam-pointing errors. The advantage of electrically-small ground planes is their relatively low cost of construction and maintenance.

  6. Infrared focal plane arrays based on dots in a well and strained layer superlattices

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay

    2009-01-01

    In this paper, we will review some of the recent progress that we have made on developing single pixel detectors and focal plane arrays based on dots-in-a-well (DWELL) heterostructure and Type II strained layer superlattice (SLS). The DWELL detector consists of an active region composed of InAs quantum dots embedded in InGaAs/GaAs quantum wells. By varying the thickness of the InGaAs well, the DWELL heterostructure allows for the manipulation of the operating wavelength and the nature of the transitions (bound-to-bound, bound-to-quasibound and bound-to-continuum) of the detector. Based on these principles, DWELL samples were grown using molecular beam epitaxy and fabricated into 320 x 256 focal plane arrays (FPAs) with Indium bumps using standard lithography at the University of New Mexico. The FPA evaluated was hybridized to an Indigo 9705 readout integrated circuit (ROIC). From this evaluation, we have reported the first two-color, co-located quantum dot based imaging system that can be used to take multicolor images using a single FPA. We have also been investigating the use of miniband transitions in Type II SLS to develop infrared detectors using PIN and nBn based designs.

  7. Development of noncryogenic cooled carbon nanotube-based infrared focal plane array with integrated readout circuitry

    NASA Astrophysics Data System (ADS)

    Xi, Ning; Lai, King Wai Chiu; Chen, Hongzhi; Chen, Liangliang; Fung, Carmen Kar Man

    2011-06-01

    Infrared (IR) detectors are enormously important for various applications including medical diagnosis, night vision etc. The current bottleneck of high-sensitive IR detectors is the requirement of cryogenic cooling to reduce the noise. Carbon nanotubes (CNTs) exhibit low dark current which allows CNTs to work without cooling. This paper presents the development of noncryogenic cooled IR focal plane array (FPA) using CNTs. The FPA consists of an array of CNTbased IR detectors which are sensitive to IR signal at room temperature. The CNT-based detectors can be made by our nanomanufacturing process. And the sensitivity of the detectors at a special wavelength can be achieved by selecting and controlling the bandgap of CNTs during the process. Besides, a readout circuitry has been integrated with the FPA to retrieve signals from the detectors for high throughput applications.

  8. Non-local means-based nonuniformity correction for infrared focal-plane array detectors

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Zhang, Zhi-jie; Chen, Fu-sheng; Wang, Chen-sheng

    2014-11-01

    The infrared imaging systems are normally based on the infrared focal-plane array (IRFPA) which can be considered as an array of independent detectors aligned at the focal plane of the imaging system. Unfortunately, every detector on the IRFPA may have a different response to the same input infrared signal which is known as the nonuniformity problem. Then we can observe the fixed pattern noise (FPN) from the resulting images. Standard nonuniformity correction (NUC) methods need to be recalibrated after a short period of time due the temporal drift of the FPN. Scene-based nonuniformity correction (NUC) techniques eliminate the need for calibration by correction coefficients based on the scene being viewed. However, in the scene-based NUC method the problem of ghosting artifacts widely seriously decreases the image quality, which can degrade the performance of many applications such as target detection and track. This paper proposed an improved scene-based method based on the retina-like neural network approach. The method incorporates the use of non-local means (NLM) method into the estimation of the gain and the offset of each detector. This method can not only estimates the accurate correction coefficient but also restrict the ghosting artifacts efficiently. The proposed method relies on the use of NLM method which is a very successful image denoising method. And then the NLM used here can preserve the image edges efficiently and obtain a reliable spatial estimation. We tested the proposed NUC method by applying it to an IR sequence of frames. The performance of the proposed method was compared the other well-established adaptive NUC techniques.

  9. Design of readout circuit for microcantilever-based ripple uncooled infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Cao, Junmin; Chen, Zhongjian; Lu, Wengao; Zhang, Yacong; Lei, Ke; Zhao, Baoying

    2009-07-01

    A readout integrated circuit (ROIC) for uncooled microcantilever infrared focal plane arrays (IRFPAs) based on capacitive readout is proposed. The ROIC is optimized according to noise modeling and analysis to reduce noise. An experimental chip of 16×16 FPAs readout circuit has been designed and fabricated using 0.35um CMOS technology. The measurement results showed that the power dissipation is 16.5mW from a 5V supply voltage at 50Hz frame rate, the linearity is 99.2% at the typical mode; the uniformity is larger than 97% and the equivalent noise charge (ENC) is below 150e. It is believed that the ROIC has a great potential in the applications of large-scale micro-cantilever-based uncooled IRFPAs.

  10. Model based on-chip 13bits ADC design dedicated to uncooled infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Dupont, Benoit; Robert, Patrick; Dupret, Antoine; Villard, Patrick; Pochic, David

    2007-10-01

    This paper presents an on-chip 13 bits 10 M/S Analog to Digital Converter (ADC) specifically designed for infrared bolometric image sensor. Bolometric infrared sensors are MEMs based thermal sensors, which covers a large spectrum of infrared applications, ranging from night vision to predictive industrial maintenance and medical imaging. With the current move towards submicron technologies, the demand for more integrated, smarter sensors and microsystems has dramatically increased. This trend has strengthened the need of on-chip ADC as the interface between the analog core and the digital processing electronic. However designing an on-chip ADC dedicated to focal plane array raises many questions about its architecture and its performance requirements. To take into account those specific needs, a high level model has been developed prior to the actual design. In this paper, we present the trade-offs of ADC design linked to infrared key performance parameters and bolometric technology detection method. The original development scheme, based on system level modeling, is also discussed. Finally we present the actual design and the measured performances.

  11. An uncooled microbolometer focal plane array using heating based resistance nonuniformity compensation

    NASA Astrophysics Data System (ADS)

    Tepegoz, Murat; Oguz, Alp; Toprak, Alperen; Senveli, S. Ufuk; Canga, Eren; Tanrikulu, M. Yusuf; Akin, Tayfun

    2012-06-01

    This paper presents the performance evaluation of a unique method called heating based resistance nonuniformity compensation (HB-RNUC). The HB-RNUC method utilizes a configurable bias heating duration for each pixel in order to minimize the readout integrated circuit (ROIC) output voltage distribution range. The outputs of each individual pixel in a resistive type microbolometer differ from each other by a certain amount due to the resistance non-uniformity throughout the focal plane array (FPA), which is an inevitable result of the microfabrication process. This output distribution consumes a considerable portion of the available voltage headroom of the ROIC unless compensated properly. The conventional compensation method is using on-chip DACs to apply specific bias voltages to each pixel such that the output distribution is confined around a certain point. However, on-chip DACs typically occupy large silicon area, increase the output noise, and consume high power. The HB-RNUC method proposes modifying the resistances of the pixels instead of the bias voltages, and this task can be accomplished by very simple circuit blocks. The simplicity of the required blocks allows utilizing a low power, low noise, and high resolution resistance nonuniformity compensation operation. A 9-bit HB-RNUC structure has been designed, fabricated, and tested on a 384x288 microbolometer FPA ROIC on which 35μm pixel size detectors are monolithically implemented, in order to evaluate its performance. The compensation operation reduces the standard deviation of the ROIC output distribution from 470 mV to 9 mV under the same readout gain and bias settings. The analog heating channels of the HB-RNUC block dissipate around 4.1 mW electrical power in this condition, and the increase in the output noise due to these blocks is lower than 10%.

  12. VO II-based microbolometer uncooled infrared focal plane arrays with CMOS readout integrated circuit

    NASA Astrophysics Data System (ADS)

    Chen, Xiqu; Yi, Xinjian

    2005-11-01

    Thin films of vanadium dioxide (VO II) were selected for microbolometers. The thin films were fabricated with a novel method mainly including ion-sputtering and annealing. It is found that the electrical properties of these thin films can be controlled by adjusting the time of ion-sputtering and annealing. A standard microbolometer pixel structure of micro-bridge has been applied. Two-dimensional arrays of microbolometers have been fabricated on silicon integrated circuit wafers using a surface micromachining technique. A new type of on-chip readout integrated circuit (ROIC) for 32×32 pixel bolometric detector arrays has been designed and fabricated using a 1.5μm double metal poly complementary metal oxide semiconductor (CMOS) processing. The readout circuit consists of three stages, which provides low noise, a highly stable detector bias, high photon current injection efficiency, high gain, and high speed. Several prototypes of 32×32 pixel bolometric detector arrays have been designed and fabricated. These arrays consist of detectors with lateral dimensions of 50μm 50μm, and each bolometric detector is on a 100μm pitch. The results of measurement show that the fabricated uncooled infrared focal plane arrays (UIRFPAs) have excellent performance. The frame rate is 50Hz, the pixel operability is above 96%, the responsivity (R) @ f/1 value is up to 15000V/W, the noise equivalent temperature difference (NETD) @ f/1 and 30Hz is about 50mK, and the average power dissipation is only 24.7mW. The results indicate that the technology of fabricating these 32×32 UIRFPAs has potential to be utilized for fabricating low cost and large-scale UIRFPAs.

  13. Portable sequential multicolor thermal imager based on a MCT 384 x 288 focal plane array

    NASA Astrophysics Data System (ADS)

    Breiter, Rainer; Cabanski, Wolfgang A.; Mauk, Karl-Heinz; Rode, Werner; Ziegler, Johann

    2001-10-01

    AIM has developed a sequential multicolor thermal imager to provide customers with a test system to realize real-time spectral selective thermal imaging. In contrast to existing PC based laboratory units, the system is miniaturized with integrated signal processing like non-uniformity correction and post processing functions such as image subtraction of different colors to allow field tests in military applications like detection of missile plumes or camouflaged targets as well as commercial applications like detection of chemical agents, pollution control, etc. The detection module used is a 384 X 288 mercury cadmium telluride (MCT) focal plane array (FPA) available in the mid wave (MWIR) or long wave spectral band LWIR). A compact command and control electronics (CCE) provides clock and voltage supply for the detector as well as 14 bit deep digital conversion of the analog detector output. A continuous rotating wheel with four facets for filters provides spectral selectivity. The customer can choose between various types of filter characteristics, e.g. a 4.2 micrometer bandpass filter for CO2 detection in the MWIR band. The rotating wheel can be synchronized to an external source giving the rotation speed, typical 25 l/s. A position sensor generates the four frame start signals for synchronous operation of the detector -- 100 Hz framerate for the four frames per rotation. The rotating wheel is exchangeable for different configurations and also plates for a microscanner operation to improve geometrical resolution are available instead of a multicolor operation. AIM's programmable MVIP image processing unit is used for signal processing like non- uniformity correction and controlling the detector parameters. The MVIP allows to output the four subsequent images as four quarters of the video screen to prior to any observation task set the integration time for each color individually for comparable performance in each spectral color and after that also to determine

  14. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1994-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  15. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1995-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  16. Random laser speckle based modulation transfer function measurement of midwave infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Barnard, Kenneth J.; Anisimov, Igor; Scheihing, John E.

    2012-08-01

    Direct measurement of the modulation transfer function (MTF) of focal plane arrays (FPAs) using random laser speckle approaches for the visible/near-infrared wavelength band has been well documented over the last 20 years. These methods have not transitioned to the midwave infrared (MWIR) primarily because other techniques have been sufficient and MWIR laser sources with sufficient output power have been unavailable. However, as the detector pitch decreases, MTF measurements become more difficult due to diffraction, while potential MTF degradation due to lateral carrier diffusion crosstalk makes accurate MTF characterization critical for sensor system design. Here, a random laser speckle FPA MTF measurement approach is adapted for use in the MWIR that utilizes a quantum cascade laser coupled with an integrating sphere to generate the appropriate in-band random speckle. Specific challenges associated with the technique are addressed including the validity of the Fresnel diffraction assumptions describing the propagation of the random speckle field from the integrating sphere to the FPA. Improved methods for estimating the power spectral density (PSD) of the measured speckle that reduce data requirements are presented. The statistics and uniformity of the laser speckle are presented along with PSD measurements and estimated MTFs of a MWIR FPA.

  17. Focal plane array with modular pixel array components for scalability

    SciTech Connect

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  18. Dual band QWIP focal plane array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Choi, Kwong Kit (Inventor); Bandara, Sumith V. (Inventor)

    2005-01-01

    A quantum well infrared photodetector (QWIP) that provides two-color image sensing. Two different quantum wells are configured to absorb two different wavelengths. The QWIPs are arrayed in a focal plane array (FPA). The two-color QWIPs are selected for readout by selective electrical contact with the two different QWIPs or by the use of two different wavelength sensitive gratings.

  19. Performance of MWIR and SWIR HgCdTe-based focal plane arrays at high operating temperatures

    NASA Astrophysics Data System (ADS)

    Melkonian, Leon; Bangs, James; Elizondo, Lee; Ramey, Ron; Guerrero, Ernesto

    2010-04-01

    Raytheon Vision Systems (RVS) is producing large format, high definition HgCdTe-based MWIR and SWIR focal plane arrays (FPAs) with pitches of 15 μm and smaller for various applications. Infrared sensors fabricated from HgCdTe have several advantages when compared to those fabricated from other materials -- such as a highly tunable bandgap, high quantum efficiencies, and R0A approaching theoretical limits. It is desirable to operate infrared sensors at elevated operating temperatures in order to increase the cooler life and reduce the required system power. However, the sensitivity of many infrared sensors, including those made from HgCdTe, declines significantly above a certain temperature due to the noise resulting from increasing detector dark current. In this paper we provide performance data on a MWIR and a SWIR focal plane array operating at temperatures up to 160K and 170K, respectively. The FPAs used in the study were grown by molecular beam epitaxy (MBE) on silicon substrates, processed into a 1536x1024 format with a 15 μm pixel pitch, and hybridized to a silicon readout integrated circuit (ROIC) via indium bumps to form a sensor chip assembly (SCA). This data shows that the noise equivalent delta temperature (NEDT) is background limited at f/3.4 in the SWIR SCA (cutoff wavelength of 3.7 μm at 130K) up to 140K and in the MWIR SCA (cutoff wavelength of 4.8 μm at 115K) up to 115K.

  20. Al(x)Ga(1-x)N-based deep-ultraviolet 320×256 focal plane array.

    PubMed

    Cicek, Erdem; Vashaei, Zahra; Huang, Edward Kwei-wei; McClintock, Ryan; Razeghi, Manijeh

    2012-03-01

    We report the synthesis, fabrication, and testing of a 320×256 focal plane array (FPA) of back-illuminated, solar-blind, p-i-n, Al(x)Ga(1-x)N-based detectors, fully realized within our research laboratory. We implemented a pulse atomic layer deposition technique for the metalorganic chemical vapor deposition growth of thick, high-quality, crack-free, high Al composition Al(x)Ga(1-x)N layers. The FPA is hybridized to a matching ISC 9809 readout integrated circuit and operated in a SE-IR camera system. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower, and falling off three orders of magnitude by ~285 nm. By developing an opaque masking technology, the visible response of the ROIC is significantly reduced; thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allows the FPA to achieve high external quantum efficiency (EQE); at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated. PMID:22378430

  1. Deep ultraviolet (254 nm) focal plane array

    NASA Astrophysics Data System (ADS)

    Cicek, Erdem; Vashaei, Zahra; McClintock, Ryan; Razeghi, Manijeh

    2011-10-01

    We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A/cm2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated.

  2. Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure

    SciTech Connect

    Liang, Jian; Hu, Weida Ye, Zhenhua; Li, Zhifeng; Chen, Xiaoshuang Lu, Wei; Liao, Lei

    2014-05-14

    An HgCdTe long-wavelength infrared focal plane array photodetector is proposed by modulating light distributions based on the photonic crystal. It is shown that a promising prospect of improving performance is better light harvest and dark current limitation. To optimize the photon field distributions of the HgCdTe-based photonic crystal structure, a numerical method is built by combining the finite-element modeling and the finite-difference time-domain simulation. The optical and electrical characteristics of designed HgCdTe mid-wavelength and long-wavelength photon-trapping infrared detector focal plane arrays are obtained numerically. The results indicate that the photon crystal structure, which is entirely compatible with the large infrared focal plane arrays, can significantly reduce the dark current without degrading the quantum efficiency compared to the regular mesa or planar structure.

  3. Towards Dualband Megapixel QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Hill, C. J.; Rafol, S. B.; Salazar, D.; Woolaway, J.; LeVan, P. D.; Tidrow, M. Z.

    2006-01-01

    Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024 x 1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEDT) of 17 mK at a 95 K operating temperature with f/2.5 optics at 300 K background and the LWIR detector array has demonstrated a NEDT of 13 mK at a 70 K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90 K and 70 K operating temperatures respectively, with similar optical and background conditions. In addition, we have demonstrated MWIR and LWIR pixel co-registered simultaneously readable dualband QWIP focal plane arrays. In this paper, we will discuss the performance in terms of quantum efficiency, NEDT, uniformity, operability, and modulation transfer functions of the 1024 x 1024 pixel arrays and the progress of dualband QWIP focal plane array development work.

  4. Solid-state curved focal plane arrays

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Hoenk, Michael (Inventor); Jones, Todd (Inventor)

    2010-01-01

    The present invention relates to curved focal plane arrays. More specifically, the present invention relates to a system and method for making solid-state curved focal plane arrays from standard and high-purity devices that may be matched to a given optical system. There are two ways to make a curved focal plane arrays starting with the fully fabricated device. One way, is to thin the device and conform it to a curvature. A second way, is to back-illuminate a thick device without making a thinned membrane. The thick device is a special class of devices; for example devices fabricated with high purity silicon. One surface of the device (the non VLSI fabricated surface, also referred to as the back surface) can be polished to form a curved surface.

  5. Real-time 3D millimeter wave imaging based FMCW using GGD focal plane array as detectors

    NASA Astrophysics Data System (ADS)

    Levanon, Assaf; Rozban, Daniel; Kopeika, Natan S.; Yitzhaky, Yitzhak; Abramovich, Amir

    2014-03-01

    Millimeter wave (MMW) imaging systems are required for applications in medicine, communications, homeland security, and space technology. This is because there is no known ionization hazard for biological tissue, and atmospheric attenuation in this range of the spectrum is relatively low. The lack of inexpensive room temperature imaging systems makes it difficult to give a suitable MMW system for many of the above applications. 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The system presented here proposes to employ a chirp radar method with a Glow Discharge Detector (GDD) Focal Plane Array (FPA) of plasma based detectors. Each point on the object corresponds to a point in the image and includes the distance information. This will enable 3D MMW imaging. The radar system requires that the millimeter wave detector (GDD) will be able to operate as a heterodyne detector. Since the source of radiation is a frequency modulated continuous wave (FMCW), the detected signal as a result of heterodyne detection gives the object's depth information according to value of difference frequency, in addition to the reflectance of the image. In this work we experimentally demonstrate the feasibility of implementing an imaging system based on radar principles and FPA of GDD devices. This imaging system is shown to be capable of imaging objects from distances of at least 10 meters.

  6. CLAES focal plane array. [Cryogenic Limb Array Etalon Spectrometer

    NASA Technical Reports Server (NTRS)

    Roche, A. E.; Sterritt, L. W.; Kumer, J. B.; Callary, P. C.; Nielsen, R. L.

    1989-01-01

    The Cryogenic Limb Array Etalon Spectrometer for the NASA Upper Atmospheric Research Satellite uses solid-state focal plane arrays to detect emission from the earth's atmosphere over the IR wavelength range 3.5 to 13 microns. This paper discusses the design of the focal plane detector assembly and compares calculated performance with measurements. Measurements were made of focal plane noise and responsivity as functions of frequency (2 to 500 Hz) and temperature (12 to 19 K), pixel-to-pixel and across-array crosstalk, and linearity over a dynamic range of 100,000. The measurements demonstrate that the arrays satisfy the science requirements, and that, in general, there is reasonable agreement between the measurements and the analytical model.

  7. Nonuniformity correction for an infrared focal plane array based on diamond search block matching.

    PubMed

    Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian

    2016-05-01

    In scene-based nonuniformity correction algorithms, artificial ghosting and image blurring degrade the correction quality severely. In this paper, an improved algorithm based on the diamond search block matching algorithm and the adaptive learning rate is proposed. First, accurate transform pairs between two adjacent frames are estimated by the diamond search block matching algorithm. Then, based on the error between the corresponding transform pairs, the gradient descent algorithm is applied to update correction parameters. During the process of gradient descent, the local standard deviation and a threshold are utilized to control the learning rate to avoid the accumulation of matching error. Finally, the nonuniformity correction would be realized by a linear model with updated correction parameters. The performance of the proposed algorithm is thoroughly studied with four real infrared image sequences. Experimental results indicate that the proposed algorithm can reduce the nonuniformity with less ghosting artifacts in moving areas and can also overcome the problem of image blurring in static areas. PMID:27140891

  8. Low SWaP MWIR detector based on XBn focal plane array

    NASA Astrophysics Data System (ADS)

    Klipstein, P. C.; Gross, Y.; Aronov, D.; ben Ezra, M.; Berkowicz, E.; Cohen, Y.; Fraenkel, R.; Glozman, A.; Grossman, S.; Klin, O.; Lukomsky, I.; Marlowitz, T.; Shkedy, L.; Shtrichman, I.; Snapi, N.; Tuito, A.; Yassen, M.; Weiss, E.

    2013-06-01

    Over the past few years, a new type of High Operating Temperature (HOT) photon detector has been developed at SCD, which operates in the blue part of the MWIR window of the atmosphere (3.4-4.2 μm). This window is generally more transparent than the red part of the MWIR window (4.4-4.9 μm), especially for mid and long range applications. The detector has an InAsSb active layer, and is based on the new "XBn" device concept. We have analyzed various electrooptical systems at different atmospheric temperatures, based on XBn-InAsSb operating at 150K and epi-InSb at 95K, respectively, and find that the typical recognition ranges of both detector technologies are similar. Therefore, for very many applications there is no disadvantage to using XBn-InAsSb instead of InSb. On the other hand XBn technology confers many advantages, particularly in low Size, Weight and Power (SWaP) and in the high reliability of the cooler and Integrated Detector Cooler Assembly (IDCA). In this work we present a new IDCA, designed for 150K operation. The 15 μm pitch 640×512 digital FPA is housed in a robust, light-weight, miniaturised Dewar, attached to Ricor's K562S Stirling cycle cooler. The complete IDCA has a diameter of 28 mm, length of 80 mm and weight of < 300 gm. The total IDCA power consumption is ~ 3W at a 60Hz frame rate, including an external miniature proximity card attached to the outside of the Dewar. We describe some of the key performance parameters of the new detector, including its NETD, RNU and operability, pixel cross-talk, and early stage yield results from our production line.

  9. Optical interconnections to focal plane arrays

    SciTech Connect

    Rienstra, J.L.; Hinckley, M.K.

    2000-11-01

    The authors have successfully demonstrated an optical data interconnection from the output of a focal plane array to the downstream data acquisition electronics. The demonstrated approach included a continuous wave laser beam directed at a multiple quantum well reflectance modulator connected to the focal plane array analog output. The output waveform from the optical interconnect was observed on an oscilloscope to be a replica of the input signal. They fed the output of the optical data link to the same data acquisition system used to characterize focal plane array performance. Measurements of the signal to noise ratio at the input and output of the optical interconnection showed that the signal to noise ratio was reduced by a factor of 10 or more. Analysis of the noise and link gain showed that the primary contributors to the additional noise were laser intensity noise and photodetector receiver noise. Subsequent efforts should be able to reduce these noise sources considerably and should result in substantially improved signal to noise performance. They also observed significant photocurrent generation in the reflectance modulator that imposes a current load on the focal plane array output amplifier. This current loading is an issue with the demonstrated approach because it tends to negate the power saving feature of the reflectance modulator interconnection concept.

  10. Large Format Multicolor QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Soibel, A.; Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.

    2009-01-01

    Mid-wave infrared (MWIR) and long-wave infrared (LWIR) multicolor focal plane array (FPA) cameras are essential for many DoD and NASA applications including Earth and planetary remote sensing. In this paper we summarize our recent development of large format multicolor QWIP FPA that cover MWIR and LWIR bands.

  11. SOI diode uncooled infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Kimata, Masafumi; Ueno, Masashi; Takeda, Munehisa; Seto, Toshiki

    2006-02-01

    An uncooled infrared focal plane array (IR FPA) is a MEMS device that integrates an array of tiny thermal infrared detector pixels. An SOI diode uncooled IR FPA is a type that uses freestanding single-crystal diodes as temperature sensors and has various advantages over the other MEMS-based uncooled IR FPAs. Since the first demonstration of an SOI diode uncooled IR FPA in 1999, the pixel structure has been improved by developing sophisticated MEMS processes. The most advanced pixel has a three-level structure that has an independent metal reflector for interference infrared absorption between the temperature sensor (bottom level) and the infrared-absorbing thin metal film (top level). This structure makes it possible to design pixels with lower thermal conductance by allocating more area for thermal isolation without reducing infrared absorption. The new MEMS process for the three-level structure includes a XeF II dry bulk silicon etching process and a double organic sacrificial layer surface micromachining process. Employing advanced MEMS technology, we have developed a 640 x 480-element SOI diode uncooled IR FPA with 25-μm square pixels. The noise equivalent temperature difference of the FPA is 40 mK with f/1.0 optics. This result clearly demonstrates the great potential of the SOI diode uncooled IR FPA for high-end applications. In this paper, we explain the advances and state-of-the-art technology of the SOI diode uncooled IR FPA.

  12. Development of High-Performance eSWIR HgCdTe-Based Focal-Plane Arrays on Silicon Substrates

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Pepping, J.; Mukhortova, A.; Ketharanathan, S.; Kodama, R.; Zhao, J.; Hansel, D.; Velicu, S.; Aqariden, F.

    2016-09-01

    We report the development of high-performance and low-cost extended short-wavelength infrared (eSWIR) focal-plane arrays (FPAs) fabricated from molecular beam epitaxial (MBE)-grown HgCdTe on Si-based substrates. High-quality n-type eSWIR HgCdTe (cutoff wavelength ˜2.68 μm at 77 K, electron carrier concentration 5.82 × 1015 cm-3) layers were grown on CdTe/Si substrates by MBE. High degrees of uniformity in composition and thickness were demonstrated over three-inch areas, and low surface defect densities (voids 9.56 × 101 cm-2, micro-defects 1.67 × 103 cm-2) were measured. This material was used to fabricate 320 × 256 format, 30 μm pitch FPAs with a planar device architecture using arsenic implantation to achieve p-type doping. The dark current density of test devices showed good uniformity between 190 K and room temperature, and high-quality eSWIR imaging from hybridized FPAs was obtained with a median dark current density of 2.63 × 10-7 A/cm2 at 193 K with a standard deviation of 1.67 × 10-7 A/cm2.

  13. Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian

    2016-05-01

    Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superimposed on the image, which affects the imaging quality of infrared system seriously. In scene-based non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper proposes an improved neural network non-uniformity correction method with adaptive learning rate. On the one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive learning rate. Several real and simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas.

  14. Labeled RFS-Based Track-Before-Detect for Multiple Maneuvering Targets in the Infrared Focal Plane Array

    PubMed Central

    Li, Miao; Li, Jun; Zhou, Yiyu

    2015-01-01

    The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts—MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing. PMID:26670234

  15. Labeled RFS-Based Track-Before-Detect for Multiple Maneuvering Targets in the Infrared Focal Plane Array.

    PubMed

    Li, Miao; Li, Jun; Zhou, Yiyu

    2015-01-01

    The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts-MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing. PMID:26670234

  16. Development of High-Performance eSWIR HgCdTe-Based Focal-Plane Arrays on Silicon Substrates

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Pepping, J.; Mukhortova, A.; Ketharanathan, S.; Kodama, R.; Zhao, J.; Hansel, D.; Velicu, S.; Aqariden, F.

    2016-06-01

    We report the development of high-performance and low-cost extended short-wavelength infrared (eSWIR) focal-plane arrays (FPAs) fabricated from molecular beam epitaxial (MBE)-grown HgCdTe on Si-based substrates. High-quality n-type eSWIR HgCdTe (cutoff wavelength ˜2.68 μm at 77 K, electron carrier concentration 5.82 × 1015 cm-3) layers were grown on CdTe/Si substrates by MBE. High degrees of uniformity in composition and thickness were demonstrated over three-inch areas, and low surface defect densities (voids 9.56 × 101 cm-2, micro-defects 1.67 × 103 cm-2) were measured. This material was used to fabricate 320 × 256 format, 30 μm pitch FPAs with a planar device architecture using arsenic implantation to achieve p-type doping. The dark current density of test devices showed good uniformity between 190 K and room temperature, and high-quality eSWIR imaging from hybridized FPAs was obtained with a median dark current density of 2.63 × 10-7 A/cm2 at 193 K with a standard deviation of 1.67 × 10-7 A/cm2.

  17. Miniaturized imaging spectrometer based on Fabry-Perot MOEMS filters and HgCdTe infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Velicu, S.; Buurma, C.; Bergeson, J. D.; Kim, Tae Sung; Kubby, J.; Gupta, N.

    2014-05-01

    Imaging spectrometry can be utilized in the midwave infrared (MWIR) and long wave infrared (LWIR) bands to detect, identify and map complex chemical agents based on their rotational and vibrational emission spectra. Hyperspectral datasets are typically obtained using grating or Fourier transform spectrometers to separate the incoming light into spectral bands. At present, these spectrometers are large, cumbersome, slow and expensive, and their resolution is limited by bulky mechanical components such as mirrors and gratings. As such, low-cost, miniaturized imaging spectrometers are of great interest. Microfabrication of micro-electro-mechanicalsystems (MEMS)-based components opens the door for producing low-cost, reliable optical systems. We present here our work on developing a miniaturized IR imaging spectrometer by coupling a mercury cadmium telluride (HgCdTe)-based infrared focal plane array (FPA) with a MEMS-based Fabry-Perot filter (FPF). The two membranes are fabricated from silicon-oninsulator (SOI) wafers using bulk micromachining technology. The fixed membrane is a standard silicon membrane, fabricated using back etching processes. The movable membrane is implemented as an X-beam structure to improve mechanical stability. The geometries of the distributed Bragg reflector (DBR)-based tunable FPFs are modeled to achieve the desired spectral resolution and wavelength range. Additionally, acceptable fabrication tolerances are determined by modeling the spectral performance of the FPFs as a function of DBR surface roughness and membrane curvature. These fabrication non-idealities are then mitigated by developing an optimized DBR process flow yielding high-performance FPF cavities. Zinc Sulfide (ZnS) and Germanium (Ge) are chosen as the low and the high index materials, respectively, and are deposited using an electron beam process. Simulations are presented showing the impact of these changes and non-idealities in both a device and systems level.

  18. 320x256 solar-blind focal plane arrays based on Al{sub x}Ga{sub 1-x}N

    SciTech Connect

    McClintock, R.; Mayes, K.; Yasan, A.; Shiell, D.; Kung, P.; Razeghi, M.

    2005-01-03

    We report AlGaN-based backilluminated solar-blind ultraviolet focal plane arrays operating at a wavelength of 280 nm. The electrical characteristics of the individual pixels are discussed, and the uniformity of the array is presented. The p-i-n photodiode array was hybridized to a 320x256 read-out integrated circuit entirely within our university research lab, and a working 320x256 camera was demonstrated. Several example solar-blind images from the camera are also provided.

  19. Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Micro-FT-IR Imaging.

    PubMed

    Tagg, Alexander S; Sapp, Melanie; Harrison, Jesse P; Ojeda, Jesús J

    2015-06-16

    Microplastics (<5 mm) have been documented in environmental samples on a global scale. While these pollutants may enter aquatic environments via wastewater treatment facilities, the abundance of microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment. PMID:25986938

  20. Plane wave imaging using phased array

    NASA Astrophysics Data System (ADS)

    Volker, Arno

    2014-02-01

    Phased arrays are often used for rapid inspections. Phased arrays can be used to synthesize different wave fronts. For imaging, focused wave fronts are frequently used. In order to build an image, the phased array has to be fired multiple times at the same location. Alternatively, different data acquisition configurations can be designed in combination with an imaging algorithm. The objective of this paper is to use the minimal amount of data required to construct an image. If a plane wave is synthesized, the region of interest is illuminated completely. For plane wave synthesis, all elements in the phase array are fired. This ensures a good signal to noise ratio. Imaging can be performed efficiently with a mapping algorithm in the wavenumber domain. The algorithm involves only two Fourier transforms and can therefore be extremely fast. The obtained resolution is comparable to conventional imaging algorithms. This work investigates the potential and limitations of this mapping algorithm on simulated data. With this approach, frame rates of more than 1 kHz can be achieved.

  1. Infrared focal plane array crosstalk measurement

    NASA Astrophysics Data System (ADS)

    Dang, Khoa V.; Kauffman, Christopher L.; Derzko, Zenon I.

    1992-07-01

    Crosstalk between two neighboring elements in a focal plane array (FPA) occurs when signal incident on one element in the array is seen on another. This undesired effect can occur due to both the electrical and optical properties of the FPA. An effort is underway at the U.S. Army's Night Vision and Electro-Optics Directorate to develop a capability to measure crosstalk on both mid-wave infrared and long-wave infrared FPAs. A single detector in an array is illuminated using a laser source coupled with a beam expander, collimating lens, and focusing lens. The relative response of that detector to that of its neighboring detectors is measured to calculate crosstalk. The various components of the test station, the methodology for implementing the crosstalk measurement, and a model of the laser spot size are discussed.

  2. Short wavelength infrared hybrid focal plane arrays

    NASA Technical Reports Server (NTRS)

    Vural, K.; Blackwell, J. D.; Marin, E. C.; Edwall, D. D.; Rode, J. P.

    1983-01-01

    The employment of area focal plane arrays (FPA) has made it possible to obtain second generation infrared imaging systems with high resolution and sensitivity. The Short Wavelength Infrared (SWIR) region (1-2.5 microns) is of importance for imaging objects at high temperature and under conditions of reflected sunlight. The present investigation is concerned with electrooptical characterization results for 32 x 32 SWIR detector arrays and FPAs which are suitable for use in a prototype imaging spectrometer. The employed detector material is Hg(1-x)Cd(x)Te grown by liquid phase epitaxy on a CdTe transparent substrate. Attention is given to details of processing, the design of the detector array, the multiplexer, the fabrication of the hybrid FPA, and aspects of performance.

  3. Short Wavelength Infrared Hybrid Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Vural, K.; Blackwell, J. D...; Marin, E. C.; Edwall, D. D...; Rode, J. P.

    1983-11-01

    Short wavelength (λc = 2.5 μm) 32 x 32 HgCdTe focal plane arrays have been fabricated for use in an Airborne Imaging Spectrometer (AIS) developed by the Jet Propulsion Labora-tory for NASA. An Imaging Spectrometer provides simultaneous imaging of several spectral bands for applications in the sensing and monitoring of earth resources. The detector material is HgCdTe grown on CdTe substrates using liquid phase epitaxy. Planar processing is used to make photovoltaic detectors on 68 um centers. The detector array is mated to a silicon charge coupled device multiplexer to make hybrid focal plane arrays. Results show high performance detectors with a mean RoA = 9.6 x 107 Ω --cm2 and IleakAge (-100 mV) = 0.037 pA at 120K and near zero background. The yield and uniformity are high. The ratio of the standard deviation of the dc responsivity to the mean is 3% for 98.5% of the pixels. The D1.0 = 1.3 x 1012 cm - âœ"fiz/W at a background of 1013 ph/cm2-s and 120K which is close to the background limited (BLIP) D* of 1.9 x 1012 cm- âœ"Hz/W.

  4. Uncooled infrared sensors with digital focal plane array

    NASA Astrophysics Data System (ADS)

    Marshall, Charles A.; Butler, Neal R.; Blackwell, Richard; Murphy, Robert; Breen, Thomas

    1996-06-01

    Loral Infrared & Imaging Systems is developing low cost, high performance, uncooled infrared imaging products for both military and commercial applications. These products are based on the microbolometer technology, a silicon micromachined sensor which combines the wafer level silicon processing with a device structure capable of yielding excellent infrared imaging performance. Here, we report on the development of an uncooled sensor, the LTC500, which incorporates an all digital focal plane array and has a measured NETD of less than 70 mK. The focal plane array and the electronics within the LTC500 have been designed as an integrated unit to meet a broad range of end user applications by providing features such as nonuniformity correction, autogain and level, NTSC video, and digital outputs. The 327 X 245 element focal plane array has a 46.25 micrometers pixel pitch and an on focal plane array 14 bit to analog to digital converter (ADC). The ADC has a measured instantaneous dynamic range of more than 76 dB at a 6.1 MHz output data rate and 60 Hz frame rate. The focal plane array consumes less than 500 mW of power, of which less than 250 mW is used in the ADC. An additional 36 dB of digital coarse offset correction in front of the ADC on the focal plane array results in a total electronic dynamic range of 112 dB. The MRT of the LTC500 camera has been measured at less 0.2 C at f(subscript o).

  5. MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.; Wendler, J.; Figgemeier, H.

    2016-09-01

    We present our latest results on n-on- p as well as on p-on- n low dark current planar mercury cadmium telluride (MCT) photodiode technology long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) two-dimensional focal plane arrays (FPAs) with quantum efficiency (QE) cut-off wavelength >11 μm at 80 K and a 512 × 640 pixel format FPA at 20 μm pitch stitched from two 512 × 320 pixel photodiode arrays. Significantly reduced dark currents as compared with Tennant's "Rule 07" are demonstrated in both polarities while retaining good detection efficiency ≥60% for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at 20 K higher operating temperature than with previous AIM INFRAROT-MODULE GmbH (AIM) technology. For p-on- n LWIR MCT FPAs, broadband photoresponse nonuniformity of only about 1.2% is achieved at 55 K with low defective pixel numbers. For an n-on- p VLWIR MCT FPA with 13.6 μm cut-off at 55 K, excellent photoresponse nonuniformity of about 3.1% is achieved at moderate defective pixel numbers. This advancement in detector technology paves the way for outstanding signal-to-noise ratio performance infrared detection, enabling cutting-edge next-generation LWIR/VLWIR detectors for space instruments and devices with higher operating temperature and low size, weight, and power for field applications.

  6. MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.; Wendler, J.; Figgemeier, H.

    2016-04-01

    We present our latest results on n-on-p as well as on p-on-n low dark current planar mercury cadmium telluride (MCT) photodiode technology long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) two-dimensional focal plane arrays (FPAs) with quantum efficiency (QE) cut-off wavelength >11 μm at 80 K and a 512 × 640 pixel format FPA at 20 μm pitch stitched from two 512 × 320 pixel photodiode arrays. Significantly reduced dark currents as compared with Tennant's "Rule 07" are demonstrated in both polarities while retaining good detection efficiency ≥60% for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at 20 K higher operating temperature than with previous AIM INFRAROT-MODULE GmbH (AIM) technology. For p-on-n LWIR MCT FPAs, broadband photoresponse nonuniformity of only about 1.2% is achieved at 55 K with low defective pixel numbers. For an n-on-p VLWIR MCT FPA with 13.6 μm cut-off at 55 K, excellent photoresponse nonuniformity of about 3.1% is achieved at moderate defective pixel numbers. This advancement in detector technology paves the way for outstanding signal-to-noise ratio performance infrared detection, enabling cutting-edge next-generation LWIR/VLWIR detectors for space instruments and devices with higher operating temperature and low size, weight, and power for field applications.

  7. Tohoku University Focal Plane Array Controller (TUFPAC)

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takashi; Matsumoto, Daigo; Yanagisawa, Kenshi; Katsuno, Yuka; Suzuki, Ryuji; Tokoku, Chihiro; Asai, Ken'ichiro; Nishimura, Tetsuo

    2003-03-01

    TUFPAC (Tohoku University Focal Plane Array Controller) is an array control system originally designed for flexible control and efficient data acquisition of 2048 x 2048 HgCdTe (HAWAII-2) array. A personal computer operated by Linux OS controls mosaic HAWAII-2s with commercially available DSP boards installed on the PCI bus. Triggered by PC, DSP sends clock data to front-end electronics, which is isolated from the DSP board by photo-couplers. Front-end electronics supply powers, biases and clock signals to HAWAII2. Pixel data are read from four outputs of each HAWAII2 simultaneously by way of four channel preamps and ADCs. Pixel data converted to 16 bit digital data are stored in the frame memory on the DSP board. Data are processed in the memory when necessary. PC receives the frame data and stores it in the hard disk of PC in FITS format. A set of the DSP board and front-end electronics is responsible for controlling each HAWAII-2. One PC can operate eight mosaic arrays at most. TUFPAC is applicable to the control of CCDs with minor changes of front-end electronics.

  8. Small pixel oversampled IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Caulfield, John; Curzan, Jon; Lewis, Jay; Dhar, Nibir

    2015-06-01

    We report on a new high definition high charge capacity 2.1 Mpixel MWIR Infrared Focal Plane Array. This high definition (HD) FPA utilizes a small 5 um pitch pixel size which is below the Nyquist limit imposed by the optical systems Point Spread Function (PSF). These smaller sub diffraction limited pixels allow spatial oversampling of the image. We show that oversampling IRFPAs enables improved fidelity in imaging including resolution improvements, advanced pixel correlation processing to reduce false alarm rates, improved detection ranges, and an improved ability to track closely spaced objects. Small pixel HD arrays are viewed as the key component enabling lower size, power and weight of the IR Sensor System. Small pixels enables a reduction in the size of the systems components from the smaller detector and ROIC array, the reduced optics focal length and overall lens size, resulting in an overall compactness in the sensor package, cooling and associated electronics. The highly sensitive MWIR small pixel HD FPA has the capability to detect dimmer signals at longer ranges than previously demonstrated.

  9. Uncooled infrared focal plane array imaging in China

    NASA Astrophysics Data System (ADS)

    Lei, Shuyu

    2015-06-01

    This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 μm. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.

  10. Multispectral linear array (MLA) focal plane mechanical and thermal design

    NASA Technical Reports Server (NTRS)

    Mitchell, A. S.; Kaminski, E. F.

    1982-01-01

    The mechanical and thermal design of an integrated focal plane subsystem of a Multispectral Linear Array (MLA) instrument is discussed in terms of focal-plane alignment, thermoelastic performance, and thermal requirements. The modular construction and thermal control of the focal plane array are discussed.

  11. Smart trigger logic for focal plane arrays

    SciTech Connect

    Levy, James E; Campbell, David V; Holmes, Michael L; Lovejoy, Robert; Wojciechowski, Kenneth; Kay, Randolph R; Cavanaugh, William S; Gurrieri, Thomas M

    2014-03-25

    An electronic device includes a memory configured to receive data representing light intensity values from pixels in a focal plane array and a processor that analyzes the received data to determine which light values correspond to triggered pixels, where the triggered pixels are those pixels that meet a predefined set of criteria, and determines, for each triggered pixel, a set of neighbor pixels for which light intensity values are to be stored. The electronic device also includes a buffer that temporarily stores light intensity values for at least one previously processed row of pixels, so that when a triggered pixel is identified in a current row, light intensity values for the neighbor pixels in the previously processed row and for the triggered pixel are persistently stored, as well as a data transmitter that transmits the persistently stored light intensity values for the triggered and neighbor pixels to a data receiver.

  12. Low dark current MCT-based focal plane detector arrays for the LWIR and VLWIR developed at AIM

    NASA Astrophysics Data System (ADS)

    Gassmann, Kai Uwe; Eich, Detlef; Fick, Wolfgang; Figgemeier, Heinrich; Hanna, Stefan; Thöt, Richard

    2015-10-01

    For nearly 40 years AIM develops, manufactures and delivers photo-voltaic and photo-conductive infrared sensors and associated cryogenic coolers which are mainly used for military applications like pilotage, weapon sights, UAVs or vehicle platforms. In 2005 AIM started to provide the competences also for space applications like IR detector units for the SLSTR instrument on board of the Sentinel 3 satellite, the hyperspectral SWIR Imager for EnMAP or pushbroom detectors for high resolution Earth observation satellites. Meanwhile AIM delivered more than 25 Flight Models for several customers. The first European pulse-tube cooler ever operating on-board of a satellite is made by AIM. AIM homes the required infrared core capabilities such as design and manufacturing of focal plane assemblies, detector housing technologies, development and manufacturing of cryocoolers and also data processing for thermal IR cameras under one roof which enables high flexibility to react to customer needs and assures economical solutions. Cryogenically cooled Hg(1-x)CdxTe (MCT) quantum detectors are unequalled for applications requiring high imaging as well as high radiometric performance in the infrared spectral range. Compared with other technologies, they provide several advantages, such as the highest quantum efficiency, lower power dissipation compared to photoconductive devices and fast response times, hence outperforming micro-bolometer arrays. However, achieving an excellent MCT detector performance at long (LWIR) and very long (VLWIR) infrared wavelengths is challenging due to the exponential increase in the thermally generated photodiode dark current with increasing cut-off wavelength and / or operating temperature. Dark current is a critical design driver, especially for LWIR / VLWIR multi-spectral imagers with moderate signal levels or hyper-spectral Fourier spectrometers operating deep into the VLWIR spectral region. Consequently, low dark current (LDC) technologies are the

  13. Two-color quantum well infrared photodetector focal plane arrays

    NASA Astrophysics Data System (ADS)

    Bundas, Jason; Patnaude, Kelly; Dennis, Richard; Burrows, Douglas; Cook, Robert; Reisinger, Axel; Sundaram, Mani; Benson, Robert; Woolaway, James; Schlesselmann, John; Petronio, Susan

    2006-05-01

    QmagiQ LLC, has recently completed building and testing high operability two-color Quantum Well Infrared Photodetector (QWIP) focal plane arrays (FPAs). The 320 x 256 format dual-band FPAs feature 40-micron pixels of spatially registered QWIP detectors based on III-V materials. The vertically stacked detectors in this specific midwave/longwave (MW/LW) design are tuned to absorb in the respective 4-5 and 8-9 micron spectral ranges. The ISC0006 Readout Integrated Circuit (ROIC) developed by FLIR Systems Inc. and used in these FPAs features direct injection (DI) input circuitry for high charge storage with each unit cell containing dual integration capacitors, allowing simultaneous scene sampling and readout for the two distinct wavelength bands. Initial FPAs feature pixel operabilities better than 99%. Focal plane array test results and sample images will be presented.

  14. Multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1995-01-01

    A multiwavelength focal plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y<1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  15. Focal Plane Arrays and Electronics for WISE

    NASA Astrophysics Data System (ADS)

    Masterjohn, Stacy; Hogue, H.; Mattson, R.; Dawson, L.; Bojorquez, A.; Muzilla, M.

    2009-01-01

    DRS provided the four channel focal plane array system for the Wide-field Infrared Survey Explorer (WISE) payload. The two shorter wavelength bands, centered near 3.2 and 4.5 µm, employed 1024x1024 HAWAII 1RG Mercury Cadmium Telluride (MCT) FPAs obtained from Teledyne Imaging Systems, Inc. The two longer wavelength bands, centered near 12 and 24 µm, utilized 1024x1024 arsenic doped silicon (Si:As) Blocked Impurity Band (BIB) FPAs, which were developed for the program by DRS. DRS packaged the 4 FPAs into similar custom cryogenic modules, each with its own flexible cryogenic ribbon cable to route FPA image output signals from within the WISE cryogenic telescope assembly through the cryostat walls. DRS also designed the cables and a common flight electronics box (FEB) to operate all 4 FPAs to provide their multiplexed digital image data streams to subsequent on-payload data processing and downlink systems. Fully functional, non-flight versions of the cabling and FEB were built to operate the FPAs during payload integration. The FPA system was delivered to the WISE payload integrator Space Dynamics Laboratory (SDL) in late 2007, and it is currently being integrated in to the WISE payload.

  16. Terahertz detectors and focal plane arrays

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Sizov, F.

    2011-09-01

    Terahertz (THz) technology is one of emerging technologies that will change our life. A lot of attractive applications in security, medicine, biology, astronomy, and non-destructive materials testing have been demonstrated already. However, the realization of THz emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. As a result, THz radiation is resistant to the techniques commonly employed in these well established neighbouring bands. In the paper, issues associated with the development and exploitation of THz radiation detectors and focal plane arrays are discussed. Historical impressive progress in THz detector sensitivity in a period of more than half century is analyzed. More attention is put on the basic physical phenomena and the recent progress in both direct and heterodyne detectors. After short description of general classification of THz detectors, more details concern Schottky barrier diodes, pair braking detectors, hot electron mixers and field-effect transistor detectors, where links between THz devices and modern technologies such as micromachining are underlined. Also, the operational conditions of THz detectors and their upper performance limits are reviewed. Finally, recent advances in novel nanoelectronic materials and technologies are described. It is expected that applications of nanoscale materials and devices will open the door for further performance improvement in THz detectors.

  17. Digital-pixel focal plane array development

    NASA Astrophysics Data System (ADS)

    Brown, Matthew G.; Baker, Justin; Colonero, Curtis; Costa, Joe; Gardner, Tom; Kelly, Mike; Schultz, Ken; Tyrrell, Brian; Wey, Jim

    2010-01-01

    Since 2006, MIT Lincoln Laboratory has been developing Digital-pixel Focal Plane Array (DFPA) readout integrated circuits (ROICs). To date, four 256 × 256 30 μm pitch DFPA designs with in-pixel analog to digital conversion have been fabricated using IBM 90 nm CMOS processes. The DFPA ROICs are compatible with a wide range of detector materials and cutoff wavelengths; HgCdTe, QWIP, and InGaAs photo-detectors with cutoff wavelengths ranging from 1.6 to 14.5 μm have been hybridized to the same digital-pixel readout. The digital-pixel readout architecture offers high dynamic range, A/C or D/C coupled integration, and on-chip image processing with low power orthogonal transfer operations. The newest ROIC designs support two-color operation with a single Indium bump connection. Development and characterization of the two-color DFPA designs is presented along with applications for this new digital readout technology.

  18. System and method for generating a deselect mapping for a focal plane array

    SciTech Connect

    Bixler, Jay V; Brandt, Timothy G; Conger, James L; Lawson, Janice K

    2013-05-21

    A method for generating a deselect mapping for a focal plane array according to one embodiment includes gathering a data set for a focal plane array when exposed to light or radiation from a first known target; analyzing the data set for determining which pixels or subpixels of the focal plane array to add to a deselect mapping; adding the pixels or subpixels to the deselect mapping based on the analysis; and storing the deselect mapping. A method for gathering data using a focal plane array according to another embodiment includes deselecting pixels or subpixels based on a deselect mapping; gathering a data set using pixels or subpixels in a focal plane array that are not deselected upon exposure thereof to light or radiation from a target of interest; and outputting the data set.

  19. Mid-Wave and Long-Wave Infrared Dualband Megapixel QWIP Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Hill, C. J.; Ting, D. Z.; Kurth, E.; Woolaway, J.; LeVan, P. D.; Tidrow, M. Z.

    2008-01-01

    Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024x1024 pixel InGaAs/GaAs/AlGaAs based quantum well infrared photodetector (QWIP) focal planes and a 320x256 pixel dual-band pixel co-registered simultaneous QWIP focal plane array have been demonstrated as pathfinders. In this paper, we discuss the development of 1024x1024 MWIR/LWIR dual-band pixel co-registered simultaneous QWIP focal plane array.

  20. An inverter-based capacitive trans-impedance amplifier readout with offset cancellation and temporal noise reduction for IR focal plane array

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Han; Hsieh, Chih-Cheng

    2013-09-01

    This paper presents a readout integrated circuit (ROIC) with inverter-based capacitive trans-impedance amplifier (CTIA) and pseudo-multiple sampling technique for infrared focal plane array (IRFPA). The proposed inverter-based CTIA with a coupling capacitor [1], executing auto-zeroing technique to cancel out the varied offset voltage from process variation, is used to substitute differential amplifier in conventional CTIA. The tunable detector bias is applied from a global external bias before exposure. This scheme not only retains stable detector bias voltage and signal injection efficiency, but also reduces the pixel area as well. Pseudo-multiple sampling technique [2] is adopted to reduce the temporal noise of readout circuit. The noise reduction performance is comparable to the conventional multiple sampling operation without need of longer readout time proportional to the number of samples. A CMOS image sensor chip with 55×65 pixel array has been fabricated in 0.18um CMOS technology. It achieves a 12um×12um pixel size, a frame rate of 72 fps, a power-per-pixel of 0.66uW/pixel, and a readout temporal noise of 1.06mVrms (16 times of pseudo-multiple sampling), respectively.

  1. Signal processing of microbolometer infrared focal-plane arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Junju; Qian, Yunsheng; Chang, Benkang; Xing, Suxia; Sun, Lianjun

    2005-01-01

    A 320×240-uncooled-microbolometer-based signal processing circuit for infrared focal-plane arrays is presented, and the software designs of this circuit system are also discussed in details. This signal processing circuit comprises such devices as FPGA, D/A, A/D, SRAM, Flash, DSP, etc., among which, FPGA is the crucial part, which realizing the generation of drive signals for infrared focal-plane, nonuniformity correction, image enhancement and video composition. The device of DSP, mainly offering auxiliary functions, carries out communication with PC and loads data when power-up. The phase locked loops (PLL) is used to generate high-quality clocks with low phase dithering and multiple clocks are to used satisfy the demands of focal-plane arrays, A/D, D/A and FPGA. The alternate structure is used to read or write SRAM in order to avoid the contradiction between different modules. FIFO embedded in FPGA not only makes full use of the resources of FPGA but acts as the channel between different modules which have different-speed clocks. What's more, working conditions, working process, physical design and management of the circuit are discussed. In software designing, all the function modules realized by FPGA and DSP devices, which are mentioned in the previous part, are discussed explicitly. Particularly to the nonuniformity correction module, the pipeline structure is designed to improve the working frequency and the ability to realize more complex algorithm.

  2. Antenna coupled detectors for 2D staring focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gritz, Michael A.; Kolasa, Borys; Lail, Brian; Burkholder, Robert; Chen, Leonard

    2013-06-01

    Millimeter-wave (mmW)/sub-mmW/THz region of the electro-magnetic spectrum enables imaging thru clothing and other obscurants such as fog, clouds, smoke, sand, and dust. Therefore considerable interest exists in developing low cost millimeter-wave imaging (MMWI) systems. Previous MMWI systems have evolved from crude mechanically scanned, single element receiver systems into very complex multiple receiver camera systems. Initial systems required many expensive mmW integrated-circuit low-noise amplifiers. In order to reduce the cost and complexity of the existing systems, attempts have been made to develop new mmW imaging sensors employing direct detection arrays. In this paper, we report on Raytheon's recent development of a unique focal plane array technology, which operates broadly from the mmW through the sub-mmW/THz region. Raytheon's innovative nano-antenna based detector enables low cost production of 2D staring mmW focal plane arrays (mmW FPA), which not only have equivalent sensitivity and performance to existing MMWI systems, but require no mechanical scanning.

  3. Integration of advanced optical functions on the focal plane array for very compact MCT-based micro cameras

    NASA Astrophysics Data System (ADS)

    Fendler, Manuel; Lasfargues, Gilles; Bernabé, S.; Druart, Guillaume A.; de La Barriere, Florence; Rommeluere, Sylvain; Guérineau, Nicolas; Lhermet, Nicolas; Ribot, Hervé

    2010-04-01

    Over the past decade, several technological breakthroughs have been achieved in the field of optical detection, in terms of spatial and thermal resolutions. The actual trend leads to the integration of new functions at the vicinity of the detector. This paper presents two types of integrated optics in the cryo-cooler, close to the MCT (CdHgTe) infrared detector array. The first one, for spectro-imaging applications, is a Fourier-transform microspectrometer on chip (MICROSPOC), developed for very fast acquisition of spectral signatures. Experimental results will be presented. The second one, for large field of view applications, illustrates the high potentiality of the integration of advanced optical functions in the Dewar of MCT detectors.

  4. Comparing viewer and array mental rotations in different planes

    NASA Technical Reports Server (NTRS)

    Carpenter, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2001-01-01

    Participants imagined rotating either themselves or an array of objects that surrounded them. Their task was to report on the egocentric position of an item in the array following the imagined rotation. The dependent measures were response latency and number of errors committed. Past research has shown that self-rotation is easier than array rotation. However, we found that imagined egocentric rotations were as difficult to imagine as rotations of the environment when people performed imagined rotations in the midsagittal or coronal plane. The advantages of imagined self-rotations are specific to mental rotations performed in the transverse plane.

  5. MWIR and LWIR Megapixel QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, S. V.; Liu, J. K.; Rafol, S. B.; Thang, J.; Mumolo, Jason; Tidrow, M.; LeVan, P. D.; Hill, C.

    2004-01-01

    A mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024x1024 pixel quantum well infrared photodetector (QWIP) focal plane array has been demonstrated with excellent imagery. MWIR focal plane has given noise equivalent differential temperature (NETD) of 19 mK at 95K operating temperature with f/2.5 optics at 300K background and LWIR focal plane has given NEDT of 13 mK at 70K operating temperature with same optical and background conditions as MWIR array. Both of these focal plane arrays have shown background limited performance (BLIP) at 90K and 70K operating temperatures with the same optics and background conditions. In this paper, we will discuss their performance in quantum efficiency, NETD, uniformity, and operability.

  6. Synchrotron based infrared imaging and spectroscopy via focal plane array on live fibroblasts in D2O enriched medium

    SciTech Connect

    Quaroni, Luca; Zlateva, Theodora; Sarafimov, Blagoj; Kreuzer, Helen W.; Wehbe, Katia; Hegg, Eric L.; Cinque, Gianfelice

    2014-03-26

    We tested the viability of using synchrotron based infrared imaging to study biochemical processes inside living cells. As a model system, we studied fibroblast cells exposed to a medium highly enriched with D2O. We could show that the experimental technique allows us to reproduce at the cellular level measurements that are normally performed on purified biological molecules. We can obtain information about lipid conformation and distribution, kinetics of hydrogen/deuterium exchange, and the formation of concentration gradients of H and O isotopes in water that are associated with cell metabolism. The implementation of the full field technique in a sequential imaging format gives a description of cellular biochemistry and biophysics that contains both spatial and temporal information.

  7. In-plane photonic transduction for microcantilever sensor arrays

    NASA Astrophysics Data System (ADS)

    Nordin, Gregory P.; Noh, Jong Wok; Kim, Seunghyun

    2007-02-01

    Microcantilevers show significant promise in sensing minute quantities of chemical and biological analytes in vapor and liquid media. Much of the reported work on microcantilever sensors has made use of single functionalized microcantilevers, usually derived from commercially available atomic force microscope (AFM) cantilevers. However, arrays with hundreds to thousands of microcantilevers on a single chip are required to create sophisticated, broad spectrum chemical and biological sensors in which individual microcantilevers have different bio- or chemoselective coatings. Unfortunately, the most sensitive microcantilever readout mechanisms (such as laser beam reflection as used in atomic force microscopy) are not readily scalable to large arrays. We therefore introduce a new microcantilever transduction mechanism for silicon-on-insulator (SOI) microcantilevers that is designed to scale to large arrays while maintaining a very compact form factor and high sensitivity. This mechanism is based on in-plane photonic transduction of microcantilever deflection in which the microcantilever itself forms a single mode rib waveguide. Light from the end of the microcantilever is directed across a small gap to an asymmetric receiving waveguide with two outputs that enables differential detection of microcantilever deflection. Initial noise and optical power budget calculations indicate that deflection sensitivities in the 10's of picometer range should be achievable.

  8. Antenna arrays for producing plane whistler waves

    NASA Astrophysics Data System (ADS)

    Stenzel, Reiner; Urrutia, J. Manuel

    2015-11-01

    In a large uniform laboratory plasma helicon modes with mode numbers 1 - 8 have been excited. Using a circular phased array it is shown that positive and negative modes can propagate equally well. The phase fronts of helicons form Archimedian screw surfaces. The electromagnetic field carries linear momentum due to the axial propagation and angular momentum due to the azimuthal propagation. Associated with the orbital angular momentum is a transverse Doppler shift. It is demonstrated that a rapidly rotating ``receiver'' observes a different frequency than the wave. This implies that a rotating electron can undergo cyclotron resonance when moving against the field rotation. Analogous to the axial Doppler shift cyclotron damping and cyclotron instabilities are possible due to the field rotation in helicons. Since helicons exist in unbounded laboratory plasma they should also exist in space plasmas. The angular wave-particle interaction may be an alternate approach for the remedial of energetic electrons. Work supported by NSF/DOE.

  9. Self-calibration of Antenna Errors Using Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Napier, P. J.; Cornwell, T. J.

    The thery of focal-plane correlation is reviewed and applied to the problem of the self-calibration and self-correction of a radio telescope with errors in its reflecting surface. Curves are presented which allow the estimation of focal-plane array size and integration time needed for telescopes with varying amounts of error. It is suggested that the technique may have application to the problem of the construction of large telescopes in space.

  10. Megapixel Multi-band QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Rafo, S. B.; Hill, C.; Mumolo, J.; Thang, J.; Tidrow, M.; LeVan, P. D.

    2004-01-01

    A mid-wavelength 1024x1024 pixel quantum well infrared photodetector (QW) focal plane array has been demonstrated with excellent imagery. Noise equivalent differential temperature (NETD) of 19 mK was achieved at 95K operating temperature with f/2.5 optics at 300K background. This focal plane array has shown background limited performance (BLIP) at 90K operating temperature with the same optics and background conditions. In this paper, we will discuss its performance in quantum efficiency, NETD, uniformity, and operability.

  11. Combatting infrared focal plane array nonuniformity noise in imaging polarimeters

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; Kumar, Rakesh; Black, Wiley; Boger, James K.; Tyo, J. Scott

    2005-08-01

    One of the most significant challenges in performing infrared (IR) polarimetery is the focal plane array (FPA) nonuniformity (NU) noise that is inherent in virtually all IR photodetector technologies that operate in the midwave IR (MWIR) or long-wave IR (LWIR). NU noise results from pixel-to-pixel variations in the repsonsivity of the photodetectors. This problem is especially severy in the microengineered IR FPA materials like HgCdTe and InSb, as well as in uncooled IR microbolometer sensors. Such problems are largely absent from Si based visible spectrum FPAs. The pixel response is usually a variable nonlinear response function, and even when the response is linearized over some range of temperatures, the gain and offset of the resulting response is usually highly variable. NU noise is normally corrected by applying a linear calibration to the data, but the resulting imagery still retains residual nonuniformity due to the nonlinearity of the photodetector responses. This residual nonuniformity is particularly troublesome for polarimeters because of the addition and subtraction operations that must be performed on the images in order to construct the Stokes parameters or other polarization products. In this paper we explore the impact of NU noise on full stokes and linear-polarization-only IR polarimeters. We compare the performance of division of time, division of amplitude, and division of array polarimeters in the presence of both NU and temporal noise, and assess the ability of calibration-based NU correction schemes to clean up the data.

  12. Optical Link For Readout From Focal-Plane Array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Larsson, Anders G.; Maserjian, Joseph

    1992-01-01

    Outputs of photodetectors modulate beam of light. Proposed optical link carries analog readout signals from photodetectors in focal-plane array to external signal-processing circuitry. Insensitive to electromagnetic interference at suboptical frequencies, and imposes smaller heat load on cryogenic apparatus because it does not include high-power electronic amplifier or laser transmitter within cold chamber.

  13. Testing of focal plane arrays at the AEDC

    NASA Astrophysics Data System (ADS)

    Nicholson, Randy A.; Mead, Kimberly D.; Smith, Robert W.

    1992-07-01

    A facility was developed at the Arnold Engineering Development Center (AEDC) to provide complete radiometric characterization of focal plane arrays (FPAs). The highly versatile facility provides the capability to test single detectors, detector arrays, and hybrid FPAs. The primary component of the AEDC test facility is the Focal Plane Characterization Chamber (FPCC). The FPCC provides a cryogenic, low-background environment for the test focal plane. Focal plane testing in the FPCC includes flood source testing, during which the array is uniformly irradiated with IR radiation, and spot source testing, during which the target radiation is focused onto a single pixel or group of pixels. During flood source testing, performance parameters such as power consumption, responsivity, noise equivalent input, dynamic range, radiometric stability, recovery time, and array uniformity can be assessed. Crosstalk is evaluated during spot source testing. Spectral response testing is performed in a spectral response test station using a three-grating monochromator. Because the chamber can accommodate several types of testing in a single test installation, a high throughput rate and good economy of operation are possible.

  14. Arrayed Ultrasonic Transducers on Arc Surface for Plane Wave Synthesis

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Soon; Kim, Jung-Ho; Kim, Moo-Joon; Ha, Kang-Lyeol; Yamada, Akira

    2004-05-01

    In ultrasonic computed tomography (UCT), it is necessary to synthesize a plane wave using waves emitted from sound sources arranged in the interior surface of a cylinder. In order to transmit a plane wave into a cylindrical surface, an ultrasonic transducer which has many vibrating elements with piezoelectric transverse effect arrayed on an arc surface is proposed. To achieve a wide beam width, the elements should have a small radiation area with a much narrow width. The measured electroacoustic efficiency for the elements was approximately 40% and the beam width defined by -3 dB level from the maximum was as wide as 120 deg. It was confirmed that plane wave synthesis is possible using the proposed transducer array.

  15. Next Generation Submillimeter Heterodyne Focal Plane Array Technology

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul; Mehdi, I.; Kawamura, J. H.; Siles, J. V.; Lee, C.; Chattoopadhyay, G.; Bumble, B.; Stern, J. A.

    2014-01-01

    The results from the Heterodyne Instrument for the Far Infrared (HIFI) on the Herschel Space Observatory have had a major impact on astronomy, including the first velocity-resolved survey of the critical 158 micron fine structure line of C+ to observations of water in comets. To follow up on Herschel’s discoveries we need to be able to image significant areas with high angular resolution. This requires high-sensitivity focal plane heterodyne arrays, which is the driver for the present effort. The current state of the art for mixers at frequencies above ~1200 GHz utilizes Hot Electron Bolometer (HEB) mixers that have remarkably good sensitivity (noise temperature < 1000 K) and require low local oscillator power. One significant limitation is the IF bandwidth of < few GHz for NbN devices. At 2 THz, 1 GHz corresponds to a Doppler width of 150 km/s, less than seen in the 1900 GHz [CII] line. For higher frequency transitions, such as the [OI] fine structure line at 4.7 THz (63 micron wavelength), this bandwidth is insufficient. Development of new HEB materials such as magnesium based alloys may overcome this challenge, and promising results have been reported in the literature. A characteristic of all HEB mixers is their high sensitivity to local oscillator power variations. We have developed an architecture for array local oscillator power production and distribution that is based on a chain of multipliers starting from a Ka band source. Improved multiplier diodes as well as circuit designs have made it possible to obtain adequate LO power to 2.7 THz, with extension to 4.7 THz promising. We have developed a system design for a 1.9 THz [CII] array with a separate chain of multipliers for each pixel allowing individual control of LO power, together with efficient LO-signal combination in a single beamsplitter. We will present results from multiplier tests and results of measurements on a 4 pixel prototype of a full 16 or more pixel system. This robust and efficient

  16. Curved-Focal-Plane Arrays Using Deformed-Membrane Photodetectors

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Jones, Todd

    2004-01-01

    A versatile and simple approach to the design and fabrication of curved-focal-plane arrays of silicon-based photodetectors is being developed. This approach is an alternative to the one described in "Curved Focal-Plane Arrays Using Back- Illuminated High-Purity Photodetectors" (NPO-30566), NASA Tech Briefs, Vol. 27, No. 10 (October 2003), page 10a. As in the cited prior article, the basic idea is to improve the performance of an imaging instrument and simplify the optics needed to obtain a given level of performance by making an image sensor (in this case, an array of photodetectors) conform to a curved focal surface, instead of designing the optics to project an image onto a flat focal surface. There is biological precedent for curved-focal-surface designs: retinas - the image sensors in eyes - conform to the naturally curved focal surfaces of eye lenses. The present approach is applicable to both front-side- and back-side-illuminated, membrane photodetector arrays and is being demonstrated on charge-coupled devices (CCDs). The very-large scale integrated (VLSI) circuitry of such a CCD or other array is fabricated on the front side of a silicon substrate, then the CCD substrate is attached temporarily to a second substrate for mechanical support, then material is removed from the back to obtain the CCD membrane, which typically has a thickness between 10 and 20 m. In the case of a CCD designed to operate in back-surface illumination, delta doping can be performed after thinning to enhance the sensitivity. This approach is independent of the design and method of fabrication of the front-side VLSI circuitry and does not involve any processing of a curved silicon substrate. In this approach, a third substrate would be prepared by polishing one of its surfaces to a required focal-surface curvature. A CCD membrane fabricated as described above would be pressed against, deformed into conformity with, and bonded to, the curved surface. The technique used to press and

  17. Modulation transfer function of QWIP and superlattice focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Rafol, S. B.; Ting, D. Z.; Soibel, A.; Liu, J. K.; Khoshakhlagh, A.; Keo, S. A.; Mumolo, J. M.; Nguyen, J.

    2013-07-01

    Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this paper we will discuss the detail MTF measurements of a 1024 × 1024 pixel multi-band quantum well infrared photodetector and 320 × 256 pixel long-wavelength InAs/GaSb superlattice infrared focal plane arrays.

  18. Precise annealing of focal plane arrays for optical detection

    SciTech Connect

    Bender, Daniel A.

    2015-09-22

    Precise annealing of identified defective regions of a Focal Plane Array ("FPA") (e.g., exclusive of non-defective regions of the FPA) facilitates removal of defects from an FPA that has been hybridized and/or packaged with readout electronics. Radiation is optionally applied under operating conditions, such as under cryogenic temperatures, such that performance of an FPA can be evaluated before, during, and after annealing without requiring thermal cycling.

  19. Hyperspectral modeling of an infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Mouzali, Salima; Lefebvre, Sidonie; Rommeluère, Sylvain; Ferrec, Yann; Primot, Jérôme

    2014-10-01

    Infrared Focal Plane Arrays (FPA) are increasingly used to measure multi- or hyperspectral images. Therefore, it is crucial to control and modelize their spectral response. The purpose of this paper is to propose a modeling approach, adjustable by experimental data, and applicable to the main cooled detector technologies. A physical model is presented, taking into account various optogeometrical properties of the detector, such as disparities of the pixels cut-off wavelengths. It describes the optical absorption phenomenon inside the pixel, by considering it as a stack of optical bulk layers. Then, an analytical model is proposed, based on the interference phenomenon occurring into the structure. This model considers only the three major waves interfering. It represents a good approximation of the physical model and a complementary understanding of the optical process inside the structure. This approach is applied to classical cooled FPAs as well as to specific instruments such as Microspoc (MICRO SPectrometer On Chip), a concept of miniaturized infrared Fourier transform spectrometer, integrated on a classical Mercury-Cadmium-Telluride FPA, and cooled by a cryostat.

  20. Modulation transfer function of infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Rafol, S. B.; Ting, D. Z.; Soibel, A.; Hill, C. J.; Khoshakhlagh, A.; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Höglund, L.; Luong, E. M.

    2015-09-01

    Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this presentation we will discuss the detail MTF measurements of 1024x1024 pixels mid-wavelength and long-wavelength quantum well infrared photodetector, and 320x256 pixels long-wavelength InAs/GaSb superlattice infrared focal plane arrays (FPAs). Long wavelength Complementary Barrier Infrared Detector (CBIRD) based on InAs/GaSb superlattice material is hybridized to recently designed and fabricated 320x256 pixel format ROIC. The n-type CBIRD was characterized in terms of performance and thermal stability. The experimentally measured NEΔT of the 8.8μm cutoff n-CBIRD FPA was 18.6 mK with 300 K background and f/2 cold stop at 78K FPA operating temperature. The horizontal and vertical MTFs of this pixel fully delineated CBIRD FPA at Nyquist frequency are 49% and 52%, respectively.

  1. Focal-Plane Array Receiver Systems for Space Communications

    NASA Astrophysics Data System (ADS)

    Britcliffe, M.; Hoppe, D.; Vilnrotter, V.

    2007-08-01

    Typical ground antennas intended for use in space communications require large apertures operating at high frequencies. The challenge involved with these applications is achieving the required antenna performance in terms of antenna aperture efficiency and pointing accuracy. The utilization of a focal-plane array in place of a standard single-mode feed minimizes these problems. This article discusses the key elements required to implement a focal-plane array on a large high-frequency antenna. The example of the NASA Deep Space Network 70-m antennas operating at 32 GHz has been chosen to illustrate these advantages. The design of a suitable feed and low-noise cryogenically cooled amplifier and the required signal-processing techniques are described. It is shown that adaptive least mean-square algorithms can be applied to the output of the array elements, in order to obtain the optimum combining weights in real time, even in the presence of dynamic interference (nearby spacecraft in the array's field of view or planetary radiation). This adaptive optimization capability maximizes the combined output signal-to-noise ratio in real time, ensuring maximum data throughput in the communications link when operating in the presence of receiver noise and external interference generally present during planetary encounters.

  2. Technological developments of the OGRE focal plane array

    NASA Astrophysics Data System (ADS)

    Tutt, James H.; McEntaffer, Randall L.; DeRoo, Casey; Schultz, Ted; Rogers, Thomas; Murray, Neil; Holland, Andrew; Weatherill, Daniel; Holland, Karen; Colebrook, David; Farn, David

    2015-09-01

    The Off-plane Grating Rocket Experiment (OGRE) is a high resolution soft X-ray spectrometer sub-orbital rocket payload designed as a technology development platform for three low Technology Readiness Level (TRL) components. The incident photons will be focused using a light-weight, high resolution, single-crystal silicon optic. They are then dispersed conically according to wavelength by an array of off-plane gratings before being detected in a focal plane camera comprised of four Electron Multiplying Charge-Coupled Devices (EM-CCDs). While CCDs have been extensively used in space applications; EM-CCDs are seldom used in this environment and even more rarely for X-ray photon counting applications, making them a potential technology risk for larger scale X-ray observatories. This paper will discuss the reasons behind choosing EM-CCDs for the focal plane detector and the developments that have been recently made in the prototype camera electronics and thermal control system.

  3. Strained layer superlattice focal plane array having a planar structure

    DOEpatents

    Kim, Jin K; Carroll, Malcolm S; Gin, Aaron; Marsh, Phillip F; Young, Erik W; Cich, Michael J

    2012-10-23

    An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.

  4. Blocked impurity band hybrid infrared focal plane arrays for astronomy

    NASA Technical Reports Server (NTRS)

    Reynolds, D. B.; Seib, D. H.; Stetson, S. B.; Herter, T.; Rowlands, N.

    1989-01-01

    High-performance infrared hybrid focal plane arrays using 10- x 50-element Si:As blocked-impurity-band (BIB) detectors (cutoff wavelength = 28 microns) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity-band-conduction technology provides detectors which are nuclear-radiation-hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in the present work is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increased quantum efficiency (particularly at short-wavelength infrared), obtained by varying the BIB detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Measured read noise and dark current for different temperatures are reported. The hybrid array performance achieved demonstrates that BIB detectors are well suited for use in astronomical instrumentation.

  5. MAGPIS: A MULTI-ARRAY GALACTIC PLANE IMAGING SURVEY

    SciTech Connect

    Helfand, D J; Becker, R H; White, R L; Fallon, A; Tuttle, S

    2005-11-10

    We present the Multi-Array Galactic Plane Imaging Survey (MAGPIS), which maps portions of the first Galactic quadrant with an angular resolution, sensitivity and dynamic range that surpasses existing radio images of the Milky Way by more than an order of magnitude. The source detection threshold at 20 cm is in the range 1-2 mJy over the 85% of the survey region (5{sup o} < l < 32{sup o}, |b| < 0.8{sup o}) not covered by bright extended emission; the angular resolution is {approx} 6''. We catalog over 3000 discrete sources (diameters mostly < 30'') and present an atlas of {approx} 400 diffuse emission regions. New and archival data at 90 cm for the whole survey area are also presented. Comparison of our catalogs and images with the MSX mid-infrared data allow us to provide preliminary discrimination between thermal and non-thermal sources. We identify 49 high-probability supernova remnant candidates, increasing by a factor of seven the number of known remnants with diameters smaller than 50 in the survey region; several are pulsar wind nebula candidates and/or very small diameter remnants (D < 45''). We report the tentative identification of several hundred H II regions based on a comparison with the mid-IR data; they range in size from unresolved ultra-compact sources to large complexes of diffuse emission on scales of half a degree. In several of the latter regions, cospatial nonthermal emission illustrates the interplay between stellar death and birth. We comment briefly on plans for followup observations and our extension of the survey; when complemented by data from ongoing X-ray and mid-IR observations, we expect MAGPIS to provide an important contribution to our understanding of the birth and death of massive stars in the Milky Way.

  6. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Technical Reports Server (NTRS)

    Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-01-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  7. High operating temperature interband cascade focal plane arrays

    SciTech Connect

    Tian, Z.-B.; Godoy, S. E.; Kim, H. S.; Schuler-Sandy, T.; Montoya, J. A.; Krishna, S.

    2014-08-04

    In this paper, we report the initial demonstration of mid-infrared interband cascade (IC) photodetector focal plane arrays with multiple-stage/junction design. The merits of IC photodetectors include low noise and efficient photocarrier extraction, even for zero-bias operation. By adopting enhanced electron barrier design and a total absorber thickness of 0.7 μm, the 5-stage IC detectors show very low dark current (1.10 × 10{sup −7} A/cm{sup 2} at −5 mV and 150 K). Even with un-optimized fabrication and standard commercial (mis-matched) read-out circuit technology, infrared images are obtained by the 320 × 256 IC focal plane array up to 180 K with f/2.3 optics. The minimum noise equivalent temperature difference of 28 mK is obtained at 120 K. These initial results indicate great potential of IC photodetectors, particularly for high operating temperature applications.

  8. On-chip ADC for infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Chen, Guo-qiang; Wang, Pan; Ding, Rui-jun

    2013-09-01

    This paper presents a low power and small area analog-digital converter (ADC) for infrared focal plane arrays (IRFPA) readout integrated circuit (ROIC). Successive approximation register (SAR) ADC architecture is used in this IRFPA readout integrated circuit. Each column of the IRFPA shares one SAR ADC. The most important part is the three-level DAC. Compared to the previous design, this three-level DAC needs smaller area, has lower power, and more suitable for IRFPA ROIC. In this DAC, its most significant bit (MSB) sub-DAC uses charge scaling, while the least significant bit (LSB) sub-DAC uses voltage scaling. Where the MSB sub-DAC consists of a four-bit charge scaling DAC and a five-bit sub-charge scaling DAC. We need to put a scaling capacitor Cs between these two sub-DACs. Because of the small area, we have more design methods to make the ADC has a symmetrical structure and has higher accuracy. The ADC also needs a high resolution comparator. In this design the comparator uses three-stage operational amplifier structure to have a 77dB differential gain. As the IR focal plane readout circuit signal is stepped DC signal, the circuit design time without adding the sample and hold circuit, so we can use a DC signal instead of infrared focal plane readout circuit output analog signals to be simulated. The simulation result shows that the resolution of the ADC is 12 bit.

  9. Electronic Processing And Advantages Of CMT Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Murphy, Kevin S.; Dennis, Peter N.; Bradley, Derek J.

    1990-04-01

    There have been many advances in thermal imaging systems and components in recent years such that an infrared capability is now readily available and accepted in a variety of military and civilian applications. Conventional thermal imagers such as the UK common module imager use a mechanical scanning system to sweep a small array of detectors across the thermal scene to generate a high definition TV compatible output. Although excellent imagery can be obtained from this type of system, there are some inherent disadvantages, amongst which are the need for a high speed line scan mechanism and the fundamental limit in thermal resolution due to the low stare efficiency of the system. With the advent of two dimensional focal plane array detectors, staring array imagers can now be designed and constructed in which the scanning mechanism is removed. Excellent thermal resolution can be obtained from such imagers due to the relatively long stare times. The recent progress in this technology will be discussed in this paper together with a description of the signal processing requirements of this type of imaging system.

  10. Reusable, adhesiveless and arrayed in-plane microfluidic interconnects

    NASA Astrophysics Data System (ADS)

    Lo, R.; Meng, E.

    2011-05-01

    A reusable, arrayed interconnect capable of providing multiple simultaneous connections to and from a microfluidic device in an in-plane manner without the use of adhesives is presented. This method uses a 'pin-and-socket' design in which an SU-8 anchor houses multiple polydimethysiloxane septa (the socket) that each receive a syringe needle (the pin). A needle array containing multiple commercially available 33G (203 µm outer diameter) needles (up to eight) spaced either 2.54 or 1 mm (center-to-center) pierces the septa to access the microfluidic device interior. Finite element modeling and photoelastic stress experiments were used to determine the stress distribution during needle insertion; these results guided the SU-8 septa housing and septa design. The impact of needle diameter, needle tip style, insertion rate and number of needles on pre-puncture, post-puncture and removal forces was characterized. Pressurized connections to SU-8 channel systems withstood up to 62 kPa of pressurized water and maintained 25 kPa of pressurized water for over 24 h. The successful integration and functionality of the interconnect design with surface micromachined Parylene C microchannels was verified using Rhodamine B dye. Dual septa systems to access a single microchannel were demonstrated. Arrayed interconnects were compatible with integrated microfluidic systems featuring electrochemical sensors and actuators.

  11. Design, fabrication and characterization of a polarization-sensitive focal plane array

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Ninkov, Zoran

    2015-03-01

    Measurement of polarization is a powerful yet underutilized technique, with potential applications in remote sensing, astronomy, biomedical imaging and optical metrology. We present the design, fabrication and characterization of a CCD-based polarization-sensitive focal plane array (FPA). These devices are compact permanently aligned detectors capable of determining the degree and angle of linear polarization in a scene, with a single exposure, over a broad spectral range. To derive the polarization properties, we employ a variation of the division-of-focal plane modulation strategy. The devices are fabricated by hybridizing a micropolarizer array (MPA) with a CCD. The result is a "general-purpose" polarization-sensitive imaging sensor, which can be placed at the focal plane of a wide number of imaging systems (and even spectrographs). We present our efforts to date in developing this technology and examine the factors that fundamentally limit the performance of these devices.

  12. NeuroSeek dual-color image processing infrared focal plane array

    NASA Astrophysics Data System (ADS)

    McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.

    1998-09-01

    Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.

  13. Focal-Plane Arrays of Quantum-Dot Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Wilson, Daniel; Hill, Cory; Liu, John; Bandara, Sumith; Ting, David

    2007-01-01

    Focal-plane arrays of semiconductor quantum-dot infrared photodetectors (QDIPs) are being developed as superior alternatives to prior infrared imagers, including imagers based on HgCdTe devices and, especially, those based on quantum-well infrared photodetectors (QWIPs). HgCdTe devices and arrays thereof are difficult to fabricate and operate, and they exhibit large nonunformities and high 1/f (where f signifies frequency) noise. QWIPs are easier to fabricate and operate, can be made nearly uniform, and exhibit lower 1/f noise, but they exhibit larger dark currents, and their quantization only along the growth direction prevents them from absorbing photons at normal incidence, thereby limiting their quantum efficiencies. Like QWIPs, QDIPs offer the advantages of greater ease of operation, greater uniformity, and lower 1/f noise, but without the disadvantages: QDIPs exhibit lower dark currents, and quantum efficiencies of QDIPs are greater because the three-dimensional quantization of QDIPs is favorable to the absorption of photons at normal or oblique incidence. Moreover, QDIPs can be operated at higher temperatures (around 200 K) than are required for operation of QWIPs. The main problem in the development of QDIP imagers is to fabricate quantum dots with the requisite uniformity of size and spacing. A promising approach to be tested soon involves the use of electron-beam lithography to define the locations and sizes of quantum dots. A photoresist-covered GaAs substrate would be exposed to the beam generated by an advanced, high-precision electron beam apparatus. The exposure pattern would consist of spots typically having a diameter of 4 nm and typically spaced 20 nm apart. The exposed photoresist would be developed by either a high-contrast or a low-contrast method. In the high-contrast method, the spots would be etched in such a way as to form steep-wall holes all the way down to the substrate. The holes would be wider than the electron beam spots perhaps as

  14. Integration of IR focal plane arrays with massively parallel processor

    NASA Astrophysics Data System (ADS)

    Esfandiari, P.; Koskey, P.; Vaccaro, K.; Buchwald, W.; Clark, F.; Krejca, B.; Rekeczky, C.; Zarandy, A.

    2008-04-01

    The intent of this investigation is to replace the low fill factor visible sensor of a Cellular Neural Network (CNN) processor with an InGaAs Focal Plane Array (FPA) using both bump bonding and epitaxial layer transfer techniques for use in the Ballistic Missile Defense System (BMDS) interceptor seekers. The goal is to fabricate a massively parallel digital processor with a local as well as a global interconnect architecture. Currently, this unique CNN processor is capable of processing a target scene in excess of 10,000 frames per second with its visible sensor. What makes the CNN processor so unique is that each processing element includes memory, local data storage, local and global communication devices and a visible sensor supported by a programmable analog or digital computer program.

  15. Thin active region, type II superlattice photodiode arrays: Single-pixel and focal plane array characterization

    NASA Astrophysics Data System (ADS)

    Little, J. W.; Svensson, S. P.; Beck, W. A.; Goldberg, A. C.; Kennerly, S. W.; Hongsmatip, T.; Winn, M.; Uppal, P.

    2007-02-01

    We have measured the radiometric properties of two midwave infrared photodiode arrays (320×256pixel2 format) fabricated from the same wafer comprising a thin (0.24μm), not intentionally doped InAs /GaSb superlattice between a p-doped GaSb layer and a n-doped InAs layer. One of the arrays was indium bump bonded to a silicon fanout chip to allow for the measurement of properties of individual pixels, and one was bonded to a readout integrated circuit to enable array-scale measurements and infrared imaging. The superlattice layer is thin enough that it is fully depleted at zero bias, and the collection efficiency of photogenerated carriers in the intrinsic region is close to unity. This simplifies the interpretation of photocurrent data as compared with previous measurements made on thick superlattices with complex doping profiles. Superlattice absorption coefficient curves, obtained from measurements of the external quantum efficiency using two different assumptions for optical coupling into the chip, bracket values calculated using an eight-band k •p model. Measurements of the quantum efficiency map of the focal plane array were in good agreement with the single-pixel measurements. Imagery obtained with this focal plane array demonstrates the high uniformity and crystal quality of the type II superlattice material.

  16. Design of a focal plane array with analog neural preprocessing

    NASA Astrophysics Data System (ADS)

    Koren, Ivo; Dohndorf, Juergen; Schluessler, Jens-Uwe; Werner, Joerg; Kroenig, Arndt; Ramacher, Ulrich

    1996-12-01

    The design of a CMOS focal plane array with 128 by 128 pixels and analog neural preprocessing is presented. Optical input to the array is provided by substrate-well photodiodes. A two-dimensional neural grid wIth next- neighbor connectivity, implemented as differential current- mode circuit, is capable of spatial low-pass filtering combined with contrast enhancement or binarization. The gain, spatial filter and nonlinearity parameters of the neural network are controlled externally using analog currents. This allows the multipliers and sigmoid transducers to be operated in weak inversion for a wide parameter sweep range as well as in moderate or strong inversion for a larger signal to pattern-noise ratio. The cell outputs are sequentially read out by an offset compensated differential switched-capacitor multiplexer with column preamplifiers. The analog output buffer is designed for pixel rates up to 1 pixel/microsecond and 2 by 100 pF load capacitance. All digital clocks controlling the analog data path are generated on-chip. The clock timing is programmable via a serial computer interface. Using 1 micrometer double-poly double-metal CMOS process, one pixel cell occupies 96 by 96 micrometer2 and the total chip size is about 2.3 cm2. Operating the neural network in weak inversion, the power dissipation of the analog circuitry is less than 100 mW.

  17. Multi-Color Megapixel QWIP focal plane arrays for remote sensing

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, S. V.; Liu, J. K.; Hill, C. J.; Rafol, S. B.; Mumolo, J. M.; Trinh, J. T.; Tidrow, M. Z.; LeVan, P. D.

    2005-01-01

    In this paper, we will discuss the performance in terms of quantum efficiency, NEAT, uniformity, operability, and modulation transfer functions of the 1024x1024 pixel arrays and the progress of dualband QWIP focal plane array development work.

  18. Development of a 2K x 2K GaAs QWIP Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Choi, K.; Jhabvala, C.; Kelly, D.; Hess, L.; Ewin, A.; La, A.; Wacynski, A.; Sun, J.; Adachi, T.; Costen, N.; Ni, Q.; Snodgrass, Stephen; Foltz, Roger

    2013-01-01

    We are developing the next generation of GaAs Quantum Well Infrared Photodetector (QWIP) focal plane arrays (FPAs) in preparation for future NASA space-borne Earth observing missions. It is anticipated that these missions will require both wider ground spatial coverage as well as higher ground imaging resolution. In order to demonstrate our capability in meeting these future goals we have taken a two-tiered approach in the next stage of advanced QWIP focal plane array development. We will describe our progress in the development of a 512 x 3,200 (512 x 3K) array format for this next generation thermal imaging array for the NASA Landsat project. However, there currently is no existing readout integrated circuit (ROIC) for this format array.so to demonstrate the ability to scale-up an existing ROIC we developed a 1,920 x 2,048 (2K x 2K) array and it hybridized to a Raytheon SB419 CTIA readout integrated circuit that was scaled up from their existing 512 x 640 SB339 ROIC. Two versions of the 512 x 3K QWIP array were fabricated to accommodate a future design scale-up of both the Indigo 9803 ROIC based on a 25 micron pixel dimension and a scale up of the Indigo 9705 ROIC based on a 30 micron pixel dimension. Neither readout for the 512 x 3K has yet to be developed but we have fabricated both versions of the array. We describe the design, development and test results of this effort as well as the specific applications these FPAs are intended to address.

  19. Modulation Transfer Function Measurement of Infrared Focal-Plane Arrays with Small Fill Factors

    NASA Astrophysics Data System (ADS)

    de la Barrière, Florence; Druart, Guillaume; Guérineau, Nicolas; Rommeluère, Sylvain; Mugnier, Laurent; Gravrand, Olivier; Baier, Nicolas; Lhermet, Nicolas; Destefanis, Gérard; Derelle, Sophie

    2012-10-01

    This paper describes an original method to measure the modulation transfer function (MTF) of an infrared focal-plane array (IRFPA), based on a diffraction grating called a continuously self-imaging grating (CSIG). We give a general methodology to design the test bench, and we describe the data processing approach which has been developed to extract relevant information about the size of the photodiodes and filtering effects. The MTF measurement capability of this method is illustrated with a cooled IRFPA.

  20. Solar-Driven Background Intensity Variations in a Focal Plane Array

    SciTech Connect

    Eyer, H.H.; Guillen, J.L.L.; Vittitoe, C.N.

    1998-12-03

    Portions of a series of end-of-life tests are described for a Sandia National Li~boratories- designed space-based sensor that utilizes a mercury-cadmium-telluride focal plane array. Variations in background intensity are consistent with the hypothesis that seasonal variations in solar position cause changes in the pattern of shadows falling across the compartment containing the optical elements, filter-band components, and focal plane array. When the sensor compartment is most fully illuminated by the sun, background intensities are large and their standard deviations tend to be large. During the winter season, when the compartment is most fully shadowed by surrounding structure, backgrounci intensities are small and standard deviations tend to be small. Details in the surrounding structure are speculated to produce transient shadows that complicate background intensifies as a function of time or of sensor position in orbit.

  1. InAs/GaSb superlattice focal plane arrays for high-resolution thermal imaging

    NASA Astrophysics Data System (ADS)

    Rehm, R.; Walther, M.; Schmitz, J.; Fleißner, J.; Fuchs, F.; Ziegler, J.; Cabanski, W.

    2006-03-01

    The first fully operational mid-IR (3-5 μm) 256×256 IR-FPA camera system based on a type-II InAs/GaSb short-period superlattice showing an excellent noise equivalent temperature difference below 10 mK and a very uniform performance has been realized. We report on the development and fabrication of the detecor chip, i.e., epitaxy, processing technology and electro-optical characterization of fully integrated InAs/GaSb superlattice focal plane arrays. While the superlattice design employed for the first demonstrator camera yielded a quantum efficiency around 30%, a superlattice structure grown with a thicker active layer and an optimized V/III BEP ratio during growth of the InAs layers exhibits a significant increase in quantum efficiency. Quantitative responsivity measurements reveal a quantum efficiency of about 60% for InAs/GaSb superlattice focal plane arrays after implementing this design improvement.

  2. Advancement in 17-micron pixel pitch uncooled focal plane arrays

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Skidmore, George; Howard, Christopher; Clarke, Elwood; Han, C. J.

    2009-05-01

    This paper provides an update of 17 micron pixel pitch uncooled microbolometer development at DRS. Since the introduction of 17 micron pitch 640x480 focal plane arrays (FPAs) in 2006, significant progress has been made in sensor performance and manufacturing processes. The FPAs are now in initial production with an FPA noise equivalent temperature difference (NETD), detector thermal time constant, and pixel operability equivalent or better than that of the current 25 micron pixel pitch production FPAs. NETD improvement was achieved without compromising detector thermal response or thermal time constant by simultaneous reduction in bolometer heat capacity and thermal conductance. In addition, the DRS unique "umbrella" microbolometer cavities were optically tuned to optimize detector radiation absorption for specific spectral band applications. The 17 micron pixel pitch FPAs are currently being considered for the next generation soldier systems such as thermal weapon sights (TWS), vehicle driver vision enhancers (DVE), digitally fused enhanced night vision goggles (DENVG) and unmanned air vehicle (UAV) surveillance sensors, because of overall thermal imaging system size, weight and power advantages.

  3. Method of fabricating multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1996-01-01

    A multiwavelength local plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y.ltoreq.1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  4. Corrugated Quantum Well Infrared Photodetector Focal Plane Array Test Results

    NASA Technical Reports Server (NTRS)

    Goldberg, A.; Choi, K. K.; Das, N. C.; La, A.; Jhabvala, M.

    1999-01-01

    The corrugated quantum-well infrared photodetector (C-QWIP) uses total internal reflection to couple normal incident light into the optically active quantum wells. The coupling efficiency has been shown to be relatively independent of the pixel size and wavelength thus making the C-QWIP a candidate for detectors over the entire infrared spectrum. The broadband coupling efficiency of the C-QWIP makes it an ideal candidate for multiwavelength detectors. We fabricated and tested C-QWIP focal plane arrays (FPAs) with cutoff wavelengths of 11.2 and 16.2 micrometers. Each FPA has 256 x 256 pixels that are bump-bonded to a direct injection readout circuit. Both FPAs provided infrared imagery with good aesthetic attributes. For the 11.2-micrometers FPA, background-limited performance (BLIP) was observed at 60 K with f/3 optics. For the 16.2-micrometers FPA, BLIP was observed at 38 K. Besides the reduction of dark current in C-QWIP structures, the measured internal quantum efficiency (eta) remains to be high. The values for responsivity and quantum efficiency obtained from the FPA results agree well with those measured for single devices.

  5. 1024x1024 Pixel MWIR and LWIR QWIP Focal Plane Arrays and 320x256 MWIR:LWIR Pixel Colocated Simultaneous Dualband QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Liu, John K.; Hill, Cory J.; Rafol, S. B.; Mumolo, Jason M.; Trinh, Joseph T.; Tidrow, M. Z.; Le Van, P. D.

    2005-01-01

    Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024x1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NE(Delta)T) of 17 mK at a 95K operating temperature with f/2.5 optics at 300K background and the LWIR detector array has demonstrated a NE(Delta)T of 13 mK at a 70K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90K and 70K operating-temperatures respectively, with similar optical and background conditions. In addition, we are in the process of developing MWIR and LWIR pixel collocated simultaneously readable dualband QWIP focal plane arrays.

  6. Validating Phasing and Geometry of Large Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Standley, Shaun P.; Gautier, Thomas N.; Caldwell, Douglas A.; Rabbette, Maura

    2011-01-01

    The Kepler Mission is designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-sized and smaller planets in or near the habitable zone. The Kepler photometer is an array of 42 CCDs (charge-coupled devices) in the focal plane of a 95-cm Schmidt camera onboard the Kepler spacecraft. Each 50x25-mm CCD has 2,200 x 1,024 pixels. The CCDs accumulate photons and are read out every six seconds to prevent saturation. The data is integrated for 30 minutes, and then the pixel data is transferred to onboard storage. The data is subsequently encoded and transmitted to the ground. During End-to-End Information System (EEIS) testing of the Kepler Mission System (KMS), there was a need to verify that the pixels requested by the science team operationally were correctly collected, encoded, compressed, stored, and transmitted by the FS, and subsequently received, decoded, uncompressed, and displayed by the Ground Segment (GS) without the outputs of any CCD modules being flipped, mirrored, or otherwise corrupted during the extensive FS and GS processing. This would normally be done by projecting an image on the focal plane array (FPA), collecting the data in a flight-like way, and making a comparison between the original data and the data reconstructed by the science data system. Projecting a focused image onto the FPA through the telescope would normally involve using a collimator suspended over the telescope opening. There were several problems with this approach: the collimation equipment is elaborate and expensive; as conceived, it could only illuminate a limited section of the FPA (.25 percent) during a given test; the telescope cover would have to be deployed during testing to allow the image to be projected into the telescope; the equipment was bulky and difficult to situate in temperature-controlled environments; and given all the above, test setup, execution, and repeatability were significant concerns. Instead of using this complicated approach of

  7. Development of high performance SWIR InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Nagi, Richie; Bregman, Jeremy; Mizuno, Genki; Oduor, Patrick; Olah, Robert; Dutta, Achyut K.; Dhar, Nibir K.

    2015-05-01

    Banpil Photonics has developed a novel InGaAs based photodetector array for Short-Wave Infrared (SWIR) imaging, for the most demanding security, defense, and machine vision applications. These applications require low noise from both the detector and the readout integrated circuit arrays. In order to achieve high sensitivity, it is crucial to minimize the dark current generated by the photodiode array. This enables the sensor to function in extremely low light situations, which enables it to successfully exploit the benefits of the SWIR band. In addition to minimal dark current generation, it is essential to develop photodiode arrays with higher operating temperatures. This is critical for reducing the power consumption of the device, as less energy is spent in cooling down the focal plane array (in order to reduce the dark current). We at Banpil Photonics are designing, simulating, fabricating and testing SWIR InGaAs arrays, and have achieved low dark current density at room temperature. This paper describes Banpil's development of the photodetector array. We also highlight the fabrication technique used to reduce the amount of dark current generated by the photodiode array, in particular the surface leakage current. This technique involves the deposition of strongly negatively doped semiconductor material in the area between the pixels. This process reduces the number of dangling bonds present on the edges of each pixel, which prevents electrons from being swept across the surface of the pixels. This in turn drastically reduces the amount of surface leakage current at each pixel, which is a major contributor towards the total dark current. We present the optical and electrical characterization data, as well as the analysis that illustrates the dark current mechanisms. Also highlighted are the challenges and potential opportunities for further reduction of dark current, while maintaining other parameters of the photodiode array, such as size, weight, temperature

  8. Test plane uniformity analysis for the MSFC solar simulator lamp array

    NASA Technical Reports Server (NTRS)

    Griner, D. B.

    1976-01-01

    A preliminary analysis was made on the solar simulator lamp array. It is an array of 405 tungsten halogen lamps with Fresnel lenses to achieve the required spectral distribution and collimation. A computer program was developed to analyze lamp array performance at the test plane. Measurements were made on individual lamp lens combinations to obtain data for the computer analysis. The analysis indicated that the performance of the lamp array was about as expected, except for a need to position the test plane within 2.7 m of the lamp array to achieve the desired 7 percent uniformity of illumination tolerance.

  9. The fabrication of out of plane aspherical microlens arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wang, Wanjun

    2013-03-01

    MOEMS (Micro-Opto-Elecro-Mechanical Systems) has brought new inspirations to the traditional optics design and manufacturing, due to their advantages such as micro sizes, low cost, good performance, easy to integrate, and mass production. From the microfabrication technology perspective, microlens is among the most difficult components to make, and it is also the most important component of all free space micro-optic components. In recent years, the aspherical lens with controllable curvature has become one of the most popular research subjects since it is helpful in eliminating aberration. In this paper, we report a new method of fabricating and replicating aspherical microlens array with primary optic axis in parallel with the substrate surface. The technology was based on ultra-violet (UV) lithography of SU-8 thick resist. A novel water bath oblique lithography technique was adopted. Diameter of the prototype microlenses fabricated is about 200 μm. By changing the pattern of mask and other process parameters, aspherical microlenses with different sizes and surface curvatures can be obtained. The microlens made using this technique has its main optical axis in parallel with the substrate, this makes it much easier to be integrated with other components into on-chip optical platforms such as optical switch and the imaging systems. This kind of micro-lens arrays will also be incorporated to microfluidic systems such as micro flow cytometry for fluorescence detections.

  10. Optically coupled focal plane arrays using lenslets and multiplexers

    DOEpatents

    Veldkamp, Wilfrid B.

    1991-01-01

    A detector array including a substrate having an array of diffractive lenses formed on the top side of the substrate and an array of sensor elements formed on the backside of the substrate. The sensor elements within the sensor array are oriented on the backside so that each sensor is aligned to receive light from a corresponding diffractive lens of the lens array. The detector array may also include a second substrate having an array of diffractive elements formed on one of its surfaces, the second substrate being disposed above and in proximity to the top side of the other substrate so that the elements on the second substrate are substantially aligned with corresponding sensor elements and diffractive lenses on the other substrate.

  11. Performance of focal plane arrays for the photon counting arrays (PCAR) program

    NASA Astrophysics Data System (ADS)

    Blessinger, Michael A.; Enriquez, Marlon; Groppe, Joseph V.; Flynn, Kevin; Sudol, Thomas M.; Onat, Bora M.; Kleinhans, William E.

    2007-04-01

    The DARPA PCAR program is sponsoring the development of low noise, near infrared (1.5 μm wavelength) focal plane arrays (FPAs) for night vision applications. The first phase of this work has produced a collection of 640 x 512 pixel, 20 μm pitch FPAs with low noise. The approach was to design four different read out integrated circuits (ROICs), all compatible with the same bump-bonded InGaAs photodiode detector array. Two of the designs have capacitive transimpedance amplifier (CTIA) pixels, each with a somewhat different amplifier design and with two different sizes of small integration capacitors. The third design is a source follower per detector (SFD) pixel, integrating on the detector capacitance. The fourth design also integrates on the detector capacitance, but uses a moderate gain, in-pixel amplifier to boost the signal level, and also has a differential pixel output. All four designs require off-chip correlated sampling to achieve the desired noise level. The correlated sampling is performed digitally in the data acquisition software. Each design is capable of 30 frames per second read out rate, and has a dynamic range of 1000:1 using a rolling, non-snapshot integration. The designs were fabricated in a standard CMOS foundry process, and were bump-bonded to InGaAs detector arrays. All four designs are working without any significant design errors, and are producing low noise imaging, with less than 50 electrons rms noise per pixel after correlated double sampling.

  12. Combined real-time ultrasound plane wave compounding and linear array optoacoustics

    NASA Astrophysics Data System (ADS)

    Fournelle, Marc; Bost, Wolfgang; Tretbar, Steffen

    2015-07-01

    In optoacoustic imaging, the high optical contrast between different tissue types is combined with the high resolution and low scattering of ultrasound. Using adapted reconstruction algorithms, images of the distribution of light absorption in tissue can be obtained. Such as in any emerging modality, there is limited experience regarding the interpretation of optoacoustic images. For this reason, we developed a flexible hardware platform combining ultrasound imaging with optoacoustics. The system is based on the software processing of channel data and different types of reconstruction algorithms are implemented. It combines optoacoustic imaging based on linear arrays for detection with plane wave compounding ultrasound. Our system further includes a custom made probe based on a 7,5 MHz array, custom made fibre bundles for targeted light delivery and an acoustic coupling pad. The system was characterized on phantoms and first in-vivo datasets from subcutaneous vasculature were acquired.

  13. Fast iterative adaptive nonuniformity correction with gradient minimization for infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Jufeng; Gao, Xiumin; Chen, Yueting; Feng, Huajun; Xu, Zhihai; Li, Qi

    2014-07-01

    A fast scene-based nonuniformity correction algorithm is proposed for fixed-pattern noise removal in infrared focal plane array imagery. Based on minimization of L0 gradient of the estimated irradiance, the correction function is optimized through correction parameters estimation via iterative optimization strategy. When applied to different real IR data, the proposed method provides enhanced results with good visual effect, making a good balance between nonuniformity correction and details preservation. Comparing with other excellent approaches, this algorithm can accurately estimate the irradiance rapidly with fewer ghosting artifacts.

  14. Plane-wave decomposition by spherical-convolution microphone array

    NASA Astrophysics Data System (ADS)

    Rafaely, Boaz; Park, Munhum

    2001-05-01

    Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.

  15. QWIP focal plane arrays performances from MWIR up to VLWIR

    NASA Astrophysics Data System (ADS)

    Robo, J. A.; Costard, E.; Truffer, J. P.; Nedelcu, A.; Marcadet, X.; Bois, P.

    2009-05-01

    Since 2002, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on GaAs and related III-V compounds, at the Alcatel-Thales-III-V Lab (formerly part of THALES Research and Technology Laboratory). In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and has been the key parameter for the production to start. Another widely claimed advantage for QWIPs was the so-called band-gap engineering and versatility of the III-V processing allowing the custom design of quantum structures at various wavelengths in MWIR, LWIR and VLWIR. An overview of the available performances of QWIPs in the whole infrared spectrum is presented here. We also discuss about the under-development products such as dual band and polarimetric structures.

  16. Signal processing and compensation electronics for junction field-effect transistor /JFET/ focal plane arrays

    NASA Astrophysics Data System (ADS)

    Wittig, K. R.

    1982-06-01

    A signal processing system has been designed and constructed for a pyroelectric infrared area detector which uses a matrix-addressable JFET array for readout and for on-focal plane preamplification. The system compensates for all offset and gain nonuniformities in and after the array. Both compensations are performed in real time at standard television rates, so that changes in the response characteristics of the array are automatically corrected for. Two-point compensation is achieved without the need for two separate temperature references. The focal plane circuitry used to read out the array, the offset and gain compensation algorithms, the architecture of the signal processor, and the system hardware are described.

  17. Status of uncooled focal plane detector arrays for smart IR sensors

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.; Ringh, Ulf; Jansson, Christer

    1996-06-01

    A cooperative research project between the Defense Science and Technology Organization, Australia, and the National Defense Research Establishment, Sweden, seeks to investigate concepts for smart IR focal plane detector arrays, whereby a monolithic Semiconductor Film Bolometer detector array is integrated with a CMOS signal conditioning circuit, analog- to-digital conversion and signal processing functions on the same silicon chip. Novel signal conditioning and on-chip digital readout techniques have been successfully demonstrated, and the supporting signal processing electronic design is being developed. This paper discusses the status of detector materials research and staring focal plane array development. The first experimental array has been delivered and is undergoing evaluation.

  18. WISE-Heritage Megapixel BIB Focal Plane Arrays for Astronomy

    NASA Astrophysics Data System (ADS)

    Hogue, Henry; Mainzer, A.; Molyneux, D.; Reynolds, D.; Masterjohn, S.; Muzilla, M.

    2009-01-01

    The most significant design features of the low-noise 1024x1024 cryogenic FPA readout developed by DRS for the Wide-field Infrared Survey Explorer (WISE) have been transferred to a new high-flux FPA readout design for terrestrial and airborne astronomy with warm telescopes. The development of the new readout and the first 1024x1024 arsenic-doped silicon (Si:As) BIB FPA based on it was a joint effort between DRS and NASA JPL. This FPA is called the MegaMIR FPA, since it will be initially utilized in the MegaMIR camera being developed by JPL. New high-flux Si:As detector arrays were fabricated by DRS for use in the MegaMIR FPA, and the first two engineering FPAs have been prepared and delivered to JPL for evaluation. . In parallel DRS is applying the same high-flux readout for development of a 512x512 antimony-doped silicon (Si:Sb) having twice the pixel size and pitch as the MegaMIR FPA. The 4 times larger pixel size is better matched to the diffraction-limited resolution of the longer-wavelength Si:Sb detectors ( 40 µm cut-off vs 28 µm of Si:As).

  19. Characterization of type II SLS n-CBIRD focal plane array

    NASA Astrophysics Data System (ADS)

    Rafol, S. B.; Gunapala, S. D.; Ting, D. Z.; Soibel, A.; Khoshakhlagh, A.; Nguyen, J.; Höglund, L.; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Luong, E. M.

    2012-10-01

    New generation of focal plane arrays (FPAs) based on type II SLS, which are hybrids of detector array and Read Out Integrated Circuits (ROIC), present extraordinary challenge to characterize. The standard performance metrics are: temporal NEΔT, noise equivalent irradiance (NEI), quantum efficiency, dark current and modulation transfer function (MTF). Imaging system modulation Transfer Function (MTF) is an important quantitative metric of performance in spatial domain, but it is rarely reported in the literature especially for type II SLS. MTF measurement is believed to be a good metric of performance for camera systems in addition to standard performance parameters. The paper will report on the characterization of complimentary barrier infrared detector n-CBIRD FPA.

  20. Progress in DRS production line for uncooled focal plane arrays

    NASA Astrophysics Data System (ADS)

    Han, Chien J.; Howard, Christopher G.; Howard, Philip E.; Ionescu, Adrian C.; Li, Chuan C.; Monson, John C.; Naranjo, Robert L.; Scholten, Myron J.; Sweeney, R. Michael; Strong, Roger L.; Sullivan, William; Teherani, Towfik H.

    2004-08-01

    To improve its capacity to meet customer needs, DRS Infrared Technologies began technology transfer of the VOx uncooled FPA process from its Anaheim facility to its Dallas facility in the Fall of 2002. The new facility delivered its first U3000 arrays (320x240, 51μm pitch) three months after the VOx deposition system was installed, and produced over 300 units of U3000 per month just twelve months after beginning the transfer. Process enhancements and tool upgrades have enabled excellent control of the microbolometer process. Today, this line selectively fabricates arrays with NETD varying from 30mK to 80mK in 15mK bins with less than 30 ms time constant. The same arrays also have low defect density of less than 2% dead pixels and no more than one row and one column out. The arrays are packaged in imager or radiometer (F/1.4) packages. DRS also transferred small and large format arrays with 25μm pitch under the PEO-Soldier Sensor Producibility to the Dallas facility. Production of the 25μm pitch devices is currently more that 100 units per month and is ramping up to meet customer demand. This paper reports on production progress on the U3000s and the status of U3500 and U6000 25μm pitch array.

  1. Study on 512×128 pixels InGaAs near infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Li, Xue; Tang, Hengjing; Huang, Songlei; Shao, Xiumei; Li, Tao; Huang, Zhangcheng; Gong, Haimei

    2014-10-01

    It is well known that In0.53Ga0.47As epitaxial material is lattice-matched to InP substrate corresponding to the wavelength from 0.9μm to 1.7μm, which results to high quality material and good device characteristics at room temperature. In order to develop the near infrared multi-spectral imaging, 512×128 pixels InGaAs Near Infrared Focal Plane Arrays (FPAs) were studied. The n-InP/i-InGaAs/n-InP double hereto-structure epitaxial material was grown by MBE. The 512×128 back-illuminated planar InGaAs detector arrays were fabricated, including the improvement of passivation film, by grooving the diffusion masking layer, the P type electrode layer, In bump condition and so on. The photo-sensitive region has the diffusion area of 23×23μm2 and pixel pitch of 30×30μm2 . The 512×128 detector arrays were individually hybridized on readout integrated circuit(ROIC) by Indium bump based on flip-chip process to make focal plane arrays (FPAs). The ROIC is based on a capacitive trans-impedance amplifier with correlated double sampling and integrated while readout (IWR) mode with high readout velocity of every pixel resulting in low readout noise and high frame frequency. The average peak detectivity and the response non-uniformity of the FPAs are 1.63×1012 cmHz1/2/W and 5.9%, respectively. The power dissipation and frame frequency of the FPAs are about 180mW and 400Hz, respectively.

  2. Concurrent array-based queue

    SciTech Connect

    Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-01-06

    According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.

  3. Mechanical design of mounts for IGRINS focal plane arrays and field flattening lenses

    NASA Astrophysics Data System (ADS)

    Oh, Jae Sok; Park, Chan; Cha, Sang-Mok; Yuk, In-Soo; Kim, Kang-Min; Chun, Moo-Young; Ko, Kyeongyeon; Oh, Heeyeong; Jeong, Ueejeong; Nah, Jakyoung; Lee, Hanshin; Pavel, Michael; Jaffe, Daniel T.

    2014-07-01

    IGRINS, the Immersion GRating INfrared Spectrometer, is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG focal plane array (FPA) detectors. The mechanical mounts for these detectors and for the final (field-flattening) lens in the optical train serve a critical function in the overall instrument design: Optically, they permit the only positional compensation in the otherwise "build to print" design. Thermally, they permit setting and control of the detector operating temperature independently of the cryostat bench. We present the design and fabrication of the mechanical mount as a single module. The detector mount includes the array housing, housing for the SIDECAR ASIC, a field flattener lens holder, and a support base. The detector and ASIC housing will be kept at 65 K and the support base at 130 K. G10 supports thermally isolate the detector and ASIC housing from the support base. The field flattening lens holder attaches directly to the FPA array housing and holds the lens with a six-point kinematic mount. Fine adjustment features permit changes in axial position and in yaw and pitch angles. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the computer simulation, the designed detector mount meets the optical and thermal requirements very well.

  4. Focal Plane Arrays of Voltage-Biased Superconducting Bolometers

    NASA Technical Reports Server (NTRS)

    Myers, Michael J.; Clarke, John; Gildemeister, J. M.; Lee, Adrian T.; Richards, P. L.; Schwan, Dan; Skidmore, J. T.; Spieler, Helmuth; Yoon, Jongsoo

    2001-01-01

    The 200-micrometer to 3-mm wavelength range has great astronomical and cosmological significance. Science goals include characterization of the cosmic microwave background, measurement of the Sunyaev-Zel'dovich effect in galaxy clusters, and observations of forming galaxies. Cryogenic bolometers are the most sensitive broadband detectors in this frequency range. Because single bolometer pixels are reaching the photon noise limit for many observations, the development of large arrays will be critical for future science progress. Voltage-biased superconducting bolometers (VSBs) have several advantages compared to other cryogenic bolometers. Their strong negative electrothermal feedback enhances their linearity, speed, and stability. The large noise margin of the SQUID readout enables multiplexed readout schemes, which are necessary for developing large arrays. In this paper, we discuss the development of a large absorber-coupled array, a frequency-domain SQUID readout multiplexer, and an antenna-coupled VSB design.

  5. Demonstration of a bias tunable quantum dots-in-a-well focal plane array

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan; Jang, Woo-Yong; Pezoa, Jorge E.; Sharma, Yagya D.; Lee, Sang Jun; Noh, Sam Kyu; Hayat, Majeed M.; Restaino, Sergio; Teare, Scott W.; Krishna, Sanjay

    2009-11-01

    Infrared detectors based on quantum wells and quantum dots have attracted a lot of attention in the past few years. Our previous research has reported on the development of the first generation of quantum dots-in-a-well (DWELL) focal plane arrays, which are based on InAs quantum dots embedded in an InGaAs well having GaAs barriers. This focal plane array has successfully generated a two-color imagery in the mid-wave infrared (i.e. 3-5 μm) and the long-wave infrared (i.e. 8-12 μm) at a fixed bias voltage. Recently, the DWELL device has been further modified by embedding InAs quantum dots in InGaAs and GaAs double wells with AlGaAs barriers, leading to a less strained InAs/InGaAs/GaAs/AlGaAs heterostructure. This is expected to improve the operating temperature while maintaining a low dark current level. This paper examines 320 × 256 double DWELL based focal plane arrays that have been fabricated and hybridized with an Indigo 9705 read-out integrated circuit using Indium-bump (flip-chip) technology. The spectral tunability is quantified by examining images and determining the transmittance ratio (equivalent to the photocurrent ratio) between mid-wave and long-way infrared filter targets. Calculations were performed for a bias range from 0.3 to 1.0 V. The results demonstrate that the mid-wave transmittance dominates at these low bias voltages, and the transmittance ratio continuously varies over different applied biases. Additionally, radiometric characterization, including array uniformity and measured noise equivalent temperature difference for the double DWELL devices is computed and compared to the same results from the original first generation DWELL. Finally, higher temperature operation is explored. Overall, the double DWELL devices had lower noise equivalent temperature difference and higher uniformity, and worked at higher temperature (70 K and 80 K) than the first generation DWELL device.

  6. Hemispherical infrared focal plane arrays: a new design parameter for the instruments

    NASA Astrophysics Data System (ADS)

    Fendler, M.; Dumas, D.; Chemla, F.; Cohen, M.; Laporte, P.; Tekaya, K.; Le Coarer, E.; Primot, J.; Ribot, H.

    2012-07-01

    In ground based astronomy, mainly all designs of sky survey telescopes are limited by the requirement that the detecting surface is flat whereas the focal surface is curved. Two kinds of solution have been investigated up to now. The first one consists in adding optical systems to flatten the image surface; however this solution complicates the design and increases the system size. Somehow, this solution increases, in the same time, the weight and price of the instrument. The second solution consists in curving artificially the focal surface by using a mosaic of several detectors, which are positioned in a spherical shape. However, this attempt is dedicated to low curvature and is limited by the technical difficulty to control the detectors alignment and tilt between each others. Today we would like to propose an ideal solution which is to curve the focal plane array in a spherical shape, thanks to our monolithic process developed at CEA-LETI based on thinned silicon substrates which allows a 100% optical fill factor. Two infrared uncooled cameras have been performed, using 320 x 256 pixels and 25 μm pitch micro-bolometer arrays curved at a bending radius of 80 mm. These two micro-cameras illustrate the optical system simplification and miniaturization involved by curved focal plane arrays. Moreover, the advantages of curved detectors on the optical performances (Point Spreading Function), as well as on volume and cost savings have been highlighted by the simulation of the opto-mechanical architecture of the spectrometer OptiMOS-EVE for the European Extremely Large Telescope (E-ELT).

  7. Materials, devices, techniques, and applications for Z-plane focal plane array technology II; Proceedings of the Meeting, San Diego, CA, July 12, 13, 1990

    NASA Astrophysics Data System (ADS)

    Carson, John C.

    1990-11-01

    Various papers on materials, devices, techniques, and applications for X-plane focal plane array technology are presented. Individual topics addressed include: application of Z-plane technology to the remote sensing of the earth from GEO, applications of smart neuromorphic focal planes, image-processing of Z-plane technology, neural network Z-plane implementation with very high interconnection rates, using a small IR surveillance satellite for tactical applications, establishing requirements for homing applications, Z-plane technology. Also discussed are: on-array spike suppression signal processing, algorithms for on-focal-plane gamma circumvention and time-delay integration, current HYMOSS Z-technology, packaging of electrons for on- and off-FPA signal processing, space/performance qualification of tape automated bonded devices, automation in tape automated bonding, high-speed/high-volume radiometric testing of Z-technology focal planes, 128-layer HYMOSS-module fabrication issues, automation of IRFPA production processes.

  8. Guided torsional wave generation of a linear in-plane shear piezoelectric array in metallic pipes.

    PubMed

    Zhou, Wensong; Yuan, Fuh-Gwo; Shi, Tonglu

    2016-02-01

    Cylindrical guided waves based techniques are effective and promising tools for damage detection in long pipes. The essential operations are generation and reception of guided waves in the structures utilizing transducers. A novel in-plane shear (d36 type) PMNT wafer is proposed to generate and receive the guided wave, especially the torsional waves, in metallic pipes. In contrast to the traditional wafer, this wafer will directly introduce in-plane shear deformation when electrical field is conveniently applied through its thickness direction. A single square d36 PMNT wafer is bonded on the surface of the pipe positioned collinearly with its axis, when actuated can predominantly generate torsional (T) waves along the axial direction, circumferential shear horizontal (C-SH) waves along circumferential direction, and other complex cylindrical Lamb-like wave modes along other helical directions simultaneously. While a linear array of finite square size d36 PMNT wafers was equally spaced circumferentially, when actuated simultaneously can nearly uniform axisymmetric torsional waves generate in pipes and non-symmetric wave modes can be suppressed greatly if the number of the d36 PMNT wafer is sufficiently large. This paper first presents the working mechanism of the linear d36 PMNT array from finite element analysis (FEA) by examining the constructive and destructive displacement wavefield phenomena in metallic pipes. Furthermore, since the amplitude of the received fundamental torsional wave signal strongly depends on frequency, a series of experiments are conducted to determine the frequency tuning curve for the torsional wave mode. All results indicate the linear d36 PMNT array has potential for efficiently generating uniform torsional wavefield of the fundamental torsional wave mode, which is more effective in monitoring structural health in metallic pipes. PMID:26548525

  9. Recent Developments and Applications of Quantum Well Infrared Photodetector Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.

    2000-01-01

    There are many applications that require long wavelength, large, uniform, reproducible, low cost, stable, and radiation-hard infrared (IR) focal plane arrays (FPAs). For example, the absorption lines of many gas molecules, such as ozone, water, carbon monoxide, carbon dioxide, and nitrous oxide occur in the wavelength region from 3 to 18 micron. Thus, IR imaging systems that operate in the long wavelength IR (LWIR) region (6 - 18 micron) are required in many space borne applications such as monitoring the global atmospheric temperature profiles, relative humidity profiles, cloud characteristics, and the distribution of minor constituents in the atmosphere which are being planned for future NASA Earth and planetary remote sensing systems. Due to higher radiation hardness, lower 1/f noise, and larger array size the GaAs based Quantum Well Infrared Photodetector (QWIP) FPAs are very attractive for such space borne applications compared to intrinsic narrow band gap detector arrays. In this presentation we will discuss the optimization of the detector design, material growth and processing that has culminated in realization of large format long-wavelength QWIP FPAs, portable and miniature LWIR cameras, holding forth great promise for myriad applications in 6-18 micron wavelength range in science, medicine, defense and industry. In addition, we will present some system demonstrations using broadband, two-color, and high quantum efficiency long-wavelength QWIP FPAs.

  10. A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics.

    PubMed

    Mazin, Benjamin A; Bumble, Bruce; Meeker, Seth R; O'Brien, Kieran; McHugh, Sean; Langman, Eric

    2012-01-16

    Microwave Kinetic Inductance Detectors, or MKIDs, have proven to be a powerful cryogenic detector technology due to their sensitivity and the ease with which they can be multiplexed into large arrays. A MKID is an energy sensor based on a photon-variable superconducting inductance in a lithographed microresonator, and is capable of functioning as a photon detector across the electromagnetic spectrum as well as a particle detector. Here we describe the first successful effort to create a photon-counting, energy-resolving ultraviolet, optical, and near infrared MKID focal plane array. These new Optical Lumped Element (OLE) MKID arrays have significant advantages over semiconductor detectors like charge coupled devices (CCDs). They can count individual photons with essentially no false counts and determine the energy and arrival time of every photon with good quantum efficiency. Their physical pixel size and maximum count rate is well matched with large telescopes. These capabilities enable powerful new astrophysical instruments usable from the ground and space. MKIDs could eventually supplant semiconductor detectors for most astronomical instrumentation, and will be useful for other disciplines such as quantum optics and biological imaging. PMID:22274494

  11. Estimation of Thickness and Cadmium Composition Distributions in HgCdTe Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Mouzali, S.; Lefebvre, S.; Rommeluère, S.; Ferrec, Y.; Primot, J.

    2016-09-01

    Mercury cadmium telluride (HgCdTe) is one of the most commonly used material systems for infrared detection. The performance of infrared focal-plane arrays (IRFPAs) based on this material is limited by several noise sources. In this paper, we focus on the fixed pattern noise, which is related to disparities between the spectral responses of pixels. In our previous work, we showed that spectral nonuniformities in a HgCdTe IRFPA were caused by inhomogeneities of thickness and cadmium composition in the HgCdTe layer, using an optical description of the pixel structure. We propose to use this bidimensional dependence combined with experimental spectral responses to estimate disparities of thickness and cadmium composition in a specific HgCdTe-based IRFPA. The estimation methods and the resulting maps are presented, highlighting the accuracy of this nondestructive method.

  12. Estimation of Thickness and Cadmium Composition Distributions in HgCdTe Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Mouzali, S.; Lefebvre, S.; Rommeluère, S.; Ferrec, Y.; Primot, J.

    2016-05-01

    Mercury cadmium telluride (HgCdTe) is one of the most commonly used material systems for infrared detection. The performance of infrared focal-plane arrays (IRFPAs) based on this material is limited by several noise sources. In this paper, we focus on the fixed pattern noise, which is related to disparities between the spectral responses of pixels. In our previous work, we showed that spectral nonuniformities in a HgCdTe IRFPA were caused by inhomogeneities of thickness and cadmium composition in the HgCdTe layer, using an optical description of the pixel structure. We propose to use this bidimensional dependence combined with experimental spectral responses to estimate disparities of thickness and cadmium composition in a specific HgCdTe-based IRFPA. The estimation methods and the resulting maps are presented, highlighting the accuracy of this nondestructive method.

  13. A comparison of deghosting techniques in adaptive nonuniformity correction for IR focal-plane array systems

    NASA Astrophysics Data System (ADS)

    Rossi, Alessandro; Diani, Marco; Corsini, Giovanni

    2010-10-01

    Focal-plane array (FPA) IR systems are affected by fixed-pattern noise (FPN) which is caused by the nonuniformity of the responses of the detectors that compose the array. Due to the slow temporal drift of FPN, several scene-based nonuniformity correction (NUC) techniques have been developed that operate calibration during the acquisition only by means of the collected data. Unfortunately, such algorithms are affected by a collateral damaging problem: ghosting-like artifacts are generated by the edges in the scene and appear as a reverse image in the original position. In this paper, we compare the performance of representative methods for reducing ghosting. Such methods relate to the least mean square (LMS)-based NUC algorithm proposed by D.A. Scribner. In particular, attention is focused on a recently proposed technique which is based on the computation of the temporal statistics of the error signal in the aforementioned LMS-NUC algorithm. In this work, the performances of the deghosting techniques have been investigated by means of IR data corrupted with simulated nonuniformity noise over the detectors of the FPA. Finally, we have made some considerations on the computational aspect which is a challenging task for the employment of such techniques in real-time systems.

  14. InGaAs focal plane array developments and perspectives

    NASA Astrophysics Data System (ADS)

    Rouvié, A.; Coussement, Jérome; Huet, O.; Truffer, JP.; Pozzi, Maxime; Oubensaid, E. H.; Hamard, S.; Maillart, P.; Costard, E.

    2014-10-01

    Thanks to the various developments presently available, SWIR technology presents a growing interest and gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material, initially developed for telecommunications detectors, appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. In the context of this evolving domain, the InGaAs imagery activities from III-VLab were transferred to Sofradir, which provides a framework for the production activity with the manufacturing of high performances products: CACTUS320 and CACTUS640. The developments towards VGA format with 15μm pixel pitch, lead today to the industrialization of a new product: SNAKE SW. On one side, the InGaAs detection array presents high performances in terms of dark current and quantum efficiency. On the other side, the low noise ROIC has different additional functionalities. Then this 640x512 @ 15μm module appears as well suited to answer the needs of a wide range of applications. In this paper, we will present the Sofradir InGaAs technology, the performances of our last product SNAKE SW and the perspectives of InGaAs new developments.

  15. New developments on InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Coussement, J.; Rouvié, A.; Oubensaid, E. H.; Huet, O.; Hamard, S.; Truffer, J.-P.; Pozzi, M.; Maillart, P.; Reibel, Y.; Costard, E.; Billon-Lanfrey, D.

    2014-06-01

    SWIR detection band benefits from natural (sun, night glow, thermal radiation) or artificial (eye safe lasers) photons sources combined to low atmospheric absorption and specific contrast compared to visible wavelengths. It gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. The recent transfer of imagery activities from III-VLab to Sofradir provides a framework for the production activity with the manufacturing of high performances products: CACTUS320 SW and CACTUS640 SW. The developments, begun at III-Vlab towards VGA format with 15μm pixel pitch, lead today to the industrialization of a new product: SNAKE SW. On one side, the InGaAs detection array presents high performances in terms of dark current and quantum efficiency. On the other side, the low noise ROIC has different additional functionalities. Then this 640×512 @ 15μm module appears as well suited to answer the needs of a wide range of applications. In this paper, we will present the Sofradir InGaAs technology, some performances optimization and the last developments leading to SNAKE SW.

  16. Research in the modulation transfer function (MTF) measurement of InGaAs focal plane arrays

    NASA Astrophysics Data System (ADS)

    Xu, Zhonghua; Fang, Jiaxiong

    2012-10-01

    The Modulation Transfer Function (MTF) of an opto-electrical device is defined as the ratio of the system output modulation to the input modulation, which describes the performance of the imaging system in the Fourier domain. Accurate measurement of the MTF is often obtained by analyzing the high-quality image of a special target reproduced by the optical system with known MTF. To evaluate the MTF of short-wave infrared InGaAs focal plane arrays (FPAs), we develop a laboratory system with high precision and automation based on the slit scan method. An 8*1 linear InGaAs FPAs is then measured by this test set-up for the first time to evaluate the MTF of each pixel at room temperature. The results show a good MTF repeatability and uniformity of the 8*1 InGaAs FPAs. The relationship between the MTF and illumination is also discussed.

  17. Advanced planar LWIR and VLWIR HgCdTe focal plane arrays

    NASA Astrophysics Data System (ADS)

    Chu, Muren; Gurgenian, Ray H.; Mesropian, Shoghig; Terterian, Sevag; Becker, Latika; Walsh, D.; Kokoroski, S. A.; Goodnough, Mark A.; Rosner, Brett D.

    2004-01-01

    The advanced planar ion-implantation-isolated heterojunction process, which utilizes the benefits of both the boron implantation and the heterojunction epitaxy techniques, has been developed and used to produce longwave and very longwave HgCdTe focal plane arrays in the 320v256 format. The wavelength of these arrays ranges from 10.0-17.0μm. The operability of the longwave HgCdTe arrays is typically over 97%. Without anti-reflection coating and with a 60° FOV cold shield, the D* of the 10.0μm array is 9.4x1010cm x (Hz)1/2 x W-1 at 77K. The 14.7μm and 17.0μm very longwave HgCdTe array diodes have excellent reverse characteristics. The detailed characteristics of these arrays are presented.

  18. Performance of the QWIP focal plane arrays for NASA's Landsat Data Continuity Mission

    NASA Astrophysics Data System (ADS)

    Jhabvala, M.; Choi, K.; Waczynski, A.; La, A.; Sundaram, M.; Costard, E.; Jhabvala, C.; Kan, E.; Kahle, D.; Foltz, R.; Boehm, N.; Hickey, M.; Sun, J.; Adachi, T.; Costen, N.; Hess, L.; Facoetti, H.; Montanaro, M.

    2011-06-01

    The focal plane assembly for the Thermal Infrared Sensor (TIRS) instrument on NASA's Landsat Data Continuity Mission (LDCM) consists of three 512 x 640 GaAs Quantum Well Infrared Photodetector (QWIP) arrays. The three arrays are precisely mounted and aligned on a silicon carrier substrate to provide a continuous viewing swath of 1850 pixels in two spectral bands defined by filters placed in close proximity to the detector surfaces. The QWIP arrays are hybridized to Indigo ISC9803 readout integrated circuits (ROICs). QWIP arrays were evaluated from four laboratories; QmagiQ, (Nashua, NH), Army Research Laboratory, (Adelphi, MD), NASA/ Goddard Space Flight Center, (Greenbelt, MD) and Thales, (Palaiseau, France). All were found to be suitable. The final discriminating parameter was the spectral uniformity of individual pixels relative to each other. The performance of the QWIP arrays and the fully assembled, NASA flight-qualified, focal plane assembly will be reviewed. An overview of the focal plane assembly including the construction and test requirements of the focal plane will also be described.

  19. InGaAs focal plane array developments and perspectives

    NASA Astrophysics Data System (ADS)

    Rouvié, A.; Coussement, J.; Huet, O.; Truffer, J. P.; Pozzi, M.; Oubensaid, E. H.; Hamard, S.; Chaffraix, V.; Costard, E.

    2015-05-01

    SWIR spectral band is an attractive domain thanks to its intrinsic properties. Close to visible wavelengths, SWIR images interpretation is made easier for field actors. Besides complementary information can be extracted from SWIR band and bring significant added value in several fields of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). Among the various new technologies able to detect SWIR wavelengths, InGaAs appears as a key technology. Initially developed for optical telecommunications, this material guaranties performances, stability and reliability and is compatible with attractive production capacity. Thanks to high quality material, very low dark current levels can be achieved at ambient temperature. Then uncooled operation can be set up, allowing compact and low power systems. Since the recent transfer of InGaAs imaging activities from III-Vlab, Sofradir provides a framework for the production activity with the manufacturing of high performances products: CACTUS320 SW. The developments towards VGA format with 15μm pixel pitch, lead today to the industrialization of a new product: SNAKE. On one side, the InGaAs detection array presents high performances in terms of dark current and quantum efficiency. On the other side, the low noise ROIC has different additional functionalities. Then this 640x512 @ 15μm sensor appears as well suited to answer the needs of a wide range of applications. In this paper, we will present the Sofradir InGaAs technology, the performances of our last product SNAKE and the perspectives of InGaAs new developments.

  20. Modeling of HgCdTe focal plane array spectral inhomogeneities

    NASA Astrophysics Data System (ADS)

    Mouzali, Salima; Lefebvre, Sidonie; Rommeluère, Sylvain; Ferrec, Yann; Primot, Jérôme

    2015-06-01

    Infrared focal plane arrays (IRFPA) are widely used to perform high quality measurements such as spectrum acquisition at high rate, ballistic missile defense, gas detection, and hyperspectral imaging. For these applications, the fixed pattern noise represents one of the major limiting factors of the array performance. This sensor imperfection refers to the nonuniformity between pixels, and is partially caused by disparities of the cut-off wavenumbers. In this work, we focus particularly on mercury cadmium telluride (HgCdTe), which is the most important material of IR cooled detector applications. Among the many advantages of this ternary alloy is the tunability of the bandgap energy with Cadmium composition, as well as the high quantum efficiency. In order to predict and understand spectral inhomogeneities of HgCdTe-based IRFPA, we propose a modeling approach based on the description of optical phenomena inside the pixels. The model considers the p-n junctions as a unique absorbent bulk layer, and derives the sensitivity of the global structure to both Cadmium composition and HgCdTe layer thickness. For this purpose, HgCdTe optical and material properties were necessary to be known at low temperature (80K), in our operating conditions. We therefore achieved the calculation of the real part of the refractive index using subtracti

  1. Quantum Well Infrared Photodetector (QWIP) Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S.

    1998-01-01

    Intrinsic infrared detectors in the long-wavelength range (6 - 20 ??are based on interband transition which promotes an electron across the band gap (E(sub g)) from the valence band to the conduction band.

  2. Long-Wavelength Infrared (LWIR) Quantum Dot Infrared Photodetector (QDIP) Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, S. V.; Liu, J. K.; Hill, C. J.; Rafol, S. B.; Mumolo, J. M.; Shott, C. A.

    2006-01-01

    We have exploited the artificial atomlike properties of epitaxially self-assembled quantum dots for the development of high operating temperature long wavelength infrared (LWIR) focal plane arrays. Quantum dots are nanometer-scale islands that form spontaneously on a semiconductor substrate due to lattice mismatch. QDIPs are expected to outperform quantum well infrared detectors (QWIPs) and are expected to offer significant advantages over II-VI material based focal plane arrays. QDIPs are fabricated using robust wide bandgap III-V materials which are well suited to the production of highly uniform LWIR arrays. We have used molecular beam epitaxy (MBE) technology to grow multi-layer LWIR quantum dot structures based on the InAs/InGaAs/GaAs material system. JPL is building on its significant QWIP experience and is basically building a Dot-in-the-Well (DWELL) device design by embedding InAs quantum dots in a QWIP structure. This hybrid quantum dot/quantum well device offers additional control in wavelength tuning via control of dot-size and/or quantum well sizes. In addition the quantum wells can trap electrons and aide in ground state refilling. Recent measurements have shown a 10 times higher photoconductive gain than the typical QWIP device, which indirectly confirms the lower relaxation rate of excited electrons (photon bottleneck) in QDPs. Subsequent material and device improvements have demonstrated an absorption quantum efficiency (QE) of approx. 3%. Dot-in-the-well (DWELL) QDIPs were also experimentally shown to absorb both 45 deg. and normally incident light. Thus we have employed a reflection grating structure to further enhance the quantum efficiency. JPL has demonstrated wavelength control by progressively growing material and fabricating devices structures that have continuously increased in LWIR response. The most recent devices exhibit peak responsivity out to 8.1 microns. Peak detectivity of the 8.1 micrometer devices has reached approx. 1 x 10(exp 10

  3. Mercury cadmium telluride short- and medium-wavelength infrared staring focal plane arrays

    NASA Technical Reports Server (NTRS)

    Vural, Kadri

    1987-01-01

    Short and medium IR wavelength 64 x 64 hybrid focal plane arrays (FPAs) have been developed using sapphire-grown HgCdTe. The short wavelength arrays were developed for a prototype airborne imaging spectrometer, while those of medium wavelength are suitable for tactical missile seekers and strategic surveillance systems. Attention is presently given to results obtained for these FPAs' current-voltage characteristics, as well as for their characterization at different temperatures. The detector arrays were also mated to a multiplexer and characterized under different operating conditions. The unit cell size used is 52 x 52 microns.

  4. Development of uncooled focal plane detector arrays for smart IR sensors

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.; Reinhold, Olaf; Ringh, Ulf; Jansson, Christer

    1997-11-01

    This paper reports on the development of silicon microbolometer uncooled IR focal plane detector arrays at the Defence Science and Technology Organization (DSTO), in collaboration with the National Defence Research Establishment (FOA). The detector arrays were designed by Electro-optic Sensor Design, which also provided specialist scientific advice on array fabrication. Detector arrays are prepared by monolithic processing at DSTO, using surface micromachining to achieve thermal isolation, and are integrated on-chip with a CMOS signal conditioning and readout microcircuit designed by FOA. The CMOS circuit incorporates 16-bit analog-to-digital conversion, and is described in more detail in an accompanying paper presented. The ultimate objective is to develop 'smart' focal plane arrays which have on-chip signal processing functions, giving a capability for decision making such as automatic target detection. The silicon microbolometer technology described in the paper was invented at DSTO, and is representative of core technology employed in many initiatives world-wide. A brief overview will be given of theoretical considerations which influence detector array design, followed by an outline of recent developments in array processing.

  5. Characterization of post-correction uniformity on infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    O'Neill, John J.; Costanzo, Christopher R.; Kaplan, David R.

    1995-05-01

    With increased requirements for better performance being placed on thermal imaging systems, new characterization figures of merit are being developed to assess infrared focal plane array (IRFPA) attributes. Post correction uniformity (PCU) is a parameter that determines how successfully a thermal imaging system can eliminate spatial noise from scanning and staring focal plane arrays. Requirements on PCU, particularly for the more sensitive IRFPAs and applications, are quite rigorous. Test issues of l/f noise, drift, and repeatability become critical and require a rethinking of accepted methods. As infrared sensors have become more sensitive, the need to characterize these focal plane arrays under more controlled and realistic test conditions has emerged. The U.S. Army Night Vision and Electronic SEnsors Directorate (NVESD) has attempted to address these issues by developing a unique capability to measure the PCU of IR focal plane arrays using software algorithms and a specialized mechanical modulator. The modulator is a two foot diameter, two toothed (one reflective and one emissive) blade, which is used to facilitate the real-time collection of test, gain, and offset flux levels. This paper addresses (1) the significance of PCU from a system perspective, (2) discuss the limitations of various PCU measurement techniques, (3) present the NVESD approach for measuring PCU, and (4) report PCU data collected using these techniques.

  6. Measurement of modulation transfer function of focal plane arrays and imaging systems

    NASA Astrophysics Data System (ADS)

    Boreman, Glenn D.

    1994-05-01

    A method for measuring the modulation transfer function (MTF) of focal-plane arrays (FPA's) has been developed which uses the statistical properties of laser speckle. The entire area of the focal plane is characterized, and no optics are required for target projection. The random nature of the test pattern avoids phasing effects between the target and the detector-array structure, which greatly relaxes alignment tolerances as compared to other methods. The technique is applicable to arrays that have intentional nonlinearity of response, as well as to those arrays that are inherently linear. The test can be performed on any focal-plane configuration, either one dimensional (1D) or two dimensional (2D). The data processing is usually performed by an off-line computer. However, the test is also useful for real-time diagnostics, to facilitate adjustment of focal-plane operating parameters. In the real-time case, the necessary signal processing can be performed on a digital oscilloscope.

  7. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  8. Radiation-Induced Transient Effects in Near Infrared Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.; Pickel, J.; Marshall, P.; Waczynski, A.; McMurray, R.; Gee, G.; Polidan, E.; Johnson, S.; McKeivey, M.; Ennico, K.; Johnson, R.

    2004-01-01

    This viewgraph presentation describes a test simulate the transient effects of cosmic ray impacts on near infrared focal plane arrays. The objectives of the test are to: 1) Characterize proton single events as function of energy and angle of incidence; 2) Measure charge spread (crosstalk) to adjacent pixels; 3) Assess transient recovery time.

  9. Status of very long infrared-wave focal plane array development at DEFIR

    NASA Astrophysics Data System (ADS)

    Gravrand, O.; Chorier, Ph.

    2009-05-01

    The very long infrared wavelength (>14μm) is a very challenging range for the design of large HgCdTe focal plane arrays. As the wavelength gets longer (ie the semiconductor gap gets smaller), the physic of photodiodes asks for numerous technological improvements to keep a high level of detection performance. DEFIR (LETI-Sofradir common research team) has been highly active in this field during the last few years. The need (mainly expressed by the space industry ESA and CNES) of very long wave focal plane arrays appears very demanding in terms of dark current, defect density and of course quantum efficiency. This paper aims at presenting a status of long and very long wave focal plane array development at DEFIR for three different ion implanted technologies: n on p mercury vacancies doped technology, n on p extrinsic doped technology, and p on n arsenic on indium technology. Special focus is done to 15μm cut off n/p focal plane array fabricated in our laboratory demonstrating high uniformity, diffusion and shot noise limited photodiodes at 50K.

  10. A novel design of infrared focal plane array with digital read out interface

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyang; Ding, Ruijun; Lu, Wei; Zhou, Chun

    2010-10-01

    Infrared focal plane array (IRFPA) with digital read out interface is a key sign of the third generation IRFPA, which plays an important role in the reliability and miniaturization of infrared systems. A readout integrated circuit (ROIC) of IRFPA with digital readout interface based on dual ramp single slope (DRSS) analog to digital converter (ADC) architecture is presented in the paper. The design is realized using shared ADCs in column-wise and these ADCs are consisted of simplified DRSS architecture and shared units. Sample, conversion and readout are proceeded simultaneously in order to adapt large scale and high readout frame rate application. This circuit also shows many advantages, including small area and low power consumption. Simulation result shows that this architecture can be expand to 320×256 pixel array with a frame rate of 100 frames per second or a larger size whit lower frame rate, the quantized resolution of this circuit is 12 bit, and the analog power consumption is only 17μw per ADC.

  11. Pixelated spectral filter for integrated focal plane array in the long-wave IR.

    SciTech Connect

    Kemme, Shanalyn A.; Cruz-Cabrera, Alvaro Augusto; Boye, Robert R.; Samora, Sally; Carter, Tony Ray; Briggs, Ronald D.

    2010-03-01

    We present the design, fabrication, and characterization of a pixelated, hyperspectral arrayed component for Focal Plane Array (FPA) integration in the Long-Wave IR. This device contains tens of pixels within a single super-pixel which is tiled across the extent of the FPA. Each spectral pixel maps to a single FPA pixel with a spectral FWHM of 200nm. With this arrayed approach, remote sensing data may be accumulated with a non-scanning, 'snapshot' imaging system. This technology is flexible with respect to individual pixel center wavelength and to pixel position within the array. Moreover, the entire pixel area has a single wavelength response, not the integrated linear response of a graded cavity thickness design. These requirements bar tilted, linear array technologies where the cavity length monotonically increases across the device.

  12. Dual-band technology on indium gallium arsenide focal plane arrays

    NASA Astrophysics Data System (ADS)

    Dixon, Peter; Hess, Cory D.; Li, Chuan; Ettenberg, Martin; Trezza, John

    2011-06-01

    While InGaAs-based SWIR imaging technology has been improved dramatically over the past 10 years, the motivation remains to reduce Size Weight and Power (SWaP) for applications in Intelligence Surveillance and Reconnaissance (ISR). Goodrich ISR Systems, Princeton (Sensors Unlimited, Inc.) has continued to improve detector sensitivity. Additionally, SUI is working jointly with DRS-RSTA to develop innovative techniques for manufacturing dual-band focal planes to provide next generation technology for not only reducing SWaP for SWIR imagers, but also to combine imaging solutions for providing a single imager for Visible Near-SWIR (VNS) + LW imaging solutions. Such developments are targeted at reducing system SWaP, cost and complexity for imaging payloads on board UASs as well as soldier deployed systems like weapon sights. Our motivation is to demonstrate capability in providing superior image quality in fused LWIR and SWIR imaging systems, while reducing the total system SWaP and cost by enabling Short Wave and Thermal imaging in a single uncooled imager. Under DARPA MTO awarded programs, a LW bolometer (DRS-RSTA) is fabricated on a Short Wave (SW) InGaAs Vis-SWIR (SUI-Goodrich) Imager. The combined imager is a dual-band Sensor-Chip Assembly which is capable of imaging in VIS-SWIR + LW. Both DRS and Goodrich have developed materials and process enhancements to support these dual-band platform investigations. The two imagers are confocal and coaxial with respect to the incident image plane. Initial work has completed a single Read Out Integrated Circuit (ROIC) capable of running both imagers. The team has hybridized InGaAs Focal planes to 6" full ROIC wafers to support bolometer fabrication onto the SW array.

  13. Focal plane resolution and overlapped array time delay and integrate imaging

    NASA Astrophysics Data System (ADS)

    Grycewicz, Thomas J.; Cota, Stephen A.; Lomheim, Terrence S.; Kalman, Linda S.

    2010-06-01

    In this paper we model sub-pixel image registration for a generic earth-observing satellite system with a focal plane using two offset time delay and integrate (TDI) arrays in the focal plane to improve the achievable ground resolution over the resolution achievable with a single array. The modeling process starts with a high-resolution image as ground truth. The Parameterized Image Chain Analysis & Simulation Software (PICASSO) modeling tool is used to degrade the images to match the optical transfer function, sampling, and noise characteristics of the target system. The model outputs a pair of images with a separation close to the nominal half-pixel separation between the overlapped arrays. A registration estimation algorithm is used to measure the offset for image reconstruction. The two images are aligned and summed on a grid with twice the capture resolution. We compare the resolution in images between the inputs before overlap, the reconstructed image, and a simulation for the image which would have been captured on a focal plane with twice the resolution. We find the performance to always be better than the lower resolution baseline, and to approach the performance of the high-resolution array in the ideal case. We show that the overlapped array imager significantly outperforms both the conventional high- and low-resolution imagers in conditions with high image smear.

  14. Type II superlattice infrared focal plane arrays: Optical, electrical, and mid-wave infrared imaging characterization.

    NASA Astrophysics Data System (ADS)

    Little, John; Svensson, Stefan; Goldberg, Arnie; Kennerly, Steve; Olver, Kim; Hongsmatip, Trirat; Winn, Michael; Uppal, Parvez

    2006-03-01

    We have studied the infrared optical and temperature dependent electrical properties of 320 x 256 arrays of GaSb/InAs type II superlattice infrared photodiodes. Good agreement between single-pixel and focal plane array measurements of the photon-to- electron/hole conversion efficiency was obtained, and the infrared absorption coefficient extracted from these measurements was found to be comparable to that of HgCdTe with the same bandgap as the type II superlattice. Temperature and voltage dependent dark current measurements and the voltage dependent photocurrent generated by a 300 K background scene were described well using a semi-empirical model of the photodiode. We will show high-quality images obtained from the mid-infrared focal plane array operating at 78 K.

  15. Large format focal plane array integration with precision alignment, metrology and accuracy capabilities

    NASA Astrophysics Data System (ADS)

    Neumann, Jay; Parlato, Russell; Tracy, Gregory; Randolph, Max

    2015-09-01

    Focal plane alignment for large format arrays and faster optical systems require enhanced precision methodology and stability over temperature. The increase in focal plane array size continues to drive the alignment capability. Depending on the optical system, the focal plane flatness of less than 25μm (.001") is required over transition temperatures from ambient to cooled operating temperatures. The focal plane flatness requirement must also be maintained in airborne or launch vibration environments. This paper addresses the challenge of the detector integration into the focal plane module and housing assemblies, the methodology to reduce error terms during integration and the evaluation of thermal effects. The driving factors influencing the alignment accuracy include: datum transfers, material effects over temperature, alignment stability over test, adjustment precision and traceability to NIST standard. The FPA module design and alignment methodology reduces the error terms by minimizing the measurement transfers to the housing. In the design, the proper material selection requires matched coefficient of expansion materials minimizes both the physical shift over temperature as well as lowering the stress induced into the detector. When required, the co-registration of focal planes and filters can achieve submicron relative positioning by applying precision equipment, interferometry and piezoelectric positioning stages. All measurements and characterizations maintain traceability to NIST standards. The metrology characterizes the equipment's accuracy, repeatability and precision of the measurements.

  16. Numerical analysis of InSb parameters and InSb 2D infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Zhang, Hongfei; Sun, Weiguo; Zhang, Lei; Meng, Chao; Lu, Zhengxiong

    2012-10-01

    Accurate and reliable numerical simulation tools are necessary for the development of advanced semiconductor devices. InSb is using the MATLAB and TCAD simulation tool to calculatet the InSb body bandstructure, blackbody's radiant emittance and simultaneously solve the Poisson, Continuity and transport equations for 2D detector structures. In this work the material complexities of InSb, such as non-parabolicity, degenergcy, mobility and Auger recombination/generation are explained, and physics based models are developed. The Empirical Tight Binding Method (ETBM) was been using to calculate the bandstructure for InSb at 77 K by Matlab. We describe a set of systematic experiments performed in order to calibrate the simulation to semiconductor devices backside illuminated InSb focal plane arrays realized with planar technology. The spectral photoresponse and crosstalk characteristic for mid-wavelength InSb infrared focal plane arrays have been numerically studied.

  17. Terahertz 3D printed diffractive lens matrices for field-effect transistor detector focal plane arrays.

    PubMed

    Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech

    2016-09-01

    We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays. PMID:27607620

  18. 256 x 256 hybrid HgCdTe infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Bailey, Robert B.; Kozlowski, Lester J.; Chen, Jenkon; Bui, Duc Q.; Vural, Kadri

    1991-05-01

    Hybrid HgCdTe 256 x 256 focal plane arrays have been developed to meet the sensitivity, resolution, and field-of-view requirements of high-performance medium-wavelength infrared (MWIR) imaging systems. The detector arrays for these hybrids are fabricated on substrates that reduce or eliminate the thermal expansion mismatch to the silicon readout circuit. The readouts are foundry-processed CMOS switched-FET circuits that have charge capacities greater than 107 electrons and a single video output capable of 10-MHz data rates. The high quantum efficiency, tunable absorption wavelength, and broad operating temperature range of these large HgCdTe staring focal plane arrays give them significant advantages over competing sensors. The mature Producible Alternative to CdTe for Epitaxy-1 (PACE-1) technology, using sapphire detector substrates, has demonstrated 256 x 256 MWIR arrays with mean laboratory noise equivalent temperature difference (NETO) of 9 mK for a 4.9-micron cutoff wavelength, 40-micron pixel size, and 80-K operating temperature. RMS detector response nonuniformities are less than 4 percent, and pixel yields are greater than 99 percent. The newly developed PACE-3 process uses silicon for the detector substrate to eliminate completely the thermal mismatch with the silicon readout circuit. It has the potential for similar performance in even larger array sizes. A 640 x 480 hybrid array is under development.

  19. Collection of photogenerated charge carriers in small-pitched infrared photovoltaic focal plane arrays

    NASA Astrophysics Data System (ADS)

    Chekanova, Galina V.; Drugova, Albina A.; Kholodnov, Viacheslav; Nikitin, Mikhail S.

    2010-10-01

    Technology of infrared (IR) photovoltaic (PV) focal plane arrays (FPA) covering spectral range from 1.6 to 14 μm gradually moves from simple quasi-matrix (linear) arrays like as 4×288 pixels to large format high definition arrays 1280×1024 pixels and more. Major infrared detector materials for PV technology are InSb and its alloys and ternary alloys Hg1-xCdxTe. Progress in IR PV technology was provided in last decade by serious improvement in material growing techniques. Increasing of PV array format is related always to decreasing of pixel size and spacing between neighbor pixels to minimal size reasonable from point of view of infrared physics. So pitch is small (15-25 μm) in large format arrays. Ambipolar diffusion length of photogenerated charge carriers can exceed pitch many times in high quality absorption layers of PV arrays. It means that each pixel can collect excess charge carriers generated far from n+-p junction border. Optimization of resolution, filling factor and cross-talking level of small-pitched PV FPA requires comprehensive estimation of photodiode's (PD) pixel performance depending on pixel and array design, material properties and operating conditions. Objective of the present work was to develop general approach to estimate collection of photogenerated charge carriers in small-pitched arrays.

  20. Modulation Transfer Function Consequences of Planar Dense Array Geometries in Infrared Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin; Wichman, Adam R.; Bellotti, Enrico

    2015-09-01

    Finite-difference time-domain and finite element method simulations are used to evaluate two-dimensional spot-scan profiles of p-on- n double-layer planar heterostructure (DLPH) detector arrays with abrupt p-type diffusions. The modulation transfer function (MTF) is calculated from the spot-scan profiles. An asymmetric dark and photo current collection mechanism is identified and explained as a result of electric field bunching through the corners of polygonal diffusions in DLPH arrays. The MTF consequences of the asymmetric collection are studied for triangular, square, and hexagonal diffusions in square and hexagonal arrays. We show that the placement and shape of the diffusion relative to the pixel can modify the MTF by several percent. The magnitude of the effect is largest for diffusions with fewer degrees of rotational symmetry.

  1. Accounting for uncertainty in location when detecting point sources using infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Nichols, J. M.; Waterman, J. R.

    2016-07-01

    This work derives the modeling and detection theory required to predict the performance of an infrared focal plane array in detecting point source targets. Specifically, we focus on modeling the uncertainty associated with the location of the point source on the array. In the process we derive several new expressions related to pixel-averaged detection performance under a variety of problem assumptions. The resulting predictions are compared to standard approaches where the location is assumed fixed and known. It is further shown how to incorporate these predictions into multi-frame detection strategies.

  2. Self-correction of telescope surface errors using a correlating focal plane array

    NASA Astrophysics Data System (ADS)

    Cornwell, T. J.; Napier, P. J.

    The effects on the performance of a large radio telescope of aberrations such as reflector surface errors, defocussing, coma and pointing errors can be removed if the telesocpe is equipped with an array feed in its focal plane. If the cross correlations between all possible pairs of array elements are measured, then aberration-free images of radio sources can be obtained. Because of the great cost of building very precise large structures in space, in the future this concept may offer the possibility of a more economical design for a large, high frequency, space-born radio telescope.

  3. Object tracking based on bit-planes

    NASA Astrophysics Data System (ADS)

    Li, Na; Zhao, Xiangmo; Liu, Ying; Li, Daxiang; Wu, Shiqian; Zhao, Feng

    2016-01-01

    Visual object tracking is one of the most important components in computer vision. The main challenge for robust tracking is to handle illumination change, appearance modification, occlusion, motion blur, and pose variation. But in surveillance videos, factors such as low resolution, high levels of noise, and uneven illumination further increase the difficulty of tracking. To tackle this problem, an object tracking algorithm based on bit-planes is proposed. First, intensity and local binary pattern features represented by bit-planes are used to build two appearance models, respectively. Second, in the neighborhood of the estimated object location, a region that is most similar to the models is detected as the tracked object in the current frame. In the last step, the appearance models are updated with new tracking results in order to deal with environmental and object changes. Experimental results on several challenging video sequences demonstrate the superior performance of our tracker compared with six state-of-the-art tracking algorithms. Additionally, our tracker is more robust to low resolution, uneven illumination, and noisy video sequences.

  4. Two-color HgCdTe infrared staring focal plane arrays

    NASA Astrophysics Data System (ADS)

    Smith, Edward P.; Pham, Le T.; Venzor, Gregory M.; Norton, Elyse; Newton, Michael; Goetz, Paul; Randall, Valerie; Pierce, Gregory; Patten, Elizabeth A.; Coussa, Raymond A.; Kosai, Ken; Radford, William A.; Edwards, John; Johnson, Scott M.; Baur, Stefan T.; Roth, John A.; Nosho, Brett; Jensen, John E.; Longshore, Randolph E.

    2003-12-01

    Raytheon Vision Systems (RVS) in collaboration with HRL Laboratories is contributing to the maturation and manufacturing readiness of third-generation two-color HgCdTe infrared staring focal plane arrays (FPAs). This paper will highlight data from the routine growth and fabrication of 256x256 30μm unit-cell staring FPAs that provide dual-color detection in the mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) spectral regions. FPAs configured for MWIR/MWIR, MWIR/LWIR and LWIR/LWIR detection are used for target identification, signature recognition and clutter rejection in a wide variety of space and ground-based applications. Optimized triple-layer-heterojunction (TLHJ) device designs and molecular beam epitaxy (MBE) growth using in-situ controls has contributed to individual bands in all two-color FPA configurations exhibiting high operability (>99%) and both performance and FPA functionality comparable to state-of-the-art single-color technology. The measured spectral cross talk from out-of-band radiation for either band is also typically less than 10%. An FPA architecture based on a single mesa, single indium bump, and sequential mode operation leverages current single-color processes in production while also providing compatibility with existing second-generation technologies.

  5. An improved retina-like nonuniformity correction for infrared focal-plane array

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Zhang, Zhi-jie; Wang, Chen-sheng

    2015-11-01

    The non-uniform response in infrared focal plane array (IRFPA) detectors produces corrupted images with nonuniformity noise. This paper mainly proposes an improved adaptive nonuniformity correction (NUC) method based on the retina-like neural network approach. The main purpose of NUC method is to obtain reliable estimations of gain and offset parameters. In this paper the two correction parameters are updated with two different learning rates respectively for the purpose of updating these two parameters synchronously. And then more accurate estimations of the two correction parameters can be obtained. Again, in order to reduce the ghost artifacts normally introduced by the strong edge effectively, the proposed algorithm employs the non-local means (NLM) method to estimate the desired target value of each detector. The proposed NUC method has been tested by applying it to the IR sequence of frames with simulated nonuniformity noise and real nonuniformity noise, respectively. The performance comparisons are implemented with the well-established scene-based NUC techniques. And the experimental results show the efficiency of the proposed method.

  6. Submillisecond measurements of system optical modulation functions in mosaic focal plane arrays

    NASA Technical Reports Server (NTRS)

    Thurlow, P. E.

    1981-01-01

    Measurements of system optical modulation functions (MTF, SWR) may be distorted by time-dependent environmental effects (thermal, vibration, flexure) and by electronics drift. Fast data collection may therefore be advantageous by minimizing drift time. The problem of fast data collection is accentuated when modulation data must be taken on a large number of detectors in a focal plane array. A method has been developed for the generation and storage of knife edge data from focal plane arrays, where data collection time per detector is in the submillisecond range. Once knife edge collects are completed, MTF response is found using conventional convolution techniques. SWR is obtained directly from knife edge response using a computerized simulation algorithm which bypasses use of MTF harmonics. Requirements for detector electronics speed, damping, and dynamic range are considered.

  7. InAs/GaSb superlattices for advanced infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Walther, Martin; Schmitz, Johannes; Rutz, Frank; Fleißner, Joachim; Scheibner, Ralf; Ziegler, Johann

    2009-11-01

    We report on the development of high performance focal plane arrays for the mid-wavelength infrared spectral range from 3-5 μm (MWIR) on the basis of InAs/GaSb superlattice photodiodes. An investigation on the minority electron diffusion length with a set of six sample ranging from 190 to 1000 superlattice periods confirms that InAs/GaSb superlattice focal plane arrays achieve very high external quantum efficiency. This enabled the fabrication of a range of monospectral MWIR imagers with high spatial and excellent thermal resolution at short integration times. Furthermore, novel dual-color imagers have been developed, which offer advanced functionality due to a simultaneous, pixel-registered detection of two separate spectral channels in the MWIR.

  8. Modulation transfer function measurements of QWIP and superlattice focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Ting, D. Z.; Rafol, S. B.; Soibel, A.; Khoshakhlagh, A.; Hill, C.; Liu, J. K.; Mumolo, J. M.; Keo, S. A.

    2013-01-01

    Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this presentation we will discuss the detail MTF measurements of 1024x1024 pixels multi-band quantum well infrared photodetector and 320x256 pixels long-wavelength InAs/GaSb superlattice infrared focal plane arrays.

  9. Focal Plane Array Shutter Mechanism of the JWST NIRSpec Detector System

    NASA Technical Reports Server (NTRS)

    Hale, Kathleen; Sharma, Rajeev

    2006-01-01

    This viewgraph presentation reviews the requirements, chamber location, shutter system design, stepper motor specifications, dry lubrication, control system, the environmental cryogenic function testing and the test results of the Focal Plane Array Shutter mechanism for the James Webb Space Telescope Near Infrared Spectrum Detector system. Included are design views of the location for the Shutter Mechanism, lubricant (lubricated with Molybdenum Di Sulfide) thickness, and information gained from the cryogenic testing.

  10. Vacuum packaging of InGaAs focal plane array with four-stage thermoelectric cooler

    NASA Astrophysics Data System (ADS)

    Mo, De-feng; Liu, Da-fu; Yang, Li-yi; Xu, Qin-fei; Li, Xue

    2013-09-01

    The InGaAs focal plane array (FPA) detectors, covering the near-infrared 1~2.4 μm wavelength range, have been developed for application in space-based spectroscopy of the Earth atmosphere. This paper shows an all-metal vacuum package design for area array InGaAs detector of 1024×64 pixels, and its architecture will be given. Four-stage thermoelectric cooler (TEC) is used to cool down the FPA chip. To acquire high heat dissipation for TEC's Joule-heat, tungsten copper (CuW80) and kovar (4J29) is used as motherboard and cavity material respectively which joined by brazing. The heat loss including conduction, convection and radiation is analyzed. Finite element model is established to analyze the temperature uniformity of the chip substrate which is made of aluminum nitride (AlN). The performance of The TEC with and without heat load in vacuum condition is tested. The results show that the heat load has little influence to current-voltage relationship of TEC. The temperature difference (ΔT) increases as the input current increases. A linear relationship exists between heat load and ΔT of the TEC. Theoretical analysis and calculation show that the heat loss of radiation and conduction is about 187 mW and 82 mW respectively. Considering the Joule-heat of readout circuit and the heat loss of radiation and conduction, the FPA for a 220 K operation at room temperature can be achieved. As the thickness of AlN chip substrate is thicker than 1 millimeter, the temperature difference can be less than 0.3 K.

  11. Microwave assisted magnetization reversal in cylindrical antidot arrays with in-plane and perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Yumak, Mehmet; Ture, Kerim; Aktas, Gulen; Vega, Victor; Prida, Victor; Garcia, Carlos

    2012-02-01

    Porous anodic alumina is a particularly attractive self-ordered system used as template to fabricate nanostructures. The anodic film contains a self-ordered hexagonal array of parallel pores with tunable pore size and interpore distance, and whose pore locations can be templated. Deposition of magnetic films onto porous alumina leads to the formation of porous magnetic films, whose properties differ significantly from those of unpatterned films. The study of antidot arrays has both technological and fundamental importance. Although porous alumina films are typically synthesized in a planar geometry, in this work we deposited NiFe and Ti/CoCrPt magnetic films with in-plane and out-of-plane anisotropy onto cylindrical-geometry porous anodic alumina substrates to achieve cylindrical antidot arrays. The effect of both, the magnitude of the AC current and the circular magnetic field on the magnetization reversal has been studied for in-plane and perpendicular anisotropies. The level of reduction in the switching field was found to be dependent on the power, the frequency of the microwave pulses and the circular applied magnetic field. Such a reduction is associate with the competition between pumping and damping processes.

  12. Low power, highly linear output buffer. [for infrared focal plane arrays

    NASA Technical Reports Server (NTRS)

    Foley, D.; Butler, N.; Stobie, J.

    1992-01-01

    A class AB CMOS output buffer has been designed for use on an IR focal plane array. Given the requirements for power dissipation and load capacitance a class A output, such as a source follower, would be unsuitable. The approach taken uses a class AB amplifier configured as a charge integrator. Thus it converts a charge packet in the focal plane multiplexer to a voltage which is then the output of the focal plane. With a quiescent current of 18 micro-a and a load capacitance of 100 pf, the amplifier has an open loop unity gain bandwidth of 900 khz. Integral nonlinearity is better than .03 percent over 5.5 volts when run with VDD-VSS = 6v.

  13. Optical sensitivity non-uniformity analysis and optimization of a tilt optical readout focal plane array

    NASA Astrophysics Data System (ADS)

    Fu, Jianyu; Shang, Haiping; Shi, Haitao; Li, Zhigang; Ou, Yi; Chen, Dapeng; Zhang, Qingchuan

    2016-02-01

    An optical readout focal plane array (FPA) usually has a differently tilted reflector/absorber at the initial state due to the micromachining technique. The angular deviation of the reflector/absorber has a strong impact on the optical sensitivity non-uniformity, which is a key factor which affects the imaging uniformity. In this study, a theoretical analysis has been developed, and it is found that the stress matching in SiO2-Aluminum (Al) bilayer leg could make a contribution towards reducing the optical sensitivity non-uniformity. Ion implantation of phosphorus (P) has been utilized to control the stress in SiO2 film. By controlling the implantation energy and dose, the stress and stress stability are modified. The optical readout FPA has been successfully fabricated with the stress-control technique based on P+ implantation. It is demonstrated that the gray response non-uniformity of optical readout FPA has decreased from 25.69% to 10.7%.

  14. Absolute temperature measurements using a two-color QWIP focal plane array

    NASA Astrophysics Data System (ADS)

    Bundas, Jason; Dennis, Richard; Patnaude, Kelly; Burrows, Douglas; Faska, Ross; Sundaram, Mani; Reisinger, Axel; Manitakos, Dan

    2010-04-01

    The infrared photon flux emitted by an object depends not only on its temperature but also on a proportionality factor referred to as its emissivity. Since the latter parameter is usually not known quantitatively a priori, any temperature determination based on single-band radiometric measurements suffers from an inherent uncertainty. Recording photon fluxes in two separate spectral bands can in principle circumvent this limitation. The technique amounts to solving a system of two equations in two unknowns, namely, temperature and emissivity. The temperature derived in this manner can be considered absolute in the sense that it is independent of the emissivity, as long as that emissivity is the same in both bands. QmagiQ has previously developed a 320x256 midwave/longwave staring focal plane array which has been packaged into a dual-band laboratory camera. The camera in question constitutes a natural tool to generate simultaneous and independent emissivity maps and temperature maps of entire two-dimensional scenes, rather than at a single point on an object of interest. We describe a series of measurements we have performed on a variety of targets of different emissivities and temperatures. We examine various factors that affect the accuracy of the technique. They include the influence of the ambient radiation reflected off the target, which must be properly accounted for and subtracted from the collected signal in order to lead to the true target temperature. We also quantify the consequences of spectrally varying emissivities.

  15. [Research on the neas infrared focal plane array detector imaging technology used in the laser warning].

    PubMed

    Wang, Zhi-Bin; Huang, Yan-Fei; Wang, Yao-Li; Zhang, Rui; Wang, Yan-Chao

    2014-04-01

    In order to achieve the incoming laser's accurate position, it is necessary to improve the detected laser's direction resolution. The InGaAs focal plane array detector with the type of FPA-320 x 256-C was selected as the core component of the diffraction grating laser warning device. The detection theory of laser wavelength and direction based on diffraction grating was introduced. The drive circuit was designed through the analysis of the detector's performance and parameters. Under the FPGA' s timing control, the detector's analog output was sampled by the high-speed AD. The data was cached to FPGA's extended SRAM, and then transferred to a PC through USB. Labview on a PC collects the raw data for processing and displaying. The imaging experiments were completed with the above method. With the wavelength of 1550 nm and 980 nm laser from different directions the diffraction images were detected. Through analysis the location of the zero order and one order can be determined. According to the grating diffraction theory, the wavelength and the direction of the two-dimensional angle can be calculated. It indicates that the wavelength error is less than 10 nm, and the angle error is less than 1 degrees. PMID:25007645

  16. Solid-state image sensor with focal-plane digital photon-counting pixel array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    1995-01-01

    A photosensitive layer such as a-Si for a UV/visible wavelength band is provided for low light level imaging with at least a separate CMOS amplifier directly connected to each PIN photodetector diode to provide a focal-plane array of NxN pixels, and preferably a separate photon-counting CMOS circuit directly connected to each CMOS amplifier, although one row of counters may be time shared for reading out the photon flux rate of each diode in the array, together with a buffer memory for storing all rows of the NxN image frame before transfer to suitable storage. All CMOS circuitry is preferably fabricated in the same silicon layer as the PIN photodetector diode for a monolithic structure, but when the wavelength band of interest requires photosensitive material different from silicon, the focal-plane array may be fabricated separately on a different semiconductor layer bump-bonded or otherwise bonded for a virtually monolithic structure with one free terminal of each diode directly connected to the input terminal of its CMOS amplifier and digital counter for integration of the photon flux rate at each photodetector of the array.

  17. Producibility of Vertically Integrated Photodiode (VIP)tm scanning focal plane arrays

    NASA Astrophysics Data System (ADS)

    Turner, Arthur M.; Teherani, Towfik; Ehmke, John C.; Pettitt, Cindy; Conlon, Peggy; Beck, Jeffrey D.; McCormack, Kent; Colombo, Luigi; Lahutsky, Tom; Murphy, Terry; Williams, Robert L.

    1994-07-01

    Vertically integrated photodiode, VIPTM, technology is now being used to produce second generation infrared focal plane arrays with high yields and performance. The VIPTM process employs planar, ion implanted, n on p diodes in HgCdTe which is epoxy hybridized directly to the read out integrated circuits on 100 mm Si wafers. The process parameters that are critical for high performance and yield include: HgCdTe dislocation density and thickness, backside passivation, frontside passivation, and junction formation. Producibility of infrared focal plane arrays (IRFPAs) is also significantly enhanced by read out integrated circuits (ROICs) which have the ability to deselect defective pixels. Cold probe screening before lab dewar assembly reduces costs and improves cycle times. The 240 X 1 and 240 X 2 scanning array formats are used to demonstrate the effect of process optimization, deselect, and cold probe screening on yield and cycle time. The versatility of the VIPTM technology and its extension to large area arrays is demonstrated using 240/288 X 4 and 480 X 5 TDI formats. Finally, the high performance of VIPTM IRFPAs is demonstrated by comparing data from a 480 X 5 to the SADA-II specification.

  18. 58 X 62 InSb focal plane array for infrared astronomy

    NASA Astrophysics Data System (ADS)

    Orias, G.; Hoffman, A. W.; Casselman, M. F.

    1986-01-01

    Santa Barbara Research Center has developed a 58 x 62 staring mosaic focal plane array (FPA) consisting of an indium antimonide detector array hybridized to a silicon direct readout (DRO) multiplexer for use in IR astronomy. The detectors are sensitive to radiation from 1 to 5 microns. Each detector in the array is connected to the DRO via an indium bump contact and has its own high-impedance, low-capacitance buffer amplifier. The requirements of infrared astronomy include low dark-current and readout noise for near-BLIP performance and full-frame readout times from 32 ms to more than 20s. Both modeling and measurements of the FPA performance are presented. Results include responsivity, noise, NEP, linearity, and dark current.

  19. High-resolution digital readout for uncooled smart IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Ringh, Ulf; Jansson, Christer; Liddiard, Kevin C.; Reinhold, Olaf

    1997-11-01

    This paper discusses the development of a high resolution digital readout from a 2D array of uncooled IR detectors. The need for a high resolution analogue to digital converter (ADC) is described and anew concept is presented. Experimental VLSI arrays have been designed using 0.8 micrometers CMOS technology and the pixel size is 40 micrometers X 40 micrometers . The concept has been demonstrated by using 320 parallel 16 bit ADCs in a 320 X 240 readout array with a frame rate of 30 Hz. High linearity and low noise is obtained and the power consumption for each ADC is 0.5 mW. The high digital resolution allows for digital offset correction off the local plane. A 16 X 16 version of the readout circuit has been postprocessed with uncooled IR detectors. These are currently under evaluation.

  20. Dual-Color InAs/GaSb Superlattice Focal-Plane Array Technology

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Walther, Martin; Rutz, Frank; Schmitz, Johannes; Wörl, Andreas; Masur, Jan-Michael; Scheibner, Ralf; Wendler, Joachim; Ziegler, Johann

    2011-08-01

    Within a very few years, InAs/GaSb superlattice technology has proven its suitability for high-performance infrared imaging detector arrays. At the Fraunhofer Institute for Applied Solid State Physics (IAF) and AIM Infrarot-Module GmbH, efforts have been focused on developing mature fabrication technology for dual-color InAs/GaSb superlattice focal-plane arrays for simultaneous, colocated detection at 3 μm to 4 μm and 4 μm to 5 μm in the mid-wavelength infrared atmospheric transmission window. Integrated into a wide-field-of-view missile approach warning system for an airborne platform, a very low number of pixel outages and cluster defects is mandatory for bispectral detector arrays. Process refinements, intense root-cause analysis, and specific test methodologies employed at various stages during the process have proven to be the key for yield enhancements.

  1. Transport in arrays of submicron Josephson junctions over a ground plane

    SciTech Connect

    Ho, Teressa Rae

    1997-12-01

    One-dimensional (1D) and two-dimensional (2D) arrays of Al islands linked by submicron Al/Al{sub x}O{sub y}/Al tunnel junctions were fabricated on an insulating layer grown on a ground plane. The arrays were cooled to temperatures as low as 20 mK where the Josephson coupling energy E{sub J} of each junction and the charging energy E{sub C} of each island were much greater than the thermal energy k{sub B}T. The capacitance C{sub g} between each island and the ground plane was much greater than the junction capacitance C. Two classes of arrays were studied. In the first class, the normal state tunneling resistance of the junctions was much larger than the resistance quantum for single electrons, R{sub N}{much_gt} R{sub Q{sub e}}{identical_to} h/e{sup 2} {approx} 25.8 k{Omega}, and the islands were driven normal by an applied magnetic field such that E{sub J} = 0 and the array was in the Coulomb blockade regime. The arrays were made on degenerately-doped Si, thermally oxidized to a thickness of approximately 100 nm. The current-voltage (I - V) characteristics of a 1D and a 2D array were measured and found to display a threshold voltage V{sub T} below which little current flows. In the second class of arrays, the normal state tunneling resistance of the junctions was close to the resistance quantum for Cooper pairs, R{sub N}{approx}R{sub Q}{equivalent_to}h/4e{sup 4}{approx}6.45k{Omega}, such that E{sub J}/E{sub C}{approx}1. The arrays were made on GaAs/Al{sub 0.3}Ga{sub 0.7}As heterostructures with a two-dimensional electron gas approximately 100 nm below the surface. One array displayed superconducting behavior at low temperature. Two arrays displayed insulating behavior at low temperature, and the size of the Coulomb gap increased with increasing R{sub g}.

  2. Low-power 12-bit superconducting analog-to-digital converter for cryogenic focal plane array readouts

    NASA Astrophysics Data System (ADS)

    Rylov, Sergey V.; Robertazzi, R. P.

    1996-06-01

    Superconducting Analog-to-Digital Converters (ADCs) are attractive for use on cryogenic focal plane arrays because of their ultra-low power consumption and their ability to operate at cryogenic temperatures. We have developed a 12 bit ADC based on Nb thin film superconducting integrated circuit technology which dissipates less than 0.44 mW while in operation at 4.2 K. Extensions of this deign to lower junction critical currents would allow the production of an ADC which dissipates less than 0.1 mW when fully biased. The ADC had at least 9.75 effective bits of resolution for 20 kHz input signals, limited by the harmonic distortions of the signal source. We estimate that the ultimate resolution of this ADC can be greater than 20 bits at 10 MHz bandwidth with our current 2.5 micron fabrication process. Potential applications for this device include focal plane array read out electronics for low temperature (4.2 K and below) imaging arrays, such as those being used on the SIRTF mission being planned by NASA. Other applications include high precision instrumentation for metrology uses.

  3. Design trade-offs in ADC architectures dedicated to uncooled focal plane arrays

    NASA Astrophysics Data System (ADS)

    Robert, P.; Dupont, B.; Pochic, D.

    2008-04-01

    This paper presents two different architectures for the design of Analog to Digital Converters specifically adapted to infrared bolometric image sensors. Indeed, the increasing demand for integrated functions in uncooled readout circuits leads to on-chip ADC design as an interface between the internal analog core and the digital processing electronics. However specifying an on-chip ADC dedicated to focal plane array raises many questions about its architecture and its performance requirements. We will show that two architecture approaches are needed to cover the different sensor features in terms of array size and frame speed. A monolithic 14 bits ADC with a pipeline architecture, and a column 13 bits ADC with an original dual-ramp architecture, will be described. Finally, we will show measurement results to confirm the monolithic ADC is suitable for small array, as 160 x 120 with low frame speed, while a column ADC is more compliant for higher array, as 640 x 480 with a 60 Hz frame speed or 1024 x 768 arrays.

  4. Analysis of characteristics of plane microwave antennas with a linearly expanding aperture for disk antenna arrays

    NASA Astrophysics Data System (ADS)

    Zayarnyi, V. P.; Parpula, A. A.; Girich, V. S.

    2014-11-01

    Mathematical models constructed for plane symmetric microwave antennas with a linearly expanding aperture make it possible to calculate the directional patterns depending on the aperture configuration. The directional patterns for analogous antennas operating in the range 5.9-12.5 GHz are measured experimentally; good agreement between the theoretical and experimental results is observed. The regularities in the influence of the aperture configuration of the antennas under investigation on the shape of the principal lobe of their directional patterns are established; these regularities are used for designing disk antenna arrays of circular and sector scan on their basis.

  5. Review of Concepts and Applications for Multispectral/Hyperspectral Focal Plane Array (FPA) Technology

    NASA Technical Reports Server (NTRS)

    McAdoo, James A.

    2001-01-01

    Multispectral, and ultimately hyperspectral, focal plane arrays (FPAs) represent the logical extension of two-color FPA technology, which has already shown its utility in military applications. Incorporating the spectral discrimination function directly in the FPA would offer the potential for orders-of-magnitude increase in remote sensor system performance. It would allow reduction or even elimination of optical components currently required to provide spectral discrimination in atmospheric remote sensors. The result would be smaller, simpler instruments with higher performance than exist today.

  6. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  7. Advanced III/V quantum-structure devices for high performance infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Walther, Martin; Schmitz, Johannes; Rutz, Frank; Fleissner, Joachim; Scheibner, Ralf; Ziegler, Johann

    2009-09-01

    A mature production technology for Quantum Well Infrared Photodetector (QWIP) focal plane arrays (FPAs) and InAs/GaSb superlattice (SL) FPAs has been developed. Dual-band and dual-color QWIP- and SL-imagers are demonstrated for the 3-5 μm and 8-12 μm atmospheric windows in the infrared. The simultaneous, co-located detection of both spectral channels resolves the temporal and spatial registration problems common to existing bispectral IRimagers. The ability for a reliable remote detection of hot CO2 signatures makes tailored dual-color superlattice imagers ideally suited for missile warning systems for airborne platforms.

  8. Optimization of indium bump preparation in infrared focal plane array fabrication

    NASA Astrophysics Data System (ADS)

    Hou, Zhijin; Si, Junjie; Wang, Wei; Wang, Haizhen; Wang, Liwen

    2014-11-01

    Optimization of indium bump preparation in infrared focal plane array (IRFPA) fabrication is presented. Reasons of bringing defective pixels during conventional lift-off and cleanout process in fabrication of indium bump are discussed. IRFPAs are characterized by IRFPA test-bench. Results show that defective pixels of InSb IRFPA are owing to indium bumps connecting through indium residue on the surface of wafer. The characteristic and configuration of defective pixels of InSb IRFPA are given and analyzed. A method of reducing defective pixels through optimizing liftoff and cleanout process in InSb IRFPA is proposed. Results prove that this method is effective.

  9. Mid-wave infrared metasurface microlensed focal plane array for optical crosstalk suppression.

    PubMed

    Akın, Onur; Demir, Hilmi Volkan

    2015-10-19

    Spatial crosstalk is one of the fundamental drawbacks of diminishing pixel size in mid-wave infrared focal plane arrays (IR-FPAs). We proposed an IR-FPA using the concept of optical phase discontinuities for substantial optical crosstalk suppression. This IR-FPA consists of asymmetrically tailored V-shaped optical antennas. Full-wave simulations confirmed major improvements in narrowing the intensity distribution of incident light beam by over 30-folds and concentrating these distributions in the central pixel of IR-FPA by achieving optical crosstalks of <1%. PMID:26480363

  10. Fiber optically coupled infrared focal plane array system for use in missile warning receiver applications

    NASA Astrophysics Data System (ADS)

    Daniels, Arnold; Liepmann, Till W.

    1999-07-01

    The location and installation of mid-infrared missile warning receiver sensors is limited by the mechanical constraints of the detector/dewar assembly and the associated cryogenic cooler assembly. The size, shape, and weight of these assemblies limit the installation alternatives, and prevent placing the missile warning receiver system in the optimum locations. Hence, their coverage and detection performance is limited. A micro-lens array coupled to a coherent fiber optic bundle and an infrared focal plane array were designed and experimentally implemented, to allow the mid-wave sensor and cryogenic devices to be located remotely from the receiver aperture. This eliminates the receiver aperture placement restrictions while easing the integration and maintenance of the sensor/dewar and cooler. Modulation transfer function and noise equivalent temperature difference measurements were performed to determine the performance of the imaging system.

  11. Strained-layer superlattice focal plane array having a planar structure

    DOEpatents

    Kim, Jin K.; Carroll, Malcolm S.; Gin, Aaron; Marsh, Phillip F.; Young, Erik W.; Cich, Michael J.

    2010-07-13

    An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.

  12. Multiple detector focal plane array ultraviolet spectrometer for the AMPS laboratory

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    1975-01-01

    The possibility of meeting the requirements of the amps spectroscopic instrumentation by using a multi-element focal plane detector array in a conventional spectrograph mount was examined. The requirements of the detector array were determined from the optical design of the spectrometer which in turn depends on the desired level of resolution and sensitivity required. The choice of available detectors and their associated electronics and controls was surveyed, bearing in mind that the data collection rate from this system is so great that on-board processing and reduction of data are absolutely essential. Finally, parallel developments in instrumentation for imaging in astronomy were examined, both in the ultraviolet (for the Large Space Telescope as well as other rocket and satellite programs) and in the visible, to determine what progress in that area can have direct bearing on atmospheric spectroscopy.

  13. Low dark current LWIR HgCdTe focal plane arrays at AIM

    NASA Astrophysics Data System (ADS)

    Haiml, M.; Eich, D.; Fick, W.; Figgemeier, H.; Hanna, S.; Mahlein, M.; Schirmacher, W.; Thöt, R.

    2016-05-01

    Cryogenically cooled HgCdTe (MCT) quantum detectors are unequalled for applications requiring high imaging as well as high radiometric performance in the infrared spectral range. Compared with other technologies, they provide several advantages, such as the highest quantum efficiency, lower power dissipation compared to photoconductive devices, and fast response times, hence outperforming micro-bolometer arrays. AIM will present its latest results on n-on-p as well as p-on-n low dark current planar MCT photodiode focal plane detector arrays at cut-off wavelengths >11 μm at 80 K. Dark current densities below the Rule'07 have been demonstrated for n-on-p devices. Slightly higher dark current densities and excellent cosmetics with very low cluster and point defect densities have been demonstrated for p-on-n devices.

  14. Coherent Optical Focal Plane Array Receiver for PPM Signals: Investigation and Applications

    NASA Technical Reports Server (NTRS)

    Fernandez, Michela Munoz

    2006-01-01

    The performance of a coherent optical focal plane array receiver for PPM signals under atmospheric turbulence is investigated and applications of this system are addressed. The experimental demonstration of this project has already been explained in previous publications [1]. This article shows a more exhaustive analysis of the expressions needed to obtain the Bit Error Rate (BER) for the real system under study in the laboratory. Selected experimental results of this system are described and compared with theoretical BER expressions, and array combining gains are presented. Receiver sensitivity in terms of photons per bit (PPB) is examined; BER results are shown as a function of signal to noise ratios, (SNR), as well as a function of photons per symbol, and photons per bit.

  15. Folded multiple-capture: an architecture for high dynamic range disturbance-tolerant focal plane array

    NASA Astrophysics Data System (ADS)

    Kavusi, Sam; El Gamal, Abbas

    2004-08-01

    Earlier studies have shown that multiple capture can achieve high SNR, but cannot satisfy the high dynamic range (HDR) and high speed requirements of the Vertically-Integrated-Sensor-Array (VISA) project. Synchronous self-reset, on the other hand, can achieve these requirements, but suffers from poor SNR. Extended counting can achieve high dynamic range at high frame rate and with good SNR, but at the expense of high power consumption. The paper proposes a new HDR focal plane array architecture, denoted by folded-multiple capture (FMC), which by combining features of the synchronous self-reset and multiple capture schemes, can satisfy the VISA requirements at a fraction of the power dissipation and with more robustness to device variations than extended counting. The architecture is also capable of detecting subframe disturbances, e.g., due to laser jamming, and correcting for it.

  16. Experimental characterization, evaluation, and diagnosis of advanced hybrid infrared focal plane array electro-optical performance

    NASA Astrophysics Data System (ADS)

    Lomheim, Terrence S.; Schumann, Lee W.; Kohn, Stanley E.

    1998-07-01

    High performance scanning time-delay-and-integration and staring hybrid focal plane devices with very large formats, small pixel sizes, formidable frame and line rates, on-chip digital programmability, and high dynamic ranges, are being developed for a myriad of defense, civil, and commercial applications that span the spectral range from shortwave infrared (SWIR) to longwave infrared (LWIR). An essential part in the development of such new advanced hybrid infrared focal planes is empirical validation of their electro-optical (EO) performance. Many high-reliability, high-performance applications demand stringent and near flawless EO performance over a wide variety of operating conditions and environments. Verification of focal plane performance compliance over this wide range of parametric conditions requires the development and use of accurate, flexible, and statistically complete test methods and associated equipment. In this paper we review typical focal plane requirements, the ensuing measurement requirements (quantity, accuracy, repeatability, etc.), test methodologies, test equipment requirements, electronics and computer-based data acquisition requirements, statistical data analysis and display requirements, and associated issues. We also discuss special test requirements for verifying the performance of panchromatic thermal and multispectral imaging focal planes where characterization of dynamic modulation transfer function (MTF), and point-image response and optical overload is generally required. We briefly overview focal plane radiation testing. We conclude with a discussion of the technical challenges of characterizing future advanced hybrid focal plane testing where it is anticipated that analog-to- digital conversion will be included directly on focal plane devices, thus creating the scenario of 'photons-in-to-bits- out' within the focal plane itself.

  17. Modeling and deformation analyzing of InSb focal plane arrays detector under thermal shock

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoling; Meng, Qingduan; Zhang, Liwen; Lv, Yanqiu

    2014-03-01

    A higher fracture probability appearing in indium antimonide (InSb) infrared focal plane arrays (IRFPAs) subjected to the thermal shock test, restricts its final yield. In light of the proposed equivalent method, where a 32 × 32 array is employed to replace the real 128 × 128 array, a three-dimensional modeling of InSb IRFPAs is developed to explore its deformation rules. To research the damage degree to the mechanical properties of InSb chip from the back surface thinning process, the elastic modulus of InSb chip along the normal direction is lessened. Simulation results show when the out-of-plane elastic modulus of InSb chip is set with 30% of its Young's modulus, the simulated Z-components of strain distribution agrees well with the top surface deformation features in 128 × 128 InSb IRFPAs fracture photographs, especially with the crack origination sites, the crack distribution and the global square checkerboard buckling pattern. Thus the Z-components of strain are selected to explore the deformation rules in the layered structure of InSb IRFPAs. Analyzing results show the top surface deformation of InSb IRFPAs originates from the thermal mismatch between the silicon readout integrated circuits (ROIC) and the intermediate layer above, made up of the alternating indium bump array and the reticular underfill. After passing through both the intermediate layer and the InSb chip, the deformation amplitude is reduced firstly from 2.23 μm to 0.24 μm, finally to 0.09 μm. Finally, von Mises stress criterion is employed to explain the causes that cracks always appear in the InSb chip.

  18. 320 x 256 Complementary Barrier Infrared Detector Focal Plane Array for Long-Wave Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Nguyen, Jean; Rafol, Sir B.; Soibel, Alexander; Khoskhlagh, Arezou; Ting, David Z.-Y.; Liu, John K.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    A 320 x 256 Complementary Barrier Infrared (CBIRD) focal plane array for long-wavelength infrared (LWIR) imaging is reported. The arrays were grown by molecular beam expitaxy (MBE) with a 300 period 1.9 um thick absorber. The mean dark current density of 2.2 x 10-4 A/cm2 was measured at an operating bias of 128 mV with a long wavelength cutoff of 8.8 ?m observed at 50% of the peak. The maximum quantum efficiency was 54% measured at 5.6 ?m. Operating at T = 80K, the array yielded an 81% fill factor with 97% operability. Good imagery with a mean noise equivalent different temperature (NE?T) of 18.6 mK and a mean detectivity of D* = 1.3 x 1011 cm-Hz1/2/W was achieved. The substrate was thinned using mechanical lapping and neither an AR coating nor a passivation layer was applied. This article provides the details of the fabrication process for achieving low-dark current LWIR CBIRD arrays. Discussion for an effective hard mask for excellent pattern transfer is given and appropriate mounting techniques for good thermal contact during the dry etching process is described. The challenges and differences between etching large 200 ?m test diodes and small 28 ?m FPA pixels are given.

  19. 320 x 256 complementary barrier infrared detector focal plane array for long-wave infrared imaging

    NASA Astrophysics Data System (ADS)

    Nguyen, Jean; Rafol, B., , Sir; Soibel, Alexander; Khoskhlagh, Arezou; Ting, David Z.-Y.; Liu, John K.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-06-01

    A 320 x 256 Complementary Barrier Infrared (CBIRD) focal plane array for long-wavelength infrared (LWIR) imaging is reported. The arrays were grown by molecular beam expitaxy (MBE) with a 300 period 1.9 um thick absorber. The mean dark current density of 2.2 x 10-4 A/cm2 was measured at an operating bias of 128 mV with a long wavelength cutoff of 8.8 μm observed at 50% of the peak. The maximum quantum efficiency was 54% measured at 5.6 μm. Operating at T = 80K, the array yielded an 81% fill factor with 97% operability. Good imagery with a mean noise equivalent different temperature (NE▵T) of 18.6 mK and a mean detectivity of D* = 1.3 x 1011 cm-Hz1/2/W was achieved. The substrate was thinned using mechanical lapping and neither an AR coating nor a passivation layer was applied. This article provides the details of the fabrication process for achieving low-dark current LWIR CBIRD arrays. Discussion for an effective hard mask for excellent pattern transfer is given and appropriate mounting techniques for good thermal contact during the dry etching process is described. The challenges and differences between etching large 200 μm test diodes and small 28 μm FPA pixels are given.

  20. Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber

    SciTech Connect

    Ma, Wei; Wen, Yongzheng; Yu, Xiaomei

    2015-03-16

    This letter presents an infrared (IR) focal plane array (FPA) with metamaterial absorber (MMA) integrated to enhance its performance. A glass substrate, on which arrays of bimaterial cantilevers are fabricated as the thermal-sensitive pixels by a polyimide surface sacrificial process, is employed to allow the optical readout from the back side of the substrate. Whereas the IR wave radiates onto the FPA from the front side, which consequently avoids the energy loss caused by the silicon substrate compared with the previous works. This structure also facilitates the integration of MMA by introducing a layer of periodic square resonators atop the SiN{sub x} structural layer to form a metal/dielectric/metal stack with the gold mirror functioning as the ground plane. A comparative experiment was carried out on the FPAs that use MMA and ordinary SiN{sub x} as the absorbers, respectively. The performance improvement was verified by the evaluation of the absorbers as well as the imaging results of both FPAs.

  1. Infrared focal plane array producibility and related materials; Proceedings of the Meeting, Orlando, FL, Apr. 20, 21, 1992

    NASA Astrophysics Data System (ADS)

    Balcerak, Ray; Pellegrini, Paul W.; Scribner, Dean A.

    The present conference discusses the commercial diversification of the U.S. IR detector industry's commercial diversification, HgCdTe focal-plane array (FPAs) manufacture, LPE of (Hg,Cd)Te FPAs, uncooled IR FPA detector producibility, a high performance staring IR camera, and novel technologies for FPA dewars. Also discussed are hybridizing FPAs, cryoprober test development, HgCdTe on Si for monolithic focal plane arrays, popcorn noise in linear InGaAs detector arrays, and the use of narrowband laser speckle for MTF characterization of CCDs. (No individual items are abstracted in this volume)

  2. Optical MEMS-based arrays

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.

    2003-07-01

    Industrial Micro Electro Mechanical Systems (MEMS) developers are rapidly bringing to demonstration inertial radio frequency, and optical MEMS devices and components. The Army has a requirement for compact, highly reliable, and inexpensive laser beam steering components for missile seekers and unmanned aerial vehicles remote sensing components to provide a fast scanning capability for pointing, acquisition, tracking, and data communication. The coupling of this requirement with recent developments in the micro-optics area, has led scientists and engineers at the Army Aviation and Missile Command (AMCOM) to consider optical MEMS-based phased arrays, which have potential applications in the commercial industry as well as in the military, as a replacement for gimbals. Laser beam steering in commercial applications such as free space communicataion, scanning display, bar-code reading, and gimbaled seekers; require relatively large monolithic micro-mirrors to accomplish the required optical resolution. The Army will benefit from phased arrays composed of relatively small micro-mirrors that can be actuated through large deflection angles with substantially reduced volume times. The AMCOM Aviation and Missile Research, Development, and Engineering Center (AMRDEC) has initiated a research project to develop MEMS-based phased arrays for use in a small volume, inexpensive Laser Detection and Ranging (LADAR) seeker that is particularly attractive because of its ability to provide large field-of-regard and autonomous target acquisition for reconnaissance mission applications. The primary objective of the collaborative project with the Defence Advanced Research Projects Agency (DARPA) is to develop a rugged, MEMS-based phased arrays for incorporation into the 2-D scanner of a LADAR seeker. Design challenges and approach to achieving performance requirements will be discussed.

  3. Design and testing of an all-digital readout integrated circuit for infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Kelly, Michael; Berger, Robert; Colonero, Curtis; Gregg, Mark; Model, Joshua; Mooney, Daniel; Ringdahl, Eric

    2005-08-01

    The digital focal plane array (DFPA) project demonstrates the enabling technologies necessary to build readout integrated circuits for very large infrared focal plane arrays (IR FPAs). Large and fast FPAs are needed for a new class of spectrally diverse sensors. Because of the requirement for high-resolution (low noise) sampling, and because of the sample rate needed for rapid acquisition of high-resolution spectra, it is highly desirable to perform analog-to-digital (A/D) conversion right at the pixel level. A dedicated A/D converter located under every pixel in a one-million-plus element array, and all-digital readout integrated circuits will enable multi- and hyper-spectral imaging systems with unprecedented spatial and spectral resolution and wide area coverage. DFPAs provide similar benefits to standard IR imaging systems as well. We have addressed the key enabling technologies for realizing the DFPA architecture in this work. Our effort concentrated on demonstrating a 60-micron footprint, 14-bit A/D converter and 2.5 Gbps, 16:1 digital multiplexer, the most basic components of the sensor. The silicon test chip was fabricated in a 0.18-micron CMOS process, and was designed to operate with HgxCd1-xTe detectors at cryogenic temperatures. Two A/D designs, one using static logic and one using dynamic logic, were built and tested for performance and power dissipation. Structures for evaluating the bit-error-rate of the multiplexer on-chip and through a differential output driver were implemented for a complete performance assessment. A unique IC probe card with fixtures to mount into an evacuated, closed-cycle helium dewar were also designed for testing up to 2.5 Gbps at temperatures as low as 50 K.

  4. High-performance uncooled amorphous silicon video graphics array and extended graphics array infrared focal plane arrays with 17-μm pixel pitch

    NASA Astrophysics Data System (ADS)

    Tissot, Jean-Luc; Tinnes, Sébastien; Durand, Alain; Minassian, Christophe; Robert, Patrick; Vilain, Michel; Yon, Jean-Jacques

    2011-06-01

    The high level of accumulated expertise by ULIS and CEA/LETI on uncooled microbolometers made from amorphous silicon with 45, 35, and 25 μm enables ULIS to develop video graphics array (VGA) and extended graphics array (XGA) infrared focal plane array (IRFPA) formats with 17-μm pixel pitch to fulfill every application. These detectors keep all the recent innovations developed on the 25-μm pixel-pitch read out integrated circuit (ROIC) (detector configuration by serial link, low power consumption, and wide electrical dynamic range). The specific appeal of these units lies in the high spatial resolution it provides while keeping the small thermal time constant. The reduction of the pixel pitch turns the VGA array into a product well adapted for high-resolution and compact systems and the XGA a product well adapted for high-resolution imaging systems. High electro-optical performances have been demonstrated with noise equivalent temperature difference (NETD) < 50 mK. We insist on NETD and wide thermal dynamic range trade-off, and on the high characteristics uniformity achieved thanks to the mastering of the amorphous silicon technology as well as the ROIC design. This technology node paves the way to high-end products as well as low-end, compact, smaller formats, such as 320 × 240 and 160 × 120 or smaller.

  5. Performance bounds for passive sensor arrays operating in a turbulent medium: Plane-wave analysis

    NASA Astrophysics Data System (ADS)

    Collier, S. L.; Wilson, D. K.

    2003-05-01

    The performance bounds of a passive acoustic array operating in a turbulent medium with fluctuations described by a von Kármán spectrum are investigated. This treatment considers a single, monochromatic, plane-wave source at near-normal incidence. A line-of-sight propagation path is assumed. The primary interests are in calculating the Cramer-Rao lower bounds of the azimuthal and elevational angles of arrival and in observing how these bounds change with the introduction of additional unknowns, such as the propagation distance, turbulence parameters, and signal-to-noise ratio. In both two and three dimensions, it is found that for large values of the index-of-refraction variance, the Cramer-Rao lower bounds of the angles of arrival increase significantly at large values of the normalized propagation distance. For small values of the index-of-refraction variance and normalized propagation distance, the signal-to-noise ratio is found to be the limiting factor. In the two-dimensional treatment, it is found that the estimate of the angle of arrival will decouple from the estimates of the other parameters with the appropriate choice of array geometry. In three dimensions, again with an appropriate choice of array geometry, the estimates of the azimuth and elevation will decouple from the estimates of the other parameters, but due to the constraints of the model, will remain coupled to one another.

  6. Performance bounds for passive sensor arrays operating in a turbulent medium: plane-wave analysis.

    PubMed

    Collier, S L; Wilson, D K

    2003-05-01

    The performance bounds of a passive acoustic array operating in a turbulent medium with fluctuations described by a von Kármán spectrum are investigated. This treatment considers a single, monochromatic, plane-wave source at near-normal incidence. A line-of-sight propagation path is assumed. The primary interests are in calculating the Cramer-Rao lower bounds of the azimuthal and elevational angles of arrival and in observing how these bounds change with the introduction of additional unknowns, such as the propagation distance, turbulence parameters, and signal-to-noise ratio. In both two and three dimensions, it is found that for large values of the index-of-refraction variance, the Cramer-Rao lower bounds of the angles of arrival increase significantly at large values of the normalized propagation distance. For small values of the index-of-refraction variance and normalized propagation distance, the signal-to-noise ratio is found to be the limiting factor. In the two-dimensional treatment, it is found that the estimate of the angle of arrival will decouple from the estimates of the other parameters with the appropriate choice of array geometry. In three dimensions, again with an appropriate choice of array geometry, the estimates of the azimuth and elevation will decouple from the estimates of the other parameters, but due to the constraints of the model, will remain coupled to one another. PMID:12765389

  7. Polymer films as planarization and sacrificial layers for uncooled infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Liu, Weiguo; Cai, Changlong; Zhou, Shun

    2010-10-01

    This paper presents a planarization procedure using polymer films to achieve a flat CMOS surface of Readout Integrated Circuit (ROIC) for the integration between uncooled infrared focal plane arrays and ROIC. At the same time, the polymer film is also used as the sacrificial layers. After amorphous Silicon (a-Si) film was deposited using plasma enhanced chemical vapor deposition (PECVD), and patterned using inductively coupled plasma (ICP), the polymer sacrificial layer should be removed to form a-Si self-supporting micro-bridge structure. So the thickness of polymer film determine the height of the micro-bridge; the soft curing temperature determines if the contact hole can be etched by developer during the first photolithography; and the rate of dry etching determines whether the sacrificial layers of the structure can be released successfully. In this paper, the curing temperature, surface roughness, etching process of polymer films are systematically researched. On this basis, polymer film as planarization successfully reduces the 2μm height of the bumps on ROIC to less than 83 nm, over the planarized polymer mesas, bolometer arrays are fabricated. Then the polymer film as sacrificial are removed by ICP and 160x120 self-supporting micro-bridge structure arrays are successfully fabricated.

  8. Polymer films as planarization and sacrificial layers for uncooled infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Liu, Weiguo; Cai, Changlong; Zhou, Shun

    2011-02-01

    This paper presents a planarization procedure using polymer films to achieve a flat CMOS surface of Readout Integrated Circuit (ROIC) for the integration between uncooled infrared focal plane arrays and ROIC. At the same time, the polymer film is also used as the sacrificial layers. After amorphous Silicon (a-Si) film was deposited using plasma enhanced chemical vapor deposition (PECVD), and patterned using inductively coupled plasma (ICP), the polymer sacrificial layer should be removed to form a-Si self-supporting micro-bridge structure. So the thickness of polymer film determine the height of the micro-bridge; the soft curing temperature determines if the contact hole can be etched by developer during the first photolithography; and the rate of dry etching determines whether the sacrificial layers of the structure can be released successfully. In this paper, the curing temperature, surface roughness, etching process of polymer films are systematically researched. On this basis, polymer film as planarization successfully reduces the 2μm height of the bumps on ROIC to less than 83 nm, over the planarized polymer mesas, bolometer arrays are fabricated. Then the polymer film as sacrificial are removed by ICP and 160x120 self-supporting micro-bridge structure arrays are successfully fabricated.

  9. CMOS focal-plane-array for analysis of enzymatic reaction in system-on-chip spectrophotometer

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ha, Chanki; Park, Chan B.; Joo, Youngjoong

    2004-06-01

    A CMOS focal-plane-array is designed for the high-throughput analysis of enzymatic reaction in on-chip spectrophotometer system. One of potential applications of the presented prototype system is to perform enzymatic analysis of biocompounds contained in blood. This function normally requires an expensive diode-array spectrophotometer, but it is possible to perform high throughput analysis with low budget if the spectrophotometer system is scaled down to a chip. The CMOS active pixel sensor array can cover a layer of polydimethylsiloxane (PDMS) forming the microfluidic channels and the substrate solution for enzymatic reaction can be injected into the channels by capillary force. Under room light, the underneath CMOS active pixel sensor with 40 x 40 pixels detect the gray levels of the fluid"s color. Inside the image sensor chip (size: 3mm x 3mm), the pixels of the same column share the same sample and hold circuits. The analog signals from 40 columns are multiplexed into one input feeding an on-chip 8 bits dual-slope analog to digital converter. The color change can be displayed on the external monitor by using a data acquisition card and personal computer.

  10. Demonstration of 1024x1024 pixel dual-band QWIP focal plane array

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.; Rafol, S. B.

    2010-04-01

    QWIPs are well known for their stability, high pixel-pixel uniformity and high pixel operability which are quintessential parameters for large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). The dual-band QWIP device was developed by stacking two multi-quantum-well stacks tuned to absorb two different infrared wavelengths. The full width at half maximum (FWHM) of the mid-wave infrared (MWIR) band extends from 4.4 - 5.1 μm and FWHM of the long-wave infrared (LWIR) band extends from 7.8 - 8.8 μm. Dual-band QWIP detector arrays were hybridized with direct injection 30 μm pixel pitch megapixel dual-band simultaneously readable CMOS read out integrated circuits using the indium bump hybridization technique. The initial dual-band megapixel QWIP FPAs were cooled to 68K operating temperature. The preliminary data taken from the first megapixel QWIP FPA has shown system NE▵T of 27 and 40 mK for MWIR and LWIR bands respectively.

  11. Progress in development of H4RG-10 infrared focal plane arrays for WFIRST-AFTA

    NASA Astrophysics Data System (ADS)

    Piquette, Eric C.; McLevige, William; Auyeung, John; Wong, Andre

    2014-07-01

    We describe progress in the development and demonstration of Teledyne's new high resolution large format FPA for astronomy, the H4RG-10 IR. The H4RG-10 is the latest in Teledyne's H×RG line of sensors, in a 4096×4096 format using 10 micron pixels. It is offered as a hybrid sensor using either a silicon p-i-n detector array (HyViSI) or a HgCdTe photodiode array with standard infrared cutoff wavelength of 1.75μm, 2.5μm, or 5.3μm (with custom cutoff wavelengths also available). The HgCdTe sensor arrays are fully substrate removed to provide high quantum efficiency, response to visible wavelengths, and minimize cosmic ray and fringing mitigation. Packaging using either CE6 or SiC bases is available. Teledyne is currently fabricating H4RG-10 SWIR FPAs for NASA's WFIRST space telescope instrument. Initial array performance has been tested and will be presented. Key results include the demonstration of low dark current (array mean dark current of <0.01e-/s/pixel at 100K), low noise (<10 e-/CDS read noise), and high array operability (>99% pixels). The paper discusses the sensor configuration and features, the performance achieved to date including QE, dark current, noise maps and histograms, and the remaining challenges.

  12. Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings

    NASA Astrophysics Data System (ADS)

    Shang, Yuanfang; Ye, Xiongying; Cao, Liangcai; Song, Pengfei; Feng, Jinyang

    2016-05-01

    Uncooled infrared (IR) focal-plane-array (FPA) with both large sensing range and high sensitivity is a great challenge due to the limited dynamic range of the detected signals. A coaxial dual-wavelength interferometric system was proposed here to detect thermal-induced displacements of an ultrasensitive FPA based on polyvinyl-chloride(PVC)/gold bimorph cantilevers and carbon nanotube (CNT)-based IR absorbing films. By alternately selecting the two displacement measurements performed by λ1 (=640 nm) and λ2 (=660 nm), the temperature measuring range with greater than 50% maximum sensitivity can be extended by eight-fold in comparison with the traditional single-wavelength mode. Meanwhile, the relative measurement error over the full measuring range is below 0.4%. In addition, it offers a feasible approach for on-line and on-wafer FPA characterization with great convenience and high efficiency.

  13. Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings

    PubMed Central

    Shang, Yuanfang; Ye, Xiongying; Cao, Liangcai; Song, Pengfei; Feng, Jinyang

    2016-01-01

    Uncooled infrared (IR) focal-plane-array (FPA) with both large sensing range and high sensitivity is a great challenge due to the limited dynamic range of the detected signals. A coaxial dual-wavelength interferometric system was proposed here to detect thermal-induced displacements of an ultrasensitive FPA based on polyvinyl-chloride(PVC)/gold bimorph cantilevers and carbon nanotube (CNT)-based IR absorbing films. By alternately selecting the two displacement measurements performed by λ1 (=640 nm) and λ2 (=660 nm), the temperature measuring range with greater than 50% maximum sensitivity can be extended by eight-fold in comparison with the traditional single-wavelength mode. Meanwhile, the relative measurement error over the full measuring range is below 0.4%. In addition, it offers a feasible approach for on-line and on-wafer FPA characterization with great convenience and high efficiency. PMID:27193803

  14. Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings.

    PubMed

    Shang, Yuanfang; Ye, Xiongying; Cao, Liangcai; Song, Pengfei; Feng, Jinyang

    2016-01-01

    Uncooled infrared (IR) focal-plane-array (FPA) with both large sensing range and high sensitivity is a great challenge due to the limited dynamic range of the detected signals. A coaxial dual-wavelength interferometric system was proposed here to detect thermal-induced displacements of an ultrasensitive FPA based on polyvinyl-chloride(PVC)/gold bimorph cantilevers and carbon nanotube (CNT)-based IR absorbing films. By alternately selecting the two displacement measurements performed by λ1 (=640 nm) and λ2 (=660 nm), the temperature measuring range with greater than 50% maximum sensitivity can be extended by eight-fold in comparison with the traditional single-wavelength mode. Meanwhile, the relative measurement error over the full measuring range is below 0.4%. In addition, it offers a feasible approach for on-line and on-wafer FPA characterization with great convenience and high efficiency. PMID:27193803

  15. Analysis and simulation of a new kind of noise at the input stage of infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Huang, Zhangcheng; Chen, Yu; Huang, Songlei; Fang, Jiaxiong

    2014-05-01

    Noise is a primary characteristic of an infrared focal plane array (FPA) that contributes to detection performance at low light level. In a capacitive-feedback trans-impedance amplifier (CTIA)-based readout integrated circuit (ROIC), reset noise can be removed by correlated double sampling (CDS). There is an exotic experimental phenomenon that FPA noise will increase greatly if the first sampling time of CDS is less than a threshold value. A noise model at FPA interface is presented in this paper which explains that this new kind of noise originates from incompletely settling of CTIA preamplifier. As this noise is performed in time domains, we use transient noise simulation technique to describe the dependence of this noise on detector pixel capacitance, integration capacitor, and some other design parameters. Based on the theoretical model analysis and simulation results, effective design method is obtained to reduce this kind of noise.

  16. Methodology for testing infrared focal plane arrays in simulated nuclear radiation environments

    NASA Astrophysics Data System (ADS)

    Divita, E. L.; Mills, R. E.; Koch, T. L.; Gordon, M. J.; Wilcox, R. A.; Williams, R. E.

    1992-07-01

    This paper summarizes test methodology for focal plane array (FPA) testing that can be used for benign (clear) and radiation environments, and describes the use of custom dewars and integrated test equipment in an example environment. The test methodology, consistent with American Society for Testing Materials (ASTM) standards, is presented for the total accumulated gamma dose, transient dose rate, gamma flux, and neutron fluence environments. The merits and limitations of using Cobalt 60 for gamma environment simulations and of using various fast-neutron reactors and neutron sources for neutron simulations are presented. Test result examples are presented to demonstrate test data acquisition and FPA parameter performance under different measurement conditions and environmental simulations.

  17. A substrate-free optical readout focal plane array with a heat sink structure

    NASA Astrophysics Data System (ADS)

    Rmwen, Liu; Yanmei, Kong; Binbin, Jiao; Zhigang, Li; Haiping, Shang; Dike, Lu; Chaoqun, Gao; Dapeng, Chen; Qingchuan, Zhang

    2013-02-01

    A substrate-free optical readout focal plane array (FPA) operating in 8-12 μm with a heat sink structure (HSS) was fabricated and its performance was tested. The temperature distribution of the FPA with an HSS investigated by using a commercial FLIR IR camera shows excellent uniformity. The thermal cross-talk effect existing in traditional substrate-free FPAs was eliminated effectively. The heat sink is fabricated successfully by electroplating copper, which provides high thermal capacity and high thermal conductivity, on the frame of substrate-free FPA. The FPA was tested in the optical-readout system, the results show that the response and NETD are 13.6 grey/K (F / # = 0.8) and 588 mK, respectively.

  18. A micropillar array for sample concentration via in-plane evaporation

    PubMed Central

    Choi, Jae-Woo; Hosseini Hashemi, Seyyed Mohammad; Erickson, David; Psaltis, Demetri

    2014-01-01

    We present a method to perform sample concentration within a lab-on-a-chip using a microfluidic structure which controls the liquid-gas interface through a micropillar array fabricated in polydimethylsiloxane between microfluidic channels. The microstructure confines the liquid flow and a thermal gradient is used to drive evaporation at the liquid-gas-interface. The evaporation occurs in-plane to the microfluidic device, allowing for precise control of the ambient environment. This method is demonstrated with a sample containing 1 μm, 100 nm fluorescent beads and SYTO-9 labelled Escherichia coli bacteria. Over 100 s, the fluorescent beads and bacteria are concentrated by a factor of 10. PMID:25379093

  19. Measurement of optical modulation functions in sparsely sampled mosaic focal plane arrays

    NASA Technical Reports Server (NTRS)

    Young, J. B.; Thurlow, P. E.

    1982-01-01

    It is pointed out that the measurement of optical modulation functions for detectors in focal plane arrays may be somewhat more difficult under 'full-up' systems conditions as compared to ideal laboratory conditions. An idealized optical modulation test arrangement is considered along with a full-up scanned system involving an earth mapper in polar orbit. In testing the system in full-up condition, a problem arises with respect to the acquisition of knife edge response data. In order to overcome this problem, a preferred method is developed for obtaining KER data on a single scan. A special 'phased edge' reticle is developed for use in the test set-up. Attention is given to aspects of knife edge reconstruction.

  20. Visualization of Subsurface Defects in Composites using a Focal Plane Array Infrared Camera

    NASA Technical Reports Server (NTRS)

    Plotnikov, Yuri A.; Winfree, William P.

    1999-01-01

    A technique for enhanced defect visualization in composites via transient thermography is presented in this paper. The effort targets automated defect map construction for multiple defects located in the observed area. Experimental data were collected on composite panels of different thickness with square inclusions and flat bottom holes of different depth and orientation. The time evolution of the thermal response and spatial thermal profiles are analyzed. The pattern generated by carbon fibers and the vignetting effect of the focal plane array camera make defect visualization difficult. An improvement of the defect visibility is made by the pulse phase technique and the spatial background treatment. The relationship between a size of a defect and its reconstructed image is analyzed as well. The image processing technique for noise reduction is discussed.

  1. Time resolved photo-luminescent decay characterization of mercury cadmium telluride focal plane arrays

    DOE PAGESBeta

    Soehnel, Grant

    2015-01-20

    The minority carrier lifetime is a measurable material property that is an indication of infrared detector device performance. To study the utility of measuring the carrier lifetime, an experiment has been constructed that can time resolve the photo-luminescent decay of a detector or wafer sample housed inside a liquid nitrogen cooled Dewar. Motorized stages allow the measurement to be scanned over the sample surface, and spatial resolutions as low as 50µm have been demonstrated. A carrier recombination simulation was developed to analyze the experimental data. Results from measurements performed on 4 mercury cadmium telluride focal plane arrays show strong correlationmore » between spatial maps of the lifetime, dark current, and relative response.« less

  2. Characterization of an advanced focal plane for multispectral linear array (MLA) application

    NASA Technical Reports Server (NTRS)

    King, P.; Botts, S.; Orias, G.; Yang, H. B.

    1984-01-01

    It is pointed out that the MLA instrument represents the next generation in the Landsat series of earth resources satellites. The MLA sensor concept utilizes a pushbroom scan mode to eliminate electromechanical scan mirrors, and the lower reliabililty and higher power dissipation which accompany their employment. The pushbroom scanner makes use of a linear array which consists generally of thousands of detectors oriented perpendicular to the along-track direction of the satellite. Test techniques have been developed for the measurement of the module parameters which are critical to MLA focal plane performance. These measurements include the determination of infrared responsivity, linearity over the dynamic range, temporal noise, and fixed pattern effects on each detector element of each module tested. Tests related to spectral response, crosstalk, and spot scan profiles are also conducted. A description is provided of the test equipment involved.

  3. Fabrication of resonator-quantum well infrared photodetector focal plane array by inductively coupled plasma etching

    NASA Astrophysics Data System (ADS)

    Sun, Jason; Choi, Kwong-Kit

    2016-02-01

    Inductively coupled plasma (ICP) etching has distinct advantages over reactive ion etching in that the etching rates are considerably higher, the uniformity is much better, and the sidewalls of the etched material are highly anisotropic due to the higher plasma density and lower operating pressure. Therefore, ICP etching is a promising process for pattern transfer required during microelectronic and optoelectronic fabrication. Resonator-quantum well infrared photodetectors (R-QWIPs) are the next generation of QWIP detectors that use resonances to increase the quantum efficiency (QE). To fabricate R-QWIP focal plane arrays (FPAs), two optimized ICP etching processes are developed. Using these etching techniques, we have fabricated R-QWIP FPAs of several different formats and pixel sizes with the required dimensions and completely removed the substrates of the FPAs. Their QE spectra were tested to be 30 to 40%. The operability and spectral nonuniformity of the FPA is ˜99.5 and 3%, respectively.

  4. The study of selective heating of indium bump in MCT infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyan; Cao, Lan; Zhuang, Fulong; Hu, Xiaoning; Gong, Haimei

    2012-10-01

    Generally the electrical interconnectivity between The Mercury Cadmium Telluride (MCT) infrared focal plane array (IRFPA) device and circuit takes the flip chip technology using indium bump as a connection medium. In order to improve the reliability of the interconnectivity indium melting is a common packaging technique at present. This technique is called reflow soldering. The heating is transferred to the indium bump by heating the device and circuit. This heating process will persist about 10 minutes resulting in the MCT material going through a 10 minutes high temperature baking course. This baking process will strongly degenerate the characteristic of the MCT device. Under this circumstance this article gives a new heating technique for indium bump which is call induction heating melting technique. This method realizes the selective heating. While the indium bump is melted by the conduction heating the semiconductor material such as MCT can't be heated.

  5. Time resolved photo-luminescent decay characterization of mercury cadmium telluride focal plane arrays

    SciTech Connect

    Soehnel, Grant

    2015-01-20

    The minority carrier lifetime is a measurable material property that is an indication of infrared detector device performance. To study the utility of measuring the carrier lifetime, an experiment has been constructed that can time resolve the photo-luminescent decay of a detector or wafer sample housed inside a liquid nitrogen cooled Dewar. Motorized stages allow the measurement to be scanned over the sample surface, and spatial resolutions as low as 50µm have been demonstrated. A carrier recombination simulation was developed to analyze the experimental data. Results from measurements performed on 4 mercury cadmium telluride focal plane arrays show strong correlation between spatial maps of the lifetime, dark current, and relative response.

  6. Evolution of large format impurity band conductor focal plane arrays for astronomy applications

    NASA Astrophysics Data System (ADS)

    Mills, Robert; Beuville, Eric; Corrales, Elizabeth; Hoffman, Alan; Finger, Gert; Ives, Derek

    2011-09-01

    Raytheon Vision Systems (RVS) has developed a family of high performance large format infrared (IR) detector arrays whose detectors are most effective for the detection of long and very long wavelength IR energy. This paper describes the evolution of the present state of the art one mega-pixel Si: As Impurity Band Conduction (IBC) arrays toward a four mega-pixel array that is desired by the astronomy community. Raytheon's Aquarius-1k, developed in collaboration with ESO, is a 1024 × 1024 pixel high performance array with a 30 μm pitch that features high quantum efficiency IBC detectors, low noise, low dark current, and on-chip clocking for ease of operation. Since the Aquarius-1k array was designed primarily for ground-based astronomy applications, it incorporates selectable gains and a large well capacity among its other features. Raytheon, in collaboration with JAXA (Japan Aerospace Exploration Agency), is also designing a 2048 × 2048 pixel high performance array with a 25 μm pitch. This 2k × 2k readout circuit will be based on the successful design used for the on the Mid-Infrared Instrument (MIRI) aboard the James Webb Space Telescope (JWST). It will feature high quantum efficiency IBC detectors, low noise, low dark current, and on-chip clocking for ease of operation. This version will also incorporate flight qualified packaging to support space-based astronomy applications. Previous generations of RVS IBC detectors have flown on several platforms, including NASA's Spitzer Space Telescope and Japan's Akari Space Telescope.

  7. SWIR HgCdTe 256x256 focal plane array technology at BAE Systems

    NASA Astrophysics Data System (ADS)

    Hairston, A.; Tobin, S. P.; Hutchins, M.; Marciniec, J.; Mullarkey, J.; Norton, P.; Gurnee, M.; Reine, M. B.

    2006-08-01

    This paper reports new performance data for SWIR HgCdTe 256x256 hybrid Focal Plane Arrays with cutoff wavelengths of 2.6-2.7 μm, operating at temperatures of 190 K to 220 K. The unit cell size is 30x30 μm2. Back-illuminated SWIR HgCdTe P-on-n photodiode arrays were fabricated from two-layer LPE films grown on CdZnTe substrates. Response uniformity is excellent, with σ/μ=3-4%, and response operabilities are better than 99.9%. At a temperature of 190 K and a background photon flux of 6.8x10 11 ph/cm2-s, the median NEI is 1.1x10 9 ph/cm2-s, which is 1.4 times the BLIP NEI. NEI operabilities are better than 98.8%. Quantum efficiencies for large-area test diodes are 69% to 78%, close to the 79% upper limit imposed by reflection from the non-antireflection-coated CdZnTe substrate.

  8. Control and acquisition system for SWIR focal plane arrays from SOFRADIR

    NASA Astrophysics Data System (ADS)

    Beaufort, T.; Duvet, L.

    2009-07-01

    We report on the design, testing and characterization of a control and acquisition system developed for SWIR detectors from SOFRADIR. These detectors are MCT arrays developed for SWIR (Short Wavelength Infra Red) and hyperspectral applications;. The ROIC (Readout integrated circuitry) of each FPA (Focal Plane Array) delivers multiple analog outputs buffered and converted in the digital domain by dedicated board designed by SOFRADIR. These boards perform a time multiplexing of the digitized signals, leading to high data throughputs. Each FPA has its own dedicated Stirling micro-cooler. The control and acquisition system developed by our team is able to handle the high data throughput (up to 1.6 Gbit/s) thanks to a high speed acquisition board from National Instruments embedded in a PXI system. A standard DAQ card is used to acquire the house-keepings, control the different power supplies and clock generators while an SPI adapter enables the configuration of the FPA. The overall system is managed under the Labview environment with a flexible and comprehensive interface to the user with extensive logging of all operational parameters. The purpose of this paper is to describe the architecture of the overall system and to detail its performances.

  9. WSPEC: A Waveguide Filter-Bank Focal Plane Array Spectrometer for Millimeter Wave Astronomy and Cosmology

    NASA Astrophysics Data System (ADS)

    Bryan, Sean; Aguirre, James; Che, George; Doyle, Simon; Flanigan, Daniel; Groppi, Christopher; Johnson, Bradley; Jones, Glenn; Mauskopf, Philip; McCarrick, Heather; Monfardini, Alessandro; Mroczkowski, Tony

    2016-07-01

    Imaging and spectroscopy at (sub-)millimeter wavelengths are key frontiers in astronomy and cosmology. Large area spectral surveys with moderate spectral resolution (R=50-200) will be used to characterize large-scale structure and star formation through intensity mapping surveys in emission lines such as the CO rotational transitions. Such surveys will also be used to study the the Sunyaev Zeldovich (SZ) effect, and will detect the emission lines and continuum spectrum of individual objects. WSPEC is an instrument proposed to target these science goals. It is a channelizing spectrometer realized in rectangular waveguide, fabricated using conventional high-precision metal machining. Each spectrometer is coupled to free space with a machined feed horn, and the devices are tiled into a 2D array to fill the focal plane of the telescope. The detectors will be aluminum lumped-element kinetic inductance detectors (LEKIDs). To target the CO lines and SZ effect, we will have bands at 135-175 and 190-250 GHz, each Nyquist-sampled at R≈ 200 resolution. Here, we discuss the instrument concept and design, and successful initial testing of a WR10 (i.e., 90 GHz) prototype spectrometer. We recently tested a WR5 (180 GHz) prototype to verify that the concept works at higher frequencies, and also designed a resonant backshort structure that may further increase the optical efficiency. We are making progress towards integrating a spectrometer with a LEKID array and deploying a prototype device to a telescope for first light.

  10. WSPEC: A Waveguide Filter-Bank Focal Plane Array Spectrometer for Millimeter Wave Astronomy and Cosmology

    NASA Astrophysics Data System (ADS)

    Bryan, Sean; Aguirre, James; Che, George; Doyle, Simon; Flanigan, Daniel; Groppi, Christopher; Johnson, Bradley; Jones, Glenn; Mauskopf, Philip; McCarrick, Heather; Monfardini, Alessandro; Mroczkowski, Tony

    2015-12-01

    Imaging and spectroscopy at (sub-)millimeter wavelengths are key frontiers in astronomy and cosmology. Large area spectral surveys with moderate spectral resolution (R=50 -200) will be used to characterize large-scale structure and star formation through intensity mapping surveys in emission lines such as the CO rotational transitions. Such surveys will also be used to study the the Sunyaev Zeldovich (SZ) effect, and will detect the emission lines and continuum spectrum of individual objects. WSPEC is an instrument proposed to target these science goals. It is a channelizing spectrometer realized in rectangular waveguide, fabricated using conventional high-precision metal machining. Each spectrometer is coupled to free space with a machined feed horn, and the devices are tiled into a 2D array to fill the focal plane of the telescope. The detectors will be aluminum lumped-element kinetic inductance detectors (LEKIDs). To target the CO lines and SZ effect, we will have bands at 135-175 and 190-250 GHz, each Nyquist-sampled at R≈ 200 resolution. Here, we discuss the instrument concept and design, and successful initial testing of a WR10 (i.e., 90 GHz) prototype spectrometer. We recently tested a WR5 (180 GHz) prototype to verify that the concept works at higher frequencies, and also designed a resonant backshort structure that may further increase the optical efficiency. We are making progress towards integrating a spectrometer with a LEKID array and deploying a prototype device to a telescope for first light.

  11. Evaluation and display of polarimetric image data using long-wave cooled microgrid focal plane arrays

    NASA Astrophysics Data System (ADS)

    Bowers, David L.; Boger, James K.; Wellems, L. David; Black, Wiley T.; Ortega, Steve E.; Ratliff, Bradley M.; Fetrow, Matthew P.; Hubbs, John E.; Tyo, J. Scott

    2006-05-01

    Recent developments for Long Wave InfraRed (LWIR) imaging polarimeters include incorporating a microgrid polarizer array onto the focal plane array (FPA). Inherent advantages over typical polarimeters include packaging and instantaneous acquisition of thermal and polarimetric information. This allows for real time video of thermal and polarimetric products. The microgrid approach has inherent polarization measurement error due to the spatial sampling of a non-uniform scene, residual pixel to pixel variations in the gain corrected responsivity and in the noise equivalent input (NEI), and variations in the pixel to pixel micro-polarizer performance. The Degree of Linear Polarization (DoLP) is highly sensitive to these parameters and is consequently used as a metric to explore instrument sensitivities. Image processing and fusion techniques are used to take advantage of the inherent thermal and polarimetric sensing capability of this FPA, providing additional scene information in real time. Optimal operating conditions are employed to improve FPA uniformity and sensitivity. Data from two DRS Infrared Technologies, L.P. (DRS) microgrid polarizer HgCdTe FPAs are presented. One FPA resides in a liquid nitrogen (LN2) pour filled dewar with a 80°K nominal operating temperature. The other FPA resides in a cryogenic (cryo) dewar with a 60° K nominal operating temperature.

  12. Embedded nonuniformity correction in infrared focal plane arrays using the Constant Range algorithm

    NASA Astrophysics Data System (ADS)

    Redlich, Rodolfo; Figueroa, Miguel; Torres, Sergio N.; Pezoa, Jorge E.

    2015-03-01

    We present a digital fixed-point architecture that performs real-time nonuniformity correction in infrared (IR) focal plane arrays using the Constant Range algorithm. The circuit estimates and compensates online the gains and offsets of a first-order nonuniformity model using pixel statistics from the video stream. We demonstrate our architecture with a prototype built on a Xilinx Spartan-6 XC6SLX45T field-programmable gate array (FPGA), which can process an IR video stream from a FLIR Tau 2 long-wave IR camera with a resolution of 640 × 480 14-bit pixels at up to 238 frames per second (fps) with low resource utilization and adds only 13 mW to the FPGA power. Post-layout simulations of a custom integrated circuit implementation of the architecture on a 32 nm CMOS process show that the circuit can operate at up to 900 fps at the same resolution, and consume less than 4.5 mW.

  13. Dark current measurement of Type-II superlattice infrared focal plane array detector

    NASA Astrophysics Data System (ADS)

    Sakai, Michito; Katayama, Haruyoshi; Murooka, Junpei; Kimata, Masafumi; Iguchi, Yasuhiro

    2014-06-01

    We report the result of a dark current measurement of a Type-II superlattice (T2SL) infrared focal plane array (FPA), which consists of a 6 μm cutoff T2SL detector array and the readout integration circuit (ROIC) ISC0903 of FLIR Systems. In order to measure the dark current of the FPA, we obtained images with different exposure times in a fully closed cold shield of 77 K. Using the temporal change rate of the output and considering the charge conversion efficiency of the ROIC, we obtained a dark current density with an average value of 4 × 10-5 A/cm2 at a bias of -100 mV. We also compare the result of the FPA dark current measurement with that of a test element group (TEG), which was a single pixel detector, fabricated by the same process as the FPA. The dark current density of the TEG was 3 × 10-6 A/cm2 at a bias of -100 mV, lower than that of the FPA. We discuss the discrepancy between the dark current densities of the FPA and the TEG.

  14. Solid-state Image Sensor with Focal-plane Digital Photon-counting Pixel Array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Pain, Bedabrata

    1997-01-01

    A solid-state focal-plane imaging system comprises an NxN array of high gain. low-noise unit cells. each unit cell being connected to a different one of photovoltaic detector diodes, one for each unit cell, interspersed in the array for ultra low level image detection and a plurality of digital counters coupled to the outputs of the unit cell by a multiplexer(either a separate counter for each unit cell or a row of N of counters time shared with N rows of digital counters). Each unit cell includes two self-biasing cascode amplifiers in cascade for a high charge-to-voltage conversion gain (greater than 1mV/e(-)) and an electronic switch to reset input capacitance to a reference potential in order to be able to discriminate detection of an incident photon by the photoelectron (e(-))generated in the detector diode at the input of the first cascode amplifier in order to count incident photons individually in a digital counter connected to the output of the second cascade amplifier. Reseting the input capacitance and initiating self-biasing of the amplifiers occurs every clock cycle of an integratng period to enable ultralow light level image detection by the may of photovoltaic detector diodes under such ultralow light level conditions that the photon flux will statistically provide only a single photon at a time incident on anyone detector diode during any clock cycle.

  15. Design rule of indium bump in infrared focal plane array for longer cycling life

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoling; Meng, Chao; Zhang, Wei; Lv, Yanqiu; Si, Junjie; Meng, Qingduan

    2016-05-01

    In light of the proposed equivalent method, a three-dimensional structural modeling of InSb infrared focal plane arrays (IRFPAs) is created, and the simulated strain distribution is identical to the deformation distribution on the top surface of InSb IRFPAs. After comparing the deformation features at different regions with the structural characteristics of IRFPAs, we infer that the flatness of InSb IRFPAs will be improved with a thinner indium bump array, and this inference is verified by subsequent simulation results. That is, when the diameter of indium bump is smaller than 20 μm, the simulated Z-components of strain on the whole top surface of InSb IRFPAs is uniform, and the deformation amplitude is small. When the diameter of indium bump is larger than 28 μm, the simulated Z-components of strain increases rapidly with the thicker indium bump, and the flatness of InSb IRFPAs is worsened rapidly. According to the changing trend of deformation amplitude with diameters of indium bump, and employing element pitches normalization method, a design rule of indium bump is proposed. That is, when the diameter of indium bump is shorter than 0.4 times the element pitch, the flatness of InSb IRFPAs is in an acceptable range. This design rule was supported by different IRFPAs with different formats delivered by several main research groups for achieving a longer cycling life.

  16. Carbon nanotube array based sensor

    DOEpatents

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  17. Large format high-operability SWIR and MWIR focal plane array performance and capabilities

    NASA Astrophysics Data System (ADS)

    Bangs, James; Langell, Mark; Reddy, Madhu; Melkonian, Leon; Johnson, Scott; Elizondo, Lee; Rybnicek, Kimon; Norton, Elyse; Jaworski, Frank; Asbrock, James; Baur, Stefan

    2011-06-01

    High-performance large-format detector arrays responsive to the 1-5μm wavelength range of the infrared spectrum fabricated using large area HgCdTe layers grown on 6-inch diameter (211) silicon substrates are available for advanced imaging applications. This paper reviews performance and capabilities of Raytheon Vision Systems (RVS) HgCdTe/Si Focal Plane Arrays (FPA) and shows 2k x 2k format MWIR HgCdTe/Si FPA performance with NEdT operabilities better than 99.9%. SWIR and MWIR detector performance for HgCdTe/Si is comparable to established performance of HgCdTe/CdZnTe wafers. HgCdTe devices fabricated on both types of substrates have demonstrated very low dark current, high quantum efficiency and full spectral band fill factor characteristic of HgCdTe. HgCdTe has the advantage of being able to precisely tune the detector cutoff via adjustment of the Cd composition in the MBE growth. The HgCdTe/Si detectors described in this paper are p-on-n mesa delineated architecture and fabricated using the same mature etch, passivation, and metallization processes as our HgCdTe/CdZnTe line. Uniform device quality HgCdTe epitaxial layers and application of detector fabrication processes across the full area of 6-inch wafers routinely produces high performing detector pixels from edge to edge of the photolithographic limits across the wafer, offering 5 times the printable area as costly 6×6cm CdZnTe substrates. This 6-inch HgCdTe detector wafer technology can provide applications demanding very wide FOV high resolution coverage the capability to produce a very large single piece infrared detector array, up to a continuous image plane 10×10 cm in size. Alternatively, significant detector cost reduction through allowing more die of a given size to be printed on each wafer is possible, with further cost reduction achieved through transition towards automated detector fabrication and photolithographic processes for both increased yields and reduced touch labor costs. RVS continues

  18. InSb photovoltaic infrared detector array with quasi-plane structure

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Wang, L.; Chen, X.; Shen; Shouzhen

    1984-12-01

    A quasi-plane technology is developed, which is based on a mesa photosensitive unit with SiO2 medium as mask, using a metal film as expanding electrode and a supersonic technique for welding the electrode wire on the substrate. The detectors made with this technology have good electrical and photoelectrical performance, such as high junction impedance, high reverse breakdown voltage, good stability of performance and no crosstalk. The mechanism yielding high performance is briefly discussed.

  19. An uncooled 1280 x 1024 InGaAs focal plane array for small platform, shortwave infrared imaging

    NASA Astrophysics Data System (ADS)

    Battaglia, J.; Blessinger, M.; Enriquez, M.; Ettenberg, M.; Evans, M.; Flynn, K.; Lin, M.; Passe, J.; Stern, M.; Sudol, T.

    2009-05-01

    The increasing demand for short wave infrared (SWIR) imaging technology for soldier-based and unmanned platforms requires camera systems where size, weight and power consumption are minimized without loss of performance. Goodrich, Sensors Unlimited Inc. reports on the development of a novel focal plane (FPA) array for DARPA's MISI (Micro-Sensors for Imaging) Program. This large format (1280 x 1024) array is optimized for day/night imaging in the wavelength region from 0.4 μm to 1.7 μm and consists of an InGaAs detector bump bonded to a capacitance transimpedance amplifier (CTIA)-based readout integrated circuit (ROIC) on a compact 15 μm pixel pitch. Two selectable integration capacitors provide for high dynamic range with low (< 50 electrons) noise, and expanded onchip ROIC functionality includes analog-to-digital conversion and temperature sensing. The combination of high quality, low dark current InGaAs with temperature-parameterized non-uniformity correction allows operation at ambient temperatures while eliminating the need for thermoelectric cooling. The resulting lightweight, low power implementation is suitable for man-portable and UAV-mounted applications.

  20. Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes

    NASA Astrophysics Data System (ADS)

    Trichopoulos, Georgios C.

    The terahertz (THz) band provides unique sensing opportunities that enable several important applications such as biomedical imaging, remote non-destructive inspection of packaged goods, and security screening. THz waves can penetrate most materials and can provide unique spectral information in the 0.1--10 THz band with high resolution. In contrast, other imaging modalities, like infrared (IR), suffer from low penetration depths and are thus not attractive for non-destructive evaluation. However, state-of-the-art THz imaging systems typically employ mechanical raster scans using a single detector to acquire two-dimensional images. Such devices tend to be bulky and complicated due to the mechanical parts, and are thus rather expensive to develop and operate. Thus, large-format (e.g. 100x100 pixels) and all-electronics based THz imaging systems are badly needed to alleviate the space, weight and power (SWAP) factors and enable cost effective utilization of THz waves for sensing and high-data-rate communications. In contrast, photonic sensors are very compact because light can couple directly to the photodiode without residing to radiation coupling topologies. However, in the THz band, due to the longer wavelengths and much lower photon energies, highly efficient antennas with optimized input impedance have to be integrated with THz sensors. Here, we implement novel antenna engineering techniques that are optimized to take advantage of recent technological advances in solid-state THz sensing devices. For example, large-format focal plane arrays (FPAs) have been the Achilles' heel of THz imaging systems. Typically, optical components (lenses, mirrors) are employed in order to improve the optical performance of FPAs, however, antenna sensors suffer from degraded performance when they are far from the optical axis, thus minimizing the number of useful FPA elements. By modifying the radiation pattern of FPA antennas we manage to alleviate the off-axis aberration

  1. Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions

    NASA Technical Reports Server (NTRS)

    Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.

    2011-01-01

    This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.

  2. Examination of cotton fibers and common contaminants using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical imaging of cotton fibers and common contaminants in fibers is presented. Chemical imaging was performed with an infrared microscope equipped with a Focal-Plane Array (FPA) detector. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In a...

  3. Large-sized out-of-plane stretchable electrodes based on poly-dimethylsiloxane substrate

    SciTech Connect

    Chou, Namsun; Lee, Jongho; Kim, Sohee

    2014-12-15

    This paper describes a reliable fabrication method of stretchable electrodes based on poly-dimethylsiloxane (PDMS) substrate. The electrode traces and pads were formed in out-of-plane structures to improve the flexibility and stretchability of the electrode array. The suspended traces and pads were attached to the PDMS substrate via parylene posts that were located nearby the traces and under the pads. As only conventional micro-electro-mechanical systems techniques were used, the out-of-plane electrode arrays were clearly fabricated at wafer level with high yield and reliability. Also, bi-layer out-of-plane electrodes were formed through additional fabrication steps in addition to mono-layer out-of-plane electrodes. The mechanical characteristics such as the stretchability, flexibility, and foldability of the fabricated electrodes were evaluated, resulting in stable electrical connection of the metal traces with up to 32.4% strain and up to 360° twist angle over 25 mm. The durability in stretched condition was validated by cyclic stretch test with 10% and 20% strain, resulting in electrical disconnection at 8600 cycles when subjected to 20% strain. From these results, it is concluded that the proposed fabrication method produced highly reliable, out-of-plane and stretchable electrodes, which would be used in various flexible and stretchable electronics applications.

  4. High performance type II superlattice focal plane array with 6μm cutoff wavelength

    NASA Astrophysics Data System (ADS)

    Miura, Kouhei; Machinaga, Ken-ichi; Balasekaran, Sundararajan; Kawahara, Takahiko; Migita, Masaki; Inada, Hiroshi; Iguchi, Yasuhiro; Sakai, Michito; Murooka, Junpei; Katayama, Haruyoshi; Kimata, Masafumi

    2016-05-01

    The cutoff wavelength of 6μm is preferable for the full usage of the atmospheric window in the mid-wavelength region. An InAs/GaSb type-II superlattice (T2SL) is the only known infrared material that has a theoretically predicted high performance and also the cutoff wavelength can be easily controlled by changing the thickness of InAs and GaSb. In this study, we used a p-i-n structure with InAs/GaSb T2SL absorber and also barrier layers which was grown on a Tedoped GaSb substrate by molecular beam epitaxy. A mesa-type focal plane array (FPA) with 320×256 pixels and 30μm pixel pitch was fabricated. Mesa structures were formed by inductively coupled plasma reactive ion etching with halogen gas mixture. Prior to the deposition of the SiO2 passivation film, N2 plasma treatment was applied for reducing the dark currents. Measured dark current of the sensor was 4x10-7A/cm2 at temperature of 77K and reverse bias of -20mV. The quantum efficiency was 0.35 and the detectivity was 4.1x1012cm/Hz1/2W. The sensor array was hybridized with the commercially available readout integrated circuit using indium bumps. The noise equivalent differential temperature measured with F/2.3 optics was 31mK at 77K. The operability was over 99%. This FPA is suitable for full usage of the atmospheric window in the mid-wavelength region.

  5. Numerical Simulation of Refractive-Microlensed HgCdTe Infrared Focal Plane Arrays Operating in Optical Systems

    NASA Astrophysics Data System (ADS)

    Li, Yang; Ye, Zhen-Hua; Hu, Wei-Da; Lei, Wen; Gao, Yan-Lin; He, Kai; Hua, Hua; Zhang, Peng; Chen, Yi-Yu; Lin, Chun; Hu, Xiao-Ning; Ding, Rui-Jun; He, Li

    2014-08-01

    The optoelectronic performance of the mid-wavelength HgCdTe infrared focal plane array (IRFPA) with refractive microlenses integrated on its CdZnTe substrate has been numerically simulated. A reduced light-distribution model based on scalar Kirchhoff diffraction theory was adopted to reveal the true behavior of IRFPAs operating in an optical system under imaging conditions. The pixel crosstalk obtained and the energy-gathering characteristics demonstrated that the microlenses can delay the rise in crosstalk when the image point shifts toward pixel boundaries, and can restrict the major optical absorption process in any case within a narrow region around the pixel center. The dependence of the microlenses' effects on the system's properties was also analyzed; this showed that intermediate relative aperture and small microlens radius are required for optimized device performance. Simulation results also indicated that for detectors farther from the center of the field of view, the efficacy of microlenses in crosstalk suppression and energy gathering is still maintained, except for a negligible difference in the lateral magnification from an ordinary array without microlenses.

  6. Very large scale heterogeneous integration (VLSHI) and wafer-level vacuum packaging for infrared bolometer focal plane arrays

    NASA Astrophysics Data System (ADS)

    Forsberg, Fredrik; Roxhed, Niclas; Fischer, Andreas C.; Samel, Björn; Ericsson, Per; Hoivik, Nils; Lapadatu, Adriana; Bring, Martin; Kittilsland, Gjermund; Stemme, Göran; Niklaus, Frank

    2013-09-01

    Imaging in the long wavelength infrared (LWIR) range from 8 to 14 μm is an extremely useful tool for non-contact measurement and imaging of temperature in many industrial, automotive and security applications. However, the cost of the infrared (IR) imaging components has to be significantly reduced to make IR imaging a viable technology for many cost-sensitive applications. This paper demonstrates new and improved fabrication and packaging technologies for next-generation IR imaging detectors based on uncooled IR bolometer focal plane arrays. The proposed technologies include very large scale heterogeneous integration for combining high-performance, SiGe quantum-well bolometers with electronic integrated read-out circuits and CMOS compatible wafer-level vacuum packing. The fabrication and characterization of bolometers with a pitch of 25 μm × 25 μm that are arranged on read-out-wafers in arrays with 320 × 240 pixels are presented. The bolometers contain a multi-layer quantum well SiGe thermistor with a temperature coefficient of resistance of -3.0%/K. The proposed CMOS compatible wafer-level vacuum packaging technology uses Cu-Sn solid-liquid interdiffusion (SLID) bonding. The presented technologies are suitable for implementation in cost-efficient fabless business models with the potential to bring about the cost reduction needed to enable low-cost IR imaging products for industrial, security and automotive applications.

  7. Microbolometer Terahertz Focal Plane Array and Camera with Improved Sensitivity in the Sub-Terahertz Region

    NASA Astrophysics Data System (ADS)

    Oda, Naoki; Kurashina, Seiji; Miyoshi, Masaru; Doi, Kohei; Ishi, Tsutomu; Sudou, Takayuki; Morimoto, Takao; Goto, Hideki; Sasaki, Tokuhito

    2015-10-01

    A pixel in an uncooled microbolometer terahertz (THz) focal plane array (FPA) has a suspended structure above read-out integrated circuit (ROIC) substrate. An optical cavity structure is formed between a thin metallic layer deposited on the suspended structure and a thick metallic layer deposited on the ROIC surface. The geometrical optical cavity length for our previous pixel structure, 3-4 μm, is extended three times, so that responsivity can be increased in the sub-THz region. This modification is carried out by depositing a thick SiN layer on the thick metallic layer. The modified pixel structure is applied to 640 × 480 and 320 × 240 THz-FPAs with 23.5 μm pixel pitch. Minimum detectable powers per pixel (MDP) are evaluated for these FPAs at 4.3, 2.5, 0.6, and 0.5 THz, and the MDP values are found to be improved by a factor of ten at 0.6 and 0.5 THz. The MDP values of the THz-FPAs developed in this work are compared with those of other THz detectors, such as uncooled antenna-coupled CMOS (complimentary metal-oxide semiconductor) THz-FPAs and cooled bolometer arrays. It is found that our THz-FPAs are more sensitive in the sub-THz region than the CMOS THz-FPAs, while they are much less sensitive than the cooled bolometer arrays. These THz-FPAs are incorporated into a 640 × 480 THz camera and 320 × 240 THz camera, and imaging equipment is developed. The equipment consists of a linearly polarized sub-THz source, a collimator lens, a beam homogenizer, two wire grids, a quarter-wave plate, and two THz cameras, and sub-THz images are demonstrated. It should be mentioned for the equipment that imaging of transmission and reflection is realized by moving only the quarter-wave plate, and the reflection image is taken along a direction normal to a sample surface so that the reflection image is hardly deformed.

  8. 1024 x 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Hill, C. J.; Rafol, S. B.; Mumolo, J. M.; Trinh, J. T.; Tidrow, M. Z.; LeVan, P. D.

    2005-01-01

    Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 10(24) x 10(24) pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEAT) of 17 mK at a 95 K operating temperature with f/2.5 optics at 300 K background and the LWIR detector array has demonstrated a NEAT of 13 mK at a 70 K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90 K and 70 K operating temperatures respectively, with similar optical and background conditions. In this paper, we will discuss the performance in terms of quantum efficiency, NE(delta)T, uniformity, operability and modulation transfer functions.

  9. Evolution of miniature detectors and focal plane arrays for infrared sensors

    NASA Astrophysics Data System (ADS)

    Watts, Louis A.

    1993-06-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  10. High-speed infrared imaging by an uncooled optomechanical focal plane array.

    PubMed

    Feng, Yun; Zhao, Yuejin; Dong, Liquan; Liu, Ming; Li, Xueyan; Ma, Wei; Yu, Xiaomei; Kong, Lingqin; Liu, Xiaohua

    2015-12-01

    In this paper, we theoretically and experimentally demonstrate that the imaging speed of the optomechanical focal plane array infrared imaging system can be significantly improved by changing the pressure in the vacuum chamber. The decrease in the thermal time constant is attributed to the additional thermal conductance caused by air. The response time will be greatly shortened to about 1/3 time in low vacuum (around ∼10(2)  Pa) compared with that in high vacuum. At a chamber pressure of 50 Pa, the "trailing" in the IR image of a moving hot iron is eliminated with negligible deterioration in the image quality. Moreover, infrared images on rapid occurrence events, such as ignition of an alcohol blast burner, lighting and fusion of a tungsten filament, are captured at a frame rate up to 200 Hz. The above results show that the proposed pressure-dependent performance provides a way to improve the system imaging speed and helps to slow down a dynamic event, which is of great value to the uncooled IR imaging systems in practical applications. PMID:26836676