Science.gov

Sample records for plane arrays imaging

  1. Plane wave imaging using phased array

    NASA Astrophysics Data System (ADS)

    Volker, Arno

    2014-02-01

    Phased arrays are often used for rapid inspections. Phased arrays can be used to synthesize different wave fronts. For imaging, focused wave fronts are frequently used. In order to build an image, the phased array has to be fired multiple times at the same location. Alternatively, different data acquisition configurations can be designed in combination with an imaging algorithm. The objective of this paper is to use the minimal amount of data required to construct an image. If a plane wave is synthesized, the region of interest is illuminated completely. For plane wave synthesis, all elements in the phase array are fired. This ensures a good signal to noise ratio. Imaging can be performed efficiently with a mapping algorithm in the wavenumber domain. The algorithm involves only two Fourier transforms and can therefore be extremely fast. The obtained resolution is comparable to conventional imaging algorithms. This work investigates the potential and limitations of this mapping algorithm on simulated data. With this approach, frame rates of more than 1 kHz can be achieved.

  2. Uncooled infrared focal plane array imaging in China

    NASA Astrophysics Data System (ADS)

    Lei, Shuyu

    2015-06-01

    This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 μm. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.

  3. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Technical Reports Server (NTRS)

    Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-01-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  4. Combatting infrared focal plane array nonuniformity noise in imaging polarimeters

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; Kumar, Rakesh; Black, Wiley; Boger, James K.; Tyo, J. Scott

    2005-08-01

    One of the most significant challenges in performing infrared (IR) polarimetery is the focal plane array (FPA) nonuniformity (NU) noise that is inherent in virtually all IR photodetector technologies that operate in the midwave IR (MWIR) or long-wave IR (LWIR). NU noise results from pixel-to-pixel variations in the repsonsivity of the photodetectors. This problem is especially severy in the microengineered IR FPA materials like HgCdTe and InSb, as well as in uncooled IR microbolometer sensors. Such problems are largely absent from Si based visible spectrum FPAs. The pixel response is usually a variable nonlinear response function, and even when the response is linearized over some range of temperatures, the gain and offset of the resulting response is usually highly variable. NU noise is normally corrected by applying a linear calibration to the data, but the resulting imagery still retains residual nonuniformity due to the nonlinearity of the photodetector responses. This residual nonuniformity is particularly troublesome for polarimeters because of the addition and subtraction operations that must be performed on the images in order to construct the Stokes parameters or other polarization products. In this paper we explore the impact of NU noise on full stokes and linear-polarization-only IR polarimeters. We compare the performance of division of time, division of amplitude, and division of array polarimeters in the presence of both NU and temporal noise, and assess the ability of calibration-based NU correction schemes to clean up the data.

  5. MAGPIS: A MULTI-ARRAY GALACTIC PLANE IMAGING SURVEY

    SciTech Connect

    Helfand, D J; Becker, R H; White, R L; Fallon, A; Tuttle, S

    2005-11-10

    We present the Multi-Array Galactic Plane Imaging Survey (MAGPIS), which maps portions of the first Galactic quadrant with an angular resolution, sensitivity and dynamic range that surpasses existing radio images of the Milky Way by more than an order of magnitude. The source detection threshold at 20 cm is in the range 1-2 mJy over the 85% of the survey region (5{sup o} < l < 32{sup o}, |b| < 0.8{sup o}) not covered by bright extended emission; the angular resolution is {approx} 6''. We catalog over 3000 discrete sources (diameters mostly < 30'') and present an atlas of {approx} 400 diffuse emission regions. New and archival data at 90 cm for the whole survey area are also presented. Comparison of our catalogs and images with the MSX mid-infrared data allow us to provide preliminary discrimination between thermal and non-thermal sources. We identify 49 high-probability supernova remnant candidates, increasing by a factor of seven the number of known remnants with diameters smaller than 50 in the survey region; several are pulsar wind nebula candidates and/or very small diameter remnants (D < 45''). We report the tentative identification of several hundred H II regions based on a comparison with the mid-IR data; they range in size from unresolved ultra-compact sources to large complexes of diffuse emission on scales of half a degree. In several of the latter regions, cospatial nonthermal emission illustrates the interplay between stellar death and birth. We comment briefly on plans for followup observations and our extension of the survey; when complemented by data from ongoing X-ray and mid-IR observations, we expect MAGPIS to provide an important contribution to our understanding of the birth and death of massive stars in the Milky Way.

  6. Focal plane resolution and overlapped array time delay and integrate imaging

    NASA Astrophysics Data System (ADS)

    Grycewicz, Thomas J.; Cota, Stephen A.; Lomheim, Terrence S.; Kalman, Linda S.

    2010-06-01

    In this paper we model sub-pixel image registration for a generic earth-observing satellite system with a focal plane using two offset time delay and integrate (TDI) arrays in the focal plane to improve the achievable ground resolution over the resolution achievable with a single array. The modeling process starts with a high-resolution image as ground truth. The Parameterized Image Chain Analysis & Simulation Software (PICASSO) modeling tool is used to degrade the images to match the optical transfer function, sampling, and noise characteristics of the target system. The model outputs a pair of images with a separation close to the nominal half-pixel separation between the overlapped arrays. A registration estimation algorithm is used to measure the offset for image reconstruction. The two images are aligned and summed on a grid with twice the capture resolution. We compare the resolution in images between the inputs before overlap, the reconstructed image, and a simulation for the image which would have been captured on a focal plane with twice the resolution. We find the performance to always be better than the lower resolution baseline, and to approach the performance of the high-resolution array in the ideal case. We show that the overlapped array imager significantly outperforms both the conventional high- and low-resolution imagers in conditions with high image smear.

  7. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  8. NeuroSeek dual-color image processing infrared focal plane array

    NASA Astrophysics Data System (ADS)

    McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.

    1998-09-01

    Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.

  9. Type II superlattice infrared focal plane arrays: Optical, electrical, and mid-wave infrared imaging characterization.

    NASA Astrophysics Data System (ADS)

    Little, John; Svensson, Stefan; Goldberg, Arnie; Kennerly, Steve; Olver, Kim; Hongsmatip, Trirat; Winn, Michael; Uppal, Parvez

    2006-03-01

    We have studied the infrared optical and temperature dependent electrical properties of 320 x 256 arrays of GaSb/InAs type II superlattice infrared photodiodes. Good agreement between single-pixel and focal plane array measurements of the photon-to- electron/hole conversion efficiency was obtained, and the infrared absorption coefficient extracted from these measurements was found to be comparable to that of HgCdTe with the same bandgap as the type II superlattice. Temperature and voltage dependent dark current measurements and the voltage dependent photocurrent generated by a 300 K background scene were described well using a semi-empirical model of the photodiode. We will show high-quality images obtained from the mid-infrared focal plane array operating at 78 K.

  10. Solid-state image sensor with focal-plane digital photon-counting pixel array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    1995-01-01

    A photosensitive layer such as a-Si for a UV/visible wavelength band is provided for low light level imaging with at least a separate CMOS amplifier directly connected to each PIN photodetector diode to provide a focal-plane array of NxN pixels, and preferably a separate photon-counting CMOS circuit directly connected to each CMOS amplifier, although one row of counters may be time shared for reading out the photon flux rate of each diode in the array, together with a buffer memory for storing all rows of the NxN image frame before transfer to suitable storage. All CMOS circuitry is preferably fabricated in the same silicon layer as the PIN photodetector diode for a monolithic structure, but when the wavelength band of interest requires photosensitive material different from silicon, the focal-plane array may be fabricated separately on a different semiconductor layer bump-bonded or otherwise bonded for a virtually monolithic structure with one free terminal of each diode directly connected to the input terminal of its CMOS amplifier and digital counter for integration of the photon flux rate at each photodetector of the array.

  11. 320 x 256 Complementary Barrier Infrared Detector Focal Plane Array for Long-Wave Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Nguyen, Jean; Rafol, Sir B.; Soibel, Alexander; Khoskhlagh, Arezou; Ting, David Z.-Y.; Liu, John K.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    A 320 x 256 Complementary Barrier Infrared (CBIRD) focal plane array for long-wavelength infrared (LWIR) imaging is reported. The arrays were grown by molecular beam expitaxy (MBE) with a 300 period 1.9 um thick absorber. The mean dark current density of 2.2 x 10-4 A/cm2 was measured at an operating bias of 128 mV with a long wavelength cutoff of 8.8 ?m observed at 50% of the peak. The maximum quantum efficiency was 54% measured at 5.6 ?m. Operating at T = 80K, the array yielded an 81% fill factor with 97% operability. Good imagery with a mean noise equivalent different temperature (NE?T) of 18.6 mK and a mean detectivity of D* = 1.3 x 1011 cm-Hz1/2/W was achieved. The substrate was thinned using mechanical lapping and neither an AR coating nor a passivation layer was applied. This article provides the details of the fabrication process for achieving low-dark current LWIR CBIRD arrays. Discussion for an effective hard mask for excellent pattern transfer is given and appropriate mounting techniques for good thermal contact during the dry etching process is described. The challenges and differences between etching large 200 ?m test diodes and small 28 ?m FPA pixels are given.

  12. 320 x 256 complementary barrier infrared detector focal plane array for long-wave infrared imaging

    NASA Astrophysics Data System (ADS)

    Nguyen, Jean; Rafol, B., , Sir; Soibel, Alexander; Khoskhlagh, Arezou; Ting, David Z.-Y.; Liu, John K.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-06-01

    A 320 x 256 Complementary Barrier Infrared (CBIRD) focal plane array for long-wavelength infrared (LWIR) imaging is reported. The arrays were grown by molecular beam expitaxy (MBE) with a 300 period 1.9 um thick absorber. The mean dark current density of 2.2 x 10-4 A/cm2 was measured at an operating bias of 128 mV with a long wavelength cutoff of 8.8 μm observed at 50% of the peak. The maximum quantum efficiency was 54% measured at 5.6 μm. Operating at T = 80K, the array yielded an 81% fill factor with 97% operability. Good imagery with a mean noise equivalent different temperature (NE▵T) of 18.6 mK and a mean detectivity of D* = 1.3 x 1011 cm-Hz1/2/W was achieved. The substrate was thinned using mechanical lapping and neither an AR coating nor a passivation layer was applied. This article provides the details of the fabrication process for achieving low-dark current LWIR CBIRD arrays. Discussion for an effective hard mask for excellent pattern transfer is given and appropriate mounting techniques for good thermal contact during the dry etching process is described. The challenges and differences between etching large 200 μm test diodes and small 28 μm FPA pixels are given.

  13. High-speed infrared imaging by an uncooled optomechanical focal plane array.

    PubMed

    Feng, Yun; Zhao, Yuejin; Dong, Liquan; Liu, Ming; Li, Xueyan; Ma, Wei; Yu, Xiaomei; Kong, Lingqin; Liu, Xiaohua

    2015-12-01

    In this paper, we theoretically and experimentally demonstrate that the imaging speed of the optomechanical focal plane array infrared imaging system can be significantly improved by changing the pressure in the vacuum chamber. The decrease in the thermal time constant is attributed to the additional thermal conductance caused by air. The response time will be greatly shortened to about 1/3 time in low vacuum (around ∼10(2)  Pa) compared with that in high vacuum. At a chamber pressure of 50 Pa, the "trailing" in the IR image of a moving hot iron is eliminated with negligible deterioration in the image quality. Moreover, infrared images on rapid occurrence events, such as ignition of an alcohol blast burner, lighting and fusion of a tungsten filament, are captured at a frame rate up to 200 Hz. The above results show that the proposed pressure-dependent performance provides a way to improve the system imaging speed and helps to slow down a dynamic event, which is of great value to the uncooled IR imaging systems in practical applications. PMID:26836676

  14. Solid-state Image Sensor with Focal-plane Digital Photon-counting Pixel Array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Pain, Bedabrata

    1997-01-01

    A solid-state focal-plane imaging system comprises an NxN array of high gain. low-noise unit cells. each unit cell being connected to a different one of photovoltaic detector diodes, one for each unit cell, interspersed in the array for ultra low level image detection and a plurality of digital counters coupled to the outputs of the unit cell by a multiplexer(either a separate counter for each unit cell or a row of N of counters time shared with N rows of digital counters). Each unit cell includes two self-biasing cascode amplifiers in cascade for a high charge-to-voltage conversion gain (greater than 1mV/e(-)) and an electronic switch to reset input capacitance to a reference potential in order to be able to discriminate detection of an incident photon by the photoelectron (e(-))generated in the detector diode at the input of the first cascode amplifier in order to count incident photons individually in a digital counter connected to the output of the second cascade amplifier. Reseting the input capacitance and initiating self-biasing of the amplifiers occurs every clock cycle of an integratng period to enable ultralow light level image detection by the may of photovoltaic detector diodes under such ultralow light level conditions that the photon flux will statistically provide only a single photon at a time incident on anyone detector diode during any clock cycle.

  15. Evaluation and display of polarimetric image data using long-wave cooled microgrid focal plane arrays

    NASA Astrophysics Data System (ADS)

    Bowers, David L.; Boger, James K.; Wellems, L. David; Black, Wiley T.; Ortega, Steve E.; Ratliff, Bradley M.; Fetrow, Matthew P.; Hubbs, John E.; Tyo, J. Scott

    2006-05-01

    Recent developments for Long Wave InfraRed (LWIR) imaging polarimeters include incorporating a microgrid polarizer array onto the focal plane array (FPA). Inherent advantages over typical polarimeters include packaging and instantaneous acquisition of thermal and polarimetric information. This allows for real time video of thermal and polarimetric products. The microgrid approach has inherent polarization measurement error due to the spatial sampling of a non-uniform scene, residual pixel to pixel variations in the gain corrected responsivity and in the noise equivalent input (NEI), and variations in the pixel to pixel micro-polarizer performance. The Degree of Linear Polarization (DoLP) is highly sensitive to these parameters and is consequently used as a metric to explore instrument sensitivities. Image processing and fusion techniques are used to take advantage of the inherent thermal and polarimetric sensing capability of this FPA, providing additional scene information in real time. Optimal operating conditions are employed to improve FPA uniformity and sensitivity. Data from two DRS Infrared Technologies, L.P. (DRS) microgrid polarizer HgCdTe FPAs are presented. One FPA resides in a liquid nitrogen (LN2) pour filled dewar with a 80°K nominal operating temperature. The other FPA resides in a cryogenic (cryo) dewar with a 60° K nominal operating temperature.

  16. [Research on the neas infrared focal plane array detector imaging technology used in the laser warning].

    PubMed

    Wang, Zhi-Bin; Huang, Yan-Fei; Wang, Yao-Li; Zhang, Rui; Wang, Yan-Chao

    2014-04-01

    In order to achieve the incoming laser's accurate position, it is necessary to improve the detected laser's direction resolution. The InGaAs focal plane array detector with the type of FPA-320 x 256-C was selected as the core component of the diffraction grating laser warning device. The detection theory of laser wavelength and direction based on diffraction grating was introduced. The drive circuit was designed through the analysis of the detector's performance and parameters. Under the FPGA' s timing control, the detector's analog output was sampled by the high-speed AD. The data was cached to FPGA's extended SRAM, and then transferred to a PC through USB. Labview on a PC collects the raw data for processing and displaying. The imaging experiments were completed with the above method. With the wavelength of 1550 nm and 980 nm laser from different directions the diffraction images were detected. Through analysis the location of the zero order and one order can be determined. According to the grating diffraction theory, the wavelength and the direction of the two-dimensional angle can be calculated. It indicates that the wavelength error is less than 10 nm, and the angle error is less than 1 degrees. PMID:25007645

  17. Measurement of modulation transfer function of focal plane arrays and imaging systems

    NASA Astrophysics Data System (ADS)

    Boreman, Glenn D.

    1994-05-01

    A method for measuring the modulation transfer function (MTF) of focal-plane arrays (FPA's) has been developed which uses the statistical properties of laser speckle. The entire area of the focal plane is characterized, and no optics are required for target projection. The random nature of the test pattern avoids phasing effects between the target and the detector-array structure, which greatly relaxes alignment tolerances as compared to other methods. The technique is applicable to arrays that have intentional nonlinearity of response, as well as to those arrays that are inherently linear. The test can be performed on any focal-plane configuration, either one dimensional (1D) or two dimensional (2D). The data processing is usually performed by an off-line computer. However, the test is also useful for real-time diagnostics, to facilitate adjustment of focal-plane operating parameters. In the real-time case, the necessary signal processing can be performed on a digital oscilloscope.

  18. Portable sequential multicolor thermal imager based on a MCT 384 x 288 focal plane array

    NASA Astrophysics Data System (ADS)

    Breiter, Rainer; Cabanski, Wolfgang A.; Mauk, Karl-Heinz; Rode, Werner; Ziegler, Johann

    2001-10-01

    AIM has developed a sequential multicolor thermal imager to provide customers with a test system to realize real-time spectral selective thermal imaging. In contrast to existing PC based laboratory units, the system is miniaturized with integrated signal processing like non-uniformity correction and post processing functions such as image subtraction of different colors to allow field tests in military applications like detection of missile plumes or camouflaged targets as well as commercial applications like detection of chemical agents, pollution control, etc. The detection module used is a 384 X 288 mercury cadmium telluride (MCT) focal plane array (FPA) available in the mid wave (MWIR) or long wave spectral band LWIR). A compact command and control electronics (CCE) provides clock and voltage supply for the detector as well as 14 bit deep digital conversion of the analog detector output. A continuous rotating wheel with four facets for filters provides spectral selectivity. The customer can choose between various types of filter characteristics, e.g. a 4.2 micrometer bandpass filter for CO2 detection in the MWIR band. The rotating wheel can be synchronized to an external source giving the rotation speed, typical 25 l/s. A position sensor generates the four frame start signals for synchronous operation of the detector -- 100 Hz framerate for the four frames per rotation. The rotating wheel is exchangeable for different configurations and also plates for a microscanner operation to improve geometrical resolution are available instead of a multicolor operation. AIM's programmable MVIP image processing unit is used for signal processing like non- uniformity correction and controlling the detector parameters. The MVIP allows to output the four subsequent images as four quarters of the video screen to prior to any observation task set the integration time for each color individually for comparable performance in each spectral color and after that also to determine

  19. InAs/GaSb superlattice focal plane arrays for high-resolution thermal imaging

    NASA Astrophysics Data System (ADS)

    Rehm, R.; Walther, M.; Schmitz, J.; Fleißner, J.; Fuchs, F.; Ziegler, J.; Cabanski, W.

    2006-03-01

    The first fully operational mid-IR (3-5 μm) 256×256 IR-FPA camera system based on a type-II InAs/GaSb short-period superlattice showing an excellent noise equivalent temperature difference below 10 mK and a very uniform performance has been realized. We report on the development and fabrication of the detecor chip, i.e., epitaxy, processing technology and electro-optical characterization of fully integrated InAs/GaSb superlattice focal plane arrays. While the superlattice design employed for the first demonstrator camera yielded a quantum efficiency around 30%, a superlattice structure grown with a thicker active layer and an optimized V/III BEP ratio during growth of the InAs layers exhibits a significant increase in quantum efficiency. Quantitative responsivity measurements reveal a quantum efficiency of about 60% for InAs/GaSb superlattice focal plane arrays after implementing this design improvement.

  20. Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Min Lee, Alan W. (Inventor)

    2010-01-01

    The present invention generally provides a terahertz (THz) imaging system that includes a source for generating radiation (e.g., a quantum cascade laser) having one or more frequencies in a range of about 0.1 THz to about 10 THz, and a two-dimensional detector array comprising a plurality of radiation detecting elements that are capable of detecting radiation in that frequency range. An optical system directs radiation from the source to an object to be imaged. The detector array detects at least a portion of the radiation transmitted through the object (or reflected by the object) so as to form a THz image of that object.

  1. Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array

    SciTech Connect

    Phillips, Mark C.; Ho, Nicolas

    2008-02-04

    A versatile mid-infrared hyperspectral imaging system is demonstrated by combining a broadly tunable external cavity quantum cascade laser and a microbolometer focal plane array. The tunable mid-infrared laser provided high brightness illumination over a tuning range from 985 cm-1 to 1075 cm-1 (9.30-10.15 μm). Hypercubes containing images at 300 wavelengths separated by 0.3 cm 1 were obtained in 12 s. High spectral resolution chemical imaging of methanol vapor was demonstrated for both static and dynamic systems. The system was also used to image and characterize multiple component liquid and solid samples.

  2. An abuttable CCD imager for visible and X-ray focal plane arrays

    NASA Technical Reports Server (NTRS)

    Burke, Barry E.; Mountain, Robert W.; Harrison, David C.; Bautz, Marshall W.; Doty, John P.

    1991-01-01

    A frame-transfer silicon charge-coupled-device (CCD) imager has been developed that can be closely abutted to other imagers on three sides of the imaging array. It is intended for use in multichip arrays. The device has 420 x 420 pixels in the imaging and frame-store regions and is constructed using a three-phase triple-polysilicon process. Particular emphasis has been placed on achieving low-noise charge detection for low-light-level imaging in the visible and maximum energy resolution for X-ray spectroscopic applications. Noise levels of 6 electrons at 1-MHz and less than 3 electrons at 100-kHz data rates have been achieved. Imagers have been fabricated on 1000-Ohm-cm material to maximize quantum efficiency and minimize split events in the soft X-ray regime.

  3. 1024 x 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Hill, C. J.; Rafol, S. B.; Mumolo, J. M.; Trinh, J. T.; Tidrow, M. Z.; LeVan, P. D.

    2005-01-01

    Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 10(24) x 10(24) pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEAT) of 17 mK at a 95 K operating temperature with f/2.5 optics at 300 K background and the LWIR detector array has demonstrated a NEAT of 13 mK at a 70 K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90 K and 70 K operating temperatures respectively, with similar optical and background conditions. In this paper, we will discuss the performance in terms of quantum efficiency, NE(delta)T, uniformity, operability and modulation transfer functions.

  4. Dual band QWIP focal plane array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Choi, Kwong Kit (Inventor); Bandara, Sumith V. (Inventor)

    2005-01-01

    A quantum well infrared photodetector (QWIP) that provides two-color image sensing. Two different quantum wells are configured to absorb two different wavelengths. The QWIPs are arrayed in a focal plane array (FPA). The two-color QWIPs are selected for readout by selective electrical contact with the two different QWIPs or by the use of two different wavelength sensitive gratings.

  5. The CHROMA focal plane array: a large-format, low-noise detector optimized for imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Demers, Richard T.; Bailey, Robert; Beletic, James W.; Bernd, Steve; Bhargava, Sidharth; Herring, Jason; Kobrin, Paul; Lee, Donald; Pan, Jianmei; Petersen, Anders; Piquette, Eric; Starr, Brian; Yamamoto, Matthew; Zandian, Majid

    2013-09-01

    The CHROMA (Configurable Hyperspectral Readout for Multiple Applications) is an advanced Focal Plane Array (FPA) designed for visible-infrared imaging spectroscopy. Using Teledyne's latest substrateremoved HgCdTe detector, the CHROMA FPA has very low dark current, low readout noise and high, stable quantum efficiency from the deep blue (390nm) to the cutoff wavelength. CHROMA has a pixel pitch of 30 microns and is available in array formats ranging from 320×480 to 1600×480 pixels. Users generally disperse spectra over the 480 pixel-length columns and image spatially over the n×160 pixellength rows, where n=2, 4, 8, 10. The CHROMA Readout Integrated Circuit (ROIC) has Correlated Double Sampling (CDS) in pixel and generates its own internal bias signals and clocks. This paper presents the measured performance of the CHROMA FPA with 2.5 micron cutoff wavelength including the characterization of noise versus pixel gain, power dissipation and quantum efficiency.

  6. Digital pixel CMOS focal plane array with on-chip multiply accumulate units for low-latency image processing

    NASA Astrophysics Data System (ADS)

    Little, Jeffrey W.; Tyrrell, Brian M.; D'Onofrio, Richard; Berger, Paul J.; Fernandez-Cull, Christy

    2014-06-01

    A digital pixel CMOS focal plane array has been developed to enable low latency implementations of image processing systems such as centroid trackers, Shack-Hartman wavefront sensors, and Fitts correlation trackers through the use of in-pixel digital signal processing (DSP) and generic parallel pipelined multiply accumulate (MAC) units. Light intensity digitization occurs at the pixel level, enabling in-pixel DSP and noiseless data transfer from the pixel array to the peripheral processing units. The pipelined processing of row and column image data prior to off chip readout reduces the required output bandwidth of the image sensor, thus reducing the latency of computations necessary to implement various image processing systems. Data volume reductions of over 80% lead to sub 10μs latency for completing various tracking and sensor algorithms. This paper details the architecture of the pixel-processing imager (PPI) and presents some initial results from a prototype device fabricated in a standard 65nm CMOS process hybridized to a commercial off-the-shelf short-wave infrared (SWIR) detector array.

  7. Real-time 3D millimeter wave imaging based FMCW using GGD focal plane array as detectors

    NASA Astrophysics Data System (ADS)

    Levanon, Assaf; Rozban, Daniel; Kopeika, Natan S.; Yitzhaky, Yitzhak; Abramovich, Amir

    2014-03-01

    Millimeter wave (MMW) imaging systems are required for applications in medicine, communications, homeland security, and space technology. This is because there is no known ionization hazard for biological tissue, and atmospheric attenuation in this range of the spectrum is relatively low. The lack of inexpensive room temperature imaging systems makes it difficult to give a suitable MMW system for many of the above applications. 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The system presented here proposes to employ a chirp radar method with a Glow Discharge Detector (GDD) Focal Plane Array (FPA) of plasma based detectors. Each point on the object corresponds to a point in the image and includes the distance information. This will enable 3D MMW imaging. The radar system requires that the millimeter wave detector (GDD) will be able to operate as a heterodyne detector. Since the source of radiation is a frequency modulated continuous wave (FMCW), the detected signal as a result of heterodyne detection gives the object's depth information according to value of difference frequency, in addition to the reflectance of the image. In this work we experimentally demonstrate the feasibility of implementing an imaging system based on radar principles and FPA of GDD devices. This imaging system is shown to be capable of imaging objects from distances of at least 10 meters.

  8. InGaAs focal plane arrays and cameras for man-portable near-infrared imaging

    NASA Astrophysics Data System (ADS)

    Ettenberg, Martin H.; Cohen, Marshall J.; Olsen, Gregory H.; Kennedy, James J.

    1999-07-01

    During this presentation, the status of the technology will be described and prototype applications will be demonstrated and discussed. Included in the discussion will be: (1) the ability to distinguish camouflage from the surrounding environment, (2) the ability to see through fog that is opaque to visible imagers, (3) the ability to image eye-safe lasers for range-finding and target-acquisition, and (4) the use in conjunction with NIR flood lights for both covert surveillance and search and rescue operations. The high room-temperature D* makes indium gallium arsenide focal plane arrays excellent candidates for inclusion in small, light-weight, low-power, and low-cost NIR imaging modules. This type of development will enable additional applications such as the use in gun sights and micro-unmanned aerial vehicle surveillance. The presentation will conclude with the discussion of ongoing development activities.

  9. Towards Dualband Megapixel QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Hill, C. J.; Rafol, S. B.; Salazar, D.; Woolaway, J.; LeVan, P. D.; Tidrow, M. Z.

    2006-01-01

    Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024 x 1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEDT) of 17 mK at a 95 K operating temperature with f/2.5 optics at 300 K background and the LWIR detector array has demonstrated a NEDT of 13 mK at a 70 K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90 K and 70 K operating temperatures respectively, with similar optical and background conditions. In addition, we have demonstrated MWIR and LWIR pixel co-registered simultaneously readable dualband QWIP focal plane arrays. In this paper, we will discuss the performance in terms of quantum efficiency, NEDT, uniformity, operability, and modulation transfer functions of the 1024 x 1024 pixel arrays and the progress of dualband QWIP focal plane array development work.

  10. PtSi Schottky-barrier focal plane arrays for multispectral imaging in ultraviolet, visible, and infrared spectral bands

    NASA Astrophysics Data System (ADS)

    Tsaur, Bor-Yeu; Chen, C. K.; Mattia, John-Paul

    1990-04-01

    PtSi Schottky-barrier detectors, which are conventionally used in the back-illumination mode for thermal imaging in the 3-5 micron infrared (IR) spectral band, are shown to exhibit excellent photoresponse in the near-ultraviolet and visible regions when operated in the front-illumination mode. For devices without antireflection coatings, external quantum efficiency in excess of 60 percent has been obtained for wavelengths between 400 and 800 nm. The efficiency decreases below 400 nm but is still about 35 percent at 290 nm. High-quality imaging has been demonstrated in both the visible and 3-5 micron spectral bands for front-illuminated 160- x 244-element PtSi focal plane arrays integrated with monolithic CCD readout circuitry.

  11. An uncooled 1280 x 1024 InGaAs focal plane array for small platform, shortwave infrared imaging

    NASA Astrophysics Data System (ADS)

    Battaglia, J.; Blessinger, M.; Enriquez, M.; Ettenberg, M.; Evans, M.; Flynn, K.; Lin, M.; Passe, J.; Stern, M.; Sudol, T.

    2009-05-01

    The increasing demand for short wave infrared (SWIR) imaging technology for soldier-based and unmanned platforms requires camera systems where size, weight and power consumption are minimized without loss of performance. Goodrich, Sensors Unlimited Inc. reports on the development of a novel focal plane (FPA) array for DARPA's MISI (Micro-Sensors for Imaging) Program. This large format (1280 x 1024) array is optimized for day/night imaging in the wavelength region from 0.4 μm to 1.7 μm and consists of an InGaAs detector bump bonded to a capacitance transimpedance amplifier (CTIA)-based readout integrated circuit (ROIC) on a compact 15 μm pixel pitch. Two selectable integration capacitors provide for high dynamic range with low (< 50 electrons) noise, and expanded onchip ROIC functionality includes analog-to-digital conversion and temperature sensing. The combination of high quality, low dark current InGaAs with temperature-parameterized non-uniformity correction allows operation at ambient temperatures while eliminating the need for thermoelectric cooling. The resulting lightweight, low power implementation is suitable for man-portable and UAV-mounted applications.

  12. 640 x 512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Hill, Cory J.; Ting, David Z.; Liu, John K.; Rafol, Sir B.; Blazejewski, Edward R.; Mumolo, Jason M.; Keo, Sam A.; Krishna, Sanjay; Chang, Y. -C.; Shott, Craig A.

    2007-01-01

    Epitaxially grown self-assembled. InAs-InGaAs-GaAs quantum dots (QDs) are exploited for the development of large-format long-wavelength infrared focal plane arrays (FPAs). The dot-in-a-well (DWELL) structures were experimentally shown to absorb both 45 degrees and normal incident light, therefore, a reflection grating structure was used to enhance the quantum efficiency. The devices exhibit peak responsivity out to 8.1 micrometers, with peak detectivity reaching approximately 1 X 10(exp 10) Jones at 77 K. The devices were fabricated into the first long-wavelength 640 x 512 pixel QD infrared photodetector imaging FPA, which has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60-K operating temperature.

  13. Fourier plane imaging microscopy

    SciTech Connect

    Dominguez, Daniel Peralta, Luis Grave de; Alharbi, Nouf; Alhusain, Mdhaoui; Bernussi, Ayrton A.

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  14. Short wavelength infrared hybrid focal plane arrays

    NASA Technical Reports Server (NTRS)

    Vural, K.; Blackwell, J. D.; Marin, E. C.; Edwall, D. D.; Rode, J. P.

    1983-01-01

    The employment of area focal plane arrays (FPA) has made it possible to obtain second generation infrared imaging systems with high resolution and sensitivity. The Short Wavelength Infrared (SWIR) region (1-2.5 microns) is of importance for imaging objects at high temperature and under conditions of reflected sunlight. The present investigation is concerned with electrooptical characterization results for 32 x 32 SWIR detector arrays and FPAs which are suitable for use in a prototype imaging spectrometer. The employed detector material is Hg(1-x)Cd(x)Te grown by liquid phase epitaxy on a CdTe transparent substrate. Attention is given to details of processing, the design of the detector array, the multiplexer, the fabrication of the hybrid FPA, and aspects of performance.

  15. Colloidal quantum dot Vis-SWIR imaging: demonstration of a focal plane array and camera prototype (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Klem, Ethan J. D.; Gregory, Christopher W.; Temple, Dorota S.; Lewis, Jay S.

    2015-08-01

    RTI has developed a photodiode technology based on solution-processed PbS colloidal quantum dots (CQD). These devices are capable of providing low-cost, high performance detection across the Vis-SWIR spectral range. At the core of this technology is a heterojunction diode structure fabricated using techniques well suited to wafer-scale fabrication, such as spin coating and thermal evaporation. This enables RTI's CQD diodes to be processed at room temperature directly on top of read-out integrated circuits (ROIC), without the need for the hybridization step required by traditional SWIR detectors. Additionally, the CQD diodes can be fabricated on ROICs designed for other detector material systems, effectively allowing rapid prototype demonstrations of CQD focal plane arrays at low cost and on a wide range of pixel pitches and array sizes. We will show the results of fabricating CQD arrays directly on top of commercially available ROICs. Specifically, the ROICs are a 640 x 512 pixel format with 15 µm pitch, originally developed for InGaAs detectors. We will show that minor modifications to the surface of these ROICs make them suitable for use with our CQD detectors. Once completed, these FPAs are then assembled into a demonstration camera and their imaging performance is evaluated. In addition, we will discuss recent advances in device architecture and processing resulting in devices with room temperature dark currents of 2-5 nA/cm^2 and sensitivity from 350 nm to 1.7 μm. This combination of high performance, dramatic cost reduction, and multi-band sensitivity is ideally suited to expand the use of SWIR imaging in current applications, as well as to address applications which require a multispectral sensitivity not met by existing technologies.

  16. Infrared imaging of cotton fibers using a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrational spectroscopy studies can be used to examine the quality and structure of cotton fibers. An emerging area of research relates to the imaging of cotton fibers. Herein, we report the use of a Fourier-transform infrared (FTIR) microscope to image developing cotton fibers. Studies were perfor...

  17. Synchrotron Infrared Confocal Microspectroscopic Spatial Resolution or a Customized Synchrotron/focal Plane Array System Enhances Chemical Imaging of Biological Tissue or Cells

    SciTech Connect

    D Wetzel; M Nasse; =

    2011-12-31

    Spectroscopy and spatially resolved chemical imaging of biological materials using an infrared microscope is greatly enhanced with confocal image plane masking to 5-6 {mu} with a third generation microspectrometer and illumination with a synchrotron radiation source compared to globar illuminated and array detection or singly masked system. Steps toward this instrumental achievement are illustrated with spectra and images of biological tissue sections, including single cells, brain, aorta, and grain specimens. A recent, customized synchrotron infrared microspectrometer installation enables focal plane array detection to achieve both rapid and high definition chemical imaging. Localization of the ester carbonyl population in single modified starch granules was used to provide direct comparison of the two advanced imaging capabilities.

  18. Synchrotron infrared confocal microspectroscopic spatial resolution or a customized synchrotron/focal plane array system enhances chemical imaging of biological tissue or cells

    NASA Astrophysics Data System (ADS)

    Wetzel, David L.; Nasse, Michael J.

    2011-09-01

    Spectroscopy and spatially resolved chemical imaging of biological materials using an infrared microscope is greatly enhanced with confocal image plane masking to 5-6 μm with a third generation microspectrometer and illumination with a synchrotron radiation source compared to globar illuminated and array detection or singly masked system. Steps toward this instrumental achievement are illustrated with spectra and images of biological tissue sections, including single cells, brain, aorta, and grain specimens. A recent, customized synchrotron infrared microspectrometer installation enables focal plane array detection to achieve both rapid and high definition chemical imaging. Localization of the ester carbonyl population in single modified starch granules was used to provide direct comparison of the two advanced imaging capabilities.

  19. Short Wavelength Infrared Hybrid Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Vural, K.; Blackwell, J. D...; Marin, E. C.; Edwall, D. D...; Rode, J. P.

    1983-11-01

    Short wavelength (λc = 2.5 μm) 32 x 32 HgCdTe focal plane arrays have been fabricated for use in an Airborne Imaging Spectrometer (AIS) developed by the Jet Propulsion Labora-tory for NASA. An Imaging Spectrometer provides simultaneous imaging of several spectral bands for applications in the sensing and monitoring of earth resources. The detector material is HgCdTe grown on CdTe substrates using liquid phase epitaxy. Planar processing is used to make photovoltaic detectors on 68 um centers. The detector array is mated to a silicon charge coupled device multiplexer to make hybrid focal plane arrays. Results show high performance detectors with a mean RoA = 9.6 x 107 Ω --cm2 and IleakAge (-100 mV) = 0.037 pA at 120K and near zero background. The yield and uniformity are high. The ratio of the standard deviation of the dc responsivity to the mean is 3% for 98.5% of the pixels. The D1.0 = 1.3 x 1012 cm - âœ"fiz/W at a background of 1013 ph/cm2-s and 120K which is close to the background limited (BLIP) D* of 1.9 x 1012 cm- âœ"Hz/W.

  20. Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Micro-FT-IR Imaging.

    PubMed

    Tagg, Alexander S; Sapp, Melanie; Harrison, Jesse P; Ojeda, Jesús J

    2015-06-16

    Microplastics (<5 mm) have been documented in environmental samples on a global scale. While these pollutants may enter aquatic environments via wastewater treatment facilities, the abundance of microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment. PMID:25986938

  1. Miniaturized imaging spectrometer based on Fabry-Perot MOEMS filters and HgCdTe infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Velicu, S.; Buurma, C.; Bergeson, J. D.; Kim, Tae Sung; Kubby, J.; Gupta, N.

    2014-05-01

    Imaging spectrometry can be utilized in the midwave infrared (MWIR) and long wave infrared (LWIR) bands to detect, identify and map complex chemical agents based on their rotational and vibrational emission spectra. Hyperspectral datasets are typically obtained using grating or Fourier transform spectrometers to separate the incoming light into spectral bands. At present, these spectrometers are large, cumbersome, slow and expensive, and their resolution is limited by bulky mechanical components such as mirrors and gratings. As such, low-cost, miniaturized imaging spectrometers are of great interest. Microfabrication of micro-electro-mechanicalsystems (MEMS)-based components opens the door for producing low-cost, reliable optical systems. We present here our work on developing a miniaturized IR imaging spectrometer by coupling a mercury cadmium telluride (HgCdTe)-based infrared focal plane array (FPA) with a MEMS-based Fabry-Perot filter (FPF). The two membranes are fabricated from silicon-oninsulator (SOI) wafers using bulk micromachining technology. The fixed membrane is a standard silicon membrane, fabricated using back etching processes. The movable membrane is implemented as an X-beam structure to improve mechanical stability. The geometries of the distributed Bragg reflector (DBR)-based tunable FPFs are modeled to achieve the desired spectral resolution and wavelength range. Additionally, acceptable fabrication tolerances are determined by modeling the spectral performance of the FPFs as a function of DBR surface roughness and membrane curvature. These fabrication non-idealities are then mitigated by developing an optimized DBR process flow yielding high-performance FPF cavities. Zinc Sulfide (ZnS) and Germanium (Ge) are chosen as the low and the high index materials, respectively, and are deposited using an electron beam process. Simulations are presented showing the impact of these changes and non-idealities in both a device and systems level.

  2. An Indium Gallium Arsenide Visible/SWIR Focal Plane Array for Low Light Level Imaging

    NASA Technical Reports Server (NTRS)

    Cohen, Marshall J.; Ettenberg, Martin H.; Lange, Michael J.; Olsen, Gregory H.

    1999-01-01

    PIN photodiodes fabricated from indium gallium arsenide lattice-matched to indium phosphide substrates (In(.53)Ga(.47)As/InP) exhibit low reverse saturation current densities (JD < 10(exp -8) A/sq cm), and high shunt resistance-area products (RoA > 10(exp 6) omega-sq cm) at T=290K. Backside-illuminated, hybrid-integrated InGaAs FPAs are sensitive from 0.9 micrometers to 1.7 micrometers. 290K detectivities, D(*), greater than 10(exp 14) cm-(square root of Hz/W) are demonstrated. This represents the highest room temperature detectivity of any infrared material. The long wavelength cutoff (1.7 micrometers) makes In(.53)Ga(.47)As an idea match to the available airglow that has major peaks at 1.3 micrometers and 1.6 micrometers. The short wavelength 'cut-on' at 0.9 micrometers is due to absorption in the InP substrate. We will report on new InGaAs FPA epitaxial structures and processing techniques. These have resulted in improved performance in the form of a 10 x increase in detectivity and visible response via removal of the InP substrate. The resulting device features visible and SWIR response with greater than 15% quantum efficiency at 0.5 micrometers while maintaining the long wavelength cutoff. Imaging has been demonstrated under overcast starlight/urban glow conditions with cooling provided by a single stage thermoelectric cooler. Details on the material structure and device fabrication, quantitative characterization of spectral response and detectivity, as well as examples of night vision imagery are presented.

  3. Focal plane array with modular pixel array components for scalability

    SciTech Connect

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  4. Small pixel oversampled IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Caulfield, John; Curzan, Jon; Lewis, Jay; Dhar, Nibir

    2015-06-01

    We report on a new high definition high charge capacity 2.1 Mpixel MWIR Infrared Focal Plane Array. This high definition (HD) FPA utilizes a small 5 um pitch pixel size which is below the Nyquist limit imposed by the optical systems Point Spread Function (PSF). These smaller sub diffraction limited pixels allow spatial oversampling of the image. We show that oversampling IRFPAs enables improved fidelity in imaging including resolution improvements, advanced pixel correlation processing to reduce false alarm rates, improved detection ranges, and an improved ability to track closely spaced objects. Small pixel HD arrays are viewed as the key component enabling lower size, power and weight of the IR Sensor System. Small pixels enables a reduction in the size of the systems components from the smaller detector and ROIC array, the reduced optics focal length and overall lens size, resulting in an overall compactness in the sensor package, cooling and associated electronics. The highly sensitive MWIR small pixel HD FPA has the capability to detect dimmer signals at longer ranges than previously demonstrated.

  5. Deep ultraviolet (254 nm) focal plane array

    NASA Astrophysics Data System (ADS)

    Cicek, Erdem; Vashaei, Zahra; McClintock, Ryan; Razeghi, Manijeh

    2011-10-01

    We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A/cm2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated.

  6. Ultra-low dark current InGaAs technology for focal plane arrays for low-light level visible-shortwave infrared imaging

    NASA Astrophysics Data System (ADS)

    Onat, Bora M.; Huang, Wei; Masaun, Navneet; Lange, Michael; Ettenberg, Martin H.; Dries, Christopher

    2007-04-01

    Under the DARPA Photon Counting Arrays (PCAR) program we have investigated technologies to reduce the overall noise level in InGaAs based imagers for identifying a man at 100m under low-light level imaging conditions. We report the results of our experiments comprising of 15 InGaAs wafers that were utilized to investigate lowering dark current in photodiode arrays. As a result of these experiments, we have achieved an ultra low dark current of 2nA/cm2 through technological advances in InGaAs detector design, epitaxial growth, and processing at a temperature of +12.3 degrees C. The InGaAs photodiode array was hybridized to a low noise readout integrated circuit, also developed under this program. The focal plane array (FPA) achieves very high sensitivity in the shortwave infrared bands in addition to the visible response added via substrate removal process post hybridization. Based on our current room-temperature stabilized SWIR camera platform, these imagers enable a full day-night imaging capability and are responsive to currently fielded covert laser designators, illuminators, and rangefinders. In addition, improved haze penetration in the SWIR compared to the visible provides enhanced clarity in the imagery of a scene. In this paper we show the results of our dark current studies as well as FPA characterization of the camera built under this program.

  7. Fourier plane image amplifier

    DOEpatents

    Hackel, Lloyd A.; Hermann, Mark R.; Dane, C. Brent; Tiszauer, Detlev H.

    1995-01-01

    A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.

  8. Fourier plane image amplifier

    DOEpatents

    Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.

    1995-12-12

    A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.

  9. Electrostatic Image Problems with Plane Boundaries.

    ERIC Educational Resources Information Center

    Terras, Riho; Swanson, Robert A.

    1980-01-01

    Considers the electrostatic problem of a point charge in a domain bounded by conducting planes. Lists all such domains for which a solution by images exists, describes the image charge arrays in familiar crystallographic terms, and gives an illustrative example. (Author/GS)

  10. Focal Plane Arrays and Electronics for WISE

    NASA Astrophysics Data System (ADS)

    Masterjohn, Stacy; Hogue, H.; Mattson, R.; Dawson, L.; Bojorquez, A.; Muzilla, M.

    2009-01-01

    DRS provided the four channel focal plane array system for the Wide-field Infrared Survey Explorer (WISE) payload. The two shorter wavelength bands, centered near 3.2 and 4.5 µm, employed 1024x1024 HAWAII 1RG Mercury Cadmium Telluride (MCT) FPAs obtained from Teledyne Imaging Systems, Inc. The two longer wavelength bands, centered near 12 and 24 µm, utilized 1024x1024 arsenic doped silicon (Si:As) Blocked Impurity Band (BIB) FPAs, which were developed for the program by DRS. DRS packaged the 4 FPAs into similar custom cryogenic modules, each with its own flexible cryogenic ribbon cable to route FPA image output signals from within the WISE cryogenic telescope assembly through the cryostat walls. DRS also designed the cables and a common flight electronics box (FEB) to operate all 4 FPAs to provide their multiplexed digital image data streams to subsequent on-payload data processing and downlink systems. Fully functional, non-flight versions of the cabling and FEB were built to operate the FPAs during payload integration. The FPA system was delivered to the WISE payload integrator Space Dynamics Laboratory (SDL) in late 2007, and it is currently being integrated in to the WISE payload.

  11. Modulation transfer function measurement of an infrared focal plane array by use of the self-imaging property of a canted periodic target.

    PubMed

    Guérineau, N; Primot, J; Tauvy, M; Caes, M

    1999-02-01

    We present a new technique for measuring the modulation transfer function (MTF) of a focal plane array (FPA). The main idea is to project a periodic pattern of thin lines that are canted with respect to the sensor's columns. Practically, one aims the projection by using the self-imaging property of a periodic target. The technique, called the canted periodic target test, has been validated experimentally on a specific infrared FPA, leading to MTF evaluation to as great as five times the Nyquist frequency. PMID:18305656

  12. Solid-state curved focal plane arrays

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Hoenk, Michael (Inventor); Jones, Todd (Inventor)

    2010-01-01

    The present invention relates to curved focal plane arrays. More specifically, the present invention relates to a system and method for making solid-state curved focal plane arrays from standard and high-purity devices that may be matched to a given optical system. There are two ways to make a curved focal plane arrays starting with the fully fabricated device. One way, is to thin the device and conform it to a curvature. A second way, is to back-illuminate a thick device without making a thinned membrane. The thick device is a special class of devices; for example devices fabricated with high purity silicon. One surface of the device (the non VLSI fabricated surface, also referred to as the back surface) can be polished to form a curved surface.

  13. CLAES focal plane array. [Cryogenic Limb Array Etalon Spectrometer

    NASA Technical Reports Server (NTRS)

    Roche, A. E.; Sterritt, L. W.; Kumer, J. B.; Callary, P. C.; Nielsen, R. L.

    1989-01-01

    The Cryogenic Limb Array Etalon Spectrometer for the NASA Upper Atmospheric Research Satellite uses solid-state focal plane arrays to detect emission from the earth's atmosphere over the IR wavelength range 3.5 to 13 microns. This paper discusses the design of the focal plane detector assembly and compares calculated performance with measurements. Measurements were made of focal plane noise and responsivity as functions of frequency (2 to 500 Hz) and temperature (12 to 19 K), pixel-to-pixel and across-array crosstalk, and linearity over a dynamic range of 100,000. The measurements demonstrate that the arrays satisfy the science requirements, and that, in general, there is reasonable agreement between the measurements and the analytical model.

  14. Array tomography: imaging stained arrays.

    PubMed

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. In this protocol, tissue arrays are imaged using conventional wide-field fluorescence microscopy. Images can be captured manually or, with the appropriate software and hardware, the process can be automated. PMID:21041399

  15. Optical interconnections to focal plane arrays

    SciTech Connect

    Rienstra, J.L.; Hinckley, M.K.

    2000-11-01

    The authors have successfully demonstrated an optical data interconnection from the output of a focal plane array to the downstream data acquisition electronics. The demonstrated approach included a continuous wave laser beam directed at a multiple quantum well reflectance modulator connected to the focal plane array analog output. The output waveform from the optical interconnect was observed on an oscilloscope to be a replica of the input signal. They fed the output of the optical data link to the same data acquisition system used to characterize focal plane array performance. Measurements of the signal to noise ratio at the input and output of the optical interconnection showed that the signal to noise ratio was reduced by a factor of 10 or more. Analysis of the noise and link gain showed that the primary contributors to the additional noise were laser intensity noise and photodetector receiver noise. Subsequent efforts should be able to reduce these noise sources considerably and should result in substantially improved signal to noise performance. They also observed significant photocurrent generation in the reflectance modulator that imposes a current load on the focal plane array output amplifier. This current loading is an issue with the demonstrated approach because it tends to negate the power saving feature of the reflectance modulator interconnection concept.

  16. Large Format Multicolor QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Soibel, A.; Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.

    2009-01-01

    Mid-wave infrared (MWIR) and long-wave infrared (LWIR) multicolor focal plane array (FPA) cameras are essential for many DoD and NASA applications including Earth and planetary remote sensing. In this paper we summarize our recent development of large format multicolor QWIP FPA that cover MWIR and LWIR bands.

  17. Modulation transfer function of QWIP and superlattice focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Rafol, S. B.; Ting, D. Z.; Soibel, A.; Liu, J. K.; Khoshakhlagh, A.; Keo, S. A.; Mumolo, J. M.; Nguyen, J.

    2013-07-01

    Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this paper we will discuss the detail MTF measurements of a 1024 × 1024 pixel multi-band quantum well infrared photodetector and 320 × 256 pixel long-wavelength InAs/GaSb superlattice infrared focal plane arrays.

  18. Uncooled infrared sensors with digital focal plane array

    NASA Astrophysics Data System (ADS)

    Marshall, Charles A.; Butler, Neal R.; Blackwell, Richard; Murphy, Robert; Breen, Thomas

    1996-06-01

    Loral Infrared & Imaging Systems is developing low cost, high performance, uncooled infrared imaging products for both military and commercial applications. These products are based on the microbolometer technology, a silicon micromachined sensor which combines the wafer level silicon processing with a device structure capable of yielding excellent infrared imaging performance. Here, we report on the development of an uncooled sensor, the LTC500, which incorporates an all digital focal plane array and has a measured NETD of less than 70 mK. The focal plane array and the electronics within the LTC500 have been designed as an integrated unit to meet a broad range of end user applications by providing features such as nonuniformity correction, autogain and level, NTSC video, and digital outputs. The 327 X 245 element focal plane array has a 46.25 micrometers pixel pitch and an on focal plane array 14 bit to analog to digital converter (ADC). The ADC has a measured instantaneous dynamic range of more than 76 dB at a 6.1 MHz output data rate and 60 Hz frame rate. The focal plane array consumes less than 500 mW of power, of which less than 250 mW is used in the ADC. An additional 36 dB of digital coarse offset correction in front of the ADC on the focal plane array results in a total electronic dynamic range of 112 dB. The MRT of the LTC500 camera has been measured at less 0.2 C at f(subscript o).

  19. Digital-pixel focal plane array development

    NASA Astrophysics Data System (ADS)

    Brown, Matthew G.; Baker, Justin; Colonero, Curtis; Costa, Joe; Gardner, Tom; Kelly, Mike; Schultz, Ken; Tyrrell, Brian; Wey, Jim

    2010-01-01

    Since 2006, MIT Lincoln Laboratory has been developing Digital-pixel Focal Plane Array (DFPA) readout integrated circuits (ROICs). To date, four 256 × 256 30 μm pitch DFPA designs with in-pixel analog to digital conversion have been fabricated using IBM 90 nm CMOS processes. The DFPA ROICs are compatible with a wide range of detector materials and cutoff wavelengths; HgCdTe, QWIP, and InGaAs photo-detectors with cutoff wavelengths ranging from 1.6 to 14.5 μm have been hybridized to the same digital-pixel readout. The digital-pixel readout architecture offers high dynamic range, A/C or D/C coupled integration, and on-chip image processing with low power orthogonal transfer operations. The newest ROIC designs support two-color operation with a single Indium bump connection. Development and characterization of the two-color DFPA designs is presented along with applications for this new digital readout technology.

  20. Composite x-ray image assembly for large-field digital mammography with one- and two-dimensional positioning of a focal plane array

    NASA Technical Reports Server (NTRS)

    Halama, G.; McAdoo, J.; Liu, H.

    1998-01-01

    To demonstrate the feasibility of a novel large-field digital mammography technique, a 1024 x 1024 pixel Loral charge-coupled device (CCD) focal plane array (FPA) was positioned in a mammographic field with one- and two-dimensional scan sequences to obtain 950 x 1800 pixel and 3600 x 3600 pixel composite images, respectively. These experiments verify that precise positioning of FPAs produced seamless composites and that the CCD mosaic concept has potential for high-resolution, large-field imaging. The proposed CCD mosaic concept resembles a checkerboard pattern with spacing left between the CCDs for the driver and readout electronics. To obtain a complete x-ray image, the mosaic must be repositioned four times, with an x-ray exposure at each position. To reduce the patient dose, a lead shield with appropriately patterned holes is placed between the x-ray source and the patient. The high-precision motorized translation stages and the fiber-coupled-scintillating-screen-CCD sensor assembly were placed in the position usually occupied by the film cassette. Because of the high mechanical precision, seamless composites were constructed from the subimages. This paper discusses the positioning, image alignment procedure, and composite image results. The paper only addresses the formation of a seamless composite image from subimages and will not consider the effects of the lead shield, multiple CCDs, or the speed of motion.

  1. Infrared focal plane array crosstalk measurement

    NASA Astrophysics Data System (ADS)

    Dang, Khoa V.; Kauffman, Christopher L.; Derzko, Zenon I.

    1992-07-01

    Crosstalk between two neighboring elements in a focal plane array (FPA) occurs when signal incident on one element in the array is seen on another. This undesired effect can occur due to both the electrical and optical properties of the FPA. An effort is underway at the U.S. Army's Night Vision and Electro-Optics Directorate to develop a capability to measure crosstalk on both mid-wave infrared and long-wave infrared FPAs. A single detector in an array is illuminated using a laser source coupled with a beam expander, collimating lens, and focusing lens. The relative response of that detector to that of its neighboring detectors is measured to calculate crosstalk. The various components of the test station, the methodology for implementing the crosstalk measurement, and a model of the laser spot size are discussed.

  2. A study of the feasibility and performance of an active/passive imager using silicon focal plane arrays and incoherent continuous wave laser diodes

    NASA Astrophysics Data System (ADS)

    Vollmerhausen, Richard H.

    This dissertation describes an active/passive imager (API) that provides reliable, nighttime, target acquisition in a man-portable package with effective visual range of about 4 kilometers. The reflective imagery is easier to interpret than currently used thermal imagery. Also, in the active mode, the API provides performance equivalent to the big-aperture, thermal systems used on weapons platforms like tanks and attack helicopters. This dissertation describes the research needed to demonstrate both the feasibility and utility of the API. Part of the research describes implementation of a silicon focal plane array (SFPA) capable of both active and passive imaging. The passive imaging mode exceeds the nighttime performance of currently fielded, man-portable sensors. Further, when scene illumination is insufficient for passive imaging, the low dark current of SFPA makes it possible to use continuous wave laser diodes (CWLD) to add an active imaging mode. CWLD have advantages of size, efficiency, and improved eye safety when compared to high peak-power diodes. Because of the improved eye safety, the API provides user-demanded features like video output and extended range gates in the active as well as passive imaging modes. Like any other night vision device, the API depends on natural illumination of the scene for passive operation. Although it has been known for decades that "starlight" illumination is actually from diffuse airglow emissions, the research described in this dissertation provides the first estimates of the global and temporal variation of ground illumination due to airglow. A third related element of the current research establishes the impact of atmospheric aerosols on API performance. We know from day experience that atmospheric scattering of sunlight into the imager line-of-sight can blind the imager and drastically degrade performance. Atmospheric scattering of sunlight is extensively covered in the literature. However, previous literature did not

  3. Image-plane processing of visual information

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.

    1984-01-01

    Shannon's theory of information is used to optimize the optical design of sensor-array imaging systems which use neighborhood image-plane signal processing for enhancing edges and compressing dynamic range during image formation. The resultant edge-enhancement, or band-pass-filter, response is found to be very similar to that of human vision. Comparisons of traits in human vision with results from information theory suggest that: (1) Image-plane processing, like preprocessing in human vision, can improve visual information acquisition for pattern recognition when resolving power, sensitivity, and dynamic range are constrained. Improvements include reduced sensitivity to changes in lighter levels, reduced signal dynamic range, reduced data transmission and processing, and reduced aliasing and photosensor noise degradation. (2) Information content can be an appropriate figure of merit for optimizing the optical design of imaging systems when visual information is acquired for pattern recognition. The design trade-offs involve spatial response, sensitivity, and sampling interval.

  4. Tohoku University Focal Plane Array Controller (TUFPAC)

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takashi; Matsumoto, Daigo; Yanagisawa, Kenshi; Katsuno, Yuka; Suzuki, Ryuji; Tokoku, Chihiro; Asai, Ken'ichiro; Nishimura, Tetsuo

    2003-03-01

    TUFPAC (Tohoku University Focal Plane Array Controller) is an array control system originally designed for flexible control and efficient data acquisition of 2048 x 2048 HgCdTe (HAWAII-2) array. A personal computer operated by Linux OS controls mosaic HAWAII-2s with commercially available DSP boards installed on the PCI bus. Triggered by PC, DSP sends clock data to front-end electronics, which is isolated from the DSP board by photo-couplers. Front-end electronics supply powers, biases and clock signals to HAWAII2. Pixel data are read from four outputs of each HAWAII2 simultaneously by way of four channel preamps and ADCs. Pixel data converted to 16 bit digital data are stored in the frame memory on the DSP board. Data are processed in the memory when necessary. PC receives the frame data and stores it in the hard disk of PC in FITS format. A set of the DSP board and front-end electronics is responsible for controlling each HAWAII-2. One PC can operate eight mosaic arrays at most. TUFPAC is applicable to the control of CCDs with minor changes of front-end electronics.

  5. Synchrotron based infrared imaging and spectroscopy via focal plane array on live fibroblasts in D2O enriched medium

    SciTech Connect

    Quaroni, Luca; Zlateva, Theodora; Sarafimov, Blagoj; Kreuzer, Helen W.; Wehbe, Katia; Hegg, Eric L.; Cinque, Gianfelice

    2014-03-26

    We tested the viability of using synchrotron based infrared imaging to study biochemical processes inside living cells. As a model system, we studied fibroblast cells exposed to a medium highly enriched with D2O. We could show that the experimental technique allows us to reproduce at the cellular level measurements that are normally performed on purified biological molecules. We can obtain information about lipid conformation and distribution, kinetics of hydrogen/deuterium exchange, and the formation of concentration gradients of H and O isotopes in water that are associated with cell metabolism. The implementation of the full field technique in a sequential imaging format gives a description of cellular biochemistry and biophysics that contains both spatial and temporal information.

  6. InSb focal plane array chemical imaging enables assessment of unit process efficiency for milling operation.

    PubMed

    Wetzel, David L; Posner, Elieser S; Dogan, Hulya

    2010-12-01

    In the dry milling of wheat flour, each unit process (roller mill, purifier, sifter, etc.) produces a mixture with varying amounts of wheat endosperm and non-endosperm byproducts. Chemical images with 82 000 pixels of each intermediate product stream issuing from an individual processing machine are readily analyzed in terms of the relative amount of endosperm and non-endosperm. Approximately three minutes is required to produce an image of each intermediate product stream. Applying partial least squares (PLS) chemometric software to identify individual pixels, which enables calculation of the relative amount of endosperm and non-endosperm, is not a time-limiting factor. When relative flow rates are known for each stream, mass balance can be calculated from each intermediate stream in terms of the product (endosperm content) and the lower value non-endosperm byproduct. Data is presented from a purifier in a commercial flour mill. Intermediate streams collected from a run with optimized operational parameters were compared to those of another run before adjustment. The endosperm (product) mass balance profile for each run enabled assessment of operational efficiency. The devised chemical imaging analysis system would be particularly useful in commissioning of a new mill or to optimize existing wheat milling systems. Also, when raw material differs from that for which previous optimization was established, a new optimization may be in order. The ability to acquire a large number of spectra from a specimen and apply multivariate statistics to identify each pixel and subsequently count pixels accommodates heterogeneity and reports the results from averaging a very large number of individual spectra. A second illustration of the utility of the imaging method is presented centering on streams from the first and second break unit operations at the beginning of the roller mill process. PMID:21144147

  7. Two-color quantum well infrared photodetector focal plane arrays

    NASA Astrophysics Data System (ADS)

    Bundas, Jason; Patnaude, Kelly; Dennis, Richard; Burrows, Douglas; Cook, Robert; Reisinger, Axel; Sundaram, Mani; Benson, Robert; Woolaway, James; Schlesselmann, John; Petronio, Susan

    2006-05-01

    QmagiQ LLC, has recently completed building and testing high operability two-color Quantum Well Infrared Photodetector (QWIP) focal plane arrays (FPAs). The 320 x 256 format dual-band FPAs feature 40-micron pixels of spatially registered QWIP detectors based on III-V materials. The vertically stacked detectors in this specific midwave/longwave (MW/LW) design are tuned to absorb in the respective 4-5 and 8-9 micron spectral ranges. The ISC0006 Readout Integrated Circuit (ROIC) developed by FLIR Systems Inc. and used in these FPAs features direct injection (DI) input circuitry for high charge storage with each unit cell containing dual integration capacitors, allowing simultaneous scene sampling and readout for the two distinct wavelength bands. Initial FPAs feature pixel operabilities better than 99%. Focal plane array test results and sample images will be presented.

  8. Multispectral linear array (MLA) focal plane mechanical and thermal design

    NASA Technical Reports Server (NTRS)

    Mitchell, A. S.; Kaminski, E. F.

    1982-01-01

    The mechanical and thermal design of an integrated focal plane subsystem of a Multispectral Linear Array (MLA) instrument is discussed in terms of focal-plane alignment, thermoelastic performance, and thermal requirements. The modular construction and thermal control of the focal plane array are discussed.

  9. Smart trigger logic for focal plane arrays

    SciTech Connect

    Levy, James E; Campbell, David V; Holmes, Michael L; Lovejoy, Robert; Wojciechowski, Kenneth; Kay, Randolph R; Cavanaugh, William S; Gurrieri, Thomas M

    2014-03-25

    An electronic device includes a memory configured to receive data representing light intensity values from pixels in a focal plane array and a processor that analyzes the received data to determine which light values correspond to triggered pixels, where the triggered pixels are those pixels that meet a predefined set of criteria, and determines, for each triggered pixel, a set of neighbor pixels for which light intensity values are to be stored. The electronic device also includes a buffer that temporarily stores light intensity values for at least one previously processed row of pixels, so that when a triggered pixel is identified in a current row, light intensity values for the neighbor pixels in the previously processed row and for the triggered pixel are persistently stored, as well as a data transmitter that transmits the persistently stored light intensity values for the triggered and neighbor pixels to a data receiver.

  10. Derivatization technique to increase the spectral selectivity of two-dimensional Fourier transform infrared focal plane array imaging: analysis of binder composition in aged oil and tempera paint.

    PubMed

    Zumbühl, Stefan; Scherrer, Nadim C; Eggenberger, Urs

    2014-01-01

    The interpretation of standard Fourier transform infrared spectra (FT-IR) on oil-based paint samples often suffers from interfering bands of the different compounds, namely, binder, oxidative aging products, carboxylates formed during aging, and several pigments and fillers. The distinction of the aging products such as ketone and carboxylic acid functional groups pose the next problem, as these interfere with the triglyceride esters of the oil. A sample preparation and derivatization technique using gaseous sulfur tetrafluoride (SF4), was thus developed with the aim to discriminate overlapping signals and achieve a signal enhancement on superposed compounds. Of particular interest in this context is the signal elimination of the broad carboxylate bands of the typical reaction products developing during the aging processes in oil-based paints, as well as signal interference originating from several typical pigments in this spectral range. Furthermore, it is possible to distinguish the different carbonyl-containing functional groups upon selective alteration. The derivatization treatment can be applied to both microsamples and polished cross sections. It increases the selectivity of the infrared spectroscopy technique in a fundamental manner and permits the identification and two-dimensional (2D) localization of binder components in aged paint samples at the micrometer scale. The combination of SF4 derivatization with high-resolution 2D FT-IR focal plane array (FPA) imaging delivers considerable advances to the study of micro-morphological processes involving organic compounds. PMID:24694702

  11. SOI diode uncooled infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Kimata, Masafumi; Ueno, Masashi; Takeda, Munehisa; Seto, Toshiki

    2006-02-01

    An uncooled infrared focal plane array (IR FPA) is a MEMS device that integrates an array of tiny thermal infrared detector pixels. An SOI diode uncooled IR FPA is a type that uses freestanding single-crystal diodes as temperature sensors and has various advantages over the other MEMS-based uncooled IR FPAs. Since the first demonstration of an SOI diode uncooled IR FPA in 1999, the pixel structure has been improved by developing sophisticated MEMS processes. The most advanced pixel has a three-level structure that has an independent metal reflector for interference infrared absorption between the temperature sensor (bottom level) and the infrared-absorbing thin metal film (top level). This structure makes it possible to design pixels with lower thermal conductance by allocating more area for thermal isolation without reducing infrared absorption. The new MEMS process for the three-level structure includes a XeF II dry bulk silicon etching process and a double organic sacrificial layer surface micromachining process. Employing advanced MEMS technology, we have developed a 640 x 480-element SOI diode uncooled IR FPA with 25-μm square pixels. The noise equivalent temperature difference of the FPA is 40 mK with f/1.0 optics. This result clearly demonstrates the great potential of the SOI diode uncooled IR FPA for high-end applications. In this paper, we explain the advances and state-of-the-art technology of the SOI diode uncooled IR FPA.

  12. Antenna coupled detectors for 2D staring focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gritz, Michael A.; Kolasa, Borys; Lail, Brian; Burkholder, Robert; Chen, Leonard

    2013-06-01

    Millimeter-wave (mmW)/sub-mmW/THz region of the electro-magnetic spectrum enables imaging thru clothing and other obscurants such as fog, clouds, smoke, sand, and dust. Therefore considerable interest exists in developing low cost millimeter-wave imaging (MMWI) systems. Previous MMWI systems have evolved from crude mechanically scanned, single element receiver systems into very complex multiple receiver camera systems. Initial systems required many expensive mmW integrated-circuit low-noise amplifiers. In order to reduce the cost and complexity of the existing systems, attempts have been made to develop new mmW imaging sensors employing direct detection arrays. In this paper, we report on Raytheon's recent development of a unique focal plane array technology, which operates broadly from the mmW through the sub-mmW/THz region. Raytheon's innovative nano-antenna based detector enables low cost production of 2D staring mmW focal plane arrays (mmW FPA), which not only have equivalent sensitivity and performance to existing MMWI systems, but require no mechanical scanning.

  13. Electronic Processing And Advantages Of CMT Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Murphy, Kevin S.; Dennis, Peter N.; Bradley, Derek J.

    1990-04-01

    There have been many advances in thermal imaging systems and components in recent years such that an infrared capability is now readily available and accepted in a variety of military and civilian applications. Conventional thermal imagers such as the UK common module imager use a mechanical scanning system to sweep a small array of detectors across the thermal scene to generate a high definition TV compatible output. Although excellent imagery can be obtained from this type of system, there are some inherent disadvantages, amongst which are the need for a high speed line scan mechanism and the fundamental limit in thermal resolution due to the low stare efficiency of the system. With the advent of two dimensional focal plane array detectors, staring array imagers can now be designed and constructed in which the scanning mechanism is removed. Excellent thermal resolution can be obtained from such imagers due to the relatively long stare times. The recent progress in this technology will be discussed in this paper together with a description of the signal processing requirements of this type of imaging system.

  14. Multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1995-01-01

    A multiwavelength focal plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y<1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  15. Terahertz detectors and focal plane arrays

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Sizov, F.

    2011-09-01

    Terahertz (THz) technology is one of emerging technologies that will change our life. A lot of attractive applications in security, medicine, biology, astronomy, and non-destructive materials testing have been demonstrated already. However, the realization of THz emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. As a result, THz radiation is resistant to the techniques commonly employed in these well established neighbouring bands. In the paper, issues associated with the development and exploitation of THz radiation detectors and focal plane arrays are discussed. Historical impressive progress in THz detector sensitivity in a period of more than half century is analyzed. More attention is put on the basic physical phenomena and the recent progress in both direct and heterodyne detectors. After short description of general classification of THz detectors, more details concern Schottky barrier diodes, pair braking detectors, hot electron mixers and field-effect transistor detectors, where links between THz devices and modern technologies such as micromachining are underlined. Also, the operational conditions of THz detectors and their upper performance limits are reviewed. Finally, recent advances in novel nanoelectronic materials and technologies are described. It is expected that applications of nanoscale materials and devices will open the door for further performance improvement in THz detectors.

  16. Image plane sweep volume illumination.

    PubMed

    Sundén, Erik; Ynnerman, Anders; Ropinski, Timo

    2011-12-01

    In recent years, many volumetric illumination models have been proposed, which have the potential to simulate advanced lighting effects and thus support improved image comprehension. Although volume ray-casting is widely accepted as the volume rendering technique which achieves the highest image quality, so far no volumetric illumination algorithm has been designed to be directly incorporated into the ray-casting process. In this paper we propose image plane sweep volume illumination (IPSVI), which allows the integration of advanced illumination effects into a GPU-based volume ray-caster by exploiting the plane sweep paradigm. Thus, we are able to reduce the problem complexity and achieve interactive frame rates, while supporting scattering as well as shadowing. Since all illumination computations are performed directly within a single rendering pass, IPSVI does not require any preprocessing nor does it need to store intermediate results within an illumination volume. It therefore has a significantly lower memory footprint than other techniques. This makes IPSVI directly applicable to large data sets. Furthermore, the integration into a GPU-based ray-caster allows for high image quality as well as improved rendering performance by exploiting early ray termination. This paper discusses the theory behind IPSVI, describes its implementation, demonstrates its visual results and provides performance measurements. PMID:22034331

  17. Signal processing of microbolometer infrared focal-plane arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Junju; Qian, Yunsheng; Chang, Benkang; Xing, Suxia; Sun, Lianjun

    2005-01-01

    A 320×240-uncooled-microbolometer-based signal processing circuit for infrared focal-plane arrays is presented, and the software designs of this circuit system are also discussed in details. This signal processing circuit comprises such devices as FPGA, D/A, A/D, SRAM, Flash, DSP, etc., among which, FPGA is the crucial part, which realizing the generation of drive signals for infrared focal-plane, nonuniformity correction, image enhancement and video composition. The device of DSP, mainly offering auxiliary functions, carries out communication with PC and loads data when power-up. The phase locked loops (PLL) is used to generate high-quality clocks with low phase dithering and multiple clocks are to used satisfy the demands of focal-plane arrays, A/D, D/A and FPGA. The alternate structure is used to read or write SRAM in order to avoid the contradiction between different modules. FIFO embedded in FPGA not only makes full use of the resources of FPGA but acts as the channel between different modules which have different-speed clocks. What's more, working conditions, working process, physical design and management of the circuit are discussed. In software designing, all the function modules realized by FPGA and DSP devices, which are mentioned in the previous part, are discussed explicitly. Particularly to the nonuniformity correction module, the pipeline structure is designed to improve the working frequency and the ability to realize more complex algorithm.

  18. Improved interframe registration based nonuniformity correction for focal plane arrays

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Chen, Qian; Gu, Guohua; Sui, Xiubao; Ren, Jianle

    2012-07-01

    In this paper, an improved interframe registration based nonuniformity correction algorithm for focal plane arrays is proposed. The method simultaneously estimates detector parameters and carries out the nonuniformity correction by minimizing the mean square error between the two properly registered image frames. A new masked phase correlation algorithm is introduced to obtain reliable shift estimates in the presence of fixed pattern noise. The use of an outliers exclusion scheme, together with a variable step size strategy, could not only promote the correction precision considerably, but also eliminate ghosting artifacts effectively. The performance of the proposed algorithm is evaluated with clean infrared image sequences with simulated nonuniformity and real pattern noise. We also apply the method to a real-time imaging system to show how effective it is in reducing noise and the ghosting artifacts.

  19. 1024x1024 Pixel MWIR and LWIR QWIP Focal Plane Arrays and 320x256 MWIR:LWIR Pixel Colocated Simultaneous Dualband QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Liu, John K.; Hill, Cory J.; Rafol, S. B.; Mumolo, Jason M.; Trinh, Joseph T.; Tidrow, M. Z.; Le Van, P. D.

    2005-01-01

    Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024x1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NE(Delta)T) of 17 mK at a 95K operating temperature with f/2.5 optics at 300K background and the LWIR detector array has demonstrated a NE(Delta)T of 13 mK at a 70K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90K and 70K operating-temperatures respectively, with similar optical and background conditions. In addition, we are in the process of developing MWIR and LWIR pixel collocated simultaneously readable dualband QWIP focal plane arrays.

  20. Thin active region, type II superlattice photodiode arrays: Single-pixel and focal plane array characterization

    NASA Astrophysics Data System (ADS)

    Little, J. W.; Svensson, S. P.; Beck, W. A.; Goldberg, A. C.; Kennerly, S. W.; Hongsmatip, T.; Winn, M.; Uppal, P.

    2007-02-01

    We have measured the radiometric properties of two midwave infrared photodiode arrays (320×256pixel2 format) fabricated from the same wafer comprising a thin (0.24μm), not intentionally doped InAs /GaSb superlattice between a p-doped GaSb layer and a n-doped InAs layer. One of the arrays was indium bump bonded to a silicon fanout chip to allow for the measurement of properties of individual pixels, and one was bonded to a readout integrated circuit to enable array-scale measurements and infrared imaging. The superlattice layer is thin enough that it is fully depleted at zero bias, and the collection efficiency of photogenerated carriers in the intrinsic region is close to unity. This simplifies the interpretation of photocurrent data as compared with previous measurements made on thick superlattices with complex doping profiles. Superlattice absorption coefficient curves, obtained from measurements of the external quantum efficiency using two different assumptions for optical coupling into the chip, bracket values calculated using an eight-band k •p model. Measurements of the quantum efficiency map of the focal plane array were in good agreement with the single-pixel measurements. Imagery obtained with this focal plane array demonstrates the high uniformity and crystal quality of the type II superlattice material.

  1. High operating temperature interband cascade focal plane arrays

    SciTech Connect

    Tian, Z.-B.; Godoy, S. E.; Kim, H. S.; Schuler-Sandy, T.; Montoya, J. A.; Krishna, S.

    2014-08-04

    In this paper, we report the initial demonstration of mid-infrared interband cascade (IC) photodetector focal plane arrays with multiple-stage/junction design. The merits of IC photodetectors include low noise and efficient photocarrier extraction, even for zero-bias operation. By adopting enhanced electron barrier design and a total absorber thickness of 0.7 μm, the 5-stage IC detectors show very low dark current (1.10 × 10{sup −7} A/cm{sup 2} at −5 mV and 150 K). Even with un-optimized fabrication and standard commercial (mis-matched) read-out circuit technology, infrared images are obtained by the 320 × 256 IC focal plane array up to 180 K with f/2.3 optics. The minimum noise equivalent temperature difference of 28 mK is obtained at 120 K. These initial results indicate great potential of IC photodetectors, particularly for high operating temperature applications.

  2. Imaging antenna arrays

    NASA Technical Reports Server (NTRS)

    Rutledge, D. B.; Muha, M. S.

    1982-01-01

    Many millimeter and far-infrared imaging systems are limited in sensitivity and speed because they depend on a single scanned element. Because of recent advances in planar detectors such as Schottky diodes, superconducting tunnel junctions, and microbolometers, an attractive approach to this problem is a planar antenna array with integrated detectors. A planar line antenna array and optical system for imaging has been developed. The significant advances are a 'reverse-microscope' optical configuration and a modified bow-tie antenna design. In the 'reverse-microscope' configuration, a lens is attached to the bottom of the substrate containing the antennas. Imaging is done through the substrate. This configuration eliminates the troublesome effects of substrate surface waves. The substrate lens has only a single refracting surface, making possible a virtually aplanatic system, with little spherical aberration or coma. The array is characterized by an optical transfer function that is easily measured. An array with 19 dB crosstalk levels between adjacent antennas has been tested and it was found that the array captured 50 percent of the available power. This imaging system was diffraction limited.

  3. Comparing viewer and array mental rotations in different planes

    NASA Technical Reports Server (NTRS)

    Carpenter, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2001-01-01

    Participants imagined rotating either themselves or an array of objects that surrounded them. Their task was to report on the egocentric position of an item in the array following the imagined rotation. The dependent measures were response latency and number of errors committed. Past research has shown that self-rotation is easier than array rotation. However, we found that imagined egocentric rotations were as difficult to imagine as rotations of the environment when people performed imagined rotations in the midsagittal or coronal plane. The advantages of imagined self-rotations are specific to mental rotations performed in the transverse plane.

  4. MWIR and LWIR Megapixel QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, S. V.; Liu, J. K.; Rafol, S. B.; Thang, J.; Mumolo, Jason; Tidrow, M.; LeVan, P. D.; Hill, C.

    2004-01-01

    A mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024x1024 pixel quantum well infrared photodetector (QWIP) focal plane array has been demonstrated with excellent imagery. MWIR focal plane has given noise equivalent differential temperature (NETD) of 19 mK at 95K operating temperature with f/2.5 optics at 300K background and LWIR focal plane has given NEDT of 13 mK at 70K operating temperature with same optical and background conditions as MWIR array. Both of these focal plane arrays have shown background limited performance (BLIP) at 90K and 70K operating temperatures with the same optics and background conditions. In this paper, we will discuss their performance in quantum efficiency, NETD, uniformity, and operability.

  5. Materials, devices, techniques, and applications for Z-plane focal plane array technology II; Proceedings of the Meeting, San Diego, CA, July 12, 13, 1990

    NASA Astrophysics Data System (ADS)

    Carson, John C.

    1990-11-01

    Various papers on materials, devices, techniques, and applications for X-plane focal plane array technology are presented. Individual topics addressed include: application of Z-plane technology to the remote sensing of the earth from GEO, applications of smart neuromorphic focal planes, image-processing of Z-plane technology, neural network Z-plane implementation with very high interconnection rates, using a small IR surveillance satellite for tactical applications, establishing requirements for homing applications, Z-plane technology. Also discussed are: on-array spike suppression signal processing, algorithms for on-focal-plane gamma circumvention and time-delay integration, current HYMOSS Z-technology, packaging of electrons for on- and off-FPA signal processing, space/performance qualification of tape automated bonded devices, automation in tape automated bonding, high-speed/high-volume radiometric testing of Z-technology focal planes, 128-layer HYMOSS-module fabrication issues, automation of IRFPA production processes.

  6. Modulation transfer function of infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Rafol, S. B.; Ting, D. Z.; Soibel, A.; Hill, C. J.; Khoshakhlagh, A.; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Höglund, L.; Luong, E. M.

    2015-09-01

    Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this presentation we will discuss the detail MTF measurements of 1024x1024 pixels mid-wavelength and long-wavelength quantum well infrared photodetector, and 320x256 pixels long-wavelength InAs/GaSb superlattice infrared focal plane arrays (FPAs). Long wavelength Complementary Barrier Infrared Detector (CBIRD) based on InAs/GaSb superlattice material is hybridized to recently designed and fabricated 320x256 pixel format ROIC. The n-type CBIRD was characterized in terms of performance and thermal stability. The experimentally measured NEΔT of the 8.8μm cutoff n-CBIRD FPA was 18.6 mK with 300 K background and f/2 cold stop at 78K FPA operating temperature. The horizontal and vertical MTFs of this pixel fully delineated CBIRD FPA at Nyquist frequency are 49% and 52%, respectively.

  7. Analysis of the Maillard reaction in human hair using Fourier transform infrared spectroscopic imaging and a focal-plane array detector.

    PubMed

    Jung, In-Keun; Park, Sang-Chul; Bin, Sung-Ah; Roh, Young Sup; Lee, John Hwan; Kim, Boo-Min

    2016-03-01

    The Maillard reaction has been well researched and used in the food industry and the fields of environmental science and organic chemistry. Here, we induced the Maillard reaction inside human hair and analyzed its effects by using Fourier transform infrared spectroscopy with a focal-plane array (FTIR-FPA) detector. We used arginine (A), glycine (G), and D-xylose (X) to generate the Maillard reaction by dissolving them in purified water and heating it to 150 °C. This label-free process generated a complex compound (named AGX after its ingredients) with a monomer structure, which was determined by using nuclear magnetic resonance (NMR) and FTIR-FPA. This compound was stable in hair and substantially increased its tensile strength. To our knowledge, we are the first to report the formation of this monomer in human hair, and our study provides insights into a new method that could be used to improve the condition of damaged or aging hair. PMID:26905862

  8. Curved-Focal-Plane Arrays Using Deformed-Membrane Photodetectors

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Jones, Todd

    2004-01-01

    A versatile and simple approach to the design and fabrication of curved-focal-plane arrays of silicon-based photodetectors is being developed. This approach is an alternative to the one described in "Curved Focal-Plane Arrays Using Back- Illuminated High-Purity Photodetectors" (NPO-30566), NASA Tech Briefs, Vol. 27, No. 10 (October 2003), page 10a. As in the cited prior article, the basic idea is to improve the performance of an imaging instrument and simplify the optics needed to obtain a given level of performance by making an image sensor (in this case, an array of photodetectors) conform to a curved focal surface, instead of designing the optics to project an image onto a flat focal surface. There is biological precedent for curved-focal-surface designs: retinas - the image sensors in eyes - conform to the naturally curved focal surfaces of eye lenses. The present approach is applicable to both front-side- and back-side-illuminated, membrane photodetector arrays and is being demonstrated on charge-coupled devices (CCDs). The very-large scale integrated (VLSI) circuitry of such a CCD or other array is fabricated on the front side of a silicon substrate, then the CCD substrate is attached temporarily to a second substrate for mechanical support, then material is removed from the back to obtain the CCD membrane, which typically has a thickness between 10 and 20 m. In the case of a CCD designed to operate in back-surface illumination, delta doping can be performed after thinning to enhance the sensitivity. This approach is independent of the design and method of fabrication of the front-side VLSI circuitry and does not involve any processing of a curved silicon substrate. In this approach, a third substrate would be prepared by polishing one of its surfaces to a required focal-surface curvature. A CCD membrane fabricated as described above would be pressed against, deformed into conformity with, and bonded to, the curved surface. The technique used to press and

  9. Antenna arrays for producing plane whistler waves

    NASA Astrophysics Data System (ADS)

    Stenzel, Reiner; Urrutia, J. Manuel

    2015-11-01

    In a large uniform laboratory plasma helicon modes with mode numbers 1 - 8 have been excited. Using a circular phased array it is shown that positive and negative modes can propagate equally well. The phase fronts of helicons form Archimedian screw surfaces. The electromagnetic field carries linear momentum due to the axial propagation and angular momentum due to the azimuthal propagation. Associated with the orbital angular momentum is a transverse Doppler shift. It is demonstrated that a rapidly rotating ``receiver'' observes a different frequency than the wave. This implies that a rotating electron can undergo cyclotron resonance when moving against the field rotation. Analogous to the axial Doppler shift cyclotron damping and cyclotron instabilities are possible due to the field rotation in helicons. Since helicons exist in unbounded laboratory plasma they should also exist in space plasmas. The angular wave-particle interaction may be an alternate approach for the remedial of energetic electrons. Work supported by NSF/DOE.

  10. Self-calibration of Antenna Errors Using Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Napier, P. J.; Cornwell, T. J.

    The thery of focal-plane correlation is reviewed and applied to the problem of the self-calibration and self-correction of a radio telescope with errors in its reflecting surface. Curves are presented which allow the estimation of focal-plane array size and integration time needed for telescopes with varying amounts of error. It is suggested that the technique may have application to the problem of the construction of large telescopes in space.

  11. Megapixel Multi-band QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Rafo, S. B.; Hill, C.; Mumolo, J.; Thang, J.; Tidrow, M.; LeVan, P. D.

    2004-01-01

    A mid-wavelength 1024x1024 pixel quantum well infrared photodetector (QW) focal plane array has been demonstrated with excellent imagery. Noise equivalent differential temperature (NETD) of 19 mK was achieved at 95K operating temperature with f/2.5 optics at 300K background. This focal plane array has shown background limited performance (BLIP) at 90K operating temperature with the same optics and background conditions. In this paper, we will discuss its performance in quantum efficiency, NETD, uniformity, and operability.

  12. Optical Link For Readout From Focal-Plane Array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Larsson, Anders G.; Maserjian, Joseph

    1992-01-01

    Outputs of photodetectors modulate beam of light. Proposed optical link carries analog readout signals from photodetectors in focal-plane array to external signal-processing circuitry. Insensitive to electromagnetic interference at suboptical frequencies, and imposes smaller heat load on cryogenic apparatus because it does not include high-power electronic amplifier or laser transmitter within cold chamber.

  13. Testing of focal plane arrays at the AEDC

    NASA Astrophysics Data System (ADS)

    Nicholson, Randy A.; Mead, Kimberly D.; Smith, Robert W.

    1992-07-01

    A facility was developed at the Arnold Engineering Development Center (AEDC) to provide complete radiometric characterization of focal plane arrays (FPAs). The highly versatile facility provides the capability to test single detectors, detector arrays, and hybrid FPAs. The primary component of the AEDC test facility is the Focal Plane Characterization Chamber (FPCC). The FPCC provides a cryogenic, low-background environment for the test focal plane. Focal plane testing in the FPCC includes flood source testing, during which the array is uniformly irradiated with IR radiation, and spot source testing, during which the target radiation is focused onto a single pixel or group of pixels. During flood source testing, performance parameters such as power consumption, responsivity, noise equivalent input, dynamic range, radiometric stability, recovery time, and array uniformity can be assessed. Crosstalk is evaluated during spot source testing. Spectral response testing is performed in a spectral response test station using a three-grating monochromator. Because the chamber can accommodate several types of testing in a single test installation, a high throughput rate and good economy of operation are possible.

  14. Modulation transfer function measurements of QWIP and superlattice focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Ting, D. Z.; Rafol, S. B.; Soibel, A.; Khoshakhlagh, A.; Hill, C.; Liu, J. K.; Mumolo, J. M.; Keo, S. A.

    2013-01-01

    Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this presentation we will discuss the detail MTF measurements of 1024x1024 pixels multi-band quantum well infrared photodetector and 320x256 pixels long-wavelength InAs/GaSb superlattice infrared focal plane arrays.

  15. Arrayed Ultrasonic Transducers on Arc Surface for Plane Wave Synthesis

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Soon; Kim, Jung-Ho; Kim, Moo-Joon; Ha, Kang-Lyeol; Yamada, Akira

    2004-05-01

    In ultrasonic computed tomography (UCT), it is necessary to synthesize a plane wave using waves emitted from sound sources arranged in the interior surface of a cylinder. In order to transmit a plane wave into a cylindrical surface, an ultrasonic transducer which has many vibrating elements with piezoelectric transverse effect arrayed on an arc surface is proposed. To achieve a wide beam width, the elements should have a small radiation area with a much narrow width. The measured electroacoustic efficiency for the elements was approximately 40% and the beam width defined by -3 dB level from the maximum was as wide as 120 deg. It was confirmed that plane wave synthesis is possible using the proposed transducer array.

  16. Next Generation Submillimeter Heterodyne Focal Plane Array Technology

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul; Mehdi, I.; Kawamura, J. H.; Siles, J. V.; Lee, C.; Chattoopadhyay, G.; Bumble, B.; Stern, J. A.

    2014-01-01

    The results from the Heterodyne Instrument for the Far Infrared (HIFI) on the Herschel Space Observatory have had a major impact on astronomy, including the first velocity-resolved survey of the critical 158 micron fine structure line of C+ to observations of water in comets. To follow up on Herschel’s discoveries we need to be able to image significant areas with high angular resolution. This requires high-sensitivity focal plane heterodyne arrays, which is the driver for the present effort. The current state of the art for mixers at frequencies above ~1200 GHz utilizes Hot Electron Bolometer (HEB) mixers that have remarkably good sensitivity (noise temperature < 1000 K) and require low local oscillator power. One significant limitation is the IF bandwidth of < few GHz for NbN devices. At 2 THz, 1 GHz corresponds to a Doppler width of 150 km/s, less than seen in the 1900 GHz [CII] line. For higher frequency transitions, such as the [OI] fine structure line at 4.7 THz (63 micron wavelength), this bandwidth is insufficient. Development of new HEB materials such as magnesium based alloys may overcome this challenge, and promising results have been reported in the literature. A characteristic of all HEB mixers is their high sensitivity to local oscillator power variations. We have developed an architecture for array local oscillator power production and distribution that is based on a chain of multipliers starting from a Ka band source. Improved multiplier diodes as well as circuit designs have made it possible to obtain adequate LO power to 2.7 THz, with extension to 4.7 THz promising. We have developed a system design for a 1.9 THz [CII] array with a separate chain of multipliers for each pixel allowing individual control of LO power, together with efficient LO-signal combination in a single beamsplitter. We will present results from multiplier tests and results of measurements on a 4 pixel prototype of a full 16 or more pixel system. This robust and efficient

  17. Design, fabrication and characterization of a polarization-sensitive focal plane array

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Ninkov, Zoran

    2015-03-01

    Measurement of polarization is a powerful yet underutilized technique, with potential applications in remote sensing, astronomy, biomedical imaging and optical metrology. We present the design, fabrication and characterization of a CCD-based polarization-sensitive focal plane array (FPA). These devices are compact permanently aligned detectors capable of determining the degree and angle of linear polarization in a scene, with a single exposure, over a broad spectral range. To derive the polarization properties, we employ a variation of the division-of-focal plane modulation strategy. The devices are fabricated by hybridizing a micropolarizer array (MPA) with a CCD. The result is a "general-purpose" polarization-sensitive imaging sensor, which can be placed at the focal plane of a wide number of imaging systems (and even spectrographs). We present our efforts to date in developing this technology and examine the factors that fundamentally limit the performance of these devices.

  18. Nonlinear phased array imaging

    NASA Astrophysics Data System (ADS)

    Croxford, Anthony J.; Cheng, Jingwei; Potter, Jack N.

    2016-04-01

    A technique is presented for imaging acoustic nonlinearity within a specimen using ultrasonic phased arrays. Acoustic nonlinearity is measured by evaluating the difference in energy of the transmission bandwidth within the diffuse field produced through different focusing modes. The two different modes being classical beam forming, where delays are applied to different element of a phased array to physically focus the energy at a single location (parallel firing) and focusing in post processing, whereby one element at a time is fired and a focused image produced in post processing (sequential firing). Although these two approaches are linearly equivalent the difference in physical displacement within the specimen leads to differences in nonlinear effects. These differences are localized to the areas where the amplitude is different, essentially confining the differences to the focal point. Direct measurement at the focal point are however difficult to make. In order to measure this the diffuse field is used. It is a statistical property of the diffuse field that it represents the total energy in the system. If the energy in the diffuse field for both the sequential and parallel firing case is measured then the difference between these, within the input signal bandwidth, is largely due to differences at the focal spot. This difference therefore gives a localized measurement of where energy is moving out of the transmission bandwidth due to nonlinear effects. This technique is used to image fatigue cracks and other damage types undetectable with conventional linear ultrasonic measurements.

  19. Advancement in 17-micron pixel pitch uncooled focal plane arrays

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Skidmore, George; Howard, Christopher; Clarke, Elwood; Han, C. J.

    2009-05-01

    This paper provides an update of 17 micron pixel pitch uncooled microbolometer development at DRS. Since the introduction of 17 micron pitch 640x480 focal plane arrays (FPAs) in 2006, significant progress has been made in sensor performance and manufacturing processes. The FPAs are now in initial production with an FPA noise equivalent temperature difference (NETD), detector thermal time constant, and pixel operability equivalent or better than that of the current 25 micron pixel pitch production FPAs. NETD improvement was achieved without compromising detector thermal response or thermal time constant by simultaneous reduction in bolometer heat capacity and thermal conductance. In addition, the DRS unique "umbrella" microbolometer cavities were optically tuned to optimize detector radiation absorption for specific spectral band applications. The 17 micron pixel pitch FPAs are currently being considered for the next generation soldier systems such as thermal weapon sights (TWS), vehicle driver vision enhancers (DVE), digitally fused enhanced night vision goggles (DENVG) and unmanned air vehicle (UAV) surveillance sensors, because of overall thermal imaging system size, weight and power advantages.

  20. Hyperspectral modeling of an infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Mouzali, Salima; Lefebvre, Sidonie; Rommeluère, Sylvain; Ferrec, Yann; Primot, Jérôme

    2014-10-01

    Infrared Focal Plane Arrays (FPA) are increasingly used to measure multi- or hyperspectral images. Therefore, it is crucial to control and modelize their spectral response. The purpose of this paper is to propose a modeling approach, adjustable by experimental data, and applicable to the main cooled detector technologies. A physical model is presented, taking into account various optogeometrical properties of the detector, such as disparities of the pixels cut-off wavelengths. It describes the optical absorption phenomenon inside the pixel, by considering it as a stack of optical bulk layers. Then, an analytical model is proposed, based on the interference phenomenon occurring into the structure. This model considers only the three major waves interfering. It represents a good approximation of the physical model and a complementary understanding of the optical process inside the structure. This approach is applied to classical cooled FPAs as well as to specific instruments such as Microspoc (MICRO SPectrometer On Chip), a concept of miniaturized infrared Fourier transform spectrometer, integrated on a classical Mercury-Cadmium-Telluride FPA, and cooled by a cryostat.

  1. Validating Phasing and Geometry of Large Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Standley, Shaun P.; Gautier, Thomas N.; Caldwell, Douglas A.; Rabbette, Maura

    2011-01-01

    The Kepler Mission is designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-sized and smaller planets in or near the habitable zone. The Kepler photometer is an array of 42 CCDs (charge-coupled devices) in the focal plane of a 95-cm Schmidt camera onboard the Kepler spacecraft. Each 50x25-mm CCD has 2,200 x 1,024 pixels. The CCDs accumulate photons and are read out every six seconds to prevent saturation. The data is integrated for 30 minutes, and then the pixel data is transferred to onboard storage. The data is subsequently encoded and transmitted to the ground. During End-to-End Information System (EEIS) testing of the Kepler Mission System (KMS), there was a need to verify that the pixels requested by the science team operationally were correctly collected, encoded, compressed, stored, and transmitted by the FS, and subsequently received, decoded, uncompressed, and displayed by the Ground Segment (GS) without the outputs of any CCD modules being flipped, mirrored, or otherwise corrupted during the extensive FS and GS processing. This would normally be done by projecting an image on the focal plane array (FPA), collecting the data in a flight-like way, and making a comparison between the original data and the data reconstructed by the science data system. Projecting a focused image onto the FPA through the telescope would normally involve using a collimator suspended over the telescope opening. There were several problems with this approach: the collimation equipment is elaborate and expensive; as conceived, it could only illuminate a limited section of the FPA (.25 percent) during a given test; the telescope cover would have to be deployed during testing to allow the image to be projected into the telescope; the equipment was bulky and difficult to situate in temperature-controlled environments; and given all the above, test setup, execution, and repeatability were significant concerns. Instead of using this complicated approach of

  2. Performance of focal plane arrays for the photon counting arrays (PCAR) program

    NASA Astrophysics Data System (ADS)

    Blessinger, Michael A.; Enriquez, Marlon; Groppe, Joseph V.; Flynn, Kevin; Sudol, Thomas M.; Onat, Bora M.; Kleinhans, William E.

    2007-04-01

    The DARPA PCAR program is sponsoring the development of low noise, near infrared (1.5 μm wavelength) focal plane arrays (FPAs) for night vision applications. The first phase of this work has produced a collection of 640 x 512 pixel, 20 μm pitch FPAs with low noise. The approach was to design four different read out integrated circuits (ROICs), all compatible with the same bump-bonded InGaAs photodiode detector array. Two of the designs have capacitive transimpedance amplifier (CTIA) pixels, each with a somewhat different amplifier design and with two different sizes of small integration capacitors. The third design is a source follower per detector (SFD) pixel, integrating on the detector capacitance. The fourth design also integrates on the detector capacitance, but uses a moderate gain, in-pixel amplifier to boost the signal level, and also has a differential pixel output. All four designs require off-chip correlated sampling to achieve the desired noise level. The correlated sampling is performed digitally in the data acquisition software. Each design is capable of 30 frames per second read out rate, and has a dynamic range of 1000:1 using a rolling, non-snapshot integration. The designs were fabricated in a standard CMOS foundry process, and were bump-bonded to InGaAs detector arrays. All four designs are working without any significant design errors, and are producing low noise imaging, with less than 50 electrons rms noise per pixel after correlated double sampling.

  3. Reconnaissance with slant plane circular SAR imaging.

    PubMed

    Soumekh, M

    1996-01-01

    This paper presents a method for imaging from the slant plane data collected by a synthetic aperture radar (SAR) over the full rotation or a partial segment of a circular flight path. A Fourier analysis for the Green's function of the imaging system is provided. This analysis is the basis of an inversion for slant plane circular SAR data. The reconstruction algorithm and resolution for this SAR system are outlined. It is shown that the slant plane circular SAR, unlike the slant plane linear SAR, has the capability to extract three-dimensional imaging information of a target scene. The merits of the algorithm are demonstrated via a simulated target whose ultra wideband foliage penetrating (FOPEN) or ground penetrating (GPEN) ultrahigh frequency (UHF) radar signature varies with the radar's aspect angle. PMID:18285213

  4. Array tomography: semiautomated image alignment.

    PubMed

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. Successful array tomography requires that the captured images be properly stacked and aligned, and the software to achieve these ends is freely available. This protocol describes the construction of volumetric image stacks from images of fluorescently labeled arrays for three-dimensional image visualization, analysis, and archiving. PMID:21041400

  5. Some Reflections on Plane Mirrors and Images.

    ERIC Educational Resources Information Center

    Galili, Igal; And Others

    1991-01-01

    Discusses the following questions based on the assumption that students' personal experiences and prior beliefs about plane mirrors can promote interesting discussions: (1) How mirror images are formed? (2) Why doesn't paper behave like a mirror? (3) Does a mirror left-right reverse objects? and (4) Why are corner images of two perpendicular…

  6. Mercury cadmium telluride short- and medium-wavelength infrared staring focal plane arrays

    NASA Technical Reports Server (NTRS)

    Vural, Kadri

    1987-01-01

    Short and medium IR wavelength 64 x 64 hybrid focal plane arrays (FPAs) have been developed using sapphire-grown HgCdTe. The short wavelength arrays were developed for a prototype airborne imaging spectrometer, while those of medium wavelength are suitable for tactical missile seekers and strategic surveillance systems. Attention is presently given to results obtained for these FPAs' current-voltage characteristics, as well as for their characterization at different temperatures. The detector arrays were also mated to a multiplexer and characterized under different operating conditions. The unit cell size used is 52 x 52 microns.

  7. Precise annealing of focal plane arrays for optical detection

    SciTech Connect

    Bender, Daniel A.

    2015-09-22

    Precise annealing of identified defective regions of a Focal Plane Array ("FPA") (e.g., exclusive of non-defective regions of the FPA) facilitates removal of defects from an FPA that has been hybridized and/or packaged with readout electronics. Radiation is optionally applied under operating conditions, such as under cryogenic temperatures, such that performance of an FPA can be evaluated before, during, and after annealing without requiring thermal cycling.

  8. Focal-Plane Array Receiver Systems for Space Communications

    NASA Astrophysics Data System (ADS)

    Britcliffe, M.; Hoppe, D.; Vilnrotter, V.

    2007-08-01

    Typical ground antennas intended for use in space communications require large apertures operating at high frequencies. The challenge involved with these applications is achieving the required antenna performance in terms of antenna aperture efficiency and pointing accuracy. The utilization of a focal-plane array in place of a standard single-mode feed minimizes these problems. This article discusses the key elements required to implement a focal-plane array on a large high-frequency antenna. The example of the NASA Deep Space Network 70-m antennas operating at 32 GHz has been chosen to illustrate these advantages. The design of a suitable feed and low-noise cryogenically cooled amplifier and the required signal-processing techniques are described. It is shown that adaptive least mean-square algorithms can be applied to the output of the array elements, in order to obtain the optimum combining weights in real time, even in the presence of dynamic interference (nearby spacecraft in the array's field of view or planetary radiation). This adaptive optimization capability maximizes the combined output signal-to-noise ratio in real time, ensuring maximum data throughput in the communications link when operating in the presence of receiver noise and external interference generally present during planetary encounters.

  9. Characterization of post-correction uniformity on infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    O'Neill, John J.; Costanzo, Christopher R.; Kaplan, David R.

    1995-05-01

    With increased requirements for better performance being placed on thermal imaging systems, new characterization figures of merit are being developed to assess infrared focal plane array (IRFPA) attributes. Post correction uniformity (PCU) is a parameter that determines how successfully a thermal imaging system can eliminate spatial noise from scanning and staring focal plane arrays. Requirements on PCU, particularly for the more sensitive IRFPAs and applications, are quite rigorous. Test issues of l/f noise, drift, and repeatability become critical and require a rethinking of accepted methods. As infrared sensors have become more sensitive, the need to characterize these focal plane arrays under more controlled and realistic test conditions has emerged. The U.S. Army Night Vision and Electronic SEnsors Directorate (NVESD) has attempted to address these issues by developing a unique capability to measure the PCU of IR focal plane arrays using software algorithms and a specialized mechanical modulator. The modulator is a two foot diameter, two toothed (one reflective and one emissive) blade, which is used to facilitate the real-time collection of test, gain, and offset flux levels. This paper addresses (1) the significance of PCU from a system perspective, (2) discuss the limitations of various PCU measurement techniques, (3) present the NVESD approach for measuring PCU, and (4) report PCU data collected using these techniques.

  10. Smart pixel imaging with computational-imaging arrays

    NASA Astrophysics Data System (ADS)

    Fernandez-Cull, Christy; Tyrrell, Brian M.; D'Onofrio, Richard; Bolstad, Andrew; Lin, Joseph; Little, Jeffrey W.; Blackwell, Megan; Renzi, Matthew; Kelly, Mike

    2014-07-01

    Smart pixel imaging with computational-imaging arrays (SPICA) transfers image plane coding typically realized in the optical architecture to the digital domain of the focal plane array, thereby minimizing signal-to-noise losses associated with static filters or apertures and inherent diffraction concerns. MIT Lincoln Laboratory has been developing digitalpixel focal plane array (DFPA) devices for many years. In this work, we leverage legacy designs modified with new features to realize a computational imaging array (CIA) with advanced pixel-processing capabilities. We briefly review the use of DFPAs for on-chip background removal and image plane filtering. We focus on two digital readout integrated circuits (DROICS) as CIAs for two-dimensional (2D) transient target tracking and three-dimensional (3D) transient target estimation using per-pixel coded-apertures or flutter shutters. This paper describes two DROICs - a SWIR pixelprocessing imager (SWIR-PPI) and a Visible CIA (VISCIA). SWIR-PPI is a DROIC with a 1 kHz global frame rate with a maximum per-pixel shuttering rate of 100 MHz, such that each pixel can be modulated by a time-varying, pseudorandom, and duo-binary signal (+1,-1,0). Combining per-pixel time-domain coding and processing enables 3D (x,y,t) target estimation with limited loss of spatial resolution. We evaluate structured and pseudo-random encoding strategies and employ linear inversion and non-linear inversion using total-variation minimization to estimate a 3D data cube from a single 2D temporally-encoded measurement. The VISCIA DROIC, while low-resolution, has a 6 kHz global frame rate and simultaneously encodes eight periodic or aperiodic transient target signatures at a maximum rate of 50 MHz using eight 8-bit counters. By transferring pixel-based image plane coding to the DROIC and utilizing sophisticated processing, our CIAs enable on-chip temporal super-resolution.

  11. Image-plane processing for improved computer vision

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.

    1984-01-01

    The proper combination of optical design with image plane processing, as in the mechanism of human vision, which allows to improve the performance of sensor array imaging systems for edge detection and location was examined. Two dimensional bandpass filtering during image formation, optimizes edge enhancement and minimizes data transmission. It permits control of the spatial imaging system response to tradeoff edge enhancement for sensitivity at low light levels. It is shown that most of the information, up to about 94%, is contained in the signal intensity transitions from which the location of edges is determined for raw primal sketches. Shading the lens transmittance to increase depth of field and using a hexagonal instead of square sensor array lattice to decrease sensitivity to edge orientation improves edge information about 10%.

  12. Solid state image sensing arrays

    NASA Technical Reports Server (NTRS)

    Sadasiv, G.

    1972-01-01

    The fabrication of a photodiode transistor image sensor array in silicon, and tests on individual elements of the array are described along with design for a scanning system for an image sensor array. The spectral response of p-n junctions was used as a technique for studying the optical-absorption edge in silicon. Heterojunction structures of Sb2S3- Si were fabricated and a system for measuring C-V curves on MOS structures was built.

  13. Pixelated spectral filter for integrated focal plane array in the long-wave IR.

    SciTech Connect

    Kemme, Shanalyn A.; Cruz-Cabrera, Alvaro Augusto; Boye, Robert R.; Samora, Sally; Carter, Tony Ray; Briggs, Ronald D.

    2010-03-01

    We present the design, fabrication, and characterization of a pixelated, hyperspectral arrayed component for Focal Plane Array (FPA) integration in the Long-Wave IR. This device contains tens of pixels within a single super-pixel which is tiled across the extent of the FPA. Each spectral pixel maps to a single FPA pixel with a spectral FWHM of 200nm. With this arrayed approach, remote sensing data may be accumulated with a non-scanning, 'snapshot' imaging system. This technology is flexible with respect to individual pixel center wavelength and to pixel position within the array. Moreover, the entire pixel area has a single wavelength response, not the integrated linear response of a graded cavity thickness design. These requirements bar tilted, linear array technologies where the cavity length monotonically increases across the device.

  14. Focal-Plane Arrays of Quantum-Dot Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Wilson, Daniel; Hill, Cory; Liu, John; Bandara, Sumith; Ting, David

    2007-01-01

    Focal-plane arrays of semiconductor quantum-dot infrared photodetectors (QDIPs) are being developed as superior alternatives to prior infrared imagers, including imagers based on HgCdTe devices and, especially, those based on quantum-well infrared photodetectors (QWIPs). HgCdTe devices and arrays thereof are difficult to fabricate and operate, and they exhibit large nonunformities and high 1/f (where f signifies frequency) noise. QWIPs are easier to fabricate and operate, can be made nearly uniform, and exhibit lower 1/f noise, but they exhibit larger dark currents, and their quantization only along the growth direction prevents them from absorbing photons at normal incidence, thereby limiting their quantum efficiencies. Like QWIPs, QDIPs offer the advantages of greater ease of operation, greater uniformity, and lower 1/f noise, but without the disadvantages: QDIPs exhibit lower dark currents, and quantum efficiencies of QDIPs are greater because the three-dimensional quantization of QDIPs is favorable to the absorption of photons at normal or oblique incidence. Moreover, QDIPs can be operated at higher temperatures (around 200 K) than are required for operation of QWIPs. The main problem in the development of QDIP imagers is to fabricate quantum dots with the requisite uniformity of size and spacing. A promising approach to be tested soon involves the use of electron-beam lithography to define the locations and sizes of quantum dots. A photoresist-covered GaAs substrate would be exposed to the beam generated by an advanced, high-precision electron beam apparatus. The exposure pattern would consist of spots typically having a diameter of 4 nm and typically spaced 20 nm apart. The exposed photoresist would be developed by either a high-contrast or a low-contrast method. In the high-contrast method, the spots would be etched in such a way as to form steep-wall holes all the way down to the substrate. The holes would be wider than the electron beam spots perhaps as

  15. Technological developments of the OGRE focal plane array

    NASA Astrophysics Data System (ADS)

    Tutt, James H.; McEntaffer, Randall L.; DeRoo, Casey; Schultz, Ted; Rogers, Thomas; Murray, Neil; Holland, Andrew; Weatherill, Daniel; Holland, Karen; Colebrook, David; Farn, David

    2015-09-01

    The Off-plane Grating Rocket Experiment (OGRE) is a high resolution soft X-ray spectrometer sub-orbital rocket payload designed as a technology development platform for three low Technology Readiness Level (TRL) components. The incident photons will be focused using a light-weight, high resolution, single-crystal silicon optic. They are then dispersed conically according to wavelength by an array of off-plane gratings before being detected in a focal plane camera comprised of four Electron Multiplying Charge-Coupled Devices (EM-CCDs). While CCDs have been extensively used in space applications; EM-CCDs are seldom used in this environment and even more rarely for X-ray photon counting applications, making them a potential technology risk for larger scale X-ray observatories. This paper will discuss the reasons behind choosing EM-CCDs for the focal plane detector and the developments that have been recently made in the prototype camera electronics and thermal control system.

  16. Combined real-time ultrasound plane wave compounding and linear array optoacoustics

    NASA Astrophysics Data System (ADS)

    Fournelle, Marc; Bost, Wolfgang; Tretbar, Steffen

    2015-07-01

    In optoacoustic imaging, the high optical contrast between different tissue types is combined with the high resolution and low scattering of ultrasound. Using adapted reconstruction algorithms, images of the distribution of light absorption in tissue can be obtained. Such as in any emerging modality, there is limited experience regarding the interpretation of optoacoustic images. For this reason, we developed a flexible hardware platform combining ultrasound imaging with optoacoustics. The system is based on the software processing of channel data and different types of reconstruction algorithms are implemented. It combines optoacoustic imaging based on linear arrays for detection with plane wave compounding ultrasound. Our system further includes a custom made probe based on a 7,5 MHz array, custom made fibre bundles for targeted light delivery and an acoustic coupling pad. The system was characterized on phantoms and first in-vivo datasets from subcutaneous vasculature were acquired.

  17. Depth-Enhanced Integral Imaging with a Stepped Lens Array or a Composite Lens Array for Three-Dimensional Display

    NASA Astrophysics Data System (ADS)

    Choi, Heejin; Park, Jae-Hyeung; Hong, Jisoo; Lee, Byoungho

    2004-08-01

    In spite of the many advantages of integral imaging, the depth of reconstructed three-dimensional (3D) image is limited to around the only one image plane. Here, we propose a novel method for increasing the depth of a reconstructed image using a stepped lens array (SLA) or a composite lens array (CLA). We confirm our idea by fabricating SLA and CLA with two image planes each. By using a SLA or a CLA, it is possible to form the 3D image around several image planes and to increase the depth of the reconstructed 3D image.

  18. Strained layer superlattice focal plane array having a planar structure

    DOEpatents

    Kim, Jin K; Carroll, Malcolm S; Gin, Aaron; Marsh, Phillip F; Young, Erik W; Cich, Michael J

    2012-10-23

    An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.

  19. Blocked impurity band hybrid infrared focal plane arrays for astronomy

    NASA Technical Reports Server (NTRS)

    Reynolds, D. B.; Seib, D. H.; Stetson, S. B.; Herter, T.; Rowlands, N.

    1989-01-01

    High-performance infrared hybrid focal plane arrays using 10- x 50-element Si:As blocked-impurity-band (BIB) detectors (cutoff wavelength = 28 microns) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity-band-conduction technology provides detectors which are nuclear-radiation-hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in the present work is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increased quantum efficiency (particularly at short-wavelength infrared), obtained by varying the BIB detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Measured read noise and dark current for different temperatures are reported. The hybrid array performance achieved demonstrates that BIB detectors are well suited for use in astronomical instrumentation.

  20. InAs/GaSb superlattices for advanced infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Walther, Martin; Schmitz, Johannes; Rutz, Frank; Fleißner, Joachim; Scheibner, Ralf; Ziegler, Johann

    2009-11-01

    We report on the development of high performance focal plane arrays for the mid-wavelength infrared spectral range from 3-5 μm (MWIR) on the basis of InAs/GaSb superlattice photodiodes. An investigation on the minority electron diffusion length with a set of six sample ranging from 190 to 1000 superlattice periods confirms that InAs/GaSb superlattice focal plane arrays achieve very high external quantum efficiency. This enabled the fabrication of a range of monospectral MWIR imagers with high spatial and excellent thermal resolution at short integration times. Furthermore, novel dual-color imagers have been developed, which offer advanced functionality due to a simultaneous, pixel-registered detection of two separate spectral channels in the MWIR.

  1. Modulation Transfer Function Measurement of Infrared Focal-Plane Arrays with Small Fill Factors

    NASA Astrophysics Data System (ADS)

    de la Barrière, Florence; Druart, Guillaume; Guérineau, Nicolas; Rommeluère, Sylvain; Mugnier, Laurent; Gravrand, Olivier; Baier, Nicolas; Lhermet, Nicolas; Destefanis, Gérard; Derelle, Sophie

    2012-10-01

    This paper describes an original method to measure the modulation transfer function (MTF) of an infrared focal-plane array (IRFPA), based on a diffraction grating called a continuously self-imaging grating (CSIG). We give a general methodology to design the test bench, and we describe the data processing approach which has been developed to extract relevant information about the size of the photodiodes and filtering effects. The MTF measurement capability of this method is illustrated with a cooled IRFPA.

  2. Progress in DRS production line for uncooled focal plane arrays

    NASA Astrophysics Data System (ADS)

    Han, Chien J.; Howard, Christopher G.; Howard, Philip E.; Ionescu, Adrian C.; Li, Chuan C.; Monson, John C.; Naranjo, Robert L.; Scholten, Myron J.; Sweeney, R. Michael; Strong, Roger L.; Sullivan, William; Teherani, Towfik H.

    2004-08-01

    To improve its capacity to meet customer needs, DRS Infrared Technologies began technology transfer of the VOx uncooled FPA process from its Anaheim facility to its Dallas facility in the Fall of 2002. The new facility delivered its first U3000 arrays (320x240, 51μm pitch) three months after the VOx deposition system was installed, and produced over 300 units of U3000 per month just twelve months after beginning the transfer. Process enhancements and tool upgrades have enabled excellent control of the microbolometer process. Today, this line selectively fabricates arrays with NETD varying from 30mK to 80mK in 15mK bins with less than 30 ms time constant. The same arrays also have low defect density of less than 2% dead pixels and no more than one row and one column out. The arrays are packaged in imager or radiometer (F/1.4) packages. DRS also transferred small and large format arrays with 25μm pitch under the PEO-Soldier Sensor Producibility to the Dallas facility. Production of the 25μm pitch devices is currently more that 100 units per month and is ramping up to meet customer demand. This paper reports on production progress on the U3000s and the status of U3500 and U6000 25μm pitch array.

  3. Self-correction of telescope surface errors using a correlating focal plane array

    NASA Astrophysics Data System (ADS)

    Cornwell, T. J.; Napier, P. J.

    The effects on the performance of a large radio telescope of aberrations such as reflector surface errors, defocussing, coma and pointing errors can be removed if the telesocpe is equipped with an array feed in its focal plane. If the cross correlations between all possible pairs of array elements are measured, then aberration-free images of radio sources can be obtained. Because of the great cost of building very precise large structures in space, in the future this concept may offer the possibility of a more economical design for a large, high frequency, space-born radio telescope.

  4. Synthesized Bistatic Echo Imaging Using Phased Arrays

    NASA Astrophysics Data System (ADS)

    Soumekh, Mehrdad

    1990-01-01

    An object illuminated by a source produces a scattered signal; this signal depends upon both the source and the physical properties of the object. The problem of deducing coordinates, shape and/or certain physical properties of the object from the measurements of the returned signal is an inverse problem called echo imaging. The problem of echo imaging arises in medical imaging, remote sensing (radar; sonar; geophysical exploration), and non-destructive testing. In this paper, we address the problem of imaging an object form its returned signals using a phased array. Our approach is to exploit the array's various radiation patterns and the recordable portion of the returned signal's spectrum to generate the data base for this echo imaging system. Rapid steering of a phased array's radiation patterns can be achieved electronically. These steered waves can be utilized to synthesize waves with varying angles of propagation. In this case, the recorded returned signal for each direction of propagation can be viewed as data obtained by a bistatic array configuration. We first formulate the imaging problem for a plane wave source in a bistatic configuration. We utilize the two-way propagation time and amplitude of the returned signal to relate the object's properties, reflectivity function and coordinates, to the measured data (system modeling). This relationship is the basis for deducing the object's reflectivity function from the recorded data (inverse problem). We then extend these results for an arbitrary radiation pattern and synthesized radiation patterns generated by an array capable of beam steering in cross-range. We show that the recorded returned signals can be related to the spatial frequency contents of the reflectivity function. We also show that these array processing principles can be utilized to formulate a system model and inversion for synthetic aperture radar (SAR) imaging that incorporates wavefront curvature.

  5. 256 x 256 hybrid HgCdTe infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Bailey, Robert B.; Kozlowski, Lester J.; Chen, Jenkon; Bui, Duc Q.; Vural, Kadri

    1991-05-01

    Hybrid HgCdTe 256 x 256 focal plane arrays have been developed to meet the sensitivity, resolution, and field-of-view requirements of high-performance medium-wavelength infrared (MWIR) imaging systems. The detector arrays for these hybrids are fabricated on substrates that reduce or eliminate the thermal expansion mismatch to the silicon readout circuit. The readouts are foundry-processed CMOS switched-FET circuits that have charge capacities greater than 107 electrons and a single video output capable of 10-MHz data rates. The high quantum efficiency, tunable absorption wavelength, and broad operating temperature range of these large HgCdTe staring focal plane arrays give them significant advantages over competing sensors. The mature Producible Alternative to CdTe for Epitaxy-1 (PACE-1) technology, using sapphire detector substrates, has demonstrated 256 x 256 MWIR arrays with mean laboratory noise equivalent temperature difference (NETO) of 9 mK for a 4.9-micron cutoff wavelength, 40-micron pixel size, and 80-K operating temperature. RMS detector response nonuniformities are less than 4 percent, and pixel yields are greater than 99 percent. The newly developed PACE-3 process uses silicon for the detector substrate to eliminate completely the thermal mismatch with the silicon readout circuit. It has the potential for similar performance in even larger array sizes. A 640 x 480 hybrid array is under development.

  6. On-chip ADC for infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Chen, Guo-qiang; Wang, Pan; Ding, Rui-jun

    2013-09-01

    This paper presents a low power and small area analog-digital converter (ADC) for infrared focal plane arrays (IRFPA) readout integrated circuit (ROIC). Successive approximation register (SAR) ADC architecture is used in this IRFPA readout integrated circuit. Each column of the IRFPA shares one SAR ADC. The most important part is the three-level DAC. Compared to the previous design, this three-level DAC needs smaller area, has lower power, and more suitable for IRFPA ROIC. In this DAC, its most significant bit (MSB) sub-DAC uses charge scaling, while the least significant bit (LSB) sub-DAC uses voltage scaling. Where the MSB sub-DAC consists of a four-bit charge scaling DAC and a five-bit sub-charge scaling DAC. We need to put a scaling capacitor Cs between these two sub-DACs. Because of the small area, we have more design methods to make the ADC has a symmetrical structure and has higher accuracy. The ADC also needs a high resolution comparator. In this design the comparator uses three-stage operational amplifier structure to have a 77dB differential gain. As the IR focal plane readout circuit signal is stepped DC signal, the circuit design time without adding the sample and hold circuit, so we can use a DC signal instead of infrared focal plane readout circuit output analog signals to be simulated. The simulation result shows that the resolution of the ADC is 12 bit.

  7. A Prototype Imager for the CHARA Array

    NASA Astrophysics Data System (ADS)

    Turner, Nils Henning

    1998-11-01

    Traditional methods of data collection in active fringe tracking Michelson stellar interferometers involve logging and analyzing the signals within the fringe tracking system for the scientific information about the object being observed. While these methods are robust and have produced excellent scientific results, they become more problematic as next-generation Michelson stellar interferometers are built with more telescopes and the aim of performing routine imaging. The Center for High Angular Resolution Astronomy (CHARA) Array is one such next-generation instrument presently under construction on Mount Wilson, north of Los Angeles, California. The CHARA Array will feature a separation of the tasks of active fringe tracking and imaging, thereby increasing the bandwidth, sensitivity, and data acquisition rate. Presented is a prototype version of an imager for the CHARA Array. The prototype imager employs single-mode fiber optic strands to convey the light from simulated telescopes to a smaller, non-redundant, remapped pupil plane, which in turn feeds a low resolution prism spectrograph. The spectrograph features two cylindrical optical elements whose net effect is to focus the light to a smaller plate scale in the spectral dimension than in the orthogonal spatial dimension. The actual Array imager will build on lessons learned from the prototype and will include capability for five telescopes, further degrees of freedom in adjustment, a computer interface, and automatic intensity calibration.

  8. Dual-band technology on indium gallium arsenide focal plane arrays

    NASA Astrophysics Data System (ADS)

    Dixon, Peter; Hess, Cory D.; Li, Chuan; Ettenberg, Martin; Trezza, John

    2011-06-01

    While InGaAs-based SWIR imaging technology has been improved dramatically over the past 10 years, the motivation remains to reduce Size Weight and Power (SWaP) for applications in Intelligence Surveillance and Reconnaissance (ISR). Goodrich ISR Systems, Princeton (Sensors Unlimited, Inc.) has continued to improve detector sensitivity. Additionally, SUI is working jointly with DRS-RSTA to develop innovative techniques for manufacturing dual-band focal planes to provide next generation technology for not only reducing SWaP for SWIR imagers, but also to combine imaging solutions for providing a single imager for Visible Near-SWIR (VNS) + LW imaging solutions. Such developments are targeted at reducing system SWaP, cost and complexity for imaging payloads on board UASs as well as soldier deployed systems like weapon sights. Our motivation is to demonstrate capability in providing superior image quality in fused LWIR and SWIR imaging systems, while reducing the total system SWaP and cost by enabling Short Wave and Thermal imaging in a single uncooled imager. Under DARPA MTO awarded programs, a LW bolometer (DRS-RSTA) is fabricated on a Short Wave (SW) InGaAs Vis-SWIR (SUI-Goodrich) Imager. The combined imager is a dual-band Sensor-Chip Assembly which is capable of imaging in VIS-SWIR + LW. Both DRS and Goodrich have developed materials and process enhancements to support these dual-band platform investigations. The two imagers are confocal and coaxial with respect to the incident image plane. Initial work has completed a single Read Out Integrated Circuit (ROIC) capable of running both imagers. The team has hybridized InGaAs Focal planes to 6" full ROIC wafers to support bolometer fabrication onto the SW array.

  9. Development of a 2K x 2K GaAs QWIP Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Choi, K.; Jhabvala, C.; Kelly, D.; Hess, L.; Ewin, A.; La, A.; Wacynski, A.; Sun, J.; Adachi, T.; Costen, N.; Ni, Q.; Snodgrass, Stephen; Foltz, Roger

    2013-01-01

    We are developing the next generation of GaAs Quantum Well Infrared Photodetector (QWIP) focal plane arrays (FPAs) in preparation for future NASA space-borne Earth observing missions. It is anticipated that these missions will require both wider ground spatial coverage as well as higher ground imaging resolution. In order to demonstrate our capability in meeting these future goals we have taken a two-tiered approach in the next stage of advanced QWIP focal plane array development. We will describe our progress in the development of a 512 x 3,200 (512 x 3K) array format for this next generation thermal imaging array for the NASA Landsat project. However, there currently is no existing readout integrated circuit (ROIC) for this format array.so to demonstrate the ability to scale-up an existing ROIC we developed a 1,920 x 2,048 (2K x 2K) array and it hybridized to a Raytheon SB419 CTIA readout integrated circuit that was scaled up from their existing 512 x 640 SB339 ROIC. Two versions of the 512 x 3K QWIP array were fabricated to accommodate a future design scale-up of both the Indigo 9803 ROIC based on a 25 micron pixel dimension and a scale up of the Indigo 9705 ROIC based on a 30 micron pixel dimension. Neither readout for the 512 x 3K has yet to be developed but we have fabricated both versions of the array. We describe the design, development and test results of this effort as well as the specific applications these FPAs are intended to address.

  10. In-plane photonic transduction for microcantilever sensor arrays

    NASA Astrophysics Data System (ADS)

    Nordin, Gregory P.; Noh, Jong Wok; Kim, Seunghyun

    2007-02-01

    Microcantilevers show significant promise in sensing minute quantities of chemical and biological analytes in vapor and liquid media. Much of the reported work on microcantilever sensors has made use of single functionalized microcantilevers, usually derived from commercially available atomic force microscope (AFM) cantilevers. However, arrays with hundreds to thousands of microcantilevers on a single chip are required to create sophisticated, broad spectrum chemical and biological sensors in which individual microcantilevers have different bio- or chemoselective coatings. Unfortunately, the most sensitive microcantilever readout mechanisms (such as laser beam reflection as used in atomic force microscopy) are not readily scalable to large arrays. We therefore introduce a new microcantilever transduction mechanism for silicon-on-insulator (SOI) microcantilevers that is designed to scale to large arrays while maintaining a very compact form factor and high sensitivity. This mechanism is based on in-plane photonic transduction of microcantilever deflection in which the microcantilever itself forms a single mode rib waveguide. Light from the end of the microcantilever is directed across a small gap to an asymmetric receiving waveguide with two outputs that enables differential detection of microcantilever deflection. Initial noise and optical power budget calculations indicate that deflection sensitivities in the 10's of picometer range should be achievable.

  11. Reusable, adhesiveless and arrayed in-plane microfluidic interconnects

    NASA Astrophysics Data System (ADS)

    Lo, R.; Meng, E.

    2011-05-01

    A reusable, arrayed interconnect capable of providing multiple simultaneous connections to and from a microfluidic device in an in-plane manner without the use of adhesives is presented. This method uses a 'pin-and-socket' design in which an SU-8 anchor houses multiple polydimethysiloxane septa (the socket) that each receive a syringe needle (the pin). A needle array containing multiple commercially available 33G (203 µm outer diameter) needles (up to eight) spaced either 2.54 or 1 mm (center-to-center) pierces the septa to access the microfluidic device interior. Finite element modeling and photoelastic stress experiments were used to determine the stress distribution during needle insertion; these results guided the SU-8 septa housing and septa design. The impact of needle diameter, needle tip style, insertion rate and number of needles on pre-puncture, post-puncture and removal forces was characterized. Pressurized connections to SU-8 channel systems withstood up to 62 kPa of pressurized water and maintained 25 kPa of pressurized water for over 24 h. The successful integration and functionality of the interconnect design with surface micromachined Parylene C microchannels was verified using Rhodamine B dye. Dual septa systems to access a single microchannel were demonstrated. Arrayed interconnects were compatible with integrated microfluidic systems featuring electrochemical sensors and actuators.

  12. Examination of cotton fibers and common contaminants using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical imaging of cotton fibers and common contaminants in fibers is presented. Chemical imaging was performed with an infrared microscope equipped with a Focal-Plane Array (FPA) detector. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In a...

  13. Optical-based spectral modeling of infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Mouzali, Salima; Lefebvre, Sidonie; Rommeluère, Sylvain; Ferrec, Yann; Primot, Jérôme

    2016-07-01

    We adopt an optical approach in order to model and predict the spectral signature of an infrared focal plane array. The modeling is based on a multilayer description of the structure and considers a one-dimensional propagation. It provides a better understanding of the physical phenomena occurring within the pixels, which is useful to perform radiometric measurements, as well as to reliably predict the spectral sensitivity of the detector. An exhaustive model is presented, covering the total spectral range of the pixel response. A heuristic model is also described, depicting a complementary approach that separates the different optical phenomena inside the pixel structure. Promising results are presented, validating the models through comparison with experimental results. Finally, advantages and limitations of this approach are discussed.

  14. Integration of IR focal plane arrays with massively parallel processor

    NASA Astrophysics Data System (ADS)

    Esfandiari, P.; Koskey, P.; Vaccaro, K.; Buchwald, W.; Clark, F.; Krejca, B.; Rekeczky, C.; Zarandy, A.

    2008-04-01

    The intent of this investigation is to replace the low fill factor visible sensor of a Cellular Neural Network (CNN) processor with an InGaAs Focal Plane Array (FPA) using both bump bonding and epitaxial layer transfer techniques for use in the Ballistic Missile Defense System (BMDS) interceptor seekers. The goal is to fabricate a massively parallel digital processor with a local as well as a global interconnect architecture. Currently, this unique CNN processor is capable of processing a target scene in excess of 10,000 frames per second with its visible sensor. What makes the CNN processor so unique is that each processing element includes memory, local data storage, local and global communication devices and a visible sensor supported by a programmable analog or digital computer program.

  15. Advanced III/V quantum-structure devices for high performance infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Walther, Martin; Schmitz, Johannes; Rutz, Frank; Fleissner, Joachim; Scheibner, Ralf; Ziegler, Johann

    2009-09-01

    A mature production technology for Quantum Well Infrared Photodetector (QWIP) focal plane arrays (FPAs) and InAs/GaSb superlattice (SL) FPAs has been developed. Dual-band and dual-color QWIP- and SL-imagers are demonstrated for the 3-5 μm and 8-12 μm atmospheric windows in the infrared. The simultaneous, co-located detection of both spectral channels resolves the temporal and spatial registration problems common to existing bispectral IRimagers. The ability for a reliable remote detection of hot CO2 signatures makes tailored dual-color superlattice imagers ideally suited for missile warning systems for airborne platforms.

  16. Hybrid Image-Plane/Stereo Manipulation

    NASA Technical Reports Server (NTRS)

    Baumgartner, Eric; Robinson, Matthew

    2004-01-01

    Hybrid Image-Plane/Stereo (HIPS) manipulation is a method of processing image data, and of controlling a robotic manipulator arm in response to the data, that enables the manipulator arm to place an end-effector (an instrument or tool) precisely with respect to a target (see figure). Unlike other stereoscopic machine-vision-based methods of controlling robots, this method is robust in the face of calibration errors and changes in calibration during operation. In this method, a stereoscopic pair of cameras on the robot first acquires images of the manipulator at a set of predefined poses. The image data are processed to obtain image-plane coordinates of known visible features of the end-effector. Next, there is computed an initial calibration in the form of a mapping between (1) the image-plane coordinates and (2) the nominal three-dimensional coordinates of the noted end-effector features in a reference frame fixed to the main robot body at the base of the manipulator. The nominal three-dimensional coordinates are obtained by use of the nominal forward kinematics of the manipulator arm that is, calculated by use of the currently measured manipulator joint angles and previously measured lengths of manipulator arm segments under the assumption that the arm segments are rigid, that the arm lengths are constant, and that there is no backlash. It is understood from the outset that these nominal three-dimensional coordinates are likely to contain possibly significant calibration errors, but the effects of the errors are progressively reduced, as described next. As the end-effector is moved toward the target, the calibration is updated repeatedly by use of data from newly acquired images of the end-effector and of the corresponding nominal coordinates in the manipulator reference frame. By use of the updated calibration, the coordinates of the target are computed in manipulator-reference-frame coordinates and then used to the necessary manipulator joint angles to position

  17. Design of a focal plane array with analog neural preprocessing

    NASA Astrophysics Data System (ADS)

    Koren, Ivo; Dohndorf, Juergen; Schluessler, Jens-Uwe; Werner, Joerg; Kroenig, Arndt; Ramacher, Ulrich

    1996-12-01

    The design of a CMOS focal plane array with 128 by 128 pixels and analog neural preprocessing is presented. Optical input to the array is provided by substrate-well photodiodes. A two-dimensional neural grid wIth next- neighbor connectivity, implemented as differential current- mode circuit, is capable of spatial low-pass filtering combined with contrast enhancement or binarization. The gain, spatial filter and nonlinearity parameters of the neural network are controlled externally using analog currents. This allows the multipliers and sigmoid transducers to be operated in weak inversion for a wide parameter sweep range as well as in moderate or strong inversion for a larger signal to pattern-noise ratio. The cell outputs are sequentially read out by an offset compensated differential switched-capacitor multiplexer with column preamplifiers. The analog output buffer is designed for pixel rates up to 1 pixel/microsecond and 2 by 100 pF load capacitance. All digital clocks controlling the analog data path are generated on-chip. The clock timing is programmable via a serial computer interface. Using 1 micrometer double-poly double-metal CMOS process, one pixel cell occupies 96 by 96 micrometer2 and the total chip size is about 2.3 cm2. Operating the neural network in weak inversion, the power dissipation of the analog circuitry is less than 100 mW.

  18. Sparse aperture detection and imaging of millimeter sources via optical image-plane interferometry

    NASA Astrophysics Data System (ADS)

    Biswas, Indraneil; Schuetz, Christopher A.; Martin, Richard D.; Prather, Dennis W.; Mirotznik, Mark S.

    2007-10-01

    We attempt to perform real time detection and direct high resolution imaging of millimeter blackbody sources using sparse aperture interferometry. We reject heterodyne technology for a multitude of factors including bulky equipment, cryogenic cooling, long integration times, and indirect imaging. An alternative method is to convert the incoming millimeter waves into optical and perform optical image-plane interferometry in real time. This method is suitable for snapshot-imaging of short-lived phenomena, often encountered in defense and security applications. The approach presented in this work utilizes a millimeter wave antenna array coupled to an optical interferometer which images directly on a detector array for image read-out, processing, and storage. To minimize the maximum sidelobes of the point spread function, we choose an antenna array composed of two concentric hexagonal rings, such that the outer ring is ~3 times the inner ring. This design ensures more or less uniform and isotropic spatial frequency coverage, eliminating difficulties associated with resolving out structures whose spatial frequencies are in between that of the single aperture diameter and those of the baselines. The Fourier coverage of this array is the sum of the Fourier coverage of the outer ring plus that of the inner ring added to that of the baselines between the inner and outer rings. The need for delay lines is done away with by mounting all the apertures on the same plane. The incoming millimeter signals are fed through electro-optical modulators for upconversion onto an optical carrier, which can be readily captured, routed, and processed using optical techniques. The optical waves are fed via a fiber optic array onto a microlens array which is a scaled down version of the antenna array configuration. Then homodyne interferometry is performed. We reject pupil-plane (Michelson) interferometry based on a multitude of factors. The main drawback is that pupil-plane interferometers

  19. Imaging antenna array at 119 microns. [for plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Neikirk, N. P.; Tong, P. P.; Putledge, D. B.; Park, H.; Young, P. E.

    1982-01-01

    A focal-plane imaging antenna array has been demonstrated at 119 microns. The array is a line of evaporated silver bow-tie antennas with bismuth microbolometer detectors on a silicon substrate. Radiation is coupled into the array by a lens placed on the back of the substrate. The bolometers are thermally isolated from the silicon substrate with a half-micron layer of polyimide. The array performance is demonstrated by coherent imaging of a series of holes at half the diffraction-limited cut-off frequency.

  20. Dual-Color InAs/GaSb Superlattice Focal-Plane Array Technology

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Walther, Martin; Rutz, Frank; Schmitz, Johannes; Wörl, Andreas; Masur, Jan-Michael; Scheibner, Ralf; Wendler, Joachim; Ziegler, Johann

    2011-08-01

    Within a very few years, InAs/GaSb superlattice technology has proven its suitability for high-performance infrared imaging detector arrays. At the Fraunhofer Institute for Applied Solid State Physics (IAF) and AIM Infrarot-Module GmbH, efforts have been focused on developing mature fabrication technology for dual-color InAs/GaSb superlattice focal-plane arrays for simultaneous, colocated detection at 3 μm to 4 μm and 4 μm to 5 μm in the mid-wavelength infrared atmospheric transmission window. Integrated into a wide-field-of-view missile approach warning system for an airborne platform, a very low number of pixel outages and cluster defects is mandatory for bispectral detector arrays. Process refinements, intense root-cause analysis, and specific test methodologies employed at various stages during the process have proven to be the key for yield enhancements.

  1. Multi-Color Megapixel QWIP focal plane arrays for remote sensing

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, S. V.; Liu, J. K.; Hill, C. J.; Rafol, S. B.; Mumolo, J. M.; Trinh, J. T.; Tidrow, M. Z.; LeVan, P. D.

    2005-01-01

    In this paper, we will discuss the performance in terms of quantum efficiency, NEAT, uniformity, operability, and modulation transfer functions of the 1024x1024 pixel arrays and the progress of dualband QWIP focal plane array development work.

  2. Development of high performance SWIR InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Nagi, Richie; Bregman, Jeremy; Mizuno, Genki; Oduor, Patrick; Olah, Robert; Dutta, Achyut K.; Dhar, Nibir K.

    2015-05-01

    Banpil Photonics has developed a novel InGaAs based photodetector array for Short-Wave Infrared (SWIR) imaging, for the most demanding security, defense, and machine vision applications. These applications require low noise from both the detector and the readout integrated circuit arrays. In order to achieve high sensitivity, it is crucial to minimize the dark current generated by the photodiode array. This enables the sensor to function in extremely low light situations, which enables it to successfully exploit the benefits of the SWIR band. In addition to minimal dark current generation, it is essential to develop photodiode arrays with higher operating temperatures. This is critical for reducing the power consumption of the device, as less energy is spent in cooling down the focal plane array (in order to reduce the dark current). We at Banpil Photonics are designing, simulating, fabricating and testing SWIR InGaAs arrays, and have achieved low dark current density at room temperature. This paper describes Banpil's development of the photodetector array. We also highlight the fabrication technique used to reduce the amount of dark current generated by the photodiode array, in particular the surface leakage current. This technique involves the deposition of strongly negatively doped semiconductor material in the area between the pixels. This process reduces the number of dangling bonds present on the edges of each pixel, which prevents electrons from being swept across the surface of the pixels. This in turn drastically reduces the amount of surface leakage current at each pixel, which is a major contributor towards the total dark current. We present the optical and electrical characterization data, as well as the analysis that illustrates the dark current mechanisms. Also highlighted are the challenges and potential opportunities for further reduction of dark current, while maintaining other parameters of the photodiode array, such as size, weight, temperature

  3. Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin Edward; Belikov, Ruslan; Guyon, Olivier; Balasubramanian, Kunjithapatham; Wilson, Dan

    2013-01-01

    Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e10 at 4 lambda/D and 1e-9 at 2 lambda/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization coronagraph.

  4. Method of fabricating multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1996-01-01

    A multiwavelength local plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y.ltoreq.1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  5. Corrugated Quantum Well Infrared Photodetector Focal Plane Array Test Results

    NASA Technical Reports Server (NTRS)

    Goldberg, A.; Choi, K. K.; Das, N. C.; La, A.; Jhabvala, M.

    1999-01-01

    The corrugated quantum-well infrared photodetector (C-QWIP) uses total internal reflection to couple normal incident light into the optically active quantum wells. The coupling efficiency has been shown to be relatively independent of the pixel size and wavelength thus making the C-QWIP a candidate for detectors over the entire infrared spectrum. The broadband coupling efficiency of the C-QWIP makes it an ideal candidate for multiwavelength detectors. We fabricated and tested C-QWIP focal plane arrays (FPAs) with cutoff wavelengths of 11.2 and 16.2 micrometers. Each FPA has 256 x 256 pixels that are bump-bonded to a direct injection readout circuit. Both FPAs provided infrared imagery with good aesthetic attributes. For the 11.2-micrometers FPA, background-limited performance (BLIP) was observed at 60 K with f/3 optics. For the 16.2-micrometers FPA, BLIP was observed at 38 K. Besides the reduction of dark current in C-QWIP structures, the measured internal quantum efficiency (eta) remains to be high. The values for responsivity and quantum efficiency obtained from the FPA results agree well with those measured for single devices.

  6. Scanned Image Projection System Employing Intermediate Image Plane

    NASA Technical Reports Server (NTRS)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)

    2014-01-01

    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  7. Plane Wave Imaging for ultrasonic non-destructive testing: Generalization to multimodal imaging.

    PubMed

    Le Jeune, Léonard; Robert, Sébastien; Lopez Villaverde, Eduardo; Prada, Claire

    2016-01-01

    This paper describes a new ultrasonic array imaging method for Non-Destructive Testing (NDT) which is derived from the medical Plane Wave Imaging (PWI) technique. The objective is to perform fast ultrasound imaging with high image quality. The approach is to transmit plane waves at several angles and to record the back-scattered signals with all the array elements. Focusing in receive is then achieved by coherent summations of the signals in every point of a region of interest. The medical PWI is generalized to immersion setups where water acts as a coupling medium and to multimodal (direct, half-skip modes) imaging in order to detect different types of defects (inclusions, porosities, cracks). This method is compared to the Total Focusing Method (TFM) which is the reference imaging technique in NDT. First, the two post-processing algorithms are described. Then experimental results with the array probe either in contact or in immersion are presented. A good agreement between the TFM and the PWI is observed, with three to ten times less transmissions required for the PWI. PMID:26323547

  8. The fabrication of out of plane aspherical microlens arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wang, Wanjun

    2013-03-01

    MOEMS (Micro-Opto-Elecro-Mechanical Systems) has brought new inspirations to the traditional optics design and manufacturing, due to their advantages such as micro sizes, low cost, good performance, easy to integrate, and mass production. From the microfabrication technology perspective, microlens is among the most difficult components to make, and it is also the most important component of all free space micro-optic components. In recent years, the aspherical lens with controllable curvature has become one of the most popular research subjects since it is helpful in eliminating aberration. In this paper, we report a new method of fabricating and replicating aspherical microlens array with primary optic axis in parallel with the substrate surface. The technology was based on ultra-violet (UV) lithography of SU-8 thick resist. A novel water bath oblique lithography technique was adopted. Diameter of the prototype microlenses fabricated is about 200 μm. By changing the pattern of mask and other process parameters, aspherical microlenses with different sizes and surface curvatures can be obtained. The microlens made using this technique has its main optical axis in parallel with the substrate, this makes it much easier to be integrated with other components into on-chip optical platforms such as optical switch and the imaging systems. This kind of micro-lens arrays will also be incorporated to microfluidic systems such as micro flow cytometry for fluorescence detections.

  9. Compact polarimeters based on polarization-sensitive focal plane arrays

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Ninkov, Zoran

    2014-08-01

    We report on the design, fabrication and performance of the Rochester Institute of Technology Polarization Imaging Camera (RITPIC). Despite great advances in astronomical (and terrestrial remote sensing) instrumentation, the measurement of polarization of light remains challenging and infrequent. Recently, the fabrication of micropolarizer arrays has allowed the development of compact polarimeters which promise to make polarimetry more accessible. These devices are capable of measuring the degree of polarization (DoP) and angle of polarization (AoP) across a scene using a single exposure ("snapshot"). They are compact, light-weight and mechanically robust, making them ideal for deployment on space-based platforms. We present the performance of such a polarimeter and describe the kind of science that is possible with RITPIC and future generations of these revolutionary devices.

  10. Measurement of image plane illumination uniformity of photoelectric imaging system

    NASA Astrophysics Data System (ADS)

    Kang, Deng-kui; Yang, Hong; Sha, Ding-guo; Jiang, Chang-lu; Chen, Min; Zhong, Xing-hui; Ma, Shi-bang; Yuan, Liang

    2014-09-01

    The image plane illumination nonuniformity caused by optical system or detector will affect the detection precision of photoelectric imaging system, especially in image guidance, positioning and recognition. An image plane illumination uniformity measurement device was set up, which was characteristiced of high uniformity and wide dynamic range. The device was composed of an asymmetric integrating sphere,the image collection and processing system, as well as the electrical control system.The asymmetric integrating sphere had two different radius,which was respectively 800mm and 1000mm.The spectral region was (0.4~1.1)μm, the illumination range was (1×10-4~2×104)lx. The image collection and processing system had two different acquisition card,which were respectively used for analog and digital signals. The software can process for dynamic image or static image. The TracePro software was used to make a internal ray tracing of integrating sphere, the illumination uniformity at the export was simulated for the size of 330mm×230mm and Φ 100mm export, the results were respectively 97.95% and 98.33%. Then,an illuminometer was used to measure the actual illumination uniformity of integrating sphere, the result was shown the actual illumination uniformity was 98.8%. Finally, a visible photoelectric imaging system was tested ,and three different uniformity indicators results were given.

  11. Design trade-offs in ADC architectures dedicated to uncooled focal plane arrays

    NASA Astrophysics Data System (ADS)

    Robert, P.; Dupont, B.; Pochic, D.

    2008-04-01

    This paper presents two different architectures for the design of Analog to Digital Converters specifically adapted to infrared bolometric image sensors. Indeed, the increasing demand for integrated functions in uncooled readout circuits leads to on-chip ADC design as an interface between the internal analog core and the digital processing electronics. However specifying an on-chip ADC dedicated to focal plane array raises many questions about its architecture and its performance requirements. We will show that two architecture approaches are needed to cover the different sensor features in terms of array size and frame speed. A monolithic 14 bits ADC with a pipeline architecture, and a column 13 bits ADC with an original dual-ramp architecture, will be described. Finally, we will show measurement results to confirm the monolithic ADC is suitable for small array, as 160 x 120 with low frame speed, while a column ADC is more compliant for higher array, as 640 x 480 with a 60 Hz frame speed or 1024 x 768 arrays.

  12. System and method for generating a deselect mapping for a focal plane array

    SciTech Connect

    Bixler, Jay V; Brandt, Timothy G; Conger, James L; Lawson, Janice K

    2013-05-21

    A method for generating a deselect mapping for a focal plane array according to one embodiment includes gathering a data set for a focal plane array when exposed to light or radiation from a first known target; analyzing the data set for determining which pixels or subpixels of the focal plane array to add to a deselect mapping; adding the pixels or subpixels to the deselect mapping based on the analysis; and storing the deselect mapping. A method for gathering data using a focal plane array according to another embodiment includes deselecting pixels or subpixels based on a deselect mapping; gathering a data set using pixels or subpixels in a focal plane array that are not deselected upon exposure thereof to light or radiation from a target of interest; and outputting the data set.

  13. Mid-Wave and Long-Wave Infrared Dualband Megapixel QWIP Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Hill, C. J.; Ting, D. Z.; Kurth, E.; Woolaway, J.; LeVan, P. D.; Tidrow, M. Z.

    2008-01-01

    Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024x1024 pixel InGaAs/GaAs/AlGaAs based quantum well infrared photodetector (QWIP) focal planes and a 320x256 pixel dual-band pixel co-registered simultaneous QWIP focal plane array have been demonstrated as pathfinders. In this paper, we discuss the development of 1024x1024 MWIR/LWIR dual-band pixel co-registered simultaneous QWIP focal plane array.

  14. Advances in passive imaging elements with micromirror array

    NASA Astrophysics Data System (ADS)

    Maekawa, Satoshi; Nitta, Kouichi; Matoba, Osamu

    2008-02-01

    We have proposed a new passive imaging optics which consists of a grid array of micro roof mirrors working as dihedral corner reflectors. Although this element forms mirror-like images at opposite side of objects, the images are real. Because the imaging principle of the proposed element is based on accumulation of rays, the design of each light path makes many kinds of devices possible. So, we propose two variations of such a device. One device consists of an array of micro retroreflectors and a half mirror, and it can also form real mirror-like images. The advantage of this device is wide range of view, because the displacement of each retororeflector is not limited on a plane unlike the roof mirror grid array. The other consists of an array of long dihedral corner reflectors. Although this structure has been already known as a roof mirror array, it can be used for imaging. This device forms two heterogeneous images. One is real at the same side of an object, and the other is virtual at the opposite side. This is a conjugate imaging optics of a slit mirror array whose mirror surface is perpendicular to the device surface. The advantage of a roor mirror array is that the real image has horizontal parallax and can be seen in air naturally.

  15. Fiber optically coupled infrared focal plane array system for use in missile warning receiver applications

    NASA Astrophysics Data System (ADS)

    Daniels, Arnold; Liepmann, Till W.

    1999-07-01

    The location and installation of mid-infrared missile warning receiver sensors is limited by the mechanical constraints of the detector/dewar assembly and the associated cryogenic cooler assembly. The size, shape, and weight of these assemblies limit the installation alternatives, and prevent placing the missile warning receiver system in the optimum locations. Hence, their coverage and detection performance is limited. A micro-lens array coupled to a coherent fiber optic bundle and an infrared focal plane array were designed and experimentally implemented, to allow the mid-wave sensor and cryogenic devices to be located remotely from the receiver aperture. This eliminates the receiver aperture placement restrictions while easing the integration and maintenance of the sensor/dewar and cooler. Modulation transfer function and noise equivalent temperature difference measurements were performed to determine the performance of the imaging system.

  16. Characterization of type II SLS n-CBIRD focal plane array

    NASA Astrophysics Data System (ADS)

    Rafol, S. B.; Gunapala, S. D.; Ting, D. Z.; Soibel, A.; Khoshakhlagh, A.; Nguyen, J.; Höglund, L.; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Luong, E. M.

    2012-10-01

    New generation of focal plane arrays (FPAs) based on type II SLS, which are hybrids of detector array and Read Out Integrated Circuits (ROIC), present extraordinary challenge to characterize. The standard performance metrics are: temporal NEΔT, noise equivalent irradiance (NEI), quantum efficiency, dark current and modulation transfer function (MTF). Imaging system modulation Transfer Function (MTF) is an important quantitative metric of performance in spatial domain, but it is rarely reported in the literature especially for type II SLS. MTF measurement is believed to be a good metric of performance for camera systems in addition to standard performance parameters. The paper will report on the characterization of complimentary barrier infrared detector n-CBIRD FPA.

  17. Multiple detector focal plane array ultraviolet spectrometer for the AMPS laboratory

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    1975-01-01

    The possibility of meeting the requirements of the amps spectroscopic instrumentation by using a multi-element focal plane detector array in a conventional spectrograph mount was examined. The requirements of the detector array were determined from the optical design of the spectrometer which in turn depends on the desired level of resolution and sensitivity required. The choice of available detectors and their associated electronics and controls was surveyed, bearing in mind that the data collection rate from this system is so great that on-board processing and reduction of data are absolutely essential. Finally, parallel developments in instrumentation for imaging in astronomy were examined, both in the ultraviolet (for the Large Space Telescope as well as other rocket and satellite programs) and in the visible, to determine what progress in that area can have direct bearing on atmospheric spectroscopy.

  18. Low dark current LWIR HgCdTe focal plane arrays at AIM

    NASA Astrophysics Data System (ADS)

    Haiml, M.; Eich, D.; Fick, W.; Figgemeier, H.; Hanna, S.; Mahlein, M.; Schirmacher, W.; Thöt, R.

    2016-05-01

    Cryogenically cooled HgCdTe (MCT) quantum detectors are unequalled for applications requiring high imaging as well as high radiometric performance in the infrared spectral range. Compared with other technologies, they provide several advantages, such as the highest quantum efficiency, lower power dissipation compared to photoconductive devices, and fast response times, hence outperforming micro-bolometer arrays. AIM will present its latest results on n-on-p as well as p-on-n low dark current planar MCT photodiode focal plane detector arrays at cut-off wavelengths >11 μm at 80 K. Dark current densities below the Rule'07 have been demonstrated for n-on-p devices. Slightly higher dark current densities and excellent cosmetics with very low cluster and point defect densities have been demonstrated for p-on-n devices.

  19. Array Technology for Terahertz Imaging

    NASA Technical Reports Server (NTRS)

    Reck, Theodore; Siles, Jose; Jung, Cecile; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, Imran; Cooper, Ken

    2012-01-01

    Heterodyne terahertz (0.3 - 3THz) imaging systems are currently limited to single or a low number of pixels. Drastic improvements in imaging sensitivity and speed can be achieved by replacing single pixel systems with an array of detectors. This paper presents an array topology that is being developed at the Jet Propulsion Laboratory based on the micromachining of silicon. This technique fabricates the array's package and waveguide components by plasma etching of silicon, resulting in devices with precision surpassing that of current metal machining techniques. Using silicon increases the versatility of the packaging, enabling a variety of orientations of circuitry within the device which increases circuit density and design options. The design of a two-pixel transceiver utilizing a stacked architecture is presented that achieves a pixel spacing of 10mm. By only allowing coupling from the top and bottom of the package the design can readily be arrayed in two dimensions with a spacing of 10mm x 18mm.

  20. Array technology for terahertz imaging

    NASA Astrophysics Data System (ADS)

    Reck, Theodore; Siles, Jose; Jung, Cecile; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, Imran; Cooper, Ken

    2012-06-01

    Heterodyne terahertz (0.3 - 3THz) imaging systems are currently limited to single or a low number of pixels. Drastic improvements in imaging sensitivity and speed can be achieved by replacing single pixel systems with an array of detectors. This paper presents an array topology that is being developed at the Jet Propulsion Laboratory based on the micromachining of silicon. This technique fabricates the array's package and waveguide components by plasma etching of silicon, resulting in devices with precision surpassing that of current metal machining techniques. Using silicon increases the versatility of the packaging, enabling a variety of orientations of circuitry within the device which increases circuit density and design options. The design of a two-pixel transceiver utilizing a stacked architecture is presented that achieves a pixel spacing of 10mm. By only allowing coupling from the top and bottom of the package the design can readily be arrayed in two dimensions with a spacing of 10mm x 18mm.

  1. Automatic determination of the imaging plane in lumbar MRI

    NASA Astrophysics Data System (ADS)

    Masaki, Tsurumaki; Lee, Yongbum; Tsai, Du-Yih; Sekiya, Masaru; Kazama, Kiyoko

    2006-03-01

    In this paper we describe a method for assisting radiological technologists in their routine work to automatically determine the imaging plane in lumbar MRI. The method is first to recognize the spinal cord and the intervertebral disk (ID) from the lumbar vertebra 3-plane localizer image, and then the imaging plane is automatically determined according to the recognition results. To determine the imaging plane, the spinal cord and the ID are automatically recognized from the lumbar vertebra 3-plane localizer image with a series of image processing techniques. The proposed method consists of three major steps. First, after removing the air and fat regions from the 3-plane localizer image by use of histogram analysis, the rachis region is specified with Sobel edge detection filter. Second, the spinal cord and the ID were respectively extracted from the specified rachis region making use of global thresholding and the line detection filter. Finally, the imaging plane is determined by finding the straight line between the spinal cord and the ID with the Hough transform. Image data of 10 healthy volunteers were used for investigation. To validate the usefulness of our proposed method, manual determination of the imaging plane was also conducted by five experienced radiological technologists. Our experimental results showed that the concordance rate between the manual setting and automatic determination reached to 90%. Moreover, a remarkable reduction in execution time for imaging-plane determination was also achieved.

  2. Non-local means-based nonuniformity correction for infrared focal-plane array detectors

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Zhang, Zhi-jie; Chen, Fu-sheng; Wang, Chen-sheng

    2014-11-01

    The infrared imaging systems are normally based on the infrared focal-plane array (IRFPA) which can be considered as an array of independent detectors aligned at the focal plane of the imaging system. Unfortunately, every detector on the IRFPA may have a different response to the same input infrared signal which is known as the nonuniformity problem. Then we can observe the fixed pattern noise (FPN) from the resulting images. Standard nonuniformity correction (NUC) methods need to be recalibrated after a short period of time due the temporal drift of the FPN. Scene-based nonuniformity correction (NUC) techniques eliminate the need for calibration by correction coefficients based on the scene being viewed. However, in the scene-based NUC method the problem of ghosting artifacts widely seriously decreases the image quality, which can degrade the performance of many applications such as target detection and track. This paper proposed an improved scene-based method based on the retina-like neural network approach. The method incorporates the use of non-local means (NLM) method into the estimation of the gain and the offset of each detector. This method can not only estimates the accurate correction coefficient but also restrict the ghosting artifacts efficiently. The proposed method relies on the use of NLM method which is a very successful image denoising method. And then the NLM used here can preserve the image edges efficiently and obtain a reliable spatial estimation. We tested the proposed NUC method by applying it to an IR sequence of frames. The performance of the proposed method was compared the other well-established adaptive NUC techniques.

  3. InGaAs focal plane array developments and perspectives

    NASA Astrophysics Data System (ADS)

    Rouvié, A.; Coussement, J.; Huet, O.; Truffer, J. P.; Pozzi, M.; Oubensaid, E. H.; Hamard, S.; Chaffraix, V.; Costard, E.

    2015-05-01

    SWIR spectral band is an attractive domain thanks to its intrinsic properties. Close to visible wavelengths, SWIR images interpretation is made easier for field actors. Besides complementary information can be extracted from SWIR band and bring significant added value in several fields of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). Among the various new technologies able to detect SWIR wavelengths, InGaAs appears as a key technology. Initially developed for optical telecommunications, this material guaranties performances, stability and reliability and is compatible with attractive production capacity. Thanks to high quality material, very low dark current levels can be achieved at ambient temperature. Then uncooled operation can be set up, allowing compact and low power systems. Since the recent transfer of InGaAs imaging activities from III-Vlab, Sofradir provides a framework for the production activity with the manufacturing of high performances products: CACTUS320 SW. The developments towards VGA format with 15μm pixel pitch, lead today to the industrialization of a new product: SNAKE. On one side, the InGaAs detection array presents high performances in terms of dark current and quantum efficiency. On the other side, the low noise ROIC has different additional functionalities. Then this 640x512 @ 15μm sensor appears as well suited to answer the needs of a wide range of applications. In this paper, we will present the Sofradir InGaAs technology, the performances of our last product SNAKE and the perspectives of InGaAs new developments.

  4. Test plane uniformity analysis for the MSFC solar simulator lamp array

    NASA Technical Reports Server (NTRS)

    Griner, D. B.

    1976-01-01

    A preliminary analysis was made on the solar simulator lamp array. It is an array of 405 tungsten halogen lamps with Fresnel lenses to achieve the required spectral distribution and collimation. A computer program was developed to analyze lamp array performance at the test plane. Measurements were made on individual lamp lens combinations to obtain data for the computer analysis. The analysis indicated that the performance of the lamp array was about as expected, except for a need to position the test plane within 2.7 m of the lamp array to achieve the desired 7 percent uniformity of illumination tolerance.

  5. Infrared focal plane arrays based on dots in a well and strained layer superlattices

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay

    2009-01-01

    In this paper, we will review some of the recent progress that we have made on developing single pixel detectors and focal plane arrays based on dots-in-a-well (DWELL) heterostructure and Type II strained layer superlattice (SLS). The DWELL detector consists of an active region composed of InAs quantum dots embedded in InGaAs/GaAs quantum wells. By varying the thickness of the InGaAs well, the DWELL heterostructure allows for the manipulation of the operating wavelength and the nature of the transitions (bound-to-bound, bound-to-quasibound and bound-to-continuum) of the detector. Based on these principles, DWELL samples were grown using molecular beam epitaxy and fabricated into 320 x 256 focal plane arrays (FPAs) with Indium bumps using standard lithography at the University of New Mexico. The FPA evaluated was hybridized to an Indigo 9705 readout integrated circuit (ROIC). From this evaluation, we have reported the first two-color, co-located quantum dot based imaging system that can be used to take multicolor images using a single FPA. We have also been investigating the use of miniband transitions in Type II SLS to develop infrared detectors using PIN and nBn based designs.

  6. Optically coupled focal plane arrays using lenslets and multiplexers

    DOEpatents

    Veldkamp, Wilfrid B.

    1991-01-01

    A detector array including a substrate having an array of diffractive lenses formed on the top side of the substrate and an array of sensor elements formed on the backside of the substrate. The sensor elements within the sensor array are oriented on the backside so that each sensor is aligned to receive light from a corresponding diffractive lens of the lens array. The detector array may also include a second substrate having an array of diffractive elements formed on one of its surfaces, the second substrate being disposed above and in proximity to the top side of the other substrate so that the elements on the second substrate are substantially aligned with corresponding sensor elements and diffractive lenses on the other substrate.

  7. Handheld ultrasound array imaging device

    NASA Astrophysics Data System (ADS)

    Hwang, Juin-Jet; Quistgaard, Jens

    1999-06-01

    A handheld ultrasound imaging device, one that weighs less than five pounds, has been developed for diagnosing trauma in the combat battlefield as well as a variety of commercial mobile diagnostic applications. This handheld device consists of four component ASICs, each is designed using the state of the art microelectronics technologies. These ASICs are integrated with a convex array transducer to allow high quality imaging of soft tissues and blood flow in real time. The device is designed to be battery driven or ac powered with built-in image storage and cineloop playback capability. Design methodologies of a handheld device are fundamentally different to those of a cart-based system. As system architecture, signal and image processing algorithm as well as image control circuit and software in this device is deigned suitably for large-scale integration, the image performance of this device is designed to be adequate to the intent applications. To elongate the battery life, low power design rules and power management circuits are incorporated in the design of each component ASIC. The performance of the prototype device is currently being evaluated for various applications such as a primary image screening tool, fetal imaging in Obstetrics, foreign object detection and wound assessment for emergency care, etc.

  8. InGaAs focal plane array developments and perspectives

    NASA Astrophysics Data System (ADS)

    Rouvié, A.; Coussement, Jérome; Huet, O.; Truffer, JP.; Pozzi, Maxime; Oubensaid, E. H.; Hamard, S.; Maillart, P.; Costard, E.

    2014-10-01

    Thanks to the various developments presently available, SWIR technology presents a growing interest and gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material, initially developed for telecommunications detectors, appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. In the context of this evolving domain, the InGaAs imagery activities from III-VLab were transferred to Sofradir, which provides a framework for the production activity with the manufacturing of high performances products: CACTUS320 and CACTUS640. The developments towards VGA format with 15μm pixel pitch, lead today to the industrialization of a new product: SNAKE SW. On one side, the InGaAs detection array presents high performances in terms of dark current and quantum efficiency. On the other side, the low noise ROIC has different additional functionalities. Then this 640x512 @ 15μm module appears as well suited to answer the needs of a wide range of applications. In this paper, we will present the Sofradir InGaAs technology, the performances of our last product SNAKE SW and the perspectives of InGaAs new developments.

  9. New developments on InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Coussement, J.; Rouvié, A.; Oubensaid, E. H.; Huet, O.; Hamard, S.; Truffer, J.-P.; Pozzi, M.; Maillart, P.; Reibel, Y.; Costard, E.; Billon-Lanfrey, D.

    2014-06-01

    SWIR detection band benefits from natural (sun, night glow, thermal radiation) or artificial (eye safe lasers) photons sources combined to low atmospheric absorption and specific contrast compared to visible wavelengths. It gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. The recent transfer of imagery activities from III-VLab to Sofradir provides a framework for the production activity with the manufacturing of high performances products: CACTUS320 SW and CACTUS640 SW. The developments, begun at III-Vlab towards VGA format with 15μm pixel pitch, lead today to the industrialization of a new product: SNAKE SW. On one side, the InGaAs detection array presents high performances in terms of dark current and quantum efficiency. On the other side, the low noise ROIC has different additional functionalities. Then this 640×512 @ 15μm module appears as well suited to answer the needs of a wide range of applications. In this paper, we will present the Sofradir InGaAs technology, some performances optimization and the last developments leading to SNAKE SW.

  10. Focal plane array based infrared thermography in fine physical experiment

    NASA Astrophysics Data System (ADS)

    Vainer, Boris G.

    2008-03-01

    By two examples of dissimilar physical phenomena causing thermophysical effects, the unique capabilities of one of the up-to-date methods of experimental physics—focal plane array (FPA) based infrared (IR) thermography (IRT), are demonstrated distinctly. Experimenters inexperienced in IRT can grasp how this method provides a means for combining real-time visualization with quantitative analysis. A narrow-band short-wavelength IR camera was used in the experiments. It is discussed and stated that IRT is best matched and suited to the next two test conditions—when a heated specimen is thin and when heat is generated in the immediate region of a surface of a solid. The first prerequisite is realized in the search for directional patterns of combined low-power radiation sources with the use of the IRT-aided method. The second one is realized in studies of water vapour adsorption on uneven (irregular) surfaces of solid materials. With multiple swatches taken from a set of different fabrics and used as experimental samples, a sharp distinction between adsorptivities of their surfaces is strikingly illustrated by IRT time-domain measurements exhibiting the associated thermal effect ranging within an order of magnitude. It is justified that the described IRT-aided test can find practical implementation at least in the light industry. Emissivities of different fabrics are evaluated experimentally with the described reflection method based on the narrow spectral range of IRT. On the basis of direct IR observations, attention is paid to the need for close control over the surface temperature increase while the adsorption isotherms are being measured. Sensitivity of the FPA-based IRT method, as applied to examine the kinetics of initial stages of adsorption of gaseous molecules on the solid surface, is evaluated analytically and quantitatively. The relationship between the amount of adsorbate and the measurable excess of adsorbent temperature is found. It is discovered

  11. Imaging phased telescope array study

    NASA Technical Reports Server (NTRS)

    Harvey, James E.

    1989-01-01

    The problems encountered in obtaining a wide field-of-view with large, space-based direct imaging phased telescope arrays were considered. After defining some of the critical systems issues, previous relevant work in the literature was reviewed and summarized. An extensive list was made of potential error sources and the error sources were categorized in the form of an error budget tree including optical design errors, optical fabrication errors, assembly and alignment errors, and environmental errors. After choosing a top level image quality requirment as a goal, a preliminary tops-down error budget allocation was performed; then, based upon engineering experience, detailed analysis, or data from the literature, a bottoms-up error budget reallocation was performed in an attempt to achieve an equitable distribution of difficulty in satisfying the various allocations. This exercise provided a realistic allocation for residual off-axis optical design errors in the presence of state-of-the-art optical fabrication and alignment errors. Three different computational techniques were developed for computing the image degradation of phased telescope arrays due to aberrations of the individual telescopes. Parametric studies and sensitivity analyses were then performed for a variety of subaperture configurations and telescope design parameters in an attempt to determine how the off-axis performance of a phased telescope array varies as the telescopes are scaled up in size. The Air Force Weapons Laboratory (AFWL) multipurpose telescope testbed (MMTT) configuration was analyzed in detail with regard to image degradation due to field curvature and distortion of the individual telescopes as they are scaled up in size.

  12. Research in the modulation transfer function (MTF) measurement of InGaAs focal plane arrays

    NASA Astrophysics Data System (ADS)

    Xu, Zhonghua; Fang, Jiaxiong

    2012-10-01

    The Modulation Transfer Function (MTF) of an opto-electrical device is defined as the ratio of the system output modulation to the input modulation, which describes the performance of the imaging system in the Fourier domain. Accurate measurement of the MTF is often obtained by analyzing the high-quality image of a special target reproduced by the optical system with known MTF. To evaluate the MTF of short-wave infrared InGaAs focal plane arrays (FPAs), we develop a laboratory system with high precision and automation based on the slit scan method. An 8*1 linear InGaAs FPAs is then measured by this test set-up for the first time to evaluate the MTF of each pixel at room temperature. The results show a good MTF repeatability and uniformity of the 8*1 InGaAs FPAs. The relationship between the MTF and illumination is also discussed.

  13. Visualization of Subsurface Defects in Composites using a Focal Plane Array Infrared Camera

    NASA Technical Reports Server (NTRS)

    Plotnikov, Yuri A.; Winfree, William P.

    1999-01-01

    A technique for enhanced defect visualization in composites via transient thermography is presented in this paper. The effort targets automated defect map construction for multiple defects located in the observed area. Experimental data were collected on composite panels of different thickness with square inclusions and flat bottom holes of different depth and orientation. The time evolution of the thermal response and spatial thermal profiles are analyzed. The pattern generated by carbon fibers and the vignetting effect of the focal plane array camera make defect visualization difficult. An improvement of the defect visibility is made by the pulse phase technique and the spatial background treatment. The relationship between a size of a defect and its reconstructed image is analyzed as well. The image processing technique for noise reduction is discussed.

  14. Study on 512×128 pixels InGaAs near infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Li, Xue; Tang, Hengjing; Huang, Songlei; Shao, Xiumei; Li, Tao; Huang, Zhangcheng; Gong, Haimei

    2014-10-01

    It is well known that In0.53Ga0.47As epitaxial material is lattice-matched to InP substrate corresponding to the wavelength from 0.9μm to 1.7μm, which results to high quality material and good device characteristics at room temperature. In order to develop the near infrared multi-spectral imaging, 512×128 pixels InGaAs Near Infrared Focal Plane Arrays (FPAs) were studied. The n-InP/i-InGaAs/n-InP double hereto-structure epitaxial material was grown by MBE. The 512×128 back-illuminated planar InGaAs detector arrays were fabricated, including the improvement of passivation film, by grooving the diffusion masking layer, the P type electrode layer, In bump condition and so on. The photo-sensitive region has the diffusion area of 23×23μm2 and pixel pitch of 30×30μm2 . The 512×128 detector arrays were individually hybridized on readout integrated circuit(ROIC) by Indium bump based on flip-chip process to make focal plane arrays (FPAs). The ROIC is based on a capacitive trans-impedance amplifier with correlated double sampling and integrated while readout (IWR) mode with high readout velocity of every pixel resulting in low readout noise and high frame frequency. The average peak detectivity and the response non-uniformity of the FPAs are 1.63×1012 cmHz1/2/W and 5.9%, respectively. The power dissipation and frame frequency of the FPAs are about 180mW and 400Hz, respectively.

  15. Design and testing of an all-digital readout integrated circuit for infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Kelly, Michael; Berger, Robert; Colonero, Curtis; Gregg, Mark; Model, Joshua; Mooney, Daniel; Ringdahl, Eric

    2005-08-01

    The digital focal plane array (DFPA) project demonstrates the enabling technologies necessary to build readout integrated circuits for very large infrared focal plane arrays (IR FPAs). Large and fast FPAs are needed for a new class of spectrally diverse sensors. Because of the requirement for high-resolution (low noise) sampling, and because of the sample rate needed for rapid acquisition of high-resolution spectra, it is highly desirable to perform analog-to-digital (A/D) conversion right at the pixel level. A dedicated A/D converter located under every pixel in a one-million-plus element array, and all-digital readout integrated circuits will enable multi- and hyper-spectral imaging systems with unprecedented spatial and spectral resolution and wide area coverage. DFPAs provide similar benefits to standard IR imaging systems as well. We have addressed the key enabling technologies for realizing the DFPA architecture in this work. Our effort concentrated on demonstrating a 60-micron footprint, 14-bit A/D converter and 2.5 Gbps, 16:1 digital multiplexer, the most basic components of the sensor. The silicon test chip was fabricated in a 0.18-micron CMOS process, and was designed to operate with HgxCd1-xTe detectors at cryogenic temperatures. Two A/D designs, one using static logic and one using dynamic logic, were built and tested for performance and power dissipation. Structures for evaluating the bit-error-rate of the multiplexer on-chip and through a differential output driver were implemented for a complete performance assessment. A unique IC probe card with fixtures to mount into an evacuated, closed-cycle helium dewar were also designed for testing up to 2.5 Gbps at temperatures as low as 50 K.

  16. Signal processing and compensation electronics for junction field-effect transistor /JFET/ focal plane arrays

    NASA Astrophysics Data System (ADS)

    Wittig, K. R.

    1982-06-01

    A signal processing system has been designed and constructed for a pyroelectric infrared area detector which uses a matrix-addressable JFET array for readout and for on-focal plane preamplification. The system compensates for all offset and gain nonuniformities in and after the array. Both compensations are performed in real time at standard television rates, so that changes in the response characteristics of the array are automatically corrected for. Two-point compensation is achieved without the need for two separate temperature references. The focal plane circuitry used to read out the array, the offset and gain compensation algorithms, the architecture of the signal processor, and the system hardware are described.

  17. Status of uncooled focal plane detector arrays for smart IR sensors

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.; Ringh, Ulf; Jansson, Christer

    1996-06-01

    A cooperative research project between the Defense Science and Technology Organization, Australia, and the National Defense Research Establishment, Sweden, seeks to investigate concepts for smart IR focal plane detector arrays, whereby a monolithic Semiconductor Film Bolometer detector array is integrated with a CMOS signal conditioning circuit, analog- to-digital conversion and signal processing functions on the same silicon chip. Novel signal conditioning and on-chip digital readout techniques have been successfully demonstrated, and the supporting signal processing electronic design is being developed. This paper discusses the status of detector materials research and staring focal plane array development. The first experimental array has been delivered and is undergoing evaluation.

  18. Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber

    SciTech Connect

    Ma, Wei; Wen, Yongzheng; Yu, Xiaomei

    2015-03-16

    This letter presents an infrared (IR) focal plane array (FPA) with metamaterial absorber (MMA) integrated to enhance its performance. A glass substrate, on which arrays of bimaterial cantilevers are fabricated as the thermal-sensitive pixels by a polyimide surface sacrificial process, is employed to allow the optical readout from the back side of the substrate. Whereas the IR wave radiates onto the FPA from the front side, which consequently avoids the energy loss caused by the silicon substrate compared with the previous works. This structure also facilitates the integration of MMA by introducing a layer of periodic square resonators atop the SiN{sub x} structural layer to form a metal/dielectric/metal stack with the gold mirror functioning as the ground plane. A comparative experiment was carried out on the FPAs that use MMA and ordinary SiN{sub x} as the absorbers, respectively. The performance improvement was verified by the evaluation of the absorbers as well as the imaging results of both FPAs.

  19. Line-plane-switching infrared bundle for push-broom sensing fiber imaging

    NASA Astrophysics Data System (ADS)

    Zhan, Huan; Yan, Xingtao; Guo, Haitao; Xu, Yantao; He, Jianli; Li, Fu; Yang, Jianfeng; Si, Jinhai; Zhou, Zhiguang; Lin, Aoxiang

    2015-04-01

    We reported line-plane-switching infrared (IR) fiber bundle with high-resolution of 0.027 μm-1, small numerical aperture (NA) of 0.20 (±0.02), high filling-factor, and bending radius of around 5.0 mm, i.e. extremely good flexibility. This fiber bundle is made from chalcogenide glass fibers, possessing core (As40S58Se2) of 45 μm, cladding (As40S60) of 50 μm, and error of 1% in diameter. Based on the lens used to demonstrate IR push-broom imaging, the format of matching fiber bundle we chose is 64 × 9 in system to implement 192 × 3 format linear array imaging. By principle-demonstrating system incorporated this fiber bundle coupled with small scale Infrared Focal Plane Array (IRFPA), wide-field and long-array IR push-broom image was successfully demonstrated.

  20. 802GHz integrated horn antennas imaging array

    NASA Astrophysics Data System (ADS)

    Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.; Dave, Hemant; Chin, Gordon

    1991-05-01

    Pattern measurements at 802GHz of a single element in 256-element integrated horn imaging array are presented. The integrated-horn antenna consists of a dipole-antenna suspended on a 1-micron dielectric membrane inside a pyramidal cavity etched in silicon. The theoretical far-field patterns, calculated using reciprocity and Floquet-modes representation of the free-space field, agree well with the measured far-field patterns at 802GHz. The associated directivity for a 1.40 lambda horn aperture, calculated from the measured E and H-plane patterns is 12.3dB + or - 0.2dB. This work demonstrates that high-efficiency integrated-horn antennas are easily scalable to terahertz frequencies and could be used for radio-astronomical and plasma-diagnostic applications.

  1. Breadboard linear array scan imager program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The performance was evaluated of large scale integration photodiode arrays in a linear array scan imaging system breadboard for application to multispectral remote sensing of the earth's resources. Objectives, approach, implementation, and test results of the program are presented.

  2. High-performance uncooled amorphous silicon video graphics array and extended graphics array infrared focal plane arrays with 17-μm pixel pitch

    NASA Astrophysics Data System (ADS)

    Tissot, Jean-Luc; Tinnes, Sébastien; Durand, Alain; Minassian, Christophe; Robert, Patrick; Vilain, Michel; Yon, Jean-Jacques

    2011-06-01

    The high level of accumulated expertise by ULIS and CEA/LETI on uncooled microbolometers made from amorphous silicon with 45, 35, and 25 μm enables ULIS to develop video graphics array (VGA) and extended graphics array (XGA) infrared focal plane array (IRFPA) formats with 17-μm pixel pitch to fulfill every application. These detectors keep all the recent innovations developed on the 25-μm pixel-pitch read out integrated circuit (ROIC) (detector configuration by serial link, low power consumption, and wide electrical dynamic range). The specific appeal of these units lies in the high spatial resolution it provides while keeping the small thermal time constant. The reduction of the pixel pitch turns the VGA array into a product well adapted for high-resolution and compact systems and the XGA a product well adapted for high-resolution imaging systems. High electro-optical performances have been demonstrated with noise equivalent temperature difference (NETD) < 50 mK. We insist on NETD and wide thermal dynamic range trade-off, and on the high characteristics uniformity achieved thanks to the mastering of the amorphous silicon technology as well as the ROIC design. This technology node paves the way to high-end products as well as low-end, compact, smaller formats, such as 320 × 240 and 160 × 120 or smaller.

  3. Recent Developments and Applications of Quantum Well Infrared Photodetector Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.

    2000-01-01

    There are many applications that require long wavelength, large, uniform, reproducible, low cost, stable, and radiation-hard infrared (IR) focal plane arrays (FPAs). For example, the absorption lines of many gas molecules, such as ozone, water, carbon monoxide, carbon dioxide, and nitrous oxide occur in the wavelength region from 3 to 18 micron. Thus, IR imaging systems that operate in the long wavelength IR (LWIR) region (6 - 18 micron) are required in many space borne applications such as monitoring the global atmospheric temperature profiles, relative humidity profiles, cloud characteristics, and the distribution of minor constituents in the atmosphere which are being planned for future NASA Earth and planetary remote sensing systems. Due to higher radiation hardness, lower 1/f noise, and larger array size the GaAs based Quantum Well Infrared Photodetector (QWIP) FPAs are very attractive for such space borne applications compared to intrinsic narrow band gap detector arrays. In this presentation we will discuss the optimization of the detector design, material growth and processing that has culminated in realization of large format long-wavelength QWIP FPAs, portable and miniature LWIR cameras, holding forth great promise for myriad applications in 6-18 micron wavelength range in science, medicine, defense and industry. In addition, we will present some system demonstrations using broadband, two-color, and high quantum efficiency long-wavelength QWIP FPAs.

  4. A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics.

    PubMed

    Mazin, Benjamin A; Bumble, Bruce; Meeker, Seth R; O'Brien, Kieran; McHugh, Sean; Langman, Eric

    2012-01-16

    Microwave Kinetic Inductance Detectors, or MKIDs, have proven to be a powerful cryogenic detector technology due to their sensitivity and the ease with which they can be multiplexed into large arrays. A MKID is an energy sensor based on a photon-variable superconducting inductance in a lithographed microresonator, and is capable of functioning as a photon detector across the electromagnetic spectrum as well as a particle detector. Here we describe the first successful effort to create a photon-counting, energy-resolving ultraviolet, optical, and near infrared MKID focal plane array. These new Optical Lumped Element (OLE) MKID arrays have significant advantages over semiconductor detectors like charge coupled devices (CCDs). They can count individual photons with essentially no false counts and determine the energy and arrival time of every photon with good quantum efficiency. Their physical pixel size and maximum count rate is well matched with large telescopes. These capabilities enable powerful new astrophysical instruments usable from the ground and space. MKIDs could eventually supplant semiconductor detectors for most astronomical instrumentation, and will be useful for other disciplines such as quantum optics and biological imaging. PMID:22274494

  5. CMOS focal-plane-array for analysis of enzymatic reaction in system-on-chip spectrophotometer

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ha, Chanki; Park, Chan B.; Joo, Youngjoong

    2004-06-01

    A CMOS focal-plane-array is designed for the high-throughput analysis of enzymatic reaction in on-chip spectrophotometer system. One of potential applications of the presented prototype system is to perform enzymatic analysis of biocompounds contained in blood. This function normally requires an expensive diode-array spectrophotometer, but it is possible to perform high throughput analysis with low budget if the spectrophotometer system is scaled down to a chip. The CMOS active pixel sensor array can cover a layer of polydimethylsiloxane (PDMS) forming the microfluidic channels and the substrate solution for enzymatic reaction can be injected into the channels by capillary force. Under room light, the underneath CMOS active pixel sensor with 40 x 40 pixels detect the gray levels of the fluid"s color. Inside the image sensor chip (size: 3mm x 3mm), the pixels of the same column share the same sample and hold circuits. The analog signals from 40 columns are multiplexed into one input feeding an on-chip 8 bits dual-slope analog to digital converter. The color change can be displayed on the external monitor by using a data acquisition card and personal computer.

  6. Demonstration of 1024x1024 pixel dual-band QWIP focal plane array

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.; Rafol, S. B.

    2010-04-01

    QWIPs are well known for their stability, high pixel-pixel uniformity and high pixel operability which are quintessential parameters for large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). The dual-band QWIP device was developed by stacking two multi-quantum-well stacks tuned to absorb two different infrared wavelengths. The full width at half maximum (FWHM) of the mid-wave infrared (MWIR) band extends from 4.4 - 5.1 μm and FWHM of the long-wave infrared (LWIR) band extends from 7.8 - 8.8 μm. Dual-band QWIP detector arrays were hybridized with direct injection 30 μm pixel pitch megapixel dual-band simultaneously readable CMOS read out integrated circuits using the indium bump hybridization technique. The initial dual-band megapixel QWIP FPAs were cooled to 68K operating temperature. The preliminary data taken from the first megapixel QWIP FPA has shown system NE▵T of 27 and 40 mK for MWIR and LWIR bands respectively.

  7. Hemispherical infrared focal plane arrays: a new design parameter for the instruments

    NASA Astrophysics Data System (ADS)

    Fendler, M.; Dumas, D.; Chemla, F.; Cohen, M.; Laporte, P.; Tekaya, K.; Le Coarer, E.; Primot, J.; Ribot, H.

    2012-07-01

    In ground based astronomy, mainly all designs of sky survey telescopes are limited by the requirement that the detecting surface is flat whereas the focal surface is curved. Two kinds of solution have been investigated up to now. The first one consists in adding optical systems to flatten the image surface; however this solution complicates the design and increases the system size. Somehow, this solution increases, in the same time, the weight and price of the instrument. The second solution consists in curving artificially the focal surface by using a mosaic of several detectors, which are positioned in a spherical shape. However, this attempt is dedicated to low curvature and is limited by the technical difficulty to control the detectors alignment and tilt between each others. Today we would like to propose an ideal solution which is to curve the focal plane array in a spherical shape, thanks to our monolithic process developed at CEA-LETI based on thinned silicon substrates which allows a 100% optical fill factor. Two infrared uncooled cameras have been performed, using 320 x 256 pixels and 25 μm pitch micro-bolometer arrays curved at a bending radius of 80 mm. These two micro-cameras illustrate the optical system simplification and miniaturization involved by curved focal plane arrays. Moreover, the advantages of curved detectors on the optical performances (Point Spreading Function), as well as on volume and cost savings have been highlighted by the simulation of the opto-mechanical architecture of the spectrometer OptiMOS-EVE for the European Extremely Large Telescope (E-ELT).

  8. Focal Plane Arrays of Voltage-Biased Superconducting Bolometers

    NASA Technical Reports Server (NTRS)

    Myers, Michael J.; Clarke, John; Gildemeister, J. M.; Lee, Adrian T.; Richards, P. L.; Schwan, Dan; Skidmore, J. T.; Spieler, Helmuth; Yoon, Jongsoo

    2001-01-01

    The 200-micrometer to 3-mm wavelength range has great astronomical and cosmological significance. Science goals include characterization of the cosmic microwave background, measurement of the Sunyaev-Zel'dovich effect in galaxy clusters, and observations of forming galaxies. Cryogenic bolometers are the most sensitive broadband detectors in this frequency range. Because single bolometer pixels are reaching the photon noise limit for many observations, the development of large arrays will be critical for future science progress. Voltage-biased superconducting bolometers (VSBs) have several advantages compared to other cryogenic bolometers. Their strong negative electrothermal feedback enhances their linearity, speed, and stability. The large noise margin of the SQUID readout enables multiplexed readout schemes, which are necessary for developing large arrays. In this paper, we discuss the development of a large absorber-coupled array, a frequency-domain SQUID readout multiplexer, and an antenna-coupled VSB design.

  9. Demonstration of a bias tunable quantum dots-in-a-well focal plane array

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan; Jang, Woo-Yong; Pezoa, Jorge E.; Sharma, Yagya D.; Lee, Sang Jun; Noh, Sam Kyu; Hayat, Majeed M.; Restaino, Sergio; Teare, Scott W.; Krishna, Sanjay

    2009-11-01

    Infrared detectors based on quantum wells and quantum dots have attracted a lot of attention in the past few years. Our previous research has reported on the development of the first generation of quantum dots-in-a-well (DWELL) focal plane arrays, which are based on InAs quantum dots embedded in an InGaAs well having GaAs barriers. This focal plane array has successfully generated a two-color imagery in the mid-wave infrared (i.e. 3-5 μm) and the long-wave infrared (i.e. 8-12 μm) at a fixed bias voltage. Recently, the DWELL device has been further modified by embedding InAs quantum dots in InGaAs and GaAs double wells with AlGaAs barriers, leading to a less strained InAs/InGaAs/GaAs/AlGaAs heterostructure. This is expected to improve the operating temperature while maintaining a low dark current level. This paper examines 320 × 256 double DWELL based focal plane arrays that have been fabricated and hybridized with an Indigo 9705 read-out integrated circuit using Indium-bump (flip-chip) technology. The spectral tunability is quantified by examining images and determining the transmittance ratio (equivalent to the photocurrent ratio) between mid-wave and long-way infrared filter targets. Calculations were performed for a bias range from 0.3 to 1.0 V. The results demonstrate that the mid-wave transmittance dominates at these low bias voltages, and the transmittance ratio continuously varies over different applied biases. Additionally, radiometric characterization, including array uniformity and measured noise equivalent temperature difference for the double DWELL devices is computed and compared to the same results from the original first generation DWELL. Finally, higher temperature operation is explored. Overall, the double DWELL devices had lower noise equivalent temperature difference and higher uniformity, and worked at higher temperature (70 K and 80 K) than the first generation DWELL device.

  10. A CMOS Imager with Focal Plane Compression using Predictive Coding

    NASA Technical Reports Server (NTRS)

    Leon-Salas, Walter D.; Balkir, Sina; Sayood, Khalid; Schemm, Nathan; Hoffman, Michael W.

    2007-01-01

    This paper presents a CMOS image sensor with focal-plane compression. The design has a column-level architecture and it is based on predictive coding techniques for image decorrelation. The prediction operations are performed in the analog domain to avoid quantization noise and to decrease the area complexity of the circuit, The prediction residuals are quantized and encoded by a joint quantizer/coder circuit. To save area resources, the joint quantizerlcoder circuit exploits common circuitry between a single-slope analog-to-digital converter (ADC) and a Golomb-Rice entropy coder. This combination of ADC and encoder allows the integration of the entropy coder at the column level. A prototype chip was fabricated in a 0.35 pm CMOS process. The output of the chip is a compressed bit stream. The test chip occupies a silicon area of 2.60 mm x 5.96 mm which includes an 80 X 44 APS array. Tests of the fabricated chip demonstrate the validity of the design.

  11. Performance of ground-based high-frequency receiving arrays with electrically-small ground planes

    NASA Astrophysics Data System (ADS)

    Weiner, M. M.

    1991-09-01

    Electrically-small ground planes degrade the performance of ground-based high-frequency receiving arrays because the arrays are more susceptible to earth multipath, ground losses, and external currents on element feed cables. Performance degradations include a reduction in element directive gain near the horizon, distortion of the element azimuthal pattern, an increase in the system internal noise factor, and increases in the array factor root-mean-squared (rms) phase error and beam-pointing errors. The advantage of electrically-small ground planes is their relatively low cost of construction and maintenance.

  12. A 94 GHz imaging array using slot line radiators

    NASA Astrophysics Data System (ADS)

    Korzeniowski, T. L.

    1985-09-01

    A planar endfire slotted-line antenna structure was investigated. It was found that the H-plane beamwidths are basically dependent upon the substrate properties, whereas the E-plane beamwidths are more strongly a function of the slot's shape and size. It is shown that these antennas produce symmetrical E and H-plane beamwidths while following Zucker's standard traveling-wave antenna beamwidth curves over some range of antenna normalized length. An empircally derived design formula for effective substrate thickness is shown to predict this range for linearly tapered slotted-line antennas. The experimental imaging properties of these arrays are presented and imaging theory is discussed. It is shown that a minimum spacing of elements is necessary for exact reconstruction for a sampled image in a diffraction limited system. Because these LTSA elements employ the traveling-wave mechanism of radiation, they can be spaced two times closer than a conical feed horn of comparable beamwidth.

  13. Code-modulated interferometric imaging system using phased arrays

    NASA Astrophysics Data System (ADS)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  14. BATSE imaging survey of the Galactic plane

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Barret, D.; Bloser, P. F.; Zhang, S. N.; Robinson, C.; Harmon, B. A.

    1997-01-01

    The burst and transient source experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO) provides all sky monitoring capability, occultation analysis and occultation imaging which enables new and fainter sources to be searched for in relatively crowded fields. The occultation imaging technique is used in combination with an automated BATSE image scanner, allowing an analysis of large data sets of occultation images for detections of candidate sources and for the construction of source catalogs and data bases. This automated image scanner system is being tested on archival data in order to optimize the search and detection thresholds. The image search system, its calibration results and preliminary survey results on archival data are reported on. The aim of the survey is to identify a complete sample of black hole candidates in the galaxy and constrain the number of black hole systems and neutron star systems.

  15. Performance limits of uncooled VOx microbolometer focal plane arrays

    NASA Astrophysics Data System (ADS)

    Kohin, Margaret; Butler, Neal R.

    2004-08-01

    Uncooled microbolometer technology has shown dramatic improvements in recent years as tens of thousands of imaging systems have been delivered. This paper outlines the performance limits that must be overcome to continue to achieve performance improvements.

  16. Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions

    NASA Technical Reports Server (NTRS)

    Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.

    2011-01-01

    This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.

  17. Programmable hyperspectral image mapper with on-array processing

    NASA Technical Reports Server (NTRS)

    Cutts, James A. (Inventor)

    1995-01-01

    A hyperspectral imager includes a focal plane having an array of spaced image recording pixels receiving light from a scene moving relative to the focal plane in a longitudinal direction, the recording pixels being transportable at a controllable rate in the focal plane in the longitudinal direction, an electronic shutter for adjusting an exposure time of the focal plane, whereby recording pixels in an active area of the focal plane are removed therefrom and stored upon expiration of the exposure time, an electronic spectral filter for selecting a spectral band of light received by the focal plane from the scene during each exposure time and an electronic controller connected to the focal plane, to the electronic shutter and to the electronic spectral filter for controlling (1) the controllable rate at which the recording is transported in the longitudinal direction, (2) the exposure time, and (3) the spectral band so as to record a selected portion of the scene through M spectral bands with a respective exposure time t(sub q) for each respective spectral band q.

  18. Evolution of miniature detectors and focal plane arrays for infrared sensors

    NASA Astrophysics Data System (ADS)

    Watts, Louis A.

    1993-06-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  19. Evolution of miniature detectors and focal plane arrays for infrared sensors

    NASA Technical Reports Server (NTRS)

    Watts, Louis A.

    1993-01-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  20. Microbolometer Terahertz Focal Plane Array and Camera with Improved Sensitivity in the Sub-Terahertz Region

    NASA Astrophysics Data System (ADS)

    Oda, Naoki; Kurashina, Seiji; Miyoshi, Masaru; Doi, Kohei; Ishi, Tsutomu; Sudou, Takayuki; Morimoto, Takao; Goto, Hideki; Sasaki, Tokuhito

    2015-10-01

    A pixel in an uncooled microbolometer terahertz (THz) focal plane array (FPA) has a suspended structure above read-out integrated circuit (ROIC) substrate. An optical cavity structure is formed between a thin metallic layer deposited on the suspended structure and a thick metallic layer deposited on the ROIC surface. The geometrical optical cavity length for our previous pixel structure, 3-4 μm, is extended three times, so that responsivity can be increased in the sub-THz region. This modification is carried out by depositing a thick SiN layer on the thick metallic layer. The modified pixel structure is applied to 640 × 480 and 320 × 240 THz-FPAs with 23.5 μm pixel pitch. Minimum detectable powers per pixel (MDP) are evaluated for these FPAs at 4.3, 2.5, 0.6, and 0.5 THz, and the MDP values are found to be improved by a factor of ten at 0.6 and 0.5 THz. The MDP values of the THz-FPAs developed in this work are compared with those of other THz detectors, such as uncooled antenna-coupled CMOS (complimentary metal-oxide semiconductor) THz-FPAs and cooled bolometer arrays. It is found that our THz-FPAs are more sensitive in the sub-THz region than the CMOS THz-FPAs, while they are much less sensitive than the cooled bolometer arrays. These THz-FPAs are incorporated into a 640 × 480 THz camera and 320 × 240 THz camera, and imaging equipment is developed. The equipment consists of a linearly polarized sub-THz source, a collimator lens, a beam homogenizer, two wire grids, a quarter-wave plate, and two THz cameras, and sub-THz images are demonstrated. It should be mentioned for the equipment that imaging of transmission and reflection is realized by moving only the quarter-wave plate, and the reflection image is taken along a direction normal to a sample surface so that the reflection image is hardly deformed.

  1. A comparison of deghosting techniques in adaptive nonuniformity correction for IR focal-plane array systems

    NASA Astrophysics Data System (ADS)

    Rossi, Alessandro; Diani, Marco; Corsini, Giovanni

    2010-10-01

    Focal-plane array (FPA) IR systems are affected by fixed-pattern noise (FPN) which is caused by the nonuniformity of the responses of the detectors that compose the array. Due to the slow temporal drift of FPN, several scene-based nonuniformity correction (NUC) techniques have been developed that operate calibration during the acquisition only by means of the collected data. Unfortunately, such algorithms are affected by a collateral damaging problem: ghosting-like artifacts are generated by the edges in the scene and appear as a reverse image in the original position. In this paper, we compare the performance of representative methods for reducing ghosting. Such methods relate to the least mean square (LMS)-based NUC algorithm proposed by D.A. Scribner. In particular, attention is focused on a recently proposed technique which is based on the computation of the temporal statistics of the error signal in the aforementioned LMS-NUC algorithm. In this work, the performances of the deghosting techniques have been investigated by means of IR data corrupted with simulated nonuniformity noise over the detectors of the FPA. Finally, we have made some considerations on the computational aspect which is a challenging task for the employment of such techniques in real-time systems.

  2. Modeling of HgCdTe focal plane array spectral inhomogeneities

    NASA Astrophysics Data System (ADS)

    Mouzali, Salima; Lefebvre, Sidonie; Rommeluère, Sylvain; Ferrec, Yann; Primot, Jérôme

    2015-06-01

    Infrared focal plane arrays (IRFPA) are widely used to perform high quality measurements such as spectrum acquisition at high rate, ballistic missile defense, gas detection, and hyperspectral imaging. For these applications, the fixed pattern noise represents one of the major limiting factors of the array performance. This sensor imperfection refers to the nonuniformity between pixels, and is partially caused by disparities of the cut-off wavenumbers. In this work, we focus particularly on mercury cadmium telluride (HgCdTe), which is the most important material of IR cooled detector applications. Among the many advantages of this ternary alloy is the tunability of the bandgap energy with Cadmium composition, as well as the high quantum efficiency. In order to predict and understand spectral inhomogeneities of HgCdTe-based IRFPA, we propose a modeling approach based on the description of optical phenomena inside the pixels. The model considers the p-n junctions as a unique absorbent bulk layer, and derives the sensitivity of the global structure to both Cadmium composition and HgCdTe layer thickness. For this purpose, HgCdTe optical and material properties were necessary to be known at low temperature (80K), in our operating conditions. We therefore achieved the calculation of the real part of the refractive index using subtracti

  3. WSPEC: A Waveguide Filter-Bank Focal Plane Array Spectrometer for Millimeter Wave Astronomy and Cosmology

    NASA Astrophysics Data System (ADS)

    Bryan, Sean; Aguirre, James; Che, George; Doyle, Simon; Flanigan, Daniel; Groppi, Christopher; Johnson, Bradley; Jones, Glenn; Mauskopf, Philip; McCarrick, Heather; Monfardini, Alessandro; Mroczkowski, Tony

    2016-07-01

    Imaging and spectroscopy at (sub-)millimeter wavelengths are key frontiers in astronomy and cosmology. Large area spectral surveys with moderate spectral resolution (R=50-200) will be used to characterize large-scale structure and star formation through intensity mapping surveys in emission lines such as the CO rotational transitions. Such surveys will also be used to study the the Sunyaev Zeldovich (SZ) effect, and will detect the emission lines and continuum spectrum of individual objects. WSPEC is an instrument proposed to target these science goals. It is a channelizing spectrometer realized in rectangular waveguide, fabricated using conventional high-precision metal machining. Each spectrometer is coupled to free space with a machined feed horn, and the devices are tiled into a 2D array to fill the focal plane of the telescope. The detectors will be aluminum lumped-element kinetic inductance detectors (LEKIDs). To target the CO lines and SZ effect, we will have bands at 135-175 and 190-250 GHz, each Nyquist-sampled at R≈ 200 resolution. Here, we discuss the instrument concept and design, and successful initial testing of a WR10 (i.e., 90 GHz) prototype spectrometer. We recently tested a WR5 (180 GHz) prototype to verify that the concept works at higher frequencies, and also designed a resonant backshort structure that may further increase the optical efficiency. We are making progress towards integrating a spectrometer with a LEKID array and deploying a prototype device to a telescope for first light.

  4. WSPEC: A Waveguide Filter-Bank Focal Plane Array Spectrometer for Millimeter Wave Astronomy and Cosmology

    NASA Astrophysics Data System (ADS)

    Bryan, Sean; Aguirre, James; Che, George; Doyle, Simon; Flanigan, Daniel; Groppi, Christopher; Johnson, Bradley; Jones, Glenn; Mauskopf, Philip; McCarrick, Heather; Monfardini, Alessandro; Mroczkowski, Tony

    2015-12-01

    Imaging and spectroscopy at (sub-)millimeter wavelengths are key frontiers in astronomy and cosmology. Large area spectral surveys with moderate spectral resolution (R=50 -200) will be used to characterize large-scale structure and star formation through intensity mapping surveys in emission lines such as the CO rotational transitions. Such surveys will also be used to study the the Sunyaev Zeldovich (SZ) effect, and will detect the emission lines and continuum spectrum of individual objects. WSPEC is an instrument proposed to target these science goals. It is a channelizing spectrometer realized in rectangular waveguide, fabricated using conventional high-precision metal machining. Each spectrometer is coupled to free space with a machined feed horn, and the devices are tiled into a 2D array to fill the focal plane of the telescope. The detectors will be aluminum lumped-element kinetic inductance detectors (LEKIDs). To target the CO lines and SZ effect, we will have bands at 135-175 and 190-250 GHz, each Nyquist-sampled at R≈ 200 resolution. Here, we discuss the instrument concept and design, and successful initial testing of a WR10 (i.e., 90 GHz) prototype spectrometer. We recently tested a WR5 (180 GHz) prototype to verify that the concept works at higher frequencies, and also designed a resonant backshort structure that may further increase the optical efficiency. We are making progress towards integrating a spectrometer with a LEKID array and deploying a prototype device to a telescope for first light.

  5. Dark current measurement of Type-II superlattice infrared focal plane array detector

    NASA Astrophysics Data System (ADS)

    Sakai, Michito; Katayama, Haruyoshi; Murooka, Junpei; Kimata, Masafumi; Iguchi, Yasuhiro

    2014-06-01

    We report the result of a dark current measurement of a Type-II superlattice (T2SL) infrared focal plane array (FPA), which consists of a 6 μm cutoff T2SL detector array and the readout integration circuit (ROIC) ISC0903 of FLIR Systems. In order to measure the dark current of the FPA, we obtained images with different exposure times in a fully closed cold shield of 77 K. Using the temporal change rate of the output and considering the charge conversion efficiency of the ROIC, we obtained a dark current density with an average value of 4 × 10-5 A/cm2 at a bias of -100 mV. We also compare the result of the FPA dark current measurement with that of a test element group (TEG), which was a single pixel detector, fabricated by the same process as the FPA. The dark current density of the TEG was 3 × 10-6 A/cm2 at a bias of -100 mV, lower than that of the FPA. We discuss the discrepancy between the dark current densities of the FPA and the TEG.

  6. Large format high-operability SWIR and MWIR focal plane array performance and capabilities

    NASA Astrophysics Data System (ADS)

    Bangs, James; Langell, Mark; Reddy, Madhu; Melkonian, Leon; Johnson, Scott; Elizondo, Lee; Rybnicek, Kimon; Norton, Elyse; Jaworski, Frank; Asbrock, James; Baur, Stefan

    2011-06-01

    High-performance large-format detector arrays responsive to the 1-5μm wavelength range of the infrared spectrum fabricated using large area HgCdTe layers grown on 6-inch diameter (211) silicon substrates are available for advanced imaging applications. This paper reviews performance and capabilities of Raytheon Vision Systems (RVS) HgCdTe/Si Focal Plane Arrays (FPA) and shows 2k x 2k format MWIR HgCdTe/Si FPA performance with NEdT operabilities better than 99.9%. SWIR and MWIR detector performance for HgCdTe/Si is comparable to established performance of HgCdTe/CdZnTe wafers. HgCdTe devices fabricated on both types of substrates have demonstrated very low dark current, high quantum efficiency and full spectral band fill factor characteristic of HgCdTe. HgCdTe has the advantage of being able to precisely tune the detector cutoff via adjustment of the Cd composition in the MBE growth. The HgCdTe/Si detectors described in this paper are p-on-n mesa delineated architecture and fabricated using the same mature etch, passivation, and metallization processes as our HgCdTe/CdZnTe line. Uniform device quality HgCdTe epitaxial layers and application of detector fabrication processes across the full area of 6-inch wafers routinely produces high performing detector pixels from edge to edge of the photolithographic limits across the wafer, offering 5 times the printable area as costly 6×6cm CdZnTe substrates. This 6-inch HgCdTe detector wafer technology can provide applications demanding very wide FOV high resolution coverage the capability to produce a very large single piece infrared detector array, up to a continuous image plane 10×10 cm in size. Alternatively, significant detector cost reduction through allowing more die of a given size to be printed on each wafer is possible, with further cost reduction achieved through transition towards automated detector fabrication and photolithographic processes for both increased yields and reduced touch labor costs. RVS continues

  7. Plane-wave decomposition by spherical-convolution microphone array

    NASA Astrophysics Data System (ADS)

    Rafaely, Boaz; Park, Munhum

    2001-05-01

    Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.

  8. QWIP focal plane arrays performances from MWIR up to VLWIR

    NASA Astrophysics Data System (ADS)

    Robo, J. A.; Costard, E.; Truffer, J. P.; Nedelcu, A.; Marcadet, X.; Bois, P.

    2009-05-01

    Since 2002, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on GaAs and related III-V compounds, at the Alcatel-Thales-III-V Lab (formerly part of THALES Research and Technology Laboratory). In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and has been the key parameter for the production to start. Another widely claimed advantage for QWIPs was the so-called band-gap engineering and versatility of the III-V processing allowing the custom design of quantum structures at various wavelengths in MWIR, LWIR and VLWIR. An overview of the available performances of QWIPs in the whole infrared spectrum is presented here. We also discuss about the under-development products such as dual band and polarimetric structures.

  9. Automated optical testing of LWIR objective lenses using focal plane array sensors

    NASA Astrophysics Data System (ADS)

    Winters, Daniel; Erichsen, Patrik; Domagalski, Christian; Peter, Frank; Heinisch, Josef; Dumitrescu, Eugen

    2012-10-01

    The image quality of today's state-of-the-art IR objective lenses is constantly improving while at the same time the market for thermography and vision grows strongly. Because of increasing demands on the quality of IR optics and increasing production volumes, the standards for image quality testing increase and tests need to be performed in shorter time. Most high-precision MTF testing equipment for the IR spectral bands in use today relies on the scanning slit method that scans a 1D detector over a pattern in the image generated by the lens under test, followed by image analysis to extract performance parameters. The disadvantages of this approach are that it is relatively slow, it requires highly trained operators for aligning the sample and the number of parameters that can be extracted is limited. In this paper we present lessons learned from the R and D process on using focal plane array (FPA) sensors for testing of long-wave IR (LWIR, 8-12 m) optics. Factors that need to be taken into account when switching from scanning slit to FPAs are e.g.: the thermal background from the environment, the low scene contrast in the LWIR, the need for advanced image processing algorithms to pre-process camera images for analysis and camera artifacts. Finally, we discuss 2 measurement systems for LWIR lens characterization that we recently developed with different target applications: 1) A fully automated system suitable for production testing and metrology that uses uncooled microbolometer cameras to automatically measure MTF (on-axis and at several o-axis positions) and parameters like EFL, FFL, autofocus curves, image plane tilt, etc. for LWIR objectives with an EFL between 1 and 12mm. The measurement cycle time for one sample is typically between 6 and 8s. 2) A high-precision research-grade system using again an uncooled LWIR camera as detector, that is very simple to align and operate. A wide range of lens parameters (MTF, EFL, astigmatism, distortion, etc.) can be

  10. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1994-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  11. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1995-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  12. WISE-Heritage Megapixel BIB Focal Plane Arrays for Astronomy

    NASA Astrophysics Data System (ADS)

    Hogue, Henry; Mainzer, A.; Molyneux, D.; Reynolds, D.; Masterjohn, S.; Muzilla, M.

    2009-01-01

    The most significant design features of the low-noise 1024x1024 cryogenic FPA readout developed by DRS for the Wide-field Infrared Survey Explorer (WISE) have been transferred to a new high-flux FPA readout design for terrestrial and airborne astronomy with warm telescopes. The development of the new readout and the first 1024x1024 arsenic-doped silicon (Si:As) BIB FPA based on it was a joint effort between DRS and NASA JPL. This FPA is called the MegaMIR FPA, since it will be initially utilized in the MegaMIR camera being developed by JPL. New high-flux Si:As detector arrays were fabricated by DRS for use in the MegaMIR FPA, and the first two engineering FPAs have been prepared and delivered to JPL for evaluation. . In parallel DRS is applying the same high-flux readout for development of a 512x512 antimony-doped silicon (Si:Sb) having twice the pixel size and pitch as the MegaMIR FPA. The 4 times larger pixel size is better matched to the diffraction-limited resolution of the longer-wavelength Si:Sb detectors ( 40 µm cut-off vs 28 µm of Si:As).

  13. SWIR InGaAs focal plane arrays in France

    NASA Astrophysics Data System (ADS)

    Rouvié, A.; Huet, O.; Hamard, S.; Truffer, J. P.; Pozzi, M.; Decobert, J.; Costard, E.; Zécri, M.; Maillart, P.; Reibel, Y.; Pécheur, A.

    2013-06-01

    SWIR detection band benefits from natural (sun, night glow, thermal radiation) or artificial (eye safe lasers) photons sources combined to low atmospheric absorption and specific contrast compared to visible wavelengths. It gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. The study of InGaAs FPA has begun few years ago with III-VLab, gathering expertise in InGaAs material growth and imaging technology respectively from Alcatel-Lucent and Thales, its two mother companies. This work has led to put quickly on the market a 320x256 InGaAs module. The recent transfer of imagery activities from III-VLab to Sofradir allows developing new high performances products, satisfying customers' new requirements. Especially, a 640x512 InGaAs module with a pitch of 15µm is actually under development to fill the needs of low light level imaging.

  14. Advanced planar LWIR and VLWIR HgCdTe focal plane arrays

    NASA Astrophysics Data System (ADS)

    Chu, Muren; Gurgenian, Ray H.; Mesropian, Shoghig; Terterian, Sevag; Becker, Latika; Walsh, D.; Kokoroski, S. A.; Goodnough, Mark A.; Rosner, Brett D.

    2004-01-01

    The advanced planar ion-implantation-isolated heterojunction process, which utilizes the benefits of both the boron implantation and the heterojunction epitaxy techniques, has been developed and used to produce longwave and very longwave HgCdTe focal plane arrays in the 320v256 format. The wavelength of these arrays ranges from 10.0-17.0μm. The operability of the longwave HgCdTe arrays is typically over 97%. Without anti-reflection coating and with a 60° FOV cold shield, the D* of the 10.0μm array is 9.4x1010cm x (Hz)1/2 x W-1 at 77K. The 14.7μm and 17.0μm very longwave HgCdTe array diodes have excellent reverse characteristics. The detailed characteristics of these arrays are presented.

  15. Performance of the QWIP focal plane arrays for NASA's Landsat Data Continuity Mission

    NASA Astrophysics Data System (ADS)

    Jhabvala, M.; Choi, K.; Waczynski, A.; La, A.; Sundaram, M.; Costard, E.; Jhabvala, C.; Kan, E.; Kahle, D.; Foltz, R.; Boehm, N.; Hickey, M.; Sun, J.; Adachi, T.; Costen, N.; Hess, L.; Facoetti, H.; Montanaro, M.

    2011-06-01

    The focal plane assembly for the Thermal Infrared Sensor (TIRS) instrument on NASA's Landsat Data Continuity Mission (LDCM) consists of three 512 x 640 GaAs Quantum Well Infrared Photodetector (QWIP) arrays. The three arrays are precisely mounted and aligned on a silicon carrier substrate to provide a continuous viewing swath of 1850 pixels in two spectral bands defined by filters placed in close proximity to the detector surfaces. The QWIP arrays are hybridized to Indigo ISC9803 readout integrated circuits (ROICs). QWIP arrays were evaluated from four laboratories; QmagiQ, (Nashua, NH), Army Research Laboratory, (Adelphi, MD), NASA/ Goddard Space Flight Center, (Greenbelt, MD) and Thales, (Palaiseau, France). All were found to be suitable. The final discriminating parameter was the spectral uniformity of individual pixels relative to each other. The performance of the QWIP arrays and the fully assembled, NASA flight-qualified, focal plane assembly will be reviewed. An overview of the focal plane assembly including the construction and test requirements of the focal plane will also be described.

  16. 3D fluorescence anisotropy imaging using selective plane illumination microscopy.

    PubMed

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-08-24

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein. PMID:26368202

  17. 3D fluorescence anisotropy imaging using selective plane illumination microscopy

    PubMed Central

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-01-01

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein. PMID:26368202

  18. Determining Plane Mirror Image Distance from Eye Charts.

    ERIC Educational Resources Information Center

    Lapp, David R.

    1993-01-01

    Presents a method to convince students that the image produced by a plane mirror is actually behind the mirror. Uses observations that the letters of an eye chart posted on a mirror are twice the size of the images of letters of an eye chart they are holding. Provides two reproducible eye charts. (MDH)

  19. Epitaxial InSb for elevated temperature operation of large IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Ashley, Tim; Burke, Theresa M.; Emeny, Martin T.; Gordon, Neil T.; Hall, David J.; Lees, David J.; Little, J. Chris; Milner, Daniel

    2003-09-01

    The use of epitaxially grown indium antimonide (InSb) has previously been demonstrated for the production of large 2D focal plane arrays. It confers several advantages over conventional, bulk InSb photo-voltaic detectors, such as reduced cross-talk, however here we focus on the improvement in operating temperature that can be achieved because more complex structures can be grown. Diode resistance, imaging, NETD and operability results are presented for a progression of structures that reduce the diode leakage current as the temperature is raised above 80K, compared with a basic p+-n-n+ structure presented previously. These include addition of a thin region of InAlSb to reduce p-contact leakage current, and construction of the whole device from InAlSb to reduce thermal generation in the active region of the detector. An increase in temperature to 110K, whilst maintaining full 80K performance, is achieved, and imaging up to 130K is demonstrated. This gives the prospect of significant benefits for the cooling systems, including, for example, use of argon in Joule-Thomson coolers or an increase in the life and/or decrease in the cost; power consumption and cool-down time of Stirling engines by several tens of per cent.

  20. Analysis and quantification of laser-dazzling effects on IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Hueber, N.,; Vincent, D.,; Morin, A.,; Dieterlen, A.,; Raymond, P.,

    2010-04-01

    Today Optronic Countermeasure (OCM) concerns imply an IR Focal-Plane Array (FPA) facing an in-band laser irradiation. In order to evaluate the efficiency of new countermeasure concepts or the robustness of FPAs, it is necessary to quantify the whole interaction effects. Even though some studies in the open literature show the vulnerability of imaging systems to laser dazzling, the diversity of analysis criteria employed does not allow the results of these studies to be correlated. Therefore, we focus our effort on the definition of common sensor figures of merit adapted to laser OCM studies. In this paper, two investigation levels are presented: the first one for analyzing the local nonlinear photocell response and the second one for quantifying the whole dazzling impact on image. The first study gives interesting results on InSb photocell behaviors when irradiated by a picosecond MWIR laser. With an increasing irradiance, four different successive responses appear: from linear, logarithmic, decreasing ones to permanent linear offset response. In the second study, our quantifying tools are described and their successful implementation through the picosecond laser-dazzling characterization of an InSb FPA is assessed.

  1. Model based on-chip 13bits ADC design dedicated to uncooled infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Dupont, Benoit; Robert, Patrick; Dupret, Antoine; Villard, Patrick; Pochic, David

    2007-10-01

    This paper presents an on-chip 13 bits 10 M/S Analog to Digital Converter (ADC) specifically designed for infrared bolometric image sensor. Bolometric infrared sensors are MEMs based thermal sensors, which covers a large spectrum of infrared applications, ranging from night vision to predictive industrial maintenance and medical imaging. With the current move towards submicron technologies, the demand for more integrated, smarter sensors and microsystems has dramatically increased. This trend has strengthened the need of on-chip ADC as the interface between the analog core and the digital processing electronic. However designing an on-chip ADC dedicated to focal plane array raises many questions about its architecture and its performance requirements. To take into account those specific needs, a high level model has been developed prior to the actual design. In this paper, we present the trade-offs of ADC design linked to infrared key performance parameters and bolometric technology detection method. The original development scheme, based on system level modeling, is also discussed. Finally we present the actual design and the measured performances.

  2. Breadboard linear array scan imager using LSI solid-state technology

    NASA Technical Reports Server (NTRS)

    Tracy, R. A.; Brennan, J. A.; Frankel, D. G.; Noll, R. E.

    1976-01-01

    The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained.

  3. Thermal Microphotonic Focal Plane Array (TM-FPA).

    SciTech Connect

    McCormick, Frederick Bossert; Lentine, Anthony L.; Wright, Jeremy Benjamin; Watts, Michael R.; Shaw, Michael J.; Rakich, Peter T.; Nielson, Gregory N.; Peters, David William; Zortman, William A.

    2009-10-01

    The advent of high quality factor (Q) microphotonic-resonators has led to the demonstration of high-fidelity optical sensors of many physical phenomena (e.g. mechanical, chemical, and biological sensing) often with far better sensitivity than traditional techniques. Microphotonic-resonators also offer potential advantages as uncooled thermal detectors including significantly better noise performance, smaller pixel size, and faster response times than current thermal detectors. In particular, microphotonic thermal detectors do not suffer from Johnson noise in the sensor, offer far greater responsivity, and greater thermal isolation as they do not require metallic leads to the sensing element. Such advantages make the prospect of a microphotonic thermal imager highly attractive. Here, we introduce the microphotonic thermal detection technique, present the theoretical basis for the approach, discuss our progress on the development of this technology and consider future directions for thermal microphotonic imaging. Already we have demonstrated viability of device fabrication with the successful demonstration of a 20{micro}m pixel, and a scalable readout technique. Further, to date, we have achieved internal noise performance (NEP{sub Internal} < 1pW/{radical}Hz) in a 20{micro}m pixel thereby exceeding the noise performance of the best microbolometers while simultaneously demonstrating a thermal time constant ({tau} = 2ms) that is five times faster. In all, this results in an internal detectivity of D*{sub internal} = 2 x 10{sup 9}cm {center_dot} {radical}Hz/W, while roughly a factor of four better than the best uncooled commercial microbolometers, future demonstrations should enable another order of magnitude in sensitivity. While much work remains to achieve the level of maturity required for a deployable technology, already, microphotonic thermal detection has demonstrated considerable potential.

  4. NIRCA ASIC for the readout of focal plane arrays

    NASA Astrophysics Data System (ADS)

    Pâhlsson, Philip; Steenari, David; Øya, Petter; Otnes Berge, Hans Kristian; Meier, Dirk; Olsen, Alf; Hasanbegovic, Amir; Altan, Mehmet A.; Najafiuchevler, Bahram; Talebi, Jahanzad; Azman, Suleyman; Gheorghe, Codin; Ackermann, Jörg; Mæhlum, Gunnar; Johansen, Tor Magnus; Stein, Timo

    2016-05-01

    This work is a continuation of our preliminary tests on NIRCA - the Near Infrared Readout and Controller ASIC [1]. The primary application for NIRCA is future astronomical science and Earth observation missions where NIRCA will be used with mercury cadmium telluride image sensors (HgCdTe, or MCT) [2], [3]. Recently we have completed the ASIC tests in the cryogenic environment down to 77 K. We have verified that NIRCA provides to the readout integrated circuit (ROIC) regulated power, bias voltages, and fully programmable digital sequences with sample control of the analogue to digital converters (ADC). Both analog and digital output from the ROIC can be acquired and image data is 8b/10bencoded and delivered via serial interface. The NIRCA also provides temperature measurement, and monitors several analog and digital input channels. The preliminary work confirms that NIRCA is latch-up immune and able to operate down to 77 K. We have tested the performance of the 12-bit ADC with pre-amplifier to have 10.8 equivalent number of bits (ENOB) at 1.4 Msps and maximum sampling speed at 2 Msps. The 1.8-V and 3.3-V output regulators and the 10-bit DACs show good linearity and work as expected. A programmable sequencer is implemented as a micro-controller with a custom instruction set. Here we describe the special operations of the sequencer with regards to the applications and a novel approach to parallel real-time hardware outputs. The test results of the working prototype ASIC show good functionality and performance from room temperature down to 77 K. The versatility of the chip makes the architecture a possible candidate for other research areas, defense or industrial applications that require analog and digital acquisition, voltage regulation, and digital signal generation.

  5. Nineteen-Channel Receive Array and Four-Channel Transmit Array Coil for Cervical Spinal Cord Imaging at 7T

    PubMed Central

    Zhao, Wei; Cohen-Adad, Julien; Polimeni, Jonathan R.; Keil, Boris; Guerin, Bastien; Setsompop, Kawin; Serano, Peter; Mareyam, Azma; Hoecht, Philipp; Wald, Lawrence L.

    2016-01-01

    Purpose To design and validate a radiofrequency (RF) array coil for cervical spinal cord imaging at 7T. Methods A 19-channel receive array with a four-channel transmit array was developed on a close-fitting coil former at 7T. Transmit efficiency and specific absorption rate were evaluated in a B1+ mapping study and an electromagnetic model. Receive signal-to-noise ratio (SNR) and noise amplification for parallel imaging were evaluated and compared with a commercial 3T 19-channel head–neck array and a 7T four-channel spine array. The performance of the array was qualitatively demonstrated in human volunteers using high-resolution imaging (down to 300 μm in-plane). Results The transmit and receive arrays showed good bench performance. The SNR was approximately 4.2-fold higher in the 7T receive array at the location of the cord with respect to the 3T coil. The g-factor results showed an additional acceleration was possible with the 7T array. In vivo imaging was feasible and showed high SNR and tissue contrast. Conclusion The highly parallel transmit and receive arrays were demonstrated to be fit for spinal cord imaging at 7T. The high sensitivity of the receive coil combined with ultra-high field will likely improve investigations of microstructure and tissue segmentation in the healthy and pathological spinal cord. PMID:23963998

  6. Two-Sided Coded Aperture Imaging Without a Detector Plane

    SciTech Connect

    Ziock, Klaus-Peter; Cunningham, Mark F; Fabris, Lorenzo

    2009-01-01

    We introduce a novel design for a two-sided, coded-aperture, gamma-ray imager suitable for use in stand off detection of orphan radioactive sources. The design is an extension of an active-mask imager that would have three active planes of detector material, a central plane acting as the detector for two (active) coded-aperture mask planes, one on either side of the detector plane. In the new design the central plane is removed and the mask on the left (right) serves as the detector plane for the mask on the right (left). This design reduces the size, mass, complexity, and cost of the overall instrument. In addition, if one has fully position-sensitive detectors, then one can use the two planes as a classic Compton camera. This enhances the instrument's sensitivity at higher energies where the coded-aperture efficiency is decreased by mask penetration. A plausible design for the system is found and explored with Monte Carlo simulations.

  7. Improved phase imaging from intensity measurements in multiple planes

    SciTech Connect

    Soto, Marcos; Acosta, Eva

    2007-11-20

    Problems stemming from quantitative phase imaging from intensity measurements play a key role in many fields of physics. Techniques based on the transport of intensity equation require an estimate of the axial derivative of the intensity to invert the problem. Derivation formulas in two adjacent planes are commonly used to experimentally compute the derivative of the irradiance. Here we propose a formula that improves the estimate of the derivative by using a higher number of planes and taking the noisy nature of the measurements into account. We also establish an upper and lower limit for the estimate error and provide the distance between planes that optimizes the estimate of the derivative.

  8. Tomographical imaging using uniformly redundant arrays

    NASA Technical Reports Server (NTRS)

    Cannon, T. M.; Fenimore, E. E.

    1979-01-01

    An investigation is conducted of the behavior of two types of uniformly redundant array (URA) when used for close-up imaging. One URA pattern is a quadratic residue array whose characteristics for imaging planar sources have been simulated by Fenimore and Cannon (1978), while the second is based on m sequences that have been simulated by Gunson and Polychronopulos (1976) and by MacWilliams and Sloan (1976). Close-up imaging is necessary in order to obtain depth information for tomographical purposes. The properties of the two URA patterns are compared with a random array of equal open area. The goal considered in the investigation is to determine if a URA pattern exists which has the desirable defocus properties of the random array while maintaining artifact-free image properties for in-focus objects.

  9. Development of uncooled focal plane detector arrays for smart IR sensors

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.; Reinhold, Olaf; Ringh, Ulf; Jansson, Christer

    1997-11-01

    This paper reports on the development of silicon microbolometer uncooled IR focal plane detector arrays at the Defence Science and Technology Organization (DSTO), in collaboration with the National Defence Research Establishment (FOA). The detector arrays were designed by Electro-optic Sensor Design, which also provided specialist scientific advice on array fabrication. Detector arrays are prepared by monolithic processing at DSTO, using surface micromachining to achieve thermal isolation, and are integrated on-chip with a CMOS signal conditioning and readout microcircuit designed by FOA. The CMOS circuit incorporates 16-bit analog-to-digital conversion, and is described in more detail in an accompanying paper presented. The ultimate objective is to develop 'smart' focal plane arrays which have on-chip signal processing functions, giving a capability for decision making such as automatic target detection. The silicon microbolometer technology described in the paper was invented at DSTO, and is representative of core technology employed in many initiatives world-wide. A brief overview will be given of theoretical considerations which influence detector array design, followed by an outline of recent developments in array processing.

  10. Radiation-Induced Transient Effects in Near Infrared Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.; Pickel, J.; Marshall, P.; Waczynski, A.; McMurray, R.; Gee, G.; Polidan, E.; Johnson, S.; McKeivey, M.; Ennico, K.; Johnson, R.

    2004-01-01

    This viewgraph presentation describes a test simulate the transient effects of cosmic ray impacts on near infrared focal plane arrays. The objectives of the test are to: 1) Characterize proton single events as function of energy and angle of incidence; 2) Measure charge spread (crosstalk) to adjacent pixels; 3) Assess transient recovery time.

  11. Status of very long infrared-wave focal plane array development at DEFIR

    NASA Astrophysics Data System (ADS)

    Gravrand, O.; Chorier, Ph.

    2009-05-01

    The very long infrared wavelength (>14μm) is a very challenging range for the design of large HgCdTe focal plane arrays. As the wavelength gets longer (ie the semiconductor gap gets smaller), the physic of photodiodes asks for numerous technological improvements to keep a high level of detection performance. DEFIR (LETI-Sofradir common research team) has been highly active in this field during the last few years. The need (mainly expressed by the space industry ESA and CNES) of very long wave focal plane arrays appears very demanding in terms of dark current, defect density and of course quantum efficiency. This paper aims at presenting a status of long and very long wave focal plane array development at DEFIR for three different ion implanted technologies: n on p mercury vacancies doped technology, n on p extrinsic doped technology, and p on n arsenic on indium technology. Special focus is done to 15μm cut off n/p focal plane array fabricated in our laboratory demonstrating high uniformity, diffusion and shot noise limited photodiodes at 50K.

  12. Quasi-random array imaging collimator

    DOEpatents

    Fenimore, E.E.

    1980-08-20

    A hexagonally shaped quasi-random no-two-holes-touching imaging collimator. The quasi-random array imaging collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasing throughput by elimination of a substrate. The present invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  13. Astronomical imaging with InSb arrays

    NASA Astrophysics Data System (ADS)

    Pipher, Judith L.

    Ten years ago, Forrest presented the first astronomical images with a Santa Barbara Research Center (SBRC) 32 x 32 InSb array camera at the first NASA-Ames Infrared Detector Technology Work-shop. Soon after, SBRC began development of 58 x 62 InSb arrays, both for ground-based astronomy and for the Space Infrared Telescope Facility (SIRTF). By the time of the 1987 Hilo workshop 'Ground-based Astronomical Observations with Infrared Array Dectectors' astronomical results from cameras based on SBRC 32 x 32 and 58 x 62 InSb arrays, a CE linear InSb array, and a French 32 x 32 InSb charge injection device (CID) array were presented. And at the Tucson 1990 meeting 'Astrophysics with Infrared Arrays', it was clear that this new technology was no longer the province of 'IR pundits', but provided a tool for all astronomers. At this meeting, the first astronomical observations with SBRC's new, gateless passivation 256 x 256 InSb arrays will be presented: they perform spectacularly] In this review, I can only broadly brush on the interesting science completed with InSb array cameras. Because of the broad wavelength coverage (1-5.5 micrometer) of InSb, and the extremely high performance levels throughout the band, InSb cameras are used not only in the near IR, but also from 3-5.5 micrometer, where unique science is achieved. For example, the point-like central engines of active galactic nuclei (AGN) are delineated at L' and M', and Bra and 3.29 micrometer dust emission images of galactic and extragalactic objects yield excitation conditions. Examples of imaging spectroscopy, high spatial resolution imaging, as well as deep, broad-band imaging with InSb cameras at this meeting illustrate the power of InSb array cameras.

  14. Large format focal plane array integration with precision alignment, metrology and accuracy capabilities

    NASA Astrophysics Data System (ADS)

    Neumann, Jay; Parlato, Russell; Tracy, Gregory; Randolph, Max

    2015-09-01

    Focal plane alignment for large format arrays and faster optical systems require enhanced precision methodology and stability over temperature. The increase in focal plane array size continues to drive the alignment capability. Depending on the optical system, the focal plane flatness of less than 25μm (.001") is required over transition temperatures from ambient to cooled operating temperatures. The focal plane flatness requirement must also be maintained in airborne or launch vibration environments. This paper addresses the challenge of the detector integration into the focal plane module and housing assemblies, the methodology to reduce error terms during integration and the evaluation of thermal effects. The driving factors influencing the alignment accuracy include: datum transfers, material effects over temperature, alignment stability over test, adjustment precision and traceability to NIST standard. The FPA module design and alignment methodology reduces the error terms by minimizing the measurement transfers to the housing. In the design, the proper material selection requires matched coefficient of expansion materials minimizes both the physical shift over temperature as well as lowering the stress induced into the detector. When required, the co-registration of focal planes and filters can achieve submicron relative positioning by applying precision equipment, interferometry and piezoelectric positioning stages. All measurements and characterizations maintain traceability to NIST standards. The metrology characterizes the equipment's accuracy, repeatability and precision of the measurements.

  15. Coded Excitation Plane Wave Imaging for Shear Wave Motion Detection

    PubMed Central

    Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.; Chen, Shigao

    2015-01-01

    Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave signal-to-noise-ratio (SNR) compared to conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2-4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (Body Mass Index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue. PMID:26168181

  16. Optical sensitivity non-uniformity analysis and optimization of a tilt optical readout focal plane array

    NASA Astrophysics Data System (ADS)

    Fu, Jianyu; Shang, Haiping; Shi, Haitao; Li, Zhigang; Ou, Yi; Chen, Dapeng; Zhang, Qingchuan

    2016-02-01

    An optical readout focal plane array (FPA) usually has a differently tilted reflector/absorber at the initial state due to the micromachining technique. The angular deviation of the reflector/absorber has a strong impact on the optical sensitivity non-uniformity, which is a key factor which affects the imaging uniformity. In this study, a theoretical analysis has been developed, and it is found that the stress matching in SiO2-Aluminum (Al) bilayer leg could make a contribution towards reducing the optical sensitivity non-uniformity. Ion implantation of phosphorus (P) has been utilized to control the stress in SiO2 film. By controlling the implantation energy and dose, the stress and stress stability are modified. The optical readout FPA has been successfully fabricated with the stress-control technique based on P+ implantation. It is demonstrated that the gray response non-uniformity of optical readout FPA has decreased from 25.69% to 10.7%.

  17. An improved retina-like nonuniformity correction for infrared focal-plane array

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Zhang, Zhi-jie; Wang, Chen-sheng

    2015-11-01

    The non-uniform response in infrared focal plane array (IRFPA) detectors produces corrupted images with nonuniformity noise. This paper mainly proposes an improved adaptive nonuniformity correction (NUC) method based on the retina-like neural network approach. The main purpose of NUC method is to obtain reliable estimations of gain and offset parameters. In this paper the two correction parameters are updated with two different learning rates respectively for the purpose of updating these two parameters synchronously. And then more accurate estimations of the two correction parameters can be obtained. Again, in order to reduce the ghost artifacts normally introduced by the strong edge effectively, the proposed algorithm employs the non-local means (NLM) method to estimate the desired target value of each detector. The proposed NUC method has been tested by applying it to the IR sequence of frames with simulated nonuniformity noise and real nonuniformity noise, respectively. The performance comparisons are implemented with the well-established scene-based NUC techniques. And the experimental results show the efficiency of the proposed method.

  18. Terahertz 3D printed diffractive lens matrices for field-effect transistor detector focal plane arrays.

    PubMed

    Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech

    2016-09-01

    We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays. PMID:27607620

  19. High-resolution seismic array imaging using teleseismic scattered waves

    NASA Astrophysics Data System (ADS)

    Tong, P.; Liu, Q.; Chen, C.; Basini, P.; Komatitsch, D.

    2013-12-01

    The advent of dense seismic networks, new modeling and imaging techniques, and increased HPC capacity makes it feasible to resolve subsurface interfaces and structural anomalies beneath seismic arrays at unprecedented details based on teleseismic scattered records. To accurately and efficiently simulate the full propagation of teleseismic waves beneath receiver arrays at the frequencies relevant to scattering imaging, we develop a hybrid method that interfaces a frequency-wavenumber (FK) calculation, which provides semi-analytical solutions to one-dimensional layered background models, with a 2D/3D spectral-element (SEM) numerical solver to calculate synthetic responses of local media to plane-wave incidence. This hybrid method accurately deals with local heterogeneities and discontinuity undulations, and represents an efficient tool for the forward modelling of teleseismic coda (including converted and scattered) waves. Meanwhile, adjoint tomography is a powerful tool for high-resolution imaging in heterogeneous media, which can resolve large velocity contrasts through the use of 2D/3D initial models and full numerical simulations for forward wavefields and sensitivity kernels. In the framework of adjont tomography and hybrid method, we compute sensitivity kernels for teleseismic coda waves, which provide the basis for mapping variations in subsurface discontinuities, density and velocity structures through nonlinear conjugate-gradient methods. Various 2D synthetic imaging examples show that inversion of teleseismic coda phases based on the 2D SEM-FK hybrid method and adjoint techniques is a promising tool for structural imaging beneath dense seismic arrays. 3D synthetic experiments will be performed to test the feasibility of seismic array imaging using adjoint method and 3D SEM-FK hybrid method. We will also apply this hybrid imaging techniques to realistic seismic data, such as the recorded SsPmP phases in central Tibet, to explore high-resolution subsurface

  20. Collection of photogenerated charge carriers in small-pitched infrared photovoltaic focal plane arrays

    NASA Astrophysics Data System (ADS)

    Chekanova, Galina V.; Drugova, Albina A.; Kholodnov, Viacheslav; Nikitin, Mikhail S.

    2010-10-01

    Technology of infrared (IR) photovoltaic (PV) focal plane arrays (FPA) covering spectral range from 1.6 to 14 μm gradually moves from simple quasi-matrix (linear) arrays like as 4×288 pixels to large format high definition arrays 1280×1024 pixels and more. Major infrared detector materials for PV technology are InSb and its alloys and ternary alloys Hg1-xCdxTe. Progress in IR PV technology was provided in last decade by serious improvement in material growing techniques. Increasing of PV array format is related always to decreasing of pixel size and spacing between neighbor pixels to minimal size reasonable from point of view of infrared physics. So pitch is small (15-25 μm) in large format arrays. Ambipolar diffusion length of photogenerated charge carriers can exceed pitch many times in high quality absorption layers of PV arrays. It means that each pixel can collect excess charge carriers generated far from n+-p junction border. Optimization of resolution, filling factor and cross-talking level of small-pitched PV FPA requires comprehensive estimation of photodiode's (PD) pixel performance depending on pixel and array design, material properties and operating conditions. Objective of the present work was to develop general approach to estimate collection of photogenerated charge carriers in small-pitched arrays.

  1. Passive cavitation imaging with ultrasound arrays

    PubMed Central

    Salgaonkar, Vasant A.; Datta, Saurabh; Holland, Christy K.; Mast, T. Douglas

    2009-01-01

    A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh–Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed. PMID:20000921

  2. Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes

    NASA Astrophysics Data System (ADS)

    Trichopoulos, Georgios C.

    The terahertz (THz) band provides unique sensing opportunities that enable several important applications such as biomedical imaging, remote non-destructive inspection of packaged goods, and security screening. THz waves can penetrate most materials and can provide unique spectral information in the 0.1--10 THz band with high resolution. In contrast, other imaging modalities, like infrared (IR), suffer from low penetration depths and are thus not attractive for non-destructive evaluation. However, state-of-the-art THz imaging systems typically employ mechanical raster scans using a single detector to acquire two-dimensional images. Such devices tend to be bulky and complicated due to the mechanical parts, and are thus rather expensive to develop and operate. Thus, large-format (e.g. 100x100 pixels) and all-electronics based THz imaging systems are badly needed to alleviate the space, weight and power (SWAP) factors and enable cost effective utilization of THz waves for sensing and high-data-rate communications. In contrast, photonic sensors are very compact because light can couple directly to the photodiode without residing to radiation coupling topologies. However, in the THz band, due to the longer wavelengths and much lower photon energies, highly efficient antennas with optimized input impedance have to be integrated with THz sensors. Here, we implement novel antenna engineering techniques that are optimized to take advantage of recent technological advances in solid-state THz sensing devices. For example, large-format focal plane arrays (FPAs) have been the Achilles' heel of THz imaging systems. Typically, optical components (lenses, mirrors) are employed in order to improve the optical performance of FPAs, however, antenna sensors suffer from degraded performance when they are far from the optical axis, thus minimizing the number of useful FPA elements. By modifying the radiation pattern of FPA antennas we manage to alleviate the off-axis aberration

  3. Very large scale heterogeneous integration (VLSHI) and wafer-level vacuum packaging for infrared bolometer focal plane arrays

    NASA Astrophysics Data System (ADS)

    Forsberg, Fredrik; Roxhed, Niclas; Fischer, Andreas C.; Samel, Björn; Ericsson, Per; Hoivik, Nils; Lapadatu, Adriana; Bring, Martin; Kittilsland, Gjermund; Stemme, Göran; Niklaus, Frank

    2013-09-01

    Imaging in the long wavelength infrared (LWIR) range from 8 to 14 μm is an extremely useful tool for non-contact measurement and imaging of temperature in many industrial, automotive and security applications. However, the cost of the infrared (IR) imaging components has to be significantly reduced to make IR imaging a viable technology for many cost-sensitive applications. This paper demonstrates new and improved fabrication and packaging technologies for next-generation IR imaging detectors based on uncooled IR bolometer focal plane arrays. The proposed technologies include very large scale heterogeneous integration for combining high-performance, SiGe quantum-well bolometers with electronic integrated read-out circuits and CMOS compatible wafer-level vacuum packing. The fabrication and characterization of bolometers with a pitch of 25 μm × 25 μm that are arranged on read-out-wafers in arrays with 320 × 240 pixels are presented. The bolometers contain a multi-layer quantum well SiGe thermistor with a temperature coefficient of resistance of -3.0%/K. The proposed CMOS compatible wafer-level vacuum packaging technology uses Cu-Sn solid-liquid interdiffusion (SLID) bonding. The presented technologies are suitable for implementation in cost-efficient fabless business models with the potential to bring about the cost reduction needed to enable low-cost IR imaging products for industrial, security and automotive applications.

  4. Staring arrays - The future lightweight imagers

    NASA Astrophysics Data System (ADS)

    Dennis, P. N. J.; Dann, R. J.

    1985-01-01

    High performance thermal imagers, such as the common modules, are now readily available. These systems generally employ a scanning mechanism to generate the two-dimensional display which makes their adaptation to cheap, lightweight, small imagers difficult. However, with the advent of two-dimensional close packed arrays of infrared detectors the development of such a system is now becoming feasible. A small imager using cadium mercury telluride detectors has been produced commercially. The system has been designed to be adaptable to use both 3-5-micrometer and 8-14-micrometer arrays, and to study various electronic correction mechanisms.

  5. Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian

    2016-05-01

    Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superimposed on the image, which affects the imaging quality of infrared system seriously. In scene-based non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper proposes an improved neural network non-uniformity correction method with adaptive learning rate. On the one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive learning rate. Several real and simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas.

  6. Non-redundant hexagonal array configurations for optical interferometric systems compactly covering central domains in the spatial-frequency plane

    NASA Astrophysics Data System (ADS)

    Kopilovich, L. E.

    2005-07-01

    Two-dimensional non-redundant arrays are used in many applications, in particular as pupil masks in imaging contexts. The problem of arranging a mask with a given element number on a hexagonal grid, providing the complete coverage of central domain of maximum radius in the spatial-frequency plane is considered here. Diagrams show optimum configurations having third-order symmetry which were found for 12, 15, 18 and 21 elements. Their autocorrelations illustrate the extent to which the central domain of the spatial-frequency plane is covered. The case of a greater element number is also discussed. Optimum configurations with 24 and 30 elements are found using Baumert's tables of cyclic difference sets.

  7. Modulation Transfer Function Consequences of Planar Dense Array Geometries in Infrared Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin; Wichman, Adam R.; Bellotti, Enrico

    2015-09-01

    Finite-difference time-domain and finite element method simulations are used to evaluate two-dimensional spot-scan profiles of p-on- n double-layer planar heterostructure (DLPH) detector arrays with abrupt p-type diffusions. The modulation transfer function (MTF) is calculated from the spot-scan profiles. An asymmetric dark and photo current collection mechanism is identified and explained as a result of electric field bunching through the corners of polygonal diffusions in DLPH arrays. The MTF consequences of the asymmetric collection are studied for triangular, square, and hexagonal diffusions in square and hexagonal arrays. We show that the placement and shape of the diffusion relative to the pixel can modify the MTF by several percent. The magnitude of the effect is largest for diffusions with fewer degrees of rotational symmetry.

  8. Parallax handling of image stitching using dominant-plane homography

    NASA Astrophysics Data System (ADS)

    Pang, Zhaofeng; Li, Cheng; Zhao, Baojun; Tang, Linbo

    2015-10-01

    In this paper, we present a novel image stitching method to handle parallax in practical application. For images with significant amount of parallax, the more effective approach is to align roughly and globally the overlapping regions and then apply a seam-cutting method to composite naturally stitched images. It is well known that images can be modeled by various planes result from the projective parallax under non-ideal imaging condition. The dominant-plane homography has important advantages of warping an image globally and avoiding some local distortions. The proposed method primarily addresses large parallax problem through two steps: (1) selecting matching point pairs located on the dominant plane, by clustering matching correspondences and then measuring the cost of each cluster; and (2) in order to obtain a plausible seam, edge maps of overlapped area incorporation arithmetic is adopted to modify the standard seam-cutting method. Furthermore, our approach is demonstrated to achieve reliable performance of handling parallax through a mass of experimental comparisons with state-of-the-art methods.

  9. Real-world stereoscopic performance in multiple-focal-plane displays: How far apart should the image planes be?

    NASA Astrophysics Data System (ADS)

    Watt, Simon J.; MacKenzie, Kevin J.; Ryan, Louise

    2012-03-01

    Conventional stereoscopic displays present conflicting stimuli to vergence and accommodation, causing fatigue, discomfort, and poor stereo depth perception. One promising solution is 'depth filtering', in which continuous variations in focal distance are simulated by distributing image intensity across multiple focal planes. The required image-plane spacing is a critical parameter, because there are constraints on the total number that can be used. Depth-filtered images have been shown to support continuous and reasonably accurate accommodation responses with 1.1 dioptre (D) image-plane spacings. However, retinal contrast is increasingly attenuated with increasing image-plane separation. Thus, while such stimuli may eliminate the vergence-accommodation conflict, they may also unacceptably degrade stereoscopic depth perception. Here we measured stereoacuity, and the time needed for stereoscopic fusion, for real targets and depth-filtered approximations to the same stimuli (image-plane spacings of 0.6, 0.9 and 1.2 D). Stereo fusion time was reasonably consistent across conditions. Stereoacuity for depth-filtered stimuli was only slightly poorer than for real targets with 0.6 D image-plane separation, but deteriorated rapidly thereafter. Our results suggest that stereoscopic depth perception, not accommodation and vergence responses, is the limiting factor in determining acceptable image-plane spacing for depth-filtered images. We suggest that image-plane spacing should ideally not exceed ~0.6 D.

  10. Low-power 12-bit superconducting analog-to-digital converter for cryogenic focal plane array readouts

    NASA Astrophysics Data System (ADS)

    Rylov, Sergey V.; Robertazzi, R. P.

    1996-06-01

    Superconducting Analog-to-Digital Converters (ADCs) are attractive for use on cryogenic focal plane arrays because of their ultra-low power consumption and their ability to operate at cryogenic temperatures. We have developed a 12 bit ADC based on Nb thin film superconducting integrated circuit technology which dissipates less than 0.44 mW while in operation at 4.2 K. Extensions of this deign to lower junction critical currents would allow the production of an ADC which dissipates less than 0.1 mW when fully biased. The ADC had at least 9.75 effective bits of resolution for 20 kHz input signals, limited by the harmonic distortions of the signal source. We estimate that the ultimate resolution of this ADC can be greater than 20 bits at 10 MHz bandwidth with our current 2.5 micron fabrication process. Potential applications for this device include focal plane array read out electronics for low temperature (4.2 K and below) imaging arrays, such as those being used on the SIRTF mission being planned by NASA. Other applications include high precision instrumentation for metrology uses.