Analysis of plane-plastic stress problems with axial symmetry in strain-hardening range
NASA Technical Reports Server (NTRS)
Wu, M H Lee
1951-01-01
A simple method is developed for solving plane-plastic-stress problems with axial symmetry in the strain-hardening range which is based on the deformation theory of plasticity employing the finite-strain concept. The equations defining the problems are first reduced to two simultaneous nonlinear differential equations involving two dependent variables: (a) the octahedral shear strain, and (b) a parameter indicating the ratio of principal stresses. By multiplying the load and dividing the radius by an arbitrary constant, it is possible to solve these problems without iteration for any value of the modified load. The constant is determined by the boundary condition. This method is applied to a circular membrane under pressure, a rotating disk without and with a central hole, and an infinite plate with a circular hole. Two materials, inconel x and 16-25-6, the octahedral shear stress-strain relations of which do not follow the power law, are used. Distributions of octahedral shear strain, as well as of principal stresses and strains, are obtained. These results are compared with the results of the same problems in the elastic range.
Uniqueness of the interior plane strain time-harmonic viscoelastic inverse problem
NASA Astrophysics Data System (ADS)
Zhang, Yixiao; Barbone, Paul E.; Harari, Isaac; Oberai, Assad A.
2016-07-01
Elasticity imaging has emerged as a promising medical imaging technique with applications in the detection, diagnosis and treatment monitoring of several types of disease. In elasticity imaging measured displacement fields are used to generate images of elastic parameters of tissue by solving an inverse problem. When the tissue excitation, and the resulting tissue motion is time-harmonic, elasticity imaging can be extended to image the viscoelastic properties of the tissue. This leads to an inverse problem for the complex-valued shear modulus at a given frequency. In this manuscript we have considered the uniqueness of this inverse problem for an incompressible, isotropic linear viscoelastic solid in a state of plane strain. For a single measured displacement field we conclude that the solution is infinite dimensional, and the data required to render it unique is determined by the measured strain field. In contrast, for two independent displacement fields such that the principal directions of the resulting strain fields are different, the space of possible solutions is eight dimensional, and given additional data, like the value of the shear modulus at four locations, or over a calibration region, we may determine the shear modulus everywhere. We have also considered simple analytical examples that verify these results and offer additional insights. The results derived in this paper may be used as guidelines by the practitioners of elasticity imaging in designing more robust and accurate imaging protocols.
Albocher, U.; Barbone, P.E.; Richards, M.S.; Oberai, A.A.; Harari, I.
2014-01-01
We apply the adjoint weighted equation method (AWE) to the direct solution of inverse problems of incompressible plane strain elasticity. We show that based on untreated noisy displacements, the reconstruction of the shear modulus can be very poor. We link this poor performance to loss of coercivity of the weak form when treating problems with discontinuous coefficients. We demonstrate that by smoothing the displacements and appending a regularization term to the AWE formulation, a dramatic improvement in the reconstruction can be achieved. With these improvements, the advantages of the AWE method as a direct solution approach can be extended to a wider range of problems. PMID:25383085
Turbulent Plane Wakes Subjected to Successive Strains
NASA Technical Reports Server (NTRS)
Rogers, Michael M.
2003-01-01
Six direct numerical simulations of turbulent time-evolving strained plane wakes have been examined to investigate the response of a wake to successive irrotational plane strains of opposite sign. The orientation of the applied strain field has been selected so that the flow is the time-developing analogue of a spatially developing wake evolving in the presence of either a favourable or an adverse streamwise pressure gradient. The magnitude of the applied strain rate a is constant in time t until the total strain e(sup at) reaches about four. At this point, a new simulation is begun with the sign of the applied strain being reversed (the original simulation is continued as well). When the total strain is reduced back to its original value of one, yet another simulation is begun with the sign of the strain being reversed again back to its original sign. This process is done for both initially "favourable" and initially "adverse" strains, providing simulations for each of these strain types from three different initial conditions. The evolution of the wake mean velocity deficit and width is found to be very similar for all the adversely strained cases, with both measures rapidly achieving exponential growth at the rate associated with the cross-stream expansive strain e(sup at). In the "favourably" strained cases, the wake widths approach a constant and the velocity deficits ultimately decay rapidly as e(sup -2at). Although all three of these cases do exhibit the same asymptotic exponential behaviour, the time required to achieve this is longer for the cases that have been previously adversely strained (by at approx. equals 1). These simulations confirm the generality of the conclusions drawn in Rogers (2002) regarding the response of plane wakes to strain. The evolution of strained wakes is not consistent with the predictions of classical self-similar analysis; a more general equilibrium similarity solution is required to describe the results. At least for the cases
Crack initiation under generalized plane strain conditions
Shum, D.K.M.; Merkle, J.G.
1991-01-01
A method for estimating the decrease in crack-initiation toughness, from a reference plane strain value, due to positive straining along the crack front of a circumferential flaw in a reactor pressure vessel is presented in this study. This method relates crack initiation under generalized plane strain conditions with material failure at points within a distance of a few crack-tip-opening displacements ahead of a crack front, and involves the formulation of a micromechanical crack-initiation model. While this study is intended to address concerns regarding the effects of positive out-of- plane straining on ductile crack initiation, the approach adopted in this work can be extended in a straightforward fashion to examine conditions of macroscopic cleavage crack initiation. Provided single- parameter dominance of near-tip fields exists in the flawed structure, results from this study could be used to examine the appropriateness of applying plane strain fracture toughness to the evaluation of circumferential flaws, in particular to those in ring-forged vessels which have no longitudinal welds. In addition, results from this study could also be applied toward the analysis of the effects of thermal streaming on the fracture resistance of circumferentially oriented flaws in a pressure vessel. 37 refs., 8 figs., 1 tab.
Spatial Reasoning and Polya's Five Planes Problem
ERIC Educational Resources Information Center
Madden, Sean P.; Diaz, Ricardo
2008-01-01
Middle and High school students of the twenty-first century possess surprising powers of spatial reasoning. They are assisted by technologies not available to earlier generations. Both of these assertions are demonstrated by students who are challenged with George Polya's classic Five Planes Problem. (Contains 5 figures.)
Electrostatic Image Problems with Plane Boundaries.
ERIC Educational Resources Information Center
Terras, Riho; Swanson, Robert A.
1980-01-01
Considers the electrostatic problem of a point charge in a domain bounded by conducting planes. Lists all such domains for which a solution by images exists, describes the image charge arrays in familiar crystallographic terms, and gives an illustrative example. (Author/GS)
The crack problem for a nonhomogeneous plane
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1983-01-01
The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.
Crack problem for a nonhomogeneous plane
Delale, F.; Erdogan, F.
1983-09-01
This study considers the plane elasticity problem for a nonhomogeneous medium containing a crack. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then, the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy-type kernel. Hence, its solution and the stresses around the crack tips have the conventional square-root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible. 14 references.
The crack problem for a nonhomogeneous plane
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1982-01-01
The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.
The Evolution of Plane Wakes Subjected to Irrotational Strains
NASA Technical Reports Server (NTRS)
Rogers, M. R.; Rai, Man Mohan (Technical Monitor)
1995-01-01
Three direct numerical simulations of time-evolving turbulent plane wakes developing in the presence of various irrotational plane strains have been generated. A pseudospectral numerical method with up to 26 million modes is used to solve the equations in a reference frame moving with the irrotational strain. The initial condition for each simulation is taken from a previous turbulent self-similar plane wake direct numerical simulation at a velocity deficit Reynolds number, Re, of about 2000. Three different plane strains (of the same magnitude) are imposed. In the first two simulations the strain is in a plane normal to the streamwise wake direction (the two cases having strain of opposite sign); in the third the wake is compressed in the streamwise direction and stretched in the inhomogeneous cross-stream direction. The two flows that are stretched in the cross-stream direction experience an exponential increase of Re; flow visualization indicates many small-scale vortices with little or no organized large-scale structure. In the flow that is compressed in the cross-stream direction Re decays exponentially and the layer appears to be relaminarizing. The evolution of several turbulence statistics in each of these flows is examined.
Analysis of crack closure under plane strain conditions
NASA Technical Reports Server (NTRS)
Fleck, Norman A.; Newman, James C., Jr.
1988-01-01
The phenomenon of plasticity-induced crack closure is associated with the development of residual material on the flanks of an advancing fatigue crack. While it is easy to see that this residual material can come from the side faces of a specimen under plane stress conditions, it is difficult to discover the origin of this extra volume of material on the crack flanks when it is assumed that plane deformations occur and plastic flow is incompressible. The purpose of this paper is to determine whether plasticity-induced fatigue crack closure occurs in an elastic-perfectly plastic body under plane strain conditions.
Analysis of crack closure under plane strain conditions
NASA Technical Reports Server (NTRS)
Fleck, N. A.; Newman, J. C.
1986-01-01
The phenomenon of plasticity-induced crack closure is associated with the development of residual material on the flanks of an advancing fatigue crack. While it is easy to see that this residual material can come from the side faces of a specimen under plane stress conditions, it is difficult to discover the origin of this extra volume of material on the crack flanks when it is assumed that plane deformations occur and plastic flow is incompressible. The purpose of this paper is to determine whether plasticity-induced fatigue crack closure occurs in an elastic-perfectly plastic body under plane strain conditions.
Ultrafast vascular strain compounding using plane wave transmission.
Hansen, H H G; Saris, A E C M; Vaka, N R; Nillesen, M M; de Korte, C L
2014-03-01
Deformations of the atherosclerotic vascular wall induced by the pulsating blood can be estimated using ultrasound strain imaging. Because these deformations indirectly provide information on mechanical plaque composition, strain imaging is a promising technique for differentiating between stable and vulnerable atherosclerotic plaques. This paper first explains 1-D radial strain estimation as applied intravascularly in coronary arteries. Next, recent methods for noninvasive vascular strain estimation in a transverse imaging plane are discussed. Finally, a compounding technique that our group recently developed is explained. This technique combines motion estimates of subsequently acquired focused ultrasound images obtained at various insonification angles. However, because the artery moves and deforms during the multi-angle acquisition, errors are introduced when compounding. Recent advances in computational power have enabled plane wave ultrasound acquisition, which allows 100 times faster image acquisition and thus might resolve the motion artifacts. In this paper the performance of strain imaging using plane wave compounding is investigated using simulations of an artery with a vulnerable plaque and experimental data of a two-layered vessel phantom. The results show that plane wave compounding outperforms 0° focused strain imaging. For the simulations, the root mean squared error reduced by 66% and 50% for radial and circumferential strain, respectively. For the experiments, the elastographic signal-to-noise and contrast-to-noise ratio (SNR(e) and CNR(e)) increased with 2.1 dB and 3.7 dB radially, and 5.6 dB and 16.2dB circumferentially. Because of the high frame rate, the plane wave compounding technique can even be further optimized and extended to 3D in future. PMID:24484646
The plane strain tests in the PROMETRA program
NASA Astrophysics Data System (ADS)
Cazalis, B.; Desquines, J.; Carassou, S.; Le Jolu, T.; Bernaudat, C.
2016-04-01
A fuel cladding mechanical test, performed under conditions of plane strain deformation in the transverse direction of tube axis, was originally developed at Pennsylvania State University. It was decided to implement this original test within the PROMETRA program using the same experimental procedure and its optimization for a ring mechanical testing on plane strain conditions (PST tests) in hot cells laboratory. This paper presents a detailed description and an interpretation of the Plane Strain Tensile (PST) tests performed in the framework of the PROMETRA program on fresh and irradiated claddings. At first, the context of the PST tests is situated and the specificities of these tests implemented at CEA are justified. Indeed, a significant adjustment of the original experimental procedure is carried out in order to test the irradiated fuel cladding in the best possible conditions. Then, the tests results on fresh Zircaloy-4 and on irradiated Zircaloy-4, M5™ and ZIRLO® specimens are gathered. The main analyses in support of these tests, such as metallographies, fractographic examinations and finite element simulations are detailed. Finally, a synthesis of the interpretation of the tests is proposed. The PST test seems only representative of plane strain fracture conditions when the test material is very ductile (fresh or high temperature or low hydride material like M5TM). However, it provides a relevant representation of the RIA rupture initiation which is observed in irradiated cladding resulting from hydride rim damage due to the strong irradiation of a fuel rod.
The influence of strain rate and hydrogen on the plane-strain ductility of Zircaloy cladding
Link, T.M.; Motta, A.T.; Koss, D.A.
1998-03-01
The authors studied the ductility of unirradiated Zircaloy-4 cladding under loading conditions prototypical of those found in reactivity-initiated accidents (RIA), i.e.: near plane-strain deformation in the hoop direction (transverse to the cladding axis) at room temperature and 300 C and high strain rates. To conduct these studies, they developed a specimen configuration in which near plane-strain deformation is achieved in the gage section, and a testing methodology that allows one to determine both the limit strain at the onset of localized necking and the fracture strain. The experiments indicate that there is little effect of strain rate (10{sup {minus}3} to 10{sup 2} s{sup {minus}1}) on the ductility of unhydrided Zircaloy tubing deformed under near plane-strain conditions at either room temperature or 300 C. Preliminary experiments on cladding containing 190 ppm hydrogen show only a small loss of fracture strain but no clear effect on limit strain. The experiments also indicate that there is a significant loss of Zircaloy ductility when surface flaws are present in the form of thickness imperfections.
Shear Band Formation in Plane Strain Experiments of Sand
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; Sture, Stein
2000-01-01
A series of biaxial (plane strain) experiments were conducted on three sands under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grain size and shape on the constitutive and stability behavior of granular materials. The three sands used in the experiments were fine-, medium-, and coarse-grained uniform silica sands with rounded, subangular, and angular grains, respectively. Specimen deformation was readily monitored and analyzed with the help of a grid pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly dependent on the specimen density, confining pressure, sand grain texture, and the resulting failure mode(s). That became evident in different degrees of softening responses at various axial strains. The relationship between the constitutive behavior and the specimens' modes of instability is presented. The failure in all specimens was characterized by two distinct and opposite shear bands. It was found that the measured dilatancy angles increase as the sand grains' angularities and sizes increase. The measured shear band inclination angles are also presented and compared with classical Coulomb and Roscoe solutions.
Strained layer superlattice focal plane array having a planar structure
Kim, Jin K; Carroll, Malcolm S; Gin, Aaron; Marsh, Phillip F; Young, Erik W; Cich, Michael J
2012-10-23
An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.
On the modified Westergaard equations for certain plane crack problems
NASA Technical Reports Server (NTRS)
Eftis, J.; Liebowitz, H.
1972-01-01
An error in Westergaard's equation for a certain class of plane crack problems, originally pointed out by Sih, is briefly discussed. The source of the difficulty is traced to an oversight in an earlier work by MacGregor, upon whose work Westergaard based his equations. Several examples of interest illustrating the consequences of the necessary correction to these equations are given.
Stress-Strain Behaviour of a Micacious Sand in Plane Strain Condition
NASA Astrophysics Data System (ADS)
Yasin, S. J. M.; Tatsuoka, F.
Unusual failures of river banks and river training structures have been reported during construction and shortly after commissioning of several structures along Jamuna river in Bangladesh that raised widespread questions regarding the design principles and parameters used. The natural sand deposit along the Jamuna river contain relatively larger amount of mica than most other natural soils. Jamuna sand needs to be studied under wide range of loading conditions (such as triaxial, plane strain, simple shear etc.), drainage and density conditions (i.e. drained / undrained, dry / saturated, dense/loose state etc.) to reveal the extent of variation of its strength and deformation characteristics in order to facilitate understanding of the mechanism of past failures of structures and suggest rational design parameters. A series of plane strain compression tests were performed on Jamuna sand. It is observed that Jamuna sand is highly contractive under shear and more anisotropic than other non-mica sands.
Dislocation microstructures and strain-gradient plasticity with one active slip plane
NASA Astrophysics Data System (ADS)
Conti, Sergio; Garroni, Adriana; Müller, Stefan
2016-08-01
We study dislocation networks in the plane using the vectorial phase-field model introduced by Ortiz and coworkers, in the limit of small lattice spacing. We show that, in a scaling regime where the total length of the dislocations is large, the phase field model reduces to a simpler model of the strain-gradient type. The limiting model contains a term describing the three-dimensional elastic energy and a strain-gradient term describing the energy of the geometrically necessary dislocations, characterized by the tangential gradient of the slip. The energy density appearing in the strain-gradient term is determined by the solution of a cell problem, which depends on the line tension energy of dislocations. In the case of cubic crystals with isotropic elasticity our model shows that complex microstructures may form in which dislocations with different Burgers vector and orientation react with each other to reduce the total self-energy.
Plane strain finite element analysis of sheet forming operations including bending effects
NASA Astrophysics Data System (ADS)
Cho, Uk Youn
1993-01-01
An improved finite element method suitable for the plane-strain analysis of sheet metal forming operations is presented. The method incorporates a computationally efficient shell model and a consistent frictional contact algorithm through an implicit updated Lagrangian formulation. The workpiece material model is rigid-viscoplastic with a choice of power law hardening and plastic normal anisotropy and is capable of modeling a wide variety of sheet metals. A simplified nonlinear incremental shell theory is employed along with an optional reduced integration through the thickness for computational efficiency, while retaining the advantages of the kinematic model containing the bending effects. Complex tool geometry can be handled by discrete data points, by primitives (lines and arcs), or by analytical functions. The capabilities of the method are demonstrated through verification problems and comparisons with experimental data, benchmark results, and published data for several practical problems of the sheet metal forming industry. The problems include stretching and/or deep drawing operations, simulation of automobile panel section, and brake bending operation. As an independent investigation from the first portion of the dissertation, measured data from a set of simple bending experiments of two types of aluminum are presented and analyzed. Generated data from the experiments include strain histories (loading and unloading), spring back information (spring back angle and strains), and friction coefficients. As a by-product, a simple way of estimating the friction coefficient (Coulomb's law) during a bending operation is proposed and demonstrated.
Singular perturbation analysis of the atmospheric orbital plane change problem
NASA Technical Reports Server (NTRS)
Calise, A. J.
1988-01-01
A three-state model is presented for the aeroassisted orbital plane change problem. A further model order reduction to a single state model is examined using singular perturbation theory. The optimal solution for this single state model compares favorably with the exact numerical solution using a four-state model; however, a separate boundary layer solution is required to satisfy the terminal constraint on altitude. This, in general, involves the solution of a two-point boundary value problem, but for a two-state model. An approximation is introduced to obtain an analytical control solution for lift and bank angle. Included are numerical simulation results of a guidance law derived from this analysis, along with comparison to earlier work by other researchers.
NASA Astrophysics Data System (ADS)
Thongnum, Anusit; Pinsook, Udomsilp
2015-03-01
Anisotropic transport properties of a two-dimensional electron gas in nonpolar m-plane AlN/GaN heterostructures with the interface roughness coupled anisotropic in-plane strain scattering were investigated theoretically using a path-integral framework. The scattering potential was composed of the interface roughness and the effective field from the electron charge and the net piezoelectric polarization. We showed that the anisotropic biaxial strains generate only the net piezoelectric polarization along the [0 0 0 1]-direction and cause anisotropy in electron mobility with a magnitude lower than the ≤ft[11\\bar{2}0\\right] -direction. We also showed that the anisotropy in electron mobility reduced with increasing electron density. Moreover, the anisotropic electron mobility disappeared when the anisotropic in-plane strain scattering was removed, and the relation for pure interface roughness scattering was reestablished. This formulation with existing roughness parameters gave a good description for the experimental results of polar c-plane AlN/GaN heterostructures.
The impact of strain, bedding plane friction and overburden pressure on joint spacing
NASA Astrophysics Data System (ADS)
Arslan, Arzu; Schöpfer, Martin P. J.; Walsh, John J.; Childs, Conrad
2010-05-01
In layered sequences, rock joints usually best develop within the more brittle layers and commonly display a regular spacing that scales with layer thickness. A variety of conceptual and mechanical models have been advanced to explain this relationship. A limitation of previous approaches, however, is that fracture initiation and associated bedding-parallel slip are not explicitly simulated; instead, fractures were predefined and interfaces were welded. To surmount this problem, we have modelled the formation and growth of joints in layered sequences by using the two-dimensional Distinct Element Method (DEM) as implemented in the Particle Flow Code (PFC-2D). In PFC-2D, rock is represented by an assemblage of circular particles that are bonded at particle-particle contacts, with failure occurring when either the tensile or shear strength of a bond is exceeded. Model materials with different rheological properties can be generated by calibrating the results of synthetic mechanical test procedures with those of real rocks. Our simple models of jointing comprise a central brittle layer with high Young's modulus, which is embedded in a low Young's modulus matrix. The interfaces between the layers (i.e. bedding planes) are defined by ‘smooth joint' contacts, a modelling feature that eliminates interparticle bumpiness and associated interlocking friction. Consequently, this feature allows the user to assign macroscopic properties such as friction along layer interfaces in a controlled manner. Layer parallel extension is applied by assigning a velocity to particles at the lateral boundaries of the model while maintaining a constant vertical confining pressure. Models were extended until joint saturation was reached in the central layer. We thereby explored the impact of strain, bedding plane friction and overburden pressure on joint spacing. The modelling revealed that joint spacing decreases as strain, bedding plane friction and overburden pressure are increased
Development of a new model for plane strain bending and springback analysis
Zhang, Z.T.; Lee, D.
1995-06-01
A new mathematical model is presented for plane strain bending and springback analysis in sheet metal forming. This model combines effects associated with bending and stretching, considers stress and strain distributions and different thickness variations in the thickness direction, and takes force equilibrium into account. An elastic-plastic material model and Hill`s nonquadratic yield function are incorporated in the model. The model is used to obtain force, bending moment, and springback curvature. A typical two-dimensional draw bending part is divided into five regions along the strip, and the forces and moments acting on each region and the deformation history of each region are examined. Three different methods are applied to the two-dimensional draw bending problems: the first using the new model, the second using the new model but also including a kinematic directional hardening material model to consider the bending and unbending deformation in the wall, and the third using membrane theory plus bending strain. Results from these methods, including those from the recent benchmark program, are compared.
The tangential breast match plane: practical problems and solutions.
Norris, M
1989-09-01
The three-field breast set-up, in which tangential oblique opposed fields are joined to an anterior supraclavicular field, has been the method of choice for treatment of breast cancer for many years. In the last several years many authors have suggested refinements to the technique that improve the accuracy with which fields join at a match plane. The three-field breast set-up, using a rotatable half-beam block is the technique used at our institution. In instituting this procedure, several practical problems were encountered. Due to the small collimator rotation angles used it is possible to clinically reverse the collimator angle without observing an error noticeable on fluoroscopy. A second error can occur when the table base angle is used to compensate for the incorrect collimator rotation. These potential sources of error can be avoided if a programmable calculator or computer program is used to assist the dosimetrist during the simulation. Utilization of fluoroscopy, digital table position displays and a caliper provide accurate input for the computer program. This paper will present a hybrid procedure that combines practical set-up procedures with the mathematical calculation of ideal angles to result in an accurate and practical approach to breast simulation. PMID:2604852
A semi-implicit finite strain shell algorithm using in-plane strains based on least-squares
NASA Astrophysics Data System (ADS)
Areias, P.; Rabczuk, T.; de Sá, J. César; Natal Jorge, R.
2015-04-01
The use of a semi-implicit algorithm at the constitutive level allows a robust and concise implementation of low-order effective shell elements. We perform a semi-implicit integration in the stress update algorithm for finite strain plasticity: rotation terms (highly nonlinear trigonometric functions) are integrated explicitly and correspond to a change in the (in this case evolving) reference configuration and relative Green-Lagrange strains (quadratic) are used to account for change in the equilibrium configuration implicitly. We parametrize both reference and equilibrium configurations, in contrast with the so-called objective stress integration algorithms which use a common configuration. A finite strain quadrilateral element with least-squares assumed in-plane shear strains (in curvilinear coordinates) and classical transverse shear assumed strains is introduced. It is an alternative to enhanced-assumed-strain (EAS) formulations and, contrary to this, produces an element satisfying ab-initio the Patch test. No additional degrees-of-freedom are present, contrasting with EAS. Least-squares fit allows the derivation of invariant finite strain elements which are both in-plane and out-of-plane shear-locking free and amenable to standardization in commercial codes. Two thickness parameters per node are adopted to reproduce the Poisson effect in bending. Metric components are fully deduced and exact linearization of the shell element is performed. Both isotropic and anisotropic behavior is presented in elasto-plastic and hyperelastic examples.
Texture development and hardening characteristics of steel sheets under plane-strain compression
Friedman, P.A.; Liao, K.C.; Pan, J.; Barlat, F.
1999-04-01
Crystallographic texture development and hardening characteristics of a hot-rolled, low-carbon steel sheet due to cold rolling were investigated by idealizing the cold rolling process as plane-strain compression. The starting anisotropy of the test material was characterized by examination of the grain structure by optical microscopy and the preferred crystal orientation distribution by x-ray diffraction. Various heat treatments were used in an effort to remove the initial deformation texture resulting from hot rolling. The plastic anisotropy of the starting material was investigated with tensile tests on samples with the tensile axis parallel, 45{degree}, and perpendicular to the rolling direction. The grain structure after plane-strain compression was studied by optical microscopy, and the new deformation texture was characterized by x-ray diffraction pole figures. These figures are compared with the theoretical pole figures produced from a Taylor-like polycrystal model based on a pencil-glide slip system. The uniaxial tensile stress-strain curve and the plane-strain, compressive stress-strain curve of the sheet were used to calibrate the material parameters in the model. The experimental pole figures were consistent with the findings in the theoretical study. The experimental and theoretical results suggest that the initial texture due to hot rolling was insignificant as compared with the texture induced by large strains under plane-strain compression.
Strain-mediated control of orbital ordering planes in heteroepitaxial lanthanum manganite thin films
NASA Astrophysics Data System (ADS)
Kim, Yong-Jin; Lee, Jin Hong; Koo, Tae Yeong; Yang, Chan-Ho
Strain engineering which controls the misfit strain of heteroepitaxial thin films leads to distinctive physical properties in contrast to the intrinsic properties of unstrained bulk materials Perovskite LaMnO3 (LMO) has attracted considerable attention due to strong coupling among the lattice, charge, spin and orbital degrees of freedom. Bulk LMO is known to be an A-type antiferromagnetic (TN~140 K) Mott insulator, and its orbital ordering plane is established due to cooperative Jahn-Teller distortion below ~750 K. Previous studies have focused on the orbital ordering planes of the bulk LMO but not researched on correlation between orbital planes and misfit stain. To figure out the strain dependence of orbital ordering planes, we have grown LMO thin films on four different substrates, i . e . , DyScO3(110), GaScO3(110), SrTiO3(001), and LSAT(001), using the pulsed laser deposition technique. The films have been characterized by atomic force microscopy and x-ray diffraction. We have performed resonant x-ray scattering to identify orbital ordering plane on each film. We have found that orbital ordering planes can be modulated depending on the misfit strain.
NASA Astrophysics Data System (ADS)
Zingerman, K. M.; Shavyrin, D. A.
2016-06-01
The approximate analytical solution of a quasi-static plane problem of the theory of viscoelasticity is obtained under finite strains. This is the problem of the stress-strain state in an infinite body with circular viscoelastic inclusion. The perturbation technique, Laplace transform, and complex Kolosov-Muskhelishvili's potentials are used for the solution. The numerical results are presented. The nonlinear effects and the effects of viscosity are estimated.
NASA Astrophysics Data System (ADS)
Zhang, Siyuan; Cui, Ying; Griffiths, James T.; Fu, Wai Y.; Freysoldt, Christoph; Neugebauer, Jörg; Humphreys, Colin J.; Oliver, Rachel A.
2015-12-01
I nxG a1 -xN structures epitaxially grown on a -plane or m -plane GaN exhibit in-plane optical polarization. Linear elasticity theory treats the two planes equivalently and is hence unable to explain the experimentally observed higher degree of linear polarization for m -plane than a -plane I nxG a1 -xN . Using density functional theory, we study the response of I nxG a1 -xN random alloys to finite biaxial strains on both nonpolar planes. The calculated m -plane I nxG a1 -xN valence band splitting is larger than that of the a plane, due to a greater degree of structural relaxation in a -plane I nxG a1 -xN . We provide a parametrization of the valence band splitting of I nxG a1 -xN strained to a -plane and m -plane GaN for In compositions between 0 and 0.5, which agrees with experimental measurements and qualitatively explains the experimentally observed difference between a -plane and m -plane polarization.
Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film
Kim, Munho; Mi, Hongyi; Cho, Minkyu; Seo, Jung-Hun; Ma, Zhenqiang; Zhou, Weidong; Gong, Shaoqin
2015-05-25
A method of creating tunable and programmable biaxial compressive strain in silicon nanomembranes (Si NMs) transferred onto a Kapton{sup ®} HN polyimide film has been demonstrated. The programmable biaxial compressive strain (up to 0.54%) was generated utilizing a unique thermal property exhibited by the Kapton HN film, namely, it shrinks from its original size when exposed to elevated temperatures. The correlation between the strain and the annealing temperature was carefully investigated using Raman spectroscopy and high resolution X-ray diffraction. It was found that various amounts of compressive strains can be obtained by controlling the thermal annealing temperatures. In addition, a numerical model was used to evaluate the strain distribution in the Si NM. This technique provides a viable approach to forming in-plane compressive strain in NMs and offers a practical platform for further studies in strain engineering.
Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film
NASA Astrophysics Data System (ADS)
Kim, Munho; Mi, Hongyi; Cho, Minkyu; Seo, Jung-Hun; Zhou, Weidong; Gong, Shaoqin; Ma, Zhenqiang
2015-05-01
A method of creating tunable and programmable biaxial compressive strain in silicon nanomembranes (Si NMs) transferred onto a Kapton® HN polyimide film has been demonstrated. The programmable biaxial compressive strain (up to 0.54%) was generated utilizing a unique thermal property exhibited by the Kapton HN film, namely, it shrinks from its original size when exposed to elevated temperatures. The correlation between the strain and the annealing temperature was carefully investigated using Raman spectroscopy and high resolution X-ray diffraction. It was found that various amounts of compressive strains can be obtained by controlling the thermal annealing temperatures. In addition, a numerical model was used to evaluate the strain distribution in the Si NM. This technique provides a viable approach to forming in-plane compressive strain in NMs and offers a practical platform for further studies in strain engineering.
NASA Astrophysics Data System (ADS)
Avitzur, Boaz
1993-04-01
There is a long-standing interest in developing a capability to predict the distribution of retained stresses in thick-walled pressure vessels after the removal of an internal pressure--post autofrettage. The key to such a prediction is in the capacity to compute the stress distribution in a vessel while under externally imposed stress sufficient enough to cause at least partial plastic deformation. A good approximation of the stress distribution was developed by Mises in his 1913 plane-stress solution. The fact that such vessels are not representative of the plane-stress condition not withstanding, Mises recognized that his solution was mathematically restricted to a limited range of vessels' wall ratios. More recently, Avitzur offered a solution similar to that of Mises, but for a plane-strain condition. Depending on the material's Poisson's factor, Avitzur's solution is also mathematically applicable for a limited range of vessels' wall ratios only. The wall ratio, beyond which Avitzur's solution in plane-strain is not applicable, is a few times larger than that which limits Mises' solution in plane-stress. This work introduces a modification to Avitzur's solution in plane-strain, which makes its applicability unlimited.
Isogeometric Boundary Element analysis with elasto-plastic inclusions. Part 1: Plane problems
NASA Astrophysics Data System (ADS)
Beer, Gernot; Marussig, Benjamin; Zechner, Jürgen; Dünser, Christian; Fries, Thomas-Peter
2016-08-01
In this work a novel approach is presented for the isogeometric Boundary Element analysis of domains that contain inclusions with different elastic properties than the ones used for computing the fundamental solutions. In addition the inclusion may exhibit inelastic material behavior. In this paper only plane stress/strain problems are considered. In our approach the geometry of the inclusion is described using NURBS basis functions. The advantage over currently used methods is that no discretization into cells is required in order to evaluate the arising volume integrals. The other difference to current approaches is that Kernels of lower singularity are used in the domain term. The implementation is verified on simple finite and infinite domain examples with various boundary conditions. Finally a practical application in geomechanics is presented.
A numerical method for determining the strain rate intensity factor under plane strain conditions
NASA Astrophysics Data System (ADS)
Alexandrov, S.; Kuo, C.-Y.; Jeng, Y.-R.
2016-07-01
Using the classical model of rigid perfectly plastic solids, the strain rate intensity factor has been previously introduced as the coefficient of the leading singular term in a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces. Since then, many strain rate intensity factors have been determined by means of analytical and semi-analytical solutions. However, no attempt has been made to develop a numerical method for calculating the strain rate intensity factor. This paper presents such a method for planar flow. The method is based on the theory of characteristics. First, the strain rate intensity factor is derived in characteristic coordinates. Then, a standard numerical slip-line technique is supplemented with a procedure to calculate the strain rate intensity factor. The distribution of the strain rate intensity factor along the friction surface in compression of a layer between two parallel plates is determined. A high accuracy of this numerical solution for the strain rate intensity factor is confirmed by comparison with an analytic solution. It is shown that the distribution of the strain rate intensity factor is in general discontinuous.
Nobrega, B.N.
1984-01-01
The segmented expanding mandrel test (SEMT) method is generally regarded as a good laboratory simulator of pellet-cladding interactions (PCI) in LWR fuel rods. Yet it does not reproduce the low strain failures in Zircaloy cladding typical of PCI-failed fuel elements and commonly observed in other types of laboratory specimens. This investigation addressed this apparent inconsistency. Iodine-stress corrosion cracking (I-SCC) of cold worked, unirradiated Zircaloy-2 cladding was induced in three different types of tubing specimens (known as regular, thin-wall, and chamfered) in a modified SEMT apparatus designed to test mechanical conditions that could lead to slow strain failures. Only the chamfered sample, which has been shown to be subjected to more nearly plane strain conditions than either of the other two specimen types, failed consistently at low (0.8%) total diametral strains in good agreement with in-reactor failure data. Such conditions were numerically and experimentally quantified by means of finite element calculational models and local strain measurements. The numerical analyses and strain measurements provide valuable insight into the PCI simulating power of the segmented expanding mandrel test and its experimental limitations. Failure-strain results for chamfered barrier claddings were obtained and compared with available literature data. The improved I-SCC resistance of this type of cladding was confirmed but the failure strains were significantly lower than reported for regular barrier tubes.
Matsui, Hiroaki Tabata, Hitoshi; Hasuike, Noriyuki; Harima, Hiroshi
2014-09-21
In-plane anisotropic strains in A-plane layers on the electronic band structure of ZnO were investigated from the viewpoint of optical polarization anisotropy. Investigations utilizing k·p perturbation theory revealed that energy transitions and associated oscillation strengths were dependent on in-plane strains. The theoretical correlation between optical polarizations and in-plane strains was experimentally demonstrated using A-plane ZnO layers with different in-plane strains. Finally, optical polarization anisotropy and its implications for in-plane optical properties are discussed in relation to the energy shift between two orthogonal directions. Higher polarization rotations were obtained in an A-plane ZnO layer with in-plane biaxially compressive strains as compared to strain-free ZnO. This study provides detailed information concerning the role played by in-plane strains in optically polarized applications based on nonpolar ZnO in the ultra-violet region.
Bugs, Planes, and Ferris Wheels: A Problem-Centered Curriculum
ERIC Educational Resources Information Center
Campbell, William E.; Kemp, Joyce C.; Zia, Joan H.
2006-01-01
This article describes a problem-centered curriculum for grades 9-12, using problem sets developed by a mathematics department and designed to take the place of textbooks. The students discover mathematical concepts in the context of the problems and activities in the materials.
The plane strain shear fracture of the advanced high strength steels
Sun, Li
2013-12-16
The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component.
Solution of the three-dimensional problem of plane wave diffraction by a two-period plane grating
NASA Astrophysics Data System (ADS)
Manenkov, S. A.
2016-03-01
Using the discrete source method, we develop an algorithm for solving the three-dimensional problem of wave scattering by a plane grating consisting of acoustically soft or acoustically stiff bodies. An efficient algorithm is proposed for determining the periodic Green's function of the grating. Numerical results are obtained for different geometries of the grating elements. The fulfillment of the energy conservation law is verified along with the fulfillment of the boundary condition at the surface of the central grating element.
Analytical solutions to general anti-plane shear problems in finite elasticity
NASA Astrophysics Data System (ADS)
Gao, David Yang
2016-03-01
This paper presents a pure complementary energy variational method for solving a general anti-plane shear problem in finite elasticity. Based on the canonical duality-triality theory developed by the author, the nonlinear/nonconvex partial differential equations for the large deformation problem are converted into an algebraic equation in dual space, which can, in principle, be solved to obtain a complete set of stress solutions. Therefore, a general analytical solution form of the deformation is obtained subjected to a compatibility condition. Applications are illustrated by examples with both convex and nonconvex stored strain energies governed by quadratic-exponential and power-law material models, respectively. Results show that the nonconvex variational problem could have multiple solutions at each material point, the complementary gap function and the triality theory can be used to identify both global and local extremal solutions, while the popular convexity conditions (including rank-one condition) provide mainly local minimal criteria and the Legendre-Hadamard condition (i.e., the so-called strong ellipticity condition) does not guarantee uniqueness of solutions. This paper demonstrates again that the pure complementary energy principle and the triality theory play important roles in finite deformation theory and nonconvex analysis.
Super switching and control of in-plane ferroelectric nanodomains in strained thin films
NASA Astrophysics Data System (ADS)
Matzen, S.; Nesterov, O.; Rispens, G.; Heuver, J. A.; Biegalski, M.; Christen, H. M.; Noheda, B.
2014-07-01
With shrinking device sizes, controlling domain formation in nanoferroelectrics becomes crucial. Periodic nanodomains that self-organize into so-called ‘superdomains’ have been recently observed, mainly at crystal edges or in laterally confined nanoobjects. Here we show that in extended, strain-engineered thin films, superdomains with purely in-plane polarization form to mimic the single-domain ground state, a new insight that allows a priori design of these hierarchical domain architectures. Importantly, superdomains behave like strain-neutral entities whose resultant polarization can be reversibly switched by 90°, offering promising perspectives for novel device geometries.
NASA Astrophysics Data System (ADS)
Miao, Yu; Chen, L.; Sammynaiken, R.; Lin, Y.; Zhang, W. J.
2011-12-01
The use of carbon nanotubes (CNT) for the application in in-plane strain detection is promising. In recent years, in-plane strain sensors constructed from CNT networks have been developed; however, few studied optimization of these sensors. In this paper, a study of the optimization of pure CNT networks in terms of piezoresistive response is reported. The so-called pure CNT networks are CNT networks free of surfactants. The performances of piezoresistive response are gauge factor (GF) and linearity. The variables are the number of layers of networks, concentration of CNT solution, and length of sonication time. As a result, the study concluded an optimal pure CNT networks sensor (GF: 2.59, linearity 0.98) with ten layers of networks, 0.8 mg/ml concentration, and 2 h of sonication time.
Tests and analyses for fully plastic fracture mechanics of plane strain mode I crack growth
McClintock, F.A.; Parks, D.M.; Kim, Y.J.
1995-12-31
Under monotonic loading, structures should ideally be ductile enough to provide continued resistance during crack growth. For fully plastic crack growth in low strength alloys, existing asymptotic solutions for elastic-plastic growing cracks are not applicable because they reach the fracture strain only in regions small compared to the inhomogeneities of the actual fracture process. For the limiting case of non-hardening fully-plastic plane strain crack growth, in a number of geometries and loadings the near-tip fields are characterized in terms of three parameters: an effective angle 2{theta}{sub s} between a pair of slip planes, and the normal stress {sigma}{sub s} and the increment of displacement {delta}u{sub s} across the planes. This three-parameter characterization is in contrast to the one- or two-parameter (K or J and T or Q) characterization in linear or non-linear elastic fracture mechanics. These {theta}{sub s}, {sigma}{sub s}, and {delta}u{sub s} parameters are found form the far-field geometries and loadings through slip line fields or least upper bound analyses based on circular arcs. The resulting crack growth, in terms of the crack tip opening angle (CTOA), is a function of {theta}{sub s}, {sigma}{sub s}, and the material. The geometry of the crack growing between two moving slip planes emanating from its tip reduces this function to the critical fracture shear strain left behind the slip planes, {gamma}f, as a function of {sigma}{sub s}. {gamma}f({sigma}{sub s}) is found theoretically from a hole initiation and growth model. It is also found from preliminary fully plastic crack growth experiments on unequally grooved specimens with fixed-grip extension or 4-point bending of a 1018 CF steel.
The unique effect of in-plane anisotropic strain in the magnetization control by electric field
NASA Astrophysics Data System (ADS)
Zhao, Y. Y.; Wang, J.; Hu, F. X.; Liu, Y.; Kuang, H.; Wu, R. R.; Sun, J. R.; Shen, B. G.
2016-05-01
The electric field control of magnetization in both (100)- and (011)-Pr0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PSMO/PMN-PT) heterostructures were investigated. It was found that the in-plane isotropic strain induced by electric field only slightly reduces the magnetization at low temperature in (100)-PSMO/PMN-PT film. On the other hand, for (011)-PSMO/PMN-PT film, the in-plane anisotropic strain results in in-plane anisotropic, nonvolatile change of magnetization at low-temperature. The magnetization, remanence and coercivity along in-plane [100] direction are suppressed by the electric field while the ones along [01-1] direction are enhanced, which is ascribed to the extra effective magnetic anisotropy induced by the electric field via anisotropic piezostrains. More interestingly, such anisotropic modulation behaviors are nonvolatile, demonstrating a memory effect.
NASA Astrophysics Data System (ADS)
Cherukuri, Harish P.; Ulysse, Patrick; Smelser, Ronald E.; Subramanian, Kannan; Kotaru, Deepti
2010-06-01
Rapid quenching of aluminum extrusions often results in residual stresses and distortion. The out-of-plane normal component of the residual stress is typically very large and results in undesirable bending (bowing) of the extruded shape. Three-dimensional models to predict the residual stresses and bending of extruded thin-walled shapes are difficult to implement since the wall-thicknesses are often very small compared with the axial dimensions. In this paper, a generalized plane-strain model is presented to predict the residual stresses and distortion. For illusrative purposes of the model, a Z-shaped extrusion is chosen. The model predicts the bowing of the extruded shape along with the in-plane and out-of-plane stress components. An internal state-variable model is used for the constitutive description. The residual stresses and distortion are studied for cold and warm water quenching and three different cases of spray quenching. The numerical results indicate that cold water quenching and the two spray quenching cases with the higher discharge rates lead to significantly larger residual stresses compared to the remaining two cases. For each case, the out-of-plane bows of the extruded shapes are also shown to be significant.
Real-time measurement system for in-plane displacement and strain based on vision
NASA Astrophysics Data System (ADS)
Luo, Tao; Jin, Yi; Zhu, Ye; Zhai, Chao
2013-08-01
In this paper, combining optical measurement with conventional material testing machine, a real-time in-plane displacement and strain measurement system is built, which is applied to the material testing machine. This system can realize displacement and strain measurement of a large deformation sample moreover it can observe the sample crack on line. The change of displacement field is obtained through the change of center coordinate of each point of a grid lattice in the surface of the testing sample, according to two-dimensional sort coding for the grid in the traditional automated grid method, in this paper, an improved one-dimensional code method is adopted which make calculating speed much faster and the algorithm more adaptable. The measurement of the stability and precision of this system are made using the calibration board whose position precision is about 1.5 micron. The results show that the short-time stability of this system is about 0.5micron. At last, this system is used for strain measurement in a sample tension test, and the result shows that the system can acquire in-plane displacement and strain measurement results accurately and real-time, the velocity of image processing can reach 10 frame per second; or it can observe sample crack on line and storage the test process, the max velocity of observation and storage is 100 frame per second.
A boundary value problem for first order strictly hyperbolic systems on the plane
NASA Astrophysics Data System (ADS)
Soldatov, Alexander P.; Zhura, Nikolay A.
2015-11-01
Boundary value problems, more precisely Dirichlet's problem for a string equation, or for an equivalent system of first order equations have been first studied in the first half of last century ([1] - [9]). The interest to these problems has been big ever since, see e.g. [10, 11]. All these papers have looked into the boundary value problems in a finite domains in the plane. Strictly hyperbolic systems with more than two characteristics in infinite domains, have been studied in [12, 13]. The question of boundary value problems for a hyperbolic system of equations with more than two characteristics in finite domain on the plane, when a boundary conditions are prescribed at a whole boundary of the domain, evidently remained open. In this paper, we study this problem in a finite domain on the plane for a hyperbolic system of equations of the first order with constant coefficients and with three mutually distinct characteristics.
In-plane displacement and strain measurements using a camera phone and digital image correlation
NASA Astrophysics Data System (ADS)
Yu, Liping; Pan, Bing
2014-05-01
In-plane displacement and strain measurements of planar objects by processing the digital images captured by a camera phone using digital image correlation (DIC) are performed in this paper. As a convenient communication tool for everyday use, the principal advantages of a camera phone are its low cost, easy accessibility, and compactness. However, when used as a two-dimensional DIC system for mechanical metrology, the assumed imaging model of a camera phone may be slightly altered during the measurement process due to camera misalignment, imperfect loading, sample deformation, and temperature variations of the camera phone, which can produce appreciable errors in the measured displacements. In order to obtain accurate DIC measurements using a camera phone, the virtual displacements caused by these issues are first identified using an unstrained compensating specimen and then corrected by means of a parametric model. The proposed technique is first verified using in-plane translation and out-of-plane translation tests. Then, it is validated through a determination of the tensile strains and elastic properties of an aluminum specimen. Results of the present study show that accurate DIC measurements can be conducted using a common camera phone provided that an adequate correction is employed.
Dependence of electronic properties of germanium on the in-plane biaxial tensile strains
NASA Astrophysics Data System (ADS)
Yang, C. H.; Yu, Z. Y.; Liu, Y. M.; Lu, P. F.; Gao, T.; Li, M.; Manzoor, S.
2013-10-01
The hybrid HSE06 functional with the spin-orbit coupling effects is used to calculate the habituation of the electronic properties of Ge on the (0 0 1), (1 1 1), (1 0 1) in-plane biaxial tensile strains (IPBTSs). Our motivation is to explore the nature of electronic properties of tensile-strained Ge on different substrate orientations. The calculated results demonstrate that one of the most effective and practical approaches for transforming Ge into a direct transition semiconductor is to introduce (0 0 1) IPBTS to Ge. At 2.3% (0 0 1) IPBTS, Ge becomes a direct bandgap semiconductor with 0.53 eV band gap, in good agreement with the previous theoretical and experimental results. We find that the (1 1 1) and (1 0 1) IPBTSs are not efficient since the shear strain and inner displacement of atoms introduced by them quickly decrease the indirect gap of Ge. By investigating the dependence of valence band spin-orbit splitting on strain, we prove that the dependency relationship and the coupled ways between the valence-band states of tensile-strained Ge are closely related to the symmetry of strain tensor, i.e., the symmetry of the substrate orientation. The first- and second-order coefficients describing the dependence of indirect gap, direct gap, the valence band spin-orbit coupling splitting, and heavy-hole-light-hole splitting of Ge on IPBTSs have been obtained by the least squares polynomial fitting. These coefficients are significant to quantitatively modulate the electronic properties of Ge by tensile strain and design tensile-strained Ge devices by semiconductor epitaxial technique.
An Accurate Upper Bound Solution for Plane Strain Extrusion through a Wedge-Shaped Die
Mustafa, Yusof; Lyamina, Elena
2014-01-01
An upper bound method for the process of plane strain extrusion through a wedge-shaped die is derived. A technique for constructing a kinematically admissible velocity field satisfying the exact asymptotic singular behavior of real velocity fields in the vicinity of maximum friction surfaces (the friction stress at sliding is equal to the shear yield stress on such surfaces) is described. Two specific upper bound solutions are found using the method derived. The solutions are compared to an accurate slip-line solution and it is shown that the accuracy of the new method is very high. PMID:25101311
Comparison of experiment and theory for elastic-plastic plane strain crack growth
Hermann, L; Rice, J R
1980-02-01
Recent theoretical results on elastic-plastic plane strain crack growth, and experimental results for crack growth in a 4140 steel in terms of the theoretical concepts are reviewed. The theory is based on a recent asymptotic analysis of crack surface opening and strain distributions at a quasi-statically advancing crack tip in an ideally-plastic solid. The analysis is incomplete in that some of the parameters which appear in it are known only approximately, especially at large scale yielding. Nevertheless, it suffices to derive a relation between the imposed loading and amount of crack growth, prior to general yielding, based on the assumption that a geometrically similar near-tip crack profile is maintained during growth. The resulting predictions for the variation of J with crack growth are found to fit well to the experimental results obtained on deeply cracked compact specimens.
NASA Astrophysics Data System (ADS)
Sun, Y. W.; Holec, D.; Dunstan, D. J.
2015-09-01
Stacking graphene sheets forms graphite. Two in-plane vibrational modes of graphite, E1 u and E2g (2 ), are derived from the graphene E2 g mode, the shifts of which under compression are considered as results of the in-plane bond shortening. Values of the Grüneisen parameter have been reported to quantify such a relation. However, the reason why the shift rates of these three modes with pressure differ is unclear. In this work, we introduce new parameters γE2g'=-0.0131 and γE1u'=0.0585 to quantify the contribution of out-of-plane strain to the shift of the in-plane vibrational frequencies, suggesting that the compression of the π - electrons plays a non-negligible part in both graphite and graphene under high pressure.
NASA Astrophysics Data System (ADS)
Kim, K.; Okayasu, K.; Fukutomi, H.
2015-04-01
The formation behavior of basal texture during high temperature deformation of AZ80 magnesium alloys in single phase was investigated by plane strain compression deformation. Three kinds of specimens with different initial textures were machined out from an extruded bar having a <101¯0> texture. Plane strain compression tests were conducted at temperatures of 623K and 723K and a strain rate of 5.0×10-2s-1, with a strain range of between - 0.4 and -1.0. After deformation, the specimens were immediately quenched in oil. Texture measurement was carried out on the compression planes by the Schulz reflection method using nickel filtered Cu Kα radiation. Electron backscatter diffraction (EBSD) measurements were also conducted in order to examine the spatial distribution of orientations. Three kinds of specimens named A, B and C were prepared from the same extruded bar. In the specimens A, B and C, {0001} was distributed preferentially parallel to ND, TD, and RD, respectively. After deformation, texture evaluation was conducted on the mid-plane section. At the plane strain compression deformation, peaks appeared in the true stress-true strain curves irrespective of the kinds of specimen used. It was found that the main components and the pole densities of the textures vary depending on deformation condition and initial texture. Six kinds of texture components were observed after deformation. The (0001)<101¯0> has formed regardless of the initial texture. There are two types of texture components; one exists before the deformation, and the other does not. Either types are considered to have stable orientations for plane strain compression. Also, the basal texture is composed of two crystal orientation components - (0001)<101¯0> and (0001)<112¯0>. When (0001) existed before deformation, an extremely sharp (0001) (compression plane) texture is formed.
Assessment of Constitutive and Stability Behavior of Sands Under Plane Strain Condition
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; Sture, Stein
2000-01-01
A series of biaxial (plane strain) experiments were conducted on three sands under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grains size and shape on the constitutive and stability behavior of granular materials. The three sands used in the experiments were fine, medium, and coarse-grained uniform silica sands with rounded, sub-angular, and angular grains, respectively. Specimen deformation was readily monitored and analyzed with the help of a grid pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly dependent on the specimen density, confining pressure, sand grain texture, and the resulting failure mode(s). That became evident in different degrees of softening responses at various axial strains. The relationship between the constitutive behavior and the specimens' modes of instability is presented. The failure in all specimens was characterized by two distinct and opposite shear bands. It was found that the measured dilatancy angles increase as the sand grains' angularity and size increase. The measured shear band inclination angles are also presented and compared with classical Coulomb and Roscoe solutions.
NASA Astrophysics Data System (ADS)
Ridzuan, M. J. M.; Hafis, S. M.; Saifullah, K. N.; Syahrullail, S.
2012-06-01
Large quantities of lubricant are being widely used in the metal forming industry and this high consumption is negatively affecting the environment. Finding an alternative to this current situation is getting more serious and urgent in response to environmental and operational cost pressures. This paper deals with an experimental investigation to obtain the minimum quantity of lubricant (MQL) of RBD palm stearin, which is used as lubricant between the contact sliding surfaces of the taper die and billet via plane-strain-extrusion apparatus. The symmetrical workpieces are designed as combined billets made from pure aluminium A1100. The dies of the apparatus are made of SKD 11 steel. The extrusion ratio of the processes is 3 and the workpieces are extruded by hydraulic press machine. Four conditions of the quantity selected are 0.1 mg, 1 mg, 5 mg, and 20 mg. The analysis of the result shows that the conditions of the quantity are in the load reducing order from 0.1 mg, 1mg and 5 mg. The highest distribution of surface roughness is at 0.1 mg, whereby for others, the conditions are quite similar. However, the distribution of velocity and effective strain are lowest at 5 mg. The minimum quantity of lubricant (MQL) of the RBD palm stearin as lubricant on the contact sliding surfaces in planestrain-extrusion is determined based on the results of load, surface roughness, velocity and effective strain.
The crack problem for a half plane stiffened by elastic cover plates
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1981-01-01
An elastic half plane containing a crack and stiffened by a cover plate is discussed. The asymptotic nature of the stress state in the half plane around an end point of the stiffener to determine the likely orientation of a possible fracture initiation and growth was studied. The problem is formulated for an arbitrary oriented radial crack in a system of singular integral equations. For an internal crack and for an edge crack, the problem is solved and the stress intensity factors at the crack tips and the interface stress are calculated. A cracked half plane with two symmetrically located cover plates is also considered. It is concluded that the case of two stiffeners appears to be more severe than that of a single stiffener.
Periodic solutions of a perturbed Kepler problem in the plane: From existence to stability
NASA Astrophysics Data System (ADS)
Boscaggin, Alberto; Ortega, Rafael
2016-08-01
The existence of elliptic periodic solutions of a perturbed Kepler problem is proved. The equations are in the plane and the perturbation depends periodically on time. The proof is based on a local description of the symplectic group in two degrees of freedom.
Wiimote Experiments: 3-D Inclined Plane Problem for Reinforcing the Vector Concept
ERIC Educational Resources Information Center
Kawam, Alae; Kouh, Minjoon
2011-01-01
In an introductory physics course where students first learn about vectors, they oftentimes struggle with the concept of vector addition and decomposition. For example, the classic physics problem involving a mass on an inclined plane requires the decomposition of the force of gravity into two directions that are parallel and perpendicular to the…
ERIC Educational Resources Information Center
Earnest, Darrell
2015-01-01
This article reports on students' problem-solving approaches across three representations--number lines, coordinate planes, and function graphs--the axes of which conventional mathematics treats in terms of consistent geometric and numeric coordinations. I consider these representations to be a part of a "hierarchical representational…
Guidance analysis of the aeroglide plane change maneuver as a turning point problem
NASA Technical Reports Server (NTRS)
Gracey, Christopher
1989-01-01
The development of guidance approximations for the atmospheric (aeroglide) portion of the minimum fuel, orbital plane change, trajectory optimization problem is described. Asymptotic methods are used to reduce the two point, boundary value, optimization problem to a turning point problem from the bank angle control. The turning point problem solution, which yields an approximate optimal control policy, is given in terms of parabolic cylinder functions, which are tabulated, and integral expressions, which must be numerically computed. Comparisons of the former, over their region of validity, with optimal control solutions show good qualitative agreement. Additional work and analysis is needed to compute the guidance approximation work.
Strained-layer superlattice focal plane array having a planar structure
Kim, Jin K.; Carroll, Malcolm S.; Gin, Aaron; Marsh, Phillip F.; Young, Erik W.; Cich, Michael J.
2010-07-13
An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.
Investigation of flaw geometry and loading effects on plane strain fracture in metallic structures
NASA Technical Reports Server (NTRS)
Hall, L. R.; Finger, R. W.
1971-01-01
The effects on fracture and flaw growth of weld-induced residual stresses, combined bending and tension stresses, and stress fields adjacent to circular holes in 2219-T87 aluminum and 5AI-2.5Sn(ELI) titanium alloys were evaluated. Static fracture tests were conducted in liquid nitrogen; fatigue tests were performed in room air, liquid nitrogen, and liquid hydrogen. Evaluation of results was based on linear elastic fracture mechanics concepts and was directed to improving existing methods of estimating minimum fracture strength and fatigue lives for pressurized structure in spacecraft and booster systems. Effects of specimen design in plane-strain fracture toughness testing were investigated. Four different specimen types were tested in room air, liquid nitrogen and liquid hydrogen environments using the aluminum and titanium alloys. Interferometry and holograph were used to measure crack-opening displacements in surface-flawed plexiglass test specimens. Comparisons were made between stress intensities calculated using displacement measurements, and approximate analytical solutions.
Infrared focal plane arrays based on dots in a well and strained layer superlattices
NASA Astrophysics Data System (ADS)
Krishna, Sanjay
2009-01-01
In this paper, we will review some of the recent progress that we have made on developing single pixel detectors and focal plane arrays based on dots-in-a-well (DWELL) heterostructure and Type II strained layer superlattice (SLS). The DWELL detector consists of an active region composed of InAs quantum dots embedded in InGaAs/GaAs quantum wells. By varying the thickness of the InGaAs well, the DWELL heterostructure allows for the manipulation of the operating wavelength and the nature of the transitions (bound-to-bound, bound-to-quasibound and bound-to-continuum) of the detector. Based on these principles, DWELL samples were grown using molecular beam epitaxy and fabricated into 320 x 256 focal plane arrays (FPAs) with Indium bumps using standard lithography at the University of New Mexico. The FPA evaluated was hybridized to an Indigo 9705 readout integrated circuit (ROIC). From this evaluation, we have reported the first two-color, co-located quantum dot based imaging system that can be used to take multicolor images using a single FPA. We have also been investigating the use of miniband transitions in Type II SLS to develop infrared detectors using PIN and nBn based designs.
Andrews, D.J.
1985-01-01
A numerical boundary integral method, relating slip and traction on a plane in an elastic medium by convolution with a discretized Green function, can be linked to a slip-dependent friction law on the fault plane. Such a method is developed here in two-dimensional plane-strain geometry. Spontaneous plane-strain shear ruptures can make a transition from sub-Rayleigh to near-P propagation velocity. Results from the boundary integral method agree with earlier results from a finite difference method on the location of this transition in parameter space. The methods differ in their prediction of rupture velocity following the transition. The trailing edge of the cohesive zone propagates at the P-wave velocity after the transition in the boundary integral calculations. Refs.
NASA Astrophysics Data System (ADS)
Begley, Matthew R.; Creton, Costantino; McMeeking, Robert M.
2015-11-01
A general asymptotic plane strain crack tip stress field is constructed for linear versions of neo-Hookean materials, which spans a wide variety of special cases including incompressible Mooney elastomers, the compressible Blatz-Ko elastomer, several cases of the Ogden constitutive law and a new result for a compressible linear neo-Hookean material. The nominal stress field has dominant terms that have a square root singularity with respect to the distance of material points from the crack tip in the undeformed reference configuration. At second order, there is a uniform tension parallel to the crack. The associated displacement field in plane strain at leading order has dependence proportional to the square root of the same coordinate. The relationship between the amplitude of the crack tip singularity (a stress intensity factor) and the plane strain energy release rate is outlined for the general linear material, with simplified relationships presented for notable special cases.
A New Look at Self-Similarity in Strained Plane Wakes. 1.3
NASA Technical Reports Server (NTRS)
Rogers, Michael M.; Mansour, Nagi N. (Technical Monitor)
2001-01-01
In early experiments, A. J. Reynolds and J. F. Keffer sought to determine whether plane wakes of circular cylinders, when strained by a wind tunnel of varying cross-section, evolved in accordance with an analytically derived self-similar solution. As pointed out by Reynolds, for the strain geometry considered this self-similar solution indicated exponential growth of the viscous term in the mean momentum equation, a result which he interpreted as suggesting that such wakes would eventually relaminarize. The experimental results were found not to agree with the similarity theory and recent direct numerical simulations confirm this. However, a more general self-similar analysis of the kind suggested by W. K. George is found to lead to families of possible similarity solutions, some of which do indeed describe the observed flaw behavior. These equilibrium similarity solutions result from creating a balance in the governing equations by grouping certain terms. For these solutions the viscous terms can be retained in the analysis.
Wireless Open-Circuit In-Plane Strain and Displacement Sensor Requiring No Electrical Connections
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor)
2014-01-01
A wireless in-plane strain and displacement sensor includes an electrical conductor fixedly coupled to a substrate subject to strain conditions. The electrical conductor is shaped between its ends for storage of an electric field and a magnetic field, and remains electrically unconnected to define an unconnected open-circuit having inductance and capacitance. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. The sensor also includes at least one electrically unconnected electrode having an end and a free portion extending from the end thereof. The end of each electrode is fixedly coupled to the substrate and the free portion thereof remains unencumbered and spaced apart from a portion of the electrical conductor so-shaped. More specifically, at least some of the free portion is disposed at a location lying within the magnetic field response generated by the electrical conductor. A motion guidance structure is slidingly engaged with each electrode's free portion in order to maintain each free portion parallel to the electrical conductor so-shaped.
NASA Astrophysics Data System (ADS)
Benito, L.; Ballesteros, C.; Ward, R. C. C.
2014-04-01
We report on the magnetic and structural characterization of high lattice-mismatched [Dy2nm/SctSc] superlattices, with variable Sc thickness tSc= 2-6 nm. We find that the characteristic in-plane effective hexagonal magnetic anisotropy K66,ef reverses sign and undergoes a dramatic reduction, attaining values of ≈13-24 kJm-3, when compared to K66=-0.76 MJm-3 in bulk Dy. As a result, the basal plane magnetic anisotropy is dominated by a uniaxial magnetic anisotropy (UMA) unfound in bulk Dy, which amounts to ≈175-142 kJm-3. We attribute the large downsizing in K66,ef to the compression epitaxial strain, which generates a competing sixfold magnetoelastic (MEL) contribution to the magnetocrystalline (strain-free) magnetic anisotropy. Our study proves that the in-plane UMA is caused by the coupling between a giant symmetry-breaking MEL constant Mγ ,22≈1 GPa and a morphic orthorhombiclike strain ɛγ ,1≈10-4, whose origin resides on the arising of an in-plane anisotropic strain relaxation process of the pseudoepitaxial registry between the nonmagnetic bottom layers in the superstructure. This investigation shows a broader perspective on the crucial role played by epitaxial strains at engineering the magnetic anisotropy in multilayers.
NASA Technical Reports Server (NTRS)
Buczek, M. B.; Gregory, M. A.; Herakovich, C. T.
1983-01-01
CLFE2D is a two dimensional generalized plane strain finite element code, using a linear, four node, general quadrilateral, isoparametric element. The program is developed to calculate the displacements, strains, stresses, and strain energy densities in a finite width composite laminate. CLFE2D offers any combination of the following load types: nodal displacements, nodal forces, uniform normal strain, or hygrothermal. The program allows the user to input one set of three dimensional orthotropic material properties. The user can then specify the angle of material principal orientation for each element in the mesh. Output includes displacements, stresses, strains and strain densities at points selected by the user. An option is also available to plot the underformed and deformed finite element meshes.
ERIC Educational Resources Information Center
Koyuncu, Ilhan; Akyuz, Didem; Cakiroglu, Erdinc
2015-01-01
This study aims to investigate plane geometry problem-solving strategies of prospective mathematics teachers using dynamic geometry software (DGS) and paper-and-pencil (PPB) environments after receiving an instruction with GeoGebra (GGB). Four plane geometry problems were used in a multiple case study design to understand the solution strategies…
NASA Astrophysics Data System (ADS)
Bhadauria, S. S.; Pathak, K. K.; Hora, M. S.
2012-09-01
It is widely accepted that failure due to plastic deformation in metals greatly depends on the stress triaxiality factor (TF). This article investigates the variation of stress triaxiality along the yield locus of ductile materials. Von Mises yield criteria and triaxiality factor have been used to determine the critical limits of stress triaxiality for the materials under plane strain condition. A generalized mathematical model for triaxiality factor has been formulated and a constrained optimization has been carried out using genetic algorithm. Finite element analysis of a two dimensional square plate has been carried out to verify the results obtained by the mathematical model. It is found that the set of values of the first and the second principal stresses on the yield locus, which results in maximum stress triaxiality, can be used to determine the location at which crack initiation may occur. Thus, the results indicate that while designing a certain component, such combination of stresses which leads the stress triaxiality to its critical value, should be avoided.
NASA Astrophysics Data System (ADS)
Li, Hong; Tsai, Charlie; Koh, Ai Leen; Cai, Lili; Contryman, Alex W.; Fragapane, Alex H.; Zhao, Jiheng; Han, Hyun Soon; Manoharan, Hari C.; Abild-Pedersen, Frank; Nørskov, Jens K.; Zheng, Xiaolin
2016-01-01
As a promising non-precious catalyst for the hydrogen evolution reaction (HER; refs ,,,,), molybdenum disulphide (MoS2) is known to contain active edge sites and an inert basal plane. Activating the MoS2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔGH) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Proper combinations of S-vacancy and strain yield the optimal ΔGH = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.
NASA Astrophysics Data System (ADS)
Wu, Huaping; Ma, Xuefu; Zhang, Zheng; Zhu, Jun; Wang, Jie; Chai, Guozhong
2016-04-01
A nonlinear thermodynamic model based on the vertically aligned nanocomposite (VAN) thin films of ferroelectric-metal oxide system has been developed to investigate the physical properties of the epitaxial Ba0.6Sr0.4TiO3 (BST) films containing vertical Sm2O3 (SmO) nanopillar arrays on the SrTiO3 substrate. The phase diagrams of out-of-plane lattice mismatch vs. volume fraction of SmO are calculated by minimizing the total free energy. It is found that the phase transformation and dielectric response of BST-SmO VAN systems are extremely dependent on the in-plane misfit strain, the out-of-plane lattice mismatch, the volume fraction of SmO phase, and the external electric field applied to the nanocomposite films at room temperature. In particular, the BST-SmO VAN systems exhibit higher dielectric properties than pure BST films. Giant dielectric response and maximum tunability are obtained near the lattice mismatch where the phase transition occurs. Under the in-plane misfit strain of umf=0.3 % and the out-of-plane lattice mismatch of u3=0.002 , the dielectric tunability can be dramatically enhanced to 90% with the increase of SmO volume fraction, which is well consistent with previous experimental results. This work represents an approach to further understand the dependence of physical properties on the lattice mismatch (in-plane and out-of-plane) and volume fraction, and to manipulate or optimize functionalities in the nanocomposite oxide thin films.
NASA Astrophysics Data System (ADS)
Medvedik, M. Yu.; Smirnov, Yu. G.; Tsupak, A. A.
2014-08-01
The scalar problem of plane wave diffraction by a system of bodies and infinitely thin screens is considered in a quasi-classical formulation. The solution is sought in the classical sense but is defined not in the entire space ℝ3 but rather everywhere except for the screen edges. The original boundary value problem for the Helmholtz equation is reduced to a system of weakly singular integral equations in the regions occupied by the bodies and on the screen surfaces. The equivalence of the integral and differential formulations is proven, and the solvability of the system in the Sobolev spaces is established. The integral equations are approximately solved by the Bubnov-Galerkin method. The convergence of the method is proved, its software implementation is described, and numerical results are presented.
Computation of forces acting on bodies in plane and axisymmetric cavitation flow problems
NASA Astrophysics Data System (ADS)
Petrov, A. G.; Potapov, I. I.
2016-02-01
Plane and axisymmetric cavitation flow problems are considered using Riabouchinsky's scheme. The incoming flow is assumed to be irrotational and steady, and the fluid is assumed to be inviscid and incompressible. The flow problems are solved by applying the boundary element method with quadrature formulas without saturation. The free boundary is determined using a gradient descent technique based on Riabouchinsky's principle. The drag force acting on the cavitator is expressed in terms of the Riabouchinsky functional. As a result, for small cavitation numbers, the force is calculated with a fairly high accuracy. Dependences of the drag coefficient are investigated for variously shaped cavitators: a wedge, a cone, a circular arc, and a spherical segment.
NASA Astrophysics Data System (ADS)
Garcia, V.; Sidis, Y.; Marangolo, M.; Vidal, F.; Eddrief, M.; Bourges, P.; Maccherozzi, F.; Ott, F.; Panaccione, G.; Etgens, V. H.
2007-09-01
The α-β magnetostructural phase transition in MnAs/GaAs(111) epilayers is investigated by elastic neutron scattering. The in-plane parameter of MnAs remains almost constant with temperature from 100 to 420 K, following the thermal evolution of the GaAs substrate. This induces a temperature dependent biaxial strain that is responsible for an α-β phase coexistence and, more importantly, for the stabilization of the ferromagnetic α phase at a higher temperature than in the bulk. We explain the premature appearance of the β phase at 275 K and the persistence of the ferromagnetic α phase up to 350 K with thermodynamical arguments based on the MnAs phase diagram. It results that the biaxial strain in the hexagonal plane is the key parameter to extend the ferromagnetic phase well over room temperature.
Garcia, V; Sidis, Y; Marangolo, M; Vidal, F; Eddrief, M; Bourges, P; Maccherozzi, F; Ott, F; Panaccione, G; Etgens, V H
2007-09-14
The alpha-beta magnetostructural phase transition in MnAs/GaAs(111) epilayers is investigated by elastic neutron scattering. The in-plane parameter of MnAs remains almost constant with temperature from 100 to 420 K, following the thermal evolution of the GaAs substrate. This induces a temperature dependent biaxial strain that is responsible for an alpha-beta phase coexistence and, more importantly, for the stabilization of the ferromagnetic alpha phase at a higher temperature than in the bulk. We explain the premature appearance of the beta phase at 275 K and the persistence of the ferromagnetic alpha phase up to 350 K with thermodynamical arguments based on the MnAs phase diagram. It results that the biaxial strain in the hexagonal plane is the key parameter to extend the ferromagnetic phase well over room temperature. PMID:17930469
NASA Astrophysics Data System (ADS)
Peeters, Michael; Panajotov, Krassimir P.; Verschaffelt, Guy; Nagler, Bob; Albert, Jan; Thienpont, Hugo; Veretennicoff, Irina P.; Danckaert, Jan
2002-06-01
It is well known that vertical-cavity surface-emitting lasers (VCSELs) can abruptly switch between two orthogonal linear polarization states if the current is changed. The impact of externally induced in-plane anisotropic strain on this switching was experimentally demonstrated in proton-implanted devices. In this contribution we present a further and thorough experimental investigation of the polarization behavior of different types of VCSELs (proton-implanted, air-post and oxide-confined), under varying strain conditions. We first measure the influence of the strain on the orientation of the axes of the linear polarization states. These axes can be rotated from the crystallographic direction [110] over [100] to [110]. At the same time, we monitor the exact birefringence. From the combination of these two measurements the amount of residual strain in these devices is deduced. Applying strain not only changes the frequency splitting between the two modes (due to birefringence) and their orientation, but also lifts the degeneracy in the gain of the polarization modes. We therefore also measure the gain difference (dichroism) as a function of the applied strain, via the mode suppression ratio and the optical spectrum. Due to the effect on both the birefringence and the dichroism, strain also changes the position of the polarization switching point as a function of current and can lead to the observation of double (consecutive) polarization switching. All this experimental evidence will help to build up a better understanding of the physics of polarization switching in VCSELs.
NASA Astrophysics Data System (ADS)
Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei
2013-04-01
This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.
Shimada, T; Okuno, J; Ishii, Y; Kitamura, T
2012-03-01
We investigated a nanometer-sharp magnetic domain wall (DW) structure in a free-standing Fe(110) monolayer and studied the crucial role of in-plane strain using fully unconstrained noncollinear ab initio spin-density-functional theory calculations within the generalized gradient approximation. The DW width is calculated to be 0.86 nm. A precise vector-field description of the magnetization density revealed that a noncollinear character in the DW was spatially confined between atoms, whereas a collinear and high magnetization density was localized around each atom. In the rapid rotation of magnetic moments in the DW, we found an electron rearrangement from the d(zx) and d(x(2)-y(2)) states to the d(xy), d(yz) and d(z(2)) states due to a shift of band structures. Applied tensile and compressive in-plane strains both bring about narrower DWs in the monolayer except when the strain is small. The strain dependence of the DW width is discussed in terms of both exchange interaction and magnetocrystalline anisotropy. PMID:22322862
Kirkwood, Jonah; Ghetler, Andrew; Sedman, Jacqueline; Leclair, Daniel; Pagotto, Franco; Austin, John W; Ismail, Ashraf A
2006-10-01
A method was developed for whole-organism fingerprinting of Clostridium botulinum isolates by focal plane array Fourier transform infrared (FPA-FTIR) spectroscopy. A database of 150,000 infrared spectra of 44 strains of C. botulinum was acquired using a FPA-FTIR imaging spectrometer equipped with a 16 x 16 array detector to evaluate the ability of FTIR spectroscopy to differentiate the 44 strains. The database contained strains from C. botulinum groups I and II producing botulinum neurotoxin of serotypes A, B, E, and F. All strains were grown on each of three agar media (brain heart infusion, McClung Toabe agar base, and universal) prior to spectral acquisition. Given the dependence of the infrared spectra of microorganisms on the composition of the growth medium, the spectra were initially separated into three subsets corresponding to the three growth media employed. However, the replicate spectra of all strains, regardless of growth medium, were properly clustered by hierarchical cluster analysis based on differences in their infrared spectral profiles in three narrow spectral regions (1,428 to 1,412, 1,296 to 1,284, and 1,112 to 1,100 cm(-1)). The dendrogram generated from the FTIR data revealed complete separation between group I and group II strains. The spectral differences between group I and group II strains allowed accurate classification of C. botulinum strains at the group level in two blind validation studies (n = 40). These results demonstrate that FPA-FTIR spectroscopy has the potential for rapid discrimination of group I and group II C. botulinum strains in less than 3 min per sample. PMID:17066916
Full in-plane strain tensor analysis using the microscale ring-core FIB milling and DIC approach
NASA Astrophysics Data System (ADS)
Lunt, Alexander J. G.; Salvati, Enrico; Ma, Lifeng; Dolbyna, Igor P.; Neo, Tee K.; Korsunsky, Alexander M.
2016-09-01
Microscale Full In-plane Strain Tensor (FIST) analysis is crucial for improving understanding of residual stress and mechanical failure in many applications. This study outlines the first Focused Ion Beam (FIB) milling and Digital Image Correlation (DIC) based technique capable of performing precise, reliable and rapid quantification of this behaviour. The nature of semi-destructive FIB milling overcomes the main limitations of X-Ray Diffraction (XRD) strain tensor quantification: unstrained lattice parameter estimates are not required, analysis is performed in within a precisely defined 3D microscale volume, both amorphous and crystalline materials can be studied and access to X-ray/neutron facilities is not required. The FIST FIB milling and DIC experimental technique is based on extending the ring-core milling geometry to quantify the strain variation with angle and therefore benefits from the excellent precision and simple analytical approach associated with this method. In this study in-plane strain analysis was performed on sample of commercial interest: a porcelain veneered Yttria Partially Stabilised Zirconia (YPSZ) dental prosthesis, and was compared with the results of XRD. The two methods sample different gauge volumes and mechanical states: approximately plane stress for ring-core milling, and a through-thickness average for XRD. We demonstrate using complex analysis methods and Finite Element (FE) modelling that valid comparisons can be drawn between these two stress states. Excellent agreement was obtained between principal stress orientation and magnitudes, leading to realistic residual stress estimates that agree well with the literature (σAv ≈ 460 MPa) . As a measure of validity of the matching approach we report the upper and lower bounds on the (101) interplanar spacing of YPSZ that are found to correspond to the range 2.9586 - 2.9596 Å , closely matching published values.
Discontinuous Galerkin methods with plane waves for time-harmonic problems
NASA Astrophysics Data System (ADS)
Gabard, Gwénaël
2007-08-01
A general framework for discontinuous Galerkin methods in the frequency domain with numerical flux is presented. The main feature of the method is the use of plane waves instead of polynomials to approximate the solution in each element. The method is formulated for a general system of linear hyperbolic equations and is applied to problems of aeroacoustic propagation by solving the two-dimensional linearized Euler equations. It is found that the method requires only a small number of elements per wavelength to obtain accurate solutions and that it is more efficient than high-order DRP schemes. In addition, the conditioning of the method is found to be high but not critical in practice. It is shown that the Ultra-Weak Variational Formulation is in fact a subset of the present discontinuous Galerkin method. A special extension of the method is devised in order to deal with singular solutions generated by point sources like monopoles or dipoles. Aeroacoustic problems with non-uniform flows are also considered and results are presented for the sound radiated from a two-dimensional jet.
NASA Technical Reports Server (NTRS)
Fisher, D. M.; Buzzard, R. J.
1979-01-01
Standard round specimen fracture test results compared satisfactorily with results from standard rectangular compact specimens machined from the same material. The location of the loading pin holes was found to provide adequate strength in the load bearing region for plane strain fracture toughness testing. Excellent agreement was found between the stress intensity coefficient values obtained from compliance measurements and the analytic solution proposed for inclusion in the standard test method. Load displacement measurements were made using long armed displacement gages and hollow loading cylinders. Gage points registered on the loading hole surfaces through small holes in the walls of the loading cylinders.
Use of endochronic plasticity for multi-dimensional small and large strain problems
Hsieh, B.J.
1980-04-01
The endochronic plasticity theory was proposed in its general form by K.C. Valanis. An intrinsic time measure, which is a property of the material, is used in the theory. the explicit forms of the constitutive equation resemble closely those of the classical theory of linear viscoelasticity. Excellent agreement between the predicted and experimental results is obtained for some metallic and non-metallic materials for one dimensional cases. No reference on the use of endochronic plasticity consistent with the general theory proposed by Valanis is available in the open literature. In this report, the explicit constitutive equations are derived that are consistent with the general theory for one-dimensional (simple tension or compression), two-dimensional plane strain or stress and three-dimensional axisymmetric problems.
NASA Astrophysics Data System (ADS)
Dai, Ming; Schiavone, Peter; Gao, Cun-Fa
2016-06-01
We re-examine the conclusion established earlier in the literature that in the presence of a homogeneously imperfect interface, the circular inhomogeneity is the only shape of inhomogeneity which can achieve a uniform internal strain field in an isotropic or anisotropic material subjected to anti-plane shear. We show that under certain conditions, it is indeed possible to design such non-circular inhomogeneities despite the limitation of a homogeneously imperfect interface. Our method proceeds by prescribing a uniform strain field inside a non-circular inhomogeneity via perturbations of the uniform strain field inside the analogous circular inhomogeneity and then subsequently identifying the corresponding (non-circular) shape via the use of a conformal mapping whose unknown coefficients are determined from a system of nonlinear equations. We illustrate our results with several examples. We note also that, for a given size of inhomogeneity, the minimum value of the interface parameter required to guarantee the desired uniform internal strain increases as the elastic constants of the inclusion approach those of the matrix. Finally, we discuss in detail the relationship between the curvature of the interface and the displacement jump across the interface in the design of such inhomogeneities.
Supersonic crack growth in a solid of upturn stress?strain relation under anti-plane shear
NASA Astrophysics Data System (ADS)
Guo, Gaofeng; Yang, Wei; Huang, Y.
2003-11-01
This paper examines, from the prospect of continuum analysis, the possibility for a supersonic crack growth in a solid with an upturn stress-strain relation. The stress has a linear-upturn power-law relation with the strain, resulting in an elastic modulus, and consequently a wave speed, that increase with the strain. Though appearing to be "supersonic", the local wave speed in the crack tip vicinity of the solid with a sufficient upturn stress-strain relation exceeds the crack extension speed. A pre-request for such a supersonic crack growth is the storage of sufficient deformation energy within the solid to nurse the energy flux drawn to the crack tip that extends at an "apparent supersonic" speed. The idea is demonstrated for the simplest case, the anti-plane shear. We examine the steady-state supersonic crack growth in a hyperelastic material. The governing equation is elliptical in the crack tip vicinity but hyperbolic elsewhere. The boundary between two regions is determined with a certain extent. An asymptotic solution is constructed within the super-hardening zone. The solution connects to the hyperbolic radiation strips by weak discontinuity boundaries and to the pre-stressed frontal field by a strong discontinuity boundary.
Solving ethanol production problems with genetically modified yeast strains.
Abreu-Cavalheiro, A; Monteiro, G
2013-01-01
The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast. PMID:24516432
Solving ethanol production problems with genetically modified yeast strains
Abreu-Cavalheiro, A.; Monteiro, G.
2013-01-01
The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast. PMID:24516432
Insight into the band structure engineering of single-layer SnS2 with in-plane biaxial strain.
Zhou, Wei; Umezawa, Naoto
2016-03-21
The effects of in-plane biaxial strain on the electronic structure of a photofunctional material, single-layer SnS2, were systematically investigated using hybrid density functional calculations. The bonding diagram for the band gap was firstly proposed based on the crystal orbital overlap population analysis. The conduction band-edge of single-layer SnS2 is determined by the anti-bonding interaction between Sn-5s and S-3p orbitals, while the valence band-edge comes from the anti-bonding between the neighboring S atoms. It is found that the compressive strain not only decreases the indirect band gap of single-layer SnS2, but also effectively promotes the band-edges of the conduction band to realize the overall water splitting. Besides, the dispersion of the valence band of single-layer SnS2 becomes weaker with increasing tensile strain which is beneficial for the photo-excitation through direct transitions. PMID:26912413
NASA Astrophysics Data System (ADS)
Arribas, M.; Abad, A.; Elipe, A.; Palacios, M.
2016-08-01
In this paper, a three dimensional case of the restricted four-body problem with radiation pressure is considered. The three primaries are supposed to be in a collinear central configuration where both masses and both radiation forces of peripheral bodies are equal. In addition to the analysis of the equilibria in the planar problem introduced in a previous paper by the authors, we present here a complete study of position and stability of the equilibrium points out of {Oxy} plane.
NASA Astrophysics Data System (ADS)
Wu, C. T.; Wu, Youcai; Koishi, M.
2015-12-01
In this work, a strain-morphed nonlocal meshfree method is developed to overcome the computational challenges for the simulation of elastic-damage induced strain localization problem when the spatial domain integration is performed based on the background cells and Gaussian quadrature rule. The new method is established by introducing the decomposed strain fields from a meshfree strain smoothing to the penalized variational formulation. While the stabilization strain field circumvents the onerous zero-energy modes inherent in the direct nodal integration scheme, the regularization strain field aims to avoid the pathological localization of deformation in Galerkin meshfree solution using the weak-discontinuity approach. A strain morphing algorithm is introduced to couple the locality and non-locality of the decomposed strain approximations such that the continuity condition in the coupled strain field is met under the Galerkin meshfree framework using the direct nodal integration scheme. Three numerical benchmarks are examined to demonstrate the effectiveness and accuracy of the proposed method for the regularization of elastic-damage induced strain localization problems.
NASA Astrophysics Data System (ADS)
Harikumar, M.; Sankar, N.; Chandrakaran, S.
2015-09-01
Since 1969, when the concept of earth reinforcing was brought about by Henry Vidal, a large variety of materials such as steel bars, tire shreds, polypropylene, polyester, glass fibres, coir and jute fibres etc. have been widely added to soil mass randomly or in a regular, oriented manner. The conventional reinforcements in use were two dimensional or planar, in the form of strips with negligible widths or in the form of sheets. In this investigation, a novel concept of multi oriented plastic reinforcement (hexa-pods) is discussed. Direct shear tests were conducted on unreinforced and reinforced dry fine, medium and coarse sands. Detailed parametric studies with respect to the effective grain size of soil (d10), normal stress (σ) and the volume ratio of hexa-pods (Vr) were performed. It was noticed that addition of hexa-pods resulted in increase in the shear strength parameters viz. peak deviatoric stresses and increased angle of internal friction. The hexa-pods also changed the brittle behaviour of unreinforced sand samples to ductile ones. Although the peak shear stress did not show a considerable improvement, the angle of internal friction improved noticeably. Addition of a single layer of reinforcement along the shear plane also reduced the post peak loss of strength and changed the soil behavior from brittle to a ductile one.
Development of a Plane Strain Tensile Geometry to Assess Shear Fracture in Dual Phase Steels
NASA Astrophysics Data System (ADS)
Taylor, M. D.; Matlock, D. K.; De Moor, E.; Speer, J. G.
2014-10-01
A geometrically modified sample capable of generating a triaxial stress state when tested on a standard uniaxial tensile frame was developed to replicate shear fractures observed during stretch bend tests and industrial sheet stamping operations. Seven commercially produced dual phase (DP) steels were tested using the geometrically modified sample, and the modified sample successfully produced shear fractures on a unique shear plane for all steels. For each steel, void densities were determined, based on metallographic analyses, as a function of imposed displacement. Microstructural properties of ferrite and martensite grain size, martensite volume fraction (MVF), retained austenite content, Vickers hardness, average nanoindentation hardness, average ferrite and martensite constituent hardness, and tensile properties were obtained in order to evaluate potential correlations with void data. A linear correlation was observed between Vickers hardness and the average nanoindentation hardness, verifying the ability of nanoindentation to produce data consistent with more traditional hardness measurement techniques. A linear relationship was observed between the number of voids present at 90% failure displacement and the martensite/ferrite hardness ratio, indicating that a decrease in relative hardness difference in a microstructure can suppress void formation, and potentially extend formability limits. The void population appeared independent of MVF, grain size, and tensile properties suggesting that constituent hardness may be a dominant parameter when considering suppression of void nucleation in DP steels.
NASA Astrophysics Data System (ADS)
Qiu, J. H.; Jiang, Q.
2007-10-01
A phenomenological Landau Devonshire thermodynamic theory is used to describe the effects of anisotropic in-plane misfit strains on equilibrium polarization states and dielectric properties of single domain epitaxial Pb(Zr1-xTix)O3 thin films grown on dissimilar orthorhombic substrates. Compared with the “isotropic in-plane misfit strains-temperature” phase diagrams, the characteristic features of “misfit strain-misfit strain” and “misfit strain-temperature” phase diagrams under the circumstance of strain anisotropy are the presence of four different phases (a, a, ac, and ac) and the direct 90° polarization switching between c phase and a phase (or a phase), between a phase and a phase. The misfit strain dependence of polarization components, the small-signal dielectric responses and the tunabilities at room temperature are also calculated. We find that the phase diagrams and dielectric properties largely depend on anisotropic in-plane misfit strains as well. Moreover, the strain anisotropy will lead to the polarization and dielectric anisotropy.
NASA Astrophysics Data System (ADS)
Banasiak, Jacek
This paper is devoted to an L2-solvability of mixed boundary value problems (MBVPs) for second order elliptic equations in plane domains with curvilinear polygons as its boundaries. We find a space T' such that the MBVP with data in L 2(Ω) × T' is solvable in L 2(Ω) and calculate the dimension of the kernel of this problem. Moreover we relate our approach to the previous one [ P. Grisvard, "Elliptic Boundary Problems in Non-smooth Domains," Pitman, New York, 1985] showing how to overcome difficulties arising there.
NASA Astrophysics Data System (ADS)
Oliveira, M. C.; Baptista, A. J.; Alves, J. L.; Menezes, L. F.; Green, D. E.; Ghaei, A.
2007-05-01
The main purpose of the "Numisheet'05 Benchmark♯3: Channel Draw/Cylindrical Cup" was to evaluate the forming characteristics of materials in multi-stage processes. The concept was to verify the strain fields achieved during the two stage forming process and also to test the ability of numerical models to predict both strain and stress fields. The first stage consisted of forming channel sections in an industrial-scale channel draw die. The material that flows through the drawbead and over the die radii into the channel sidewalls is prestrained by cyclic bending and unbending. The prestrained channel sidewalls are subsequently cut and subjected to near plane-strain Marciniak-style cup test. This study emphasizes the analysis of the first stage process, the Channel Draw, since accurate numerical results for the first stage forming and springback are essential to guarantee proper initial state variables for the subsequent stage simulation. Four different sheet materials were selected: mild steel AKDQ-HDG, high strength steel HSLA-HDG, dual phase steel DP600-HDG and an aluminium alloy AA6022-T43. The four sheet materials were formed in the same channel draw die, but with drawbead penetrations of 25%, 50% and 100%. This paper describes the testing and measurement procedures for the numerical simulation of these conditions with DD3IMP FE code. A comparison between experimental and numerical simulation results for the first stage is presented. The experimental results indicate that an increase in drawbead penetration is accompanied by a general decrease in springback, with both sidewall radius of curvature and the sidewall angle increasing with increasing drawbead penetration. An exception to this trend occurs at the shallowest bead penetration: the radius of curvature in the sidewall is larger than expected. The sequence of cyclic tension and compression is numerically studied for each drawbead penetration in order to investigate this phenomenon.
Oliveira, M. C.; Baptista, A. J.; Menezes, L. F.; Alves, J. L.; Green, D. E.; Ghaei, A.
2007-05-17
The main purpose of the 'Numisheet'05 Benchmark no. 3: Channel Draw/Cylindrical Cup' was to evaluate the forming characteristics of materials in multi-stage processes. The concept was to verify the strain fields achieved during the two stage forming process and also to test the ability of numerical models to predict both strain and stress fields. The first stage consisted of forming channel sections in an industrial-scale channel draw die. The material that flows through the drawbead and over the die radii into the channel sidewalls is prestrained by cyclic bending and unbending. The prestrained channel sidewalls are subsequently cut and subjected to near plane-strain Marciniak-style cup test. This study emphasizes the analysis of the first stage process, the Channel Draw, since accurate numerical results for the first stage forming and springback are essential to guarantee proper initial state variables for the subsequent stage simulation. Four different sheet materials were selected: mild steel AKDQ-HDG, high strength steel HSLA-HDG, dual phase steel DP600-HDG and an aluminium alloy AA6022-T43. The four sheet materials were formed in the same channel draw die, but with drawbead penetrations of 25%, 50% and 100%. This paper describes the testing and measurement procedures for the numerical simulation of these conditions with DD3IMP FE code. A comparison between experimental and numerical simulation results for the first stage is presented. The experimental results indicate that an increase in drawbead penetration is accompanied by a general decrease in springback, with both sidewall radius of curvature and the sidewall angle increasing with increasing drawbead penetration. An exception to this trend occurs at the shallowest bead penetration: the radius of curvature in the sidewall is larger than expected. The sequence of cyclic tension and compression is numerically studied for each drawbead penetration in order to investigate this phenomenon.
A plane strain model of soil saturation effect on dynamic stiffness functions of embedded footings
Simos, N.; Philippacopoulos, A.J.; Reich, M.; McSpadden, T.
1995-10-01
Impedance functions associated with horizontal and vertical vibrations of rigid massless strip footings embedded in a saturated soil stratum are evaluated using a finite element approach The foundation medium is treated as a two-phase continuum which behaves according to Blot`s classical theory of wave propagation in fluid-saturated porous media. Parametric studies have been recently performed by the authors in an effort to verify that the adopted finite element approach and associated numerical procedures yield reasonable correlations with analytic solutions of soil-structure interaction problems. Horizontal and vertical impedance functions are presented for various embedment depth/soil layer thickness configurations. It is shown that saturation influences the foundation impedances especially their imaginary parts which can be reasonably explained as being the result of additional dissipation in the system associated with the motion of pore fluid relative to the soil skeleton. It is further shown that, as anticipated, soil stiffnesses increase with increasing embedment depth.
Lai, Chih-Ming; Huang, Yu-En; Feng, Shih-Wei; Kou, Kuang-Yang; Chen, Chien-Hsun; Tu, Li-Wei
2015-07-13
Anisotropic strain relaxation and the resulting degree of polarization of photoluminescence (PL) in nonpolar a-plane textured ZnO are experimentally and theoretically studied. A thicker nonpolar a-plane textured ZnO film enhances the anisotropic in-plane strain relaxation, resulting in a larger degree of polarization of PL and better sample quality. Anisotropic in-plane strains, sample quality, and degree of polarization of PL in nonpolar a-plane ZnO are consequences of the degree of anisotropic in-plane strain relaxation. By the k·p perturbation approach, simulation results of the variation of the degree of polarization for the electronic transition upon anisotropic in-plane strain relaxation agree with experimental results.
NASA Astrophysics Data System (ADS)
Popov, N. N.; Radchenko, V. P.
2007-03-01
An analytical method for the solution of two-dimensional nonlinear creep problems is developed using as an example the biaxial extension of a plane from a stochastically inhomogeneous material with damage accumulation and the third stage of creep taken into account. The governing creep relation is adopted in accordance with the energetic version of the nonlinear theory of viscous flow. The stochasticity of the material is defined by two random functions of coordinates. Formulas for calculating the stress variance are obtained.
An exact plane-stress solution for a class of problems in orthotropic elasticity
NASA Technical Reports Server (NTRS)
Erb, D. A.; Cooper, P. A.; Weisshaar, T. A.
1982-01-01
An exact solution for the stress field within a rectangular slab of orthotropic material is found using a two dimensional Fourier series formulation. The material is required to be in plane stress, with general stress boundary conditions, and the principle axes of the material must be parallel to the sides of the rectangle. Two load cases similar to those encountered in materials testing are investigated using the solution. The solution method has potential uses in stress analysis of composite structures.
Wu, Huaping; Chai, Guozhong; Zhou, Ting; Zhang, Zheng; Kitamura, Takayuki; Zhou, Haomiao
2014-03-21
The strain-mediated magnetoelectric (ME) property of self-assembled vertical multiferroic nanocomposite films epitaxially grown on cubic substrates was calculated by a nonlinear thermodynamic theory combined with the elastic theory. The dependent relations of phase state of ferroelectric films with the in-plane misfit strain, out-of-plane misfit strain, temperature, and volume fraction of ferromagnetic phase were confirmed. The effects of in-plane misfit strain and ferromagnetic volume fraction on the polarization and dielectric constant of ferroelectric films at room temperature were elaborately analyzed for the vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films. Our calculated results confirmed the relationship among ME effect and in-plane misfit strain and ferromagnetic volume fraction in the nanocomposite films. The ME voltage coefficients of vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films displayed various maximums and abrupt points at special phases and phase transition boundaries. The ME voltage coefficients of lead-free BaTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films epitaxially grown on different substrates could reach a comparative value of ∼2 V·cm{sup −1}·Oe{sup −1} under the controllable in-plane misfit strain induced by substrate clamping. Our results provided an available method for the optimal design of vertical multiferroic nanocomposites with adjustable ME effect by optimizing the ferromagnetic volume fraction and substrate type.
Støylen, Asbjørn; Ingul, Charlotte B; Torp, Hans
2003-01-01
Background We describe a method for 3-/4D reconstruction of tissue Doppler data from three standard apical planes, post processing to derived data of strain rate / strain and parametric colour imaging of the data. The data can be displayed as M-mode arrays from all six walls, Bull's eye projection and a 3D surface figure that can be scrolled and rotated. Numerical data and waveforms can be re-extracted. Methods Feasibility was tested by Strain Rate Imaging in 6 normal subjects and 6 patients with acute myocardial infarction. Reverberation artefacts and dyssynergy was identified by colour images. End systolic strain, peak systolic and mid systolic strain rate were measured. Results Infarcts were visualised in all patients by colour imaging of mid systolic strain rate, end systolic strain and post systolic shortening by strain rate. Reverberation artefacts were visible in 3 of 6 normals, and 2 of 6 patients, and were identified both on bull's eye and M-mode display, but influenced quantitative measurement. Peak systolic strain rate was in controls minimum -1.11, maximum -0.89 and in patients minimum -1.66, maximum 0.02 (p = 0.04). Mid systolic strain rate and end systolic strain did not separate the groups significantly. Conclusion 3-/4D reconstruction and colour display is feasible, allowing quick visual identification of infarcts and artefacts, as well as extension of area of post systolic shortening. Strain rate is better suited to colour parametric display than strain. PMID:12956886
NASA Astrophysics Data System (ADS)
Hu, Lun-Hui; Xu, Dong-Hui; Zhang, Fu-Chun; Zhou, Yi
2016-08-01
Motivated by the recent discovery of quantized spin Hall effect in InAs/GaSb quantum wells [Du, Knez, Sullivan, and Du, Phys. Rev. Lett. 114, 096802 (2015), 10.1103/PhysRevLett.114.096802], we theoretically study the effects of in-plane magnetic field and strain effect to the quantization of charge conductance by using Landauer-B ütikker formalism. Our theory predicts a robustness of the conductance quantization against the in-plane magnetic field up to a very high field of 20 T. We use a disordered hopping term to model the strain and show that the strain may help the quantization of the conductance. Relevance to the experiments will be discussed.
Dynamics of restricted three and four vortices problem on the plane
NASA Astrophysics Data System (ADS)
Andrade, J.; Boatto, S.; Vidal, C.
2016-04-01
The dynamics of a test particle (a particle with zero vorticity) advected by the velocity field of N point-vortices with vorticities Γj, j = 1, …N, is considered. Making an analogy with similar studies in celestial mechanics, we call such a study a "restricted N-vortex problem" or (N + 1)-vortex problem. In particular, we study and characterize the global planar dynamics of some restricted 3 and 4-vortex problems, as a function of the vorticities Γj of the vortices.
Cheung, Nicole W T
2015-02-01
Knowledge of the influence of couple dynamics on gender differences in gambling behavior remains meager. Building on general strain theory from the sociology of deviance and stress crossover theory from social psychology, we argue that the strain encountered by one partner in a social setting may affect his or her spouse. For instance, the wife of a man under more social strain may experience more strain in turn and thus be at a higher risk of developing disordered gambling than the wife of a man under less social strain. Using community survey data of 1620 Chinese married couples, we performed multilevel dyad analyses to address social strain and couple dynamics, in addition to their roles as predictors of gambling behavior in both spouses. This was a community survey of Hong Kong and therefore was not representative of China. Based on the DSM-IV screen, the rates of probable problem gambling and pathological gambling among male partners (12.8% vs. 2.5%) were twice those among female partners (5.2% vs. 0.3%). We also found that the social strain experienced by a male partner significantly predicted both his and his wife's likelihood of developing gambling problems. Although a female partner's exposure to social strain was a significant correlate of her gambling problem, it had no significant association with her husband's gambling behavior. These results suggest that the cross-spouse transference of social strain may be a gendered process. PMID:25452063
The role of convexity for solving some shortest path problems in plane without triangulation
NASA Astrophysics Data System (ADS)
An, Phan Thanh; Hai, Nguyen Ngoc; Hoai, Tran Van
2013-09-01
Solving shortest path problems inside simple polygons is a very classical problem in motion planning. To date, it has usually relied on triangulation of the polygons. The question: "Can one devise a simple O(n) time algorithm for computing the shortest path between two points in a simple polygon (with n vertices), without resorting to a (complicated) linear-time triangulation algorithm?" raised by J. S. B. Mitchell in Handbook of Computational Geometry (J. Sack and J. Urrutia, eds., Elsevier Science B.V., 2000), is still open. The aim of this paper is to show that convexity contributes to the design of efficient algorithms for solving some versions of shortest path problems (namely, computing the convex hull of a finite set of points and convex rope on rays in 2D, computing approximate shortest path between two points inside a simple polygon) without triangulation on the entire polygons. New algorithms are implemented in C and numerical examples are presented.
NASA Astrophysics Data System (ADS)
Kyurkchan, A. G.; Manenkov, S. A.
2016-09-01
Two approaches for solving the three-dimensional problem of wave diffraction at a finite grating consisting of bodies of revolution are proposed. An approximate solution is obtained for a grating with small elements. This solution is applied to consider gratings with a large number of elements. The coincidence of the results obtained by the two methods is shown. The reflection and transmission coefficients are compared for finite and infinite gratings.
NASA Astrophysics Data System (ADS)
Kim, Ji Hoon; Park, Jung Ho; Hwang, Sung-Min; Baik, Kwang Hyeon
2012-05-01
We studied the growth and the characteristics of nonpolar Si-doped a-plane GaN grown on r-plane sapphire substrates with different off-cut angles which were changed in the range of -0.2° ˜ +0.4°. Samples grown by using -0.2° and +0.2° off-cut angles showed triangular pit-free and smooth surfaces, which resulted from enhanced lateral growth owing to the epitaxial films having a Ga face. On the other hand, the sample grown by using +0.4° off-cut angles revealed a high density of pits and low crystalline quality due to a high density of dislocations. The strain determined by using calculations with the lattice parameters also showed a dependence on the off-cut angles. We expect r-plane sapphire with off-cut angles in the range of -0.2° ˜ +0.2° to be very effective for improving the crystalline quality and the surface morphology of a-plane GaN.
Lee, Y.-G.; Zou, W.-N.; Pan, E.
2015-01-01
This paper presents a closed-form solution for the arbitrary polygonal inclusion problem with polynomial eigenstrains of arbitrary order in an anisotropic magneto-electro-elastic full plane. The additional displacements or eigendisplacements, instead of the eigenstrains, are assumed to be a polynomial with general terms of order M+N. By virtue of the extended Stroh formulism, the induced fields are expressed in terms of a group of basic functions which involve boundary integrals of the inclusion domain. For the special case of polygonal inclusions, the boundary integrals are carried out explicitly, and their averages over the inclusion are also obtained. The induced fields under quadratic eigenstrains are mostly analysed in terms of figures and tables, as well as those under the linear and cubic eigenstrains. The connection between the present solution and the solution via the Green's function method is established and numerically verified. The singularity at the vertices of the arbitrary polygon is further analysed via the basic functions. The general solution and the numerical results for the constant, linear, quadratic and cubic eigenstrains presented in this paper enable us to investigate the features of the inclusion and inhomogeneity problem concerning polynomial eigenstrains in semiconductors and advanced composites, while the results can further serve as benchmarks for future analyses of Eshelby's inclusion problem. PMID:26345141
Nuclear three-body problem in the complex energy plane: Complex-scaling Slater method
NASA Astrophysics Data System (ADS)
Kruppa, A. T.; Papadimitriou, G.; Nazarewicz, W.; Michel, N.
2014-01-01
parameter of the Tikhonov regularization. Conclusions: The combined suite of CS-Slater and GSM techniques has many attractive features when applied to nuclear problems involving weakly bound and unbound states. While both methods can describe energies, total widths, and wave functions of nuclear states, the CS-Slater method—if it can be applied—can provide additional information about partial energy widths associated with individual thresholds.
NASA Astrophysics Data System (ADS)
Feng, Shih-Wei; Chen, Yu-Yu; Lai, Chih-Ming; Tu, Li-Wei; Han, Jung
2013-12-01
Anisotropic strain relaxation and the resulting degree of polarization of the electronic transition in nonpolar a-plane GaN using one- and two-step growth are studied. By using two-step growth, a slower coalescence and a longer roughening-recovery process lead to larger anisotropic strain relaxation, a less striated surface, and lower densities of basal stacking fault (BSF) and prismatic stacking fault (PSF). It is suggested that anisotropic in-plane strains, surface striation, and BSF and PSF densities in nonpolar a-GaN are consequences of the rate of coalescence, the period of roughening-recovery process, and the degree of anisotropic strain relaxation. In addition, the two-step growth mode can enhance the degree of polarization of the electronic transition. The simulation results of the kṡp perturbation approach show that the oscillator strength and degree of polarization of the electronic transition strongly depend on the in-plane strains upon anisotropic in-plane strain relaxation. The research results provide important information for optimized growth of nonpolar III-nitrides. By using two-step growth and by fabricating the devices on the high-quality nonpolar free-standing GaN substrates, high-efficiency nonpolar a-plane InGaN LEDs can be realized. Nonpolar a-plane InGaN/GaN LEDs can exhibit a strongly polarized light to improve the contrast, glare, eye discomfort and eye strain, and efficiency in display application.
Feng, Shih-Wei Chen, Yu-Yu; Lai, Chih-Ming; Tu, Li-Wei; Han, Jung
2013-12-21
Anisotropic strain relaxation and the resulting degree of polarization of the electronic transition in nonpolar a-plane GaN using one- and two-step growth are studied. By using two-step growth, a slower coalescence and a longer roughening-recovery process lead to larger anisotropic strain relaxation, a less striated surface, and lower densities of basal stacking fault (BSF) and prismatic stacking fault (PSF). It is suggested that anisotropic in-plane strains, surface striation, and BSF and PSF densities in nonpolar a-GaN are consequences of the rate of coalescence, the period of roughening-recovery process, and the degree of anisotropic strain relaxation. In addition, the two-step growth mode can enhance the degree of polarization of the electronic transition. The simulation results of the k⋅p perturbation approach show that the oscillator strength and degree of polarization of the electronic transition strongly depend on the in-plane strains upon anisotropic in-plane strain relaxation. The research results provide important information for optimized growth of nonpolar III-nitrides. By using two-step growth and by fabricating the devices on the high-quality nonpolar free-standing GaN substrates, high-efficiency nonpolar a-plane InGaN LEDs can be realized. Nonpolar a-plane InGaN/GaN LEDs can exhibit a strongly polarized light to improve the contrast, glare, eye discomfort and eye strain, and efficiency in display application.
Structure and switching of in-plane ferroelectric nano-domains in strained PbxSr1-xTiO3 thin films
Matzen, Sylivia; Nesterov, Okeksiy; Rispens, Gregory; Heuver, J. A.; Bark, C; Biegalski, Michael D; Christen, Hans M; Noheda, Beatriz
2014-01-01
Nanoscale ferroelectrics, the active elements of a variety of nanoelectronic devices, develop denser and richer domain structures than the bulk counterparts. With shrinking device sizes understanding and controlling domain formation in nanoferroelectrics is being intensely studied. Here we show that a precise control of the epitaxy and the strain allows stabilizing a hierarchical domain architecture in PbxSr1-xTiO3 thin films, showing periodic, purely in-plane polarized, ferroelectric nano-domains that can be switched by a scanning probe.
NASA Astrophysics Data System (ADS)
Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun
2013-03-01
The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.
Marquez, J. Pablo; Genin, Guy M.; Zahalak, George I.; Elson, Elliot L.
2005-01-01
Constitutive models are needed to relate the active and passive mechanical properties of cells to the overall mechanical response of bio-artificial tissues. The Zahalak model attempts to explicitly describe this link for a class of bio-artificial tissues. A fundamental assumption made by Zahalak is that cells stretch in perfect registry with a tissue. We show this assumption to be valid only for special cases, and we correct the Zahalak model accordingly. We focus on short-term and very long-term behavior, and therefore consider tissue constituents that are linear in their loading response (although not necessarily linear in unloading). In such cases, the average strain in a cell is related to the macroscopic tissue strain by a scalar we call the “strain factor”. We incorporate a model predicting the strain factor into the Zahalak model, and then reinterpret experiments reported by Zahalak and co-workers to determine the in situ stiffness of cells in a tissue construct. We find that, without the modification in this article, the Zahalak model can underpredict cell stiffness by an order of magnitude. PMID:15596492
NASA Astrophysics Data System (ADS)
Cakmak, M.; Hassan, M.; Unsal, E.; Martins, C.
2012-12-01
An instrumented and highly integrated biaxial stretching system was designed and constructed to obtain true stress, true strain, and optical behavior of polymeric films during biaxial stretching. With programmable drive motors, any form of temporally varying biaxial deformation profiles, including linear, exponential, logarithmic as well as cyclic, can be applied to a square-shaped films. This machine allows the investigation of mechano-optical behavior of films under profiles captured in industrial processes. To overcome the edge effects, the samples are painted with a dot pattern that is imaged using a high speed video capture system. This system accurately determines the locations of the each dot matrix in subsequent images acquired and calculates the true strains in both directions. The in-plane optical retardation is determined using spectral birefringence method that uses polarized white light and optical spectrometer in the optical train. This is carried out automatically at less than 10 nm in retardation resolution with the light beam passing through the symmetry center of the sample. Out of plane retardation is measured with an identical optical train tilted 45° to the plane of the film with its light beam going through the same spot on the sample as 0° beam. The true stress and birefringences are calculated with the determined instantaneous thickness of the film. With this system, the stress optical behavior of PET's is determined up to very large deformation levels at moderate to high deformation rates. Beyond the initial linear stress optical behavior, these films exhibit sudden positive deviation from linearity and this start of nonlinearity was directly associated with the stress induced crystallization.
NASA Astrophysics Data System (ADS)
Strine, Matthew; Wojtal, Steven F.
2004-10-01
We report quartz c-axis patterns, grain-shape fabrics, and microstructures for 11 mylonitic quartzites and quartz-phyllosilicate schists from a transect across the Moine thrust at Loch Srath nan Aisinnin, North-West Scotland. In the footwall samples collected more than 42 m normal distance from the thrust surface, quartz c-axis textures indicate a general flattening strain (i.e. 0< k<1). Samples within 19 m normal distance of the thrust are completely recrystallized and exhibit asymmetric c-axis patterns. Recrystallized hanging wall fault rocks exhibit random c-axis patterns on the scale of a standard thin section. Relict footwall grains provide the closest approximation of finite strain; they have octahedral shear strains ( ɛs) between 1.10 and 1.47 and exhibit general flattening k-values (0.0524-0.659). The long axis of the mean relict grain shape trends parallel to the regional transport direction and plunges gently to the ESE. In contrast, recrystallized footwall grains have a mean grain shape with the longest axis oriented nearly perpendicular to the transport direction. Furthermore, these samples have grain shape k-value ranges from 0.157 to 0.295. Recrystallized hanging wall grain shapes exhibit the lowest octahedral shear 'strains' ( ɛs=0.532-0.733) and largest mean k-values (0.351-0.961) of this sample set. The long axes of the mean recrystallized hanging wall grain shapes are parallel to transport, similar to that of relict footwall grains. Unrecrystallized quartz overgrowths about opaque mineral grains suggest concurrent elongation in all directions within the mylonitic foliation and support the inference of general flattening deformation. The mylonitic foliation and penetrative lineation are consistent with a WNW shearing direction; however, both were folded during later deformation increments. Recrystallized grains in footwall quartzites suggest a 305-320° azimuth for the shearing direction. The best-fit π-axis of the poles to the foliation is 18
NASA Astrophysics Data System (ADS)
Singh, Jagadish; Omale, Achonu Joseph
2016-02-01
This article examines the effects of the zonal harmonics on the out-of-plane equilibrium points of Robe's circular restricted three-body problem when the hydrostatic equilibrium shape of the first primary is an oblate spheroid, the shape of the second primary is an oblate spheroid with oblateness coefficients up to the second zonal harmonic, and the full buoyancy of the fluid is considered. It is observed that the size of the oblateness and the zonal harmonics affect the positions of the out-of-plane equilibrium points L6 and L7. It is also observed that these points within the possible region of motion are unstable.
Bonded half planes containing an arbitrarily oriented crack
NASA Technical Reports Server (NTRS)
Erdogan, F.; Aksogan, O.
1973-01-01
The plane elastostatic problem for two bonded half planes containing an arbitrarily oriented crack in the neighborhood of the interface is considered. Using Mellin transforms, the problem is formulated as a system of singular integral equations. The equations are solved for various crack orientations, material combinations, and external loads. The numerical results given include the stress intensity factors, tHe strain energy release rates, and tHe probable cleavage angles giving the direction of crack propagation.
ERIC Educational Resources Information Center
Bodroza-Pantic, O.; Matic-Kekic, Snezana; Jakovljev, Bogdanka; Markovic, Doko
2008-01-01
In this paper the didactically-methodological procedure named the MTE-model of mathematics teaching (Motivation test-Teaching-Examination test) is suggested and recommended when the teacher has subsequent lessons. This model is presented in detail through the processing of a nonstandard theme--the theme of decomposition of planes. Its efficiency…
Problems Associated with Attaching Strain Gages to Titanium Alloy Ti-61-4V
NASA Technical Reports Server (NTRS)
Jenkins, J. M.; Lemcoe, M. M.
1977-01-01
Weldable strain gages have shown excellent high temperature characteristics for supersonic cruise aircraft application. The spotwelding attachment method, however, has resulted in serious reductions in the fatigue life of titanium alloy (Ti-6Al-4V) fatigue specimens. The reduction is so severe that the use of weldable strain gages on operational aircraft must be prohibited. The cause of the fatigue problem is thought to be a combination of the microstructure changes in the material caused by spotwelding and the presence of the flange of the stain gage. Brazing, plating, and plasma spraying were investigated as substitutes for spotwelding. The attachment of a flangeless gage by plasma spraying provided the most improvement in the fatigue life of the titanium.
Batra, R.C.; Peng, Z.
1995-12-31
The authors study the initiation and growth of shear bands in prismatic bodies of rectangular cross-section made of either depleted uranium or tungsten and deformed in plane strain compression at a nominal strain-rate of 5000/s. It is found that, in the deformed configuration, shear bands in depleted uranium blocks are inclined at approximately 42.5 deg counterclockwise from the horizontal axis, those in tungsten are inclined at nearly l35 deg. When shear bands initiate, the total compressive force required to deform the body drops sharply for the uranium blocks but gradually for the tungsten blocks. After a shear band has developed, dead zones form in both uranium and tungsten blocks; the size of the dead zone in the tungsten block is more than that in the uranium block. When the shear modulus for the tungsten is artificially changed so as to equal that for the uranium, the angle of inclination for the shear bands in tungsten blocks changes to that found for the uranium blocks. This suggests that the value of the shear modulus plays a noticeable role in the development of shear bands.
Transient solution for a plane-strain fracture driven by a shear-thinning, power-law fluid
NASA Astrophysics Data System (ADS)
Garagash, D. I.
2006-12-01
This paper analyses the problem of a fluid-driven fracture propagating in an impermeable, linear elastic rock with finite toughness. The fracture is driven by injection of an incompressible viscous fluid with power-law rheology. The relation between the fracture opening and the internal fluid pressure and the fracture propagation in mobile equilibrium are described by equations of linear elastic fracture mechanics (LEFM), and the flow of fluid inside the fracture is governed by the lubrication theory. It is shown that for shear-thinning fracturing fluids, the fracture propagation regime evolves in time from the toughness- to the viscosity-dominated regime. In the former, dissipation in the viscous fluid flow is negligible compared to the dissipation in extending the fracture in the rock, and in the later, the opposite holds. Corresponding self-similar asymptotic solutions are given by the zero-viscosity and zero-toughness (J. Numer. Anal. Meth. Geomech. 2002; 26:579-604) solutions, respectively. A transient solution in terms of the crack length, the fracture opening, and the net fluid pressure, which describes the fracture evolution from the early-time (toughness-dominated) to the large-time (viscosity-dominated) asymptote is presented and some of the implications for the practical range of parameters are discussed. Copyright
NASA Astrophysics Data System (ADS)
Hou, P. F.; Ding, H. J.; Leung, A. Y. T.
2006-03-01
By virtue of the introduction of new dependent variable and the separation of variables technique, the transient responses of a special non-homogeneous magneto-electro-elastic hollow cylinder are transformed to two Volterra integral equations of the second kind of about two functions with respect to time. These integral equations can be solved successfully by means of the interpolation method. Then, the complete solutions of displacements, stresses, electric potential, electric displacements, magnetic potential and magnetic inductions are obtained. The present method is suitable for a magneto-electro-elastic hollow cylinder with an arbitrary thickness subjected to arbitrary axisymmetric mechanical and electromagnetic loads. Numerical results are finally presented.
NASA Astrophysics Data System (ADS)
Abouelmagd, Elbaz I.; Mostafa, A.
2015-05-01
This work aims to present an analytical study on the dynamics of a third body in the restricted three-body problem. We study this model in the context of the third body having variable-mass changes according to Jeans' law. The equation of motion is constructed when the variation of the mass is non-isotropic. We find an appropriate approximation for the locations of the out-of-plane equilibrium points in the special case of a non-isotropic variation of the mass. Moreover, some graphical investigations are shown for the effects of the parameters which characterize the variable mass on the locations of the out-of-plane equilibrium points, the regions of possible and forbidden motions of the third body. This model has many applications, especially in the dynamics behavior of small objects such as cosmic dust and grains. It also has interesting applications for artificial satellites, future space colonization or even vehicles and spacecraft parking.
van Kessel, Marco; Seaton, David; Chan, Jonathan; Yamada, Akira; Kermeen, Fiona; Butler, Thomas; Sabapathy, Surendran; Morris, Norman
2016-06-01
Pulmonary hypertension (PH) is a progressively fatal disease having a significant impact on right ventricular (RV) function, a major determinant of long-term outcome in PH patients. In our clinic we frequently noticed the combination of PH and reduced RV function, but with discordant Tricuspid Annular Plane Systolic Excursion (TAPSE) values. The present study focuses on whether RV free wall strain measured using 2-dimensional speckle-tracking echocardiography is able to predict mortality in this subgroup of PH patients. 57 patients with PH and RV dysfunction (visual echocardiographic assessment of ≥2) and pseudo-normalized TAPSE values (defined as ≥16 mm) were retrospectively evaluated. Patients were divided by RV free -20 % as cut-off value. Follow-up data on all-cause mortality were registered after a median follow-up time of 27.9 ± 1.7 months. RV free of ≥-20 % was predictive of all-cause mortality after a median follow-up time of 27.9 ± 1.7 months (HR 3.76, 95 % CI 1.02-13.92, p = 0.05). RV free ≥-20 % remained a significant predictor of all-cause mortality (HR 4.30, 95 % CI 1.11-16.61, p = 0.04) after adjusting for PH-specific treatment. On the contrary, TAPSE was not a significant predictor of all-cause mortality. RV free wall strain provides prognostic information in patients with PH and RV dysfunction, but with normal TAPSE values. Future studies with larger cohorts, longer follow-up periods and inclusion of more echocardiographic parameters measuring LV and RV function could confirm the strength of RV free ≥-20 % as a predictor of mortality for this subgroup of patients with PH. PMID:26931558
NASA Astrophysics Data System (ADS)
Padmanabhan, R.; Oliveira, M. C.; Baptista, A. J.; Alves, J. L.; Menezes, L. F.
2007-05-01
Springback phenomenon associated with the elastic properties of sheet metals makes the design of forming dies a complex task. Thus, to develop consistent algorithms for springback compensation an accurate prediction of the amount of springback is mandatory. The numerical simulation using the finite element method is consensually the only feasible method to predict springback. However, springback prediction is a very complicated task and highly sensitive to various numerical parameters of finite elements (FE), such as: type, order, integration scheme, shape and size, as well the time integration formulae and the unloading strategy. All these numerical parameters make numerical simulation of springback more sensitive to numerical tolerances than the forming operation. In case of an unconstrained cylindrical bending, the in-plane to thickness FE size ratio is more relevant than the number of FE layers through-thickness, for the numerical prediction of final stress and strain states, variables of paramount importance for an accurate springback prediction. The aim of the present work is to evaluate the influence of the refinement of a 3-D FE mesh, namely the in-plane mesh refinement and the number of through-thickness FE layers, in springback prediction. The selected example corresponds to the first stage of the "Numisheet'05 Benchmark♯3", which consists basically in the sheet forming of a channel section in an industrial-scale channel draw die. The physical drawbeads are accurately taken into account in the numerical model in order to accurately reproduce its influence during the forming process simulation. FEM simulations were carried out with the in-house code DD3IMP. Solid finite elements were used. They are recommended for accuracy in FE springback simulation when the ratio between the tool radius and blank thickness is lower than 5-6. In the selected example the drawbead radius is 4.0 mm. The influence of the FE mesh refinement in springback prediction is
Experiments with Planing Surfaces
NASA Technical Reports Server (NTRS)
Sottorf, W
1934-01-01
A previous report discusses the experimental program of a systematic exploration of all questions connected with the planing problem as well as the first fundamental results of the investigation of a flat planing surface. The present report is limited to the conversion of the model test data to full scale.
NASA Astrophysics Data System (ADS)
Alvarez-Ramírez, M.; Formiga, J. K.; de Moraes, R. V.; Skea, J. E. F.; Stuchi, T. J.
2014-05-01
We study the fourth-order stability of the triangular libration points in the absence of resonance for the three-body problem when the infinitesimal mass is affected not only by gravitation but also by light pressure from both primaries. A comprehensive summary of previous results is given, with some inaccuracies being corrected. The Lie triangle method is used to obtain the fourth-order Birkhoff normal form of the Hamiltonian, and the corresponding complex transformation to pre-normal form is given explicitly. We obtain an explicit expression for the determinant required by the Arnold-Moser theorem, and show that it is a rational function of the parameters, whose numerator is a fifth-order polynomial in the mass parameter. Particular cases where this polynomial reduces to a quartic are described. Our results reduce correctly to the purely gravitational case in the appropriate limits, and extend numerical work by previous authors.
NASA Technical Reports Server (NTRS)
Krempl, Erhard; Hong, Bor Zen
1989-01-01
A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.
NASA Technical Reports Server (NTRS)
Hofmann, R.
1980-01-01
The STEALTH code system, which solves large strain, nonlinear continuum mechanics problems, was rigorously structured in both overall design and programming standards. The design is based on the theoretical elements of analysis while the programming standards attempt to establish a parallelism between physical theory, programming structure, and documentation. These features have made it easy to maintain, modify, and transport the codes. It has also guaranteed users a high level of quality control and quality assurance.
NASA Astrophysics Data System (ADS)
Odishelidze, Nana; Criado-Aldeanueva, Francisco; Sanchez, J. M.
2015-10-01
This paper addresses a problem of plane elasticity theory for a multiply connected domain, whose external boundary is a rhombus and the internal boundary is the required two holes that are symmetric with respect to its diagonals. Absolutely rigid punches with rectilinear bases are applied to each segment of the outer boundary of the given body, and they are under the action of the forces P that apply to their middle points. There is no friction between the surface of the given elastic body and the punches. The boundaries of the unknown holes are free from external loads. Tangential stresses are equal to zero along the entire boundary of the domain, and the normal displacements on the linear parts of the boundary are constant. The shapes of the holes' contours and the stress state of the given body are determined, provided that the tangential normal stress arising at the holes' contours takes a constant value. Such holes are called full-strength holes. Full-strength contours and stress state are found by means of complex analysis. The solution is written in quadratures. Numerical analyses are presented, and the corresponding plots are constructed.
NASA Technical Reports Server (NTRS)
Jones, M. H.; Bubsey, R. T.; Brown, W. F., Jr.; Bucci, R. J.; Collis, S. F.; Kohm, R. F.; Kaufman, J. G.
1977-01-01
A description is presented of studies which have been conducted to establish an improved technology base for a use of the sharply notched cylindrical specimen in quality assurance tests of aluminum alloy products. The results are presented of an investigation of fundamental variables associated with specimen preparation and testing, taking into account the influence of the notch root radius, the eccentricity of loading, the specimen diameter, and the notch depth on the sharp notch strength. Attention is given to the statistical procedures which are necessary to establish correlations between the sharp notch strength and the plane-strain fracture toughness for high-strength aluminum alloys.
Mayerl, Hannes; Stolz, Erwin; Waxenegger, Anja; Rásky, Éva; Freidl, Wolfgang
2016-01-01
Recent research highlights the importance of both job resources and personal resources in the job demands-resources model. However, the results of previous studies on how these resources are related to each other and how they operate in relation to the health-impairment process of the job demands-resources model are ambiguous. Thus, the authors tested an alternative model, considering job and personal resources to be domains of the same underlying factor and linking this factor to the health-impairment process. Survey data of two Austrian occupational samples (N1 = 8657 and N2 = 9536) were analyzed using confirmatory factor analysis (CFA) and structural equation modeling (SEM). The results revealed that job and personal resources can be considered as indicators of a single resources factor which was negatively related to psychosocial job demands, mental strain, and health problems. Confirming previous studies, we further found that mental strain mediated the relationship between psychosocial job demands and health problems. Our findings suggest that interventions aimed at maintaining health in the context of work may take action on three levels: (1) the prevention of extensive job demands, (2) the reduction of work-related mental strain, and (3) the strengthening of resources. PMID:27582717
Mayerl, Hannes; Stolz, Erwin; Waxenegger, Anja; Rásky, Éva; Freidl, Wolfgang
2016-01-01
Recent research highlights the importance of both job resources and personal resources in the job demands-resources model. However, the results of previous studies on how these resources are related to each other and how they operate in relation to the health-impairment process of the job demands-resources model are ambiguous. Thus, the authors tested an alternative model, considering job and personal resources to be domains of the same underlying factor and linking this factor to the health-impairment process. Survey data of two Austrian occupational samples (N 1 = 8657 and N 2 = 9536) were analyzed using confirmatory factor analysis (CFA) and structural equation modeling (SEM). The results revealed that job and personal resources can be considered as indicators of a single resources factor which was negatively related to psychosocial job demands, mental strain, and health problems. Confirming previous studies, we further found that mental strain mediated the relationship between psychosocial job demands and health problems. Our findings suggest that interventions aimed at maintaining health in the context of work may take action on three levels: (1) the prevention of extensive job demands, (2) the reduction of work-related mental strain, and (3) the strengthening of resources. PMID:27582717
Computational strain gradient crystal plasticity
NASA Astrophysics Data System (ADS)
Niordson, Christian F.; Kysar, Jeffrey W.
2014-01-01
A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale.
ERIC Educational Resources Information Center
Heflinger, Craig Anne; Brannan, Ana Maria
2006-01-01
This study examined caregiver strain (i.e., burden of care, caregiver burden) among families of adolescents in treatment for substance abuse disorders compared to youth with mental health problems. We used descriptive and regression analyses to compare groups and to examine the youth and family variables associated with caregiver strain across the…
NASA Technical Reports Server (NTRS)
Gayda, J.
1994-01-01
A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, has been developed to simulate microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. Since many of the physical properties of materials are determined by microstructure, it is important to be able to predict and control microstructural development. MCFET uses a microstructural lattice model that can incorporate all relevant driving forces and kinetic considerations. Unlike molecular dynamics, this approach was developed specifically to predict macroscopic behavior, not atomistic behavior. In this approach, the microstructure is discretized into a fine lattice. Each element in the lattice is labeled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis has been validated by comparing this approach with a closed-form, analytical method for stress-assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analyses for multiparticle problems have also been run and, in general, the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperatures. This program is written in FORTRAN for use on a 370 series IBM mainframe. It has been implemented on an IBM 370 running VM/SP and an IBM 3084 running MVS. It requires the IMSL math library and 220K of RAM for execution. The standard distribution medium for this program is a 9-track 1600 BPI magnetic tape in EBCDIC format.
NASA Astrophysics Data System (ADS)
Balzani, Daniel; Gandhi, Ashutosh; Tanaka, Masato; Schröder, Jörg
2015-05-01
In this paper a robust approximation scheme for the numerical calculation of tangent stiffness matrices is presented in the context of nonlinear thermo-mechanical finite element problems and its performance is analyzed. The scheme extends the approach proposed in Kim et al. (Comput Methods Appl Mech Eng 200:403-413, 2011) and Tanaka et al. (Comput Methods Appl Mech Eng 269:454-470, 2014 and bases on applying the complex-step-derivative approximation to the linearizations of the weak forms of the balance of linear momentum and the balance of energy. By incorporating consistent perturbations along the imaginary axis to the displacement as well as thermal degrees of freedom, we demonstrate that numerical tangent stiffness matrices can be obtained with accuracy up to computer precision leading to quadratically converging schemes. The main advantage of this approach is that contrary to the classical forward difference scheme no round-off errors due to floating-point arithmetics exist within the calculation of the tangent stiffness. This enables arbitrarily small perturbation values and therefore leads to robust schemes even when choosing small values. An efficient algorithmic treatment is presented which enables a straightforward implementation of the method in any standard finite-element program. By means of thermo-elastic and thermo-elastoplastic boundary value problems at finite strains the performance of the proposed approach is analyzed.
Volkov, A V; Kolkutin, V V; Klevno, V A; Shkol'nikov, B V; Kornienko, I V
2008-01-01
Managerial experience is described that was gained during the large-scale work on victim identification following mass casualties in the Tu 154-M and Airbus A310 passenger plane crashes. The authors emphasize the necessity to set up a specialized agency of constant readiness meeting modern requirements for the implementation of a system of measures for personality identification. This agency must incorporate relevant departments of the Ministries of Health, Defense, and Emergency Situations as well as investigative authorities and other organizations. PMID:19048869
Sood, Nitu; Lal, Banwari
2008-02-01
Paraffin deposition problems, that have plagued the oil industry, are currently remediated by mechanical and chemical means. However, since these methods are problematic, a microbiological approach has been considered. The bacteria, required for the mitigation of paraffin deposition problems, should be able to survive the high temperatures of oil wells and degrade the paraffins under low oxygen and nutrient conditions while sparing the low carbon chain paraffins. In this study, a thermophilic paraffinic wax degrading bacterial strain was isolated from a soil sample contaminated with paraffinic crude oil. The selected strain, Geobacillus TERI NSM, could degrade 600mg of paraffinic wax as the sole carbon source in 1000ml minimal salts medium in 7d at 55 degrees C. This strain was identified as Geobacillus kaustophilus by fatty acid methyl esters analysis and 16S rRNA full gene sequencing. G. kaustophilus TERI NSM showed 97% degradation of eicosane, 85% degradation of pentacosane and 77% degradation of triacontane in 10d when used as the carbon source. The strain TERI NSM could also degrade the paraffins of crude oil collected from oil wells that had a history of paraffin deposition problems. PMID:17942139
New insights into classical solutions of the local instability of the sandwich panels problem
NASA Astrophysics Data System (ADS)
Pozorska, Jolanta; Pozorski, Zbigniew
2016-06-01
The paper concerns the problem of local instability of thin facings of a sandwich panel. The classic analytical solutions are compared and examined. The Airy stress function is applied in the case of the state of plane stress and the state of plane strain. Wrinkling stress values are presented. The differences between the results obtained using the differential equations method and energy method are discussed. The relations between core strain energies are presented.
NASA Astrophysics Data System (ADS)
Betka, P. M.; Seeber, L.; Steckler, M. S.
2015-12-01
, contractional structures that formed internally within the FTB are indicative of east-west horizontal shortening and plane strain. This result suggests that the dextral component of shear measured by geodetic data is primarily partitioned onto discrete right-lateral strike-slip faults such as the Churachandpur-Mao and Kabaw faults.
NASA Technical Reports Server (NTRS)
1999-01-01
Excerpt from the NASA Connect show 'Plane Weather' This clip explains how our weather occurs, and why Solar radiation is responsible. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.
NASA Technical Reports Server (NTRS)
1999-01-01
Excerpt from the NASA Connect show 'Plane Weather' This clip explains what high and low pressure weather systems are, and how they form. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.
NASA Technical Reports Server (NTRS)
1999-01-01
Excerpt from the NASA Connect show 'Plane Weather' This clip explains what high and low pressure weather systems are, and how these affect weather patterns. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.
The solar system's invariable plane
NASA Astrophysics Data System (ADS)
Souami, D.; Souchay, J.
2012-07-01
Context. The dynamics of solar system objects, such as dwarf planets and asteroids, has become a well-established field of celestial mechanics in the past thirty years, owing to the improvements that have been made in observational techniques and numerical studies. In general, the ecliptic is taken as the reference plane in these studies, although there is no dynamical reason for doing so. In contrast, the invariable plane as originally defined by Laplace, seems to be a far more natural choice. In this context, the latest study of this plane dates back to Burkhardt. Aims: We define and determine the orientation of the invariable plane of the solar system with respect to both the ICRF and the equinox-ecliptic of J2000.0, and evaluate the accuracy of our determination. Methods: Using the long-term numerical ephemerides DE405, DE406, and INPOP10a over their entire available time span, we computed the total angular momentum of the solar system, as well as the individual contribution to it made by each of the planets, the dwarf planets Pluto and Ceres, and the two asteroids Pallas and Vesta. We then deduced the orientation of the invariable plane from these ephemerides. Results: We update the previous results on the determination of the orientation of the invariable plane with more accurate data, and a more complete analysis of the problem, taking into account the effect of the dwarf planet (1) Ceres as well as two of the biggest asteroids, (4) Vesta and (2) Pallas. We show that the inclusion of these last three bodies significantly improves the accuracy of determination of the invariable plane, whose orientation over a 100 y interval does not vary more than 0.1 mas in inclination, and 0.3 mas in longitude of the ascending node. Moreover, we determine the individual contributions of each body to the total angular momentum of the solar system, as well as the inclination and longitude of the node with respect to this latter plane. Conclusions: Owing to the high accuracy
The plane problem of the flapping wing
NASA Technical Reports Server (NTRS)
Birnbaum, Walter
1954-01-01
In connection with an earlier report on the lifting vortex sheet which forms the basis of the following investigations this will show how the methods developed there are also suitable for dealing with the air forces for a wing with a circulation variable with time. The theory of a propulsive wing flapping up and down periodically in the manner of a bird's wing is developed. This study shows how the lift and its moment result as a function of the flapping motion, what thrust is attainable, and how high is the degree of efficiency of this flapping propulsion unit if the air friction is disregarded.
Asymmetric quadrilateral shell elements for finite strains
NASA Astrophysics Data System (ADS)
Areias, P.; Dias-da-Costa, D.; Pires, E. B.; Van Goethem, N.
2013-07-01
Very good results in infinitesimal and finite strain analysis of shells are achieved by combining either the enhanced-metric technique or the selective-reduced integration for the in-plane shear energy and an assumed natural strain technique (ANS) in a non-symmetric Petrov-Galerkin arrangement which complies with the patch-test. A recovery of the original Wilson incompatible mode element is shown for the trial functions in the in-plane components. As a beneficial side-effect, Newton-Raphson convergence behavior for non-linear problems is improved with respect to symmetric formulations. Transverse-shear and in-plane patch tests are satisfied while distorted-mesh accuracy is higher than with symmetric formulations. Classical test functions with assumed-metric components are required for compatibility reasons. Verification tests are performed with advantageous comparisons being observed in all of them. Applications to large displacement elasticity and finite strain plasticity are shown with both low sensitivity to mesh distortion and (relatively) high accuracy. A equilibrium-consistent (and consistently linearized) updated-Lagrangian algorithm is proposed and tested. Concerning the time-step dependency, it was found that the consistent updated-Lagrangian algorithm is nearly time-step independent and can replace the multiplicative plasticity approach if only moderate elastic strains are present, as is the case of most metals.
Plane Wave and Coulomb Asymptotics
NASA Astrophysics Data System (ADS)
Mulligan, P. G.; Crothers, D. S. F.
2004-01-01
A simple plane wave solution of the Schrödinger Helmholtz equation is a quantum eigenfunction obeying both energy and linear momentum correspondence principles. Inclusion of the outgoing wave with scattering amplitude f obeys unitarity and the optical theorem. By closely considering the standard asymptotic development of the plane wave, we show that there is a problem with angular momentum when we consider forward scattering at the point of closest approach and at large impact parameter given semiclassically by (l + 1/2)/k where l is the azimuthal quantum number and may be large (J Leech et al, Phys. Rev. Lett. 88 257901 (2002)). The problem is resolved via non-uniform, non-standard analysis involving the Heaviside step function, unifying classical, semiclassical and quantum mechanics, and the treatment is extended to the case of pure Coulomb scattering.
NASA Astrophysics Data System (ADS)
Borodin, E. N.; Mayer, A. E.
2015-11-01
A computational plasticity model with accounting of coupled evolution of the dislocations and twins in metals under the dynamic loading is presented. The model is based on our previous results for the dislocation plasticity, but generalizes them and accounts mechanical twinning in addition. It includes equations of the mechanics of continua for elastic-plastic medium, where the plastic deformation tensor is determined through the structural defects evolution in the material. The model is self-consistent and allows determining of mechanical properties in wide range of strain rates and thermodynamic conditions as well as modification of the defect subsystems. The equations and parameters, its numerical implementation and some of obtained results are presented.
Fourier plane imaging microscopy
Dominguez, Daniel Peralta, Luis Grave de; Alharbi, Nouf; Alhusain, Mdhaoui; Bernussi, Ayrton A.
2014-09-14
We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.
NASA Technical Reports Server (NTRS)
Rzasnicki, W.
1973-01-01
A method of solution is presented, which, when applied to the elasto-plastic analysis of plates having a v-notch on one edge and subjected to pure bending, will produce stress and strain fields in much greater detail than presently available. Application of the boundary integral equation method results in two coupled Fredholm-type integral equations, subject to prescribed boundary conditions. These equations are replaced by a system of simultaneous algebraic equations and solved by a successive approximation method employing Prandtl-Reuss incremental plasticity relations. The method is first applied to number of elasto-static problems and the results compared with available solutions. Good agreement is obtained in all cases. The elasto-plastic analysis provides detailed stress and strain distributions for several cases of plates with various notch angles and notch depths. A strain hardening material is assumed and both plane strain and plane stress conditions are considered.
Attitude analysis in Flatland: The plane truth
NASA Technical Reports Server (NTRS)
Shuster, Malcolm D.
1993-01-01
Many results in attitude analysis are still meaningful when the attitude is restricted to rotations about a single axis. Such a picture corresponds to attitude analysis in the Euclidean plane. The present report formalizes the representation of attitude in the plane and applies it to some well-known problems. In particular, we study the connection of the 'additive' and 'multiplicative' formulations of the differential corrector for the quaternion in its two-dimensional setting.
Eight plane IPND mechanical testing.
Zhao, A.; Guarino, V.; Wood, K.; Nephew, T.; Ayres, D.; Lee, A.; High Energy Physics; FNAL
2008-03-18
A mechanical test of an 8 plane IPND mechanical prototype, which was constructed using extrusions from the testing/tryout of the 16 cell prototype extrusion die in Argonne National Laboratory, was conducted. There were 4 vertical and 4 horizontal planes in this 8 plane IPND prototype. Each vertical plane had four 16 cell extrusions, while each horizontal plane had six 16 cell extrusions. Each plane was glued together using the formulation of Devcon adhesive, Devcon 60. The vertical extrusions used in the vertical planes shares the same dimensions as the horizontal extrusions in the horizontal planes with the average web thickness of 2.1 mm and the average wall thickness of 3.1 mm. This mechanical prototype was constructed with end-seals on the both ends of the vertical extrusions. The gaps were filled with epoxy between extrusions and end-seals. The overall dimension of IPND is 154.8 by 103.1 by 21.7 inches with the weight of approximately 1200 kg, as shown in a figure. Two similar mechanical tests of 3 layer and 11 layer prototypes have been done in order to evaluate the strength of the adhesive joint between extrusions in the NOvA detector. The test showed that the IPND prototype was able to sustain under the loading of weight of itself and scintillator. Two FEA models were built to verify the measurement data from the test. The prediction from FEA slice model seems correlated reasonably well to the test result, even under a 'rough' estimated condition for the wall thickness (from an untuned die) and an unknown property of 'garage type' extrusion. A full size of FEA 3-D model also agrees very well with the test data from strain gage readings. It is worthy to point out that the stress distribution of the structure is predominantly determined by the internal pressure, while the buckling stability relies more on the loading weight from the extrusions themselves and scintillate. Results of conducted internal pressure tests, including 3- cell, 11-cell and the IPND
2. VIEW SOUTH, INCLINE PLANE CAR, INCLINE PLANE TRACK, UPPER ...
2. VIEW SOUTH, INCLINE PLANE CAR, INCLINE PLANE TRACK, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA
NASA Astrophysics Data System (ADS)
Barkin, Yu. V.; Ferrandiz, J. M.
2009-04-01
theory of Mercury librations in longitude by using three characteristics of Mercury rotation determined in the paper [3]. Two from these parameters are values of angle of librations in longitude and angular velocity in moment of passage of perihelion of Mercury orbit on 17 April 2002: (^g)0 = 0007 ± 0001, (^?? )0 = (2.10± 0.06)? ars/d. Third parameter determined in [3] is a dynamical coefficient: K = (B -A)(4Cm ) = (5.08± 0.30) × 10-5. B > A are principal moment of inertia, corresponding to equatorial axes of inertia; Cm is a polar moment of inertia of the mantle of Mercury. 1 Analytical theory of plane Mercury librations. This theory describes forced and free librations of Mercury in longitude in the frame of plane problem about resonant librations of Mercury considered or as non-spherical rigid body, or as system of rigid non-spherical mantle and liquid ellipsoidal core. Saving the main terms for the perturbations of angle of librations ^g and angular velocity ^? in both mentioned cases we will have formulae [6]: ^g = K(E sin M + E sin2M + E sin 3M + E sin4M + E sin5M ) 1 2 3 4 5+K0 sin(E KM- - φ) (A)
Symmetry in finite phase plane
NASA Astrophysics Data System (ADS)
Zak, J.
2010-03-01
The known symmetries in one-dimensional systems are inversion and translations. These symmetries persist in finite phase plane, but a novel symmetry arises in view of the discrete nature of the coordinate xi and the momentum pi : xi and pi can undergo permutations. Thus, if xi assumes M discrete values, i = 0, 1,2,..., M - 1, a permutation will change the order of the set x0,x1,..., xM-1 into a new ordered set. Such a symmetry element does not exist for a continuous x-coordinate in an infinite phase plane. Thus, in a finite phase plane, translations can be replaced by permutations. This is also true for the inversion operator. The new permutation symmetry has been used for the construction of conjugate representations and for the splitting of the M-dimensional vector space into independent subspaces. This splitting is exhaustive in the sense that if M = iMi with Mi being prime numbers, the M-dimensional space splits into M1,M2,...Mn-dimensional independent subspaces. It is shown that following this splitting one can design new potentials with appropriate constants of motion. A related problem is the Weyl-Heisenberg group in the M-dimensional space which turns into a direct product of its subgroups in the Mi-dimensional subspaces. As an example we consider the case of M = 8.
Optical strain measuring techniques for high temperature tensile testing
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.; Hemann, John H.
1987-01-01
A number of optical techniques used for the analysis of in-plane displacements or strains are reviewed. The application would be for the high temperature, approximately 1430 C (2600 F), tensile testing of ceramic composites in an oxidizing atmosphere. General descriptions of the various techniques and specifics such as gauge lengths and sensitivities are noted. Also, possible problems with the use of each method in the given application are discussed.
Two-dimensional Finite Element Modeling for Modeling Tectonic Stress and Strain
NASA Technical Reports Server (NTRS)
Lyzenga, G. A.; Raefsky, A.
1983-01-01
Techniques of finite element analysis in two dimensional plane strain were applied to problems of geophysics and tectonics. More specifically, the flexibility of the finite element method was employed to address problems involving geological complexity and fault interactions. The modeling of effective anisotropy in material elastic properties proved useful in describing the deformation of faulted crustal blocks. The applications of this modeling work to problems of actual tectonics in southern California was explored. Preliminary models show encouraging agreement with measured tectonic strain in this region, and modeling work was done to gain an understanding of the stress state in a locked fault region with future seismic potential.
A Curved, Elastostatic Boundary Element for Plane Anisotropic Structures
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S.; Klang, Eric C.
2001-01-01
The plane-stress equations of linear elasticity are used in conjunction with those of the boundary element method to develop a novel curved, quadratic boundary element applicable to structures composed of anisotropic materials in a state of plane stress or plane strain. The curved boundary element is developed to solve two-dimensional, elastostatic problems of arbitrary shape, connectivity, and material type. As a result of the anisotropy, complex variables are employed in the fundamental solution derivations for a concentrated unit-magnitude force in an infinite elastic anisotropic medium. Once known, the fundamental solutions are evaluated numerically by using the known displacement and traction boundary values in an integral formulation with Gaussian quadrature. All the integral equations of the boundary element method are evaluated using one of two methods: either regular Gaussian quadrature or a combination of regular and logarithmic Gaussian quadrature. The regular Gaussian quadrature is used to evaluate most of the integrals along the boundary, and the combined scheme is employed for integrals that are singular. Individual element contributions are assembled into the global matrices of the standard boundary element method, manipulated to form a system of linear equations, and the resulting system is solved. The interior displacements and stresses are found through a separate set of auxiliary equations that are derived using an Airy-type stress function in terms of complex variables. The capabilities and accuracy of this method are demonstrated for a laminated-composite plate with a central, elliptical cutout that is subjected to uniform tension along one of the straight edges of the plate. Comparison of the boundary element results for this problem with corresponding results from an analytical model show a difference of less than 1%.
Lampton, Michael L.; Kim, A.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Berkovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro,R.; Ealet, A.; Ellis, R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland, S.E.; Huterer, D.; Karcher, A.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder,E.V.; Loken, S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto, E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.
2002-07-29
The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square-degree field sensitive in the visible and near-infrared wavelength regime. We describe the requirements for the instrument suite and the evolution of the focal plane design to the present concept in which all the instrumentation--visible and near-infrared imagers, spectrograph, and star guiders--share one common focal plane.
Out of plane analysis for composite structures
NASA Technical Reports Server (NTRS)
Paul, P. C.; Saff, C. R.; Sanger, Kenneth B.; Mahler, M. A.; Kan, Han Pin; Kautz, Edward F.
1990-01-01
Simple two dimensional analysis techniques were developed to aid in the design of strong joints for integrally stiffened/bonded composite structures subjected to out of plane loads. It was found that most out of plane failures were due to induced stresses arising from rapid changes in load path direction or geometry, induced stresses due to changes in geometry caused by buckling, or direct stresses produced by fuel pressure or bearing loads. While the analysis techniques were developed to address a great variety of out of plane loading conditions, they were primarily derived to address the conditions described above. The methods were developed and verified using existing element test data. The methods were demonstrated using the data from a test failure of a high strain wingbox that was designed, built, and tested under a previous program. Subsequently, a set of design guidelines were assembled to assist in the design of safe, strong integral composite structures using the analysis techniques developed.
Beamlet focal plane diagnostic
Caird, J.A.; Nielsen, N.D.; Patton, H.G.; Seppala, L.G.; Thompson, C.E.; Wegner, P.J.
1996-12-01
This paper describes the major optical and mechanical design features of the Beamlet Focal Plane Diagnostic system as well as measurements of the system performance, and typical data obtained to date. We also discuss the NIF requirements on the focal spot that we are interested in measuring, and some of our plans for future work using this system.
NASA Astrophysics Data System (ADS)
Reddy, B. D.
2011-11-01
Variational formulations are constructed for rate-independent problems in small-deformation single-crystal strain-gradient plasticity. The framework, based on that of Gurtin (J Mech Phys Solids 50: 5-32, 2002), makes use of the flow rule expressed in terms of the dissipation function. Provision is made for energetic and dissipative microstresses. Both recoverable and non-recoverable defect energies are incorporated into the variational framework. The recoverable energies include those that depend smoothly on the slip gradients, the Burgers tensor, or on the dislocation densities (Gurtin et al. J Mech Phys Solids 55:1853-1878, 2007), as well as an energy proposed by Ohno and Okumura (J Mech Phys Solids 55:1879-1898, 2007), which leads to excellent agreement with experimental results, and which is positively homogeneous and therefore not differentiable at zero slip gradient. Furthermore, the variational formulation accommodates a non-recoverable energy due to Ohno et al. (Int J Mod Phys B 22:5937-5942, 2008), which is also positively homogeneous, and a function of the accumulated dislocation density. Conditions for the existence and uniqueness of solutions are established for the various examples of defect energy, with or without the presence of hardening or slip resistance.
Thin-film light-intensity measurement strain-analysis technique.
NASA Technical Reports Server (NTRS)
Williams, J. G.
1972-01-01
The optical response to loading of a thin metallic film deposited on a low-modulus structural substrate is studied theoretically and experimentally. Two types of optical properties called total and central-image transmittance (or reflectance) are shown to be related to the mechanical state of the substrate. Empirical optical-mechanical relationships are proposed between these optical properties and the substrate strain field of a general plane-stress problem. A technique based on wrinkle and microfracture patterns is described for determining principal directions of strain. Experimental results for uniaxially loaded specimens show that it is possible to obtain a nearly linear relationship between transmittance and strain for certain materials combinations.
NASA Technical Reports Server (NTRS)
Munk, Max M
1923-01-01
This report deals with the calculation of the equilibrium, statistical stability, and damping of the tail plane. The author has simplified the present theory of longitudinal stability for the particular purpose of obtaining one definite coefficient characteristics of the effect of the tail plane. This coefficient is obtained by substituting certain aerodynamic characteristics and some dimensions of the airplane in a comparatively simple mathematical expression. Care has been taken to confine all aerodynamical information necessary for the calculation of the coefficient to the well-known curves representing the qualities of the wing section. This is done by making use of the present results of modern aerodynamics. All formulas and relations necessary for the calculation are contained in the paper. They give in some cases only an approximation of the real values. An example of calculation is added in order to illustrate the application of the method. The coefficient indicates not only whether the effect of the tail plane is great enough, but also whether it is not too great. It appears that the designer has to avoid a certain critical length of the fuselage, which inevitably gives rise to periodical oscillations of the airplane. The discussion also shows the way and in what direction to carry out experimental work.
Image plane sweep volume illumination.
Sundén, Erik; Ynnerman, Anders; Ropinski, Timo
2011-12-01
In recent years, many volumetric illumination models have been proposed, which have the potential to simulate advanced lighting effects and thus support improved image comprehension. Although volume ray-casting is widely accepted as the volume rendering technique which achieves the highest image quality, so far no volumetric illumination algorithm has been designed to be directly incorporated into the ray-casting process. In this paper we propose image plane sweep volume illumination (IPSVI), which allows the integration of advanced illumination effects into a GPU-based volume ray-caster by exploiting the plane sweep paradigm. Thus, we are able to reduce the problem complexity and achieve interactive frame rates, while supporting scattering as well as shadowing. Since all illumination computations are performed directly within a single rendering pass, IPSVI does not require any preprocessing nor does it need to store intermediate results within an illumination volume. It therefore has a significantly lower memory footprint than other techniques. This makes IPSVI directly applicable to large data sets. Furthermore, the integration into a GPU-based ray-caster allows for high image quality as well as improved rendering performance by exploiting early ray termination. This paper discusses the theory behind IPSVI, describes its implementation, demonstrates its visual results and provides performance measurements. PMID:22034331
NASA Astrophysics Data System (ADS)
Cervera, M.; Lafontaine, N.; Rossi, R.; Chiumenti, M.
2016-06-01
This paper presents an explicit mixed finite element formulation to address compressible and quasi-incompressible problems in elasticity and plasticity. This implies that the numerical solution only involves diagonal systems of equations. The formulation uses independent and equal interpolation of displacements and strains, stabilized by variational subscales. A displacement sub-scale is introduced in order to stabilize the mean-stress field. Compared to the standard irreducible formulation, the proposed mixed formulation yields improved strain and stress fields. The paper investigates the effect of this enhancement on the accuracy in problems involving strain softening and localization leading to failure, using low order finite elements with linear continuous strain and displacement fields (P1P1 triangles in 2D and tetrahedra in 3D) in conjunction with associative frictional Mohr-Coulomb and Drucker-Prager plastic models. The performance of the strain/displacement formulation under compressible and nearly incompressible deformation patterns is assessed and compared to analytical solutions for plane stress and plane strain situations. Benchmark numerical examples show the capacity of the mixed formulation to predict correctly failure mechanisms with localized patterns of strain, virtually free from any dependence of the mesh directional bias. No auxiliary crack tracking technique is necessary.
NASA Astrophysics Data System (ADS)
Cervera, M.; Lafontaine, N.; Rossi, R.; Chiumenti, M.
2016-09-01
This paper presents an explicit mixed finite element formulation to address compressible and quasi-incompressible problems in elasticity and plasticity. This implies that the numerical solution only involves diagonal systems of equations. The formulation uses independent and equal interpolation of displacements and strains, stabilized by variational subscales. A displacement sub-scale is introduced in order to stabilize the mean-stress field. Compared to the standard irreducible formulation, the proposed mixed formulation yields improved strain and stress fields. The paper investigates the effect of this enhancement on the accuracy in problems involving strain softening and localization leading to failure, using low order finite elements with linear continuous strain and displacement fields ( P1 P1 triangles in 2D and tetrahedra in 3D) in conjunction with associative frictional Mohr-Coulomb and Drucker-Prager plastic models. The performance of the strain/displacement formulation under compressible and nearly incompressible deformation patterns is assessed and compared to analytical solutions for plane stress and plane strain situations. Benchmark numerical examples show the capacity of the mixed formulation to predict correctly failure mechanisms with localized patterns of strain, virtually free from any dependence of the mesh directional bias. No auxiliary crack tracking technique is necessary.
Trajectory optimization for the National Aerospace Plane
NASA Technical Reports Server (NTRS)
Lu, Ping
1993-01-01
The objective of this second phase research is to investigate the optimal ascent trajectory for the National Aerospace Plane (NASP) from runway take-off to orbital insertion and address the unique problems associated with the hypersonic flight trajectory optimization. The trajectory optimization problem for an aerospace plane is a highly challenging problem because of the complexity involved. Previous work has been successful in obtaining sub-optimal trajectories by using energy-state approximation and time-scale decomposition techniques. But it is known that the energy-state approximation is not valid in certain portions of the trajectory. This research aims at employing full dynamics of the aerospace plane and emphasizing direct trajectory optimization methods. The major accomplishments of this research include the first-time development of an inverse dynamics approach in trajectory optimization which enables us to generate optimal trajectories for the aerospace plane efficiently and reliably, and general analytical solutions to constrained hypersonic trajectories that has wide application in trajectory optimization as well as in guidance and flight dynamics. Optimal trajectories in abort landing and ascent augmented with rocket propulsion and thrust vectoring control were also investigated. Motivated by this study, a new global trajectory optimization tool using continuous simulated annealing and a nonlinear predictive feedback guidance law have been under investigation and some promising results have been obtained, which may well lead to more significant development and application in the near future.
ERIC Educational Resources Information Center
Newcomb, Michael D.; Abbott, Robert D.; Catalano, Richard F.; Hawkins, J. David; Battin-Pearson, Sara; Hill, Karl
2002-01-01
Understanding and preventing high school failure is a national priority. Structural strain and general deviance theories attempt to explain late high school failure. The authors tested the hypotheses that general (vs. specific) deviance and academic competence mediate the relationships between structural strain factors (gender, ethnicity, and…
Hackel, Lloyd A.; Hermann, Mark R.; Dane, C. Brent; Tiszauer, Detlev H.
1995-01-01
A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.
Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.
1995-12-12
A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.
Mosaic Focal Plane Development
NASA Astrophysics Data System (ADS)
Mason, David L.; Horner, Scott D.; Aamodt, Earl K.
2002-12-01
Advances in systems engineering, applied sciences, and manufacturing technologies have enabled the development of large ground based and spaced based astronomical instruments having a large Field of View (FOV) to capture a large portion of the universe in a single image. A larger FOV can be accomplished using light weighted optical elements, improved support structures, and the development of mosaic Focal Plane Assemblies (mFPA). A mFPA designed for astronomy can use multiple Charged Coupled Devices (CCD) mounted onto a single camera baseplate integrated at the instrument plane of focus. Examples of current, or proposed, missions utilizing mFPA technology include FAME, GEST, Kepler, GAIA, LSST, and SNAP. The development of a mFPA mandates tighter control on the design trades, component development, CCD characterization, component integration, and performance verification testing. This paper addresses the capability Lockheed Martin Space Systems Company's (LMSSC) Advanced Technology Center (ATC) has developed to perform CCD characterization, mFPA assembly and alignment, and mFPA system level testing.
Mosaic Focal Plane Development
NASA Astrophysics Data System (ADS)
Mason, D.; Horner, S.; Aamodt, E.
Advances in manufacturing and applied sciences have enabled the development of large ground and spaced based astronomical instruments having a Field of View (FOV) large enough to capture a large portion of the universe in a single image. A large FOV can be accomplished using light weighted optics, improved structures, and the development of mosaic Focal Plane Assemblies (mFPAs). A mFPA comprises multiple Charged Coupled Devices (CCD) mounted onto a single baseplate integrated at the focus plane of the instrument. Examples of current, or proposed, missions utilizing mFPA technology include FAME, GEST, Kepler, GAIA, LSST, and SNAP. The development of a mFPA mandates tight control on the design trades of component development, CCD definition and characterization, component integration, and performance verification testing. This paper addresses the results of the Lockheed Martin Space Systems Company (LMSSC), Advanced Technology Center (ATC) developed mFPA. The design trades and performance characterization are services provided by the LMSSC ATC but not detailed in this paper.
ERIC Educational Resources Information Center
Sampson, Gloria
1999-01-01
Currently, the language sciences place together four different forms of mental activity on one plane of language, which results in confusion. This paper presents arguments from metaphysics, hermeneutics, and semiotics to demonstrate that there are actually three planes of language (a biologically-based information processing plane, a literal…
Precession of a Spinning Ball Rolling down an Inclined Plane
ERIC Educational Resources Information Center
Cross, Rod
2015-01-01
A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…
Dynamics of the antiplane strain of a nonlinear elastic body
NASA Astrophysics Data System (ADS)
Bondar', B. D.
2015-07-01
The dynamic antiplane strain of an incompressible cylindrical body is studied in a nonlinear formulation in actual variables. A representation of the velocity and acceleration through the displacement is obtained. The problem of the body deformation with account for geometrical and physical nonlinearities is reduced to an initial boundary-value problem for the displacement. The displacement found is used to determine the pressure and stresses. For a body with a quadratic elastic potential, plane waves and self-similar motion are studied. The linear potential is used to investigate the deformation of a hollow elliptical cylinder for which analytical expressions for displacement and stresses are found and the external load is determined. It is shown that, due to the degeneration of the inner cavity of the body to a plane section, the load on the section remains limited.
Self-calibration of Antenna Errors Using Focal Plane Arrays
NASA Astrophysics Data System (ADS)
Napier, P. J.; Cornwell, T. J.
The thery of focal-plane correlation is reviewed and applied to the problem of the self-calibration and self-correction of a radio telescope with errors in its reflecting surface. Curves are presented which allow the estimation of focal-plane array size and integration time needed for telescopes with varying amounts of error. It is suggested that the technique may have application to the problem of the construction of large telescopes in space.
Plane impact response of PBX 9501 below 2 GPA
Dick, J.J.; Martinez, A.R.; Hixson, R.S.
1998-12-31
The plane impact response of PBX 9501 was measured below 2 GPa using a light-gas gun facility. Time-resolved wave profiles were obtained in a state of uniaxial strain for impact stresses between 0.3 to 1.2 GPa. The dynamic strength of PBX 9501 was measured at high strain rates in both compression and tension. The Hugoniot equation of state was measured.
Similitude in hydrodynamic tests involving planing
NASA Technical Reports Server (NTRS)
Gruson, M F
1936-01-01
The problems of using models in planing tests are addressed. If one passes from the model to a hull of linear dimensions n times greater, the speeds are connected by the law of mechanical similitude. The normal forces given by the hydrodynamic equations (perfect fluid) also follow the law of dynamic similitude (Reech's method) and are multiplied by n(exp 3). A series of tests were performed and the actual results were compared to theoretical results.
Improved phase imaging from intensity measurements in multiple planes
Soto, Marcos; Acosta, Eva
2007-11-20
Problems stemming from quantitative phase imaging from intensity measurements play a key role in many fields of physics. Techniques based on the transport of intensity equation require an estimate of the axial derivative of the intensity to invert the problem. Derivation formulas in two adjacent planes are commonly used to experimentally compute the derivative of the irradiance. Here we propose a formula that improves the estimate of the derivative by using a higher number of planes and taking the noisy nature of the measurements into account. We also establish an upper and lower limit for the estimate error and provide the distance between planes that optimizes the estimate of the derivative.
ERIC Educational Resources Information Center
Vajda, S.
1969-01-01
Discussed are some applications of Euler's Formula N plus F minus E equals Z, where N, F, and E are respectively the number of vertices, faces, and edges of a planar figure. In particular, the Four-Color Problem is proved for the special case of five countries. (CT)
Plane Smoothers for Multiblock Grids: Computational Aspects
NASA Technical Reports Server (NTRS)
Llorente, Ignacio M.; Diskin, Boris; Melson, N. Duane
1999-01-01
Standard multigrid methods are not well suited for problems with anisotropic discrete operators, which can occur, for example, on grids that are stretched in order to resolve a boundary layer. One of the most efficient approaches to yield robust methods is the combination of standard coarsening with alternating-direction plane relaxation in the three dimensions. However, this approach may be difficult to implement in codes with multiblock structured grids because there may be no natural definition of global lines or planes. This inherent obstacle limits the range of an implicit smoother to only the portion of the computational domain in the current block. This report studies in detail, both numerically and analytically, the behavior of blockwise plane smoothers in order to provide guidance to engineers who use block-structured grids. The results obtained so far show alternating-direction plane smoothers to be very robust, even on multiblock grids. In common computational fluid dynamics multiblock simulations, where the number of subdomains crossed by the line of a strong anisotropy is low (up to four), textbook multigrid convergence rates can be obtained with a small overlap of cells between neighboring blocks.
Plane wave scattering by a thick lossy dielectric half-plane
NASA Astrophysics Data System (ADS)
Uchida, K.; Aoki, K.
A solution is obtained for the scattering of a plane wave by a lossy, thick, dielectric half-plane, with a view to applications for calculating the TV electromagnetic wave scattering by a tall building made of concrete. The problem is analytically framed in terms of the incident and scattered electric fields, assuming the polarization in each case to be invariant. Boundary conditions are defined within which Fourier components of the scattered field are calculated. The far-fields were analyzed employing the saddle-point method. Numerical examples for 100 MHz broadcasts are presented, demonstrating a good agreement in the illuminated region between calculations for a lossy dielectric and a perfectly conducting half plane.
NASA Technical Reports Server (NTRS)
Freed, Alan D.
1997-01-01
Logarithmic strain is the preferred measure of strain used by materials scientists, who typically refer to it as the "true strain." It was Nadai who gave it the name "natural strain," which seems more appropriate. This strain measure was proposed by Ludwik for the one-dimensional extension of a rod with length l. It was defined via the integral of dl/l to which Ludwik gave the name "effective specific strain." Today, it is after Hencky, who extended Ludwik's measure to three-dimensional analysis by defining logarithmic strains for the three principal directions.
Boundary conditions in the research of stress-strain state by optical tomography method
Patrikeyev, I.; Shakhurdin, V.
1994-12-31
Mechanical stresses appear in the elastic body under the influence of external loading. In these conditions optical isotropic medium becomes optical anisotropic and behaves itself as a crystal. In photoelasticity on the analogy with a classification of natural crystal anisotropy three problems of the stress strain state can be distinguished. The tasks in which the stress strain state is caused by a uniform compression or expansion belong to the first problem. It is the most common case. The plane problems belong to the second group of problems. In this case stress strain state is described by the tensor of the second order with three or four components not equal to zero. All the rest problems belong to the third group. The stress strain state of the medium is described by the second order tensor with six components different from zero. The investigation of such problems required new transillumination schemes and algorithms for the treatment of experimental results which radically differ from the classical tomography schemes and methods. The role of boundary conditions for the correct formulation photoelasticity problems based on the restoration of tensor fields by means of optical tomography is presented in this article.
On a Minimum Problem in Smectic Elastomers
Buonsanti, Michele; Giovine, Pasquale
2008-07-08
Smectic elastomers are layered materials exhibiting a solid-like elastic response along the layer normal and a rubbery one in the plane. Balance equations for smectic elastomers are derived from the general theory of continua with constrained microstructure. In this work we investigate a very simple minimum problem based on multi-well potentials where the microstructure is taken into account. The set of polymeric strains minimizing the elastic energy contains a one-parameter family of simple strain associated with a micro-variation of the degree of freedom. We develop the energy functional through two terms, the first one nematic and the second one considering the tilting phenomenon; after, by developing in the rubber elasticity framework, we minimize over the tilt rotation angle and extract the engineering stress.
Finite-element formulations for problems of large elastic-plastic deformation
NASA Technical Reports Server (NTRS)
Mcmeeking, R. M.; Rice, J. R.
1975-01-01
An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is ideally suited to isotropically hardening Prandtl-Reuss materials. Further, the formulation is given in a manner which allows any conventional finite element program, for 'small strain' elastic-plastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. The paper closes with a unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures. Further, a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain, and the inadequacies of some of these are commented upon.
Finite element formulations for problems of large elastic-plastic deformation
NASA Technical Reports Server (NTRS)
Mcmeeking, R. M.; Rice, J. R.
1974-01-01
An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is suited to isotropically hardening Prandtl-Reuss materials. The formulation is given in a manner which allows any conventional finite element program, for "small strain" elasticplastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. A unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures, and a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain.
Trajectory optimization for the National Aerospace Plane
NASA Technical Reports Server (NTRS)
Lu, Ping
1992-01-01
The primary objective of this research is to develop an efficient and robust trajectory optimization tool for the optimal ascent problem of the National Aerospace Plane (NASP). This report is organized in the following order to summarize the complete work: Section two states the formulation and models of the trajectory optimization problem. An inverse dynamics approach to the problem is introduced in Section three. Optimal trajectories corresponding to various conditions and performance parameters are presented in Section four. A midcourse nonlinear feedback controller is developed in Section five. Section six demonstrates the performance of the inverse dynamics approach and midcourse controller during disturbances. Section seven discusses rocket assisted ascent which may be beneficial when orbital altitude is high. Finally, Section eight recommends areas of future research.
Traffic noise and the hyperbolic plane
Gibbons, G.W. Warnick, C.M.
2010-04-15
We consider the problem of sound propagation in a wind. We note that the rays, as in the absence of a wind, are given by Fermat's principle and show how to map them to the trajectories of a charged particle moving in a magnetic field on a curved space. For the specific case of sound propagating in a stratified atmosphere with a small wind speed, we show that the corresponding particle moves in a constant magnetic field on the hyperbolic plane. In this way, we give a simple 'straightedge and compass' method to estimate the intensity of sound upwind and downwind. We construct Mach envelopes for moving sources. Finally, we relate the problem to that of finding null geodesics in a squashed anti-de Sitter spacetime and discuss the SO(3,1)xR symmetry of the problem from this point of view.
NASA Technical Reports Server (NTRS)
Freed, Alan D.
1995-01-01
The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.
National Transonic Facility model and model support vibration problems
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Popernack, Thomas G., Jr.; Gloss, Blair B.
1990-01-01
Vibrations of models and model support system were encountered during testing in the National Transonic Facility. Model support system yaw plane vibrations have resulted in model strain gage balance design load limits being reached. These high levels of vibrations resulted in limited aerodynamic testing for several wind tunnel models. The yaw vibration problem was the subject of an intensive experimental and analytical investigation which identified the primary source of the yaw excitation and resulted in attenuation of the yaw oscillations to acceptable levels. This paper presents the principal results of analyses and experimental investigation of the yaw plane vibration problems. Also, an overview of plans for development and installation of a permanent model system dynamic and aeroelastic response measurement and monitoring system for the National Transonic Facility is presented.
NASA Technical Reports Server (NTRS)
1997-01-01
The Aviation Safety Program initiated by NASA in 1997 has put greater emphasis in safety related research activities. Ice-contaminated-tailplane stall (ICTS) has been identified by the NASA Lewis Icing Technology Branch as an important activity for aircraft safety related research. The ICTS phenomenon is characterized as a sudden, often uncontrollable aircraft nose- down pitching moment, which occurs due to increased angle-of-attack of the horizontal tailplane resulting in tailplane stall. Typically, this phenomenon occurs when lowering the flaps during final approach while operating in or recently departing from icing conditions. Ice formation on the tailplane leading edge can reduce tailplane angle-of-attack range and cause flow separation resulting in a significant reduction or complete loss of aircraft pitch control. In 1993, the Federal Aviation Authority (FAA) and NASA embarked upon a four-year research program to address the problem of tailplane stall and to quantify the effect of tailplane ice accretion on aircraft performance and handling characteristics. The goals of this program, which was completed in March 1998, were to collect aerodynamic data for an aircraft tail with and without ice contamination and to develop analytical methods for predicting the effects of tailplane ice contamination. Extensive dry air and icing tunnel tests which resulted in a database of the aerodynamic effects associated with tailplane ice contamination. Although the FAA/NASA tailplane icing program generated some answers regarding ice-contaminated-tailplane stall (ICTS) phenomena, NASA researchers have found many open questions that warrant further investigation into ICTS. In addition, several aircraft manufacturers have expressed interest in a second research program to expand the database to other tail configurations and to develop experimental and computational methodologies for evaluating the ICTS phenomenon. In 1998, the icing branch at NASA Lewis initiated a second
A method of plane geometry primitive presentation
NASA Astrophysics Data System (ADS)
Jiao, Anbo; Luo, Haibo; Chang, Zheng; Hui, Bin
2014-11-01
Point feature and line feature are basic elements in object feature sets, and they play an important role in object matching and recognition. On one hand, point feature is sensitive to noise; on the other hand, there are usually a huge number of point features in an image, which makes it complex for matching. Line feature includes straight line segment and curve. One difficulty in straight line segment matching is the uncertainty of endpoint location, the other is straight line segment fracture problem or short straight line segments joined to form long straight line segment. While for the curve, in addition to the above problems, there is another difficulty in how to quantitatively describe the shape difference between curves. Due to the problems of point feature and line feature, the robustness and accuracy of target description will be affected; in this case, a method of plane geometry primitive presentation is proposed to describe the significant structure of an object. Firstly, two types of primitives are constructed, they are intersecting line primitive and blob primitive. Secondly, a line segment detector (LSD) is applied to detect line segment, and then intersecting line primitive is extracted. Finally, robustness and accuracy of the plane geometry primitive presentation method is studied. This method has a good ability to obtain structural information of the object, even if there is rotation or scale change of the object in the image. Experimental results verify the robustness and accuracy of this method.
Skigin, Diana C; Depine, Ricardo A
2008-05-01
We show that the problem of scattering of an obliquely incident plane wave by a general-shaped groove engraved on a perfectly conducting plane, which was recently studied by Basha et al. [J. Opt. Soc. Am. A24, 1647 (2007)], was solved 11 years ago using the same formulation. This method was further extended to deal with a finite number of grooves and also with complex apertures including several nonlossy and lossy dielectrics, as well as real metals. PMID:18451923
Characterization of the KATRIN Focal Plane Detector
NASA Astrophysics Data System (ADS)
Bodine, Laura; Leber, Michelle; Myers, Allan; Tolich, Kazumi; Vandevender, Brent; Wall, Brandon
2008-10-01
The Karlsruhe Tritium Neutrino (KATRIN) Experiment is a next generation tritium beta decay experiment designed to measure directly the electron neutrino mass with a sensitivity of 0.2 eV. In the experiment, electrons from tritium decay of a gaseous source are magnetically guided through analyzing solenoidal retarding electrostatic spectrometers and detected via a focal plane detector. The focal plane detector is a 90mm diameter, 500 micron thick monolithic silicon pin-diode array with 148 pixels. The diode contacts have a titanium nitride overlayer and are connected to preamplifiers via an array of spring-loaded pogo pins. This novel connection scheme minimizes backgrounds from radioactive materials near the detector, facilitates characterization and replacement of the detector wafer, but requires a unique mounting design. The force of the pins strains the silicon, possibly altering the detector properties and performance. Results on the mechanical, thermal and electrical performance of a prototype detector under stress from pogo pin readouts will be presented.
Optimal aeroassisted return from high earth orbit with plane change
NASA Astrophysics Data System (ADS)
Vinh, Nguyen X.; Hanson, John M.
This paper gives a complete analysis of the problem of aeroassisted return from a high Earth orbit to a low Earth orbit with plane change. A discussion of pure propulsive maneuver leads to the necessary change for improvement of the fuel consumption by inserting in the middle of the trajectory an atmospheric phase to obtain all or part of the required plane change. The variational problem is reduced to a parametric optimization problem by using the known results in optimal impulsive transfer and solving the atmospheric turning problem for storage and use in the optimization process. The coupling effect between space maneuver and atmospheric maneuver is discussed. Depending on the values of the plane change i, the ratios of the radii, n = r 1/r 2 between the orbits and a = r 2/R between the low orbit and the atmosphere, and the maximum lift-to-drag ratio E∗ of the vehicle, the optimal maneuver can be pure propulsive or aeroassisted. For aeroassisted maneuver, the optimal mode can be parabolic, which requires only drag capability of the vehicle, or elliptic. In the elliptic mode, it can be by one-impulse for deorbit and one or two-impulse in postatmospheric flight, or by two-impulse for deorbit with only one impulse for final circularization. It is shown that whenever an impulse is applied, a plane change is made. The necessary conditions for the optimal split of the plane changes are derived and mechanized in a program routine for obtaining the solution.
Line Spring Model and Its Applications to Part-Through Crack Problems in Plates and Shells
NASA Technical Reports Server (NTRS)
Erdogan, F.; Aksel, B.
1986-01-01
The line spring model is described and extended to cover the problem of interaction of multiple internal and surface cracks in plates and shells. The shape functions for various related crack geometries obtained from the plane strain solution and the results of some multiple crack problems are presented. The problems considered include coplanar surface cracks on the same or opposite sides of a plate, nonsymmetrically located coplanar internal elliptic cracks, and in a very limited way the surface and corner cracks in a plate of finite width and a surface crack in a cylindrical shell with fixed end.
Line spring model and its applications to part-through crack problems in plates and shells
NASA Technical Reports Server (NTRS)
Erdogan, Fazil; Aksel, Bulent
1988-01-01
The line spring model is described and extended to cover the problem of interaction of multiple internal and surface cracks in plates and shells. The shape functions for various related crack geometries obtained from the plane strain solution and the results of some multiple crack problems are presented. The problems considered include coplanar surface cracks on the same or opposite sides of a plate, nonsymmetrically located coplanar internal elliptic cracks, and in a very limited way the surface and corner cracks in a plate of finite width and a surface crack in a cylindrical shell with fixed end.
Tunable-microlens-based multipoint diffraction strain sensor
NASA Astrophysics Data System (ADS)
Zhu, Hui; Asundi, Anand
2009-12-01
Multipoint Diffraction Strain Sensor (MDSS) is a novel and promising strain sensing system to acquire whole field strain information with high accuracy without the need for numerical differentiation. Compared to traditional optical diffraction strain sensors, the main advantage of MDSS is the use of micro-lens array to get whole field information. Both tilt and in-plane strain can be acquired separately by using two symmetric incident laser beams. However, it is costly and troublesome to fabricate, adjust or replace lens arrays for different applications. A practical way to solve this problem is to use a liquid crystal lens as spatial light modulator which displays Diffractive Optical Element (DOE) based lens array. This liquid crystal lens is software controlled capable to display any user designed DOE pattern. The sensitivity and field of interrogation is thus tuneable by changing focal length of lens arrays. Moreover arbitrary size or shape of lens arrays can be designed to measure certain part of the specimen in most interest. Experimental results with different lens arrays are demonstrated for uniform rotations.
Marsh, Stanley P.
1988-01-01
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.
Marsh, S.P.
1988-03-08
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.
Marsh, S.P.
1987-03-12
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.
NASA Astrophysics Data System (ADS)
Forgács, Péter; Lukács, Árpád; Romańczukiewicz, Tomasz
2013-12-01
It is shown that in a large class of systems, plane waves act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode carrying more momentum, in which case excess momentum is created behind the scatterer. This tractor beam or negative radiation pressure (NRP) effect, is found to be generic in systems with multiple scattering channels. In a birefringent medium, electromagnetic plane waves incident on a thin plate exert NRP of the same order of magnitude as optical radiation pressure, while in artificial dielectrics (metamaterials), the magnitude of NRP can even be macroscopic. In two dimensions, we study various scattering situations on vortices, and NRP is shown to occur by the scattering of heavy baryons into light leptons off cosmic strings, and by neutron scattering off vortices in the XY model.
The Laplace Planes of Uranus and Pluto
NASA Technical Reports Server (NTRS)
Dobrovolskis, Anthony R.
1993-01-01
Satellite orbits close to an oblate planet precess about its equatorial plane, while distant satellites precess around the plane of the planet's heliocentric orbit. In between, satellites in nearly circular orbits precess about a warped intermediate surface called the Laplace 'plane.' Herein we derive general formulas for locating the Laplace plane. Because Uranus and Pluto have high obliquities, their Laplace planes are severely warped. We present maps of these Laplace planes, of interest in telescopic searches for new satellites. The Laplace plane of the Solar System as a whole is similarly distorted, but comets in the inner Oort cloud precess too slowly to sense the Laplace plane.
Plane waves in noncommutative fluids
NASA Astrophysics Data System (ADS)
Abdalla, M. C. B.; Holender, L.; Santos, M. A.; Vancea, I. V.
2013-08-01
We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monochromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy-momentum tensor of the plane waves is calculated.
Space-Plane Spreadsheet Program
NASA Technical Reports Server (NTRS)
Mackall, Dale
1993-01-01
Basic Hypersonic Data and Equations (HYPERDATA) spreadsheet computer program provides data gained from three analyses of performance of space plane. Equations used to perform analyses derived from Newton's second law of physics, derivation included. First analysis is parametric study of some basic factors affecting ability of space plane to reach orbit. Second includes calculation of thickness of spherical fuel tank. Third produces ratio between volume of fuel and total mass for each of various aircraft. HYPERDATA intended for use on Macintosh(R) series computers running Microsoft Excel 3.0.
Plane stress problems using hysteretic rigid body spring network models
NASA Astrophysics Data System (ADS)
Christos, Sofianos D.; Vlasis, Koumousis K.
2016-08-01
In this work, a discrete numerical scheme is presented capable of modeling the hysteretic behavior of 2D structures. Rigid Body Spring Network (RBSN) models that were first proposed by Kawai (Nucl Eng Des 48(1):29-207, 1978) are extended to account for hysteretic elastoplastic behavior. Discretization is based on Voronoi tessellation, as proposed specifically for RBSN models to ensure uniformity. As a result, the structure is discretized into convex polygons that form the discrete rigid bodies of the model. These are connected with three zero length, i.e., single-node springs in the middle of their common facets. The springs follow the smooth hysteretic Bouc-Wen model which efficiently incorporates classical plasticity with no direct reference to a yield surface. Numerical results for both static and dynamic loadings are presented, which validate the proposed simplified spring-mass formulation. In addition, they verify the model's applicability on determining primarily the displacement field and plastic zones compared to the standard elastoplastic finite element method.
Affine Contractions on the Plane
ERIC Educational Resources Information Center
Celik, D.; Ozdemir, Y.; Ureyen, M.
2007-01-01
Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…
NASA Astrophysics Data System (ADS)
Bouclier, R.; Elguedj, T.; Combescure, A.
2013-11-01
This work deals with the development of 2D solid shell non-uniform rational B-spline elements. We address a static problem, that can be solved with a 2D model, involving a thin slender structure under small perturbations. The plane stress, plane strain and axisymmetric assumption can be made. projection and reduced integration techniques are considered to deal with the locking phenomenon. The use of the approach leads to the implementation of two strategies insensitive to locking: the first strategy is based on a 1D projection of the mean strain across the thickness; the second strategy undertakes to project all the strains onto a suitably chosen 2D space. Conversely, the reduced integration approach based on Gauss points is less expensive, but only alleviates locking and is limited to quadratic approximations. The performance of the various 2D elements developed is assessed through several numerical examples. Simple extensions of these techniques to 3D are finally performed.
In-plane effects on segmented-mirror control.
MacMynowski, Douglas G; Roberts, Lewis C; Shelton, J Chris; Chanan, Gary; Bonnet, Henri
2012-04-20
Extremely large optical telescopes are being designed with primary mirrors composed of hundreds of segments. The "out-of-plane" piston, tip, and tilt degrees of freedom of each segment are actively controlled using feedback from relative height measurements between neighboring segments. The "in-plane" segment translations and clocking (rotation) are not actively controlled; however, in-plane motions affect the active control problem in several important ways, and thus need to be considered. We extend earlier analyses by constructing the "full" interaction matrix that relates the height, gap, and shear motion at sensor locations to all six degrees of freedom of segment motion, and use this to consider three effects. First, in-plane segment clocking results in height discontinuities between neighboring segments that can lead to a global control system response. Second, knowledge of the in-plane motion is required both to compensate for this effect and to compensate for sensor installation errors, and thus, we next consider the estimation of in-plane motion and the associated noise propagation characteristics. In-plane motion can be accurately estimated using measurements of the gap between segments, but with one unobservable mode in which every segment clocks by an equal amount. Finally, we examine whether in-plane measurements (gap and/or shear) can be used to estimate out-of-plane segment motion; these measurements can improve the noise multiplier for the "focus-mode" of the segmented-mirror array, which involves pure dihedral angle changes between segments and is not observable with only height measurements. PMID:22534898
Straining Graphene Using Thin Film Shrinkage Methods
2014-01-01
Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate. PMID:24490629
Straining graphene using thin film shrinkage methods.
Shioya, Hiroki; Craciun, Monica F; Russo, Saverio; Yamamoto, Michihisa; Tarucha, Seigo
2014-03-12
Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate. PMID:24490629
Optimization of starshades: focal plane versus pupil plane
NASA Astrophysics Data System (ADS)
Flamary, R.; Aime, C.
2014-09-01
We search for the best possible transmission for an external occulter coronagraph that is dedicated to the direct observation of terrestrial exoplanets. We show that better observation conditions are obtained when the flux in the focal plane is minimized in the zone in which the exoplanet is observed, instead of for the total flux received by the telescope. We describe the transmission of the occulter as a sum of basis functions. For each element of the basis, we numerically computed the Fresnel diffraction at the aperture of the telescope and the complex amplitude at its focus. The basis functions are circular disks that are linearly apodized over a few centimeters (truncated cones). We complemented the numerical calculation of the Fresnel diffraction for these functions by a comparison with pure circular disks (cylinder) for which an analytical expression, based on a decomposition in Lommel series, is available. The technique of deriving the optimal transmission for a given spectral bandwidth is a classical regularized quadratic minimization of intensities, but linear optimizations can be used as well. Minimizing the integrated intensity on the aperture of the telescope or for selected regions of the focal plane leads to slightly different transmissions for the occulter. For the focal plane optimization, the resulting residual intensity is concentrated behind the geometrical image of the occulter, in a blind region for the observation of an exoplanet, and the level of background residual starlight becomes very low outside this image. Finally, we provide a tolerance analysis for the alignment of the occulter to the telescope, which also favors the focal plane optimization. This means that telescope offsets of a few decimeters do not strongly reduce the efficiency of the occulter.
Konofagou, E E; Ophir, J
2000-06-01
In elastography we have previously developed a tracking and correction method that estimates the axial and lateral strain components along and perpendicular to the compressor/scanning axis following an externally applied compression. However, the resulting motion is a three-dimensional problem. Therefore, in order to fully describe this motion we need to consider a 3D model and estimate all three principal strain components, i.e. axial, lateral and elevational (out-of-plane), for a full 3D tensor description. Since motion is coupled in all three dimensions, the three motion components have to be decoupled prior to their estimation. In this paper, we describe a method that estimates and corrects motion in three dimensions, which is an extension of the 2D motion tracking and correction method discussed before. In a similar way as in the 2D motion estimation, and by assuming that ultrasonic frames are available in more than one parallel elevational plane, we used methods of interpolation and cross-correlation between elevationally displaced RF echo segments to estimate the elevational displacement and strain. In addition, the axial, lateral and elevational displacements were used to estimate all three shear strain components that, together with the normal strain estimates, fully describe the full 3D normal strain tensor resulting from the uniform compression. Results of this method from three-dimensional finite-element simulations are shown. PMID:10870710
Installing strain gauges on composite material
NASA Astrophysics Data System (ADS)
Shull, Larry
The evolution of the strain gage is traced and problems associated with their use on composite materials are discussed. It is believed that the use of the computer in strain gage data systems has caused some of the attitude problems in measuring strains in composite materials. The performance of strain gages on filament-wound Kevlar pressure vessels is discussed as well as graphite composites during 1984-1986, surface preparation, gage location alignment.
Symmetrically converging plane thermonuclear burn waves
NASA Astrophysics Data System (ADS)
Charakhch'yan, A. A.; Khishchenko, K. V.
2013-10-01
Five variants of a one-dimensional problem on synchronous bilateral action of two identical drivers on opposite surfaces of a plane layer of DT fuel with the normal or five times greater initial density, where the solution includes two thermonuclear burn waves propagating to meet one another at the symmetry plane, are simulated. A laser pulse with total absorption of energy at the critical density (in two variants) and a proton bunch that provides for a nearly isochoric heating (in three variants) are considered as drivers. A wide-range equation of state for the fuel, electron and ion heat conduction, self-radiation of plasma and plasma heating by α-particles are taken into account. In spite of different ways of ignition, various models of α-particle heat, whether the burn wave remains slow or transforms into the detonation wave, and regardless of way of such a transformation, the final value of the burn-up factor depends essentially on the only parameter Hρ0, where H is the half-thickness of the layer and ρ0 is the initial fuel density. This factor is about 0.35 at Hρ0 ≈ 1 g cm-2 and about 0.7 at Hρ0 ≈ 5 g cm-2. The expansion stage of the flow (after reflecting the burn or detonation wave from the symmetry plane) gives the main contribution in forming the final values of the burn-up factor and the gain at Hρ0 ≈ 1 g cm-2 and increases them approximately two times at Hρ0 ≈ 5 g cm-2. In the case of the proton driver, the final value of the gain is about 200 at Hρ0 ≈ 1 g cm-2 and about 2000 at Hρ0 ≈ 5 g cm-2. In the case of the laser driver, the above values are four times less in conformity with the difference between the driver energies.
NASA Technical Reports Server (NTRS)
1995-01-01
HITEC Corporation developed a strain gage application for DanteII, a mobile robot developed for NASA. The gage measured bending forces on the robot's legs and warned human controllers when acceptable forces were exceeded. HITEC further developed the technology for strain gage services in creating transducers out of "Indy" racing car suspension pushrods, NASCAR suspension components and components used in motion control.
Material mechanical characterization method for multiple strains and strain rates
Erdmand, III, Donald L.; Kunc, Vlastimil; Simunovic, Srdjan; Wang, Yanli
2016-01-19
A specimen for measuring a material under multiple strains and strain rates. The specimen including a body having first and second ends and a gage region disposed between the first and second ends, wherein the body has a central, longitudinal axis passing through the first and second ends. The gage region includes a first gage section and a second gage section, wherein the first gage section defines a first cross-sectional area that is defined by a first plane that extends through the first gage section and is perpendicular to the central, longitudinal axis. The second gage section defines a second cross-sectional area that is defined by a second plane that extends through the second gage section and is perpendicular to the central, longitudinal axis and wherein the first cross-sectional area is different in size than the second cross-sectional area.
Orbital Space Plane (OSP) Program
NASA Technical Reports Server (NTRS)
McKenzie, Patrick M.
2003-01-01
Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November of 2002 to focus the overall theme of safer, more afford-able space transportation along two paths - the Orbital Space Plane Program and the Next Generation Launch Technology programs. The Orbital Space Plane Program has the goal of providing rescue capability from the International Space Station by 2008 and transfer capability for crew (and limited cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2nd Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 3rd Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system definition level of maturity by December of 2003. This paper and presentation will update the international community on the progress of the' OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.
Drag reduction at a plane wall
NASA Technical Reports Server (NTRS)
Hill, D. C.
1993-01-01
The objective is to determine by analytical means how drag on a plane wall may be modified favorably using a minimal amount of flow information - preferably only information at the wall. What quantities should be measured? How should that information be assimilated in order to arrive at effective control? As a prototypical problem, incompressible, viscous flow, governed by the Navier-Stokes equations, past a plane wall at which the no-slip condition was modified was considered. The streamwise and spanwise velocity components are required to be zero, but the normal component is to be specified according to some control law. The challenge is to choose the wall-normal velocity component based on flow conditions at the wall so that the mean drag is as small as possible. There can be no net mass flux through the wall, and the total available control energy is constrained. A turbulent flow is highly unsteady and has detailed spatial structure. The mean drag on the wall is the integral over the wall of the local shear forces exerted by the fluid, which is then averaged in time; it is a 'macroscopic' property of the flow. It is not obvious how unsteady boundary control is to be applied in order to modify the mean flow most effectively, especially in view of the non- self-adjoint nature of the governing equations. An approximate analytical solution to the suboptimal scheme is pursued.
A jumping cylinder on an inclined plane
NASA Astrophysics Data System (ADS)
Gómez, R. W.; Hernández-Gómez, J. J.; Marquina, V.
2012-09-01
The problem of a cylinder of mass m and radius r, with its centre of mass out of the cylinder’s axis, rolling on an inclined plane that makes an angle α with respect to the horizontal, is analysed. The equation of motion is partially solved to obtain the site where the cylinder loses contact with the inclined plane (jumps). Several simplifications are made: the analysed system consists of an homogeneous disc with a one-dimensional straight line mass parallel to the disc axis at a distance y < r of the centre of the cylinder. To compare our results with experimental data, we use a styrofoam cylinder to which a long brass rod is embedded parallel to the disc axis at a distance y < r from it, so the centre of mass lies at a distance d from the centre of the cylinder. Then the disc rolls without slipping on a long wooden ramp inclined at 15°, 30° and 45° with respect to the horizontal. To determine the jumping site, the movements are recorded with a high-speed video camera (Casio EX ZR100) at 240 and 480 frames per second. The experimental results agree well with the theoretical predictions.
Object tracking based on bit-planes
NASA Astrophysics Data System (ADS)
Li, Na; Zhao, Xiangmo; Liu, Ying; Li, Daxiang; Wu, Shiqian; Zhao, Feng
2016-01-01
Visual object tracking is one of the most important components in computer vision. The main challenge for robust tracking is to handle illumination change, appearance modification, occlusion, motion blur, and pose variation. But in surveillance videos, factors such as low resolution, high levels of noise, and uneven illumination further increase the difficulty of tracking. To tackle this problem, an object tracking algorithm based on bit-planes is proposed. First, intensity and local binary pattern features represented by bit-planes are used to build two appearance models, respectively. Second, in the neighborhood of the estimated object location, a region that is most similar to the models is detected as the tracked object in the current frame. In the last step, the appearance models are updated with new tracking results in order to deal with environmental and object changes. Experimental results on several challenging video sequences demonstrate the superior performance of our tracker compared with six state-of-the-art tracking algorithms. Additionally, our tracker is more robust to low resolution, uneven illumination, and noisy video sequences.
Difference Between Strain and Sprain.
ERIC Educational Resources Information Center
Connors, G. Patrick
Provided in this description of the differences between a strain (damage to the muscle or tendon) and a sprain (damage to the ligament) are definitions of mild, moderate, and severe (first, second, and third degree) strains and sprains. A final caution is given that these are two separate and distinct problems and should be treated as such. (DC)
Serial Back-Plane Technologies in Advanced Avionics Architectures
NASA Technical Reports Server (NTRS)
Varnavas, Kosta
2005-01-01
Current back plane technologies such as VME, and current personal computer back planes such as PCI, are shared bus systems that can exhibit nondeterministic latencies. This means a card can take control of the bus and use resources indefinitely affecting the ability of other cards in the back plane to acquire the bus. This provides a real hit on the reliability of the system. Additionally, these parallel busses only have bandwidths in the 100s of megahertz range and EMI and noise effects get worse the higher the bandwidth goes. To provide scalable, fault-tolerant, advanced computing systems, more applicable to today s connected computing environment and to better meet the needs of future requirements for advanced space instruments and vehicles, serial back-plane technologies should be implemented in advanced avionics architectures. Serial backplane technologies eliminate the problem of one card getting the bus and never relinquishing it, or one minor problem on the backplane bringing the whole system down. Being serial instead of parallel improves the reliability by reducing many of the signal integrity issues associated with parallel back planes and thus significantly improves reliability. The increased speeds associated with a serial backplane are an added bonus.
Multigroup Time-Independent Neutron Transport Code System for Plane or Spherical Geometry.
Energy Science and Technology Software Center (ESTSC)
1986-12-01
Version 00 PALLAS-PL/SP solves multigroup time-independent one-dimensional neutron transport problems in plane or spherical geometry. The problems solved are subject to a variety of boundary conditions or a distributed source. General anisotropic scattering problems are treated for solving deep-penetration problems in which angle-dependent neutron spectra are calculated in detail.
Coincidence lattices in the hyperbolic plane.
Rodríguez-Andrade, M A; Aragón-González, G; Aragón, J L; Gómez-Rodríguez, A
2011-01-01
The problem of coincidences of lattices in the space R(p,q), with p + q = 2, is analyzed using Clifford algebra. We show that, as in R(n), any coincidence isometry can be decomposed as a product of at most two reflections by vectors of the lattice. Bases and coincidence indices are constructed explicitly for several interesting lattices. Our procedure is metric-independent and, in particular, the hyperbolic plane is obtained when p = q = 1. Additionally, we provide a proof of the Cartan-Dieudonné theorem for R(p,q), with p + q = 2, that includes an algorithm to decompose an orthogonal transformation into a product of reflections. PMID:21173471
Electronic structure and optic absorption of phosphorene under strain
NASA Astrophysics Data System (ADS)
Duan, Houjian; Yang, Mou; Wang, Ruiqiang
2016-07-01
We studied the electronic structure and optic absorption of phosphorene (monolayer of black phosphorus) under strain. Strain was found to be a powerful tool for the band structure engineering. The in-plane strain in armchair or zigzag direction changes the effective mass components along both directions, while the vertical strain only has significant effect on the effective mass in the armchair direction. The band gap is narrowed by compressive in-plane strain and tensile vertical strain. Under certain strain configurations, the gap is closed and the energy band evolves to the semi-Dirac type: the dispersion is linear in the armchair direction and is gapless quadratic in the zigzag direction. The band-edge optic absorption is completely polarized along the armchair direction, and the polarization rate is reduced when the photon energy increases. Strain not only changes the absorption edge (the smallest photon energy for electron transition), but also the absorption polarization.
NASA Technical Reports Server (NTRS)
Piland, William M.
1987-01-01
An account is given of the technology development management objectives thus far planned for the DOD/NASA National Aero-Space Plane (NASP). The technology required by NASP will first be developed in ground-based facilities and then integrated during the design and construction of the X-30 experimental aircraft. Five airframe and three powerplant manufacturers are currently engaged in an 18-month effort encompassing design studies and tradeoff analyses. The first flight of the X-30 is scheduled for early 1993.
SNAP Satellite Focal Plane Development
Bebek, C.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, S.; Bercovitz, J.; Bergstrom, L.; Berstein, G.P.; Bester, M.; Bohlin, R.; Bonissent, A.; Bower, C.; Campbell, M.; Carithers, W.; Commins, E.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, A.; Ellis, R.; Emmett, W.; Eriksson, M.; Fouchez,D.; Fruchter, A.; Genat, J-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Heetderks, H.; Holland, S.; Huterer, D.; Johnson, W.; Kadel, R.; Karcher,A.; Kim, A.; Kolbe, W.; Lafever, R.; Lamoureaux, J.; Lampton, M.; Lefevre, O.; Levi, M.; Levin, D.; Linder, E.; Loken, S.; Malina, R.; Mazure, A.; McKay, T.; McKee, S.; Miquel, R.; Morgan, N.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Roe, N.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Prieto, E.; Rabinowitz,D.; Refregier, A.; Rhodes, J.; Schubnell, M.; Sholl, M.; Smadja, G.; Smith, R.; Smoot, G.; Snyder, J.; Spadafora, A.; Szymkowiak, A.; Tarle,G.; Taylor, K.; Tilquin, A.; Tomasch, A.; Vincent, D.; von der Lippe, H.; Walder, J-P.; Wang, G.
2003-07-07
The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square degree field in the visible and near-infrared wavelength regime. The requirements for the instrument suite and the present configuration of the focal plane concept are presented. A two year R&D phase, largely supported by the Department of Energy, is just beginning. We describe the development activities that are taking place to advance our preparedness for mission proposal in the areas of detectors and electronics.
NASA Astrophysics Data System (ADS)
Chen, Feng; Euaruksakul, Chanan; Liu, Zheng; Himpsel, F. J.; Liu, Feng; Lagally, Max G.
2011-08-01
Strain changes the band structure of semiconductors. We use x-ray absorption spectroscopy to study the change in the density of conduction band (CB) states when silicon is uniaxially strained along the [1 0 0] and [1 1 0] directions. High stress can be applied to silicon nanomembranes, because their thinness allows high levels of strain without fracture. Strain-induced changes in both the sixfold degenerate Δ valleys and the eightfold degenerate L valleys are determined quantitatively. The uniaxial deformation potentials of both Δ and L valleys are directly extracted using a strain tensor appropriate to the boundary conditions, i.e., confinement in the plane in the direction orthogonal to the straining direction, which correspond to those of strained CMOS in commercial applications. The experimentally determined deformation potentials match the theoretical predictions well. We predict electron mobility enhancement created by strain-induced CB modifications.
The Bolocam Galactic Plane Survey
NASA Technical Reports Server (NTRS)
Glenn, Jason; Aguirre, James; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Drosback, Meredith; Dunham, Miranda K.; Evans, Neal J., II; Ginsburg, Adam; Harvey, Paul; Rosolowsky, Erik; Schlingman, Wayne; Shirley, Yancy L.; Stringfellow, Guy S.; Walawender, Josh; Williams, Jonathan
2009-01-01
The Bolocam Galactic Plane Survey (BGPS) is a 1.1 millimeter continuum survey of the northern Galactic Plane made with Bolocam and the Caltech Submillimeter Observatory. The coverage totals 170 square degrees, comprised of a contiguous range from -10.5 deg is less than or equal to 90.5 deg, 0.5 deg is less than or equal to b is less than or equal to 0.5 deg, with extended coverage in b in selected regions, and four targeted regions in the outer Galaxy, including: IC1396, toward the Perseus arm at l is approximately 111 deg, W3/4/5, and Gem OB1. Depths of the maps range from 30 to 60 mJy beam (sup 1). Approximately 8,400 sources were detected and the maps and source catalog have been made publicly available. Millimeter-wave thermal dust emission reveals dense regions within molecular clouds, thus the BGPS serves as a database for studies of the dense interstellar medium and star formation within the Milky Way.
Rewritable photochromic focal plane masks
NASA Astrophysics Data System (ADS)
Molinari, Emilio; Bertarelli, Chiara; Bianco, Andrea; Bortoletto, Fabio; Conconi, Paolo; Crimi, Giuseppe; Gallazzi, Maria C.; Giro, Enrico; Lucotti, Andrea; Pernechele, Claudio; Zerbi, Filippo M.; Zerbi, Giuseppe
2003-02-01
The application of organic photochromic materials in astronomy is opening new possibilities which we are investigating in order to design innovative devices for future instrumentation. The photochromic property of transparent/opaque transition (although in a limited wavelength range) and the changes in intrinsic refractive index have led our studies to application in astronomic spectrographs, both as focal plane mask (for MOS application) and as dispersive elements (volume phase holographic gratings, VPHG), respectively. In both cases the possibility to write and erase devices with suitable irradiation has revealed a new perspective for non-disposable and fully customizable items for spectroscopy. Pursuing this goal we have synthesized a series of novel photochromic materials belonging to the diarylethenes. They fulfill the requirements of thermal stability and fatigue resistance necessary to build functional devices. Prototypes of high contrast focal plane mask working in the H-alpha spectral region have been manufactured and characterized both in laboratory and with the AFOSC camera at Asiago telescope (1.8 m). A custom writing robot (ARATRO) which, taking imaging frames and with the aid of interactive mask design software and ad hoc control electronics, is able to write MOS masks, has been constructed. The design of the MOS masks allow the fitting in the AFOSC slit wheel. The overall set-up is ready for the sky tests.
Scattering by a groove in an impedance plane
NASA Technical Reports Server (NTRS)
Bindiganavale, Sunil; Volakis, John L.
1993-01-01
An analysis of two-dimensional scattering from a narrow groove in an impedance plane is presented. The groove is represented by a impedance surface and the problem reduces to that of scattering from an impedance strip in an otherwise uniform impedance plane. On the basis of this model, appropriate integral equations are constructed using a form of the impedance plane Green's functions involving rapidly convergent integrals. The integral equations are solved by introducing a single basis representation of the equivalent current on the narrow impedance insert. Both transverse electric (TE) and transverse magnetic (TM) polarizations are treated. The resulting solution is validated by comparison with results from the standard boundary integral method (BIM) and a high frequency solution. It is found that the presented solution for narrow impedance inserts can be used in conjunction with the high frequency solution for the characterization of impedance inserts of any given width.
Inhomogeneous strains in small particles
NASA Astrophysics Data System (ADS)
Marks, L. D.
1985-02-01
This paper considers the evidence for strains in small particles. Firstly, the dynamical electron diffraction theory for dark field imaging of small particles is briefly reviewed, considering primarily the effects of strain on wedge crystals and identifying the fingerprint of strain contrast effects under strong beam conditions. Evidence included herein and from published papers by other authors clearly shows inhomogeneous strain effects in both multiply twinned particles and single crystals. Considering these results and earlier reports of lattice parameter changes, there are problems with the uniqueness of these analyses, and the strains in the small single crystals are thought more likely to be due to interfacial stresses or contaminants than any intrinsic particle effect; there are so many different origins of this type of strain that we cannot with confidence isolate a unique source. It is emphasised that the uniqueness of any interpretation of experimental results from small particles must be very carefully considered.
Growth and properties of m-plane GaN on m-plane sapphire by metalorganic chemical vapor deposition
NASA Astrophysics Data System (ADS)
Paduano, Qing S.; Weyburne, David W.; Tomich, David H.
2013-03-01
A characterization study of heteroepitaxial grown m-plane GaN on m-plane sapphire substrates by MOCVD was undertaken. Using X-ray diffraction and photoluminescence, the growth characteristics and epi-layer properties of m-GaN layers were investigated with special emphasis on the role of AlN buffer layers in preventing unintentional nitridation prior to GaN deposition. Substrate nitridation was found to lead to undesirable crystallographic orientations. In-plane lattice parameters of m-GaN obtained from X-ray reciprocal space mapping indicate anisotropic residual strain is present in these layers even under optimized growth conditions. Compressive and tensile strains were observed along either [0001] or [112¯0] directions, depending on AlN buffer layer conditions and the presence of extended structural defects. In addition, extended structural defects commonly observed in GaN showed a significant effect on stacking fault related luminescence in m-GaN.
StrainModeler: A MATHEMATICA™-based program for 3D analysis of finite and progressive strain
NASA Astrophysics Data System (ADS)
Bobillo-Ares, Nilo C.; Aller, Jesús; Bastida, Fernando; Menéndez, Omar; Lisle, Richard J.
2015-05-01
StrainModeler is a program constructed in the MATHEMATICA™ environment that performs 3D progressive strain calculations for lines and planes undergoing any sequence of homogeneous deformations. The main inputs to the system define the initial line or plane to be deformed and the deformation sequence to be applied, including combinations of simple shear, pure shear and volume change. For the deformation of lines, the output of the program is the change of attitude of the initial line, which can be represented by graphics or plotted in an equal-area projection. For the deformation of planes, the program has several outputs: (i) change of attitude of the initial plane; (ii) magnitudes and ratio of the semi-axes of the strain ellipse on the deformed plane; (iii) orientation of the major and minor axes of the strain ellipse on the deformed plane; (iv) orientations of the axial planes of the folds formed on the deformed plane, and (v) area change on the deformed plane. The variation of any of these parameters can be shown against a linear parameter only linked to the number of steps involved in the deformation, as a kind of "time" line, or it can be shown against the variation of a parameter of the strain ellipsoid (e. g.: major axis/minor axis ratio). A sequence of directions can be also visualized as a curve in an equal-area plot. Three applications of the program are presented. In the first, the deformation by simple shear of a plane with any orientation is analyzed. In the second, we explore the formation of recumbent folds in layers with different initial orientations for simple shear and pure shear deformations. In the third, we use StrainModeler to analyze the deformation of a set of folds located in a ductile shear zone in the Variscan Belt of NW Spain.
Out-of-plane three-stable-state ferroelectric switching: Finding the missing middle states
NASA Astrophysics Data System (ADS)
Lee, Jin Hong; Chu, Kanghyun; Kim, Kwang-Eun; Seidel, Jan; Yang, Chan-Ho
2016-03-01
By realizing a nonvolatile third intermediate ferroelectric state through anisotropic misfit strain, we demonstrate electrical switching among three stable out-of-plane polarizations in bismuth ferrite thin films grown on (110) pc-oriented gadolinium scandate substrates (where pc stands for pseudocubic) by the use of an asymmetric external electric field at the step edge of a bottom electrode. We employ phenomenological Landau theory, in conjunction with electrical poling experiments using piezoresponse force microscopy, to understand the role of anisotropic misfit strain and an in-plane electric field in stabilization of multiple ferroelectric states and their competition. Our finding provides a useful insight into multistep ferroelectric switching in rhombohedral ferroelectrics.
A Deep-Cutting-Plane Technique for Reverse Convex Optimization.
Moshirvaziri, K; Amouzegar, M A
2011-08-01
A large number of problems in engineering design and in many areas of social and physical sciences and technology lend themselves to particular instances of problems studied in this paper. Cutting-plane methods have traditionally been used as an effective tool in devising exact algorithms for solving convex and large-scale combinatorial optimization problems. Its utilization in nonconvex optimization has been also promising. A cutting plane, essentially a hyperplane defined by a linear inequality, can be used to effectively reduce the computational efforts in search of a global solution. Each cut is generated in order to eliminate a large portion of the search domain. Thus, a deep cut is intuitively superior in which it will exclude a larger set of extraneous points from consideration. This paper is concerned with the development of deep-cutting-plane techniques applied to reverse-convex programs. An upper bound and a lower bound for the optimal value are found, updated, and improved at each iteration. The algorithm terminates when the two bounds collapse or all the generated subdivisions have been fathomed. Finally, computational considerations and numerical results on a set of test problems are discussed. An illustrative example, walking through the steps of the algorithm and explaining the computational process, is presented. PMID:21296710
NASA Technical Reports Server (NTRS)
Rojas, Roberto G.
1985-01-01
A uniform geometrical theory of diffraction (UTD) solution is developed for the problem of the diffraction by a thin dielectric/ferrite half plane when it is excited by a plane, cylindrical, or surface wave field. Both transverse electric and transverse magnetic cases are considered. The solution of this problem is synthesized from the solutions to the related problems of EM diffraction by configurations involving perfectly conducting electric and magnetic walls covered by a dielectric/ferrite half-plane of one half the thickness of the original half-plane.
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R. (Technical Monitor)
2003-01-01
This manual presents computer programs FLAPS for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the Total Strain version of Strainrange Partitioning (TS-SRP), and several other life prediction methods described in this manual. The user should be thoroughly familiar with the TS-SRP and these life prediction methods before attempting to use any of these programs. Improper understanding can lead to incorrect use of the method and erroneous life predictions. An extensive database has also been developed in a parallel effort. The database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life-prediction methods as well. This users' manual, software, and database are all in the public domain and can be obtained by contacting the author. The Compact Disk (CD) accompanying this manual contains an executable file for the FLAPS program, two datasets required for the example problems in the manual, and the creep-fatigue data in a format compatible with these programs.
Optimal focal-plane restoration
NASA Technical Reports Server (NTRS)
Reichenbach, Stephen E.; Park, Stephen K.
1989-01-01
Image restoration can be implemented efficiently by calculating the convolution of the digital image and a small kernel during image acquisition. Processing the image in the focal-plane in this way requires less computation than traditional Fourier-transform-based techniques such as the Wiener filter and constrained least-squares filter. Here, the values of the convolution kernel that yield the restoration with minimum expected mean-square error are determined using a frequency analysis of the end-to-end imaging system. This development accounts for constraints on the size and shape of the spatial kernel and all the components of the imaging system. Simulation results indicate the technique is effective and efficient.