Yang, Chao
2009-07-17
We present a practical approach to calculate the complex band structure of an electrode for quantum transport calculations. This method is designed for plane wave based Hamiltonian with nonlocal pseudopotentials and the auxiliary periodic boundary condition transport calculation approach. Currently there is no direct method to calculate all the evanescent states for a given energy for systems with nonlocal pseudopotentials. On the other hand, in the auxiliary periodic boundary condition transport calculation, there is no need for all the evanescent states at a given energy. The current method fills this niche. The method has been used to study copper and gold nanowires and bulk electrodes.
Predictive GW calculations using plane waves and pseudopotentials
NASA Astrophysics Data System (ADS)
Klimeš, Jiří; Kaltak, Merzuk; Kresse, Georg
2014-08-01
We derive a finite-basis-set correction for quasiparticle (QP) energies in the GW approximation and many-body correlation energies in the random phase approximation. Since the correction requires only knowledge of the ground-state density distribution, it is straightforward to implement in any plane-wave code and significantly improves convergence at negligible computational cost. The expression also indicates that QP energies might converge to the wrong value using the projector augmented wave (PAW) method since the overlap densities of occupied orbitals and high-energy, plane-wave-like orbitals are inaccurately described. The error is shown to be related to the incompleteness of the partial waves inside the atomic spheres. It can be avoided by adopting norm-conserving partial waves. G0W0 and GW0 results based on such norm-conserving PAW potentials are presented for a large set of semiconductors and insulators. Accurate extrapolation procedures to the infinite-basis-set limit and infinite-k-point limit are discussed in detail.
NASA Astrophysics Data System (ADS)
Pickard, Chris J.; Winkler, Björn; Chen, Roger K.; Payne, M. C.; Lee, M. H.; Lin, J. S.; White, J. A.; Milman, V.; Vanderbilt, David
2000-12-01
We show that plane wave ultrasoft pseudopotential methods readily extend to the calculation of the structural properties of lanthanide and actinide containing compounds. This is demonstrated through a series of calculations performed on UO, UO2, UO3, U3O8, UC2, α-CeC2, CeB6, CeSe, CeO2, NdB6, TmOI, LaBi, LaTiO3, YbO, and elemental Lu.
Pickard; Winkler; Chen; Payne; Lee; Lin; White; Milman; Vanderbilt
2000-12-11
We show that plane wave ultrasoft pseudopotential methods readily extend to the calculation of the structural properties of lanthanide and actinide containing compounds. This is demonstrated through a series of calculations performed on UO, UO2, UO3, U3O8, UC2, alpha-CeC2, CeB6, CeSe, CeO2, NdB6, TmOI, LaBi, LaTiO3, YbO, and elemental Lu. PMID:11102201
Parallel Implementation of Gamma-Point Pseudopotential Plane-Wave DFT with Exact Exchange
Bylaska, Eric J.; Tsemekhman, Kiril L.; Baden, Scott B.; Weare, John H.; Jonsson, Hannes
2011-01-15
One of the more persistent failures of conventional density functional theory (DFT) methods has been their failure to yield localized charge states such as polarons, excitons and solitons in solid-state and extended systems. It has been suggested that conventional DFT functionals, which are not self-interaction free, tend to favor delocalized electronic states since self-interaction creates a Coulomb barrier to charge localization. Pragmatic approaches in which the exchange correlation functionals are augmented with small amount of exact exchange (hybrid-DFT, e.g. B3LYP and PBE0) have shown promise in localizing charge states and predicting accurate band gaps and reaction barriers. We have developed a parallel algorithm for implementing exact exchange into pseudopotential plane-wave density functional theory and we have implemented it in the NWChem program package. The technique developed can readily be employed in plane-wave DFT programs. Furthermore, atomic forces and stresses are straightforward to implement, making it applicable to both confined and extended systems, as well as to Car-Parrinello ab initio molecular dynamic simulations. This method has been applied to several systems for which conventional DFT methods do not work well, including calculations for band gaps in oxides and the electronic structure of a charge trapped state in the Fe(II) containing mica, annite.
Three-dimensional plane-wave full-band quantum transport using empirical pseudopotentials
NASA Astrophysics Data System (ADS)
Fang, Jingtian; Vandenberghe, William; Fischetti, Massimo
2015-03-01
We study theoretically the ballistic performance of future sub-5 nm Field-Effect Transistors (FETs) using an atomistic quantum transport formalism based on empirical pseudopotentials, with armchair Graphene NanoRibbons (aGNRs), Silicon NanoWires (SiNWs) and zigzag Carbon NanoTubes (zCNTs) as channel structures. Due to the heavy computational burden from the plane-wave basis set, we restrict our study to ultrasmall devices, characterized by 5 nm channel lengths and 0.7 nm × 0.7 nm cross-sectional areas. Band structure calculations show that aGNRs have an oscillating chirality-dependent band gap. AGNRs with dimer lines N=3p+1 have large band gaps and aGNRFETs show promising device performance in terms of high Ion/Ioff, small drain-induced barrier lowering and limited short channel effects due to their very thin body and associated excellent electrostatics control. N=3p+2 aGNRs have small band gaps and band-to-band tunneling generates a large current at high bias. We also discuss spurious solutions introduced by the envelope function approximation. Device characteristics of SiNWFETs and zCNTFETs are compared to aGNRFETs as well. We acknowledge the support of Nanoelectronics Research Initiatives's (NRI's) Southwest Academy of Nanoelectronics (SWAN).
NASA Astrophysics Data System (ADS)
Suewattana, Malliga; Purwanto, Wirawan; Zhang, Shiwei; Krakauer, Henry; Walter, Eric J.
2007-06-01
The phaseless auxiliary-field quantum Monte Carlo (AF QMC) method [S. Zhang and H. Krakauer, Phys. Rev. Lett. 90, 136401 (2003)] is used to carry out a systematic study of the dissociation and ionization energies of second-row group 3A-7A atoms and dimers: Al, Si, P, S, and Cl. In addition, the P2 dimer is compared to the third-row As2 dimer, which is also triply bonded. This method projects the many-body ground state by means of importance-sampled random walks in the space of Slater determinants. The Monte Carlo phase problem, due to the electron-electron Coulomb interaction, is controlled via the phaseless approximation, with a trial wave function ∣ΨT⟩ . As in previous calculations, a mean-field single Slater determinant is used as ∣ΨT⟩ . The method is formulated in the Hilbert space defined by any chosen one-particle basis. The present calculations use a plane wave basis under periodic boundary conditions with norm-conserving pseudopotentials. Computational details of the plane wave AF QMC method are presented. The isolated systems chosen here allow a systematic study of the various algorithmic issues. We show the accuracy of the plane wave method and discuss its convergence with respect to parameters such as the supercell size and plane wave cutoff. The use of standard norm-conserving pseudopotentials in the many-body AF QMC framework is examined.
Schleife, André; Draeger, Erik W; Kanai, Yosuke; Correa, Alfredo A
2012-12-14
Explicit integrators for real-time propagation of time-dependent Kohn-Sham equations are compared regarding their suitability for performing large-scale simulations. Four algorithms are implemented and assessed for both stability and accuracy within a plane-wave pseudopotential framework, employing the adiabatic approximation to the exchange-correlation functional. Simulation results for a single sodium atom and a sodium atom embedded in bulk magnesium oxide are discussed. While the first-order Euler scheme and the second-order finite-difference scheme are unstable, the fourth-order Runge-Kutta scheme is found to be conditionally stable and accurate within this framework. Excellent parallel scalability of the algorithm up to more than a thousand processors is demonstrated for a system containing hundreds of electrons, evidencing the suitability for large-scale simulations based on real-time propagation of time-dependent Kohn-Sham equations. PMID:23249083
Bryce, David L; Bultz, Elijah B
2007-01-01
A series of alkaline earth chloride hydrates has been studied by solid-state (35/37)Cl NMR spectroscopy in order to characterize the chlorine electric field gradient (EFG) and chemical shift (CS) tensors and to relate these observables to the structure around the chloride ions. Chlorine-35/37 NMR spectra of solid powdered samples of pseudopolymorphs (hydrates) of magnesium chloride (MgCl(2).6H(2)O), calcium chloride (CaCl(2).2H(2)O), strontium chloride (SrCl(2), SrCl(2).2H(2)O, and SrCl(2).6H(2)O), and barium chloride (BaCl(2).2H(2)O) have been acquired under stationary and magic-angle spinning conditions in magnetic fields of 11.75 and 21.1 T. Powder X-ray diffraction was used as an additional tool to confirm the purity and identity of the samples. Chlorine-35 quadrupolar coupling constants (C(Q)) range from essentially zero in cubic anhydrous SrCl(2) to 4.26+/-0.03 MHz in calcium chloride dihydrate. CS tensor spans, Omega, are between 40 and 72 ppm, for example, Omega= 45+/-20 ppm for SrCl(2).6H(2)O. Plane wave-pseudopotential density functional theory, as implemented in the CASTEP program, was employed to model the extended solid lattices of these materials for the calculation of their chlorine EFG and nuclear magnetic shielding tensors, and allowed for the assignment of the two-site chlorine NMR spectra of barium chloride dihydrate. This work builds upon our current understanding of the relationship between chlorine NMR interaction tensors and the local molecular and electronic structure, and highlights the particular sensitivity of quadrupolar nucleus solid-state NMR spectroscopy to the differences between various pseudopolymorphic structures in the case of strontium chloride. PMID:17385204
Plane wave scattering from a plasmonic nanowire-film system with the inclusion of non-local effects.
Trivedi, Rahul; Sharma, Yashna; Dhawan, Anuj
2015-10-01
In this paper we present a theoretical analysis of the electromagnetic response of a plasmonic nanowire-film system. The analytical solution accounts for both the dispersive as well as non-local nature of the plasmonic media. The physical structure comprises of a plasmonic nanowire made of a plasmonic metal such as gold or silver placed over a plasmonic film of the same material. Such a nanostructure exhibits a spectrum that is extremely sensitive to various geometric parameters such as spacer thickness and nanowire radius, which makes it favorable for various sensing applications. The non-locality of the plasmonic medium, which can be captured using the hydrodynamic model, significantly affects the resonant wavelength of this system for structures of small dimensions (~ less than 5 nm gap between the nanowire and the film). We present an analytical method that can be used to predict the effect of non-locality on the resonances of the system. To validate the analytical method, we also report a comparison of our analytical solution with a numerical Finite Difference Time Domain analysis (FDTD) of the same structure with the plasmonic medium being treated as local in nature. PMID:26480121
NASA Astrophysics Data System (ADS)
Pask, J. E.; Sterne, P. A.
2004-03-01
The finite-element (FE) method is a general approach for the solution of partial differential equations. Like the planewave (PW) method, the FE method is a systematically improvable expansion approach. Unlike the PW method, however, its basis functions are strictly local in real space, which allows for variable resolution in real space and facilitates massively parallel implementation. We discuss the application of the FE method to ab initio electronic-structure calculations.(J.E. Pask, B.M. Klein, C.Y. Fong, and P.A. Sterne, Phys. Rev. B 59), 12352 (1999). In particular, we discuss the use of nonlocal pseudopotentials in bulk calculations, and the handling of long-range interactions in the construction of the Kohn-Sham effective potential and total energy. We show that the total energy converges variationally, and at the optimal theoretical rate consistent with the cubic completeness of the basis. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Ab initio quantum transport calculations using plane waves
NASA Astrophysics Data System (ADS)
Garcia-Lekue, A.; Vergniory, M. G.; Jiang, X. W.; Wang, L. W.
2015-08-01
We present an ab initio method to calculate elastic quantum transport at the nanoscale. The method is based on a combination of density functional theory using plane wave nonlocal pseudopotentials and the use of auxiliary periodic boundary conditions to obtain the scattering states. The method can be applied to any applied bias voltage and the charge density and potential profile can either be calculated self-consistently, or using an approximated self-consistent field (SCF) approach. Based on the scattering states one can straightforwardly calculate the transmission coefficients and the corresponding electronic current. The overall scheme allows us to obtain accurate and numerically stable solutions for the elastic transport, with a computational time similar to that of a ground state calculation. This method is particularly suitable for calculations of tunneling currents through vacuum, that some of the nonequilibrium Greens function (NEGF) approaches based on atomic basis sets might have difficulty to deal with. Several examples are provided using this method from electron tunneling, to molecular electronics, to electronic devices: (i) On a Au nanojunction, the tunneling current dependence on the electrode-electrode distance is investigated. (ii) The tunneling through field emission resonances (FERs) is studied via an accurate description of the surface vacuum states. (iii) Based on quantum transport calculations, we have designed a molecular conformational switch, which can turn on and off a molecular junction by applying a perpendicular electric field. (iv) Finally, we have used the method to simulate tunnel field-effect transistors (TFETs) based on two-dimensional transition-metal dichalcogenides (TMDCs), where we have studied the performance and scaling limits of such nanodevices and proposed atomic doping to enhance the transistor performance.
NASA Astrophysics Data System (ADS)
Forgács, Péter; Lukács, Árpád; Romańczukiewicz, Tomasz
2013-12-01
It is shown that in a large class of systems, plane waves act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode carrying more momentum, in which case excess momentum is created behind the scatterer. This tractor beam or negative radiation pressure (NRP) effect, is found to be generic in systems with multiple scattering channels. In a birefringent medium, electromagnetic plane waves incident on a thin plate exert NRP of the same order of magnitude as optical radiation pressure, while in artificial dielectrics (metamaterials), the magnitude of NRP can even be macroscopic. In two dimensions, we study various scattering situations on vortices, and NRP is shown to occur by the scattering of heavy baryons into light leptons off cosmic strings, and by neutron scattering off vortices in the XY model.
Plane waves in noncommutative fluids
NASA Astrophysics Data System (ADS)
Abdalla, M. C. B.; Holender, L.; Santos, M. A.; Vancea, I. V.
2013-08-01
We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monochromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy-momentum tensor of the plane waves is calculated.
Optimization Algorithm for the Generation of ONCV Pseudopotentials
NASA Astrophysics Data System (ADS)
Schlipf, Martin; Gygi, Francois
2015-03-01
We present an optimization algorithm to construct pseudopotentials and use it to generate a set of Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials for elements up to Z=83 (Bi) (excluding Lanthanides). We introduce a quality function that assesses the agreement of a pseudopotential calculation with all-electron FLAPW results, and the necessary plane-wave energy cutoff. This quality function allows us to use a Nelder-Mead optimization algorithm on a training set of materials to optimize the input parameters of the pseudopotential construction for most of the periodic table. We control the accuracy of the resulting pseudopotentials on a test set of materials independent of the training set. We find that the automatically constructed pseudopotentials provide a good agreement with the all-electron results obtained using the FLEUR code with a plane-wave energy cutoff of approximately 60 Ry. Supported by DOE/BES Grant DE-SC0008938.
Marsh, Stanley P.
1988-01-01
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.
Marsh, S.P.
1988-03-08
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.
Marsh, S.P.
1987-03-12
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.
Plane Wave and Coulomb Asymptotics
NASA Astrophysics Data System (ADS)
Mulligan, P. G.; Crothers, D. S. F.
2004-01-01
A simple plane wave solution of the Schrödinger Helmholtz equation is a quantum eigenfunction obeying both energy and linear momentum correspondence principles. Inclusion of the outgoing wave with scattering amplitude f obeys unitarity and the optical theorem. By closely considering the standard asymptotic development of the plane wave, we show that there is a problem with angular momentum when we consider forward scattering at the point of closest approach and at large impact parameter given semiclassically by (l + 1/2)/k where l is the azimuthal quantum number and may be large (J Leech et al, Phys. Rev. Lett. 88 257901 (2002)). The problem is resolved via non-uniform, non-standard analysis involving the Heaviside step function, unifying classical, semiclassical and quantum mechanics, and the treatment is extended to the case of pure Coulomb scattering.
Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets.
Deringer, Volker L; Tchougréeff, Andrei L; Dronskowski, Richard
2011-06-01
Simple, yet predictive bonding models are essential achievements of chemistry. In the solid state, in particular, they often appear in the form of visual bonding indicators. Because the latter require the crystal orbitals to be constructed from local basis sets, the application of the most popular density-functional theory codes (namely, those based on plane waves and pseudopotentials) appears as being ill-fitted to retrieve the chemical bonding information. In this paper, we describe a way to re-extract Hamilton-weighted populations from plane-wave electronic-structure calculations to develop a tool analogous to the familiar crystal orbital Hamilton population (COHP) method. We derive the new technique, dubbed "projected COHP" (pCOHP), and demonstrate its viability using examples of covalent, ionic, and metallic crystals (diamond, GaAs, CsCl, and Na). For the first time, this chemical bonding information is directly extracted from the results of plane-wave calculations. PMID:21548594
Optimization algorithm for the generation of ONCV pseudopotentials
NASA Astrophysics Data System (ADS)
Schlipf, Martin; Gygi, François
2015-11-01
We present an optimization algorithm to construct pseudopotentials and use it to generate a set of Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials for elements up to Z = 83 (Bi) (excluding Lanthanides). We introduce a quality function that assesses the agreement of a pseudopotential calculation with all-electron FLAPW results, and the necessary plane-wave energy cutoff. This quality function allows us to use a Nelder-Mead optimization algorithm on a training set of materials to optimize the input parameters of the pseudopotential construction for most of the periodic table. We control the accuracy of the resulting pseudopotentials on a test set of materials independent of the training set. We find that the automatically constructed pseudopotentials
Double plane wave reverse time migration with plane wave Green's function
NASA Astrophysics Data System (ADS)
Zhao, Z.; Sen, M. K.; Stoffa, P. L.
2015-12-01
Reverse time migration (RTM) is effective in obtaining complex subsurface structures from seismic data. By solving the two-way wave equation, RTM can use entire wavefield for imaging. Although powerful computer are becoming available, the conventional pre-stack shot gather RTM is still computationally expensive. Solving forward and backward wavefield propagation for each source location and shot gather is extremely time consuming, especially for large seismic datasets. We present an efficient, accurate and flexible plane wave RTM in the frequency domain where we utilize a compressed plane wave dataset, known as the double plane wave (DPW) dataset. Provided with densely sampled seismic dataset, shot gathers can be decomposed into source and receiver plane wave components with minimal artifacts. The DPW RTM is derived under the Born approximation and utilizes frequency domain plane wave Green's function for imaging. Time dips in the shot profiles can help to estimate the range of plane wave components present in shot gathers. Therefore, a limited number of plane wave Green's functions are needed for imaging. Plane wave Green's functions can be used for imaging both source and receiver plane waves. Source and receiver reciprocity can be used for imaging plane wave components at no cost and save half of the computation time. As a result, the computational burden for migration is substantially reduced. Plane wave components can be migrated independently to recover specific targets with given dips, and ray parameter common image gathers (CIGs) can be generated after migration directly. The ray parameter CIGs can be used to justify the correctness of velocity models. Subsurface anisotropy effects can also be included in our imaging condition, provided with plane wave Green's functions in the anisotropic media.
Ab initio pseudopotential band calculation of organic conductors
Ishibashi, Shoji; Kohyama, Masanori
1999-12-01
The authors have calculated the band structures of organic conductors TTF-TCNQ and {beta}-(BEDT-TTF){sub 2}I{sub 3} using the ab initio plane-wave pseudopotential method within the local-density approximation (LDA). The Fermi-surface shape and the origin of bands near the Fermi level are investigated for each compound.
Horizons and plane waves: A review
Hubeny, Veronika E.; Rangamani, Mukund
2003-11-06
We review the attempts to construct black hole/string solutions in asymptotically plane wave spacetimes. First, we demonstrate that geometries admitting a covariantly constant null Killing vector cannot admit event horizons, which implies that pp-waves can't describe black holes. However, relaxing the symmetry requirements allows us to generate solutions which do possess regular event horizons while retaining the requisite asymptotic properties. In particular, we present two solution generating techniques and use them to construct asymptotically plane wave black string/brane geometries.
Simple Harmonic Motion in Harmonic Plane Waves.
ERIC Educational Resources Information Center
Benumof, Reuben
1980-01-01
Discusses the distribution of kinetic and potential energy in transverse and longitudinal waves and examines the transmission of power and momentum. This discussion is intended to aid in understanding the simple harmonic motion of a particle involved in the propagation of a harmonic mechanical plane wave. (HM)
Plane wave facing technique for ultrasonic elastography
NASA Astrophysics Data System (ADS)
Lee, Mingu; Shim, Hwan; Cheon, Byeong Geun; Jung, Yunsub
2014-03-01
A shear wave generation technique which exploits multiple plane waves facing with each other toward their center line is introduced. On this line, ultrasonic waves interfere constructively resulting two planar shear waves that propagate to the opposite directions parallel to the transducer instead of oblique wave from multiple point focused pushes due to the temporal inconsistency of the pushes. One advantage of the plane wave facing technique over an unfocused push beam is that it generates much larger shear waves because it actively takes advantage of constructive interference between waves and, moreover, a larger number of elements can be used without diffusing the beam pattern. Field II simulated intensity maps of the push beams using the proposed method are presented with those of multiple point focusing and unfocusing techniques for comparison. In the simulation, two plane waves are considered for the simplicity, and the number of elements, apodization, and steering angles for facing are varied as parameters. Also, elasticity images of CIRS 049A phantom are presented using the proposed technique with comb-shaped push beams, i.e. multiple push beams are used simultaneously at different locations. L7-4 transducer is used for the simulation and elasticity imaging.
Plane wave imaging using phased array
NASA Astrophysics Data System (ADS)
Volker, Arno
2014-02-01
Phased arrays are often used for rapid inspections. Phased arrays can be used to synthesize different wave fronts. For imaging, focused wave fronts are frequently used. In order to build an image, the phased array has to be fired multiple times at the same location. Alternatively, different data acquisition configurations can be designed in combination with an imaging algorithm. The objective of this paper is to use the minimal amount of data required to construct an image. If a plane wave is synthesized, the region of interest is illuminated completely. For plane wave synthesis, all elements in the phase array are fired. This ensures a good signal to noise ratio. Imaging can be performed efficiently with a mapping algorithm in the wavenumber domain. The algorithm involves only two Fourier transforms and can therefore be extremely fast. The obtained resolution is comparable to conventional imaging algorithms. This work investigates the potential and limitations of this mapping algorithm on simulated data. With this approach, frame rates of more than 1 kHz can be achieved.
Polarization of almost-plane waves.
Sheppard, C J
2000-02-01
The general polarization behavior of almost-plane waves, in which the electric field varies slowly over a circular pupil, is considered, on the basis of an axial Hertz potential treatment and expansion in Zernike polynomials. The resultant modes of a circular aperture are compared with the well-known waveguide (or optical fiber) modes and Gaussian beam modes. The wave can be decomposed into partial waves of electric and magnetic types. The modes for a square pupil are also considered. The particular application of the effect on polarization of focusing the waves is discussed. Another application discussed is the Fresnel reflection from a dielectric interface, it being shown that the Fresnel reflection alters the relative strength of the electric and magnetic components. PMID:10680636
Plane wave gravitons, curvature singularities and string physics
Brooks, R. . Center for Theoretical Physics)
1991-03-21
This paper discusses bounded (compactifying) potentials arising from a conspiracy between plane wave graviton and dilaton condensates. So are string propagation and supersymmetry in spacetimes with curvature singularities.
A new type of pseudopotentials: effective atomic pseudopotentials
NASA Astrophysics Data System (ADS)
Cardenas, Jairo Ricardo; Cherian, Roby; Bester, Gabriel
2012-02-01
We derive a new type of pseudopotentials from conventional norm-conserving pseudopotentials for the treatment of a large number of atoms. The pseudopotentials are not aimed at the calculation of the total enegy, but of band edge states relevant for optical processes. We describe the pseudopotential construction and benchmark its quality and transferability by comparison to standard DFT calculations.
Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines
Jia, Weile; University of Chinese Academy of Sciences, Beijing ; Fu, Jiyun; University of Chinese Academy of Sciences, Beijing ; Cao, Zongyan; Wang, Long; Chi, Xuebin; Gao, Weiguo; MOE Key Laboratory of Computational Physical Sciences, Fudan University, Shanghai ; Wang, Lin-Wang
2013-10-15
Plane wave pseudopotential (PWP) density functional theory (DFT) calculation is the most widely used method for material simulations, but its absolute speed stagnated due to the inability to use large scale CPU based computers. By a drastic redesign of the algorithm, and moving all the major computation parts into GPU, we have reached a speed of 12 s per molecular dynamics (MD) step for a 512 atom system using 256 GPU cards. This is about 20 times faster than the CPU version of the code regardless of the number of CPU cores used. Our tests and analysis on different GPU platforms and configurations shed lights on the optimal GPU deployments for PWP-DFT calculations. An 1800 step MD simulation is used to study the liquid phase properties of GaInP.
NASA Astrophysics Data System (ADS)
Min, Byeong June; Jeong, Hae Kyung; Lee, ChangWoo
2015-08-01
We studied via plane wave pseudopotential total-energy calculations within the local spin density approximation (LSDA) the electronic and the structural properties of amino acids (alanine, glycine, and histidine) attached to graphene oxide (GO) by peptide bonding. The HOMO-LUMO gap, the Hirshfeld charges, and the equilibrium geometrical structures exhibit distinctive variations that depend on the species of the attached amino acid. The GO-amino acid system appears to be a good candidate for a biosensor.
Pseudopotentials for quantum Monte Carlo studies of transition metal oxides
NASA Astrophysics Data System (ADS)
Krogel, Jaron T.; Santana, Juan A.; Reboredo, Fernando A.
2016-02-01
Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentials to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results also compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.
Pseudopotentials for quantum Monte Carlo studies of transition metal oxides
Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.
2016-02-22
Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentialsmore » to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.« less
Force-based optimization of pseudopotentials for non-equilibrium configurations
NASA Astrophysics Data System (ADS)
Brock, Casey N.; Paikoff, Brandon C.; Md Sallih, Muhammad I.; Tackett, Alan R.; Walker, D. Greg
2016-04-01
We have used a multi-objective genetic algorithm to optimize pseudopotentials for force accuracy and computational efficiency. Force accuracy is determined by comparing interatomic forces generated using the pseudopotentials and forces generated using the full-potential linearized augmented-plane wave method. This force-based optimization approach is motivated by applications where interatomic forces are important, including material interfaces, crystal defects, and molecular dynamics. Our method generates Pareto sets of optimized pseudopotentials containing various compromises between accuracy and efficiency. We have tested our method for LiF, Si0.5Ge0.5, and Mo and compared the performance of our pseudopotentials with pseudopotentials available from the ABINIT library. We show that the optimization can generate pseudopotentials with comparable accuracy (in terms of force matching and equation of state) to pseudopotentials in the literature while sometimes significantly improving computational efficiency. For example, we generated pseudopotentials for one system tested that reduced computational work by 71% without loss of accuracy. These results suggest our method can be used to generate pseudopotentials on demand that are tuned for a user's specific application, affording gains in computational efficiency.
Iterative diagonalization in augmented plane wave based methods in electronic structure calculations
Blaha, P.; Laskowski, R.; Schwarz, K.
2010-01-20
Due to the increased computer power and advanced algorithms, quantum mechanical calculations based on Density Functional Theory are more and more widely used to solve real materials science problems. In this context large nonlinear generalized eigenvalue problems must be solved repeatedly to calculate the electronic ground state of a solid or molecule. Due to the nonlinear nature of this problem, an iterative solution of the eigenvalue problem can be more efficient provided it does not disturb the convergence of the self-consistent-field problem. The blocked Davidson method is one of the widely used and efficient schemes for that purpose, but its performance depends critically on the preconditioning, i.e. the procedure to improve the search space for an accurate solution. For more diagonally dominated problems, which appear typically for plane wave based pseudopotential calculations, the inverse of the diagonal of (H - ES) is used. However, for the more efficient 'augmented plane wave + local-orbitals' basis set this preconditioning is not sufficient due to large off-diagonal terms caused by the local orbitals. We propose a new preconditioner based on the inverse of (H - {lambda}S) and demonstrate its efficiency for real applications using both, a sequential and a parallel implementation of this algorithm into our WIEN2k code.
Vacuum plane waves: Cartan invariants and physical interpretation
NASA Astrophysics Data System (ADS)
Coley, A.; McNutt, D.; Milson, R.
2012-12-01
As an application of the Cartan invariants obtained using the Karlhede algorithm, we study a simple subclass of the PP-wave spacetimes, the gravitational plane waves. We provide an invariant classification of these spacetimes and then study a few notable subcases: the linearly polarized plane waves, the weak-field circularly polarized waves, and another class of plane waves found by imposing conditions on the set of invariants. As we study these spacetimes we relate the invariant structure (i.e., Cartan scalars) to the physical description of these spacetimes using the geodesic deviation equations relative to timelike geodesic observers.
DLCQ and plane wave matrix Big Bang models
NASA Astrophysics Data System (ADS)
Blau, Matthias; O'Loughlin, Martin
2008-09-01
We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.
Liquid Water through Density-Functional Molecular Dynamics: Plane-Wave vs Atomic-Orbital Basis Sets.
Miceli, Giacomo; Hutter, Jürg; Pasquarello, Alfredo
2016-08-01
We determine and compare structural, dynamical, and electronic properties of liquid water at near ambient conditions through density-functional molecular dynamics simulations, when using either plane-wave or atomic-orbital basis sets. In both frameworks, the electronic structure and the atomic forces are self-consistently determined within the same theoretical scheme based on a nonlocal density functional accounting for van der Waals interactions. The overall properties of liquid water achieved within the two frameworks are in excellent agreement with each other. Thus, our study supports that implementations with plane-wave or atomic-orbital basis sets yield equivalent results and can be used indiscriminately in study of liquid water or aqueous solutions. PMID:27434607
Arrayed Ultrasonic Transducers on Arc Surface for Plane Wave Synthesis
NASA Astrophysics Data System (ADS)
Kim, Jung-Soon; Kim, Jung-Ho; Kim, Moo-Joon; Ha, Kang-Lyeol; Yamada, Akira
2004-05-01
In ultrasonic computed tomography (UCT), it is necessary to synthesize a plane wave using waves emitted from sound sources arranged in the interior surface of a cylinder. In order to transmit a plane wave into a cylindrical surface, an ultrasonic transducer which has many vibrating elements with piezoelectric transverse effect arrayed on an arc surface is proposed. To achieve a wide beam width, the elements should have a small radiation area with a much narrow width. The measured electroacoustic efficiency for the elements was approximately 40% and the beam width defined by -3 dB level from the maximum was as wide as 120 deg. It was confirmed that plane wave synthesis is possible using the proposed transducer array.
Colliding gravitational plane waves with noncollinear polarization. I
Ernst, F.J.; Garcia D., A.; Hauser, I.
1987-09-01
An Ehlers transformation on the Ernst potential for the Nutku--Halil solution (Phys. Rev. Lett. 39, 1379 (1977)) provides a new solution of the Einstein field equations describing colliding gravitational plane waves with noncollinear polarization, the first of an infinite sequence of solutions that can be generated using techniques described in this paper.
Colliding gravitational plane waves with noncollinear polarization. I
NASA Astrophysics Data System (ADS)
Ernst, Frederick J.; García D., Alberto; Hauser, Isidore
1987-09-01
An Ehlers transformation on the Ernst potential for the Nutku-Halil solution [Phys. Rev. Lett. 39, 1379 (1977)] provides a new solution of the Einstein field equations describing colliding gravitational plane waves with noncollinear polarization, the first of an infinite sequence of solutions that can be generated using techniques described in this paper.
An Apparatus for Constructing an Electromagnetic Plane Wave Model
ERIC Educational Resources Information Center
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
Metaphysics of colliding self-gravitating plane waves
Matzner, R.A.; Tipler, F.J.
1984-04-15
We discuss certain global features of colliding plane-wave solutions to Einstein's equations. In particular, we show that the apparently local curvature singularities both in the Khan-Penrose solution and in the Bell-Szekeres solution are actually global. These global singularities are associated with the breakdown of nondegenerate planar symmetry in the characteristic initial data sets.
Coded Excitation Plane Wave Imaging for Shear Wave Motion Detection
Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.; Chen, Shigao
2015-01-01
Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave signal-to-noise-ratio (SNR) compared to conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2-4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (Body Mass Index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue. PMID:26168181
Structure and magnetism of bulk Fe and Cr: from plane waves to LCAO methods.
Soulairol, R; Fu, Chu-Chun; Barreteau, C
2010-07-28
Magnetic, structural and energetic properties of bulk Fe and Cr were studied using first-principles calculations within density functional theory (DFT). We aimed to identify the dependence of these properties on key approximations of DFT, namely the exchange-correlation functional, the pseudopotential and the basis set. We found a smaller effect of pseudopotentials (PPs) on Fe than on Cr. For instance, the local magnetism of Cr was shown to be particularly sensitive to the potentials representing the core electrons, i.e. projector augmented wave and Vanderbilt ultrasoft PPs predict similar results, whereas standard norm-conserving PPs tend to overestimate the local magnetic moments of Cr in bcc Cr and in dilute bcc FeCr alloys. This drawback is suggested to be closely correlated to the overestimation of Cr solution energy in the latter system. On the other hand, we point out that DFT methods with very reduced localized basis sets (LCAO: linear combination of atomic orbitals) give satisfactory results compared with more robust plane-wave approaches. A minimal-basis representation of '3d' electrons comes to be sufficient to describe non-trivial magnetic phases including spin spirals in both fcc Fe and bcc Cr, as well as the experimental magnetic ground state of bcc Cr showing a spin density wave (SDW) state. In addition, a magnetic 'spd' tight binding model within the Stoner formalism was proposed and validated for Fe and Cr. The respective Stoner parameters were obtained by fitting to DFT data. This efficient semiempirical approach was shown to be accurate enough for studying various collinear and non-collinear phases of bulk Fe and Cr. It also enabled a detailed investigation of different polarization states of SDW in bcc Cr, where the longitudinal state was suggested to be the ground state, consistent with existing experimental data. PMID:21399309
Colliding gravitational plane waves with noncollinear polarization. II
Ernst, F.J.; Garcia D., A.; Hauser, I.
1987-12-01
A simple criterion for colliding gravitational plane waves is developed. This colliding wave condition is preserved by a new realization of the Geroch group augmented by a Kramer--Neugebauer involution. A three-parameter generalization of a two-parameter family of solutions with noncollinear polarization discovered recently by Ferrari, Ibanez, and Bruni is presented, and two additional solutions are derived that demonstrate that much larger families are likely to be constructed in the near future.
Worldline approach to helicity flip in plane waves
NASA Astrophysics Data System (ADS)
Ilderton, Anton; Torgrimsson, Greger
2016-04-01
We apply worldline methods to the study of vacuum polarization effects in plane wave backgrounds, in both scalar and spinor QED. We calculate helicity-flip probabilities to one loop order and treated exactly in the background field, and provide a toolkit of methods for use in investigations of higher-order processes. We also discuss the connections between the worldline, S-matrix, and lightfront approaches to vacuum polarization effects.
Holography and entropy bounds in the plane wave matrix model
Bousso, Raphael; Mints, Aleksey L.
2006-06-15
As a quantum theory of gravity, matrix theory should provide a realization of the holographic principle, in the sense that a holographic theory should contain one binary degree of freedom per Planck area. We present evidence that Bekenstein's entropy bound, which is related to area differences, is manifest in the plane wave matrix model. If holography is implemented in this way, we predict crossover behavior at strong coupling when the energy exceeds N{sup 2} in units of the mass scale.
Ultrafast vascular strain compounding using plane wave transmission.
Hansen, H H G; Saris, A E C M; Vaka, N R; Nillesen, M M; de Korte, C L
2014-03-01
Deformations of the atherosclerotic vascular wall induced by the pulsating blood can be estimated using ultrasound strain imaging. Because these deformations indirectly provide information on mechanical plaque composition, strain imaging is a promising technique for differentiating between stable and vulnerable atherosclerotic plaques. This paper first explains 1-D radial strain estimation as applied intravascularly in coronary arteries. Next, recent methods for noninvasive vascular strain estimation in a transverse imaging plane are discussed. Finally, a compounding technique that our group recently developed is explained. This technique combines motion estimates of subsequently acquired focused ultrasound images obtained at various insonification angles. However, because the artery moves and deforms during the multi-angle acquisition, errors are introduced when compounding. Recent advances in computational power have enabled plane wave ultrasound acquisition, which allows 100 times faster image acquisition and thus might resolve the motion artifacts. In this paper the performance of strain imaging using plane wave compounding is investigated using simulations of an artery with a vulnerable plaque and experimental data of a two-layered vessel phantom. The results show that plane wave compounding outperforms 0° focused strain imaging. For the simulations, the root mean squared error reduced by 66% and 50% for radial and circumferential strain, respectively. For the experiments, the elastographic signal-to-noise and contrast-to-noise ratio (SNR(e) and CNR(e)) increased with 2.1 dB and 3.7 dB radially, and 5.6 dB and 16.2dB circumferentially. Because of the high frame rate, the plane wave compounding technique can even be further optimized and extended to 3D in future. PMID:24484646
Pérez-Jordá, José M
2011-11-28
A series of improvements for the solution of the three-dimensional Schrödinger equation over a method introduced by Gygi [F. Gygi, Europhys. Lett. 19, 617 (1992); F. Gygi, Phys. Rev. B 48, 11692 (1993)] are presented. As in the original Gygi's method, the solution (orbital) is expressed by means of plane waves in adaptive coordinates u, where u is mapped from Cartesian coordinates, u=f(r). The improvements implemented are threefold. First, maps are introduced that allow the application of the method to atoms and molecules without the assistance of the supercell approximation. Second, the electron-nucleus singularities are exactly removed, so that pseudo-potentials are no longer required. Third, the sampling error during integral evaluation is made negligible, which results in a true variational, second-order energy error procedure. The method is tested on the hydrogen atom (ground and excited states) and the H(2)(+) molecule, resulting in milli-Hartree accuracy with a moderate number of plane waves. PMID:22128925
Stolt's f-k migration for plane wave ultrasound imaging.
Garcia, Damien; Le Tarnec, Louis; Muth, Stéphan; Montagnon, Emmanuel; Porée, Jonathan; Cloutier, Guy
2013-09-01
Ultrafast ultrasound is an emerging modality that offers new perspectives and opportunities in medical imaging. Plane wave imaging (PWI) allows one to attain very high frame rates by transmission of planar ultrasound wave-fronts. As a plane wave reaches a given scatterer, the latter becomes a secondary source emitting upward spherical waves and creating a diffraction hyperbola in the received RF signals. To produce an image of the scatterers, all the hyperbolas must be migrated back to their apexes. To perform beamforming of plane wave echo RFs and return high-quality images at high frame rates, we propose a new migration method carried out in the frequency-wavenumber (f-k) domain. The f-k migration for PWI has been adapted from the Stolt migration for seismic imaging. This migration technique is based on the exploding reflector model (ERM), which consists in assuming that all the scatterers explode in concert and become acoustic sources. The classical ERM model, however, is not appropriate for PWI. We showed that the ERM can be made suitable for PWI by a spatial transformation of the hyperbolic traces present in the RF data. In vitro experiments were performed to outline the advantages of PWI with Stolt's f-k migration over the conventional delay-and-sum (DAS) approach. The Stolt's f-k migration was also compared with the Fourier-based method developed by J.-Y. Lu. Our findings show that multi-angle compounded f-k migrated images are of quality similar to those obtained with a stateof- the-art dynamic focusing mode. This remained true even with a very small number of steering angles, thus ensuring a highly competitive frame rate. In addition, the new FFT-based f-k migration provides comparable or better contrast-to-noise ratio and lateral resolution than the Lu's and DAS migration schemes. Matlab codes for the Stolt's f-k migration for PWI are provided. PMID:24626107
Decoding the matrix: Coincident membranes on the plane wave
Bousso, Raphael; Mints, Aleksey L.
2006-03-15
At the core of nonperturbative theories of quantum gravity lies the holographic encoding of bulk data in large matrices. At present this mapping is poorly understood. The plane wave matrix model provides a laboratory for isolating aspects of this problem in a controlled setting. At large boosts, configurations of concentric membranes become superselection sectors, whose exact spectra are known. From the bulk point of view, one expects product states of individual membranes to be contained within the full spectrum. However, for non-BPS states this inclusion relation is obscured by Gauss law constraints. Its validity rests on nontrivial relations in representation theory, which we identify and verify by explicit computation.
Multipole and plane wave expansions of diverging and converging fields.
Hoang, Thanh Xuan; Chen, Xudong; Sheppard, Colin J R
2014-04-21
This paper presents and compares two basis systems, spherical harmonics and plane waves, for studying diverging and converging beams in an optical system. We show a similarity between a converging field and the time reversed field of a radiation field. We present and analyze the differences between the Debye-Wolf diffraction integral and the multipole theory for focusing of polarized light. The Debye-Wolf diffraction integral gives a well-known anomalous behavior on the optical axis and at the edge of the focused beam that can be avoided by using the multipole theory. PMID:24787784
Various approximations made in augmented-plane-wave calculations
NASA Astrophysics Data System (ADS)
Bacalis, N. C.; Blathras, K.; Thomaides, P.; Papaconstantopoulos, D. A.
1985-10-01
The effects of various approximations used in performing augmented-plane-wave calculations were studied for elements of the fifth and sixth columns of the Periodic Table, namely V, Nb, Ta, Cr, Mo, and W. Two kinds of approximations have been checked: (i) variation of the number of k points used to iterate to self-consistency, and (ii) approximations for the treatment of the core states. In addition a comparison between relativistic and nonrelativistic calculations is made, and an approximate method of calculating the spin-orbit splitting is given.
G W with linearized augmented plane waves extended by high-energy local orbitals
NASA Astrophysics Data System (ADS)
Jiang, Hong; Blaha, Peter
2016-03-01
Many-body perturbation theory in the G W approximation is currently the most accurate and robust first-principles approach to determine the electronic band structure of weakly correlated insulating materials without any empirical input. Recent G W results for ZnO with more careful investigation of the convergence with respect to the number of unoccupied states have led to heated debates regarding the numerical accuracy of previously reported G W results using either pseudopotential plane waves or all-electron linearized augmented plane waves (LAPWs). The latter has been arguably regarded as the most accurate scheme for electronic-structure theory for solids. This work aims to solve the ZnO puzzle via a systematic investigation of the effects of including high-energy local orbitals (HLOs) in the LAPW-based G W calculations of semiconductors. Using ZnO as the prototypical example, it is shown that the inclusion of HLOs has two main effects: it improves the description of high-lying unoccupied states by reducing the linearization errors of the standard LAPW basis, and in addition it provides an efficient way to achieve the completeness in the summation of states in G W calculations. By investigating the convergence of G W band gaps with respect to the number of HLOs for several other typical examples, it was found that the effects of HLOs are highly system-dependent, and in most cases the inclusion of HLOs changes the band gap by less than 0.2 eV. Compared to its effects on the band gap, the consideration of HLOs has even stronger effects on the G W correction to the valence-band maximum, which is of great significance for the G W prediction of the ionization potentials of semiconductors. By considering an extended set of semiconductors with relatively well-established experimental band gaps, it was found that in general using a HLO-enhanced LAPW basis significantly improves the agreement with experiment for both the band gap and the ionization potential, and overall
The implementation of holography in the plane wave matrix model
NASA Astrophysics Data System (ADS)
Mints, Aleksey Leonidovich
It is expected that at the core of nonperturbative theories of quantum gravity, such as M-theory, lies the realization of the holographic principle, in the sense that a holographic theory should contain one binary degree of freedom per Planck area. Present understanding of such theories requires the holographic encoding of bulk data in large matrices. Currently this mapping is poorly understood. The plane wave matrix model provides a laboratory for isolating aspects of this problem in a controlled setting. At large boosts, configurations of concentric membranes become superselection sectors, whose exact spectra are known. From the bulk point of view one expects product states of individual membranes to be contained within the full spectrum. However, for non-BPS states this inclusion relation is obscured by Gauss law constraints. Its validity rests on nontrivial relations in representation theory, which we identify and verify by explicit computation. Beyond the decoding and partial identification of selected states in large matrices, one would like to get a better understanding of the holographic state counting of these degrees of freedom, i.e., entropy. Contrary to the naive expectation of holography realized in terms of the covariant entropy bound, we present evidence that it is the Bekenstein entropy bound, which is related to area differences, that is manifest in the plane wave matrix model. If holography is implemented in this way, we predict crossover behavior at strong coupling when the energy exceeds N2 in units of the mass scale.
Plane wave based selfconsistent solution of the GW Dyson equation
NASA Astrophysics Data System (ADS)
Wang, Lin-Wang; Cao, Huawei
We have developed a selfconsistent procedure to calculate the full Dyson equation based on plane wave basis set. The whole formalism is based on the Greens function matrix of the plane wave G-vector. There is no truncation of the conduction band when the dielectric function is calculated. The Dyson equation is the variational minimum solution of the total energy in terms of the Greens function. The calculation uses the ''space-time'' method, with special algorithm for imaginary time integration and Fourier transformation. We have tested isolated molecules and periodic systems. The effects of selfconsistency compared to the G0W0 results will be presented. We will also discuss some special techniques used in the k-point summation for the periodic system. Massive parallelization is used to carry out such calculations. This work is supported by the Director, SC/BES/MSED of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, through the Material Theory program at Lawrence Berkeley National Laboratory.
Gravitational scattering of zero-rest-mass plane waves
NASA Technical Reports Server (NTRS)
De Logi, W. K.; Kovacs, S. J., Jr.
1977-01-01
The Feyman-diagram technique is used to calculate the differential cross sections for the scattering of zero-rest-mass plane waves of spin 0, 1, and 2 by linearized Schwarzschild and Kerr geometries in the long-wavelength weak-field limit. It is found that the polarization of right (or left) circularly polarized electromagnetic waves is unaffected by the scattering process (i.e., helicity is conserved) and that the two helicity (polarization) states of the photon are scattered differently by the Kerr geometry. This coupling between the photon helicity and the angular momentum of the scatterer also leads to a partial polarization of unpolarized incident light. For gravitational waves, on the other hand, there is neither helicity conservation nor helicity-dependent scattering; the angular momentum of the scatterer has no polarizing effect on incident unpolarized gravitational waves.
Six-mm, plane-wave shock driver
Frank, A.M.; Chau, H.H.
1993-06-14
A 6-mm-diameter, plane-wave shock generation system has been developed and characterized as a laboratory bench driver for small scale experiments. The driver is based on an exploding-foil-driven slapper used either directly or to initiate an HE pellet. The slapper is driven by a low-inductance fireset with burst currents on the order of 30 kA and burst times of about 250ns, with a time-to-burst jitter under 10ns. Both the slapper impact and the detonation breakout of the pellet have been measured to be flat to within 10ns over a 6-mm diameter. Fabry-Perot velocimetry of impacts with LiF crystals were used to characterize shock pressures and durations. Attenuator plates and flyers driven by the HE were also measured, which provided a variety of available pulse shapes and data for modeling efforts.
Inhomogeneous plane wave and the most energetic complex ray.
Deschamps, M; Poncelet, O
2002-05-01
This paper presents a study on the wave surfaces of anisotropic solids. In addition to the classical and real rays, which are defined by the normal to the slowness surfaces, it is obtained complex rays, which are associated to specific inhomogeneous plane waves. Referring to the complex Christoffel's equation and to the Fermat's principle, an intrinsic equation can be associated to these complex rays. Limiting the study to principal planes and plotting the associated complex wave surfaces, it can be shown that four energetic rays always exist in any directions for both quasi-isotropic and anisotropic media (even beyond the cusp). Consequently, it is always possible to define four closed wave surfaces (real or not). PMID:12159950
The angular apodization in coherent plane-wave compounding.
Rodriguez-Molares, Alfonso; Torp, Hans; Denarie, Bastien; Løvstakken, Lasse
2015-11-01
This article describes the relation between apodization in conventional focused imaging and apodization in coherent plane-wave compounding (CPWC). We pose the hypothesis that equivalent transmit beams can be produced with both methods if the transmit apodization is adequately transformed. We derive a relation between apodization in CPWC and in synthetic transmit aperture imaging (STAI), which we argue to be equivalent to conventional optimal multifocus imaging. We find that under certain conditions, the transformation of the apodization becomes trivial and the same window used in STAI can be applied for CPWC but extended to the whole angle sequence. We test the hypothesis with in silico data and find that the transformed apodization accurately mimics the objective transmit apodization, with differences in the lateral resolution between 3% and 6%. PMID:26559630
Reflectarray Demonstrated to Transform Spherical Waves into Plane Waves
NASA Technical Reports Server (NTRS)
Zaman, Afrosz J.
1998-01-01
The development of low-cost, high-efficiency array antennas has been the research focus of NASA Lewis Research Center's Communications Technology Division for the past 15 years. One area of current interest is reflectarray development. Reflectarrays have generally been used to replace reflector antennas. In this capacity, different configurations (such as prime focus and offset) and various applications (such as dual frequency and scanning) have been demonstrated with great success. One potential application that has not been explored previously is the use of reflectarrays to compensate for phase errors in space-power-combining applications, such as a space-fed lens and power-combining amplifiers. Recently, we experimentally investigated the feasibility of using a reflectarray as an alternative to a dielectric lens for such applications. The experiment involved transforming the spherical waves from an orthomode horn to plane waves at the horn aperture. The reflectarray consists of square patches terminated in open stubs to provide the necessary phase compensation.
Source function and plane waves: Toward complete bader analysis.
Tantardini, Christian; Ceresoli, Davide; Benassi, Enrico
2016-09-01
The source function (SF) is a topological descriptor that was introduced and developed by C. Gatti and R.W. Bader in 1998. The SF describes the contribution of each atom to the total electron density at a given point. To date, this descriptor has only been calculable from electron densities generated by all-electron (AE) methods for the investigation of single molecules or periodic systems. This study broadens the accessibility of the SF, offering its calculation from electron densities generated by plane wave (PW) methods. The new algorithm has been implemented in the open source code, CRITIC2. Our novel approach has been validated on a series of test systems, comparing the results obtained at PW level with those previously obtained through AE methods. © 2016 Wiley Periodicals, Inc. PMID:27364862
Ab initio pseudopotential calculation for TTF-TCNQ and TSeF-TCNQ
NASA Astrophysics Data System (ADS)
Ishibashi, Shoji; Kohyama, Masanori
2000-09-01
We have investigated the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ [at room temperature (RT) and 100 K] and TSeF-TCNQ (RT), which have isomorphic crystal structure, by an ab initio plane-wave pseudopotential band calculation. To express the exchange and correlation energy for electrons, we used both the local density approximation and generalized gradient approximation for comparison. For each case, electronic band dispersions were calculated along several symmetric lines and tight-binding parameters were evaluated. The Fermi surface shape was also obtained. The six sets of results (for three structures and two approximations) were compared systematically.
Complex band structure with ultrasoft pseudopotentials: fcc Ni and Ni nanowire
NASA Astrophysics Data System (ADS)
Smogunov, Alexander; Dal Corso, Andrea; Tosatti, Erio
2003-06-01
We generalize to magnetic transition metals the approach proposed by Choi and Ihm for calculating the complex band structure of periodic systems, a key ingredient for future calculations of conductivity of an open quantum system within the Landauer-Buttiker theory. The method is implemented with ultrasoft pseudopotentials and plane wave basis set in a DFT-LSDA ab initio scheme. As a first example, we present the complex band structure of bulk fcc Ni (which constitutes the tips of a Ni nanocontact) and monatomic Ni wire (the junction between two tips). Based on our results, we anticipate some features of the spin-dependent conductance in a Ni nanocontact.
First principles pseudopotential calculations on aluminum and aluminum alloys
Davenport, J.W.; Chetty, N.; Marr, R.B.; Narasimhan, S.; Pasciak, J.E.; Peierls, R.F.; Weinert, M.
1993-12-31
Recent advances in computational techniques have led to the possibility of performing first principles calculations of the energetics of alloy formation on systems involving several hundred atoms. This includes impurity concentrations in the 1% range as well as realistic models of disordered materials (including liquids), vacancies, and grain boundaries. The new techniques involve the use of soft, fully nonlocal pseudopotentials, iterative diagonalization, and parallel computing algorithms. This approach has been pioneered by Car and Parrinello. Here the authors give a review of recent results using parallel and serial algorithms on metallic systems including liquid aluminum and liquid sodium, and also new results on vacancies in aluminum and on aluminum-magnesium alloys.
Synchrotron-radiation plane-wave GID topography (abstract)
NASA Astrophysics Data System (ADS)
Novikov, D. V.; Gog, T.; Griebenow, M.; Materlik, G.
1995-02-01
X-ray-diffraction topography is a traditional tool for investigating the real structure of crystals and provides high sensitivity to lattice constant variations with good space resolution. However, recent advances in technology and the growing importance of surface regions of single-crystal and multilayer systems require new approaches to this method, which are made possible by the high brightness and wide tunability of synchrotron radiation. In this work the SR plane-wave grazing-incidence diffraction (GID) topography is discussed as an effective tool for depth-resolved investigations of near-surface defect structures in single crystals and epitaxial layers. The favorable properties of synchrotron radiation enable one to avoid the usual limitations on applicability of this diffraction geometry and investigate all classes of defects in real materials. The experiments were performed at the beamlines ROEMO1 and CEMO of HASYLAB, using double-crystal Ge/asymmetric Si monochromators. The image formation of near-surface dislocations and the effects of refraction on rough surfaces were investigated. Oblique diffraction planes were used to compare the topography in skew incoplanar and coplanar geometries. The latter is shown to be more effective, as it utilizes the wavelength tunability of SR and allows one to vary the diffraction conditions in a wide range from usual highly asymmetric to grazing incidence below the critical angle of total external reflection (and the penetration depth from hundreds to tens of nanometers) without off-plane rotations and provides pictures free of complicated geometrical distortions. The dislocation images at different diffraction conditions proved to be qualitatively the same for near-surface defects, while the structure distortions, produced by the defects in the underlying layers, become invisible at grazing incidence, due to both depth resolution of the method and inevitable loss of lattice-parameter resolution. This might be a
NMR Shielding in Metals Using the Augmented Plane Wave Method
2015-01-01
We present calculations of solid state NMR magnetic shielding in metals, which includes both the orbital and the complete spin response of the system in a consistent way. The latter contains an induced spin-polarization of the core states and needs an all-electron self-consistent treatment. In particular, for transition metals, the spin hyperfine field originates not only from the polarization of the valence s-electrons, but the induced magnetic moment of the d-electrons polarizes the core s-states in opposite direction. The method is based on DFT and the augmented plane wave approach as implemented in the WIEN2k code. A comparison between calculated and measured NMR shifts indicates that first-principle calculations can obtain converged results and are more reliable than initially concluded based on previous publications. Nevertheless large k-meshes (up to 2 000 000 k-points in the full Brillouin-zone) and some Fermi-broadening are necessary. Our results show that, in general, both spin and orbital components of the NMR shielding must be evaluated in order to reproduce experimental shifts, because the orbital part cancels the shift of the usually highly ionic reference compound only for simple sp-elements but not for transition metals. This development paves the way for routine NMR calculations of metallic systems. PMID:26322148
Photoelectron wave function in photoionization: plane wave or Coulomb wave?
Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I
2015-11-19
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428
Acoustic plane wave preferential orientation of metal oxide superconducting materials
Tolt, Thomas L.; Poeppel, Roger B.
1991-01-01
A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0
The plain truth about forming a plane wave of neutrons
NASA Astrophysics Data System (ADS)
Wagh, Apoorva G.; Abbas, Sohrab; Treimer, Wolfgang
2011-04-01
We have attained the first sub-arcsecond collimation of a monochromatic neutron beam by diffracting neutrons from a Bragg prism, viz. a single crystal prism operating in the vicinity of Bragg incidence. Analytical as well numerical computations based on the dynamical diffraction theory, led to the optimised collimator configuration of a silicon {1 1 1} Bragg prism for 5.26 Å neutrons. We fabricated a Bragg prism to these specifications, tested and operated it at the double diffractometer setup in Helmholtz Zentrum Berlin to produce a 0.58 arcsec wide monochromatic neutron beam. With a similarly optimised Bragg prism analyser of opposite asymmetry, we recorded a 0.62 arcsec wide virgin rocking curve for this ultra-parallel beam. With this nearly plane-wave neutron beam, we have recorded the first ever USANS spectrum in Q˜10-6 Å-1 range with a hydroxyapatite casein protein sample and demonstrated the instrument capability to characterise agglomerates up to 150 μm in size. The super-collimated monochromatic beam has also enabled us to record the first neutron diffraction pattern from a macroscopic grating of 200 μm period. The transverse coherence length of 175 μm (FWHM) of the ultra-parallel beam derived from the analysis of this pattern, is the greatest achieved to date for Å wavelength neutrons.
Dispersive photonic crystals from the plane wave method
NASA Astrophysics Data System (ADS)
Guevara-Cabrera, E.; Palomino-Ovando, M. A.; Flores-Desirena, B.; Gaspar-Armenta, J. A.
2016-03-01
Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap-midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap-midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.
Quasinormal modes in de Sitter space: Plane wave method
NASA Astrophysics Data System (ADS)
Tanhayi, M. Reza
2014-09-01
Recently, in the context of dS/CFT correspondence, quasinormal modes have been put forward to address certain features of this conjecture. In particular, it is argued that the dual states of quasinormal modes are in fact the states of CFT3 which are created by operator insertions. For a scalar field in dS4, quasinormal modes which are singular on the past horizon of the south pole and decay exponentially towards the future have been considered in [G. S. Ng and A. Strominger, Classical Quantum Gravity 30, 104002 (2013); D. L. Jafferis et al., arXiv:1305.5523]; these modes lie in two complex highest-weight representations of the dS4 isometry group. In this work, we present a simple group representation analysis of these modes so that the de Sitter invariance is obviously manifest. By making use of the so-called plane wave method, we will show that the quasinormal modes correspond to one class of the unitary irreducible representation of the de Sitter group. This consideration could be generalized straightforwardly for higher-spin fields and higher dimensions; in particular, we will study the quasinormal modes for gauge and spinor fields, and, in the case of a scalar field, the generalization to higher dimensions is also obtained.
Dynamical representation of the operators for the Dirac particle in the field of a plane wave
NASA Astrophysics Data System (ADS)
Lobanov, A. E.
2015-01-01
We find an explicit form of the integrals of motion for a Dirac particle placed in a plane-wave field. These operators are a realization of the Lie algebra of the Poincaré group in the case where the representation space consists of solutions of the Dirac-Pauli equation for the particle in a plane-wave field.
Modulational instability and solitons in nonlocal media with competing nonlinearities
Esbensen, B. K.; Bache, M.; Bang, O.; Wlotzka, A.; Krolikowski, W.
2011-11-15
We investigate analytically and numerically propagation and spatial localization of light in nonlocal media with competing nonlinearities. In particular, we discuss conditions for the modulational instability of plane waves and formation of spatial solitons. We show that the competing focusing and defocusing nonlinearities enable coexistence of dark or bright spatial solitons in the same medium by varying the intensity of the beam.
Truncated spherical-wave basis set for first-principles pseudopotential calculations
NASA Astrophysics Data System (ADS)
Monserrat, B.; Haynes, P. D.
2010-11-01
Analytic results for two- and three-centre integrals are derived for the truncated spherical-wave basis set designed for first-principles pseudopotential calculations within density-functional theory. These allow the overlap, kinetic energy and non-local pseudopotential matrix elements to be calculated efficiently and accurately. In particular, the scaling of the computational effort with maximum angular momentum component is dramatically improved and the projection method takes full account of the discontinuities in the basis functions arising from their localization within spherical regions.
Plane waves in de Sitter space: Spin-1/2 field
NASA Astrophysics Data System (ADS)
Reza Tanhayi, M.; Mohsenzadeh, M.; Yusofi, E.
2016-06-01
We employ the coordinate-independent plane wave solution in de Sitter space to study the spin-1/2 particle production. The so-called plane waves in the zero-curvature limit reduce to the usual plane waves in flat space. Previously in (Int. J. Mod. Phys. D 24, 1550052 (2015)) we used such modes to study the instability of the de Sitter space, here, by explicit calculation, we study the sipn-1/2 particle creation in de Sitter space caused by mixing modes.
Gauss' law and nonlinear plane waves for Yang-Mills theory
NASA Astrophysics Data System (ADS)
Tsapalis, A.; Politis, E. P.; Maintas, X. N.; Diakonos, F. K.
2016-04-01
We investigate nonlinear plane-wave solutions of the classical Minkowskian Yang-Mills (YM) equations of motion. By imposing a suitable ansatz which solves Gauss' law for the SU(3) theory, we derive solutions which consist of Jacobi elliptic functions depending on an enumerable set of elliptic modulus values. The solutions represent periodic anharmonic plane waves which possess arbitrary nonzero mass and are exact extrema of the nonlinear YM action. Among them, a unique harmonic plane wave with a nontrivial pattern in phase, spin, and color is identified. Similar solutions are present in the SU(4) case, while they are absent from the SU(2) theory.
Pseudopotential Method for Higher Partial Wave Scattering
Idziaszek, Zbigniew; Calarco, Tommaso
2006-01-13
We present a zero-range pseudopotential applicable for all partial wave interactions between neutral atoms. For p and d waves, we derive effective pseudopotentials, which are useful for problems involving anisotropic external potentials. Finally, we consider two nontrivial applications of the p-wave pseudopotential: we solve analytically the problem of two interacting spin-polarized fermions confined in a harmonic trap, and we analyze the scattering of p-wave interacting particles in a quasi-two-dimensional system.
First principles pseudopotential calculations on aluminum and aluminum alloys
Davenport, J.W.; Chetty, N.; Marr, R.B.; Narasimhan, S.; Pasciak, J.E.; Peierls, R.F.; Weinert, M.; Rahman, T.S.
1994-12-31
Recent advances in computational techniques have led to the possibility of performing first principles calculations of the energetics of alloy formation on systems involving several hundred atoms. This includes impurity concentrations in the 1% range as well as realistic models of disordered materials (including liquids), vacancies, and grain boundaries. The new techniques involve the use of soft, fully nonlocal pseudopotentials, iterative diagonalization, and parallel computing algorithms. This approach has been pioneered by Car and Parrinello. Here the authors give a review of recent results using parallel and serial algorithms by their group on metallic systems including liquid aluminum and liquid sodium, and also new results on vacancies in aluminum and on aluminum-magnesium alloys.
Nonlocality Without Nonlocality
NASA Astrophysics Data System (ADS)
Weinstein, Steven
2009-08-01
Bell’s theorem is purported to demonstrate the impossibility of a local “hidden variable” theory underpinning quantum mechanics. It relies on the well-known assumption of ‘locality’, and also on a little-examined assumption called ‘statistical independence’ ( SI). Violations of this assumption have variously been thought to suggest “backward causation”, a “conspiracy” on the part of nature, or the denial of “free will”. It will be shown here that these are spurious worries, and that denial of SI simply implies nonlocal correlation between spacelike degrees of freedom. Lorentz-invariant theories in which SI does not hold are easily constructed: two are exhibited here. It is conjectured, on this basis, that quantum-mechanical phenomena may be modeled by a local theory after all.
NASA Astrophysics Data System (ADS)
Nazarov, R.; Shulenburger, L.; Morales, M.; Hood, Randolph Q.
2016-03-01
We performed diffusion Monte Carlo (DMC) calculations of the spectroscopic properties of a large set of molecules, assessing the effect of different approximations. In systems containing elements with large atomic numbers, we show that the errors associated with the use of nonlocal mean-field-based pseudopotentials in DMC calculations can be significant and may surpass the fixed-node error. We suggest practical guidelines for reducing these pseudopotential errors, which allow us to obtain DMC-computed spectroscopic parameters of molecules and equation of state properties of solids in excellent agreement with experiment.
Nazarov, Roman; Shulenburger, Luke; Morales, Miguel A.; Hood, Randolph Q.
2016-03-28
Diffusion Monte Carlo (DMC) calculations of the spectroscopic properties of a large set of molecules were performed, assessing the effect of different approximations. In systems containing elements with large atomic numbers, we show that the errors associated with the use of nonlocal mean-field-based pseudopotentials in DMC calculations can be significant and may surpass the fixed-node error. We suggest practical guidelines for reducing these pseudopotential errors, which allow us to obtain DMC-computed spectroscopic parameters of molecules and equation of state properties of solids in excellent agreement with experiment.
Free energy and phase transition of the matrix model on a plane wave
Hadizadeh, Shirin; Ramadanovic, Bojan; Semenoff, Gordon W.; Young, Donovan
2005-03-15
It has recently been observed that the weakly coupled plane-wave matrix model has a density of states which grows exponentially at high energy. This implies that the model has a phase transition. The transition appears to be of first order. However, its exact nature is sensitive to interactions. In this paper, we analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator in the finite temperature plane-wave matrix model to three-loop order. We show that the phase transition is indeed of first order. We also compute the correction to the Hagedorn temperature to order two loops.
On the optical theorem and non-plane-wave scattering in quantum mechanics
NASA Astrophysics Data System (ADS)
Gouesbet, G.
2009-11-01
In quantum mechanics, the optical theorem states that the extinction cross section is equal (within a prefactor 4π/k, in which k is a quantum wave number) to the imaginary part of the forward scattering angular function. This theorem is valid for plane wave scattering. We discuss modifications required for non-plane-wave scattering and establish a generalized expression for the extinction cross section in quantum mechanics. Examples are provided for two kinds of quantum shaped beams, namely, Gaussian and Bessel beams.
Killing spinors and exact plane-wave solutions of extended supergravity
NASA Astrophysics Data System (ADS)
Hull, C. M.
1984-07-01
Urrutia's ansatz for exact plane-wave solutions of simple supergravity is generalized to N=2 extended supergravity and conditions are given for the solutions to be nontrivial. Conditions are also given for the plane-wave background to be invariant under a local supersymmetry transformation generated by a Killing spinor. It is seen that even though a bosonic background can admit a spin-32 solution when it does not possess a Killing spinor, if it is supersymmetric it admits a more general gravitino solution. Comparison is made with the solutions of Aichelburg and Dereli.
Solid explosive plane-wave lenses pressed-to-shape with dies
Olinger, B.
2007-11-01
Solid-explosive plane-wave lenses 1", 2" and 4¼" in diameter have been mass-produced from components pressed-to-shape with aluminum dies. The method used to calculate the contour between the solid plane-wave lens components pressed-to-shape with the dies is explained. The steps taken to press, machine, and assemble the lenses are described. The method of testing the lenses, the results of those tests, and the corrections to the dies are reviewed. The work on the ½", 8", and 12" diameter lenses is also discussed.
kṡp formula for use with linearized augmented plane waves
NASA Astrophysics Data System (ADS)
Shishidou, Tatsuya; Oguchi, Tamio
2008-12-01
We provide kṡp formalism within the full-potential linearized augmented plane-wave (LAPW) method. Unlike the pure plane waves, the LAPW functions do not behave trivially in moving from k to k+q and their incompleteness as a basis set should be taken into account. Derivatives of the sphere matching coefficients play the key role, for which we find a simple formula. Concrete formula for the kṡp matrix elements is derived and numerically tested. Generalized second-order perturbation theory allowing for a degenerate case is presented and the literally exact electronic band gradients and curvatures are accessible.
Vectorial spherical-harmonics representation of an inhomogeneous elliptically polarized plane wave.
Frezza, F; Mangini, F
2015-07-01
In this paper, a generalization of the vectorial spherical-harmonics expansion of an inhomogeneous elliptically polarized plane wave is presented. The solution has been achieved using the Legendre functions generalized via hypergeometric and gamma functions, shifting the difficulty to the determination of only expansion coefficients. In order to validate the presented method, a Matlab code has been implemented. To compare the results a Mie scattering by a sphere is considered, then a truncation criterion for the numerical evaluation of the series is proposed, and the Mie scattering coefficients by perfectly conducting and dielectric spheres excited by an inhomogeneous elliptically polarized plane wave are shown. PMID:26367169
Efficiency of magnetic plane wave pumping of a ferrofluid through a planar duct
NASA Astrophysics Data System (ADS)
Felderhof, B. U.
2011-09-01
The efficiency of ferrohydrodynamic pumping of a ferrofluid through a planar duct by means of a running magnetic plane wave is studied to second order in the amplitude of the exciting current density. The rate of dissipation in the fluid is calculated from the first order magnetic field and magnetization. It turns out that the efficiency, defined as the ratio of net flow velocity to power input, is comparable in magnitude to that for Stokes peristaltic pumping. The theory for electrohydrodynamic pumping of a polar liquid by means of a running electric plane wave is shown to be nearly identical.
The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence
ERIC Educational Resources Information Center
Smith, Glenn S.
2012-01-01
In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…
The use of the plane wave fluid-structure interaction loading approximation in NASTRAN
NASA Technical Reports Server (NTRS)
Dawson, R. L.
1991-01-01
The Plane Wave Approximation (PWA) is widely used in finite element analysis to implement the loading generated by an underwater shock wave. The method required to implement the PWA in NASTRAN is presented along with example problems. A theoretical background is provided and the limitations of the PWA are discussed.
A beamforming method for plane wave Doppler imaging of high flow velocities
NASA Astrophysics Data System (ADS)
Mansour, Omar; Poepping, Tamie L.; Lacefield, James C.
2016-04-01
Plane wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events, and continuous Doppler data. In most implementations of plane-wave imaging, multiple low resolution image (LRI) frames from different plane wave tilt angles are compounded to form a single high resolution image (HRI) frame, thereby reducing the frame rate. Compounding is a low-pass mean filter that causes attenuation and aliasing to signals with high Doppler shifts. On the other hand, the lateral beam profile and hence the quality of the HRI frames is improved by increasing the number of compounded frames. Therefore, a tradeoff exists between the Doppler limits and beam profile. In this paper, we present a method that eliminates this tradeoff and produces high resolution images without the use of compounding. The method suppresses the off-focus (clutter) signal by spreading its spectrum, while keeping the spectrum of the in-focus signal intact. The spreading is achieved by using a random sequence of tilt angles, as opposed to a linear sweep. Experiments performed using a carotid vessel phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and in particular outperforms conventional plane-wave Doppler at higher flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.
From plane waves to local Gaussians for the simulation of correlated periodic systems.
Booth, George H; Tsatsoulis, Theodoros; Chan, Garnet Kin-Lic; Grüneis, Andreas
2016-08-28
We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller-Plesset perturbation theory. PMID:27586908
Al-Saidi, W A; Krakauer, Henry; Zhang, Shiwei
2007-05-21
The authors present phaseless auxiliary-field (AF) quantum Monte Carlo (QMC) calculations of the ground states of some hydrogen-bonded systems. These systems were selected to test and benchmark different aspects of the new phaseless AF QMC method. They include the transition state of H+H(2) near the equilibrium geometry and in the van der Walls limit, as well as the H(2)O, OH, and H(2)O(2) molecules. Most of these systems present significant challenges for traditional independent-particle electronic structure approaches, and many also have exact results available. The phaseless AF QMC method is used either with a plane wave basis with pseudopotentials or with all-electron Gaussian basis sets. For some systems, calculations are done with both to compare and characterize the performance of AF QMC under different basis sets and different Hubbard-Stratonovich decompositions. Excellent results are obtained using as input single Slater determinant wave functions taken from independent-particle calculations. Comparisons of the Gaussian based AF QMC results with exact full configuration interaction show that the errors from controlling the phase problem with the phaseless approximation are small. At the large basis-size limit, the AF QMC results using both types of basis sets are in good agreement with each other and with experimental values. PMID:17523796
Acoustic plane waves incident on an oblique clamped panel in a rectangular duct
NASA Technical Reports Server (NTRS)
Unz, H.; Roskam, J.
1980-01-01
The theory of acoustic plane waves incident on an oblique clamped panel in a rectangular duct was developed from basic theoretical concepts. The coupling theory between the elastic vibrations of the panel (plate) and the oblique incident acoustic plane wave in infinite space was considered in detail, and was used for the oblique clamped panel in the rectangular duct. The partial differential equation which governs the vibrations of the clamped panel (plate) was modified by adding to it stiffness (spring) forces and damping forces. The Transmission Loss coefficient and the Noise Reduction coefficient for oblique incidence were defined and derived in detail. The resonance frequencies excited by the free vibrations of the oblique finite clamped panel (plate) were derived and calculated in detail for the present case.
Well-posedness and generalized plane waves simulations of a 2D mode conversion model
NASA Astrophysics Data System (ADS)
Imbert-Gérard, Lise-Marie
2015-12-01
Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.
Liu, Haigang; Xu, Zijian; Zhang, Xiangzhi; Wu, Yanqing; Guo, Zhi; Tai, Renzhong
2013-04-10
In coherent diffractive imaging (CDI) experiments, a beamstop (BS) is commonly used to extend the exposure time of the charge-coupled detector and obtain high-angle diffraction signals. However, the negative effect of a large BS is also evident, causing low-frequency signals to be missed and making CDI reconstruction unstable or causing it to fail. We performed a systematic simulation investigation of the effects of BSs on the quality of reconstructed images from both plane-wave and ptychographic CDI (PCDI). For the same imaging quality, we found that ptychography can tolerate BSs that are at least 20 times larger than those for plane-wave CDI. For PCDI, a larger overlap ratio and a smaller illumination spot can significantly increase the imaging robustness to the negative influence of BSs. Our results provide guidelines for the usage of BSs in CDI, especially in PCDI experiments, which can help to further improve the spatial resolution of PCDI. PMID:23670772
Plane Wave Diffraction by a Finite Plate with Impedance Boundary Conditions
Nawaz, Rab; Ayub, Muhammad; Javaid, Akmal
2014-01-01
In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in. PMID:24755624
A nonperturbative definition of N = 4 Super Yang-Mills by the plane wave matrix model
Shimasaki, Shinji
2008-11-23
We propose a nonperturbative definition of N = 4 Super Yang-Mills(SYM). We realize N = 4 SYM on RxS{sup 3} as the theory around a vacuum of the plane wave matrix model. Our regularization preserves 16 supersymmetries and the gauge symmetry. We perform the one-loop calculation to give evidence that in the continuum limit the superconformal symmetry is restored.
Simulations and cold-test results of a prototype plane wave transformer linac structure
NASA Astrophysics Data System (ADS)
Kumar, Arvind; Pant, K. K.; Krishnagopal, S.
2002-03-01
We have built a 4-cell prototype plane wave transformer (PWT) linac structure. We discuss here details of the design and fabrication of the PWT linac structure. We present results from superfish and gdfidl simulations as well as cold tests, which are in good agreement with each other. We also present detailed tolerance maps for the PWT structure. We discuss beam dynamics simulation studies performed using parmela.
Theoretical calculation of plane wave speeds for alkali metals under pressure.
NASA Technical Reports Server (NTRS)
Eftis, J.; Macdonald, D. E.; Arkilic, G. M.
1971-01-01
Theoretical calculations of the variation with pressure of small amplitude plane wave speeds are performed for sodium and potassium at zero temperature. The results obtained for wave speeds associated with volume dependent second-order elastic coefficients show better agreement with experimental data than for wave speeds associated with shear dependent coefficients. This result is believed to be due to omission of the band structure correction to the strain energy density.
Woods, Daniel C; Bolton, J Stuart; Rhoads, Jeffrey F
2015-10-01
The transmission of airborne sound into high-impedance media is of interest in several applications. For example, sonic booms in the atmosphere may impact marine life when incident on the ocean surface, or affect the integrity of existing structures when incident on the ground. Transmission across high impedance-difference interfaces is generally limited by reflection and refraction at the surface, and by the critical angle criterion. However, spatially decaying incident waves, i.e., inhomogeneous or evanescent plane waves, may transmit energy above the critical angle, unlike homogeneous plane waves. The introduction of a decaying component to the incident trace wavenumber creates a nonzero propagating component of the transmitted normal wavenumber, so energy can be transmitted across the interface. A model of evanescent plane waves and their transmission across fluid-fluid and fluid-solid interfaces is developed here. Results are presented for both air-water and air-solid interfaces. The effects of the incident wave parameters (including the frequency, decay rate, and incidence angle) and the interfacial properties are investigated. Conditions for which there is no reflection at the air-solid interface, due to impedance matching between the incident and transmitted waves, are also considered and are found to yield substantial transmission increases over homogeneous incident waves. PMID:26520290
A plane wave generation method by wave number domain point focusing.
Chang, Ji-Ho; Choi, Jung-Woo; Kim, Yang-Hann
2010-11-01
A method for generation of a wave-field that is a plane wave is described. This method uses an array of loudspeakers phased so that the field in the wave-number domain is nearly concentrated at a point, this point being at the wave-number vector of the desired plane wave. The method described here for such a wave-number concentration makes use of an expansion in spherical harmonics, and requires a relatively small number of measurement points for a good approximate achievement of a plane wave. The measurement points are on a spherical surface surrounding the array of loudspeakers. The input signals for the individual loudspeakers can be derived without a matrix inversion or without explicit assumptions about the loudspeakers. The mathematical development involves spherical harmonics and three-dimensional Fourier transforms. Some numerical examples are given, with various assumptions concerning the nature of the loudspeakers, that support the premise that the method described in the present paper may be useful in applications. PMID:21110571
ERIC Educational Resources Information Center
Goodfriend, P. L.
1979-01-01
It is shown that exact pseudopotentials for excited states of hydrogen atoms can be derived. A very simple, novel application of pseudopotential method which displays vividly some of its limitations is presented. (Author/GA)
NASA Astrophysics Data System (ADS)
Bijarnia, R.; Singh, B.
2016-05-01
The paper is concerned with the propagation of plane waves in a transversely isotropic two temperature generalized thermoelastic solid half-space with voids and rotation. The governing equations are modified in the context of Lord and Shulman theory of generalized thermoelasticity and solved to show the existence of four plane waves in the x - z plane. Reflection of these plane waves from thermally insulated stress free surface is also studied to obtain a system of four non-homogeneous equations. For numerical computations of speed and reflection coefficients, a particular material is modelled as transversely isotropic generalized thermoelastic solid half-space. The speeds of plane waves are computed against the angle of propagation to observe the effects of two temperature and rotation. Reflection coefficients of various reflected waves are also computed against the angle of incidence to observe the effects of various parameters.
Pseudopotentials for an ultracold dipolar gas
NASA Astrophysics Data System (ADS)
Whitehead, T. M.; Conduit, G. J.
2016-02-01
A gas of ultracold molecules interacting via the long-range dipolar potential offers a highly controlled environment in which to study strongly correlated phases. However, at particle coalescence the divergent 1 /r3 dipolar potential and associated pathological wave function hinder computational analysis. For a dipolar gas constrained to two dimensions we overcome these numerical difficulties by proposing a pseudopotential that is explicitly smooth at particle coalescence, resulting in a 2000-times speedup in diffusion Monte Carlo calculations. The pseudopotential delivers the scattering phase shifts of the dipolar interaction with an accuracy of 10-5 and predicts the energy of a dipolar gas to an accuracy of 10-4EF in a diffusion Monte Carlo calculation.
NASA Astrophysics Data System (ADS)
Li, Yanli; Dabo, Ismaila
2011-10-01
Plane-wave electronic-structure predictions based upon orbital-dependent density-functional theory (OD-DFT) approximations, such as hybrid density-functional methods and self-interaction density-functional corrections, are severely affected by computational inaccuracies in evaluating electron interactions in the plane-wave representation. These errors arise from divergence singularities in the plane-wave summation of electrostatic and exchange interaction contributions. Auxiliary-function corrections are reciprocal-space countercharge corrections that cancel plane-wave singularities through the addition of an auxiliary function to the point-charge electrostatic kernel that enters into the expression of interaction terms. At variance with real-space countercharge corrections that are employed in the context of density-functional theory (DFT), reciprocal-space corrections are computationally inexpensive, making them suited to more demanding OD-DFT calculations. Nevertheless, there exists much freedom in the choice of auxiliary functions and various definitions result in different levels of performance in eliminating plane-wave inaccuracies. In this work we derive exact point-charge auxiliary functions for the description of molecular structures of arbitrary translational symmetry, including the yet unaddressed one-dimensional case. In addition, we provide a critical assessment of different reciprocal-space countercharge corrections and demonstrate the improved accuracy of point-charge auxiliary functions in predicting the electronic levels and electrical response of conjugated polymers from plane-wave OD-DFT calculations.
Love wave tomography in southern Africa from a two-plane-wave inversion method
NASA Astrophysics Data System (ADS)
Li, Aibing; Li, Lun
2015-08-01
Array measurements of surface wave phase velocity can be biased by multipath arrivals. A two-plane-wave (TPW) inversion method, in which the incoming wavefield is represented by the interference of two plane waves, is able to account for the multipath effect and solve for laterally varying phase velocity. Despite broad applications of the TPW method, its usage has been limited to Rayleigh waves. In this study, we have modified the TPW approach and applied it to Love waves. Main modifications include decomposing Love wave amplitude on the transverse component to x and y components in a local Cartesian system for each earthquake and using both components in the inversion. Such decomposition is also applied to the two plane waves to predict the incoming wavefield of an earthquake. We utilize fundamental mode Love wave data recorded at 85 broad-band stations from 69 distant earthquakes and solved for phase velocity in nine frequency bands with centre periods ranging from 34 to 100 s. The average phase velocity in southern Africa increases from 4.30 km s-1 at 34 s to 4.87 km s-1 at 100 s. Compared with predicted Love wave phase velocities from the published 1-D SV velocity model and radial anisotropy model in the region, these values are compatible from 34 to 50 s and slightly higher beyond 50 s, indicating radial anisotropy of VSH > VSV in the shallow upper mantle. A high Love wave velocity anomaly is imaged in the central and southern Kaapvaal craton at all periods, reflecting a cold and depleted cratonic lithosphere. A low velocity anomaly appears in the Bushveld Complex from 34 to 50 s, which can be interpreted as being caused by high iron content from an intracratonic magma intrusion. The modified TPW method provides a new way to measure Love wave phase velocities in a regional array, which are essential in developing radial anisotropic models and understanding the Earth structure in the crust and upper mantle.
Quantum mechanics of lattice gas automata: One-particle plane waves and potentials
Meyer, D.A.
1997-05-01
Classical lattice gas automata effectively simulate physical processes, such as diffusion and fluid flow (in certain parameter regimes), despite their simplicity at the microscale. Motivated by current interest in quantum computation we recently defined {ital quantum} lattice gas automata; in this paper we initiate a project to analyze which physical processes these models can effectively simulate. Studying the single particle sector of a one-dimensional quantum lattice gas we find discrete analogs of plane waves and wave packets, and then investigate their behavior in the presence of inhomogeneous potentials. {copyright} {ital 1997} {ital The American Physical Society}
Extracting chemical information from plane wave calculations by a 3D 'fuzzy atoms' analysis
NASA Astrophysics Data System (ADS)
Bakó, I.; Stirling, A.; Seitsonen, A. P.; Mayer, I.
2013-03-01
Bond order and valence indices have been calculated by the method of the three-dimensional 'fuzzy atoms' analysis, using the numerical molecular orbitals obtained from plane wave DFT calculations, i.e., without introducing any external atom-centered functions. Weight functions of both Hirshfeld and Becke types have been applied. The results are rather close to the similar 'fuzzy atoms' ones obtained by using atom-centered basis sets and agree well with the chemical expectations, stressing the power of the genuine chemical concepts.
Computational Electromagnetic Dosimetry of a Human Body in a Vehicle for Plane-wave Exposure
NASA Astrophysics Data System (ADS)
Hirata, Akimasa
The present study investigated whole-body specific absorption rate of a human body in a vehicle cabin for plane-wave exposure. The rationale for this investigation is that fields in the vehicle without human have been enhanced in particular frequency region due to standing waves, and thus power absorption in the human body is of interest. For our computational results, the whole-body average specific absorption rate of the human in the vehicle was found to be 60% smaller than that in free space. The reason for this upset is that the standing wave over the vehicle cabin was suppressed due to power absorption by the human.
Tight focusing of plane waves from micro-fabricated spherical mirrors.
Goldwin, J; Hinds, E A
2008-10-27
We derive a formula for the light field of a monochromatic plane wave that is truncated and reflected by a spherical mirror. Within the scalar field approximation, our formula is valid even for deep mirrors, where the aperture radius approaches the radius of curvature. We apply this result to micro-fabricated mirrors whose size scales are in the range of tens to hundreds of wavelengths, and show that sub-wavelength focusing (full-width at half-maximum intensity) can be achieved. This opens up the possibility of scalable arrays of tightly focused optical dipole traps without the need for high-performance optical systems. PMID:18958062
Plane wave transport method for low symmetry lattices and its application
Srivastava, Manoj K; Wang, Yan; Zhang, Xiaoguang; Nicholson, Don M; Cheng, Hai-Ping
2012-01-01
The existing first-principles plane wave transport method implementation \\cite{,choi-1,qe} has the limitation that it only allows transport directions along lattice vectors perpendicular to the basal plane formed by two other lattice vectors. We generalize the algorithm to low symmetry, nonorthogonal lattices thus allowing solution to problems in which the transport direction is not along any lattice vectors. As an application, we calculate the transmission and reflection coefficients, and determine interface resistance of various grain boundaries in crystalline copper.
Relativistic Two-Boson System in Presence of Electromagnetic Plane Wave
NASA Astrophysics Data System (ADS)
Droz-Vincent, Ph.
2016-09-01
The relativistic two-body problem is considered for spinless particles subject to an external electromagnetic field. When this field is made of the monochromatic superposition of two counter-propagating plane waves (and provided the mutual interaction between particles is known), it is possible to write down explicitly a pair of coupled wave equations (corresponding to a pair of mass-shell constraints) which takes into account also the field contribution. These equations are manifestly covariant; constants of the motion are exhibited, so one ends up with a reduced problem involving five degrees of freedom.
A full 3D plane-wave-expansion model for 1-3 piezoelectric composite structures.
Wilm, Mikaël; Ballandras, Sylvain; Laude, Vincent; Pastureaud, Thomas
2002-09-01
The plane-wave-expansion (PWE) approach dedicated to the simulation of periodic devices has been extended to 1-3 connectivity piezoelectric composite structures. The case of simple but actual piezoelectric composite structures is addressed, taking piezoelectricity, acoustic losses, and electrical excitation conditions rigorously into account. The material distribution is represented by using a bidimensional Fourier series and the electromechanical response is simulated using a Bloch-Floquet expansion together with the Fahmy-Adler formulation of the Christoffel problem. Application of the model to 1-3 connectivity piezoelectric composites is reported and compared to previously published analyses of this problem. PMID:12243182
Hybrid nonlocality distillation
NASA Astrophysics Data System (ADS)
Wu, Keng-Shuo; Hsu, Li-Yi
2013-08-01
In this Letter, we introduce the notion of hybrid nonlocality distillation, in which different nonlocal boxes are exploited for nonlocality distillation. Here, we quantify the nonlocality using the violation degree of either the Clauser-Horne-Shimony-Holt inequality or the I3322 inequality. Our study shows that hybrid nonlocality distillation can outperform nonlocality distillation using copies of single nonlocal boxes. In particular, more nonlocality of undistillable boxes can be activated with the assistance of distillable boxes. Equivalently, distillable boxes can achieve more nonlocality with the assistance of undistillable boxes.
Pseudopotential treatment of two body interactions
NASA Astrophysics Data System (ADS)
Kanjilal, Krittika
Ultracold atomic gases have been of great theoretical and experimental interest in the last two decades. In these systems, the de Broglie wavelength of the particles is much greater than the two body van der Waals length. As a result, the details of the two body interaction potential are irrelevant for a large number of applications and the realistic two body interaction potential can be replaced by a simple finite range or zero range model potential that reproduces the scattering quantities of the full interaction potential. This thesis develops zero range pseudopotentials and applies them to trapped two-particle systems. Ultracold gases loaded into optical lattices can be used to realize two particle systems under approximately harmonic confinement. We use pseudopotentials to obtain the eigenspectrum of two particles under external harmonic confinement semi-analytically. Advancements in trapping technology have resulted in the realization of low-dimensional systems. We develop pseudopotentials to treat two body interactions in one and two dimensions. We also elaborate on the physics that is unique to one and two dimensional systems. Feshbach resonances allow for the tunability of the effective two body interaction strength in the presence of a magnetic field. To model Feshbach resonances in two and three dimensions we develop coupled two channel zero range potentials. Dipole-dipole interactions in Chromium and polar molecules have been the subject of a lot of recent research. Unlike the interactions between two alkali atoms, these interactions are long range and anisotropic. We explore the scattering properties of two aligned dipoles using a simple shape dependent model potential. To understand a system two aligned dipoles under confinement, we develop a pseudopotential treatment for cylindrically symmetric interaction potentials under cylindrically symmetric harmonic confinement. This pseudopotential can be used to model any cylindrically symmetric interaction
Plane Wave Imaging for ultrasonic non-destructive testing: Generalization to multimodal imaging.
Le Jeune, Léonard; Robert, Sébastien; Lopez Villaverde, Eduardo; Prada, Claire
2016-01-01
This paper describes a new ultrasonic array imaging method for Non-Destructive Testing (NDT) which is derived from the medical Plane Wave Imaging (PWI) technique. The objective is to perform fast ultrasound imaging with high image quality. The approach is to transmit plane waves at several angles and to record the back-scattered signals with all the array elements. Focusing in receive is then achieved by coherent summations of the signals in every point of a region of interest. The medical PWI is generalized to immersion setups where water acts as a coupling medium and to multimodal (direct, half-skip modes) imaging in order to detect different types of defects (inclusions, porosities, cracks). This method is compared to the Total Focusing Method (TFM) which is the reference imaging technique in NDT. First, the two post-processing algorithms are described. Then experimental results with the array probe either in contact or in immersion are presented. A good agreement between the TFM and the PWI is observed, with three to ten times less transmissions required for the PWI. PMID:26323547
Fast solution of elliptic partial differential equations using linear combinations of plane waves.
Pérez-Jordá, José M
2016-02-01
Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps. PMID:26986436
2, Pulse-mode expansions and refractive indices in plane-wave propagation
Shore, B.W.; Sacks, R.; Karr, T.; Morris, J.; Paisner, J.A.
1987-06-20
This memo presents basic background theory for treating simultaneous propagation of electromagnetic pulses of various colors, directed along a common ray, through a molecular vapor. The memo discusses some techniques for expanding the positive frequency part of the transverse electric field into pulse modes, characterized by carrier frequencies within a modulated envelope. We discuss, in the approximation of plane waves with slowly varying envelopes, a set of uncoupled envelope equations in which a polarization mode-envelope acts as a source for an electric-field envelope. These equations, when taken with a prescription for the polarization field, are the basic equations of plane-wave pulse propagation through a molecular medium. We discuss two ways of treating dispersive media, one based upon expansions in the frequency domain and the other based in the time domain. In both cases we find envelope equations that involve group velocities. This memo represents a portion of a more extensive treatment of propagation to be presented separately. Many of the equations presented here have been described in various books and articles. They are collected and described here as a summary and review of contemporary theory.
Scaled plane-wave Born cross sections for atoms and molecules
NASA Astrophysics Data System (ADS)
Tanaka, H.; Brunger, M. J.; Campbell, L.; Kato, H.; Hoshino, M.; Rau, A. R. P.
2016-04-01
Integral cross sections for optically allowed electronic-state excitations of atoms and molecules by electron impact, by applying scaled plane-wave Born models, are reviewed. Over 40 years ago, Inokuti presented an influential review of charged-particle scattering, based on the theory pioneered by Bethe forty years earlier, which emphasized the importance of reliable cross-section data from low eV energies to high keV energies that are needed in many areas of radiation science with applications to astronomy, plasmas, and medicine. Yet, with a couple of possible exceptions, most computational methods in electron-atom scattering do not, in general, overlap each other's validity range in the region from threshold up to 300 eV and, in particular, in the intermediate region from 30 to 300 eV. This is even more so for electron-molecule scattering. In fact this entire energy range is of great importance and, to bridge the gap between the two regions of low and high energy, scaled plane-wave Born models were developed to provide reliable, comprehensive, and absolute integral cross sections, first for ionization by Kim and Rudd and then extended to optically allowed electronic-state excitation by Kim. These and other scaling models in a broad, general application to electron scattering from atoms and molecules, their theoretical basis, and their results for cross sections along with comparison to experimental measurements are reviewed. Where possible, these data are also compared to results from other computational approaches.
Fast solution of elliptic partial differential equations using linear combinations of plane waves
NASA Astrophysics Data System (ADS)
Pérez-Jordá, José M.
2016-02-01
Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations A x =b , where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O (N logN ) memory and executing an iteration in O (N log2N ) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.
Radiation of de-excited electrons at large times in a strong electromagnetic plane wave
NASA Astrophysics Data System (ADS)
Kazinski, P. O.
2013-12-01
The late time asymptotics of the physical solutions to the Lorentz-Dirac equation in the electromagnetic external fields of simple configurations-the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave-are found. The solutions to the Landau-Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. Some general properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late time asymptotics are derived for a charged particle moving in the external electromagnetic fields of the simple configurations pointed above. This provides a simple method to verify experimentally that the charged particle has reached the asymptotic regime.
Plane wave method for elastic wave scattering by a heterogeneous fracture
Nakagawa, Seiji; Nihei, Kurt T.; Myer, Larry R.
2003-02-21
A plane-wave method for computing the three-dimensional scattering of propagating elastic waves by a planar fracture with heterogeneous fracture compliance distribution is presented. This method is based upon the spatial Fourier transform of the seismic displacement-discontinuity (SDD) boundary conditions (also called linear slip interface conditions), and therefore, called the wave-number-domain SDD method (wd-SDD method). The resulting boundary conditions explicitly show the coupling between plane waves with an incident wave number component (specular component) and scattered waves which do not follow Snell's law (nonspecular components) if the fracture is viewed as a planar boundary. For a spatially periodic fracture compliance distribution, these boundary conditions can be cast into a linear system of equations that can be solved for the amplitudes of individual wave modes and wave numbers. We demonstrate the developed technique for a simulated fracture with a stochastic (correlated) surface compliance distribution. Low- and high-frequency solutions of the method are also compared to the predictions by low-order Born series in the weak and strong scattering limit.
Whole body exposure at 2100 MHz induced by plane wave of random incidences in a population
NASA Astrophysics Data System (ADS)
Conil, Emmanuelle; Hadjem, Abdelhamid; El Habachi, Aimad; Wiart, J.
2010-11-01
In this article, the whole body exposure induced by plane wave coming from a random direction of arrival is analyzed at 2100 MHz. This work completes previous studies on the influence of different parameters on the whole body exposure (such as morphology, frequency or usage in near field). The Visible Human phantom has been used to build a surrogate model to predict the whole body exposure depending on the highlighted surface of the phantom and on the direction of arrival of the incident plane wave. For the Visible Human, the error on the whole body averaged Specific Absorption Rate (SAR) is on average 4%. The surrogate model is applied to other 3D anthropomorphic phantoms for a frontal incidence with an averaged error of 10%. The great interest of the surrogate model is the possibility to apply a Monte Carlo process to assess probability distribution function of a population. A recent French anthropometric database of more than 3500 adults is used to build the probability distribution function of the whole body SAR for a random direction of arrival.
Stolt’s f-k migration for plane wave ultrasound imaging
Garcia, Damien; Le Tarnec, Louis; Muth, Stéphan; Montagnon, Emmanuel; Porée, Jonathan; Cloutier, Guy
2013-01-01
Ultrafast ultrasound is an emerging modality that offers new perspectives and opportunities in medical imaging. Plane wave imaging (PWI) allows one to attain very high frame rates by transmission of planar ultrasound wavefronts. As a plane wave reaches a given scatterer, the latter becomes a secondary source emitting upward spherical waves and creating a diffraction hyperbola in the received RF (radio-frequency) signals. To produce an image of the scatterers, all the hyperbolas must be migrated back to their apexes. In order to perform beamforming of plane wave echo RFs and return high-quality images at high frame rates, we propose a new migration method carried out in the frequency-wavenumber (f-k) domain. The f-k migration for PWI has been adapted from the Stolt migration for seismic imaging. This migration technique is based on the exploding reflector model (ERM), which consists in assuming that all the scatterers explode in concert and become acoustic sources. The classical ERM model, however, is not appropriate for PWI. We showed that the ERM can be made suitable for PWI by a spatial transformation of the hyperbolic traces present in the RF data. In vitro experiments were performed to sketch the advantages of PWI with Stolt’s f-k migration over the conventional delay-and-sum (DAS) approach. The Stolt’s f-k migration was also compared with the Fourier-based method developed by J-Y Lu. Our findings show that multi-angle compounded f-k migrated images are of quality similar to those obtained with a state-of-the-art dynamic focusing mode. This remained true even with a very small number of steering angles thus ensuring a highly competitive frame rate. In addition, the new FFT-based f-k migration provides comparable or better contrast-to-noise ratio and lateral resolution than the Lu’s and DAS migration schemes. Matlab codes of the Stolt’s f-k migration for PWI are provided. PMID:24626107
NASA Astrophysics Data System (ADS)
Medvedik, M. Yu.; Smirnov, Yu. G.; Tsupak, A. A.
2014-08-01
The scalar problem of plane wave diffraction by a system of bodies and infinitely thin screens is considered in a quasi-classical formulation. The solution is sought in the classical sense but is defined not in the entire space ℝ3 but rather everywhere except for the screen edges. The original boundary value problem for the Helmholtz equation is reduced to a system of weakly singular integral equations in the regions occupied by the bodies and on the screen surfaces. The equivalence of the integral and differential formulations is proven, and the solvability of the system in the Sobolev spaces is established. The integral equations are approximately solved by the Bubnov-Galerkin method. The convergence of the method is proved, its software implementation is described, and numerical results are presented.
Schwab, Hans-Martin; Beckmann, Martin F.; Schmitz, Georg
2016-01-01
Photoacoustic imaging aims to visualize light absorption properties of biological tissue by receiving a sound wave that is generated inside the observed object as a result of the photoacoustic effect. In clinical applications, the strong light absorption in human skin is a major problem. When high amplitude photoacoustic waves that originate from skin absorption propagate into the tissue, they are reflected back by acoustical scatterers and the reflections contribute to the received signal. The artifacts associated with these reflected waves are referred to as clutter or skin echo and limit the applicability of photoacoustic imaging for medical applications severely. This study seeks to exploit the acoustic tissue information gained by plane wave ultrasound measurements with a linear array in order to correct for reflections in the photoacoustic image. By deriving a theory for clutter waves in k-space and a matching inversion approach, photoacoustic measurements compensated for clutter are shown to be recovered. PMID:27446669
A Fortran code for the scattering of EM plane waves by two cylinders at normal incidence
NASA Astrophysics Data System (ADS)
Yousif, Hashim A.; Köhler, Sigurd
1990-06-01
A Fortran code for the scattering of electromagnetic plane waves from two infinitely long penetrable cylinders with circular cross sections at normal incidence is presented. The radius and the refractive index of each cylinder are arbitrary as well as the separation of the cylinders. The program calculates the Mueller scattering matrix elements ( Sij), various cross sections, and the square of the scattered amplitutes. All computations are done by using single precision arithmetic procedures. The code can be run on many different computers with minor modifications. The restrictions for each of the supported environments and the range of input parameters (size parameter, refractive index, and the separation of the cylinders) are discussed. To our knowledge, such a code has not been presented before.
Dual series solution to the scattering of plane waves from a binary conducting grating
NASA Astrophysics Data System (ADS)
Kok, Yon-Lin; Gallagher, Neal C., Jr.; Ziolkowski, Richard W.
1989-07-01
The problem of EM-wave scattering from a perfectly conducting grating with a periodic groove structure is considered. A system of dual series equations is derived by enforcing the EM boundary conditions; this leads to a boundary-value problem that is solved. The mathematics leading to the solution of the dual series system is derived from the equivalent Riemann-Hilbert problem in complex-variable theory and its solution. The solution converges absolutely and makes it possible to obtain analytical results, even where other numerical methods, such as the mode-matching method and spectral iteration methods, are numerically unstable. Consideration is also given to the relative phase values for the diffracted fields. The phase differences between the scattered fields resulting from two orthogonally polarized incident plane waves can be explicitly determined for any incidence angles and for any groove dimensions.
A set of verification test cases for Eiger : plane wave scattering from a sphere.
Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel
2004-10-01
This report discusses a set of verification test cases for the frequency-domain, boundary-element, electromagnetics code Eiger based on the analytical solution of plane wave scattering from a sphere. Three cases will be considered: when the sphere is made of perfect electric conductor, when the sphere is made of lossless dielectric and when the sphere is made of lossy dielectric. We outline the procedures that must be followed in order to carefully compare the numerical solution to the analytical solution. We define an error criterion and demonstrate convergence behavior for both the analytical and numerical cases. These problems test the code's ability to calculate the surface current density and secondary quantities, such as near fields and far fields.
Scattering of an electromagnetic plane wave by a Luneburg lens. II. Wave theory.
Lock, James A
2008-12-01
The partial wave scattering and interior amplitudes for the interaction of an electromagnetic plane wave with a modified Luneburg lens are derived in terms of the exterior and interior radial functions of the scalar radiation potentials evaluated at the lens surface. A Debye series decomposition of these amplitudes is also performed and discussed. The effective potential inside the lens for the transverse electric polarization is qualitatively examined, and the approximate lens size parameters of morphology-dependent resonances are determined. Finally, the physical optics model is used to calculate wave scattering in the vicinity of the ray theory orbiting condition in order to demonstrate the smoothing of ray theory discontinuities by the diffraction of scattered waves. PMID:19037389
LOBSTER: A tool to extract chemical bonding from plane-wave based DFT.
Maintz, Stefan; Deringer, Volker L; Tchougréeff, Andrei L; Dronskowski, Richard
2016-04-30
The computer program LOBSTER (Local Orbital Basis Suite Towards Electronic-Structure Reconstruction) enables chemical-bonding analysis based on periodic plane-wave (PAW) density-functional theory (DFT) output and is applicable to a wide range of first-principles simulations in solid-state and materials chemistry. LOBSTER incorporates analytic projection routines described previously in this very journal [J. Comput. Chem. 2013, 34, 2557] and offers improved functionality. It calculates, among others, atom-projected densities of states (pDOS), projected crystal orbital Hamilton population (pCOHP) curves, and the recently introduced bond-weighted distribution function (BWDF). The software is offered free-of-charge for non-commercial research. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26914535
Two-loop partition function in the planar plane-wave matrix model
NASA Astrophysics Data System (ADS)
Spradlin, Marcus; Van Raamsdonk, Mark; Volovich, Anastasia
2004-12-01
We perform two independent calculations of the two-loop partition function for the 't Hooft large N limit of the plane-wave matrix model, conjectured to be dual to the decoupled little string theory of a single spherical type IIA NS5-brane. The first is via a direct two-loop path-integral calculation in the matrix model, while the second employs the one-loop dilatation operator of four-dimensional N = 4 Yang-Mills theory truncated to the SU (2 | 4) subsector. We find precise agreement between the results of the two calculations. Various polynomials appearing in the result have rather special properties, possibly related to the large symmetry algebra of the theory or to integrability.
Plane wave scattering by a thick lossy dielectric half-plane
NASA Astrophysics Data System (ADS)
Uchida, K.; Aoki, K.
A solution is obtained for the scattering of a plane wave by a lossy, thick, dielectric half-plane, with a view to applications for calculating the TV electromagnetic wave scattering by a tall building made of concrete. The problem is analytically framed in terms of the incident and scattered electric fields, assuming the polarization in each case to be invariant. Boundary conditions are defined within which Fourier components of the scattered field are calculated. The far-fields were analyzed employing the saddle-point method. Numerical examples for 100 MHz broadcasts are presented, demonstrating a good agreement in the illuminated region between calculations for a lossy dielectric and a perfectly conducting half plane.
Cavity-based linear polarizer immune to the polarization direction of an incident plane wave.
Wang, Jiang; Shen, Zhongxiang; Gao, Xiang; Wu, Wen
2016-01-15
We herein report a linear polarizer based on a 2D array of substrate integrated waveguide cavities, which can convert an arbitrary linearly polarized (LP) incident wave into an outgoing LP wave in a specified polarization direction with constant transmittance. Two orthogonal slots etched on the front surface of the cavity are utilized to couple a wave of arbitrary polarization into the cavity, while another slot on the back side helps to couple the field out along a desired polarization direction. Microwave experiments are performed as a proof of concept. The proposed polarizer exhibits very good performance with stable transmittance as 50% and a polarization extinction ratio over 45 dB. The new polarizer is potentially useful in novel polarization-selective devices that are immune to the polarization direction of an incident plane wave. PMID:26766730
PARTICLE DISPLACEMENTS ON THE WALL OF A BOREHOLE FROM INCIDENT PLANE WAVES.
Lee, M.W.
1987-01-01
Particle displacements from incident plane waves at the wall of a fluid-filled borehole are formulated by applying the seismic reciprocity theorem to far-field displacement fields. Such displacement fields are due to point forces acting on a fluid-filled borehole under the assumption of long wavelengths. The displacement fields are analyzed to examine the effect of the borehole on seismic wave propagation, particularly for vertical seismic profiling (VSP) measurements. When the shortest wavelength of interest is approximately 25 times longer than the borehole's diameter, the scattered displacements are proportional to the first power of incident frequency and borehole diameter. When the shortest wavelength of interest is about 40 times longer than the borehole's diameter, borehole effects on VSP measurements using a wall-locking geophone are negligible.
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; Vastano, John A.; Lomax, Harvard
1992-01-01
Generic shapes are subjected to pulsed plane waves of arbitrary shape. The resulting scattered electromagnetic fields are determined analytically. These fields are then computed efficiently at field locations for which numerically determined EM fields are required. Of particular interest are the pulsed waveform shapes typically utilized by radar systems. The results can be used to validate the accuracy of finite difference time domain Maxwell's equations solvers. A two-dimensional solver which is second- and fourth-order accurate in space and fourth-order accurate in time is examined. Dielectric media properties are modeled by a ramping technique which simplifies the associated gridding of body shapes. The attributes of the ramping technique are evaluated by comparison with the analytic solutions.
Nonequilibrium dynamics of strings in time-dependent plane wave backgrounds
NASA Astrophysics Data System (ADS)
Nardi, R.; Vancea, I. V.
2012-06-01
We formulate and study the nonequilibrium dynamics of strings near the singularity of the time-dependent plane wave background in the framework of the Nonequilibrium Thermo Field Dynamics (NETFD). In particular, we construct the Hilbert space of the thermal string oscillators at nonequilibrium and generalize the NETFD to describe the coordinates of the center of mass of the thermal string. The equations of motion of the thermal fields and the Hamiltonian are derived. Due to the time-dependence of the oscillator frequencies, a counterterm is present in the Hamiltonian. This counterterm determines the correlation functions in a perturbative fashion. We compute the two point correlation function of the thermal string at zero order in the power expansion.
In-plane vibrations of a rectangular plate: Plane wave expansion modelling and experiment
NASA Astrophysics Data System (ADS)
Arreola-Lucas, A.; Franco-Villafañe, J. A.; Báez, G.; Méndez-Sánchez, R. A.
2015-04-01
Theoretical and experimental results for in-plane vibrations of a uniform rectangular plate with free boundary conditions are obtained. The experimental setup uses electromagnetic-acoustic transducers and a vector network analyzer. The theoretical calculations were obtained using the plane wave expansion method applied to the in-plane thin plate vibration theory. The agreement between theory and experiment is excellent for the lower 95 modes covering a very wide frequency range from DC to 20 kHz. Some measured normal-mode wave amplitudes were compared with the theoretical predictions; very good agreement was observed. The excellent agreement of the classical theory of in-plane vibrations confirms its reliability up to very high frequencies
Exact solution to plane-wave scattering by an ideal "left-handed" wedge
NASA Astrophysics Data System (ADS)
Monzon, Cesar; Forester, Donald W.; Smith, Douglas; Loschialpo, Peter
2006-02-01
An exact analytical solution to the problem of plane-wave diffraction by a penetrable left-handed medium (LHM) epsilon=µ=-1 wedge of arbitrary angle (subject to valid physical constraints) is presented. Standard analysis involving discontinuous angular eigenfunctions and even/odd symmetry decomposition resulted in a discrete spectrum leading to a series solution resembling the traditional perfect electric conductor wedge solution but exhibiting the expected negative refraction phenomenology. Numerical results are presented, some of which seemed paradoxical but are explainable by classical means. A new type of illusory edge radiation is observed and explained. Also, a novel edge-launched interface standing wave is observed on the directly illuminated side. The exact analytical solution is verified by comparison with finite-difference time-domain simulation on causal LHM materials.
NASA Astrophysics Data System (ADS)
Makarov, S.; Kulkarni, S.
2004-05-01
A numerical simulation method [S. Makarov and S. Kulkarni, Appl. Phys. Lett. 84, 1600 (2004)] is used in order to determine the radiation force and radiation torque on a parallel-plate disk resonator, whose size is comparable to wavelength. The method is based on the MOM solution of the electric-field integral equation, accurate calculation of the near field, and removal of the self-interaction terms responsible for the pinch effect. The local force/torque distribution at the normal incidence of a circularly polarized plane wave is found. It is observed that, at the resonance, the individual disks are subject to unexpectedly large local force densities, despite the fact that the net radiation force on the resonator remains very small. On the other hand, the total axial torque on the disk resonator also increases at the resonance.
Combined real-time ultrasound plane wave compounding and linear array optoacoustics
NASA Astrophysics Data System (ADS)
Fournelle, Marc; Bost, Wolfgang; Tretbar, Steffen
2015-07-01
In optoacoustic imaging, the high optical contrast between different tissue types is combined with the high resolution and low scattering of ultrasound. Using adapted reconstruction algorithms, images of the distribution of light absorption in tissue can be obtained. Such as in any emerging modality, there is limited experience regarding the interpretation of optoacoustic images. For this reason, we developed a flexible hardware platform combining ultrasound imaging with optoacoustics. The system is based on the software processing of channel data and different types of reconstruction algorithms are implemented. It combines optoacoustic imaging based on linear arrays for detection with plane wave compounding ultrasound. Our system further includes a custom made probe based on a 7,5 MHz array, custom made fibre bundles for targeted light delivery and an acoustic coupling pad. The system was characterized on phantoms and first in-vivo datasets from subcutaneous vasculature were acquired.
Schwab, Hans-Martin; Beckmann, Martin F; Schmitz, Georg
2016-04-01
Photoacoustic imaging aims to visualize light absorption properties of biological tissue by receiving a sound wave that is generated inside the observed object as a result of the photoacoustic effect. In clinical applications, the strong light absorption in human skin is a major problem. When high amplitude photoacoustic waves that originate from skin absorption propagate into the tissue, they are reflected back by acoustical scatterers and the reflections contribute to the received signal. The artifacts associated with these reflected waves are referred to as clutter or skin echo and limit the applicability of photoacoustic imaging for medical applications severely. This study seeks to exploit the acoustic tissue information gained by plane wave ultrasound measurements with a linear array in order to correct for reflections in the photoacoustic image. By deriving a theory for clutter waves in k-space and a matching inversion approach, photoacoustic measurements compensated for clutter are shown to be recovered. PMID:27446669
Plane-wave transport method for low-symmetry lattices and its application
NASA Astrophysics Data System (ADS)
Srivastava, Manoj K.; Wang, Yan; Zhang, X.-G.; Nicholson, D. M. C.; Cheng, Hai-Ping
2012-08-01
The existing first-principles plane-wave transport method implementation [Choi and Ihm, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.59.2267 59, 2267 (1999); Giannozzi , J. Phys.: Condens. MatterJCOMEL0953-898410.1088/0953-8984/21/39/395502 21, 395502 (2009)] has the limitation that it only allows transport directions along lattice vectors perpendicular to the basal plane formed by two other lattice vectors. We generalize the algorithm to low-symmetry, nonorthogonal lattices thus allowing solution to problems in which the transport direction is not along any lattice vectors. As an application, we calculate the transmission and reflection coefficients, and determine interface resistivity of various grain boundaries in crystalline copper.
Scattering of an electromagnetic plane wave by a Luneburg lens. I. Ray theory.
Lock, James A
2008-12-01
For a plane wave incident on either a Luneburg lens or a modified Luneburg lens, the magnitude and phase of the transmitted electric field are calculated as a function of the scattering angle in the context of ray theory. It is found that the ray trajectory and the scattered intensity are not uniformly convergent in the vicinity of edge ray incidence on a Luneburg lens, which corresponds to the semiclassical phenomenon of orbiting. In addition, it is found that rays transmitted through a large-focal-length modified Luneburg lens participate in a far-zone rainbow, the details of which are exactly analytically soluble in ray theory. Using these results, the Airy theory of the modified Luneburg lens is derived and compared with the Airy theory of the rainbows of a homogeneous sphere. PMID:19037388
Zhao, Jinxin; Wang, Yuanyuan; Yu, Jinhua; Guo, Wei; Li, Tianjie; Zheng, Yong-Ping
2016-02-01
This paper introduces a new beamformer, which combines the eigenspace based minimum variance (ESBMV) beamformer with a subarray coherence based postfilter (SCBP), for improving the quality of ultrasound plane-wave imaging. The ESBMV beamformer has been validated in improving the imaging contrast, but the difficulty in dividing the signal subspace limits the usage of it in the low signal-to-noise ratio (SNR) scenarios. Coherence factor (CF) based methods could optimize the output of a distortionless beamformer to reduce sidelobes, but the influence by the subarray decorrelation technique on the postfilter design has not attracted enough concern before. Accordingly, an ESBMV-SCBP beamformer was proposed in this paper, which used the coherence of the subarray signal to compute an SCBP to optimize the ESBMV results. Simulated and experimental data were used to evaluate the performance of the proposed method. The results showed that the ESBMV-SCBP method achieved an improved imaging quality compared with the ESBMV beamformer. In the simulation study, the contrast ratio (CR) for an anechoic cyst was improved by 9.88 dB and the contrast-to-noise ratio (CNR) was improved by 0.97 over the ESBMV. In the experimental study, the CR improvements for two anechoic cysts were 7.32 dB and 9.45 dB, while the CNRs were improved by 1.27 and 0.66, respectively. The ESBMV-SCBP also showed advantages over the ESBMV-Wiener beamformer in preserving a less grainy speckle, which is closer to that of distortionless beamformers and benefits the imaging contrast. With a relatively small extra computational load, the proposed method has potential to enhance the quality of the ultrasound plane-wave imaging. PMID:26582600
Nonlinear Breit-Wheeler process in the collision of a photon with two plane waves
NASA Astrophysics Data System (ADS)
Wu, Yuan-Bin; Xue, She-Sheng
2014-07-01
The nonlinear Breit-Wheeler process of electron-positron pair production off a probe photon colliding with a low-frequency and a high-frequency electromagnetic wave that propagate in the same direction is analyzed. We calculate the pair-production probability and the spectra of the created pair in the nonlinear Breit-Wheeler processes of pair production off a probe photon colliding with two plane waves or one of these two plane waves. The differences of these two cases are discussed. We evidently show, in the two-wave case, the possibility of Breit-Wheeler pair production with simultaneous photon emission into the low-frequency wave and the high multiphoton phenomena: (i) Breit-Wheeler pair production by absorption of the probe photon and a large number of photons from the low-frequency wave, in addition to the absorption of one photon from the high-frequency wave; (ii) Breit-Wheeler pair production by absorption of the probe photon and one photon from the high-frequency wave with simultaneous emission of a large number of photons into the low-frequency wave. The phenomenon of photon emission into the wave cannot happen in the one-wave case. Compared with the one-wave case, the contributions from high multiphoton processes are largely enhanced in the two-wave case. The results presented in this article show a possible way to access the observations of the phenomenon of photon emission into the wave and high multiphoton phenomenon in Breit-Wheeler pair production even with the laser-beam intensity of order 1018 W/cm2.
Kawai, Hiroki; Nagaoka, Tomoaki; Watanabe, Soichi; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi
2010-01-01
This paper presents calculated specific absorption rate (SAR) dosimetry in 4 and 8 week Japanese pregnant-woman models exposed to plane waves over the frequency range of 10 MHz-1.5 GHz. Two types of 2 mm spatial-resolution pregnant-woman models comprised a woman model, which is similar to the average-sized Japanese adult female in height and weight, with a cubic (4 week) embryo or spheroidal (8 week) one. The averaged SAR in the embryos exposed to vertically and horizontally polarized plane waves at four kinds of propagation directions are calculated from 10 MHz to 1.5 GHz. The results indicate that the maximum average SAR in the embryos exposed to plane waves is lower than 0.08 W kg(-1) when the incident power density is at the reference level of ICNIRP guideline for general public environment. PMID:20009180
NASA Astrophysics Data System (ADS)
Sahu, Sanjeev A.; Paswan, Brijendra; Chattopadhyay, Amares
2016-01-01
A problem of reflection and transmission of plane wave is presented. The considered geometry consists of an isotropic layer bonded between two highly anisotropic media (Triclinic crystalline). We set to find a relation between direction of motion and direction of propagation of waves as they are not same in anisotropic medium. The incident plane wave reflects three waves (?, and ?) at the interface of isotropic layer and lower half-space. A closed form expression for velocity profile is obtained. We have found the reflection/transmission coefficients and energy ratios of different reflected and transmitted waves. Variations in obtained amplitude ratios and energy ratios with respect to incident angle have been shown graphically.
NASA Technical Reports Server (NTRS)
Mcaninch, G. L.; Myers, M. K.
1980-01-01
The parabolic approximation for the acoustic equations of motion is applied to the study of the sound field generated by a plane wave at or near grazing incidence to a finite impedance boundary. It is shown how this approximation accounts for effects neglected in the usual plane wave reflection analysis which, at grazing incidence, erroneously predicts complete cancellation of the incident field by the reflected field. Examples are presented which illustrate that the solution obtained by the parabolic approximation contains several of the physical phenomena known to occur in wave propagation near an absorbing boundary.
Rivero, Pablo; Manuel García-Suárez, Víctor; Pereñiguez, David; Utt, Kainen; Yang, Yurong; Bellaiche, Laurent; Park, Kyungwha; Ferrer, Jaime; Barraza-Lopez, Salvador
2015-01-01
We present in this article a pseudopotential (PP) database for DFT calculations in the context of the SIESTA code [1–3]. Comprehensive optimized PPs in two formats (psf files and input files for ATM program) are provided for 20 chemical elements for LDA and GGA exchange-correlation potentials. Our data represents a validated database of PPs for SIESTA DFT calculations. Extensive transferability tests guarantee the usefulness of these PPs. PMID:26217711
A projection-free method for representing plane-wave DFT results in an atom-centered basis
NASA Astrophysics Data System (ADS)
Dunnington, Benjamin D.; Schmidt, J. R.
2015-09-01
Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strict orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches.
Depine, Ricardo A; Lakhtakia, Akhlesh
2004-05-01
Considering the diffraction of a plane wave by a periodically corrugated half-space, we show that the transformation of the refracting medium from positive (negative) phase velocity to negative (positive) phase velocity type has an influence on the diffraction efficiencies. This effect increases with increasing corrugation depth, owing to the presence of evanescent waves in the troughs of the corrugated interface. PMID:15244981
Plane-wave matrix theory from N=4 super-Yang-Mills on R×S 3
NASA Astrophysics Data System (ADS)
Kim, Nakwoo; Klose, Thomas; Plefka, Jan
2003-11-01
Recently a mass deformation of the maximally supersymmetric Yang-Mills quantum mechanics has been constructed from the supermembrane action in eleven-dimensional plane-wave backgrounds. However, the origin of this plane-wave matrix theory in terms of a compactification of a higher-dimensional super-Yang-Mills model has remained obscure. In this paper we study the Kaluza-Klein reduction of D=4, N=4 super-Yang-Mills theory on a round three-sphere, and demonstrate that the plane-wave matrix theory arises through a consistent truncation to the lowest lying modes. We further explore the relation between the dilatation operator of the conformal field theory and the Hamiltonian of the quantum mechanics through perturbative calculations up to two-loop order. In particular, we find that the one-loop anomalous dimensions of pure scalar operators are completely captured by the plane-wave matrix theory. At two-loop level this property ceases to exist.
A projection-free method for representing plane-wave DFT results in an atom-centered basis
Dunnington, Benjamin D.; Schmidt, J. R.
2015-09-14
Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strict orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches.
3D resolution tests of two-plane wave approach using synthetic seismograms
NASA Astrophysics Data System (ADS)
Ceylan, S.; Larmat, C. S.; Sandvol, E. A.
2012-12-01
Two-plane wave tomography (TPWT) is becoming a standard approach to obtain fundamental mode Rayleigh wave phase velocities for a variety of tectonic settings. A recent study by Ceylan et al. (2012) has applied this method to eastern Tibet, using data from INDEPTH-IV and Namche-Barwa seismic experiments. The TPWT assumes that distortion of wavefronts at each station can be expressed as the sum of two plane waves. However, there is currently no robust or complete resolution test for TPWT, to address its limitations such as wavefront healing. In this study, we test the capabilities of TPWT and resolution of INDEPTH-IV seismic experiment, by performing 3D resolution tests using synthetic seismograms. Utilizing SPECFEM3D software, we compute synthetic data sets resolving periods down to ~30 s. We implement a checkerboard upper mantle (for depths between 50 and 650 km) with variable cell sizes, superimposed to PREM as the background model. We then calculate fundamental mode surface wave phase velocities using TPWT for periods between 33-143 seconds, using synthetic seismograms computed from our three dimensional hypothetical model. Assuming a constant Poisson's ratio, we use partial derivatives from Saito (1988) to invert for shear wave velocities. We show that the combination of TPWT and Saito (1988) methods is capable of retrieving anomalies down to depths of ~200 km for Rayleigh waves. Below these depths, we observe evidence of both lateral and vertical smearing. We also find that the traditional method for estimating the resolution of TPWT consistently overestimates phase velocity resolutions. Love waves exhibit adequate resolution down to depths of ~100 km. At depths greater than 100 km, smearing is more evident in SH wave results than those of SV waves. Increased smearing of SH waves is most probably due to propagation characteristics and shallower sensitivity of Love waves. Our results imply that TPWT can be applied to Love waves, making future investigations of
ABINIT: Plane-Wave-Based Density-Functional Theory on High Performance Computers
NASA Astrophysics Data System (ADS)
Torrent, Marc
2014-03-01
For several years, a continuous effort has been produced to adapt electronic structure codes based on Density-Functional Theory to the future computing architectures. Among these codes, ABINIT is based on a plane-wave description of the wave functions which allows to treat systems of any kind. Porting such a code on petascale architectures pose difficulties related to the many-body nature of the DFT equations. To improve the performances of ABINIT - especially for what concerns standard LDA/GGA ground-state and response-function calculations - several strategies have been followed: A full multi-level parallelisation MPI scheme has been implemented, exploiting all possible levels and distributing both computation and memory. It allows to increase the number of distributed processes and could not be achieved without a strong restructuring of the code. The core algorithm used to solve the eigen problem (``Locally Optimal Blocked Congugate Gradient''), a Blocked-Davidson-like algorithm, is based on a distribution of processes combining plane-waves and bands. In addition to the distributed memory parallelization, a full hybrid scheme has been implemented, using standard shared-memory directives (openMP/openACC) or porting some comsuming code sections to Graphics Processing Units (GPU). As no simple performance model exists, the complexity of use has been increased; the code efficiency strongly depends on the distribution of processes among the numerous levels. ABINIT is able to predict the performances of several process distributions and automatically choose the most favourable one. On the other hand, a big effort has been carried out to analyse the performances of the code on petascale architectures, showing which sections of codes have to be improved; they all are related to Matrix Algebra (diagonalisation, orthogonalisation). The different strategies employed to improve the code scalability will be described. They are based on an exploration of new diagonalization
Discontinuous Galerkin methods with plane waves for time-harmonic problems
NASA Astrophysics Data System (ADS)
Gabard, Gwénaël
2007-08-01
A general framework for discontinuous Galerkin methods in the frequency domain with numerical flux is presented. The main feature of the method is the use of plane waves instead of polynomials to approximate the solution in each element. The method is formulated for a general system of linear hyperbolic equations and is applied to problems of aeroacoustic propagation by solving the two-dimensional linearized Euler equations. It is found that the method requires only a small number of elements per wavelength to obtain accurate solutions and that it is more efficient than high-order DRP schemes. In addition, the conditioning of the method is found to be high but not critical in practice. It is shown that the Ultra-Weak Variational Formulation is in fact a subset of the present discontinuous Galerkin method. A special extension of the method is devised in order to deal with singular solutions generated by point sources like monopoles or dipoles. Aeroacoustic problems with non-uniform flows are also considered and results are presented for the sound radiated from a two-dimensional jet.
On plane-wave relativistic electrodynamics in plasmas and in vacuum
NASA Astrophysics Data System (ADS)
Fiore, Gaetano
2014-06-01
We revisit the exact microscopic equations (in differential, and equivalent integral form) ruling a relativistic cold plasma after the plane-wave Ansatz, without customary approximations. We show that in the Eulerian description the motion of a very diluted plasma initially at rest and excited by an arbitrary transverse plane electromagnetic travelling-wave has a very simple and explicit dependence on the transverse electromagnetic potential; for a non-zero density plasma the above motion is a good approximation of the real one as long as the back-reaction of the charges on the electromagnetic field can be neglected, i.e. for a time lapse decreasing with the plasma density, and can be used as initial step in an iterative resolution scheme. As one of many possible applications, we use these results to describe how the ponderomotive force of a very intense and short plane laser pulse hitting normally the surface of a plasma boosts the surface electrons into the ion background. In response to this penetration, the electrons are pulled back by the electric force exerted by the ions and the other displaced electrons and may leave the plasma with high energy in the direction opposite to that of propagation of the pulse ‘slingshot effect’ (Fiore G et al 2013 arXiv:1309.1400).
Plane-wave Fresnel diffraction by elliptic apertures: a Fourier-based approach.
Borghi, Riccardo
2014-10-01
A simple theoretical approach to evaluate the scalar wavefield, produced, within paraxial approximation, by the diffraction of monochromatic plane waves impinging on elliptic apertures or obstacles is presented. We find that the diffracted field can be mathematically described in terms of a Fourier series with respect to an angular variable suitably related to the elliptic parametrization of the observation plane. The convergence features of such Fourier series are analyzed, and a priori truncation criterion is also proposed. Two-dimensional maps of the optical intensity diffraction patterns are then numerically generated and compared, at a visual level, with several experimental pictures produced in the past. The last part of this work is devoted to carrying out an analytical investigation of the diffracted field along the ellipse axis. A uniform approximation is derived on applying a method originally developed by Schwarzschild, and an asymptotic estimate, valid in the limit of small eccentricities, is also obtained via the Maggi-Rubinowicz boundary wave theory. PMID:25401234
Plane Wave First-principles Materials Science Codes on Multicore Supercomputer Architectures
NASA Astrophysics Data System (ADS)
Canning, Andrew; Deslippe, Jack; Louie, Steven. G.; Scidac Team
2014-03-01
Plane wave first-principles codes based on 3D FFTs are one of the largest users of supercomputer cycles in the world. Modern supercomputer architectures are constructed from chips having many CPU cores with nodes containing multiple chips. Designs for future supercomputers are projected to have even more cores per chip. I will present new developments for hybrid MPI/OpenMP PW codes focusing on a specialized 3D FFTs that gives greatly improved scaling over a pure MPI version on multicore machines. Scaling results will be presented for the full electronic structure codes PARATEC and BerkeleyGW. using the new hybrid 3D FFTs, threaded libraries and OpenMP to gain greatly improved scaling to very large core count on Cray and IBM machines. Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research (and Basic Energy Sciences).
Plane wave holonomies in quantum gravity. II. A sine wave solution
NASA Astrophysics Data System (ADS)
Neville, Donald E.
2015-08-01
This paper constructs an approximate sinusoidal wave packet solution to the equations of canonical gravity. The theory uses holonomy-flux variables with support on a lattice (LHF =lattice-holonomy flux ). There is an SU(2) holonomy on each edge of the LHF simplex, and the goal is to study the behavior of these holonomies under the influence of a passing gravitational wave. The equations are solved in a small sine approximation: holonomies are expanded in powers of sines and terms beyond sin2 are dropped; also, fields vary slowly from vertex to vertex. The wave is unidirectional and linearly polarized. The Hilbert space is spanned by a set of coherent states tailored to the symmetry of the plane wave case. Fixing the spatial diffeomorphisms is equivalent to fixing the spatial interval between vertices of the loop quantum gravity lattice. This spacing can be chosen such that the eigenvalues of the triad operators are large, as required in the small sine limit, even though the holonomies are not large. Appendices compute the energy of the wave, estimate the lifetime of the coherent state packet, discuss circular polarization and coarse-graining, and determine the behavior of the spinors used in the U(N) SHO realization of LQG.
Kinetic theory of electromagnetic plane wave obliquely incident on bounded plasma slab
Angus, J. R.; Krasheninnikov, S. I.; Smolyakov, A. I.
2010-10-15
The effects of electromagnetic plane waves obliquely incident on a warm bounded plasma slab of finite length L are studied by solving the coupled Vlasov-Maxwell set of equations. It is shown that the solution can be greatly simplified in the limit where thermal effects are most important by expanding in small parameters and introducing self-similar variables. These solutions reveal that the coupling of thermal effects with the angle of incidence is negligible in the region of bounce resonance and anomalous skin effect. In the region of the anomalous skin effect, the heating is shown to scale linearly with the anomalous skin depth {delta}{sub a} when {delta}{sub a}<
Formulation of the Augmented Plane-Wave and Muffin-Tin Orbital Method
NASA Astrophysics Data System (ADS)
Kotani, Takao; Kino, Hiori; Akai, Hisazumu
2015-03-01
The augmented plane waves and the muffin-tin orbitals method (the PMT method) was proposed by Kotani and van Schilfgaarde in Phys. Rev. B 81, 125117 (2010). It is a mixed basis all-electron full-potential method, which uses two types of augmented waves simultaneously, in addition to the local orbitals. In this paper, this mixed basis method is reformulated on the basis of a new formalism named as the 3-component formalism, which is a mathematically transparent version of the additive augmentation originally proposed by Soler and Williams in Phys. Rev. B 47, 6784 (1993). Atomic forces are easily derived systematically. We discuss some problems in the mixed basis method and ways to manage them. In addition, we compare the method with the PAW method on the same footing. This PMT method is the basis for our new development of the quasiparticle self-consistent GW method in J. Phys. Soc. Jpn. 83, 094711 (2014), available as the ecalj package at github.
On the formation of shocks of electromagnetic plane waves in non-linear crystals
NASA Astrophysics Data System (ADS)
Christodoulou, Demetrios; Perez, Daniel Raoul
2016-08-01
An influential result of F. John states that no genuinely non-linear strictly hyperbolic quasi-linear first order system of partial differential equations in two variables has a global C2-solution for small enough initial data. Inspired by recent work of D. Christodoulou, we revisit John's original proof and extract a more precise description of the behaviour of solutions at the time of shock. We show that John's singular first order quantity, when expressed in characteristic coordinates, remains bounded until the final time, which is then characterised by an inverse density of characteristics tending to zero in one point. Moreover, we study the derivatives of second order, showing again their boundedness when expressed in appropriate coordinates. We also recover John's upper bound for the time of shock formation and complement it with a lower bound. Finally, we apply these results to electromagnetic plane waves in a crystal with no magnetic properties and cubic electric non-linearity in the energy density, assuming no dispersion.
Djakou, Audrey Kamta; Darmon, Michel; Fradkin, Larissa; Potel, Catherine
2015-11-01
Diffraction phenomena studied in electromagnetism, acoustics, and elastodynamics are often modeled using integrals, such as the well-known Sommerfeld integral. The far field asymptotic evaluation of such integrals obtained using the method of steepest descent leads to the classical Geometrical Theory of Diffraction (GTD). It is well known that the method of steepest descent is inapplicable when the integrand's stationary phase point coalesces with its pole, explaining why GTD fails in zones where edge diffracted waves interfere with incident or reflected waves. To overcome this drawback, the Uniform geometrical Theory of Diffraction (UTD) has been developed previously in electromagnetism, based on a ray theory, which is particularly easy to implement. In this paper, UTD is developed for the canonical elastodynamic problem of the scattering of a plane wave by a half-plane. UTD is then compared to another uniform extension of GTD, the Uniform Asymptotic Theory (UAT) of diffraction, based on a more cumbersome ray theory. A good agreement between the two methods is obtained in the far field. PMID:26627800
Plane-wave Sf S reconstruction of water surface characteristics from Lambertian reflectance data
NASA Astrophysics Data System (ADS)
Huang, Jian; O'Sullivan, Finbarr; Jike, Linhao
2012-06-01
The classical shape from shading (SfS) problem of computer vision is concerned with the reconstruction of a 3D object surface from its photographic image. Essential non-uniqueness and intrinsic nonlinearity make the problem challenging. This work considers the case where the object is a water surface so that the statistical approximation by superposition of plane waves is natural. An efficient greedy algorithm involving recursive refinement of wave fronts, subject to a wave-front frequency constraint is developed. The approach is evaluated using simulated reflectance data based on a set of wind-generated wave-field images obtained from detailed wave-tank measurements. The traditional setup for the SfS problem (orthographic cameras, light sources at infinity and the Lambertian surfaces) is used. Generalization to include a specular (Phong) reflectance component is also discussed. Results indicate that key statistical characteristics of the wave field related to its stage of development (evolution) are properly recovered by the approach. Thus there may be future potential for novel photographic-based remote sensing of physical drivers (e.g. wind velocity) of local water surface patterns.
Performance bounds for passive sensor arrays operating in a turbulent medium: Plane-wave analysis
NASA Astrophysics Data System (ADS)
Collier, S. L.; Wilson, D. K.
2003-05-01
The performance bounds of a passive acoustic array operating in a turbulent medium with fluctuations described by a von Kármán spectrum are investigated. This treatment considers a single, monochromatic, plane-wave source at near-normal incidence. A line-of-sight propagation path is assumed. The primary interests are in calculating the Cramer-Rao lower bounds of the azimuthal and elevational angles of arrival and in observing how these bounds change with the introduction of additional unknowns, such as the propagation distance, turbulence parameters, and signal-to-noise ratio. In both two and three dimensions, it is found that for large values of the index-of-refraction variance, the Cramer-Rao lower bounds of the angles of arrival increase significantly at large values of the normalized propagation distance. For small values of the index-of-refraction variance and normalized propagation distance, the signal-to-noise ratio is found to be the limiting factor. In the two-dimensional treatment, it is found that the estimate of the angle of arrival will decouple from the estimates of the other parameters with the appropriate choice of array geometry. In three dimensions, again with an appropriate choice of array geometry, the estimates of the azimuth and elevation will decouple from the estimates of the other parameters, but due to the constraints of the model, will remain coupled to one another.
Performance bounds for passive sensor arrays operating in a turbulent medium: plane-wave analysis.
Collier, S L; Wilson, D K
2003-05-01
The performance bounds of a passive acoustic array operating in a turbulent medium with fluctuations described by a von Kármán spectrum are investigated. This treatment considers a single, monochromatic, plane-wave source at near-normal incidence. A line-of-sight propagation path is assumed. The primary interests are in calculating the Cramer-Rao lower bounds of the azimuthal and elevational angles of arrival and in observing how these bounds change with the introduction of additional unknowns, such as the propagation distance, turbulence parameters, and signal-to-noise ratio. In both two and three dimensions, it is found that for large values of the index-of-refraction variance, the Cramer-Rao lower bounds of the angles of arrival increase significantly at large values of the normalized propagation distance. For small values of the index-of-refraction variance and normalized propagation distance, the signal-to-noise ratio is found to be the limiting factor. In the two-dimensional treatment, it is found that the estimate of the angle of arrival will decouple from the estimates of the other parameters with the appropriate choice of array geometry. In three dimensions, again with an appropriate choice of array geometry, the estimates of the azimuth and elevation will decouple from the estimates of the other parameters, but due to the constraints of the model, will remain coupled to one another. PMID:12765389
GW in the Gaussian and Plane Waves Scheme with Application to Linear Acenes.
Wilhelm, Jan; Del Ben, Mauro; Hutter, Jürg
2016-08-01
We present an implementation of G0W0 and eigenvalue-self-consistent GW (evGW) in the Gaussian and plane waves scheme for molecules. We calculate the correlation self-energy for imaginary frequencies employing the resolution of the identity. The correlation self-energy for real frequencies is then evaluated by analytic continuation. This technique allows an efficient parallel implementation and application to systems with several hundreds of atoms. Various benchmark calculations are presented. In particular, the convergence with respect to the most important numerical parameters is assessed for the benzene molecule. Comparisons with respect to other G0W0 implementations are reported for a set of molecules, while the performance of the method has been measured for water clusters containing up to 480 atoms in a cc-TZVP basis. Additionally, G0W0 has been applied for studying the influence of the ligands on the gap of small CdSe nanoparticles. evGW has been employed to calculate the HOMO-LUMO gaps of linear acenes, linear chains formed of connected benzene rings. Distinct differences between the closed and the open-shell (broken-symmetry) evGW HOMO-LUMO gaps for long acenes are found. In future experiments, a comparison of measured HOMO-LUMO gaps and our calculated evGW values may be helpful to determine the electronic ground state of long acenes. PMID:27348184
NASA Astrophysics Data System (ADS)
Hospital-Bravo, Raúl; Sarrate, Josep; Díez, Pedro
2016-05-01
A new 2D numerical model to predict the underwater acoustic propagation is obtained by exploring the potential of the Partition of Unity Method (PUM) enriched with plane waves. The aim of the work is to obtain sound pressure level distributions when multiple operational noise sources are present, in order to assess the acoustic impact over the marine fauna. The model takes advantage of the suitability of the PUM for solving the Helmholtz equation, especially for the practical case of large domains and medium frequencies. The seawater acoustic absorption and the acoustic reflectance of the sea surface and sea bottom are explicitly considered, and perfectly matched layers (PML) are placed at the lateral artificial boundaries to avoid spurious reflexions. The model includes semi-analytical integration rules which are adapted to highly oscillatory integrands with the aim of reducing the computational cost of the integration step. In addition, we develop a novel strategy to mitigate the ill-conditioning of the elemental and global system matrices. Specifically, we compute a low-rank approximation of the local space of solutions, which in turn reduces the number of degrees of freedom, the CPU time and the memory footprint. Numerical examples are presented to illustrate the capabilities of the model and to assess its accuracy.
NASA Astrophysics Data System (ADS)
Sano, Yukio
1993-01-01
The mechanical responses of rate-dependent media caused by unsteady smooth-plane waves are quantitatively analyzed by an underdetermined system of equations without using any constitutive relation of the media; that is, by using the particle velocity field expressed by an algebraic equation that is derived from the mass conservation equation, and the stress field expressed by an algebraic equation that is derived from the momentum conservation equation. First of all, this approach for analyzing unsteady wave motion is justified by the verification of various inferences such as the existence of the nonindependent elementary waves by Sano [J. Appl. Phys. 65, 3857(1989)] and the degradation process by Sano [J. Appl. Phys. 67, 4072(1990)]. Second, the situation under which a spike arises in particle velocity-time and stress-time profiles, and the reason for the arising are clarified. Third, the influence of the spike on stress-particle velocity and stress-strain paths is examined. The spike induced in the profiles by a growing wave greatly influences the paths near the impacted surface. Finally, calculated particle velocity-time profiles are compared with experimental data.
GPU-based beamformer: fast realization of plane wave compounding and synthetic aperture imaging.
Yiu, Billy Y S; Tsang, Ivan K H; Yu, Alfred C H
2011-08-01
Although they show potential to improve ultrasound image quality, plane wave (PW) compounding and synthetic aperture (SA) imaging are computationally demanding and are known to be challenging to implement in real-time. In this work, we have developed a novel beamformer architecture with the real-time parallel processing capacity needed to enable fast realization of PW compounding and SA imaging. The beamformer hardware comprises an array of graphics processing units (GPUs) that are hosted within the same computer workstation. Their parallel computational resources are controlled by a pixel-based software processor that includes the operations of analytic signal conversion, delay-and-sum beamforming, and recursive compounding as required to generate images from the channel-domain data samples acquired using PW compounding and SA imaging principles. When using two GTX-480 GPUs for beamforming and one GTX-470 GPU for recursive compounding, the beamformer can compute compounded 512 x 255 pixel PW and SA images at throughputs of over 4700 fps and 3000 fps, respectively, for imaging depths of 5 cm and 15 cm (32 receive channels, 40 MHz sampling rate). Its processing capacity can be further increased if additional GPUs or more advanced models of GPU are used. PMID:21859591
Two-Temperature Effects on Plane Waves in Generalized Thermo-Microstretch Elastic Solid
NASA Astrophysics Data System (ADS)
Atwa, Sarhan. Y.; Jahangir, A.
2014-01-01
In this article, the effect of two temperatures on plane waves propagating through a generalized-thermo-microstretch elastic half-space solid has been investigated. The surface of the medium is subjected to a mode-I crack, and the axis is pointing vertically into the medium. Two fascinating theories of generalized thermo-elasticity presented by Green and Naghdi and named as without energy dissipation (GN-II) and with energy dissipation (GN-III) have been used. Governing equations for each particular case are also derived, and a solution is obtained. An analytical technique of normal mode analysis is used to obtain the exact expressions for the displacement components, force stresses, the temperature, and the couple stresses distribution. The variations of the considered variables against the vertical distance are illustrated graphically. Comparisons are made with the results between type II and III in generalized-thermo-microstretch and in a particular case (without microstretch constants). Numerical work is also performed for a suitable material with the aim of illustrating the results. It is found that the maximum amplitude is obtained for the maximum value of the two temperature parametric constant.
Plane wave density functional molecular dynamics study of exothermic reactions of Al/CuO thermites
NASA Astrophysics Data System (ADS)
Oloriegbe, Suleiman; Sewell, Thomas; Chen, Zhen; Jiang, Shan; Gan, Yong
2014-03-01
Exothermic reactions between nanosize aluminum (Al) and copper oxide (CuO) structures are of current interest because of their high reaction enthalpy and energy density which exceed those of traditional monomolecular energetic compounds such as TNT, RDX, and HMX. In this work, molecular dynamics simulations with forces obtained from plane wave density functional theory are used to investigate the atomic-scale and electronic processes that occur during the fast thermite reactions between Al and CuO nanostructures under adiabatic conditions. Aluminum surfaces in contact with O-exposed and Cu-exposed CuO surfaces are studied. Starting from initial temperature T = 800 K, we have observed: faster chemical reaction at the oxygen-rich interface during the initial 0.5 ps, linear temperature rise, and fast oxygen diffusion into the Al region with the rate 1.87 X 10-3 cm2/s. The density-derived electrostatic and chemical method is used to evaluate the net atomic charges and charge transfer during the important redox processes. High charge density around the oxygen-exposed interface may be responsible for the faster initial reactions at that interface. The overall reaction rate, determined using the time evolution of Cu-O charge orbital overlap population, is approximately first order.
Scaling of plane-wave functions in statistically optimized near-field acoustic holography.
Hald, Jørgen
2014-11-01
Statistically Optimized Near-field Acoustic Holography (SONAH) is a Patch Holography method, meaning that it can be applied in cases where the measurement area covers only part of the source surface. The method performs projections directly in the spatial domain, avoiding the use of spatial discrete Fourier transforms and the associated errors. First, an inverse problem is solved using regularization. For each calculation point a multiplication must then be performed with two transfer vectors--one to get the sound pressure and the other to get the particle velocity. Considering SONAH based on sound pressure measurements, existing derivations consider only pressure reconstruction when setting up the inverse problem, so the evanescent wave amplification associated with the calculation of particle velocity is not taken into account in the regularized solution of the inverse problem. The present paper introduces a scaling of the applied plane wave functions that takes the amplification into account, and it is shown that the previously published virtual source-plane retraction has almost the same effect. The effectiveness of the different solutions is verified through a set of simulated measurements. PMID:25373969
Near-field coupling model between PCB and grounded transmission line based on plane wave spectrum
NASA Astrophysics Data System (ADS)
Leseigneur, Christelle; Baudry, David; Ravelo, Blaise; Louis, Anne
2013-10-01
This article presents an explicit model of electromagnetic (EM) coupling between electronic circuits and metallic wire placed above the ground plane. The model is based on the interaction between the EM near-field (NF) that has been treated with plane wave spectrum (PWS) and the Taylor model. The routine process illustrating the methodology is addressed is this article. The practicability of the model developed was upheld with different analytical and real demonstrators. First, the NF coupling between a straight transmission line (TL) and 1 GHz Wilkinson power divider (PWD) designed and implemented in planar technology was provided. Subsequently, simulations with a powerful commercial tool and measurements from 0.2 GHz to 2 GHz revealed a good agreement between the coupling voltages from the proposed model. As a second proof of concept, a printed circuit board incorporating a 40 MHz RF oscillator was placed 5 mm above the grounded TL. Once again, coupling voltages matched measurements were observed with magnitude relative difference lower than 5 dB. The hereby model presents huge benefits not only in terms of flexibility in the design process but it can also be run with very less computation time compared to the existing standard simulators. The model can be potentially a good candidate for investigating complex systems EMC engineering.
NASA Astrophysics Data System (ADS)
Filk, Thomas
2013-04-01
In this article I investigate several possibilities to define the concept of "temporal non-locality" within the standard framework of quantum theory. In particular, I analyze the notions of "temporally non-local states", "temporally non-local events" and "temporally non-local observables". The idea of temporally non-local events is already inherent in the standard formalism of quantum mechanics, and Basil Hiley recently defined an operator in order to measure the degree of such a temporal non-locality. The concept of temporally non-local states enters as soon as "clock-representing states" are introduced in the context of special and general relativity. It is discussed in which way temporally non-local measurements may find an interesting application for experiments which test temporal versions of Bell inequalities.
NASA Astrophysics Data System (ADS)
Gauthier, Robert C.; Alzahrani, Mohammed A.; Jafari, Seyed Hamed
2015-02-01
The plane wave expansion (PWM) technique applied to Maxwell's wave equations provides researchers with a supply of information regarding the optical properties of dielectric structures. The technique is well suited for structures that display a linear periodicity. When the focus is directed towards optical resonators and structures that lack linear periodicity the eigen-process can easily exceed computational resources and time constraints. In the case of dielectric structures which display cylindrical or spherical symmetry, a coordinate system specific set of basis functions have been employed to cast Maxwell's wave equations into an eigen-matrix formulation from which the resonator states associated with the dielectric profile can be obtained. As for PWM, the inverse of the dielectric and field components are expanded in the basis functions (Fourier-Fourier-Bessel, FFB, in cylindrical and Fourier- Bessel-Legendre, BLF, in spherical) and orthogonality is employed to form the matrix expressions. The theoretical development details will be presented indicating how certain mathematical complications in the process have been overcome and how the eigen-matrix can be tuned to a specific mode type. The similarities and differences in PWM, FFB and BLF are presented. In the case of structures possessing axial cylindrical symmetry, the inclusion of the z axis component of propagation constant makes the technique applicable to photonic crystal fibers and other waveguide structures. Computational results will be presented for a number of different dielectric geometries including Bragg ring resonators, cylindrical space slot channel waveguides and bottle resonators. Steps to further enhance the computation process will be reported.
Radiation of de-excited electrons at large times in a strong electromagnetic plane wave
Kazinski, P.O.
2013-12-15
The late time asymptotics of the physical solutions to the Lorentz–Dirac equation in the electromagnetic external fields of simple configurations–the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave–are found. The solutions to the Landau–Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. Some general properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late time asymptotics are derived for a charged particle moving in the external electromagnetic fields of the simple configurations pointed above. This provides a simple method to verify experimentally that the charged particle has reached the asymptotic regime. -- Highlights: •Late time asymptotics of the solutions to the Lorentz–Dirac equation are studied. •General properties of the total radiation power of electrons are established. •The total radiation power equals a half the rest energy divided by the proper-time. •Spectral densities of radiation formed on the late time asymptotics are derived. •Possible experimental verification of the results is proposed.
Robust angle-independent blood velocity estimation based on dual-angle plane wave imaging.
Fadnes, Solveig; Ekroll, Ingvild Kinn; Nyrnes, Siri Ann; Torp, Hans; Lovstakken, Lasse
2015-10-01
Two-dimensional blood velocity estimation has shown potential to solve the angle-dependency of conventional ultrasound flow imaging. Clutter filtering, however, remains a major challenge for large beam-to-flow angles, leading to signal drop-outs and corrupted velocity estimates. This work presents and evaluates a compounding speckle tracking (ST) algorithm to obtain robust angle-independent 2-D blood velocity estimates for all beam-to-flow angles. A dual-angle plane wave imaging setup with full parallel receive beamforming is utilized to achieve high-frame-rate speckle tracking estimates from two scan angles, which may be compounded to obtain velocity estimates of increased robustness. The acquisition also allows direct comparison with vector Doppler (VD) imaging. Absolute velocity bias and root-mean-square (RMS) error of the compounding ST estimations were investigated using simulations of a rotating flow phantom with low velocities ranging from 0 to 20 cm/s. In a challenging region where the estimates were influenced by clutter filtering, the bias and RMS error for the compounding ST estimates were 11% and 2 cm/s, a significant reduction compared with conventional single-angle ST (22% and 4 cm/s) and VD (36% and 6 cm/s). The method was also tested in vivo for vascular and neonatal cardiac imaging. In a carotid artery bifurcation, the obtained blood velocity estimates showed that the compounded ST method was less influenced by clutter filtering than conventional ST and VD methods. In the cardiac case, it was observed that ST velocity estimation is more affected by low signal-to-noise (SNR) than VD. However, with sufficient SNR the in vivo results indicated that a more robust angle-independent blood velocity estimator is obtained using compounded speckle tracking compared with conventional ST and VD methods. PMID:26470038
Generalized pseudopotential theory of d-band metals
Moriarty, J.A.
1983-01-01
The generalized pseudopotential theory (GPT) of metals is reviewed with emphasis on recent developments. This theory, which attempts to rigorously extend to d-band metals the spirit of conventional simple-metal pseudopotential perturbation theory, has now been optimized and fully integrated with the Kohn-Sham local-density-functional formalism, allowing for systematic first-principles calculations. Recent work on the problems of cohesion, lattice dynamics, structural phase stability, pressure- and temperature-induced phase transitions, and melting is discussed.
Ulfat Jafri, A D; Lakhtakia, Akhlesh
2014-01-01
An exact transition matrix was formulated for electromagnetic scattering by an orthorhombic dielectric-magnetic sphere whose permeability dyadic is a scalar multiple of its permittivity dyadic. Calculations were made for plane waves incident on the sphere. As the size parameter increases, the role of anisotropy evolves; multiple lobes appear in the plots of the differential scattering efficiency in any scattering plane; the total scattering, extinction, and forward-scattering efficiencies exhibit a prominent maximum each; and the absorption efficiency generally increases with weak undulations. Certain orientations of the sphere with respect to the directions of propagation and the electric field of the incident plane wave make it highly susceptible to detection in a monostatic configuration, whereas other orientations make it much less vulnerable to detection. Impedance match to the ambient free space decreases backscattering efficiency significantly, although anisotropy prevents null backscattering. PMID:24561944
NASA Astrophysics Data System (ADS)
Adams, R. J.; Wang, G.; Canning, F. X.; Davis, B. A.
2006-12-01
A procedure is outlined for determining compressed representations of the plane wave response matrix (P matrix) for transverse magnetic scattering with respect to the z axis from convex cylinders. The method is based on the determination of band-limited spectral modes that excite spatially localized solutions to the wave equation and satisfy global boundary conditions. Numerical examples indicate that the proposed method provides a representation of the P matrix with reduced computational complexity.
Skigin, Diana C; Depine, Ricardo A
2008-05-01
We show that the problem of scattering of an obliquely incident plane wave by a general-shaped groove engraved on a perfectly conducting plane, which was recently studied by Basha et al. [J. Opt. Soc. Am. A24, 1647 (2007)], was solved 11 years ago using the same formulation. This method was further extended to deal with a finite number of grooves and also with complex apertures including several nonlossy and lossy dielectrics, as well as real metals. PMID:18451923
Process e/sup -/. -->. e/sup -/(. nu. nu-bar) in the field of a circularly polarized plane wave
Skobelev, V.V.
1987-12-01
The e/sup -/..-->..e/sup -/(..nu..nu-bar) process in the field of a circularly polarized plane wave is studied in the framework of the Glashow-Weinberg-Salam model. General expressions for the probability of creation of neutrino pairs are obtained, and the case of a low-intensity wave is studied in detail. The effects of asymmetry of emission of electron and muon neutrinos are estimated, and comparison with previous results is performed.
An algorithm for the calculation of the partial wave expansion of the Coulomb-distorted plane wave
NASA Astrophysics Data System (ADS)
Hornyak, I.; Kruppa, A. T.
2015-12-01
The partial wave expansion of the Coulomb-distorted plane wave is determined by the help of the complex generalized hypergeometric function 2F2(a , a ; a + l + 1 , a - l ; z) . An algorithm for the calculation of 2F2(a , a ; a + l + 1 , a - l ; z) is created and it is implemented as a FORTRAN-90 code. The code is fast and its accuracy is 14 significant decimal digits.
NASA Astrophysics Data System (ADS)
Humeida, Yousif; Pinfield, Valerie J.; Challis, Richard E.
2013-08-01
Ultrasonic arrays have seen increasing use for the characterisation of composite materials. In this paper, ultrasonic wave propagation in multilayer anisotropic materials has been modelled using plane wave and angular spectrum decomposition techniques. Different matrix techniques, such as the stiffness matrix method and the transfer matrix method, are used to calculate the reflection and transmission coefficients of ultrasonic plane waves in the considered media. Then, an angular decomposition technique is used to derive the bounded beams from finite-width ultrasonic array elements from the plane wave responses calculated earlier. This model is considered to be an analytical exact solution for the problem; hence the diffraction of waves in such composite materials can be calculated for different incident angles for a very wide range of frequencies. This model is validated against experimental measurements using the Full-Matrix Capture (FMC) of array data in both a homogeneous isotropic material, i.e. aluminium, and an inhomogeneous multilayer anisotropic material, i.e. a carbon fibre reinforced composite.
Plane-wave solutions to frequency-domain and time-domain scattering from magnetodielectric slabs.
Yaghjian, Arthur D; Hansen, Thorkild B
2006-04-01
Plane-wave representations are used to formulate the exact solutions to frequency-domain and time-domain sources illuminating a magnetodielectric slab with complex permittivity epsilon(omega) and permeability mu(omega). In the special case of a line source at z = 0 a distance d < L in front of an L-wide lossless double-negative (DNG) slab with kappa(omega 0) = epsilon(omega 0) / epsilon 0 = mu(omega 0) / mu 0 = (-1), the single-frequency (omega 0) solution exhibits not only "perfectly focused" fields for z > 2L but also divergent infinite fields in the region 2d < z < 2L. In contrast, the solution to the same lossless kappa(omega 0) = (-1) DNG slab illuminated by a sinusoidal wave that begins at some initial time t = 0 (and thus has a nonzero bandwidth, unlike the single-frequency excitation that begins at t = (-infinity) is proven to have imperfectly focused fields and convergent finite fields everywhere for all finite time t. The proof hinges on the variation of kappa(omega) about omega = omega 0 having a lower bound imposed by causality and energy conservation. The minimum time found to produce a given resolution is proportional to the estimate obtained by G. Gómez-Santos, [Phys. Rev. Lett. 90, 077401 (2003)]. Only as t --> infinity do the fields become perfectly focused in the region z > 2L and divergent in the region 2d < z < 2L. These theoretical results, which are confirmed by numerical examples, imply that divergent fields of the single-frequency solution are not caused by an inherent inconsistency in assuming an ideal lossless kappa(omega 0) = (-1) DNG material, but are the result of the continuous single-frequency wave (which contains infinite energy) building up infinite reactive fields during the infinite duration of time from t = (-infinity) to the present time t that the single-frequency excitation has been applied. An analogous situation occurs at the resonant frequencies of a lossless cavity. A single-frequency (zero-bandwidth) source inside the
Nonlocal magnetorotational instability
Mikhailovskii, A. B.; Erokhin, N. N.; Lominadze, J. G.; Galvao, R. M. O.; Churikov, A. P.; Kharshiladze, O. A.; Amador, C. H. S.
2008-05-15
An analytical theory of the nonlocal magnetorotational instability (MRI) is developed for the simplest astrophysical plasma model. It is assumed that the rotation frequency profile has a steplike character, so that there are two regions in which it has constant different values, separated by a narrow transition layer. The surface wave approach is employed to investigate the MRI in this configuration. It is shown that the main regularities of the nonlocal MRI are similar to those of the local instability and that driving the nonaxisymmetric MRI is less effective than the axisymmetric one, also for the case of the nonlocal instability. The existence of nonlocal instabilities in nonmagnetized plasma is predicted.
NASA Astrophysics Data System (ADS)
Mashhoon, Bahram
2014-12-01
A brief account of the present status of the recent nonlocal generalization of Einstein's theory of gravitation is presented. The main physical assumptions that underlie this theory are described. We clarify the physical meaning and significance of Weitzenbock's torsion and emphasize its intimate relationship with the gravitational field, characterized by the Riemannian curvature of spacetime. In this theory, nonlocality can simulate dark matter; in fact, in the Newtonian regime, we recover the phenomenological Tohline-Kuhn approach to modified gravity. To account for the observational data regarding dark matter, nonlocality is associated with a characteristic length scale of order 1 kpc. The confrontation of nonlocal gravity with observation is briefly discussed.
Relativistic small-core pseudopotentials for actinium, thorium, and protactinium.
Weigand, Anna; Cao, Xiaoyan; Hangele, Tim; Dolg, Michael
2014-04-01
Small-core pseudopotentials for actinium, thorium, and protactinium have been energy-adjusted to multiconfiguration Dirac-Hartree-Fock reference data based on the Dirac-Coulomb-Breit Hamiltonian and the Fermi nucleus model. Corresponding optimized valence basis sets of polarized valence quadruple-ζ quality are presented. Atomic test calculations for the first four ionization potentials show satisfactory results at both the Hartree-Fock and the multireference averaged coupled-pair functional level. Highly correlated Fock-space coupled cluster calculations demonstrate that the new pseudopotentials yield ionization potentials, which are in excellent agreement with corresponding all-electron results and experimental data. The pseudopotentials and basis sets supplement a similar set previously published for uranium. PMID:24628327
Wang, Diya; Zong, Yujin; Yang, Xuan; Hu, Hong; Wan, Jinjin; Zhang, Lei; Bouakaz, Ayache; Wan, Mingxi
2016-07-01
The aim of the study described here was to develop an ultrasound contrast plane wave imaging (PWI) method based on pulse-inversion bubble wavelet transform imaging (PIWI) to improve the contrast-to-tissue ratio of contrast images. A pair of inverted "bubble wavelets" with plane waves was constructed according to the modified Herring equation. The original echoes were replaced by the maximum wavelet correlation coefficients obtained from bubble wavelet correlation analysis. The echoes were then summed to distinguish microbubbles from tissues. In in vivo experiments on rabbit kidney, PIWI improved the contrast-to-tissue ratio of contrast images up to 4.5 ± 1.5 dB, compared with that obtained in B-mode (p < 0.05), through use of a pair of inverted plane waves. The disruption rate and infusion time of microbubbles in PIWI-based PWI were then quantified using two perfusion parameters, area under the curve and half transmit time estimated from time-intensity curves, respectively. After time-intensity curves were denoised by detrended fluctuation analysis, the average area under the curve and half transit time of PIWI-based PWI were 55.94% (p < 0.05) and 20.51% (p < 0.05) higher than those of conventional focused imaging, respectively. Because of its high contrast-to-tissue ratio and low disruption of microbubbles, PIWI-based PWI has a long infusion time and is therefore beneficial for transient monitoring and perfusion assessment of microbubbles circulating in vessels. PMID:27067280
Hau-Riege, S
2005-04-12
We have developed an algorithm that extends the possible size-parameter range for the calculation of plane-wave light scattering from infinite homogeneous circular cylinders using a Mie-type analysis. Our algorithm is based on the calculation of the ratios of Bessel functions instead of calculating the Bessel functions or their logarithmic derivatives directly. We have found that this algorithm agrees with existing methods (when those methods converge). We have also found that our algorithm converges in cases of very large size parameters, in which case other algorithms often do not.
Plane-wave and common-translation-factor treatments of He sup 2+ +H collisions at high velocities
Errea, L.F. ); Harel, C.; Jouin, H. ); Maidagan, J.M.; Mendez, L. ); Pons, B. ); Riera, A. )
1992-11-01
We complement previous work that showed that the molecular approach, modified with plane-wave translation factors, is able to reproduce the fall of charge-exchange cross sections in He{sup 2+}+H collisions, by presenting the molecular data, and studying the corresponding mechanism. We test the accuracy of simplifications of the method that have been employed in the literature, and that lead to very simple calculations. We show that the common-translation-factor method is also successful at high nuclear velocities, provided that sufficiently excited states are included in the basis; moreover, it yields a simple picture of the mechanism and a description of ionization processes at high velocities.
Correlated electron pseudopotentials for 3d-transition metals
NASA Astrophysics Data System (ADS)
Trail, J. R.; Needs, R. J.
2015-02-01
A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc - Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.
Correlated electron pseudopotentials for 3d-transition metals
Trail, J. R. Needs, R. J.
2015-02-14
A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc − Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.
NASA Astrophysics Data System (ADS)
Gao, Jing Kun; Qin, Yu Liang; Deng, Bin; Wang, Hong Qiang; Li, Jin; Li, Xiang
2016-04-01
This paper presents two parts of work around terahertz imaging applications. The first part aims at solving the problems occurred with the increasing of the rotation angle. To compensate for the nonlinearity of terahertz radar systems, a calibration signal acquired from a bright target is always used. Generally, this compensation inserts an extra linear phase term in the intermediate frequency (IF) echo signal which is not expected in large-rotation angle imaging applications. We carried out a detailed theoretical analysis on this problem, and a minimum entropy criterion was employed to estimate and compensate for the linear-phase errors. In the second part, the effects of spherical wave on terahertz inverse synthetic aperture imaging are analyzed. Analytic criteria of plane-wave approximation were derived in the cases of different rotation angles. Experimental results of corner reflectors and an aircraft model based on a 330-GHz linear frequency-modulated continuous wave (LFMCW) radar system validated the necessity and effectiveness of the proposed compensation. By comparing the experimental images obtained under plane-wave assumption and spherical-wave correction, it also showed to be highly consistent with the analytic criteria we derived.
Li, Xiang-Guo; Chu, Iek-Heng; Zhang, X. -G.; Cheng, Hai-Ping
2015-05-28
Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a “side-contact” geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave-based multiple-scattering theory for electron transport. In this study, this implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, we calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Finally, such transport behaviors are explained in terms of carbon orbital orientation, hybridization, and delocalization as the geometry is varied.
Kilcrease, D. P.; Brookes, S.
2013-08-19
The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. Additionally, a simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure formore » the Born cross-sections that employs the Elwert–Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. Furthermore, we also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.« less
Kilcrease, D. P.; Brookes, S.
2013-08-19
The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. Additionally, a simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure for the Born cross-sections that employs the Elwert–Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. Furthermore, we also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.
NASA Astrophysics Data System (ADS)
Nabok, Dmitrii; Gulans, Andris; Draxl, Claudia
2016-07-01
The G W approach of many-body perturbation theory has become a common tool for calculating the electronic structure of materials. However, with increasing number of published results, discrepancies between the values obtained by different methods and codes become more and more apparent. For a test set of small- and wide-gap semiconductors, we demonstrate how to reach the numerically best electronic structure within the framework of the full-potential linearized augmented plane-wave (FLAPW) method. We first evaluate the impact of local orbitals in the Kohn-Sham eigenvalue spectrum of the underlying starting point. The role of the basis-set quality is then further analyzed when calculating the G0W0 quasiparticle energies. Our results, computed with the exciting code, are compared to those obtained using the projector-augmented plane-wave formalism, finding overall good agreement between both methods. We also provide data produced with a typical FLAPW basis set as a benchmark for other G0W0 implementations.
Li, Xiang-Guo; Chu, Iek-Heng; Zhang, X. -G.; Cheng, Hai-Ping
2015-05-28
Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a “side-contact” geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave-based multiple-scattering theory for electron transport. In this study, this implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, wemore » calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Finally, such transport behaviors are explained in terms of carbon orbital orientation, hybridization, and delocalization as the geometry is varied.« less
NASA Astrophysics Data System (ADS)
Nikolaev, A. V.; Lamoen, D.; Partoens, B.
2016-07-01
In order to increase the accuracy of the linearized augmented plane wave (LAPW) method, we present a new approach where the plane wave basis function is augmented by two different atomic radial components constructed at two different linearization energies corresponding to two different electron bands (or energy windows). We demonstrate that this case can be reduced to the standard treatment within the LAPW paradigm where the usual basis set is enriched by the basis functions of the tight binding type, which go to zero with zero derivative at the sphere boundary. We show that the task is closely related with the problem of extended core states which is currently solved by applying the LAPW method with local orbitals (LAPW+LO). In comparison with LAPW+LO, the number of supplemented basis functions in our approach is doubled, which opens up a new channel for the extension of the LAPW and LAPW+LO basis sets. The appearance of new supplemented basis functions absent in the LAPW+LO treatment is closely related with the existence of the u ˙ l -component in the canonical LAPW method. We discuss properties of additional tight binding basis functions and apply the extended basis set for computation of electron energy bands of lanthanum (face and body centered structures) and hexagonal close packed lattice of cadmium. We demonstrate that the new treatment gives lower total energies in comparison with both canonical LAPW and LAPW+LO, with the energy difference more pronounced for intermediate and poor LAPW basis sets.
Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows.
Li, Q; Luo, K H; Li, X J
2012-07-01
The pseudopotential lattice Boltzmann (LB) model is a widely used multiphase model in the LB community. In this model, an interaction force, which is usually implemented via a forcing scheme, is employed to mimic the molecular interactions that cause phase segregation. The forcing scheme is therefore expected to play an important role in the pseudoepotential LB model. In this paper, we aim to address some key issues about forcing schemes in the pseudopotential LB model. First, theoretical and numerical analyses will be made for Shan-Chen's forcing scheme [Shan and Chen, Phys. Rev. E 47, 1815 (1993)] and the exact-difference-method forcing scheme [Kupershtokh et al., Comput. Math. Appl. 58, 965 (2009)]. The nature of these two schemes and their recovered macroscopic equations will be shown. Second, through a theoretical analysis, we will reveal the physics behind the phenomenon that different forcing schemes exhibit different performances in the pseudopotential LB model. Moreover, based on the analysis, we will present an improved forcing scheme and numerically demonstrate that the improved scheme can be treated as an alternative approach to achieving thermodynamic consistency in the pseudopotential LB model. PMID:23005565
Automated generation of highly accurate, efficient and transferable pseudopotentials
NASA Astrophysics Data System (ADS)
Hansel, R. A.; Brock, C. N.; Paikoff, B. C.; Tackett, A. R.; Walker, D. G.
2015-11-01
A multi-objective genetic algorithm (MOGA) was used to automate a search for optimized pseudopotential parameters. Pseudopotentials were generated using the atomPAW program and density functional theory (DFT) simulations were conducted using the pwPAW program. The optimized parameters were the cutoff radius and projector energies for the s and p orbitals. The two objectives were low pseudopotential error and low computational work requirements. The error was determined from (1) the root mean square difference between the all-electron and pseudized-electron log derivative, (2) the calculated lattice constant versus reference data of Holzwarth et al., and (3) the calculated bulk modulus versus reference potentials. The computational work was defined as the number of flops required to perform the DFT simulation. Pseudopotential transferability was encouraged by optimizing each element in different lattices: (1) nitrogen in GaN, AlN, and YN, (2) oxygen in NO, ZnO, and SiO4, and (3) fluorine in LiF, NaF, and KF. The optimal solutions were equivalent in error and required significantly less computational work than the reference data. This proof-of-concept study demonstrates that the combination of MOGA and ab-initio simulations is a powerful tool that can generate a set of transferable potentials with a trade-off between accuracy (error) and computational efficiency (work).
Band structure of W and Mo by empirical pseudopotential method
NASA Technical Reports Server (NTRS)
Sridhar, C. G.; Whiting, E. E.
1977-01-01
The empirical pseudopotential method (EPM) is used to calculate the band structure of tungsten and molybdenum. Agreement between the calculated reflectivity, density of states, density of states at the Fermi surface and location of the Fermi surface from this study and experimental measurements and previous calculations is good. Also the charge distribution shows the proper topological distribution of charge for a bcc crystal.
Colavita, E.; Hacyan, S.
2014-03-15
We analyze the solutions of the Klein–Gordon and Dirac equations describing a charged particle in an electromagnetic plane wave combined with a magnetic field parallel to the direction of propagation of the wave. It is shown that the Klein–Gordon equation admits coherent states as solutions, while the corresponding solutions of the Dirac equation are superpositions of coherent and displaced-number states. Particular attention is paid to the resonant case in which the motion of the particle is unbounded. -- Highlights: •We study a relativistic electron in a particular electromagnetic field configuration. •New exact solutions of the Klein–Gordon and Dirac equations are obtained. •Coherent and displaced number states can describe a relativistic particle.
Mobile Ultrasound Plane Wave Beamforming on iPhone or iPad using Metal- based GPU Processing
NASA Astrophysics Data System (ADS)
Hewener, Holger J.; Tretbar, Steffen H.
Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like the Apple iPad for full signal processing of raw data for ultrasound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobile devices based on consumer electronics realizing the transition from FPGA or ASIC based beamforming into more flexible software beamforming. The massive parallel beamforming processing can be done with the Apple framework "Metal" for advanced graphics and general purpose GPU processing for the iOS platform. We were able to integrate the beamforming reconstruction into our mobile ultrasound processing application with imaging rates up to 70 Hz on iPad Air 2 hardware.
NASA Astrophysics Data System (ADS)
Kumar, Rajneesh; Singh, Manjeet
2009-07-01
The present investigation is concerned with the propagation of plane waves at an imperfectly bonded interface of two orthotropic generalized thermoelastic rotating half-spaces with different elastic and thermal properties. The thermoelastic theory with one relaxation time developed by Lord and Shulman [A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids 15 (1967) 299-309] is used to study the problem. The reflection and transmission coefficients of Quasi Longitudinal (QL-) wave, Quasi Thermal (T-mode) wave and Quasi Transverse (QT-) wave have been derived. The effect of rotation has been studied on the velocities of different waves. Some special cases of boundaries i.e. normal stiffness, transverse stiffness, thermal contact conductance, slip boundary and welded contact boundary have been deduced from an imperfect one. Impact of different boundaries has been studied graphically. It is observed that thermal properties, rotation and imperfect boundary have significant effect on the propagation of waves.
Boriskin, Artem V; Sauleau, Ronan; Nosich, Alexander I
2009-02-01
The near fields of small-size extended hemielliptic lenses made of rexolite and isotropic quartz and illuminated by E- and H-polarized plane waves are studied. Variations in the focal domain size, shape, and location are reported versus the angle of incidence of the incoming wave. The problem is solved numerically in a two-dimensional formulation. The accuracy of results is guaranteed by using a highly efficient numerical algorithm based on the combination of the Muller boundary integral equations, the method of analytical regularization, and the trigonometric Galerkin discretization scheme. The analysis fully accounts for the finite size of the lens as well as its curvature and thus can be considered as a reference solution for other electromagnetic solvers. Moreover, the trusted description of the focusing ability of a finite-size hemielliptic lens can be useful in the design of antenna receivers. PMID:19183675
NASA Astrophysics Data System (ADS)
Millen, James
2016-04-01
George Musser's book Spooky Action at a Distance focuses on one of quantum physics' more challenging concepts, nonlocality, and its multitude of implications, particularly its assault on space itself.
Multipartite nonlocality distillation
Hsu, Li-Yi; Wu, Keng-Shuo
2010-11-15
The stronger nonlocality than that allowed in quantum theory can provide an advantage in information processing and computation. Since quantum entanglement is distillable, can nonlocality be distilled in the nonsignalling condition? The answer is positive in the bipartite case. In this article the distillability of the multipartite nonlocality is investigated. We propose a distillation protocol solely exploiting xor operations on output bits. The probability-distribution vectors and matrix are introduced to tackle the correlators. It is shown that only the correlators with extreme values can survive the distillation process. As the main result, the amplified nonlocality cannot maximally violate any Bell-type inequality. Accordingly, a distillability criterion in the postquantum region is proposed.
NASA Astrophysics Data System (ADS)
Frezza, Fabrizio; Mangini, Fabio; Stoja, Endri; Tedeschi, Nicola
2013-04-01
In this work we present a numerical study of the effects that can be observed in the electromagnetic scattering of a plane wave due to the surface roughness of a buried scatterer. The latter is supposed to be a metallic pipeline modeled as a perfect-electric conducting cylinder immersed in a half-space occupied by a lossy medium. Considering the pipeline's cross-section, the surface roughness is modeled as a sinusoidal variation of the radius of the cylinder's surface with respect to the revolution angle. A linearly-polarized plane wave impinging normally to the interface between air and the previously-mentioned medium excites the structure. As a result, we monitor the three components of the scattered electric field along a line just above the interface between the two media. To perform the study, a commercially available simulator which implements the Finite Element Method was adopted. In order to discriminate the effects due only to the surface roughness, we compare the results obtained by the rough surface scatterers with the reference case of a perfect cylinder in which the surface roughness is absent, for a fixed depth and a fixed mean radius of the cylinder. In our study, we vary the amplitude and the angular frequency of the sinusoidal disturbance to model different surface roughness scenarios. For all the scenarios taken in consideration, a frequency sweep of the impinging radiation is performed. This allows us to investigate the relation between the excitation frequency and the sinusoidal disturbance frequency of the rough surface. The study has several implications in the field of civil engineering. One example might be the one in which the geometrical characteristics of the buried pipeline are known in advance, and it is important to continuously monitor the structural variations of its external surface due to the deterioration in time under the action of various environmental factors.
Maintz, Stefan; Deringer, Volker L; Tchougréeff, Andrei L; Dronskowski, Richard
2013-11-01
Quantum-chemical computations of solids benefit enormously from numerically efficient plane-wave (PW) basis sets, and together with the projector augmented-wave (PAW) method, the latter have risen to one of the predominant standards in computational solid-state sciences. Despite their advantages, plane waves lack local information, which makes the interpretation of local densities-of-states (DOS) difficult and precludes the direct use of atom-resolved chemical bonding indicators such as the crystal orbital overlap population (COOP) and the crystal orbital Hamilton population (COHP) techniques. Recently, a number of methods have been proposed to overcome this fundamental issue, built around the concept of basis-set projection onto a local auxiliary basis. In this work, we propose a novel computational technique toward this goal by transferring the PW/PAW wavefunctions to a properly chosen local basis using analytically derived expressions. In particular, we describe a general approach to project both PW and PAW eigenstates onto given custom orbitals, which we then exemplify at the hand of contracted multiple-ζ Slater-type orbitals. The validity of the method presented here is illustrated by applications to chemical textbook examples-diamond, gallium arsenide, the transition-metal titanium-as well as nanoscale allotropes of carbon: a nanotube and the C60 fullerene. Remarkably, the analytical approach not only recovers the total and projected electronic DOS with a high degree of confidence, but it also yields a realistic chemical-bonding picture in the framework of the projected COHP method. PMID:24022911
Nikolaev, A V; Lamoen, D; Partoens, B
2016-07-01
In order to increase the accuracy of the linearized augmented plane wave (LAPW) method, we present a new approach where the plane wave basis function is augmented by two different atomic radial components constructed at two different linearization energies corresponding to two different electron bands (or energy windows). We demonstrate that this case can be reduced to the standard treatment within the LAPW paradigm where the usual basis set is enriched by the basis functions of the tight binding type, which go to zero with zero derivative at the sphere boundary. We show that the task is closely related with the problem of extended core states which is currently solved by applying the LAPW method with local orbitals (LAPW+LO). In comparison with LAPW+LO, the number of supplemented basis functions in our approach is doubled, which opens up a new channel for the extension of the LAPW and LAPW+LO basis sets. The appearance of new supplemented basis functions absent in the LAPW+LO treatment is closely related with the existence of the u̇l-component in the canonical LAPW method. We discuss properties of additional tight binding basis functions and apply the extended basis set for computation of electron energy bands of lanthanum (face and body centered structures) and hexagonal close packed lattice of cadmium. We demonstrate that the new treatment gives lower total energies in comparison with both canonical LAPW and LAPW+LO, with the energy difference more pronounced for intermediate and poor LAPW basis sets. PMID:27394093
Frezza, F; Mangini, F
2016-05-01
A rigorous theoretical treatment to analyze the electromagnetic scattering of an inhomogeneous elliptically polarized plane wave by a sphere buried in a lossy half-space is presented. To consider the losses in the media an inhomogeneous plane wave is considered. The incident and the scattered electric field components are expanded in series of vectorial spherical harmonics using the Legendre functions generalized via hypergeometrical and gamma functions, with unknown expansion coefficients. The spectral-domain method to represent the scattered electric field is used in order to compute the scattered-reflected and scattered-transmitted fields, considering the reflection and transmission of each elementary plane wave by the interface. Finally, the unknown coefficients of the scattered field are computed by imposing the boundary condition on the spherical surface. In order to validate the model, a homemade code has been implemented. Comparisons with the simulations performed with a commercial software and the results in the literature are presented. PMID:27140892
Dietrich, F S
2006-09-25
This document is intended to facilitate calculation of inelastic scattering and charge-exchange cross sections in a variety of reaction models, including the plane-wave and distorted-wave approximations and the full coupled-channels treatments. Expressions are given for the coupling potentials between the relevant channels in both coordinate and momentum space. In particular, it is expected that the plane-wave calculations should be useful as a check on the correctness of coupled-channels calculations. The Fourier transform methods used to calculate the plane-wave approximation cross sections are also intended to be used to generate the transition potentials for coupled-channels codes, using a folding model with local effective interactions. Specific expressions are given for calculating transition densities for the folding model in the random phase approximation (RPA).
The electrical transport properties of liquid Rb using pseudopotential theory
Patel, A. B. Bhatt, N. K. Thakore, B. Y. Jani, A. R.; Vyas, P. R.
2014-04-24
Certain electric transport properties of liquid Rb are reported. The electrical resistivity is calculated by using the self-consistent approximation as suggested by Ferraz and March. The pseudopotential due to Hasegawa et al for full electron-ion interaction, which is valid for all electrons and contains the repulsive delta function due to achieve the necessary s-pseudisation was used for the calculation. Temperature dependence of structure factor is considered through temperature dependent potential parameter in the pair potential. Finally, thermo-electric power and thermal conductivity are obtained. The outcome of the present study is discussed in light of other such results, and confirms the applicability of pseudopotential at very high temperature via temperature dependent pair potential.
The electrical transport properties of liquid Rb using pseudopotential theory
NASA Astrophysics Data System (ADS)
Patel, A. B.; Bhatt, N. K.; Thakore, B. Y.; Vyas, P. R.; Jani, A. R.
2014-04-01
Certain electric transport properties of liquid Rb are reported. The electrical resistivity is calculated by using the self-consistent approximation as suggested by Ferraz and March. The pseudopotential due to Hasegawa et al for full electron-ion interaction, which is valid for all electrons and contains the repulsive delta function due to achieve the necessary s-pseudisation was used for the calculation. Temperature dependence of structure factor is considered through temperature dependent potential parameter in the pair potential. Finally, thermo-electric power and thermal conductivity are obtained. The outcome of the present study is discussed in light of other such results, and confirms the applicability of pseudopotential at very high temperature via temperature dependent pair potential.
Pseudopotentials for quantum Monte Carlo calculations of transition metal oxides
NASA Astrophysics Data System (ADS)
Krogel, Jaron; Santana, Juan; Kent, Paul; Reboredo, Fernando
2015-03-01
Quantum Monte Carlo calculations of transition metal oxides are partially limited by the availability of high quality pseudopotentials that are both accurate in QMC and compatible with major electronic structure codes, e.g. by not being overly hard in the standard planewave basis. Following insight gained from recent GW calculations, a set of neon core pseudopotentials with small cutoff radii have been created for the early transition metal elements Sc to Zn within the local density approximation of DFT. The pseudopotentials have been tested for energy consistency within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (TM) atoms and the binding curve of each TM-O dimer. The vast majority of the ionization potentials fall within 0.3 eV of the experimental values, with exceptions occurring mainly for atoms with multiple unpaired d electrons where multireference effects are the strongest. The equilibrium bond lengths of the dimers are within 1% of experimental values and the binding energy errors are typically less than 0.3 eV. Given the uniform treatment of the core, the larger deviations occasionally observed may primarily reflect the limitations of a Slater-Jastrow trial wavefunction. This work is supported by the Materials Sciences & Engineering Division of the Office of Basic Energy Sciences, U.S. DOE. Research by PRCK was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.
A generalized nonlocal vector calculus
NASA Astrophysics Data System (ADS)
Alali, Bacim; Liu, Kuo; Gunzburger, Max
2015-10-01
A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.
NASA Astrophysics Data System (ADS)
Baboly, Mohammadhosein Ghasemi; Soliman, Yasser; Su, Mehmet F.; Reinke, Charles M.; Leseman, Zayd C.; El-Kady, Ihab
2014-11-01
Plane wave expansion analyses that use the inverse rule to obtain the Fourier coefficients of the elastic tensor instead of the more conventional Laurent's rule, exhibit faster convergence rates for solid-solid phononic crystals. In this work, the band structure convergence of calculations using the inverse rule is investigated and applied to the case of high acoustic impedance contrast solid-solid phononic crystals, previously known for convergence difficulties. Results are contrasted to those obtained with the conventional plane wave expansion method. The inverse rule is found to converge at a much rate for all ranges of impedance contrast, and the ratio between the computational times needed to obtain a convergent band structure for a high-contrast solid-solid phononic crystal with the conventional plane wave expansion method using 1369 reciprocal lattice vectors is as large as 6800:1. This ratio decreases for material sets with lower impedance contrast; however, the inverse rule is still faster for a given error threshold for even the lowest impedance contrast phononic crystals reported in the literature. This convergence enhancement is a major factor in reconsidering the plane wave expansion method as an important tool in obtaining propagating elastic modes in phononic crystals.
NASA Technical Reports Server (NTRS)
Straton, Jack C.
1989-01-01
The class of integrals containing the product of N 1s hydrogenic orbitals and M Coulomb or Yukawa potentials with m plane waves is investigated analytically. The results obtained by Straton (1989) are extended and generalized. It is shown that the dimensionality of the entire class can be reduced from 3m to M+N-1.
NASA Astrophysics Data System (ADS)
Voss, D. E.; Koslover, R. A.; Cremer, C. D.; Silvestro, J.; Miner, L. M.
1990-05-01
The High Power Microwaves (HPM) susceptibility testing often requires irradiating test objects at the highest fluences possible. For aperture antennas, the highest fluences are generally found in the radiating near field region. For valid effects testing, the energy coupled to the object interior must accurately replicate that which would occur in a true weapon environment (plane wave illumination). Some believe that valid testing requires object placement at distances from the aperture exceeding 2 D squared/lambda (D=antenna effective diameter). Many also believe testing at farther away than 2 D squared/lambda guarantees plane wave-like coupling conditions. Neither view is correct. Testing in the reactive field region (less than lambda from the aperture) is generally invalid due to dominance of reactive coupling. For testing in the radiating near field, determination of validity is less trivial. An investigation was performed quantifying deviations from plane wave coupling. The measurements, using an instrumented Maverick missile in an anechoic chamber, and supported by theory, indicate conditions for which testing the Maverick missile accurately simulates plane wave coupling.
Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
2013-06-11
The second-order Møller-Plesset perturbation energy (MP2) and the Random Phase Approximation (RPA) correlation energy are increasingly popular post-Kohn-Sham correlation methods. Here, a novel algorithm based on a hybrid Gaussian and Plane Waves (GPW) approach with the resolution-of-identity (RI) approximation is developed for MP2, scaled opposite-spin MP2 (SOS-MP2), and direct-RPA (dRPA) correlation energies of finite and extended system. The key feature of the method is that the three center electron repulsion integrals (μν|P) necessary for the RI approximation are computed by direct integration between the products of Gaussian basis functions μν and the electrostatic potential arising from the RI fitting densities P. The electrostatic potential is obtained in a plane waves basis set after solving the Poisson equation in Fourier space. This scheme is highly efficient for condensed phase systems and offers a particularly easy way for parallel implementation. The RI approximation allows to speed up the MP2 energy calculations by a factor 10 to 15 compared to the canonical implementation but still requires O(N(5)) operations. On the other hand, the combination of RI with a Laplace approach in SOS-MP2 and an imaginary frequency integration in dRPA reduces the computational effort to O(N(4)) in both cases. In addition to that, our implementations have low memory requirements and display excellent parallel scalability up to tens of thousands of processes. Furthermore, exploiting graphics processing units (GPU), a further speedup by a factor ∼2 is observed compared to the standard only CPU implementations. In this way, RI-MP2, RI-SOS-MP2, and RI-dRPA calculations for condensed phase systems containing hundreds of atoms and thousands of basis functions can be performed within minutes employing a few hundred hybrid nodes. In order to validate the presented methods, various molecular crystals have been employed as benchmark systems to assess the performance, while
Quantum networks reveal quantum nonlocality.
Cavalcanti, Daniel; Almeida, Mafalda L; Scarani, Valerio; Acín, Antonio
2011-01-01
The results of local measurements on some composite quantum systems cannot be reproduced classically. This impossibility, known as quantum nonlocality, represents a milestone in the foundations of quantum theory. Quantum nonlocality is also a valuable resource for information-processing tasks, for example, quantum communication, quantum key distribution, quantum state estimation or randomness extraction. Still, deciding whether a quantum state is nonlocal remains a challenging problem. Here, we introduce a novel approach to this question: we study the nonlocal properties of quantum states when distributed and measured in networks. We show, using our framework, how any one-way entanglement distillable state leads to nonlocal correlations and prove that quantum nonlocality is a non-additive resource, which can be activated. There exist states, local at the single-copy level, that become nonlocal when taking several copies of them. Our results imply that the nonlocality of quantum states strongly depends on the measurement context. PMID:21304513
Unstable nonlocal interface dynamics.
Nicoli, Matteo; Cuerno, Rodolfo; Castro, Mario
2009-06-26
Nonlocal effects occur in many nonequilibrium interfaces, due to diverse physical mechanisms like diffusive, ballistic, or anomalous transport, with examples from flame fronts to thin films. While dimensional analysis describes stable nonlocal interfaces, we show the morphologically unstable condition to be nontrivial. This is the case for a family of stochastic equations of experimental relevance, paradigmatically including the Michelson-Sivashinsky system. For a whole parameter range, the asymptotic dynamics is scale invariant with dimension-independent exponents reflecting a hidden Galilean symmetry. The usual Kardar-Parisi-Zhang nonlinearity, albeit irrelevant in that parameter range, plays a key role in this behavior. PMID:19659099
NASA Astrophysics Data System (ADS)
Bakker, J. F.; Paulides, M. M.; Christ, A.; Kuster, N.; van Rhoon, G. C.
2010-06-01
To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SARwb) and the peak 10 g spatial-averaged SAR (SAR10g). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SARwb) and 58% (SAR10g) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SARwb is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR10g values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning.
Maxit, Laurent
2016-08-01
This paper investigates the modeling of a vibrating structure excited by a turbulent boundary layer (TBL). Although the wall pressure field (WPF) of the TBL constitutes a random excitation, the element-based methods generally used for describing complex mechanical structures consider deterministic loads. The response of such structures to a random excitation like TBL is generally deduced from calculations of numerous Frequency Response Functions. Consequently, the process is computationally expansive. To tackle this issue, an efficient process is proposed for generating realizations of the WPF corresponding to the TBL. This process is based on a formulation of the problem in the wavenumber space and the interpretation of the WPF as uncorrelated wall plane waves. Once the WPF has been synthesized, the local vibroacoustic responses are calculated for the different realizations and averaged together in the last step. A numerical application of this process to a plate located beneath a TBL is used to verify its efficiency and ability to reproduce the partial space correlation of the excitation. To further illustrate the proposed method, a stiffened panel modeled using the finite element method is finally examined. PMID:27586754
E-field extraction from Hx- and Hy- near field values by using plane wave spectrum method
NASA Astrophysics Data System (ADS)
Ravelo, B.; Riah, Z.; Baudry, D.; Mazari, B.
2011-01-01
This paper deals with a technique for calculating the 3D E-field components knowing only the two components (Hx and Hy) of the H-field in near-zone. The originality of the under study technique lies on the possibility to take into account the evanescent wave influences. The presented E-field extraction process is based on the exploitation of the Maxwell-Ampere relation combined with the plane wave spectrum (PWS) method. The efficiency of the proposed technique is evidenced by comparing the E-field deduced from H-field and the own E-field radiated by the association of electrical- and also magnetic- elementary dipoles in different configurations by using Matlab text programming environment. In addition, as a concrete demonstrator, the concept was also validated with the computation of EM-wave radiated by an open-end microstrip transmission line. As result of comparison, very good agreement between the exact E-field and that one extracted from the H-field was realized by considering the near-field scanned at the height, z = 5 mm and 8 mm above the under test structure at the operating frequency, f = 1 GHz. The presented technique can simplify the difficulties about the E-near-field measurement in EMC applications.
Pérez-Jordá, José M
2010-01-14
A new method for solving the Schrödinger equation is proposed, based on the following details. First, a map u=u(r) from Cartesian coordinates r to a new coordinate system u is chosen. Second, the solution (orbital) psi(r) is written in terms of a function U depending on u so that psi(r)=/J(u)/(-1/2)U(u), where /J(u)/ is the Jacobian determinant of the map. Third, U is expressed as a linear combination of plane waves in the u coordinate, U(u)= sum (k)c(k)e(ik x u). Finally, the coefficients c(k) are variationally optimized to obtain the best energy, using a generalization of an algorithm originally developed for the Coulomb potential [J. M. Perez-Jorda, Phys. Rev. B 58, 1230 (1998)]. The method is tested for the radial Schrödinger equation in the hydrogen atom, resulting in micro-Hartree accuracy or better for the energy of ns and np orbitals (with n up to 5) using expansions of moderate length. PMID:20095666
Skaropoulos, N.C.; Ioannidou, M.P.; Chrissoulidis, D.P.
1996-10-01
Understanding the interaction of EM radiation with humans is essential in a number of contemporary applications. Special attention is paid to the absorption of EM energy by the human head, which exhibits a resonant behavior in the frequency band 0.1--3 GHz. The use of handheld transceivers for wireless communications, which operate in close proximity to the head, has raised safety-related questions and questions concerning the effect of the head on the performance of the mobile phone antenna. The induced electromagnetic (EM) field in a layered eccentric spheres structure is determined through a concise analytical formulation based on indirect mode-matching (IMM). The exact analytical solution is applied to a six-layer model of the head. This model allows for eccentricity between the inner and outer sets of concentric spherical layers which simulate brain and skull, respectively. Excitation is provided by a nearby localized source or by an incident plane wave. The numerical application provides information about the total absorbed power, the absorption in each layer, and the spatial distribution of the specific absorption rate (SAR) at frequencies used by cellular phones. The effects of excitation frequency, eccentricity, exposure configuration, and antenna-head separation are investigated.
Bakker, J F; Paulides, M M; Christ, A; Kuster, N; van Rhoon, G C
2010-06-01
To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SAR(wb)) and the peak 10 g spatial-averaged SAR (SAR(10g)). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SAR(wb)) and 58% (SAR(10g)) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SAR(wb) is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR(10g) values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning. PMID:20463374
NASA Technical Reports Server (NTRS)
Raman, Ganesh; Rice, Edward J.; Mankbadi, Reda R.
1988-01-01
The limitations of single frequency plane wave excitation in mixing enhancement are investigated for a circular jet. Measurements made in an 8.8 cm diameter jet are compared with a theoretical model. The measurements are made to quantify mixing at excitation amplitudes up to 2 percent of the jet exit velocity. The initial boundary layer state, the exit mean and fluctuating velocity profiles and spectra are documented for all cases considered. The amplitude of the fundamental wave is recorded along the jet axis for various levels of excitation. As the amplitude of excitation is increased the jet spreading rate is increased, but beyond a saturation amplitude further increases have no effect on the spreading. The experimental results are compared with theoretical estimates. In the theory the flow is split into the mean flow, large scale motions, and fine scale turbulence. Shape assumptions for the mean flow, and fine scale turbulence along with the shape for the large scale motions obtained from a linear stability theory provide the closure. The experimental results compare reasonably well with predictions.
NASA Technical Reports Server (NTRS)
Raman, Ganesh; Rice, Edward J.; Mankbadi, Reda R.
1988-01-01
The limitations of single frequency plane wave excitation in mixing enhancement are investigated for a circular jet. Measurements made in an 8.8 cm diameter jet are compared with a theoretical model. The measurements are made to quantify mixing at excitation amplitudes up to 2 percent of the jet exit velocity. The initial boundary layer state, the exit mean and fluctuating velocity profiles and spectra are documented for all cases considered. The amplitude of the fundamental wave is recorded along the jet axis for various levels of excitation. As the amplitude of excitation is increased the jet spreading rate is increased, but beyond a saturation amplitude further increases have no effect on the spreading. The experimental results are compared with theoretical estimates. In the theory the flow is split into the mean flow, large scale motions, and fine scale turbulence. Shape assumptions for the mean flow, and fine scale turbulence along with the shape for the large scale motions obtained from a linear stability theory provide the closure. The experimental results compare reasonably well with predictions.
NASA Astrophysics Data System (ADS)
Pickett, Warren E.; Freeman, A. J.; Koelling, D. D.
1980-09-01
We report the results of a linearized augmented-plane-wave calculation of the electronic structure of fcc La at three lattice constants corresponding to ambient pressure, 50, and 120 kbars. The Kohn-Sham-Gáspar approximation for exchange and correlation is used and the potential is allowed a fully non-muffin-tin form. The f bands lie ~2-2.5 eV above the Fermi level and are ~1 eV wide, resulting in a very small (0.05 electrons) localized f occupation. Under pressure the f bands rise and broaden appreciably, resulting in only a slight increase in f occupation. The rigid-muffin-tin approximation for the electron-phonon interaction λ overestimates the superconducting transition temperature Tc by 40%, but we find that the drastic increase in Tc under pressure can be attributed primarily to changes in the electronic stiffness η. Structural transitions which occur at 25 and 53 kbars may be related to changes in Fermi-surface topology which we find to occur approximately at these pressures.
Force method in a pseudo-potential lattice Boltzmann model
NASA Astrophysics Data System (ADS)
Hu, Anjie; Li, Longjian; Uddin, Rizwan
2015-08-01
Single component pseudo-potential lattice Boltzmann models have been widely studied due to their simplicity and stability in multiphase simulations. While numerous models have been proposed, comparative analysis and advantages and disadvantages of different force schemes are often lacking. A pseudo-potential model to simulate large density ratios proposed by Kupershtokh et al. [1] is analyzed in detail in this work. Several common used force schemes are utilized and results compared. Based on the numerical results, the relatively most accurate force scheme proposed by Guo et al. [2] is selected and applied to improve the accuracy of Kupershtokh et al.'s model. Results obtained using the modified Kupershtokh et al.'s model [1] for different value of τ are compared with those obtained using Li et al.'s model [3]. Effect of relaxation time τ on the accuracy of the results is reported. Moreover, it is noted that the error in the density ratio predicted by the model is directly correlated with the magnitude of the spurious velocities on (curved) interfaces. Simulation results show that, the accuracy of Kupershtokh et al.'s model can be improved with Guo et al.'s force scheme [2]. However, the errors and τ's effects are still noticeable when density ratios are large. To improve the accuracy of the pseudo-potential model and to reduce the effects of τ, two possible methods were discussed in the present work. Both, a rescaling of the equation of state and multi-relaxation time, are applied and are shown to improve the prediction of the density ratios.
ERIC Educational Resources Information Center
Hobson, Art
2012-01-01
Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…
NASA Astrophysics Data System (ADS)
Tinniswood, A. D.; Furse, C. M.; Gandhi, O. P.
1998-08-01
At certain frequencies, when the human head becomes a resonant structure, the power absorbed by the head and neck, when the body is exposed to a vertically polarized plane wave propagating from front to back, becomes significantly larger than would ordinarily be expected from its shadow cross section. This has possible implications in the study of the biological effects of electromagnetic fields. Additionally the frequencies at which these resonances occur are not readily predicted by simple approximations of the head in isolation. In order to determine these resonant conditions an anatomically based model of the whole human body has been used, with the finite-difference time-domain (FDTD) algorithm to accurately determine field propagation, specific absorption rate (SAR) distributions and power absorption in both the whole body and the head region (head and neck). This paper shows that resonant frequencies can be determined using two methods. The first is by use of the accurate anatomically based model (with heterogeneous tissue properties) and secondly using a model built from parallelepiped sections (for the torso and legs), an ellipsoid for the head and a cylinder for the neck. This approximation to the human body is built from homogeneous tissue the equivalent of two-thirds the conductivity and dielectric constant of that of muscle. An IBM SP-2 supercomputer together with a parallel FDTD code has been used to accommodate the large problem size. We find resonant frequencies for the head and neck at 207 MHz and 193 MHz for the isolated and grounded conditions, with absorption cross sections that are respectively 3.27 and 2.62 times the shadow cross section.
Lavery, Martin P J; Huang, Hao; Ren, Yongxiong; Xie, Guodong; Willner, Alan E
2016-03-01
We demonstrate a 280 Gbit/s free-space space-division-multiplexing communications link incorporating a set of independent tilted truncated plane-waves, each generated by a single mode fiber placed at the back-focal plane of a spherical lens. Each of the seven tilted plane-wave channels are encoded with a 40 Gbit/s 16-QAM signal. Our approach comprises two identical linear fiber-arrays placed approximately 5 m apart. As each fiber array is placed at the back-focal-plane of a spherical lens, each fiber array is effectively placed in a conjugate image plane of the other. A channel crosstalk of less than 26 dB is shown, with a bit-error-rate below the FEC threshold of 3.8×10(-3). PMID:26974062
NASA Astrophysics Data System (ADS)
Caleb Dhanasekaran, P.; Poddar, M.
A FORTRAN program utilizing an integral equation calculates 10 field quantities relating to the electromagnetic (EM) scattering of plane wave by a perfectly conducting half-plane buried in a finitely conducting layered half-space. The computing algorithm is executable on a computer of small storage capacity such as PDP 11/40 and as such is useful to many exploration scientists without the facility of a mainframe computer, for computing model curves to interpret field data.
NASA Astrophysics Data System (ADS)
Amadon, B.; Lechermann, F.; Georges, A.; Jollet, F.; Wehling, T. O.; Lichtenstein, A. I.
2008-05-01
The description of realistic strongly correlated systems has recently advanced through the combination of density functional theory in the local density approximation (LDA) and dynamical mean field theory (DMFT). This LDA+DMFT method is able to treat both strongly correlated insulators and metals. Several interfaces between LDA and DMFT have been used, such as ( Nth order) linear muffin-tin orbitals or maximally localized Wannier functions. Such schemes are, however, either complex in use or additional simplifications are often performed (i.e., the atomic sphere approximation). We present an alternative implementation of LDA+DMFT , which keeps the precision of the Wannier implementation, but which is lighter. It relies on the projection of localized orbitals onto a restricted set of Kohn-Sham states to define the correlated subspace. The method is implemented within the projector augmented wave and within the mixed-basis pseudopotential frameworks. This opens the way to electronic structure calculations within LDA+DMFT for more complex structures with the precision of an all-electron method. We present an application to two correlated systems, namely, SrVO3 and β -NiS (a charge-transfer material), including ligand states in the basis set. The results are compared to calculations done with maximally localized Wannier functions, and the physical features appearing in the orbitally resolved spectral functions are discussed.
NASA Astrophysics Data System (ADS)
Tagwo, H.; Tiofack, C. G. L.; Dafounansou, O.; Mohamadou, A.; Kofane, T. C.
2016-03-01
We investigate analytically and numerically the modulational instability (MI) of plane waves under competing nonlocal cubic-local quintic nonlinearities. The generic properties of the MI gain spectra are then demonstrated for the Gaussian response function, exponential response function, and rectangular response function. Special attention is paid to competing nonlocal cubic-local quintic nonlinearities on the MI. We observe that the focusing local quintic nonlinearity increases the growth rate and bandwidth of instability contrary to the small values of defocusing local quintic nonlinearity which decrease the growth rate and bandwidth of instability. Numerical simulations of the full model equation describing the dynamics of the waves are been carried out and leads to the development of pulse trains, depending upon the sign the quintic nonlinearity.
Tests on novel pseudo-potentials generated from diffusion Monte Carlo data.
NASA Astrophysics Data System (ADS)
Reboredo, Fernando; Hood, Randolph; Bajdich, Michal
2012-02-01
Since Dmitri Mendeleev developed a table in 1869 to illustrate recurring ("periodic") trends of the elements, it has been understood that most chemical and physical properties can be described by taking into account the outer most electrons of the atoms. These valence electrons are mainly responsible for the chemical bond. In many ab-initio approaches only valence electrons are taken into account and a pseudopotential is used to mimic the response of the core electrons. Typically an all-electron calculation is used to generate a pseudopotential that is used either within density functional theory or quantum chemistry approaches. In this talk we explain and demonstrate a new method to generate pseudopotentials directly from all-electron many-body diffusion Monte Carlo (DMC) calculations and discuss the results of of the transferability of these pseudopotentials. The advantages of incorporating the exchange and correlation directly from DMC into the pseudopotential are also discussed.
Uncertainty-induced quantum nonlocality
NASA Astrophysics Data System (ADS)
Wu, Shao-xiong; Zhang, Jun; Yu, Chang-shui; Song, He-shan
2014-01-01
Based on the skew information, we present a quantity, uncertainty-induced quantum nonlocality (UIN) to measure the quantum correlation. It can be considered as the updated version of the original measurement-induced nonlocality (MIN) preserving the good computability but eliminating the non-contractivity problem. For 2×d-dimensional state, it is shown that UIN can be given by a closed form. In addition, we also investigate the maximal uncertainty-induced nonlocality.
Nonlocal and quasilocal field theories
NASA Astrophysics Data System (ADS)
Tomboulis, E. T.
2015-12-01
We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.