Sample records for plant cell culture

  1. Tocopherol production in plant cell cultures.

    PubMed

    Caretto, Sofia; Nisi, Rossella; Paradiso, Annalisa; De Gara, Laura

    2010-05-01

    Tocopherols, collectively known as vitamin E, are lipophilic antioxidants, essential dietary components for mammals and exclusively synthesized by photosynthetic organisms. Of the four forms (alpha, beta, gamma and delta), alpha-tocopherol is the major vitamin E form present in green plant tissues, and has the highest vitamin E activity. Synthetic alpha-tocopherol, being a racemic mixture of eight different stereoisomers, always results less effective than the natural form (R,R,R) alpha-tocopherol. This raises interest in obtaining this molecule from natural sources, such as plant cell cultures. Plant cell and tissue cultures are able to produce and accumulate valuable metabolites that can be used as food additives, nutraceuticals and pharmaceuticals. Sunflower cell cultures, growing under heterotrophic conditions, were exploited to establish a suitable in vitro production system of natural alpha-tocopherol. Optimization of culture conditions, precursor feeding and elicitor application were used to improve the tocopherol yields of these cultures. Furthermore, these cell cultures were useful to investigate the relationship between alpha-tocopherol biosynthesis and photomixotrophic culture conditions, revealing the possibility to enhance tocopherol production by favouring sunflower cell photosynthetic properties. The modulation of alpha-tocopherol levels in plant cell cultures can provide useful hints for a regulatory impact on tocopherol metabolism.

  2. Plant cell cultures: bioreactors for industrial production.

    PubMed

    Ruffoni, Barbara; Pistelli, Laura; Bertoli, Alessandra; Pistelli, Luisa

    2010-01-01

    The recent biotechnology boom has triggered increased interest in plant cell cultures, since a number of firms and academic institutions investigated intensively to rise the production of very promising bioactive compounds. In alternative to wild collection or plant cultivation, the production of useful and valuable secondary metabolites in large bioreactors is an attractive proposal; it should contribute significantly to future attempts to preserve global biodiversity and alleviate associated ecological problems. The advantages of such processes include the controlled production according to demand and a reduced man work requirement. Plant cells have been grown in different shape bioreactors, however, there are a variety of problems to be solved before this technology can be adopted on a wide scale for the production of useful plant secondary metabolites. There are different factors affecting the culture growth and secondary metabolite production in bioreactors: the gaseous atmosphere, oxygen supply and CO2 exchange, pH, minerals, carbohydrates, growth regulators, the liquid medium rheology and cell density. Moreover agitation systems and sterilization conditions may negatively influence the whole process. Many types ofbioreactors have been successfully used for cultivating transformed root cultures, depending on both different aeration system and nutrient supply. Several examples of medicinal and aromatic plant cultures were here summarized for the scale up cultivation in bioreactors.

  3. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    NASA Astrophysics Data System (ADS)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  4. Biofunctionalized Plants as Diverse Biomaterials for Human Cell Culture.

    PubMed

    Fontana, Gianluca; Gershlak, Joshua; Adamski, Michal; Lee, Jae-Sung; Matsumoto, Shion; Le, Hau D; Binder, Bernard; Wirth, John; Gaudette, Glenn; Murphy, William L

    2017-04-01

    The commercial success of tissue engineering products requires efficacy, cost effectiveness, and the possibility of scaleup. Advances in tissue engineering require increased sophistication in the design of biomaterials, often challenging the current manufacturing techniques. Interestingly, several of the properties that are desirable for biomaterial design are embodied in the structure and function of plants. This study demonstrates that decellularized plant tissues can be used as adaptable scaffolds for culture of human cells. With simple biofunctionalization technique, it is possible to enable adhesion of human cells on a diverse set of plant tissues. The elevated hydrophilicity and excellent water transport abilities of plant tissues allow cell expansion over prolonged periods of culture. Moreover, cells are able to conform to the microstructure of the plant frameworks, resulting in cell alignment and pattern registration. In conclusion, the current study shows that it is feasible to use plant tissues as an alternative feedstock of scaffolds for mammalian cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Plant cell tissue culture: A potential source of chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, C.D.; Dougall, D.K.

    1987-08-01

    Higher plants produce many industrially important products. Among these are drugs and medicinal chemicals, essential oils and flavors, vegetable oils and fats, fine and specialty chemicals, and even some commodity chemicals. Although, currently, whole-plant extraction is the primary means of harvesting these materials, the advent of plant cell tissue culture could be a much more effective method of producing many types of phytochemicals. The use of immobilized plant cells in an advanced bioreactor configuration with excretion of the product into the reactor medium may represent the most straightforward way of commercializing such techniques for lower-value chemicals. Important research and developmentmore » opportunities in this area include screening for plant cultures for nonmedical, lower-value chemicals; understanding and controlling plant cell physiology and biochemistry; optimizing effective immobilization methods; developing more efficient bioreactor concepts; and perfecting product extraction and purification techniques. 62 refs., 2 figs.« less

  6. An introduction to plant cell culture: the future ahead.

    PubMed

    Loyola-Vargas, Víctor M; Ochoa-Alejo, Neftalí

    2012-01-01

    Plant cell, tissue, and organ culture (PTC) techniques were developed and established as an experimental necessity for solving important fundamental questions in plant biology, but they currently represent very useful biotechnological tools for a series of important applications such as commercial micropropagation of different plant species, generation of disease-free plant materials, production of haploid and doublehaploid plants, induction of epigenetic or genetic variation for the isolation of variant plants, obtention of novel hybrid plants through the rescue of hybrid embryos or somatic cell fusion from intra- or intergeneric sources, conservation of valuable plant germplasm, and is the keystone for genetic engineering of plants to produce disease and pest resistant varieties, to engineer metabolic pathways with the aim of producing specific secondary metabolites or as an alternative for biopharming. Some other miscellaneous applications involve the utilization of in vitro cultures to test toxic compounds and the possibilities of removing them (bioremediation), interaction of root cultures with nematodes or mycorrhiza, or the use of shoot cultures to maintain plant viruses. With the increased worldwide demand for biofuels, it seems that PTC will certainly be fundamental for engineering different plants species in order to increase the diversity of biofuel options, lower the price marketing, and enhance the production efficiency. Several aspects and applications of PTC such as those mentioned above are the focus of this edition.

  7. Gravity, chromosomes, and organized development in aseptically cultured plant cells

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1993-01-01

    The objectives of the PCR experiment are: to test the hypothesis that microgravity will in fact affect the pattern and developmental progression of embryogenically competent plant cells from one well-defined, critical stage to another; to determine the effects of microgravity in growth and differentiation of embryogenic carrot cells grown in cell culture; to determine whether microgravity or the space environment fosters an instability of the differentiated state; and to determine whether mitosis and chromosome behavior are adversely affected by microgravity. The methods employed will consist of the following: special embryogenically competent carrot cell cultures will be grown in cell culture chambers provided by NASDA; four cell culture chambers will be used to grow cells in liquid medium; two dishes (plant cell culture dishes) will be used to grow cells on a semi-solid agar support; progression to later embryonic stages will be induced in space via crew intervention and by media manipulation in the case of liquid grown cell cultures; progression to later stages in case of semi-solid cultures will not need crew intervention; embryo stages will be fixed at a specific interval (day 6) in flight only in the case of liquid-grown cultures; and some living cells and somatic embryos will be returned for continued post-flight development and 'grown-out.' These will derive from the semi-solid grown cultures.

  8. Problems and potentialities of cultured plant cells in retrospect and prospect

    NASA Technical Reports Server (NTRS)

    Steward, F. C.; Krikorian, A. D.

    1979-01-01

    The past, present and expected future accomplishments and limitations of plant cell and tissue culture are reviewed. Consideration is given to the pioneering insights of Haberlandt in 1902, the development of culture techniques, and past work on cell division, cell and tissue growth and development, somatic embryogenesis, and metabolism and respiration. Current activity in culture media and technique development for plant regions, organs, tissues, cells, protoplasts, organelles and embryos, totipotency, somatic embryogenesis and clonal propagation under normal and space conditions, biochemical potentialities, and genetic engineering is surveyed. Prospects for the investigation of the induced control of somatic cell division, the division of isolated protoplasts, the improvement of haploid cell cultures, liquid cultures for somatic embryogenesis, and the genetic control of development are outlined.

  9. Metabolism of fluoranthene in different plant cell cultures and intact plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, M.; Harms, H.

    The metabolism of fluoranthene was investigated in 11 cell cultures of different plant species using a [{sup 14}C]-labeled standard. Most species metabolized less than 5% of fluoranthene to soluble metabolites and formed less than 5% nonextractable residues during the standardized 48-h test procedure. Higher metabolic rates were observed in lettuce (Lactuca sativa, 6%), wheat (Tricitum aestivum, 9%), and tomato (Lycopersicon esculentum, 15%). A special high metabolic rate of nearly 50% was determined for the rose species Paul's Scarlet. Chromatographic analysis of metabolites extracted from aseptically grown tomato plants proved that the metabolites detected in the cell cultures were also formedmore » in the intact plants. Metabolites produced in tomato and rose cells from [{sup 14}C]-fluoranthene were conjugated with glucose, glucuronic acid, and other cell components. After acid hydrolyses, the main metabolite of both species was 1-hydroxyfluoranthene as identified by gas chromatography-mass spectrometry and high-performance liquid chromatography with diode array detection. The second metabolite formed by both species was 8-hydroxyfluoranthene. A third metabolite in tomatoes was 3-hydroxyfluoranthene.« less

  10. Prospects for the use of plant cell cultures in food biotechnology.

    PubMed

    Davies, Kevin M; Deroles, Simon C

    2014-04-01

    Plant cell cultures can offer continuous production systems for high-value food and health ingredients, independent of geographical or environmental variations and constraints. Yet despite many improvements in culture technologies, cell line selection, and bioreactor design, there are few commercial successes. This is principally due to the culture yield and market price of food products not being sufficient to cover the plant cell culture production costs. A better understanding of the underpinning biological mechanisms that control the target metabolite biosynthetic pathways may allow the metabolic engineering of cell lines to provide for economically competitive product yields. However, uncertainty around the regulatory and public acceptance of products derived from engineered cell cultures presents a barrier to the uptake of the technology by food product companies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Cloning higher plants from aseptically cultured tissues and cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  12. Plasmid-dependent attachment of Agrobacterium tumefaciens to plant tissue culture cells.

    PubMed

    Matthysse, A G; Wyman, P M; Holmes, K V

    1978-11-01

    Kinetic, microscopic, and biochemical studies show that virulent Ti (tumor inducing)-plasmid-containing strains of Agrobacterium attach to normal tobacco and carrot tissue culture cells. Kinetic studies showed that virulent strains of A. tumefaciens attach to the plant tissue culture cells in increasing numbers during the first 1 to 2 h of incubation of the bacteria with the plant cells. Five Ti-plasmid-containing virulent Agrobacterium strains showed greater attachment to tobacco cells than did five avirulent strains. Light and scanning electron microscopic observations confirmed that virulent strains showed little attachment. Bacterial attachment was blocked by prior incubation of the plant cells with lipopolysaccharide extracted from A. tumefaciens, but not from A. radiobacter, suggesting that bacterial lipopolysaccharide is one of the components involved in the attachment process. At least one other bacterial product may be required for attachment in tissue culture because the virulent A. tumefaciens NT1, which lacks the Ti plasmid, does not itself attach to tobacco cells, but its lipopolysaccharide does inhibit the attachment of virulent strains.

  13. Plasmid-dependent attachment of Agrobacterium tumefaciens to plant tissue culture cells.

    PubMed Central

    Matthysse, A G; Wyman, P M; Holmes, K V

    1978-01-01

    Kinetic, microscopic, and biochemical studies show that virulent Ti (tumor inducing)-plasmid-containing strains of Agrobacterium attach to normal tobacco and carrot tissue culture cells. Kinetic studies showed that virulent strains of A. tumefaciens attach to the plant tissue culture cells in increasing numbers during the first 1 to 2 h of incubation of the bacteria with the plant cells. Five Ti-plasmid-containing virulent Agrobacterium strains showed greater attachment to tobacco cells than did five avirulent strains. Light and scanning electron microscopic observations confirmed that virulent strains showed little attachment. Bacterial attachment was blocked by prior incubation of the plant cells with lipopolysaccharide extracted from A. tumefaciens, but not from A. radiobacter, suggesting that bacterial lipopolysaccharide is one of the components involved in the attachment process. At least one other bacterial product may be required for attachment in tissue culture because the virulent A. tumefaciens NT1, which lacks the Ti plasmid, does not itself attach to tobacco cells, but its lipopolysaccharide does inhibit the attachment of virulent strains. Images PMID:730370

  14. Mechanisms and effective control of physiological browning phenomena in plant cell cultures.

    PubMed

    Dong, Yan-Shan; Fu, Chun-Hua; Su, Peng; Xu, Xiang-Ping; Yuan, Jie; Wang, Sheng; Zhang, Meng; Zhao, Chun-Fang; Yu, Long-Jiang

    2016-01-01

    Browning phenomena are ubiquitous in plant cell cultures that severely hamper scientific research and widespread application of plant cell cultures. Up to now, this problem still has not been well controlled due to the unclear browning mechanisms in plant cell cultures. In this paper, the mechanisms were investigated using two typical materials with severe browning phenomena, Taxus chinensis and Glycyrrhiza inflata cells. Our results illustrated that the browning is attributed to a physiological enzymatic reaction, and phenolic biosynthesis regulated by sugar plays a decisive role in the browning. Furthermore, to confirm the specific compounds which participate in the enzymatic browning reaction, transcriptional profile and metabolites of T. chinensis cells, and UV scanning and high-performance liquid chromatography-mass spectrometry (HPLC-MS) profile of the browning compounds extracted from the brown-turned medium were analyzed, flavonoids derived from phenylpropanoid pathway were found to be the main compounds, and myricetin and quercetin were deduced to be the main substrates of the browning reaction. Inhibition of flavonoid biosynthesis can prevent the browning occurrence, and the browning is effectively controlled via blocking flavonoid biosynthesis by gibberellic acid (GA3 ) as an inhibitor, which further confirms that flavonoids mainly contribute to the browning. On the basis above, a model elucidating enzymatic browning mechanisms in plant cell cultures was put forward, and effective control approaches were presented. © 2015 Scandinavian Plant Physiology Society.

  15. [Effective productions of plant secondary metabolites having antitumor activity by plant cell and tissue cultures].

    PubMed

    Taniguchi, Shoko

    2005-06-01

    Methods for the effective production of plant secondary metabolites with antitumor activity using plant cell and tissue cultures were developed. The factors in tannin productivity were investigated using culture strains producing different types of hydrolyzable tannins, i.e., gallotannins (mixture of galloylglucoses), ellagi-, and dehydroellagitannins. Production of ellagi- and dehydroellagitannins was affected by the concentrations and ratio of nitrogen sources in the medium. The formation of oligomeric ellagitannins in shoots of Oenothera tetraptera was correlated with the differentiation of tissues. Cultured cells of Eriobotrya japonica producing ursane- and oleanane-type triterpenes with antitumor activities were also established.

  16. On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect.

    PubMed

    Xu, Jianfeng; Zhang, Ningning

    2014-12-01

    Plant cell culture is emerging as an alternative bioproduction system for recombinant pharmaceuticals. Growing plant cells in vitro under controlled environmental conditions allows for precise control over cell growth and protein production, batch-to-batch product consistency and a production process aligned with current good manufacturing practices. With the recent US FDA approval and commercialization of the world's first plant cell-based recombinant pharmaceutical for human use, β-glucocerebrosidase for treatment of Gaucher's disease, a new era has come in which plant cell culture shows high potential to displace some established platform technologies in niche markets. This review updates the progress in plant cell culture processing technology, highlights recent commercial successes and discusses the challenges that must be overcome to make this platform commercially viable.

  17. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    ERIC Educational Resources Information Center

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  18. On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect

    PubMed Central

    Xu, Jianfeng; Zhang, Ningning

    2014-01-01

    Plant cell culture is emerging as an alternative bioproduction system for recombinant pharmaceuticals. Growing plant cells in vitro under controlled environmental conditions allows for precise control over cell growth and protein production, batch-to-batch product consistency and a production process aligned with current good manufacturing practices. With the recent US FDA approval and commercialization of the world’s first plant cell-based recombinant pharmaceutical for human use, β-glucocerebrosidase for treatment of Gaucher’s disease, a new era has come in which plant cell culture shows high potential to displace some established platform technologies in niche markets. This review updates the progress in plant cell culture processing technology, highlights recent commercial successes and discusses the challenges that must be overcome to make this platform commercially viable. PMID:25621170

  19. Progesterone biotransformation by plant cell suspension cultures.

    PubMed Central

    Yagen, B; Gallili, G E; Mateles, R I

    1978-01-01

    Progesterone was converted to 5alpha-pregnane-3alpha-ol-20-one, delta4-pregnene-20alpha-ol-3-one, delta4-pregnene-14alpha-ol-3,20-dione, delta4-pregnene-7beta,14alpha-diol-3,20-dione, and delta4-pregnene-6beta,11alpha-diol-3,20-dione by cell cultures of Lycopersicon esculentum. Cell cultures of Capsicum frutescens (green) metabolized progesterone to delta4-pregnene-20alpha-ol-3-one in very high yield, and Vinca rosea yielded delta4-pregnene-20beta-ol-3-one and delta4-pregnene-14alpha-ol-3,20-dione. A stereospecific reduction of the keto groups and a double bond and stereospecific introduction of hydroxyl groups at the 6, 11, and 14 positions have been observed. The mono- and dihydroxylated progesterones have not previously been reported as metabolic products of progesterone by plant cell systems and represent de novo hydroxylation of a nonglycosylated steroid. PMID:697360

  20. Somatic embryogenesis and plant regeneration from cell suspension cultures of Cucumis sativus L.

    PubMed

    Chee, P P; Tricoli, D M

    1988-06-01

    A procedure for the regeneration of whole cucumber plants (Cucumis sativus L. cv. Poinsett 76) by embryogenesis from cell suspension cultures is described. Embryogenic callus was initiated from the primary leaves of 14-17 day old plants. Suspension cultures of embryogenic cells were grown in liquid Murashige and Skoog basal medium containing 5 uM 2,4,5-trichlorophenoxyacetic acid and 4 uM 6-benzylaminopurine. Suspension cultures were composed of a population of cells that were densely cytoplasmic and potentially embryogenic. Differentiation of embryos was enhanced by washing the suspension culture cells with MS basal medium containing 0.5% activated charcoal and twice with MS basal medium followed by liquid shake cultures in MS basal medium. Sixty to 70 percent of the embryos prewashed with activated charcoal germinated into plantlets with normal morphology. Embryos obtained from suspension cultured cells without prewashing with activated charcoal organized into plantlets with abnormal primary leaves. Morphologically normal plantlets were obtained by excising the shoot tips and transferring them to fresh medium.

  1. Variability in the production of tannins and other polyphenols in cell cultures of 12 Nordic plant species.

    PubMed

    Suvanto, Jussi; Nohynek, Liisa; Seppänen-Laakso, Tuulikki; Rischer, Heiko; Salminen, Juha-Pekka; Puupponen-Pimiä, Riitta

    2017-08-01

    The polyphenol profiles of 18 cell cultures from 12 plant species were screened. The detected polyphenol fingerprints were diverse and differed from polyphenol profiles typically found in corresponding plant species. Cell cultures originating from 12 different plant species growing or grown in the Nordic countries were screened for their ability to synthesize polyphenols to assess their suitability for future studies and applications. The focus was on plant families Rosaceae and Ericaceae. On average, the Rosaceae cultures were the most efficient to produce hydrolysable tannins and the Ericaceae cultures were the most efficient to produce proanthocyanidins. This is in line with the general trend of polyphenols found in Rosaceae and Ericaceae leaves and fruits, even though several individual cell cultures differed from natural plants in their polyphenolic composition. Overall, several of the studied cell cultures exhibited capability in producing a large variety of polyphenols, including tannins with a high molecular weight, thus also showing promise for further studies concerning, for example, the accumulation of specific polyphenols or biosynthesis of polyphenols in the cell cultures.

  2. Recent advances towards development and commercialization of plant cell culture processes for synthesis of biomolecules

    PubMed Central

    Wilson, Sarah A.; Roberts, Susan C.

    2011-01-01

    (1) Summary Plant cell culture systems were initially explored for use in commercial synthesis of several high value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation strategies, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field grown crops is significant and therefore processes must be optimized with regards to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes. PMID:22059985

  3. Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures.

    PubMed

    Appelhagen, Ingo; Wulff-Vester, Anders Keim; Wendell, Micael; Hvoslef-Eide, Anne-Kathrine; Russell, Julia; Oertel, Anne; Martens, Stefan; Mock, Hans-Peter; Martin, Cathie; Matros, Andrea

    2018-06-08

    Anthocyanins are widely distributed, glycosylated, water-soluble plant pigments, which give many fruits and flowers their red, purple or blue colouration. Their beneficial effects in a dietary context have encouraged increasing use of anthocyanins as natural colourants in the food and cosmetic industries. However, the limited availability and diversity of anthocyanins commercially have initiated searches for alternative sources of these natural colourants. In plants, high-level production of secondary metabolites, such as anthocyanins, can be achieved by engineering of regulatory genes as well as genes encoding biosynthetic enzymes. We have used tobacco lines which constitutively produce high levels of cyanidin 3-O-rutinoside, delphinidin 3-O-rutinoside or a novel anthocyanin, acylated cyanidin 3-O-(coumaroyl) rutinoside to generate cell suspension cultures. The cell lines are stable in their production rates and superior to conventional plant cell cultures. Scale-up of anthocyanin production in small scale fermenters has been demonstrated. The cell cultures have also proven to be a suitable system for production of 13 C-labelled anthocyanins. Our method for anthocyanin production is transferable to other plant species, such as Arabidopsis thaliana, demonstrating the potential of this approach for making a wide range of highly-decorated anthocyanins. The tobacco cell cultures represent a customisable and sustainable alternative to conventional anthocyanin production platforms and have considerable potential for use in industrial and medical applications of anthocyanins. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. High-Throughput Cryopreservation of Plant Cell Cultures for Functional Genomics

    PubMed Central

    Ogawa, Yoichi; Sakurai, Nozomu; Oikawa, Akira; Kai, Kosuke; Morishita, Yoshihiko; Mori, Kumiko; Moriya, Kanami; Fujii, Fumiko; Aoki, Koh; Suzuki, Hideyuki; Ohta, Daisaku; Saito, Kazuki; Shibata, Daisuke

    2012-01-01

    Suspension-cultured cell lines from plant species are useful for genetic engineering. However, maintenance of these lines is laborious, involves routine subculturing and hampers wider use of transgenic lines, especially when many lines are required for a high-throughput functional genomics application. Cryopreservation of these lines may reduce the need for subculturing. Here, we established a simple protocol for cryopreservation of cell lines from five commonly used plant species, Arabidopsis thaliana, Daucus carota, Lotus japonicus, Nicotiana tabacum and Oryza sativa. The LSP solution (2 M glycerol, 0.4 M sucrose and 86.9 mM proline) protected cells from damage during freezing and was only mildly toxic to cells kept at room temperature for at least 2 h. More than 100 samples were processed for freezing simultaneously. Initially, we determined the conditions for cryopreservation using a programmable freezer; we then developed a modified simple protocol that did not require a programmable freezer. In the simple protocol, a thick expanded polystyrene (EPS) container containing the vials with the cell–LSP solution mixtures was kept at −30°C for 6 h to cool the cells slowly (pre-freezing); samples from the EPS containers were then plunged into liquid nitrogen before long-term storage. Transgenic Arabidopsis cells were subjected to cryopreservation, thawed and then re-grown in culture; transcriptome and metabolome analyses indicated that there was no significant difference in gene expression or metabolism between cryopreserved cells and control cells. The simplicity of the protocol will accelerate the pace of research in functional plant genomics. PMID:22437846

  5. Biotechnological production of pharmaceuticals and biopharmaceuticals in plant cell and organ cultures.

    PubMed

    Hidalgo, Diego; Sanchez, Raul; Lalaleo, Liliana; Bonfill, Mercedes; Corchete, Purificacion; Palazon, Javier

    2018-03-09

    Plant biofactories are biotechnological platforms based on plant cell and organ cultures used for the production of pharmaceuticals and biopharmaceuticals, although to date only a few of these systems have successfully been implemented at an industrial level. Metabolic engineering is possibly the most straightforward strategy to boost pharmaceutical production in plant biofactories, but social opposition to the use of GMOs means empirical approaches are still being used. Plant secondary metabolism involves thousands of different enzymes, some of which catalyze specific reactions, giving one product from a particular substrate, whereas others can yield multiple products from the same substrate. This trait opens plant cell biofactories to new applications, in which the natural metabolic machinery of plants can be harnessed for the bioconversion of phytochemicals or even the production of new bioactive compounds. Synthetic biological pipelines involving the bioconversion of natural substrates into products with a high market value may be established by the heterologous expression of target metabolic genes in model plants. To summarize the state of the art of plant biofactories and their applications for the pipeline production of cosme-, pharma- and biopharmaceuticals. In order to demonstrate the great potential of plant biofactories for multiple applications in the biotechnological production of pharmaceuticals and biopharmaceuticals, this review broadly covers the following: plant biofactories based on cell and hairy root cultures; secondary metabolite production; biotransformation reactions; metabolic engineering tools applied in plant biofactories; and biopharmaceutical production. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Polarity establishment, morphogenesis, and cultured plant cells in space

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1989-01-01

    Plant development entails an orderly progression of cellular events both in terms of time and geometry. There is only circumstantial evidence that, in the controlled environment of the higher plant embryo sac, gravity may play a role in embryo development. It is still not known whether or not normal embryo development and differentiation in higher plants can be expected to take place reliably and efficiently in the micro g space environment. It seems essential that more attention be given to studying aspects of reproductive biology in order to be confident that plants will survive seed to seed to seed in a space environment. Until the time arrives when successive generations of plants can be grown, the best that can be done is utilize the most appropriate systems and begin, piece meal, to accumulate information on important aspects of plant reproduction. Cultured plant cells can play an important role in these activities since they can be grown so as to be morphogenetically competent, and thus can simulate those embryogenic events more usually identified with fertilized eggs in the embryo sac of the ovule in the ovary. Also, they can be manipulated with relative ease. The extreme plasticity of such demonstrably totipotent cell systems provides a means to test environmental effects such as micro g on a potentially free-running entity. The successful manipulation and management of plant cells and propagules in space also has significance for exploitation of biotechnologies in space since such systems, perforce, are an important vehicle whereby many genetic engineering manipulations are achieved.

  7. Putting the Spotlight Back on Plant Suspension Cultures

    PubMed Central

    Santos, Rita B.; Abranches, Rita; Fischer, Rainer; Sack, Markus; Holland, Tanja

    2016-01-01

    Plant cell suspension cultures have several advantages that make them suitable for the production of recombinant proteins. They can be cultivated under aseptic conditions using classical fermentation technology, they are easy to scale-up for manufacturing, and the regulatory requirements are similar to those established for well-characterized production systems based on microbial and mammalian cells. It is therefore no surprise that taliglucerase alfa (Elelyso®)—the first licensed recombinant pharmaceutical protein derived from plants—is produced in plant cell suspension cultures. But despite this breakthrough, plant cells are still largely neglected compared to transgenic plants and the more recent plant-based transient expression systems. Here, we revisit plant cell suspension cultures and highlight recent developments in the field that show how the rise of plant cells parallels that of Chinese hamster ovary cells, currently the most widespread and successful manufacturing platform for biologics. These developments include medium optimization, process engineering, statistical experimental designs, scale-up/scale-down models, and process analytical technologies. Significant yield increases for diverse target proteins will encourage a gold rush to adopt plant cells as a platform technology, and the first indications of this breakthrough are already on the horizon. PMID:27014320

  8. The Production of Biologically Active Substances by Plant Cell Cultures in Space

    NASA Astrophysics Data System (ADS)

    Strogov, S. E.; Zaitseva, G. V.; Konstantinova, N. A.; Fetisova, E. M.; Mikhailova, O. M.; Belousova, I. M.; Turkin, V. V.; Ukraintsev, A. D.

    2001-07-01

    The impact of the conditions of space flight on the productivity of cultures of the plant cells with respect to the biomass and the metabolites is investigated. The experiments were performed with the callus cultures of the cells of ginseng ( Panax ginseng), red root puccoon ( Lithospermum arythrorhizon), and macrotomia coloring ( Macrotomia euchroma) onboard the orbital station Mirand American Space Shuttle. A more pronounced variation of the output of the metabolites is noted with respect to the ground control. This output depends upon the properties of the strain and conditions of the experiment.

  9. Zinc tolerance and accumulation in stable cell suspension cultures and in vitro regenerated plants of the emerging model plant Arabidopsis halleri (Brassicaceae).

    PubMed

    Vera-Estrella, Rosario; Miranda-Vergara, Maria Cristina; Barkla, Bronwyn J

    2009-03-01

    Arabidopsis halleri is increasingly employed as a model plant for studying heavy metal hyperaccumulation. With the aim of providing valuable tools for studies on cellular physiology and molecular biology of metal tolerance and transport, this study reports the development of successful and highly efficient methods for the in vitro regeneration of A. halleri plants and production of stable cell suspension lines. Plants were regenerated from leaf explants of A. halleri via a three-step procedure: callus induction, somatic embryogenesis and shoot development. Efficiency of callus proliferation and regeneration depended on the initial callus induction media and was optimal in the presence of 1 mg L(-1) 2,4-dichlorophenoxyacetic acid, and 0.05 mg L(-1) benzylaminopurine. Subsequent shoot and root regeneration from callus initiated under these conditions reached levels of 100% efficiency. High friability of the callus supported the development of cell suspension cultures with minimal cellular aggregates. Characterization of regenerated plants and cell cultures determined that they maintained not only the zinc tolerance and requirement of the whole plant but also the ability to accumulate zinc; with plants accumulating up to 50.0 micromoles zinc g(-1) FW, and cell suspension cultures 30.9 micromoles zinc g(-1) DW. Together this work will provide the experimental basis for furthering our knowledge of A. halleri as a model heavy metal hyperaccumulating plant.

  10. Regio- and stereoselectivities in plant cell biotransformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, H.

    1995-12-01

    The ability of plant cultured cells to convert foreign substrates into more useful substances is of considerable interest. Therefore I have studied biotransformation of foreign substrate by plant cell suspension cultures. In this presentation, I report regio- and stereoselectivities in biotransformation of steroids and indole alkaloids and taxol by plant (tobacco, periwinkle, moss, orchid) cell suspension cultures.

  11. Plant Materials are Sustainable Substrates Supporting New Technologies of Plant-Only-Based Culture Media for in vitro Culturing of the Plant Microbiota

    PubMed Central

    Mourad, Elhussein F; Sarhan, Mohamed S; Daanaa, Hassan-Sibroe A; Abdou, Mennatullah; Morsi, Ahmed T; Abdelfadeel, Mohamed R; Elsawey, Hend; Nemr, Rahma; El-Tahan, Mahmoud; Hamza, Mervat A; Abbas, Mohamed; Youssef, Hanan H; Abdelhadi, Abdelhadi A; Amer, Wafaa M; Fayez, Mohamed; Ruppel, Silke; Hegazi, Nabil A

    2018-01-01

    In order to improve the culturability and biomass production of rhizobacteria, we previously introduced plant-only-based culture media. We herein attempted to widen the scope of plant materials suitable for the preparation of plant-only-based culture media. We chemically analyzed the refuse of turfgrass, cactus, and clover. They were sufficiently rich to support good in vitro growth by rhizobacteria isolates representing Proteobacteria and Firmicutes. They were also adequate and efficient to produce a cell biomass in liquid batch cultures. These culture media were as sufficient as artificial culture media for the cultivation and recovery of the in situ rhizobacteria of barley (Hordeum murinum L.). Based on culture-dependent (CFU plate counting) and culture-independent analyses (qPCR), mowed turfgrass, in particular, supported the highest culturable population of barley endophytes, representing >16% of the total bacterial number quantified with qPCR. This accurately reflected the endophytic community composition, in terms of diversity indices (S′, H′, and D′) based on PCR-DGGE, and clustered the plant culture media together with the qPCR root populations away from the artificial culture media. Despite the promiscuous nature of the plant materials tested to culture the plant microbiome, our results indicated that plant materials of a homologous nature to the tested host plant, at least at the family level, and/or of the same environment were more likely to be selected. Plant-only-based culture media require further refinements in order to provide selectivity for the in vitro growth of members of the plant microbiome, particularly difficult-to-culture bacteria. This will provide insights into their hidden roles in the environment and support future culturomic studies. PMID:29479006

  12. Plant Materials are Sustainable Substrates Supporting New Technologies of Plant-Only-Based Culture Media for in vitro Culturing of the Plant Microbiota.

    PubMed

    Mourad, Elhussein F; Sarhan, Mohamed S; Daanaa, Hassan-Sibroe A; Abdou, Mennatullah; Morsi, Ahmed T; Abdelfadeel, Mohamed R; Elsawey, Hend; Nemr, Rahma; El-Tahan, Mahmoud; Hamza, Mervat A; Abbas, Mohamed; Youssef, Hanan H; Abdelhadi, Abdelhadi A; Amer, Wafaa M; Fayez, Mohamed; Ruppel, Silke; Hegazi, Nabil A

    2018-03-29

    In order to improve the culturability and biomass production of rhizobacteria, we previously introduced plant-only-based culture media. We herein attempted to widen the scope of plant materials suitable for the preparation of plant-only-based culture media. We chemically analyzed the refuse of turfgrass, cactus, and clover. They were sufficiently rich to support good in vitro growth by rhizobacteria isolates representing Proteobacteria and Firmicutes. They were also adequate and efficient to produce a cell biomass in liquid batch cultures. These culture media were as sufficient as artificial culture media for the cultivation and recovery of the in situ rhizobacteria of barley (Hordeum murinum L.). Based on culture-dependent (CFU plate counting) and culture-independent analyses (qPCR), mowed turfgrass, in particular, supported the highest culturable population of barley endophytes, representing >16% of the total bacterial number quantified with qPCR. This accurately reflected the endophytic community composition, in terms of diversity indices (S', H', and D') based on PCR-DGGE, and clustered the plant culture media together with the qPCR root populations away from the artificial culture media. Despite the promiscuous nature of the plant materials tested to culture the plant microbiome, our results indicated that plant materials of a homologous nature to the tested host plant, at least at the family level, and/or of the same environment were more likely to be selected. Plant-only-based culture media require further refinements in order to provide selectivity for the in vitro growth of members of the plant microbiome, particularly difficult-to-culture bacteria. This will provide insights into their hidden roles in the environment and support future culturomic studies.

  13. Hepatitis B surface antigen (HBsAg) expression in plant cell culture: Kinetics of antigen accumulation in batch culture and its intracellular form.

    PubMed

    Smith, Mark L; Mason, Hugh S; Shuler, Michael L

    2002-12-30

    The production of edible vaccines in transgenic plants and plant cell culture may be improved through a better understanding of antigen processing and assembly. The hepatitis B surface antigen (HBsAg) was chosen for study because it undergoes substantial and complex post-translational modifications, which are necessary for its immunogenicity. This antigen was expressed in soybean (Glycine max L. Merr. cv Williams 82) and tobacco NT1 (Nicotiana tabacum L.) cell suspension cultures, and HBsAg production in batch culture was characterized. The plant-derived antigen consisted predominantly of disulfide cross-linked HBsAg protein (p24(s)) dimers, which were all membrane associated. Similar to yeast, the plant-expressed HBsAg was retained intracellularly. The maximal HBsAg titers were obtained with soybean suspension cultures (20-22 mg/L) with titers in tobacco cultures being approximately 10-fold lower. For soybean cells, electron microscopy and immunolocalization demonstrated that all the HBsAg was localized to the endoplasmic reticulum (ER) and provoked dilation and proliferation of the ER network. Sucrose gradient analysis of crude extracts showed that HBsAg had a complex size distribution uncharacteristic of the antigen's normal structure of uniform 22-nm virus-like particles. The extent of authentic epitope formation was assessed by comparing total p24(s) synthesized to that reactive by polyclonal and monoclonal immunoassays. Depending on culture age, between 40% and 100% of total p24(s) was polyclonal antibody reactive whereas between 6% and 37% was recognized by a commercial monoclonal antibody assay. Possible strategies to increase HBsAg production and improve post-translational processing are discussed. Copyright 2002 Wiley Periodicals, Inc.

  14. Yield improvement strategies for the production of secondary metabolites in plant tissue culture: silymarin from Silybum marianum tissue culture.

    PubMed

    AbouZid, S

    2014-01-01

    Plant cell culture can be a potential source for the production of important secondary metabolites. This technology bears many advantages over conventional agricultural methods. The main problem to arrive at a cost-effective process is the low productivity. This is mainly due to lack of differentiation in the cultured cells. Many approaches have been used to maximise the yield of secondary metabolites produced by cultured plant cells. Among these approaches: choosing a plant with a high biosynthetic capacity, obtaining efficient cell line for growth and production of metabolite of interest, manipulating culture conditions, elicitation, metabolic engineering and organ culture. This article gives an overview of the various approaches used to maximise the production of pharmaceutically important secondary metabolites in plant cell cultures. Examples of using these different approaches are shown for the production of silymarin from Silybum marianum tissue culture.

  15. The role of silicon in plant tissue culture

    PubMed Central

    Sivanesan, Iyyakkannu; Park, Se Won

    2014-01-01

    Growth and morphogenesis of in vitro cultures of plant cells, tissues, and organs are greatly influenced by the composition of the culture medium. Mineral nutrients are necessary for the growth and development of plants. Several morpho-physiological disorders such as hooked leaves, hyperhydricity, fasciation, and shoot tip necrosis are often associated with the concentration of inorganic nutrient in the tissue culture medium. Silicon (Si) is the most abundant mineral element in the soil. The application of Si has been demonstrated to be beneficial for growth, development and yield of various plants and to alleviate various stresses including nutrient imbalance. Addition of Si to the tissue culture medium improves organogenesis, embryogenesis, growth traits, morphological, anatomical, and physiological characteristics of leaves, enhances tolerance to low temperature and salinity, protects cells and against metal toxicity, prevents oxidative phenolic browning and reduces the incidence of hyperhydricity in various plants. Therefore, Si possesses considerable potential for application in a wide range of plant tissue culture studies such as cryopreservation, organogenesis, micropropagation, somatic embryogenesis and secondary metabolites production. PMID:25374578

  16. Culturing immobilized plant cells for the TUBUL space experiments on the DELTA and 12S Missions

    NASA Astrophysics Data System (ADS)

    Sieberer, Björn J.; Emons, Anne Mie C.; Vos, Jan W.

    2007-09-01

    For the TUBUL experiments during the DELTA mission in April 2004 and 12S mission in March/April 2006 on board the Soyuz capsule and the International Space Station we developed a method to culture and chemically fix plant suspension culture cells. The aim of the ten day experiment was to investigate the effect of microgravity on single plant cells. Fully automated experiment cassettes (Plunger Box Units) were developed by Centre for Concepts in Mechatronics (Nuenen, the Netherlands). Tobacco BY- 2 cells were immobilized in a semi- solid agarose matrix that was reinforced by a nylon mesh. This assembly allowed liquid medium refreshment, oxygen supply and chemical fixation, including a post- fixative wash. The method was optimized for post- flight analysis of cell structure, shape and size, cell division, and the microtubule cytoskeleton. The viability of cells in the agarose matrix was similar to cells grown in liquid medium under laboratory conditions, only the stationary growth phase was reached six days later.

  17. Biotransformation of perfumery terpenoids, (−)-ambrox® by a fungal culture Macrophomina phaseolina and a plant cell suspension culture of Peganum harmala

    PubMed Central

    2012-01-01

    Background Biotransformation offers chemo enzymatic system to modify the compounds into their novel analogues which are difficult to synthesize by chemical methods. This paper describes the biotransformational studies of ambrox, one of the most important components of natural Ambergris (wale sperm) with fungal and plant cell culture. Results Biotransformation of (−)-ambrox (1) with a fungal cell culture of Macrophomina phaseolina and a plant cell suspension cultures of Peganum harmala yielded oxygenated products, 3β-hydroxyambrox (2), 6β-hydroxyambrox (3), 1α-hydroxy-3oxoambrox (4), 1α,3β-dihydroxyambrox (5), 13,14,15,16-tetranorlabdane-3-oxo-8,12-diol (6), 3-oxoambrox (7), 2α-hydroxyambrox (8), 3β-hydroxysclareolide (9), and 2α,3β-dihydroxyambrox (10). Metabolite 4 was found to be new compound. These metabolites were structurally characterized on the basis of spectroscopic studies. Conclusion Nine oxygenated metabolites of (−)-ambrox (1) were obtained from Macrophomina phaseolina and Peganum harmala. Enzymatic system of screened organisms introduced hydroxyl and keto functionalities at various positions of compound 1 in a stereo- and regio-controlled manner. PMID:22863186

  18. Enhancement of Recombinant Protein Production in Transgenic Nicotiana benthamiana Plant Cell Suspension Cultures with Co-Cultivation of Agrobacterium Containing Silencing Suppressors.

    PubMed

    Huang, Ting-Kuo; Falk, Bryce W; Dandekar, Abhaya M; McDonald, Karen A

    2018-05-24

    We have previously demonstrated that the inducible plant viral vector (CMViva) in transgenic plant cell cultures can significantly improve the productivity of extracellular functional recombinant human alpha-1-antiryspin (rAAT) compared with either a common plant constitutive promoter ( Cauliflower mosaic virus (CaMV) 35S) or a chemically inducible promoter (estrogen receptor-based XVE) system. For a transgenic plant host system, however, viral or transgene-induced post-transcriptional gene silencing (PTGS) has been identified as a host response mechanism that may dramatically reduce the expression of a foreign gene. Previous studies have suggested that viral gene silencing suppressors encoded by a virus can block or interfere with the pathways of transgene-induced PTGS in plant cells. In this study, the capability of nine different viral gene silencing suppressors were evaluated for improving the production of rAAT protein in transgenic plant cell cultures (CMViva, XVE or 35S system) using an Agrobacterium -mediated transient expression co-cultivation process in which transgenic plant cells and recombinant Agrobacterium carrying the viral gene silencing suppressor were grown together in suspension cultures. Through the co-cultivation process, the impacts of gene silencing suppressors on the rAAT production were elucidated, and promising gene silencing suppressors were identified. Furthermore, the combinations of gene silencing suppressors were optimized using design of experiments methodology. The results have shown that in transgenic CMViva cell cultures, the functional rAAT as a percentage of total soluble protein is increased 5.7 fold with the expression of P19, and 17.2 fold with the co-expression of CP, P19 and P24.

  19. Evaluation of Simulated Microgravity Environments Induced by Diamagnetic Levitation of Plant Cell Suspension Cultures

    NASA Astrophysics Data System (ADS)

    Kamal, Khaled Y.; Herranz, Raúl; van Loon, Jack J. W. A.; Christianen, Peter C. M.; Medina, F. Javier

    2016-06-01

    Ground-Based Facilities (GBF) are essetial tools to understand the physical and biological effects of the absence of gravity and they are necessary to prepare and complement space experiments. It has been shown previously that a real microgravity environment induces the dissociation of cell proliferation from cell growth in seedling root meristems, which are limited populations of proliferating cells. Plant cell cultures are large and homogeneous populations of proliferating cells, so that they are a convenient model to study the effects of altered gravity on cellular mechanisms regulating cell proliferation and associated cell growth. Cell suspension cultures of the Arabidopsis thaliana cell line MM2d were exposed to four altered gravity and magnetic field environments in a magnetic levitation facility for 3 hours, including two simulated microgravity and Mars-like gravity levels obtained with different magnetic field intensities. Samples were processed either by quick freezing, to be used in flow cytometry for cell cycle studies, or by chemical fixation for microscopy techniques to measure parameters of the nucleolus. Although the trend of the results was the same as those obtained in real microgravity on meristems (increased cell proliferation and decreased cell growth), we provide a technical discussion in the context of validation of proper conditions to achieve true cell levitation inside a levitating droplet. We conclude that the use of magnetic levitation as a simulated microgravity GBF for cell suspension cultures is not recommended.

  20. Plant-based culture media: Efficiently support culturing rhizobacteria and correctly mirror their in-situ diversity.

    PubMed

    Youssef, Hanan H; Hamza, Mervat A; Fayez, Mohamed; Mourad, Elhussein F; Saleh, Mohamed Y; Sarhan, Mohamed S; Suker, Ragab M; Eltahlawy, Asmaa A; Nemr, Rahma A; El-Tahan, Mahmod; Ruppel, Silke; Hegazi, Nabil A

    2016-03-01

    Our previous publications and the data presented here provide evidences on the ability of plant-based culture media to optimize the cultivability of rhizobacteria and to support their recovery from plant-soil environments. Compared to the tested chemically-synthetic culture media (e.g. nutrient agar and N-deficient combined-carbon sources media), slurry homogenates, crude saps, juices and powders of cactus (Opuntia ficus-indica) and succulent plants (Aloe vera and Aloe arborescens) were rich enough to support growth of rhizobacteria. Representative isolates of Enterobacter spp., Klebsiella spp., Bacillus spp. and Azospirillum spp. exhibited good growth on agar plates of such plant-based culture media. Cell growth and biomass production in liquid batch cultures were comparable to those reported with the synthetic culture media. In addition, the tested plant-based culture media efficiently recovered populations of rhizobacteria associated to plant roots. Culturable populations of >10(6)-10(8) cfu g(-1) were recovered from the ecto- and endo-rhizospheres of tested host plants. More than 100 endophytic culture-dependent isolates were secured and subjected to morphophysiological identification. Factor and cluster analyses indicated the unique community structure, on species, genera, class and phyla levels, of the culturable population recovered with plant-based culture media, being distinct from that obtained with the chemically-synthetic culture media. Proteobacteria were the dominant (78.8%) on plant-based agar culture medium compared to only 31% on nutrient agar, while Firmicutes prevailed on nutrient agar (69%) compared to the plant-based agar culture media (18.2%). Bacteroidetes, represented by Chryseobacterium indologenes, was only reported (3%) among the culturable rhizobacteria community of the plant-based agar culture medium.

  1. Plant-based culture media: Efficiently support culturing rhizobacteria and correctly mirror their in-situ diversity

    PubMed Central

    Youssef, Hanan H.; Hamza, Mervat A.; Fayez, Mohamed; Mourad, Elhussein F.; Saleh, Mohamed Y.; Sarhan, Mohamed S.; Suker, Ragab M.; Eltahlawy, Asmaa A.; Nemr, Rahma A.; El-Tahan, Mahmod; Ruppel, Silke; Hegazi, Nabil A.

    2015-01-01

    Our previous publications and the data presented here provide evidences on the ability of plant-based culture media to optimize the cultivability of rhizobacteria and to support their recovery from plant-soil environments. Compared to the tested chemically-synthetic culture media (e.g. nutrient agar and N-deficient combined-carbon sources media), slurry homogenates, crude saps, juices and powders of cactus (Opuntia ficus-indica) and succulent plants (Aloe vera and Aloe arborescens) were rich enough to support growth of rhizobacteria. Representative isolates of Enterobacter spp., Klebsiella spp., Bacillus spp. and Azospirillum spp. exhibited good growth on agar plates of such plant-based culture media. Cell growth and biomass production in liquid batch cultures were comparable to those reported with the synthetic culture media. In addition, the tested plant-based culture media efficiently recovered populations of rhizobacteria associated to plant roots. Culturable populations of >106–108 cfu g−1 were recovered from the ecto- and endo-rhizospheres of tested host plants. More than 100 endophytic culture-dependent isolates were secured and subjected to morphophysiological identification. Factor and cluster analyses indicated the unique community structure, on species, genera, class and phyla levels, of the culturable population recovered with plant-based culture media, being distinct from that obtained with the chemically-synthetic culture media. Proteobacteria were the dominant (78.8%) on plant-based agar culture medium compared to only 31% on nutrient agar, while Firmicutes prevailed on nutrient agar (69%) compared to the plant-based agar culture media (18.2%). Bacteroidetes, represented by Chryseobacterium indologenes, was only reported (3%) among the culturable rhizobacteria community of the plant-based agar culture medium. PMID:26966571

  2. Induction of a photomixotrophic plant cell culture of Helianthus annuus and optimization of culture conditions for improved α-tocopherol production.

    PubMed

    Geipel, Katja; Song, Xue; Socher, Maria Lisa; Kümmritz, Sibylle; Püschel, Joachim; Bley, Thomas; Ludwig-Müller, Jutta; Steingroewer, Juliane

    2014-03-01

    Tocopherols, collectively known as vitamin E, are lipophilic antioxidants, which are synthesized only by photosynthetic organisms. Due to their enormous potential to protect cells from oxidative damage, tocopherols are used, e.g., as nutraceuticals and additives in pharmaceuticals. The most biologically active form of vitamin E is α-tocopherol. Most tocopherols are currently produced via chemical synthesis. Nevertheless, this always results in a racemic mixture of different and less effective stereoisomers because the natural isomer has the highest biological activity. Therefore, tocopherols synthesized in natural sources are preferred for medical purposes. The annual sunflower (Helianthus annuus L.) is a well-known source for α-tocopherol. Within the presented work, sunflower callus and suspension cultures were established growing under photomixotrophic conditions to enhance α-tocopherol yield. The most efficient callus induction was achieved with sunflower stems cultivated on solid Murashige and Skoog medium supplemented with 30 g l(-1) sucrose, 0.5 mg l(-1) of the auxin 1-naphthalene acetic acid, and 0.5 mg l(-1) of the cytokinin 6-benzylaminopurine. Photomixotrophic sunflower suspension cultures were induced by transferring previously established callus into liquid medium. The effects of light intensity, sugar concentration, and culture age on growth rate and α-tocopherol synthesis rate were characterized. A considerable increase (max. 230%) of α-tocopherol production in the cells was obtained within the photomixotrophic cell culture compared to a heterotrophic cell culture. These results will be useful for improving α-tocopherol yields of plant in vitro cultures.

  3. Growing Arabidopsis in vitro: cell suspensions, in vitro culture, and regeneration.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2014-01-01

    An understanding of basic methods in Arabidopsis tissue culture is beneficial for any laboratory working on this model plant. Tissue culture refers to the aseptic growth of cells, organs, or plants in a controlled environment, in which physical, nutrient, and hormonal conditions can all be easily manipulated and monitored. The methodology facilitates the production of a large number of plants that are genetically identical over a relatively short growth period. Techniques, including callus production, cell suspension cultures, and plant regeneration, are all indispensable tools for the study of cellular biochemical and molecular processes. Plant regeneration is a key technology for successful stable plant transformation, while cell suspension cultures can be exploited for metabolite profiling and mining. In this chapter we report methods for the successful and highly efficient in vitro regeneration of plants and production of stable cell suspension lines from leaf explants of both Arabidopsis thaliana and Arabidopsis halleri.

  4. Biolistic transformation of cotton embryogenic cell suspension cultures

    USDA-ARS?s Scientific Manuscript database

    Genetic transformation of cotton is highly dependent on the ability to regenerate fertile plants from transgenic cells through somatic embryogenesis. Induction of embryogenic cell cultures is genotype-dependant. However, once embryogenic cell cultures are available, they can be effectively used fo...

  5. Plant cell technologies in space: Background, strategies and prospects

    NASA Technical Reports Server (NTRS)

    Kirkorian, A. D.; Scheld, H. W.

    1987-01-01

    An attempt is made to summarize work in plant cell technologies in space. The evolution of concepts and the general principles of plant tissue culture are discussed. The potential for production of high value secondary products by plant cells and differentiated tissue in automated, precisely controlled bioreactors is discussed. The general course of the development of the literature on plant tissue culture is highlighted.

  6. Application of plant cell and tissue culture for the production of phytochemicals in medicinal plants.

    PubMed

    Pant, Bijaya

    2014-01-01

    Approximately 80% of the world inhabitants depend on the medicinal plants in the form of traditional formulations for their primary health care system well as in the treatment of a number of diseases since the ancient time. Many commercially used drugs have come from the information of indigenous knowledge of plants and their folk uses. Linking of the indigenous knowledge of medicinal plants to modern research activities provides a new reliable approach, for the discovery of novel drugs much more effectively than with random collection. Increase in population and increasing demand of plant products along with illegal trade are causing depletion of medicinal plants and many are threatened in natural habitat. Plant tissue culture technique has proved potential alternative for the production of desirable bioactive components from plants, to produce the enough amounts of plant material that is needed and for the conservation of threatened species. Different plant tissue culture systems have been extensively studied to improve and enhance the production of plant chemicals in various medicinal plants.

  7. The interplay between light, plant growth regulators and elicitors on growth and secondary metabolism in cell cultures of Fagonia indica.

    PubMed

    Khan, Tariq; Abbasi, Bilal Haider; Khan, Mubarak Ali

    2018-06-09

    Manipulation in the light regimes combined with the effects of plant growth regulators (PGRs) and elicitors through plant cell culture technology is a promising strategy for enhancing the yield of medicinally important secondary metabolites. In this study, the effects of interplay between PGRs, elicitors and light regimes on cell cultures of F. indica have been investigated. The results showed that callus cultures resulted in maximum biomass formation (13.2 g/L) when incubated on solid MS (Murashige and Skoog) medium containing 1.0 mg/L BA under continuous light for 4 weeks. Among the other PGRs, compared with the auxins such as 2,4-D, and IBA, TDZ resulted in higher biomass accumulation (12.1 g/L). Elicitors (Me-J and PAA) resulted in a lower growth response, when compared with cytokinins and a higher response than auxins under all the light regimes on solid MS media. However, in liquid media, no significant increase in biomass was observed in response to the combined effects of PGRs and photoperiod regimes. Further, the highest phenolic content (TPC = 6.8 mg) and flavonoid content (TFC = 5.2 mg) were detected in the dark-grown cell cultures raised in vitro at 0.5 mg/L Me-J. The highest antioxidant activity (88%) was recorded in the dark-grown cell cultures harvested from LOG phase of the growth cycle supplemented with 0.5 mg/L Me-J. Furthermore, BA resulted in considerable flavonoids production (TFC = 4.7 mg) in the cell cultures grown under continuous light. However, overall dark treatment and elicitation with Me-J resulted in the optimal metabolic response in terms of secondary metabolites accumulation in cell suspension cultures of F. indica. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Chitosan mediated enhancement of hydrolysable tannin in Phyllanthus debilis Klein ex Willd via plant cell suspension culture.

    PubMed

    V, Malayaman; N, Sisubalan; R P, Senthilkumar; S, Sheik Mohamed; R, Ranjithkumar; M, Ghouse Basha

    2017-11-01

    Phyllanthus debilis Klein ex Willd. is wild medicinal plant used in the traditional system of medicine. This plant has been actively used for hepatoprotection and to cure many diseases including jaundice and so on; which leads to complete extinction of this particular species. Therefore, the chitosan mediated cost effective cell suspension method has been developed for the production of hydrolysable tannin. The hydrolysable tannins are the main therapeutically active constituents with antioxidant, anticancer, and antimicrobial properties. An in vitro cell suspension culture was optimized by adding chitosan for production of hydrolysable tannin. According to the growth kinetics, a maximum biomass of 4.46±0.06g fresh cell weight and 1.33±0.04g dry cell weight were obtained from the optimal suspension medium consisted of MS medium+0.5mgL -1 BAP+1.5mgL -1 NAA. Chitosan was treated at the stationary phase which leads to the highest accumulation of hydrolysable tannin compared to the untreated control. Hydrolysable tannin was observed and compared using HPLC at the Rt of 4.91 in both chitosan treated and untreated cells. This is the first ever report where use of chitosan has been done to enhance the production of the hydrolysable tannin in P. debilis using cell suspension culture technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Measurement of cell viability in in vitro cultures.

    PubMed

    Castro-Concha, Lizbeth A; Escobedo, Rosa María; Miranda-Ham, María de Lourdes

    2006-01-01

    An overview of the methods for assessing cell viability in in vitro cultures is presented. The protocols of four of the most commonly used assays are described in detail, so the readers may be able to determine which assay is suitable for their own projects using plant cell cultures.

  10. Fruit extract of the medicinal plant Crataegus oxyacantha exerts genotoxic and mutagenic effects in cultured cells.

    PubMed

    de Quadros, Ana Paula Oliveira; Mazzeo, Dania Elisa Christofoletti; Marin-Morales, Maria Aparecida; Perazzo, Fábio Ferreira; Rosa, Paulo Cesar Pires; Maistro, Edson Luis

    2017-01-01

    Crataegus oxyacantha, a plant of the Rosaceae family also known "English hawthorn, haw, maybush, or whitethorn," has long been used for medicinal purposes such as digestive disorders, hyperlipidemia, dyspnea, inducing diuresis, and preventing kidney stones. However, the predominant use of this plant has been to treat cardiovascular disorders. Due to a lack of studies on the genotoxicity of C. oxyacantha, this investigation was undertaken to determine whether its fruit extract exerts cytotoxic, genotoxic, or clastogenic/aneugenic effects in leukocytes and HepG2 (liver hepatocellular carcinoma) cultured human cells, or mutagenic effects in TA100 and TA98 strains of Salmonella typhimurium bacterium. Genotoxicity analysis showed that the extract produced no marked genotoxic effects at concentrations of 2.5 or 5 µg/ml in either cell type; however, at concentrations of 10 µg/ml or higher significant DNA damage was detected. The micronucleus test also demonstrated that concentrations of 10 µg/ml or higher produced clastogenic/aneugenic responses. In the Ames test, the extract induced mutagenic effects in TA98 strain of S. typhimurium with metabolic activation at all tested concentrations (2.5 to 500 µg/ml). Data indicate that, under certain experimental conditions, the fruit extract of C. oxyacantha exerts genotoxic and clastogenic/aneugenic effects in cultured human cells, and with metabolism mutagenicity occurs in bacteria cells.

  11. Evaluation of medicinal plant hepatotoxicity in co-cultures of hepatocytes and monocytes.

    PubMed

    Saad, Bashar; Dakwar, Suha; Said, Omar; Abu-Hijleh, Ghassan; Al Battah, Feras; Kmeel, Abedelsalam; Aziazeh, Hassan

    2006-03-01

    Non-parenchymal cells might play an important role in the modulation of xenobiotic metabolism in liver and its pharmacological and toxicological consequences. Therefore, the role of cell-to-cell interactions in herbal induced liver toxicity was investigated in monocultures of cells from the human hepatocyte cell line (HepG2) and in co-cultures of cells from the HepG2 cell line and cells from the human monocyte cell line (THP1). Cells were treated with various concentrations (1-500 microg ml(-1)) of extracts of Pistacia palaestina, Juglans regia and Quercus ithaburensis for 24 h. Extracts from Cleome droserifolia, a known toxic plant, were taken as positive control. In the co-culture system, toxic effects were observed after exposure to extracts of Pistacia palestina and C. droserifolia. These two extracts significantly reduced by cell viability as measured the MTT test and the LDH assay. Whereas in hepatocyte cultures, only extracts of C. droserifolia were found to affect the cell viability. The production levels of albumin from hepatocytes were not affected by treatment with plant extracts in both culture systems. It seems that the observed reduction in cell viability after exposure to extracts of P. palestina in co-cultures but not in monocultures is a result of monocyte-derived factors. The use of liver cell co-cultures is therefore a useful approach to investigate the influence of intercellular communication on xenobiotic metabolism in liver.

  12. Evaluation of Medicinal Plant Hepatotoxicity in Co-cultures of Hepatocytes and Monocytes

    PubMed Central

    Saad, Bashar; Dakwar, Suha; Said, Omar; Abu-Hijleh, Ghassan; Battah, Feras Al; Kmeel, Abedelsalam; Aziazeh, Hassan

    2006-01-01

    Non-parenchymal cells might play an important role in the modulation of xenobiotic metabolism in liver and its pharmacological and toxicological consequences. Therefore, the role of cell-to-cell interactions in herbal induced liver toxicity was investigated in monocultures of cells from the human hepatocyte cell line (HepG2) and in co-cultures of cells from the HepG2 cell line and cells from the human monocyte cell line (THP1). Cells were treated with various concentrations (1–500 µg ml−1) of extracts of Pistacia palaestina, Juglans regia and Quercus ithaburensis for 24 h. Extracts from Cleome droserifolia, a known toxic plant, were taken as positive control. In the co-culture system, toxic effects were observed after exposure to extracts of Pistacia palestina and C. droserifolia. These two extracts significantly reduced by cell viability as measured the MTT test and the LDH assay. Whereas in hepatocyte cultures, only extracts of C. droserifolia were found to affect the cell viability. The production levels of albumin from hepatocytes were not affected by treatment with plant extracts in both culture systems. It seems that the observed reduction in cell viability after exposure to extracts of P. palestina in co-cultures but not in monocultures is a result of monocyte-derived factors. The use of liver cell co-cultures is therefore a useful approach to investigate the influence of intercellular communication on xenobiotic metabolism in liver. PMID:16550229

  13. Somatic embryogenesis in cell cultures of Glycine species.

    PubMed

    Gamborg, O L; Davis, B P; Stahlhut, R W

    1983-08-01

    This report describes the development of procedures for the production of somatic embryos in cell cultures of Glycine species including soybean. The conditions for callus induction and initiation of rapidly growing cell suspension cultures were defined. Methods for inducing embryogenesis were tested on 16 lines of several Glycine species and cultivars of soybean. The SB-26 Culture of a G. soja gave the best results and was used in the experiments. Embryogenesis required the presence of picloram or 2,4-D. AMO 1618, CCC, PP-333 and Ancymidol enhanced the embryogenesis frequency. Plants of the G. soja (SB-26) were grown to maturity from seed-derived shoot tips. Characteristics of the plants are discussed.

  14. Basic procedures for epigenetic analysis in plant cell and tissue culture.

    PubMed

    Rodríguez, José L; Pascual, Jesús; Viejo, Marcos; Valledor, Luis; Meijón, Mónica; Hasbún, Rodrigo; Yrei, Norma Yague; Santamaría, María E; Pérez, Marta; Fernández Fraga, Mario; Berdasco, María; Rodríguez Fernández, Roberto; Cañal, María J

    2012-01-01

    In vitro culture is one of the most studied techniques, and it is used to study many developmental processes, especially in forestry species, because of growth timing and easy manipulation. Epigenetics has been shown as an important influence on many research analyses such as cancer in mammals and developmental processes in plants such as flowering, but regarding in vitro culture, techniques to study DNA methylation or chromatin modifications were mainly limited to identify somaclonal variation of the micropropagated material. Because in vitro culture is not only a way to generate plant material but also a bunch of differentially induced developmental processes, an approach of techniques and some research carried out to study the different changes regarding DNA methylation and chromatin and translational modifications that take place during these processes is reviewed.

  15. Cell-to-cell movement of plastids in plants.

    PubMed

    Thyssen, Gregory; Svab, Zora; Maliga, Pal

    2012-02-14

    Our objective was to test whether or not plastids and mitochondria, the two DNA-containing organelles, move between cells in plants. As our experimental approach, we grafted two different species of tobacco, Nicotiana tabacum and Nicotiana sylvestris. Grafting triggers formation of new cell-to-cell contacts, creating an opportunity to detect cell-to-cell organelle movement between the genetically distinct plants. We initiated tissue culture from sliced graft junctions and selected for clonal lines in which gentamycin resistance encoded in the N. tabacum nucleus was combined with spectinomycin resistance encoded in N. sylvestris plastids. Here, we present evidence for cell-to-cell movement of the entire 161-kb plastid genome in these plants, most likely in intact plastids. We also found that the related mitochondria were absent, suggesting independent movement of the two DNA-containing organelles. Acquisition of plastids from neighboring cells provides a mechanism by which cells may be repopulated with functioning organelles. Our finding supports the universality of intercellular organelle trafficking and may enable development of future biotechnological applications.

  16. High Efficiency Transformation of Cultured Tobacco Cells 1

    PubMed Central

    An, Gynheung

    1985-01-01

    Tobacco calli were transformed at levels up to 50% by cocultivation of tobacco cultured cells with Agrobacterium tumefaciens harboring the binary transfer-DNA vector, pGA472, containing a kanamycin resistance marker. Transformation frequency was dependent on the physiological state of the tobacco cells, the nature of Agrobacterium strain and, less so, on the expression of the vir genes of the tumor-inducing plasmid. Maximum transformation frequency was obtained with exponentially growing plant cells, suggesting that rapid growth of plant cells is an essental factor for efficient transformation of higher plants. Images Fig. 1 PMID:16664453

  17. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels.

    PubMed

    Rehman, Shazia; Aslam, Hina; Ahmad, Aqeel; Khan, Shakeel Ahmed; Sohail, Muhammad

    2014-01-01

    Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE), in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase) using a novel substrate, Banana Peels (BP) for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes.

  18. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels

    PubMed Central

    Rehman, Shazia; Aslam, Hina; Ahmad, Aqeel; Khan, Shakeel Ahmed; Sohail, Muhammad

    2014-01-01

    Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE), in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase) using a novel substrate, Banana Peels (BP) for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes. PMID:25763058

  19. The role of activated charcoal in plant tissue culture.

    PubMed

    Thomas, T Dennis

    2008-01-01

    Activated charcoal has a very fine network of pores with large inner surface area on which many substances can be adsorbed. Activated charcoal is often used in tissue culture to improve cell growth and development. It plays a critical role in micropropagation, orchid seed germination, somatic embryogenesis, anther culture, synthetic seed production, protoplast culture, rooting, stem elongation, bulb formation etc. The promotary effects of AC on morphogenesis may be mainly due to its irreversible adsorption of inhibitory compounds in the culture medium and substancially decreasing the toxic metabolites, phenolic exudation and brown exudate accumulation. In addition to this activated charcoal is involved in a number of stimulatory and inhibitory activities including the release of substances naturally present in AC which promote growth, alteration and darkening of culture media, and adsorption of vitamins, metal ions and plant growth regulators, including abscisic acid and gaseous ethylene. The effect of AC on growth regulator uptake is still unclear but some workers believe that AC may gradually release certain adsorbed products, such as nutrients and growth regulators which become available to plants. This review focuses on the various roles of activated charcoal in plant tissue culture and the recent developments in this area.

  20. LC-MS metabolic profiling of Arabidopsis thaliana plant leaves and cell cultures: optimization of pre-LC-MS procedure parameters.

    PubMed

    t'Kindt, Ruben; De Veylder, Lieven; Storme, Michael; Deforce, Dieter; Van Bocxlaer, Jan

    2008-08-01

    This study treats the optimization of methods for homogenizing Arabidopsis thaliana plant leaves as well as cell cultures, and extracting their metabolites for metabolomics analysis by conventional liquid chromatography electrospray ionization mass spectrometry (LC-ESI/MS). Absolute recovery, process efficiency and procedure repeatability have been compared between different pre-LC-MS homogenization/extraction procedures through the use of samples fortified before extraction with a range of representative metabolites. Hereby, the magnitude of the matrix effect observed in the ensuing LC-MS based metabolomics analysis was evaluated. Based on relative recovery and repeatability of key metabolites, comprehensiveness of extraction (number of m/z-retention time pairs) and clean-up potential of the approach (minimum matrix effects), the most appropriate sample pre-treatment was adopted. It combines liquid nitrogen homogenization for plant leaves with thermomixer based extraction using MeOH/H(2)O 80/20. As such, an efficient and highly reproducible LC-MS plant metabolomics set-up is achieved, as illustrated by the obtained results for both LC-MS (8.88%+/-5.16 versus 7.05%+/-4.45) and technical variability (12.53%+/-11.21 versus 9.31%+/-6.65) data in a comparative investigation of A. thaliana plant leaves and cell cultures, respectively.

  1. Proper selection of 1 g controls in simulated microgravity research as illustrated with clinorotated plant cell suspension cultures

    NASA Astrophysics Data System (ADS)

    Kamal, Khaled Y.; Hemmersbach, Ruth; Medina, F. Javier; Herranz, Raúl

    2015-04-01

    Understanding the physical and biological effects of the absence of gravity is necessary to conduct operations on space environments. It has been previously shown that the microgravity environment induces the dissociation of cell proliferation from cell growth in young seedling root meristems, but this source material is limited to few cells in each row of meristematic layers. Plant cell cultures, composed by a large and homogeneous population of proliferating cells, are an ideal model to study the effects of altered gravity on cellular mechanisms regulating cell proliferation and associated cell growth. Cell suspension cultures of Arabidopsis thaliana cell line (MM2d) were exposed to 2D-clinorotation in a pipette clinostat for 3.5 or 14 h, respectively, and were then processed either by quick freezing, to be used in flow cytometry, or by chemical fixation, for microscopy techniques. After long-term clinorotation, the proportion of cells in G1 phase was increased and the nucleolus area, as revealed by immunofluorescence staining with anti-nucleolin, was decreased. Despite the compatibility of these results with those obtained in real microgravity on seedling meristems, we provide a technical discussion in the context of clinorotation and proper 1 g controls with respect to suspension cultures. Standard 1 g procedure of sustaining the cell suspension is achieved by continuously shaking. Thus, we compare the mechanical forces acting on cells in clinorotated samples, in a control static sample and in the standard 1 g conditions of suspension cultures in order to define the conditions of a complete and reliable experiment in simulated microgravity with corresponding 1 g controls.

  2. Influence of culture medium supplementation of tobacco NT1 cell suspension cultures on the N-glycosylation of human secreted alkaline phosphatase.

    PubMed

    Becerra-Arteaga, Alejandro; Shuler, Michael L

    2007-08-15

    We report for the first time that culture conditions, specifically culture medium supplementation with nucleotide-sugar precursors, can alter significantly the N-linked glycosylation of a recombinant protein in plant cell culture. Human secreted alkaline phosphatase produced in tobacco NT1 cell suspension cultures was used as a model system. Plant cell cultures were supplemented with ammonia (30 mM), galactose (1 mM) and glucosamine (10 mM) to improve the extent of N-linked glycosylation. The highest levels of cell density and active extracellular SEAP in supplemented cultures were on average 260 g/L and 0.21 U/mL, respectively, compared to 340 g/L and 0.4 U/mL in unsupplemented cultures. The glycosylation profile of SEAP produced in supplemented cultures was determined via electrospray ionization mass spectrometry with precursor ion scanning and compared to that of SEAP produced in unsupplemented cultures. In supplemented and unsupplemented cultures, two biantennary complex-type structures terminated with one or two N-acetylglucosamines and one paucimannosidic glycan structure comprised about 85% of the SEAP glycan pool. These three structures contained plant-specific xylose and fucose residues and their relative abundances were affected by each supplement. High mannose structures (6-9 mannose residues) accounted for the remaining 15% glycans in all cases. The highest proportion (approximately 66%) of a single complex-type biantennary glycan structure terminated in both antennae by N- acetylglucosamine was obtained with glucosamine supplementation versus only 6% in unsupplemented medium. This structure is amenable for in vitro modification to yield a more human-like glycan and could serve as a route to plant cell culture produced therapeutic glycoproteins. (c) 2007 Wiley Periodicals, Inc.

  3. Development of Genome Engineering Tools from Plant-Specific PPR Proteins Using Animal Cultured Cells.

    PubMed

    Kobayashi, Takehito; Yagi, Yusuke; Nakamura, Takahiro

    2016-01-01

    The pentatricopeptide repeat (PPR) motif is a sequence-specific RNA/DNA-binding module. Elucidation of the RNA/DNA recognition mechanism has enabled engineering of PPR motifs as new RNA/DNA manipulation tools in living cells, including for genome editing. However, the biochemical characteristics of PPR proteins remain unknown, mostly due to the instability and/or unfolding propensities of PPR proteins in heterologous expression systems such as bacteria and yeast. To overcome this issue, we constructed reporter systems using animal cultured cells. The cell-based system has highly attractive features for PPR engineering: robust eukaryotic gene expression; availability of various vectors, reagents, and antibodies; highly efficient DNA delivery ratio (>80 %); and rapid, high-throughput data production. In this chapter, we introduce an example of such reporter systems: a PPR-based sequence-specific translational activation system. The cell-based reporter system can be applied to characterize plant genes of interested and to PPR engineering.

  4. Gitksan medicinal plants-cultural choice and efficacy

    PubMed Central

    Johnson, Leslie Main

    2006-01-01

    Background The use of plants for healing by any cultural group is integrally related to local concepts of the nature of disease, the nature of plants, and the world view of the culture. The physical and chemical properties of the plants themselves also bear on their selection by people for medicines, as does the array of plants available for people to choose from. I examine use of medicinal plants from a "biobehavioral" perspective to illuminate cultural selection of plants used for medicine by the Gitksan of northwestern British Columbia, Canada. Methods Consultant consensus, "intercultural consensus", independent use of the same plants by other cultural groups, and phytochemistry and bioassay results from the literature, were employed in analysis of probable empirical efficacy of plant uses. Results 70% of 37 Gitksan medicinal plants were used similarly by other cultures where direct diffusion is not known to have occurred; eleven plants, including the eight most frequently mentioned medicinal plants, also show active phytochemicals or bioassays indicating probable physiologically based therapeutic effects. Conclusion Analysis of intercultural consensus revealed that the majority of cultures in the British Columbia region within the plant ranges use the same plants, or closely related species, in similar ways. The rigor of this analysis is effected by the lack of consistent data on all taxa of interest for all cultures within the region. PMID:16790066

  5. Biosynthesis of 14C-phytoene from tomato cell suspension cultures (Lycopersicon esculentum) for utilization in prostate cancer cell culture studies.

    PubMed

    Campbell, Jessica K; Rogers, Randy B; Lila, Mary Ann; Erdman, John W

    2006-02-08

    This work describes the development and utilization of a plant cell culture production approach to biosynthesize and radiolabel phytoene and phytofluene for prostate cancer cell culture studies. The herbicide norflurazon was added to established cell suspension cultures of tomato (Lycopersicon esculentum cv. VFNT cherry), to induce the biosynthesis and accumulation of the lycopene precursors, phytoene and phytofluene, in their natural isomeric forms (15-cis-phytoene and two cis-phytofluene isomers). Norflurazon concentrations, solvent carrier type and concentration, and duration of culture exposure to norflurazon were screened to optimize phytoene and phytofluene synthesis. Maximum yields of both phytoene and phytofluene were achieved after 7 days of treatment with 0.03 mg norflurazon/40 mL fresh medium, provided in 0.07% solvent carrier. Introduction of 14C-sucrose to the tomato cell culture medium enabled the production of 14C-labeled phytoene for subsequent prostate tumor cell uptake studies. In DU 145 prostate tumor cells, it was determined that 15-cis-phytoene and an oxidized product of phytoene were taken up and partially metabolized by the cells. The ability to biosynthesize, radiolabel, and isolate these carotenoids from tomato cell cultures is a novel, valuable methodology for further in vitro and in vivo investigations into the roles of phytoene and phytofluene in cancer chemoprevention.

  6. Molluscan cells in culture: primary cell cultures and cell lines

    PubMed Central

    Yoshino, T. P.; Bickham, U.; Bayne, C. J.

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

  7. Plant peroxisomes are degraded by starvation-induced and constitutive autophagy in tobacco BY-2 suspension-cultured cells

    PubMed Central

    Voitsekhovskaja, Olga V.; Schiermeyer, Andreas; Reumann, Sigrun

    2014-01-01

    Very recently, autophagy has been recognized as an important degradation pathway for quality control of peroxisomes in Arabidopsis plants. To further characterize the role of autophagy in plant peroxisome degradation, we generated stable transgenic suspension-cultured cell lines of heterotrophic Nicotiana tabacum L. cv. Bright Yellow 2 expressing a peroxisome-targeted version of enhanced yellow fluorescent protein. Indeed, this cell line model system proved advantageous for detailed cytological analyses of autophagy stages and for quantification of cellular peroxisome pools under different culturing conditions and upon inhibitor applications. Complementary biochemical, cytological, and pharmacological analyses provided convincing evidence for peroxisome degradation by bulk autophagy during carbohydrate starvation. This degradation was slowed down by the inhibitor of autophagy, 3-methyladenine (3-MA), but the 3-MA effect ceased at advanced stages of starvation, indicating that another degradation mechanism for peroxisomes might have taken over. 3-MA also caused an increase particularly in peroxisomal proteins and cellular peroxisome numbers when applied under nutrient-rich conditions in the logarithmic growth phase, suggesting a high turnover rate for peroxisomes by basal autophagy under non-stress conditions. Together, our data demonstrate that a great fraction of the peroxisome pool is subject to extensive autophagy-mediated turnover under both nutrient starvation and optimal growth conditions. Our analyses of the cellular pool size of peroxisomes provide a new tool for quantitative investigations of the role of plant peroxisomes in reactive oxygen species metabolism. PMID:25477890

  8. Plant peroxisomes are degraded by starvation-induced and constitutive autophagy in tobacco BY-2 suspension-cultured cells.

    PubMed

    Voitsekhovskaja, Olga V; Schiermeyer, Andreas; Reumann, Sigrun

    2014-01-01

    Very recently, autophagy has been recognized as an important degradation pathway for quality control of peroxisomes in Arabidopsis plants. To further characterize the role of autophagy in plant peroxisome degradation, we generated stable transgenic suspension-cultured cell lines of heterotrophic Nicotiana tabacum L. cv. Bright Yellow 2 expressing a peroxisome-targeted version of enhanced yellow fluorescent protein. Indeed, this cell line model system proved advantageous for detailed cytological analyses of autophagy stages and for quantification of cellular peroxisome pools under different culturing conditions and upon inhibitor applications. Complementary biochemical, cytological, and pharmacological analyses provided convincing evidence for peroxisome degradation by bulk autophagy during carbohydrate starvation. This degradation was slowed down by the inhibitor of autophagy, 3-methyladenine (3-MA), but the 3-MA effect ceased at advanced stages of starvation, indicating that another degradation mechanism for peroxisomes might have taken over. 3-MA also caused an increase particularly in peroxisomal proteins and cellular peroxisome numbers when applied under nutrient-rich conditions in the logarithmic growth phase, suggesting a high turnover rate for peroxisomes by basal autophagy under non-stress conditions. Together, our data demonstrate that a great fraction of the peroxisome pool is subject to extensive autophagy-mediated turnover under both nutrient starvation and optimal growth conditions. Our analyses of the cellular pool size of peroxisomes provide a new tool for quantitative investigations of the role of plant peroxisomes in reactive oxygen species metabolism.

  9. Evaluation of the hydroxynitrile lyase activity in cell cultures of capulin (Prunus serotina).

    PubMed

    Hernández, Liliana; Luna, Héctor; Navarro-Ocaña, Arturo; Olivera-Flores, Ma Teresa de Jesús; Ayala, Ivon

    2008-07-01

    Enzymatic preparations obtained from young plants and cell cultures of capulin were screened for hydroxynitrile lyase activity. The three week old plants, grown under sterile conditions, were used to establish a solid cell culture. Crude preparations obtained from this plant material were evaluated for the transformation of benzaldehyde to the corresponding cyanohydrin (mandelonitrile). The results show that the crude material from roots, stalks, and leaves of young plants and calli of roots, stalks, internodes and petioles biocatalyzed the addition of hydrogen cyanide (HCN) to benzaldehyde with a modest to excellent enantioselectivity.

  10. Phytotoxicity, uptake and metabolism of 1,4-dichlorobenzene by plant cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M.J.; Bokern, M.; Boehme, C.

    1996-07-01

    Phytotoxicity, uptake, and metabolism of 1,4-dichlorobenzene (1,4-DCB) by carrot (Daucus carota L.), soybean (Glycine max. L.), tomato (Lycopersicon esculentum Mill.), and red goosefoot (Chenopodiun rubrum L.) cell suspension cultures were studied. Sealed glass systems were utilized for the investigation because 1,4-DCB is volatile. The sealed systems affect the growth of plant cells, but do not provide different results when testing xenobiotic uptake and metabolism. 1,4-Dichlorobenzene (40 {micro}g in 40 ml medium) was taken up by carrot (49%), soybean (50%), and red goosefoot (62%) cells. Only the soybean cell cultures provided evidence of the existence of metabolites of this compound, probablymore » conjugates of chlorophenols. Conditions for phytotoxicity tests were modified because the growth of cell cultures was affected when sealed for longer than 2 d. 1,4-Dichlorobenzene is toxic to cell cultures of the three tested plant species (tomato, soybean, and carrot). Concentrations of 0.5 mM caused 50% growth inhibition in carrot and soybean cultures. The tomato cultures were more sensitive, with 0.05 mM causing 50% growth inhibition.« less

  11. Plant stem cells as innovation in cosmetics.

    PubMed

    Moruś, Martyna; Baran, Monika; Rost-Roszkowska, Magdalena; Skotnicka-Graca, Urszula

    2014-01-01

    The stem cells thanks to their ability of unlimited division number or transformation into different cell types creating organs, are responsible for regeneration processes. Depending on the organism in which the stem cells exists, they divide to the plant or animal ones. The later group includes the stem cells existing in both embryo's and adult human's organs. It includes, among others, epidermal stem cells, located in the hair follicle relieves and also in its basal layers, and responsible for permanent regeneration of the epidermis. Temporary science looks for method suitable for stimulation of the epidermis stem cells, amongst the other by delivery of e.g., growth factors for proliferation that decrease with the age. One of the methods is the use of the plant cell culture technology, including a number of methods that should ensure growth of plant cells, issues or organs in the environment with the microorganism-free medium. It uses abilities of the different plant cells to dedifferentiation into stem cells and coming back to the pluripotent status. The extracts obtained this way from the plant stem cells are currently used for production of both common or professional care cosmetics. This work describes exactly impact of the plant stem cell extract, coming from one type of the common apple tree (Uttwiler Spätlauber) to human skin as one of the first plant sorts, which are used in cosmetology and esthetic dermatology.

  12. Tissue-Culture Method of Cloning Rubber Plants

    NASA Technical Reports Server (NTRS)

    Ball, E. A.

    1983-01-01

    Guayule plant, a high-yield rubber plant cloned by tissue-culture method to produce multiple new plants that mature quickly. By adjusting culture medium, excised shoot tip produces up to 50 identical guayule plants. Varying concentration of cytokinin, single excised tip produces either 1 or several (up to 50) new plants.

  13. Metabolism of pharmaceutical and personal care products by carrot cell cultures.

    PubMed

    Wu, Xiaoqin; Fu, Qiuguo; Gan, Jay

    2016-04-01

    With the increasing use of treated wastewater and biosolids in agriculture, residues of pharmaceutical and personal care products (PPCPs) in these reused resources may contaminate food produce via plant uptake, constituting a route for human exposure. Although various PPCPs have been reported to be taken up by plants in laboratories or under field conditions, at present little information is available on their metabolism in plants. In this study, we applied carrot cell cultures to investigate the plant metabolism of PPCPs. Five phase I metabolites of carbamazepine were identified and the potential metabolism pathways of carbamazepine were proposed. We also used the carrot cell cultures as a rapid screening tool to initially assess the metabolism potentials of 18 PPCPs. Eleven PPCPs, including acetaminophen, caffeine, meprobamate, primidone, atenolol, trimethoprim, DEET, carbamazepine, dilantin, diazepam, and triclocarban, were found to be recalcitrant to metabolism. The other 7 PPCPs, including triclosan, naproxen, diclofenac, ibuprofen, gemfibrozil, sulfamethoxazole, and atorvastatin, displayed rapid metabolism, with 0.4-47.3% remaining in the culture at the end of the experiment. Further investigation using glycosidase hydrolysis showed that 1.3-20.6% of initially spiked naproxen, diclofenac, ibuprofen, and gemfibrozil were transformed into glycoside conjugates. Results from this study showed that plant cell cultures may be a useful tool for initially exploring the potential metabolites of PPCPs in plants as well as for rapidly screening the metabolism potentials of a variety of PPCPs or other emerging contaminants, and therefore may be used for prioritizing compounds for further comprehensive evaluations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Cell and tissue culture of Miscanthus Sacchariflorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godovikova, V.A.; Moiseyeva, E.A.; Shumny, V.K.

    1995-11-01

    Since recent time search and introduction of new species of plants have paid attention. More perspective are perennial low maintenance landscape plants from genera Phragmites L. and Miscanthus Anderss. known as high speed growing and great amount of cellulose`s containing. Absence of seeds production and limited distribution area prevent from immediately introduction the plants of this species. The main goal of our investigation is the scientific development of the cell and tissue culture methods to get changing clones, salt and cold tolerant plants and their micropogation. At present there are collection of biovariety represented by subspecies, ecotypes and plant regenerantsmore » of two species - Miscanthus purpurascens (Anders.) and Miscanthus sacchariflorus (Maxim.). Successful results have been achieved in screening of culture media, prepared on MS base medium and contained a row of tropic components to protect the explant and callus tissue from oxidation and necrosis. Initially the callus was induced from stem segments, apical and nodular meristem of vegetative shoots of elulalia, growing in hydroponic greenhouse. Morphological and cytologic analysis of plant-regenerants have been done.« less

  15. Silicon does not mitigate cell death in cultured tobacco BY-2 cells subjected to salinity without ethylene emission.

    PubMed

    Liang, Xiaolei; Wang, Huahua; Hu, Yanfeng; Mao, Lina; Sun, Lili; Dong, Tian; Nan, Wenbin; Bi, Yurong

    2015-02-01

    Silicon induces cell death when ethylene is suppressed in cultured tobacco BY-2 cells. There is a crosstalk between Si and ethylene signaling. Silicon (Si) is beneficial for plant growth. It alleviates both biotic and abiotic stresses in plants. How Si works in plants is still mysterious. This study investigates the mechanism of Si-induced cell death in tobacco BY-2 cell cultures when ethylene is suppressed. Results showed that K2SiO3 alleviated the damage of NaCl stress. Si treatment rapidly increased ethylene emission and the expression of ethylene biosynthesis genes. Treatments with Si + Ag and Si + aminooxyacetic acid (AOA, ethylene biosynthesis inhibitor) reduced the cell growth and increased cell damage. The treatment with Si + Ag induced hydrogen peroxide (H2O2) generation and ultimately cell death. Some nucleus of BY-2 cells treated with Si + Ag appeared TUNEL positive. The inhibition of H2O2 and nitric oxide (NO) production reduced the cell death rate induced by Si + Ag treatment. Si eliminated the up-regulation of alternative pathway by Ag. These data suggest that ethylene plays an important role in Si function in plants. Without ethylene, Si not only failed to enhance plant resistance, but also elevated H2O2 generation and further induced cell death in tobacco BY-2 cells.

  16. Plant Tissue Culture in a Bag.

    ERIC Educational Resources Information Center

    Beck, Mike

    2000-01-01

    Describes the use of an oven bag as a sterile chamber for culture initiation and tissue transfer. Plant tissue culture is an ideal tool for introducing students to plants, cloning, and experimental design. Includes materials, methods, discussion, and conclusion sections. (SAH)

  17. Meristem Plant Cells as a Sustainable Source of Redox Actives for Skin Rejuvenation

    PubMed Central

    Korkina, Liudmila G.; Mayer, Wolfgang; de Luca, Chiara

    2017-01-01

    Recently, aggressive advertisement claimed a “magic role” for plant stem cells in human skin rejuvenation. This review aims to shed light on the scientific background suggesting feasibility of using plant cells as a basis of anti-age cosmetics. When meristem cell cultures obtained from medicinal plants are exposed to appropriate elicitors/stressors (ultraviolet, ultrasound ultraviolet (UV), ultrasonic waves, microbial/insect metabolites, heavy metals, organic toxins, nutrient deprivation, etc.), a protective/adaptive response initiates the biosynthesis of secondary metabolites. Highly bioavailable and biocompatible to human cells, low-molecular weight plant secondary metabolites share structural/functional similarities with human non-protein regulatory hormones, neurotransmitters, pigments, polyamines, amino-/fatty acids. Their redox-regulated biosynthesis triggers in turn plant cell antioxidant and detoxification molecular mechanisms resembling human cell pathways. Easily isolated in relatively large quantities from contaminant-free cell cultures, plant metabolites target skin ageing mechanisms, above all redox imbalance. Perfect modulators of cutaneous oxidative state via direct/indirect antioxidant action, free radical scavenging, UV protection, and transition-metal chelation, they are ideal candidates to restore photochemical/redox/immune/metabolic barriers, gradually deteriorating in the ageing skin. The industrial production of plant meristem cell metabolites is toxicologically and ecologically sustainable for fully “biological” anti-age cosmetics. PMID:28498360

  18. Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells

    PubMed Central

    Kobayashi, Yuki; Kanesaki, Yu; Tanaka, Ayumi; Kuroiwa, Haruko; Kuroiwa, Tsuneyoshi; Tanaka, Kan

    2009-01-01

    Eukaryotic cells arose from an ancient endosymbiotic association of prokaryotes, with plant cells harboring 3 genomes as the remnants of such evolution. In plant cells, plastid and mitochondrial DNA replication [organelle DNA replication (ODR)] occurs in advance of the subsequent cell cycles composed of nuclear DNA replication (NDR) and cell division. However, the mechanism by which replication of these genomes with different origins is coordinated is largely unknown. Here, we show that NDR is regulated by a tetrapyrrole signal in plant cells, which has been suggested as an organelle-to-nucleus retrograde signal. In synchronized cultures of the primitive red alga Cyanidioschyzon merolae, specific inhibition of A-type cyclin-dependent kinase (CDKA) prevented NDR but not ODR after onset of the cell cycle. In contrast, inhibition of ODR by nalidixic acid also resulted in inhibition of NDR, indicating a strict dependence of NDR on ODR. The requirement of ODR for NDR was bypassed by addition of the tetrapyrrole intermediates protoporphyrin IX (ProtoIX) or Mg-ProtoIX, both of which activated CDKA without inducing ODR. This scheme was also observed in cultured tobacco cells (BY-2), where inhibition of ODR by nalidixic acid prevented CDKA activation and NDR, and these inhibitions were circumvented by Mg-ProtoIX without inducing ODR. We thus show that tetrapyrrole-mediated organelle–nucleus replicational coupling is an evolutionary conserved process among plant cells. PMID:19141634

  19. Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures

    PubMed Central

    Doyle, Siamsa M.; Diamond, Mark; McCabe, Paul F.

    2010-01-01

    Chloroplasts produce reactive oxygen species (ROS) during cellular stress. ROS are known to act as regulators of programmed cell death (PCD) in plant and animal cells, so it is possible that chloroplasts have a role in regulating PCD in green tissue. Arabidopsis thaliana cell suspension cultures are model systems in which to test this, as here it is shown that their cells contain well-developed, functional chloroplasts when grown in the light, but not when grown in the dark. Heat treatment at 55 °C induced apoptotic-like (AL)-PCD in the cultures, but light-grown cultures responded with significantly less AL-PCD than dark-grown cultures. Chloroplast-free light-grown cultures were established using norflurazon, spectinomycin, and lincomycin and these cultures responded to heat treatment with increased AL-PCD, demonstrating that chloroplasts affect AL-PCD induction in light-grown cultures. Antioxidant treatment of light-grown cultures also resulted in increased AL-PCD induction, suggesting that chloroplast-produced ROS may be involved in AL-PCD regulation. Cycloheximide treatment of light-grown cultures prolonged cell viability and attenuated AL-PCD induction; however, this effect was less pronounced in dark-grown cultures, and did not occur in antioxidant-treated light-grown cultures. This suggests that a complex interplay between light, chloroplasts, ROS, and nuclear protein synthesis occurs during plant AL-PCD. The results of this study highlight the importance of taking into account the time-point at which cells are observed and whether the cells are light-grown and chloroplast-containing or not, for any study on plant AL-PCD, as it appears that chloroplasts can play a significant role in AL-PCD regulation. PMID:19933317

  20. Perfluorodecalins and Hexenol as Inducers of Secondary Metabolism in Taxus media and Vitis vinifera Cell Cultures.

    PubMed

    Vidal-Limon, Heriberto R; Almagro, Lorena; Moyano, Elisabeth; Palazon, Javier; Pedreño, Maria A; Cusido, Rosa M

    2018-01-01

    Plant cell cultures constitute a potentially efficient and sustainable tool for the production of high added-value bioactive compounds. However, due to the inherent restrictions in the expression of secondary metabolism, to date the yields obtained have generally been low. Plant cell culture elicitation can boost production, sometimes leading to dramatic improvements in yield, as well as providing insight into the target biosynthetic pathways and the regulation of the genes involved. Among the secondary compounds successfully being produced in biotechnological platforms are taxanes and trans -resveratrol ( t -R). In the current study, perfluorodecalins (PFDs) and hexenol (Hex) were tested for the first time with Taxus media and Vitis vinifera cell cultures to explore their effect on plant cell growth and secondary metabolite production, either alone or combined with other elicitors already established as highly effective, such as methyl jasmonate (MeJa), coronatine (Coro) or randomly methylated β-cyclodextrins (β-CDs). The total taxane content at the peak of production in T. media cell cultures treated with PFDs together with Coro plus β-CDs was 3.3-fold higher than in the control, whereas the t -R production in MeJa and β-CD-treated V. vinifera cell cultures increased 552.6-fold compared to the extremely low-yielding control. Hex was ineffective as an elicitor in V. vinifera cell cultures, and in T. media cell suspensions it blocked the taxol production but induced a clear enhancement of baccatin III. Regarding biosynthetic gene expression, a strong positive relationship was observed between the transcript level of targeted genes and taxol production in the T. media cell cultures, but not with t -R production in the elicited V. vinifera cell cultures.

  1. Characterizing parameters of Jatropha curcas cell cultures for microgravity studies

    NASA Astrophysics Data System (ADS)

    Vendrame, Wagner A.; Pinares, Ania

    2013-06-01

    Jatropha (Jatropha curcas) is a tropical perennial species identified as a potential biofuel crop. The oil is of excellent quality and it has been successfully tested as biodiesel and in jet fuel mixes. However, studies on breeding and genetic improvement of jatropha are limited. Space offers a unique environment for experiments aiming at the assessment of mutations and differential gene expression of crops and in vitro cultures of plants are convenient for studies of genetic variation as affected by microgravity. However, before microgravity studies can be successfully performed, pre-flight experiments are necessary to characterize plant material and validate flight hardware environmental conditions. Such preliminary studies set the ground for subsequent spaceflight experiments. The objectives of this study were to compare the in vitro growth of cultures from three explant sources (cotyledon, leaf, and stem sections) of three jatropha accessions (Brazil, India, and Tanzania) outside and inside the petriGAP, a modified group activation pack (GAP) flight hardware to fit petri dishes. In vitro jatropha cell cultures were established in petri dishes containing a modified MS medium and maintained in a plant growth chamber at 25 ± 2 °C in the dark. Parameters evaluated were surface area of the explant tissue (A), fresh weight (FW), and dry weight (DW) for a period of 12 weeks. Growth was observed for cultures from all accessions at week 12, including subsequent plantlet regeneration. For all accessions differences in A, FW and DW were observed for inside vs. outside the PetriGAPs. Growth parameters were affected by accession (genotype), explant type, and environment. The type of explant influenced the type of cell growth and subsequent plantlet regeneration capacity. However, overall cell growth showed no abnormalities. The present study demonstrated that jatropha in vitro cell cultures are suitable for growth inside PetriGAPs for a period of 12 weeks. The parameters

  2. Cell culture contamination.

    PubMed

    Stacey, Glyn N

    2011-01-01

    Microbial contamination is a major issue in cell culture, but there are a range of procedures which can be adopted to prevent or eliminate contamination. Contamination may arise from the operator and the laboratory environment, from other cells used in the laboratory, and from reagents. Some infections may present a risk to laboratory workers: containment and aseptic technique are the key defence against such risks. Remedial management of suspected infection may simply mean discarding a single potentially infected culture. However, if a more widespread problem is identified, then all contaminated cultures and associated unused media that have been opened during this period should be discarded, equipment should be inspected and cleaned, cell culture operations reviewed, and isolation from other laboratories instituted until the problem is solved. Attention to training of staff, laboratory layout, appropriate use of quarantine for new cultures or cell lines, cleaning and maintenance, and quality control are important factors in preventing contamination in cell culture laboratories.

  3. Perfluorodecalins and Hexenol as Inducers of Secondary Metabolism in Taxus media and Vitis vinifera Cell Cultures

    PubMed Central

    Vidal-Limon, Heriberto R.; Almagro, Lorena; Moyano, Elisabeth; Palazon, Javier; Pedreño, Maria A.; Cusido, Rosa M.

    2018-01-01

    Plant cell cultures constitute a potentially efficient and sustainable tool for the production of high added-value bioactive compounds. However, due to the inherent restrictions in the expression of secondary metabolism, to date the yields obtained have generally been low. Plant cell culture elicitation can boost production, sometimes leading to dramatic improvements in yield, as well as providing insight into the target biosynthetic pathways and the regulation of the genes involved. Among the secondary compounds successfully being produced in biotechnological platforms are taxanes and trans-resveratrol (t-R). In the current study, perfluorodecalins (PFDs) and hexenol (Hex) were tested for the first time with Taxus media and Vitis vinifera cell cultures to explore their effect on plant cell growth and secondary metabolite production, either alone or combined with other elicitors already established as highly effective, such as methyl jasmonate (MeJa), coronatine (Coro) or randomly methylated β-cyclodextrins (β-CDs). The total taxane content at the peak of production in T. media cell cultures treated with PFDs together with Coro plus β-CDs was 3.3-fold higher than in the control, whereas the t-R production in MeJa and β-CD-treated V. vinifera cell cultures increased 552.6-fold compared to the extremely low-yielding control. Hex was ineffective as an elicitor in V. vinifera cell cultures, and in T. media cell suspensions it blocked the taxol production but induced a clear enhancement of baccatin III. Regarding biosynthetic gene expression, a strong positive relationship was observed between the transcript level of targeted genes and taxol production in the T. media cell cultures, but not with t-R production in the elicited V. vinifera cell cultures. PMID:29616056

  4. The Structure of Plant Cell Walls

    PubMed Central

    Wilder, Barry M.; Albersheim, Peter

    1973-01-01

    The molecular structure and chemical properties of the hemicellulose present in the isolated cell walls of suspension cultures of sycamore (Acer pseudoplatanus) cells has recently been described by Bauer et al. (Plant Physiol. 51: 174-187). The hemicellulose of the sycamore primary cell wall is a xyloglucan. This polymer functions as an important cross-link in the structure of the cell wall; the xyloglucan is hydrogen-bonded to cellulose and covalently attached to the pectic polymers. The present paper describes the structure of a xyloglucan present in the walls and in the extracellular medium of suspension-cultured Red Kidney bean (Phaseolus vulgaris) cells and compares the structure of the bean xyloglucan with the structure of the sycamore xyloglucan. Although some minor differences were found, the basic structure of the xyloglucans in the cell walls of these distantly related species is the same. The structure is based on a repeating heptasaccharide unit which consists of four residues of β-1, 4-linked glucose and three residues of terminal xylose linked to the 6 position of three of the glucosyl residues. PMID:16658434

  5. Bioreactors for plant cells: hardware configuration and internal environment optimization as tools for wider commercialization.

    PubMed

    Georgiev, Milen I; Weber, Jost

    2014-07-01

    Mass production of value-added molecules (including native and heterologous therapeutic proteins and enzymes) by plant cell culture has been demonstrated as an efficient alternative to classical technologies [i.e. natural harvest and chemical (semi)synthesis]. Numerous proof-of-concept studies have demonstrated the feasibility of scaling up plant cell culture-based processes (most notably to produce paclitaxel) and several commercial processes have been established so far. The choice of a suitable bioreactor design (or modification of an existing commercially available reactor) and the optimization of its internal environment have been proven as powerful tools toward successful mass production of desired molecules. This review highlights recent progress (mostly in the last 5 years) in hardware configuration and optimization of bioreactor culture conditions for suspended plant cells.

  6. Extraction and Estimation of Secondary Metabolites from Date Palm Cell Suspension Cultures.

    PubMed

    Naik, Poornananda M; Al-Khayri, Jameel M

    2017-01-01

    The health benefits of dates arise from their content of phytochemicals, known for having pharmacological properties, including flavonoids, carotenoids, phenolic acids, sterols, procyanidins, and anthocyanins. In vitro cell culture technology has become an attractive means for the production of biomass and bioactive compounds. This chapter describes step-by-step procedures for the induction and proliferation of callus from date palm offshoots on Murashige and Skoog (MS) medium supplemented with plant growth regulators. Subsequently cell suspension cultures are established for optimum biomass accumulation, based on the growth curve developed by packed cell volume as well as fresh and dry weights. The highest production of biomass occurs at the 11th week after culturing. Moreover, this chapter describes methodologies for the extraction and analysis of secondary metabolites of date palm cell suspension cultures using high-performance liquid chromatography (HPLC). The optimum level of catechin, caffeic acid, apigenin, and kaempferol from the cell suspension cultures establishes after the 11th and 12th weeks of culture. This protocol is useful for scale-up production of secondary metabolites from date palm cell suspension cultures.

  7. Modeling of plant in vitro cultures: overview and estimation of biotechnological processes.

    PubMed

    Maschke, Rüdiger W; Geipel, Katja; Bley, Thomas

    2015-01-01

    Plant cell and tissue cultivations are of growing interest for the production of structurally complex and expensive plant-derived products, especially in pharmaceutical production. Problems with up-scaling, low yields, and high-priced process conditions result in an increased demand for models to provide comprehension, simulation, and optimization of production processes. In the last 25 years, many models have evolved in plant biotechnology; the majority of them are specialized models for a few selected products or nutritional conditions. In this article we review, delineate, and discuss the concepts and characteristics of the most commonly used models. Therefore, the authors focus on models for plant suspension and submerged hairy root cultures. The article includes a short overview of modeling and mathematics and integrated parameters, as well as the application scope for each model. The review is meant to help researchers better understand and utilize the numerous models published for plant cultures, and to select the most suitable model for their purposes. © 2014 Wiley Periodicals, Inc.

  8. Introduction to cell culture.

    PubMed

    Philippeos, Christina; Hughes, Robin D; Dhawan, Anil; Mitry, Ragai R

    2012-01-01

    The basics of cell culture as applied to human cells are discussed. Biosafety when working with human tissue, which is often pathogenic, is important. The requirements for a tissue culture laboratory are described, particularly the range of equipment needed to carry out cell isolation, purification, and culture. Steps must be taken to maintain aseptic conditions to prevent contamination of cultures with micro-organisms. Basic cell-handling techniques are discussed, including choice of media, primary culture, and cryopreservation of cells so they can be stored for future use. Common assays which are used to determine cell viability and activity are considered.

  9. Efficient production of glycosylated Cypridina luciferase using plant cells.

    PubMed

    Mitani, Yasuo; Oshima, Yoshimi; Mitsuda, Nobutaka; Tomioka, Azusa; Sukegawa, Masako; Fujita, Mika; Kaji, Hiroyuki; Ohmiya, Yoshihiro

    2017-05-01

    Cypridina noctiluca luciferase has been utilized for biochemical and molecular biological applications, including bioluminescent enzyme immunoassays, far-red luminescence imaging, and high-throughput reporter assays. Some of these applications require a large amount of purified luciferase. However, conventional protein expression systems are not capable of producing sufficient quantities of protein with a high quality and purity without laborious and costly purification processes. To improve the productivity and expand the breadth of possibilities for Cypridina luciferase applications, we employed a variety of secretion expression systems, including yeast, mammalian cells, and silk worms. In this study, we established a simple production procedure using plant cell cultures. The plant cell culture BY-2 efficiently secreted luciferase, which was easily purified using a simple one-step ion-exchange chromatography method. The production yield was 20-30 mg of luciferase per liter of culture medium, and its Km for the luciferin (0.45 μM) was similar to that of the native protein. Additionally, we characterized its glycosylation pattern and confirmed that the two potential N-glycosylation sites were modified with plant-type oligosaccharide chains. Interestingly, the oligosaccharide chains could be trimmed without any detectable decrease in recombinant protein activity. Therefore, the results of our study indicate that this method offers a more cost-effective production method for Cypridina luciferase than conventional methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Closed culture plant studies: Implications for CELSS

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.

    1986-01-01

    Arabidopsis plants were grown in closed cultures similar to those used in space experiments. A shift in metabolism from photosynthesis to respiration is indicated by the accumulation of CO2 in the culture atmosphere. Reproductive growth is suppressed. Plant growth and development is apparently related to the atmospheric volume available to each plant. The implications of these findings to closed ecological systems are given: (1) there is a need for an open culture having ample gas exchange, (2) CO2 levels must be maintained within prescribed limits, (3) the minimum atmospheric volume required for each plant is dependent on the precision of the gas monitors and of the subsystems used to maintain appropriate levels of various atmospheric components, and (4) volatiles such as ethylene and terpenes emanating from plants be monitored and reduced to benign concentrations.

  11. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  12. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  13. Specimen Sample Preservation for Cell and Tissue Cultures

    NASA Technical Reports Server (NTRS)

    Meeker, Gabrielle; Ronzana, Karolyn; Schibner, Karen; Evans, Robert

    1996-01-01

    The era of the International Space Station with its longer duration missions will pose unique challenges to microgravity life sciences research. The Space Station Biological Research Project (SSBRP) is responsible for addressing these challenges and defining the science requirements necessary to conduct life science research on-board the International Space Station. Space Station will support a wide range of cell and tissue culture experiments for durations of 1 to 30 days. Space Shuttle flights to bring experimental samples back to Earth for analyses will only occur every 90 days. Therefore, samples may have to be retained for periods up to 60 days. This presents a new challenge in fresh specimen sample storage for cell biology. Fresh specimen samples are defined as samples that are preserved by means other than fixation and cryopreservation. The challenge of long-term storage of fresh specimen samples includes the need to suspend or inhibit proliferation and metabolism pending return to Earth-based laboratories. With this challenge being unique to space research, there have not been any ground based studies performed to address this issue. It was decided hy SSBRP that experiment support studies to address the following issues were needed: Fixative Solution Management; Media Storage Conditions; Fresh Specimen Sample Storage of Mammalian Cell/Tissue Cultures; Fresh Specimen Sample Storage of Plant Cell/Tissue Cultures; Fresh Specimen Sample Storage of Aquatic Cell/Tissue Cultures; and Fresh Specimen Sample Storage of Microbial Cell/Tissue Cultures. The objective of these studies was to derive a set of conditions and recommendations that can be used in a long duration microgravity environment such as Space Station that will permit extended storage of cell and tissue culture specimens in a state consistent with zero or minimal growth, while at the same time maintaining their stability and viability.

  14. The effects of cadmium chloride on secondary metabolite production in Vitis vinifera cv. cell suspension cultures.

    PubMed

    Cetin, Emine Sema; Babalik, Zehra; Hallac-Turk, Filiz; Gokturk-Baydar, Nilgun

    2014-09-23

    Plant secondary metabolites are possess several biological activities such as anti-mutagenic, anti-carcinogenic, anti-aging, etc. Cell suspension culture is one of the most effective systems to produce secondary metabolites. It is possible to increase the phenolic compounds and tocopherols by using cell suspensions. Studies on tocopherols production by cell suspension cultures are seldom and generally focused on seed oil plants. Although fresh grape, grape seed, pomace and grape seed oil had tocopherols, with our best knowledge, there is no research on tocopherol accumulation in the grape cell suspension cultures. In this study, it was aimed to determine the effects of cadmium chloride treatments on secondary metabolite production in cell suspension cultures of grapevine. Cell suspensions initiated from callus belonging to petiole tissue was used as a plant material. Cadmium chloride was applied to cell suspension cultures in different concentration (1.0 mM and 1.5 mM) to enhance secondary metabolite (total phenolics, total flavanols, total flavonols, trans-resveratrol, and α-, β-, γ- δ-tocopherols) production. Cells were harvested at two days intervals until the 6th day of cultures. Amounts of total phenolics, total flavanols and total flavonols; trans-resveratrol and tocopherols (α-, β-, γ- and δ-tocopherols) and dry cell weights were determined in the harvested cells. Phenolic contents were significantly affected by the sampling time and cadmium concentrations. The highest values of total phenolic (168.82 mg/100 g), total flavanol (15.94 mg/100 g), total flavonol (14.73 mg/100 g) and trans-resveratrol (490.76 μg/100 g) were found in cells treated with 1.0 mM CdCl2 and harvested at day 2. Contents of tocopherols in the cells cultured in the presence of 1.0 mM CdCl2 gradually increased during the culture period and the highest values of α, β and γ tocopherols (145.61, 25.52 and 18.56 μg/100 g) were detected in the cell cultures collected at day 6

  15. PHYSIOLOGICAL, CYTOLOGICAL AND BIOCHEMICAL STABILITY OF Medicago sativa L. CELL CULTURE AFTER 27 YEARS OF CRYOGENIC STORAGE.

    PubMed

    Volkova, L A; Urmantseva, V V; Popova, E V; Nosov, A M

    2015-01-01

    The efficiency of long-term cryogenic storage to prevent somaclonal variations in plant cell cultures and retain their major cytogenetic and biochemical traits remains under debate. In particular, it is not clear how stress conditions associated with cryopreservation, such as low temperature, dehydration and toxic action of some cryoprotectants (DMSO in particular), affect post-storage regrowth and genetic integrity of cell samples. We assessed growth, cytogenetic and biochemical characteristics of the peroxidase-producing strain of Medicago sativa L. cell culture recovered after 27 years of cryogenic storage as compared to the same culture before cryopreservation. In 1984, M. sativa L. cell culture was cryopreserved using programmed freezing and 7% DMSO as a cryoprotectant. In 2011, after rewarming in a water bath at 40 degree C for 90 s, cell culture was recovered and proliferated. Viability, growth profile, mitotic index, ploidy level, peroxidase activity and cell response to hypothermia and osmotic stress were compared between the recovered and the initial cell cultures using the records available from 1984. Viability of alfalfa cell culture after rewarming was below 20% but it increased to 80% by the 27th subculture cycle. Recovered culture showed higher mitotic activity and increased number of haploid and diploid cells compared to the initial cell line. Both peroxidase activity and response to abiotic stress in the recovered cell culture were similar to that of the initial culture. Cryopreservation by programmed freezing was effective at retaining the main characteristics of M. sativa undifferentiated cell culture after 27 years of storage. According to available data, this is longest period of successful cryopreservation of plant cell cultures reported so far. After storage, there was no evidence that DMSO had any detrimental effect on cell viability, growth or cytogenetics.

  16. Rosa hybrida orcinol O-methyl transferase-mediated production of pterostilbene in metabolically engineered grapevine cell cultures.

    PubMed

    Martínez-Márquez, Ascensión; Morante-Carriel, Jaime A; Palazon, Javier; Bru-Martínez, Roque

    2018-05-25

    Stilbenes are naturally scarce high-added-value plant compounds with chemopreventive, pharmacological and cosmetic properties. Bioproduction strategies include engineering the metabolisms of bacterial, fungal and plant cell systems. Strikingly, one of the most effective strategies consists in the elicitation of wild grapevine cell cultures, which leads to vast stilbene resveratrol accumulation in the extracellular medium. The combination of both cell culture elicitation and metabolic engineering strategies to produce resveratrol analogs proved more efficient for the hydroxylated derivative piceatannol than for the dimethylated derivative pterostilbene, for which human hydroxylase HsCYP1B1- and grapevine O-methyltransferase VvROMT-transformed cell cultures were respectively used. Rose orcinol O-methyltransferase (OOMT) displays enzymatic properties, which makes it an appealing candidate to substitute VvROMT in the combined strategy to enhance the pterostilbene production level by engineered grapevine cells upon elicitation. Here we cloned a Rosa hybrida OOMT gene, and created a genetic construction suitable for Agrobacterium-mediated plant transformation. OOMT's ability to catalyze the conversion of resveratrol into pterostilbene was first assessed in vitro using protein extracts of agroinfiltrated N. benthamiana leaves and transformed grapevine callus. The grapevine cell cultures transformed with RhOOMT produced about 16 mg/L culture of pterostilbene and reached an extracellular distribution of up to 34% of total production at the best, which is by far the highest production reported to date in a plant system. A bonus large resveratrol production of ca. 1500-3000 mg/L was simultaneously obtained. Our results demonstrate a viable successful metabolic engineering strategy to produce pterostilbene, a resveratrol analog with enhanced pharmacological properties. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Efficient electroporation of DNA and protein into confluent and differentiated epithelial cells in culture.

    PubMed

    Deora, Ami A; Diaz, Fernando; Schreiner, Ryan; Rodriguez-Boulan, Enrique

    2007-10-01

    Electroporation-mediated delivery of molecules is a procedure widely used for transfecting complementary DNA in bacteria, mammalian and plant cells. This technique has proven very efficient for the introduction of macromolecules into cells in suspension culture and even into cells in their native tissue environment, e.g. retina and embryonic tissues. However, in spite of several attempts to date, there are no well-established procedures to electroporate polarized epithelial cells adhering to a tissue culture substrate (glass, plastic or filter). We report here the development of a simple procedure that uses available commercial equipment and works efficiently and reproducibly for a variety of epithelial cell lines in culture.

  18. Detection of Changes in the Medicago sativa Retinoblastoma-Related Protein (MsRBR1) Phosphorylation During Cell Cycle Progression in Synchronized Cell Suspension Culture.

    PubMed

    Ayaydin, Ferhan; Kotogány, Edit; Ábrahám, Edit; Horváth, Gábor V

    2017-01-01

    Deepening our knowledge on the regulation of the plant cell division cycle depends on techniques that allow for the enrichment of cell populations in defined cell cycle phases. Synchronization of cell division can be achieved using different plant tissues; however, well-established cell suspension cultures provide large amount of biological sample for further analyses. Here, we describe the methodology of the establishment, propagation, and analysis of a Medicago sativa suspension culture that can be used for efficient synchronization of the cell division. A novel 5-ethynyl-2'-deoxyuridine (EdU)-based method is used for the estimation of cell fraction that enters DNA synthesis phase of the cell cycle and we also demonstrate the changes in the phosphorylation level of Medicago sativa retinoblastoma-related protein (MsRBR1) during cell cycle progression.

  19. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    PubMed

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  20. Cell culture purity issues and DFAT cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Shengjuan; Department of Animal Sciences, Washington State University, Pullman, WA 99164; Bergen, Werner G.

    2013-04-12

    Highlights: •DFAT cells are progeny cells derived from dedifferentiated mature adipocytes. •Common problems in this research is potential cell contamination of initial cultures. •The initial cell culture purity is crucial in DFAT cell research field. -- Abstract: Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for themore » alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.« less

  1. Impact of environmental factors on the culturability and viability of Listeria monocytogenes under conditions encountered in food processing plants.

    PubMed

    Overney, Anaïs; Jacques-André-Coquin, Joséphine; Ng, Patricia; Carpentier, Brigitte; Guillier, Laurent; Firmesse, Olivier

    2017-03-06

    The ability of Listeria monocytogenes to adhere to and persist on surfaces for months or even years may be responsible for its transmission from contaminated surfaces to food products. Hence the necessity to find effective means to prevent the establishment of L. monocytogenes in food processing environments. The aim of this study was to assess, through a fractional experimental design, the environmental factors that could affect the survival of L. monocytogenes cells on surfaces to thereby prevent the persistence of this pathogen in conditions mimicking those encountered in food processing plants: culture with smoked salmon juice or meat exudate, use of two materials with different hygiene status, biofilm of L. monocytogenes in pure-culture or dual-culture with a Pseudomonas fluorescens strain, application of a drying step after cleaning and disinfection (C&D) and comparison of two strains of L. monocytogenes. Bacterial survival was assessed by culture, qPCR to quantify total cells, and propidium monoazide coupled with qPCR to quantify viable cells and highlight viable but non-culturable (VBNC) cells. Our results showed that failure to apply C&D causes cell persistence on surfaces. Moreover, the sanitation procedure leads only to a loss of culturability and appearance of VBNC populations. However, an additional daily drying step after C&D optimises the effectiveness of these procedures to reduce culturable populations. Our results reinforce the importance to use molecular tools to monitor viable pathogens in food processing plants to avoid underestimating the amounts of cells using only methods based on cell culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Imaging the Dynamics of Cell Wall Polymer Deposition in the Unicellular Model Plant, Penium margaritaceum.

    PubMed

    Domozych, David; Lietz, Anna; Patten, Molly; Singer, Emily; Tinaz, Berke; Raimundo, Sandra C

    2017-01-01

    The unicellular green alga, Penium margaritaceum, represents a novel and valuable model organism for elucidating cell wall dynamics in plants. This organism's cell wall contains several polymers that are highly similar to those found in the primary cell walls of land plants. Penium is easily grown in laboratory culture and is effectively manipulated in various experimental protocols including microplate assays and correlative microscopy. Most importantly, Penium can be live labeled with cell wall-specific antibodies or other probes and returned to culture where specific cell wall developmental events can be monitored. Additionally, live cells can be rapidly cryo-fixed and cell wall surface microarchitecture can be observed with variable pressure scanning electron microscopy. Here, we describe the methodology for maintaining Penium for experimental cell wall enzyme studies.

  3. The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwiatkowska, Aleksandra, E-mail: A.Kwiatkows@gmail.com; Zebrowski, Jacek; Oklejewicz, Bernadetta

    2014-05-02

    Highlights: • A decrease in proliferation rate during long-term cultivation of Arabidopsis cells. • Age-dependent increase in senescence-associated gene expression in Arabidopsis cells. • Age-related increase in DNA methylation, H3K9me2, and H3K27me3 in Arabidopsis cells. • High potential of photosynthetic efficiency of long-term cultured Arabidopsis cells. - Abstract: Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic andmore » physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage.« less

  4. [In vitro regeneration and applications using vegetable cell and tissue culture].

    PubMed

    Jordán, M

    1990-10-01

    Plant cells by means of their totipotency and aided by in vitro culture techniques can be induced to perform morphogenesis leading to somatic embryoids and massive clonal multiplication; microspores or pollen can be triggered to recover haploid plants, then characters expressed via haploidy can be selected and fixed. Protoplasts from different species can lead to recombinations. We report here work done on Carica pubescens, where somatic embryoids were obtained from cells; in Prunus avium androgenesis leading to pollen calli was triggered, while plants were recovered from Nicotiana tabacum anthers. Fusion products were obtained using C. pubescens and C. papaya protoplasts, leading up to calli and shoots.

  5. Space-Age Plant Culture

    ERIC Educational Resources Information Center

    McCormack, Alan J.

    1973-01-01

    Describes the commercial applications of hydroponics, and then outlines ways in which this soilless plant culture method can be used in the science classroom and laboratory. Gives directions for making a suitable growth solution, and suggests appropriate student experiments involving hydroponics. (JR)

  6. Bioreactor production of secondary metabolites from cell cultures of periwinkle and sandalwood.

    PubMed

    Valluri, Jagan V

    2009-01-01

    A bench-top bioreactor allowing continuous extraction of secondary metabolites is designed for Catharanthus roseus L. (G.) Don (periwinkle) and Santalum album L. (sandalwood) plant cell suspensions. Periwinkle cell cultures are exposed to biotic elicitors (Aspergillus niger, crude chitin) and abiotic elicitors (mannitol, methyl jasmonate) to induce alkaloid production. Whereas most of the biotic elicitors are effective when added on day 15 of culture, the abiotic elicitors are effective when added on day 20. The use of trans-cinnamic acid, an inhibitor of phenylalanine ammonia lyase (PAL) activity, results in significant increase in the alkaloid production of periwinkle cell cultures. Exposure of the cells to mannitol-induced osmotic stress produced marked increment in the total alkaloid production. When biotic and abiotic stress treatments are applied sequentially, an additive effect in alkaloid accumulation is observed. Although no essential oils are detected, secondary metabolites in the form of phenolics are produced by the sandalwood cell cultures in the bioreactor environment. The use of morphologic modification such as organ cultures and transformed cultures is believed to be required for both production and storage of essential oil constituents in sandalwood. The present chapter demonstrates that periwinkle and sandalwood cell suspensions could be developed and successfully cultured in a modified air-lift bioreactor. The exploitation of variant cell strains and biotransformation of added precursors can certainly improve the use of periwinkle and sandalwood cell cultures for the bioproduction of desired compounds.

  7. [Establishment of embryogenic cell suspension culture and plant regeneration of edible banana Musa acuminata cv. Mas (AA)].

    PubMed

    Wei, Yue-Rong; Huang, Xue-Lin; Li, Jia; Huang, Xia; Li, Zhe; Li, Xiao-Ju

    2005-01-01

    Conventional breeding for dual resistance of disease and pest of Musa cultivars remains a difficult endeavor, as the plant is polyploidic and high in sterility. Biotechnological techniques, eg., genetic engineering, in vitro mutation breeding, or protoplast fusion, may overcome the difficulties and improve the germplasm. Establishment of a stable embryogenic cell suspension (ECS) is a prerequisite for any of the biotechnological breeding methods. In this study an embryogenic cell suspension was established from immature male flower of Musa acuminata cv. Mas (AA), a popular commercial variety of banana in the South-East Asian region. After culture for 5-6 months on callus induction media, which consisted of MS salts, different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), 4.1 micromol/L biotin, 5.7 micromol/L indoleacetic acid (IAA), 5.4 micromol/L naphthaleneacetic acid (NAA), other vitamins, 87 mmol/L sucrose, and solidified with 7 g/L agarose, meristematic globules and yellow, friable embryogenic cultures were induced from the explants of 1-15th row young floral hands of immature male flowers. Of the four treatments of 2,4-D, 9 micromol/L was the most effective on the callus induction, it transformed 40.96% and 7.45% of the cultivated male floral hands into callus and embryogenic callus respectively. The explants to produce highest frequency of the embryogenic calli were floral hands of 6 to 12th rows, which generated 5.79% of the embryogenic calli. Suspension cultures were initiated from these embryogenic calli in liquid medium supplemented with 4.5 micromol/L 2, 4-D. After sieving selection of the cultures using a stainless steel metallic strainer with pore sizes of 154 microm at 15 day intervals for 3 months, homogeneous and yellow embryogenic cell suspensions, composed of single cells and small cell aggregates, were established. Based upon the growth quantity and growth rate of ECS, it was determined that the appropriate inoculum was 2.0 mL PCV

  8. Effects of aluminum on DNA synthesis, cellular polyamines, polyamine biosynthetic enzymes and inorganic ions in cell suspension cultures of a woody plant, Catharanthus roseus

    Treesearch

    Rakesh Minocha; Subhash C. Minocha; Stephanie L. Long; Walter C. Shortle

    1992-01-01

    Increased aluminum (Al) solubility in soil waters due to acid precipitation has aroused considerable interest in the problem of Al toxicity in plants. In the present study, an in vitro suspension culture system of Catharanthus roseus (L.) G. Don was used to analyze the effects of aluminum on several biochemical processes in these cells. The aliphatic...

  9. In vitro cell cultures obtained from different explants of Corylus avellana produce Taxol and taxanes

    PubMed Central

    Bestoso, Federica; Ottaggio, Laura; Armirotti, Andrea; Balbi, Alessandro; Damonte, Gianluca; Degan, Paolo; Mazzei, Mauro; Cavalli, Francesca; Ledda, Bernardetta; Miele, Mariangela

    2006-01-01

    Background Taxol is an effective antineoplastic agent, originally extracted from the bark of Taxus brevifolia with a low yield. Many attempts have been made to produce Taxol by chemical synthesis, semi-synthesis and plant tissue cultures. However, to date, the availability of this compound is not sufficient to satisfy the commercial requirements. The aim of the present work was to produce suspension cell cultures from plants not belonging to Taxus genus and to verify whether they produced Taxol and taxanes. For this purpose different explants of hazel (Corylus avellana species) were used to optimize the protocol for inducing in vitro callus, an undifferentiated tissue from which suspension cell cultures were established. Results Calli were successfully induced from stems, leaves and seeds grown in various hormone concentrations and combinations. The most suitable callus to establish suspension cell cultures was obtained from seeds. Media recovered from suspension cell cultures contained taxanes, and showed antiproliferative activity on human tumour cells. Taxol, 10-deacetyltaxol and 10-deacetylbaccatin III were the main taxanes identified. The level of Taxol recovered from the media of hazel cultures was similar to that found in yew cultures. Moreover, the production of taxanes in hazel cell cultures increased when elicitors were used. Conclusion Here we show that hazel cell cultures produce Taxol and taxanes under controlled conditions. This result suggests that hazel possesses the enzymes for Taxol production, which until now was considered to be a pathway particular to Taxus genus. The main benefit of producing taxanes through hazel cell cultures is that hazel is widely available, grows at a much faster rate in vivo, and is easier to cultivate in vitro than yew. In addition, the production of callus directly from hazel seeds shortens the culture time and minimizes the probability of contamination. Therefore, hazel could become a commercial source of Taxol and

  10. Plant regeneration from haploid cell suspension-derived protoplasts of Mediterranean rice (Oryza sativa L. cv. Miara).

    PubMed

    Guiderdoni, E; Chaïr, H

    1992-11-01

    More than 750 plants were regenerated from protoplasts isolated from microspore callus-derived cell suspensions of the Mediterranean japonica rice Miara, using a nurse-feeder technique and N6-based culture medium. The mean plating efficiency and the mean regeneration ability of the protocalluses were 0.5% and 49% respectively. Flow cytometric evaluation of the DNA contents of 7 month old-cell and protoplast suspensions showed that they were still haploid. Contrastingly, the DNA contents of leaf cell nuclei of the regenerated protoclones ranged from 1C to 5C including 60% 2C plants. This was consistent with the morphological type and the fertility of the mature plants. These results and the absence of chimeric plants suggest that polyploidization occurred during the early phase of protoplast culture.

  11. High-yield secretion of recombinant proteins expressed in tobacco cell culture with a designer glycopeptide tag: Process development.

    PubMed

    Zhang, Ningning; Gonzalez, Maria; Savary, Brett; Xu, Jianfeng

    2016-03-01

    Low-yield protein production remains the most significant economic hurdle with plant cell culture technology. Fusions of recombinant proteins with hydroxyproline-O-glycosylated designer glycopeptide tags have consistently boosted secreted protein yields. This prompted us to study the process development of this technology aiming to achieve productivity levels necessary for commercial viability. We used a tobacco BY-2 cell culture expressing EGFP as fusion with a glycopeptide tag comprised of 32 repeat of "Ser-Pro" dipeptide, or (SP)32 , to study cell growth and protein secretion, culture scale-up, and establishment of perfusion cultures for continuous production. The BY-2 cells accumulated low levels of cell biomass (~7.5 g DW/L) in Schenk & Hildebrandt medium, but secreted high yields of (SP)32 -tagged EGFP (125 mg/L). Protein productivity of the cell culture has been stable for 6.0 years. The BY-2 cells cultured in a 5-L bioreactor similarly produced high secreted protein yield at 131 mg/L. Successful operation of a cell perfusion culture for 30 days was achieved under the perfusion rate of 0.25 and 0.5 day(-1) , generating a protein volumetric productivity of 17.6 and 28.9 mg/day/L, respectively. This research demonstrates the great potential of the designer glycopeptide technology for use in commercial production of valuable proteins with plant cell cultures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Metabolic analysis of elicited cell suspension cultures of Cannabis sativa L. by (1)H-NMR spectroscopy.

    PubMed

    Pec, Jaroslav; Flores-Sanchez, Isvett Josefina; Choi, Young Hae; Verpoorte, Robert

    2010-07-01

    Cannabis sativa L. plants produce a diverse array of secondary metabolites. Cannabis cell cultures were treated with jasmonic acid (JA) and pectin as elicitors to evaluate their effect on metabolism from two cell lines using NMR spectroscopy and multivariate data analysis. According to principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA), the chloroform extract of the pectin-treated cultures were more different than control and JA-treated cultures; but in the methanol/water extract the metabolome of the JA-treated cells showed clear differences with control and pectin-treated cultures. Tyrosol, an antioxidant metabolite, was detected in cannabis cell cultures. The tyrosol content increased after eliciting with JA.

  13. Mammalian Cell Tissue Culture.

    PubMed

    Phelan, Katy; May, Kristin M

    2017-07-11

    Cultured mammalian cells are used extensively in the field of human genetics. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  14. Apoptotic induction of skin cancer cell death by plant extracts.

    PubMed

    Thuncharoen, Walairat; Chulasiri, Malin; Nilwarangkoon, Sirinun; Nakamura, Yukio; Watanapokasin, Ramida

    2013-01-01

    The aim of the present study was to investigate the effects of plant extracts on cancer apoptotic induction. Human epidermoid carcinoma A431 cell line, obtained from the American Type Culture Collection (ATCC, Manassas, VA), was maintained in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) at 37 degrees C, 5% carbon dioxide (CO2). Plant extract solutions were obtained from S & J international enterprises public company limited. These plant extracts include 50% hydroglycol extracts from Etlingera elatior (Jack) R.M.Smith (torch ginger; EE), Rosa damascene (damask rose; DR) and Rafflesia kerrii Meijer (bua phut; RM). The cell viability, time and dose dependency were determined by MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. A431 cells were treated with the plant extracts and stained with Hoechst 33342 fluorescent staining dye. Cell viability was demonstrated by the inhibitory concentration 50% (IC50). The anti-proliferative effects were shown to be dependent on time and dose. Typical characteristics of apoptosis which are cell morphological changes and chromatin condensation were clearly observed. The plant extracts was shown to be effective for anti-proliferation and induction of apoptosis cell death in skin cancer cells. Therefore, mechanisms underlying the cell death and its potential use for treatment of skin cancer will be further studied.

  15. A transgenic plant cell-suspension system for expression of epitopes on chimeric Bamboo mosaic virus particles.

    PubMed

    Muthamilselvan, Thangarasu; Lee, Chin-Wei; Cho, Yu-Hsin; Wu, Feng-Chao; Hu, Chung-Chi; Liang, Yu-Chuan; Lin, Na-Sheng; Hsu, Yau-Heiu

    2016-01-01

    We describe a novel strategy to produce vaccine antigens using a plant cell-suspension culture system in lieu of the conventional bacterial or animal cell-culture systems. We generated transgenic cell-suspension cultures from Nicotiana benthamiana leaves carrying wild-type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot-and-mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co-expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large-scale production of immunopeptide vaccines in a cost-effective manner using a plant cell-suspension culture system. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Fish Stem Cell Cultures

    PubMed Central

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-01-01

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer. PMID:21547056

  17. Fish stem cell cultures.

    PubMed

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-04-13

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  18. Exploring plant tissue culture in Withania somnifera (L.) Dunal: in vitro propagation and secondary metabolite production.

    PubMed

    Shasmita; Rai, Manoj K; Naik, Soumendra K

    2017-12-26

    Withania somnifera (L.) Dunal (family: Solanaceae), commonly known as "Indian Ginseng", is a medicinally and industrially important plant of the Indian subcontinent and other warmer parts of the world. The plant has multi-use medicinal potential and has been listed among 36 important cultivated medicinal plants of India that are in high demand for trade due to its pharmaceutical uses. The medicinal importance of this plant is mainly due to the presence of different types of steroidal lactones- withanolides in the roots and leaves. Owing to low seed viability and poor germination, the conventional propagation of W. somnifera falls short to cater its commercial demands particularly for secondary metabolite production. Therefore, there is a great need to develop different biotechnological approaches through tissue and organ culture for seasonal independent production of plants in large scale which will provide sufficient raw materials of uniform quality for pharmaceutical purposes. During past years, a number of in vitro plant regeneration protocols via organogenesis and somatic embryogenesis and in vitro conservation through synthetic seed based encapsulation technology have been developed for W. somnifera. Several attempts have also been made to standardize the protocol of secondary metabolite production via tissue/organ cultures, cell suspension cultures, and Agrobacterium rhizogenes-mediated transformed hairy root cultures. Employment of plant tissue culture based techniques would provide means for rapid propagation and conservation of this plant species and also provide scope for enhanced production of different bioactive secondary metabolites. The present review provides a comprehensive report on research activities conducted in the area of tissue culture and secondary metabolite production in W. somnifera during the past years. It also discusses the unexplored areas which might be taken into consideration for future research so that the medicinal properties and

  19. Alkaloid production in Vernonia cinerea: Callus, cell suspension and root cultures.

    PubMed

    Maheshwari, Priti; Songara, Bharti; Kumar, Shailesh; Jain, Prachi; Srivastava, Kamini; Kumar, Anil

    2007-08-01

    Fast-growing callus, cell suspension and root cultures of Vernonia cinerea, a medicinal plant, were analyzed for the presence of alkaloids. Callus and root cultures were established from young leaf explants in Murashige and Skoog (MS) basal media supplemented with combinations of auxins and cytokinins, whereas cell suspension cultures were established from callus cultures. Maximum biomass of callus, cell suspension and root cultures were obtained in the medium supplemented with 1 mg/L alpha-naphthaleneacetic acid (NAA) and 5 mg/L benzylaminopurine (BA), 1.0 mg/L NAA and 0.1 mg/L BA and 1.5 mg/L NAA, respectively. The 5-week-old callus cultures resulted in maximum biomass and alkaloid contents (750 microg/g). Cell suspension growth and alkaloid contents were maximal in 20-day-old cultures and alkaloid contents were 1.15 mg/g. A 0.2-g sample of root tissue regenerated in semi-solid medium upon transfer to liquid MS medium containing 1.5 mg/L NAA regenerated a maximum increase in biomass of 6.3-fold over a period of 5 weeks. The highest root growth and alkaloid contents of 2 mg/g dry weight were obtained in 5-week-old cultures. Maximum alkaloid contents were obtained in root cultures in vitro compared to all others including the alkaloid content of in vivo obtained with aerial parts and roots (800 microg/g and 1.2 mg/g dry weight, respectively) of V. cinerea.

  20. Pumps for microfluidic cell culture.

    PubMed

    Byun, Chang Kyu; Abi-Samra, Kameel; Cho, Yoon-Kyoung; Takayama, Shuichi

    2014-02-01

    In comparison to traditional in vitro cell culture in Petri dishes or well plates, cell culture in microfluidic-based devices enables better control over chemical and physical environments, higher levels of experimental automation, and a reduction in experimental materials. Over the past decade, the advantages associated with cell culturing in microfluidic-based platforms have garnered significant interest and have led to a plethora of studies for high throughput cell assays, organs-on-a-chip applications, temporal signaling studies, and cell sorting. A clear concern for performing cell culture in microfluidic-based devices is deciding on a technique to deliver and pump media to cells that are encased in a microfluidic device. In this review, we summarize recent advances in pumping techniques for microfluidic cell culture and discuss their advantages and possible drawbacks. The ultimate goal of our review is to distill the large body of information available related to pumps for microfluidic cell culture in an effort to assist current and potential users of microfluidic-based devices for advanced in vitro cellular studies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Prevention of pink-pigmented methylotrophic bacteria (Methylohacterium mesophilicum) contamination of plant tissue cultures.

    PubMed

    Chanprame, S; Todd, J J; Widholm, J M

    1996-12-01

    Pink-pigmented facultative methylotrophic bacteria (PPFMs) have been found on the surfaces of leaves of most plants tested. We found PPFMs on the leaf surfaces of all 40 plants (38 species) tested and on soybean pods by pressing onto AMS medium with methanol as the sole carbon source. The abundance ranged from 0.5 colony forming unit (cfu) /cm(2) to 69.4 cfu/cm(2) on the leaf surfaces. PPFMs were found in homogenized leaf tissues of only 4 of the species after surface disinfestation with 1.05% sodium hypochlorite and were rarely found in cultures initiated from surface disinfested Datura innoxia leaves or inside surface disinfested soybean pods. Of 20 antibiotics tested for PPFM growth inhibition, rifampicin was the most effective and of seven others which also inhibited PPFM growth, cefotaxime should be the most useful due to the expected low plant cell toxicity. These antibiotics could be used in concert with common surface sterilization procedures to prevent the introduction or to eliminate PPFM bacteria in tissue cultures. Thus, while PPFMs are present on the surfaces of most plant tissues, surface disinfestation alone can effectively remove them so that uncontaminated tissue cultures can be initiated in most cases.

  2. Assessment of genetic and epigenetic variation during long-term Taxus cell culture.

    PubMed

    Fu, Chunhua; Li, Liqin; Wu, Wenjuan; Li, Maoteng; Yu, Xiaoqing; Yu, Longjiang

    2012-07-01

    Gradual loss of secondary metabolite production is a common obstacle in the development of a large-scale plant cell production system. In this study, cell morphology, paclitaxel (Taxol®) biosynthetic ability, and genetic and epigenetic variations in the long-term culture of Taxus media cv Hicksii cells were assessed over a 5-year period to evaluate the mechanisms of the loss of secondary metabolites biosynthesis capacity in Taxus cell. The results revealed that morphological variations, gradual loss of paclitaxel yield and decreased transcriptional level of paclitaxel biosynthesis key genes occurred during long-term subculture. Genetic and epigenetic variations in these cultures were also studied at different times during culture using amplified fragment-length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP), and high-performance liquid chromatography (HPLC) analyses. A total of 32 primer combinations were used in AFLP amplification, and none of the AFLP loci were found to be polymorphic, thus no major genetic rearrangements were detected in any of the tested samples. However, results from both MSAP and HPLC indicated that there was a higher level of DNA methylation in the low-paclitaxel yielding cell line after long-term culture. Based on these results, we proposed that accumulation of paclitaxel in Taxus cell cultures might be regulated by DNA methylation. To our knowledge, this is the first report of increased methylation with the prolongation of culture time in Taxus cell culture. It provides substantial clues for exploring the gradual loss of the taxol biosynthesis capacity of Taxus cell lines during long-term subculture. DNA methylation maybe involved in the regulation of paclitaxel biosynthesis in Taxus cell culture.

  3. Cultivation and partial characterization of spiroplasmas in cell cultures.

    PubMed Central

    Steiner, T; McGarrity, G J; Phillips, D M

    1982-01-01

    Spiroplasmas were propagated in the Drosophila melanogaster cell line Dm-1. Spiroplasma citri and unidentified strains (corn shunt organism, 277F [tick isolate], powder puff, BNR-1, honey bee, and OBMG) grew to 10(8) to 10(9) colony-forming units per ml and could be passaged. Cytopathic effect (CPE) varied with the infecting spiroplasma. The honey bee isolate killed Dm-1 within 2 to 4 days and produced CPE in four mammalian cells tested. At 25 degrees C, suckling mouse cataract agent produced no CPE in Dm-1 cells. Dm-1 cells did not support growth of the spiroplasmal sex ratio organism. Spiroplasmas could be detected in the cell cultures by agar inoculation, dark-field microscopy, scanning electron microscopy, and DNA fluorescent staining. The uridine phosphorylase test showed significant levels of conversion of [14C]uridine to [14C]uracil for all but some plant isolates: S. citri, corn shunt organism, lettuce, cactus, and powder puff strains, the first mycoplasmas to lack the enzyme. Primary isolations of corn shunt organism from infected corn plants were made in Dm-1 and I-XII cultures. The course of corn stunt organism infection of Dm-1 was monitored for three passages. The use of agarose and Dienes staining of the colonies improved growth and colony counting of corn stunt organism. The number of viable infected DM-1 cells decreased from 1.2 x 10(7) at passage 1 to 7.0 x 10(6) at passage 2 and 3 x 10(5) at passage 3. Images PMID:6797950

  4. High-level production of human interleukin-10 fusions in tobacco cell suspension cultures

    PubMed Central

    Kaldis, Angelo; Ahmad, Adil; Reid, Alexandra; McGarvey, Brian; Brandle, Jim; Ma, Shengwu; Jevnikar, Anthony; Kohalmi, Susanne E; Menassa, Rima

    2013-01-01

    The production of pharmaceutical proteins in plants has made much progress in recent years with the development of transient expression systems, transplastomic technology and humanizing glycosylation patterns in plants. However, the first therapeutic proteins approved for administration to humans and animals were made in plant cell suspensions for reasons of containment, rapid scale-up and lack of toxic contaminants. In this study, we have investigated the production of human interleukin-10 (IL-10) in tobacco BY-2 cell suspension and evaluated the effect of an elastin-like polypeptide tag (ELP) and a green fluorescent protein (GFP) tag on IL-10 accumulation. We report the highest accumulation levels of hIL-10 obtained with any stable plant expression system using the ELP fusion strategy. Although IL-10-ELP has cytokine activity, its activity is reduced compared to unfused IL-10, likely caused by interference of ELP with folding of IL-10. Green fluorescent protein has no effect on IL-10 accumulation, but examining the trafficking of IL-10-GFP over the cell culture cycle revealed fluorescence in the vacuole during the stationary phase of the culture growth cycle. Analysis of isolated vacuoles indicated that GFP alone is found in vacuoles, while the full-size fusion remains in the whole-cell extract. This indicates that GFP is cleaved off prior to its trafficking to the vacuole. On the other hand, IL-10-GFP-ELP remains mostly in the ER and accumulates to high levels. Protein bodies were observed at the end of the culture cycle and are thought to arise as a consequence of high levels of accumulation in the ER. PMID:23297698

  5. Recombinant human IGF-1 produced by transgenic plant cell suspension culture enhances new bone formation in calvarial defects.

    PubMed

    Poudel, Sher Bahadur; Bhattarai, Govinda; Kook, Sung-Ho; Shin, Yun-Ji; Kwon, Tae-Ho; Lee, Seung-Youp; Lee, Jeong-Chae

    2017-10-01

    Transgenic plant cell suspension culture systems have been utilized extensively as convenient and efficient expression systems for the production of recombinant human growth factors. We produced insulin-like growth factor-1 using a plant suspension culture system (p-IGF-1) and explored its effect on new bone formation in calvarial defects. We also compared the bone regenerating potential of p-IGF-1 with commercial IGF-1 derived from Escherichia coli (e-IGF-1). Male C57BL/6 mice underwent calvarial defect surgery, and the defects were loaded with absorbable collagen sponge (ACS) only (ACS group) or ACS impregnated with 13μg of p-IGF-1 (p-IGF-1 group) or e-IGF-1 (e-IGF-1 group). The sham group did not receive any treatment with ACS or IGFs after surgery. Live μCT and histological analyses showed critical-sized bone defects in the sham group, whereas greater bone formation was observed in the p-IGF-1 and e-IGF-1 groups than the ACS group both 5 and 10weeks after surgery. Bone mineral density, bone volume, and bone surface values were also higher in the IGF groups than in the ACS group. Local delivery of p-IGF-1 or e-IGF-1 more greatly enhanced the expression of osteoblast-specific markers, but inhibited osteoclast formation, in newly formed bone compared with ACS control group. Specifically, p-IGF-1 treatment induced higher expression of alkaline phosphatase, osteocalcin, and osteopontin in the defect site than did e-IGF-1. Furthermore, treatment with p-IGF-1, but not e-IGF-1, increased mineralization of MC3T3-E1 cells, with the attendant upregulation of osteogenic marker genes. Collectively, our findings suggest the potential of p-IGF-1 in promoting the processes required for bone regeneration. Copyright © 2017. Published by Elsevier Ltd.

  6. Cell Culture Made Easy.

    ERIC Educational Resources Information Center

    Dye, Frank J.

    1985-01-01

    Outlines steps to generate cell samples for observation and experimentation. The procedures (which use ordinary laboratory equipment) will establish a short-term primary culture of normal mammalian cells. Information on culture vessels and cell division and a list of questions to generate student interest and involvement in the topics are…

  7. Henrietta Lacks, HeLa cells, and cell culture contamination.

    PubMed

    Lucey, Brendan P; Nelson-Rees, Walter A; Hutchins, Grover M

    2009-09-01

    Henrietta Lacks died in 1951 of an aggressive adenocarcinoma of the cervix. A tissue biopsy obtained for diagnostic evaluation yielded additional tissue for Dr George O. Gey's tissue culture laboratory at Johns Hopkins (Baltimore, Maryland). The cancer cells, now called HeLa cells, grew rapidly in cell culture and became the first human cell line. HeLa cells were used by researchers around the world. However, 20 years after Henrietta Lacks' death, mounting evidence suggested that HeLa cells contaminated and overgrew other cell lines. Cultures, supposedly of tissues such as breast cancer or mouse, proved to be HeLa cells. We describe the history behind the development of HeLa cells, including the first published description of Ms Lacks' autopsy, and the cell culture contamination that resulted. The debate over cell culture contamination began in the 1970s and was not harmonious. Ultimately, the problem was not resolved and it continues today. Finally, we discuss the philosophical implications of the immortal HeLa cell line.

  8. Decolorization of RBBR by plant cells and correlation with the transformation of PCBs.

    PubMed

    Chroma, Ludmila; Macek, Tomas; Demnerova, Katerina; Macková, Martina

    2002-11-01

    An extracellular H2O2-requiring Remazol Brilliant Blue R (RBBR) decolorizing enzyme activity was detected after cultivation of cells of various plant species both in liquid medium and when growing on agar plates containing RBBR. Level of the enzyme activity was compared with the ability to metabolize polychlorinated biphenyls (PCBs). The ability to decolorize RBBR was tested in the presence and absence of PCBs. The cultures with high PCB-transforming activity proved to exhibit RBBR oxidase much more resistant towards the influence of PCBs. In addition low activities of lignin peroxidase (LiP) and manganese dependent peroxidase (MnP) were detected in medium and in plant cells. No correlation of MnP and LiP activities with PCB degradation could be found. The RBBR decolorization could be used as a rough screening method for plant cultures able to metabolize PCBs.

  9. Mammalian Cell Tissue Culture Techniques.

    PubMed

    Phelan, Katy; May, Kristin M

    2016-06-01

    Cultured tissues and cells are used extensively in physiological and pharmacological studies. In vitro cultures provide a means of examining cells and tissues without the complex interactions that would be present if the whole organism were studied. A number of special skills are required in order to preserve the structure, function, behavior, and biology of cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  10. Why does anatabine, but not nicotine, accumulate in jasmonate-elicited cultured tobacco BY-2 cells?

    PubMed

    Shoji, Tsubasa; Hashimoto, Takashi

    2008-08-01

    Suspension-cultured cells of Nicotiana tabacum cv. Bright Yellow-2 (BY-2) grow rapidly in a highly homogenous population and still exhibit the general behavior of plant cells, and thus are often used as model systems in several areas of plant molecular and cellular biology, including secondary metabolism. While the parental tobacco variety synthesizes nicotine as a major alkaloid, the cultured tobacco cells mainly produce a related alkaloid anatabine, instead of nicotine, when elicited with jasmonates. We report here that cultured BY-2 cells scarcely express N-methylputrescine oxidase (MPO) genes even after jasmonate elicitation. MPO is the second enzyme in the biosynthetic pathway that supplies the pyrrolidine moiety of nicotine and nornicotine, but is predicted to be dispensable for the biosynthesis of anatabine, anabasine and anatalline, which do not contain the pyrrolidine moiety. When MPO was overexpressed in tobacco BY-2 cells, nicotine synthesis was dramatically enhanced while anatabine formation was effectively suppressed. As a complementary approach, we suppressed MPO expression by RNA interference in tobacco hairy roots that normally accumulate nicotine. In the MPO-suppressed roots, the contents of anatabine, anabasine and anatalline, as well as N-methylputrescine and putrescine, markedly increased to compensate for suppressed formation of nicotine and nornicotine. These results identify the transcriptional regulation of MPO as a critical rate-limiting step that restricts nicotine formation in cultured tobacco BY-2 cells.

  11. Plant Tissue Culture Studies.

    ERIC Educational Resources Information Center

    Smith, Robert Alan

    Plant tissue culture has developed into a valid botanical discipline and is considered a key area of biotechnology, but it has not been a key component of the science curriculum because of the expensive and technical nature of research in this area. This manual presents a number of activities that are relatively easy to prepare and perform. The…

  12. Development of germ-free plants and tissue culture

    NASA Technical Reports Server (NTRS)

    Venketeswaran, S.

    1973-01-01

    The botanical program is reported for experiments performed at the Lunar Receiving Laboratory. Papers prepared during this program are listed. The studies reported include: tissues cultured on various mediums, nutritional studies, preparation of plant cultures for Apollo 15, and pine tissue cultures.

  13. Embryogenic plant cells in microgravity

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1991-01-01

    In view of circumstantial evidence for the role of gravity (g) in shaping the embryo environment, normal embryo development may not occur reliably and efficiently in the microgravity environment of space. Attention must accordingly be given to those aspects of higher plant reproductive biology in space environments required for the production of viable embryos in a 'seed to seed to seed' experiment. It is suggested that cultured cells can be grown to be morphogenetically competent, and can be evaluated as to their ability to simulate embryogenic events usually associated with fertilized eggs in the embryo sac of the ovule in the ovary.

  14. Co-Culture of Plant Beneficial Microbes as Source of Bioactive Metabolites.

    PubMed

    Vinale, F; Nicoletti, R; Borrelli, F; Mangoni, A; Parisi, O A; Marra, R; Lombardi, N; Lacatena, F; Grauso, L; Finizio, S; Lorito, M; Woo, S L

    2017-10-30

    In microbial cultures the production of secondary metabolites is affected by experimental conditions, and the discovery of novel compounds is often prevented by the re-isolation of known metabolites. To limit this, it is possible to cultivate microorganisms by simulating naturally occurring interactions, where microbes co-exist in complex communities. In this work, co-culturing experiments of the biocontrol agent Trichoderma harzianum M10 and the endophyte Talaromyces pinophilus F36CF have been performed to elicit the expression of genes which are not transcribed in standard laboratory assays. Metabolomic analysis revealed that the co-culture induced the accumulation of siderophores for both fungi, while production of M10 harzianic and iso-harzianic acids was not affected by F36CF. Conversely, metabolites of the latter strain, 3-O-methylfunicone and herquline B, were less abundant when M10 was present. A novel compound, hereby named harziaphilic acid, was isolated from fungal co-cultures, and fully characterized. Moreover, harzianic and harziaphilic acids did not affect viability of colorectal cancer and healthy colonic epithelial cells, but selectively reduced cancer cell proliferation. Our results demonstrated that the co-cultivation of plant beneficial fungi may represent an effective strategy to modulate the production of bioactive metabolites and possibly identify novel compounds.

  15. A 3D cell culture system: separation distance between INS-1 cell and endothelial cell monolayers co-cultured in fibrin influences INS-1 cells insulin secretion.

    PubMed

    Sabra, Georges; Vermette, Patrick

    2013-02-01

    The aim of this study was to develop an in vitro cell culture system allowing studying the effect of separation distance between monolayers of rat insulinoma cells (INS-1) and human umbilical vein endothelial cells (HUVEC) co-cultured in fibrin over INS-1 cell insulin secretion. For this purpose, a three-dimensional (3D) cell culture chamber was designed, built using micro-fabrication techniques and validated. The co-culture was successfully carried out and the effect on INS-1 cell insulin secretion was investigated. After 48 and 72 h, INS-1 cells co-cultured with HUVEC separated by a distance of 100 µm revealed enhanced insulin secretion compared to INS-1 cells cultured alone or co-cultured with HUVEC monolayers separated by a distance of 200 µm. These results illustrate the importance of the separation distance between two cell niches for cell culture design and the possibility to further enhance the endocrine function of beta cells when this factor is considered. Copyright © 2012 Wiley Periodicals, Inc.

  16. Cell Culturing of Cytoskeleton

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  17. Cell Culturing of Cytoskeleton

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  18. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue cultures...

  19. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue cultures...

  20. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue cultures...

  1. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue cultures...

  2. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue cultures...

  3. Plant stem cell niches.

    PubMed

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  4. Morphogenesis in leaf and single-cell cultures of mature Juniperus oxycedrus.

    PubMed

    Gomez, M P; Segura, J

    1996-08-01

    Single cells were mechanically isolated from leaf-derived callus of mature Juniperus oxycedrus L. These cells divided and gave rise to callus when plated on medium containing growth regulators. Best plating efficiency was obtained on a modified Schenk and Hildebrandt medium supplemented with 0.6 micro M 2,4-dichlorophenoxyacetic acid and 100 mg l(-1) casein hydrolyzate. Although single-cell-derived callus showed poor morphogenic potential, both adventitious shoots and embryogenic tissues differentiated from the callus. We also achieved induction of somatic embryogenesis in leaf explants of mature J. oxycedrus trees cultured in the presence of 6.0 or 10.0 micro M 2,4-dichlorophenoxyacetic acid or picloram. Frequency of embryogenic callus ranged from 6 to 18%; however, under the culture conditions tested, isolated embryos failed to develop into plants.

  5. Unique cell culture systems for ground based research

    NASA Technical Reports Server (NTRS)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  6. Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice.

    PubMed

    Matsuno, Koya; Fujimura, Tatsuhito

    2014-03-01

    A pathway of phytic acid (PA) synthesis in plants has been revealed via investigations of low phytic acid mutants. However, the regulation of this pathway is not well understood because it is difficult to control the environments of cells in the seeds, where PA is mainly synthesized. We modified a rice suspension culture system in order to study the regulation of PA synthesis. Rice cells cultured with abscisic acid (ABA) accumulate PA at higher levels than cells cultured without ABA, and PA accumulation levels increase with ABA concentration. On the other hand, higher concentrations of sucrose or inorganic phosphorus do not affect PA accumulation. Mutations in the genes RINO1, OsMIK, OsIPK1 and OsLPA1 have each been reported to confer low phytic acid phenotypes in seeds. Each of these genes is upregulated in cells cultured with ABA. OsITPK4 and OsITPK6 are upregulated in cells cultured with ABA and in developing seeds. These results suggest that the regulation of PA synthesis is similar between developing seeds and cells in this suspension culture system. This system will be a powerful tool for elucidating the regulation of PA synthesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Tryptophan oxidation catabolite, N-formylkynurenine, in photo degraded cell culture medium results in reduced cell culture performance.

    PubMed

    McElearney, Kyle; Ali, Amr; Gilbert, Alan; Kshirsagar, Rashmi; Zang, Li

    2016-01-01

    Chemically defined media have been widely used in the biopharmaceutical industry to enhance cell culture productivities and ensure process robustness. These media, which are quite complex, often contain a mixture of many components such as vitamins, amino acids, metals and other chemicals. Some of these components are known to be sensitive to various stress factors including photodegradation. Previous work has shown that small changes in impurity concentrations induced by these potential stresses can have a large impact on the cell culture process including growth and product quality attributes. Furthermore, it has been shown to be difficult to detect these modifications analytically due to the complexity of the cell culture media and the trace level of the degradant products. Here, we describe work performed to identify the specific chemical(s) in photodegraded medium that affect cell culture performance. First, we developed a model system capable of detecting changes in cell culture performance. Second, we used these data and applied an LC-MS analytical technique to characterize the cell culture media and identify degradant products which affect cell culture performance. Riboflavin limitation and N-formylkynurenine (NFK), a tryptophan oxidation catabolite, were identified as chemicals which results in a reduction in cell culture performance. © 2015 American Institute of Chemical Engineers.

  8. Air pollutant production by algal cell cultures

    NASA Technical Reports Server (NTRS)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  9. Effect of Magnetic Nanoparticles on Tobacco BY-2 Cell Suspension Culture

    PubMed Central

    Krystofova, Olga; Sochor, Jiri; Zitka, Ondrej; Babula, Petr; Kudrle, Vit; Adam, Vojtech; Kizek, Rene

    2012-01-01

    Nanomaterials are structures whose exceptionality is based on their large surface, which is closely connected with reactivity and modification possibilities. Due to these properties nanomaterials are used in textile industry (antibacterial textiles with silver nanoparticles), electronics (high-resolution imaging, logical circuits on the molecular level) and medicine. Medicine represents one of the most important fields of application of nanomaterials. They are investigated in connection with targeted therapy (infectious diseases, malignant diseases) or imaging (contrast agents). Nanomaterials including nanoparticles have a great application potential in the targeted transport of pharmaceuticals. However, there are some negative properties of nanoparticles, which must be carefully solved, as hydrophobic properties leading to instability in aqueous environment, and especially their possible toxicity. Data about toxicity of nanomaterials are still scarce. Due to this fact, in this work we focused on studying of the effect of magnetic nanoparticles (NPs) and modified magnetic nanoparticles (MNPs) on tobacco BY-2 plant cell suspension culture. We aimed at examining the effect of NPs and MNPs on growth, proteosynthesis—total protein content, thiols—reduced (GSH) and oxidized (GSSG) glutathione, phytochelatins PC2-5, glutathione S-transferase (GST) activity and antioxidant activity of BY-2 cells. Whereas the effect of NPs and MNPs on growth of cell suspension culture was only moderate, significant changes were detected in all other biochemical parameters. Significant changes in protein content, phytochelatins levels and GST activity were observed in BY-2 cells treated with MNPs nanoparticles treatment. Changes were also clearly evident in the case of application of NPs. Our results demonstrate the ability of MNPs to negatively affect metabolism and induce biosynthesis of protective compounds in a plant cell model represented by BY-2 cell suspension culture. The

  10. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    PubMed

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. © 2016 American Society of Plant Biologists. All rights reserved.

  11. Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture.

    PubMed

    Calderón, Aingeru; Ortiz-Espín, Ana; Iglesias-Fernández, Raquel; Carbonero, Pilar; Pallardó, Federico Vicente; Sevilla, Francisca; Jiménez, Ana

    2017-04-01

    Thioredoxins (Trxs), key components of cellular redox regulation, act by controlling the redox status of many target proteins, and have been shown to play an essential role in cell survival and growth. The presence of a Trx system in the nucleus has received little attention in plants, and the nuclear targets of plant Trxs have not been conclusively identified. Thus, very little is known about the function of Trxs in this cellular compartment. Previously, we studied the intracellular localization of PsTrxo1 and confirmed its presence in mitochondria and, interestingly, in the nucleus under standard growth conditions. In investigating the nuclear function of PsTrxo1 we identified proliferating cellular nuclear antigen (PCNA) as a PsTrxo1 target by means of affinity chromatography techniques using purified nuclei from pea leaves. Such protein-protein interaction was corroborated by dot-blot and bimolecular fluorescence complementation (BiFC) assays, which showed that both proteins interact in the nucleus. Moreover, PsTrxo1 showed disulfide reductase activity on previously oxidized recombinant PCNA protein. In parallel, we studied the effects of PsTrxo1 overexpression on Tobacco Bright Yellow-2 (TBY-2) cell cultures. Microscopy and flow-cytometry analysis showed that PsTrxo1 overexpression increases the rate of cell proliferation in the transformed lines, with a higher percentage of the S phase of the cell cycle at the beginning of the cell culture (days 1 and 3) and at the G2/M phase after longer times of culture (day 9), coinciding with an upregulation of PCNA protein. Furthermore, in PsTrxo1 overexpressed cells there is a decrease in the total cellular glutathione content but maintained nuclear GSH accumulation, especially at the end of the culture, which is accompanied by a higher mitotic index, unlike non-overexpressing cells. These results suggest that Trxo1 is involved in the cell cycle progression of TBY-2 cultures, possibly through its link with cellular PCNA

  12. Changes in Cell Wall Properties Coincide with Overexpression of Extensin Fusion Proteins in Suspension Cultured Tobacco Cells

    DOE PAGES

    Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; ...

    2014-12-23

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increasedmore » wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. In conclusion, these data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.« less

  13. Changes in cell wall properties coincide with overexpression of extensin fusion proteins in suspension cultured tobacco cells.

    PubMed

    Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; Avci, Utku; Qian, Jin; Arter, Allison; Chen, Liwei; Hahn, Michael G; Ragauskas, Arthur J; Kieliszewski, Marcia J

    2014-01-01

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increased wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. These data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.

  14. Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications.

    PubMed

    Ludwig-Müller, Jutta; Jahn, Linda; Lippert, Annemarie; Püschel, Joachim; Walter, Antje

    2014-11-01

    A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Gene Delivery into Plant Cells for Recombinant Protein Production

    PubMed Central

    Chen, Qiang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  16. Airborne Monoterpenes Emitted from a Cupressus lusitanica Cell Culture Induce a Signaling Cascade that Produces β-Thujaplicin.

    PubMed

    Fujita, Koki; Kambe, Ryo; De Alwis, Ransika; Yagi, Tatsuya; Tsutsumi, Yuji

    2016-08-01

    A cell culture of Cupressus lusitanica was used to investigate the reaction of a plant to certain airborne chemicals. Compared with laboratory and field methods using intact plants or tissues, a cell culture is advantageous because it is not affected by environmental factors, and the experiments are easier to reproduce. When exposed to an elicitor, our cell line produces 10 monoterpenes and β-thujaplicin, which is a strong phytoalexin. These monoterpenes are emitted into the vapor phase and are expected to play a role in airborne signaling. In the present study, the cells were exposed to monoterpene vapors, and the volatiles present in the culture flasks were monitored. When the culture cells were exposed to low doses of sabinene, we detected γ-terpinene and p-cymene. After exposure to γ-terpinene, we found p-cymene and terpinolene, whereas p-cymene exposure resulted in terpinolene emission. By contrast, the other seven monoterpenes we investigated did not induce any emissions of other monoterpenes. These results strongly suggest that in C. lusitanica a signaling cascade exists that starts with the emission of sabinene and moves to γ-terpinene, p-cymene, and finally to terpinolene, which accelerates the production of the phytoalexin β-thujaplicin.

  17. Caspase inhibitors affect the kinetics and dimensions of tracheary elements in xylogenic Zinnia (Zinnia elegans) cell cultures.

    PubMed

    Twumasi, Peter; Iakimova, Elena T; Qian, Tian; van Ieperen, Wim; Schel, Jan H N; Emons, Anne Mie C; van Kooten, Olaf; Woltering, Ernst J

    2010-08-06

    The xylem vascular system is composed of fused dead, hollow cells called tracheary elements (TEs) that originate through trans-differentiation of root and shoot cambium cells. TEs undergo autolysis as they differentiate and mature. The final stage of the formation of TEs in plants is the death of the involved cells, a process showing some similarities to programmed cell death (PCD) in animal systems. Plant proteases with functional similarity to proteases involved in mammalian apoptotic cell death (caspases) are suggested as an integral part of the core mechanism of most PCD responses in plants, but participation of plant caspase-like proteases in TE PCD has not yet been documented. Confocal microscopic images revealed the consecutive stages of TE formation in Zinnia cells during trans-differentiation. Application of the caspase inhibitors Z-Asp-CH2-DCB, Ac-YVAD-CMK and Ac-DEVD-CHO affected the kinetics of formation and the dimensions of the TEs resulting in a significant delay of TE formation, production of larger TEs and in elimination of the 'two-wave' pattern of TE production. DNA breakdown and appearance of TUNEL-positive nuclei was observed in xylogenic cultures and this was suppressed in the presence of caspase inhibitors. To the best of our knowledge this is the first report showing that caspase inhibitors can modulate the process of trans-differentiation in Zinnia xylogenic cell cultures. As caspase inhibitors are closely associated with cell death inhibition in a variety of plant systems, this suggests that the altered TE formation results from suppression of PCD. The findings presented here are a first step towards the use of appropriate PCD signalling modulators or related molecular genetic strategies to improve the hydraulic properties of xylem vessels in favour of the quality and shelf life of plants or plant parts.

  18. Plant stem cell niches.

    PubMed

    Stahl, Yvonne; Simon, Rüdiger

    2005-01-01

    Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.

  19. Passage of Trojan peptoids into plant cells.

    PubMed

    Eggenberger, Kai; Birtalan, Esther; Schröder, Tina; Bräse, Stefan; Nick, Peter

    2009-10-12

    Efficient drug delivery is essential for many therapeutic applications. In this context, Trojan peptoids have attracted attention as powerful tools to deliver bioactive molecules into living cells. Certain cell-penetrating peptides, peptide mimetics, and peptoids have been shown to be endowed with a transport function and the structural features of this function have been characterized. However, most of the research has been done by using mammalian cell cultures as model organisms and the actual cellular mechanism of membrane passage has not been elucidated. Plant cells, which are encased in a cellulosic cell wall and differ in membrane composition, represent an alternative experimental system to address this issue, but so far, have attracted only little attention for both peptide- and peptoid-based carrier systems. Moreover, efficient delivery of nonproteinaceous bioactive macromolecules into living plant cells could complement genetic engineering in biotechnological applications, such as metabolic engineering and molecular farming. In the present study, we investigated carrier peptoids with or without guanidinium side chains with regard to their uptake into plant cells, the cellular mechanism of uptake, and intracellular localization. We can show that in contrast to polyamine peptoids (polylysine-like) fluorescently labeled polyguanidine peptoids (polyarginine-like) enter rapidly into tobacco BY-2 cells without affecting the viability of these cells. A quantitative comparison of this uptake with endocytosis of fluorescently labeled dextranes indicates that the main uptake of the guanidinium peptoids occurs between 30-60 min after the start of incubation and clearly precedes endocytosis. Dual visualization with the endosomal marker FM4-64 shows that the intracellular guanidinium peptoid is distinct from endocytotic vesicles. Once the polyguanidine peptoids have entered the cell, they associate with actin filaments and microtubules. By pharmacological manipulation

  20. Ethylene is required for elicitin-induced oxidative burst but not for cell death induction in tobacco cell suspension cultures.

    PubMed

    Koehl, Julia; Djulic, Alma; Kirner, Veronika; Nguyen, Tach Thao; Heiser, Ingrid

    2007-12-01

    The signal compound ethylene and its relationships with oxidative burst and cell death were analyzed in cultured tobacco cells treated with the proteinaceous elicitor quercinin. Quercinin belongs to the protein family of elicitins and was isolated from the soil-born oak pathogen Phytophthora quercina. It was shown to induce a dose-dependent oxidative burst in tobacco cell culture in concentrations from 0.05 to 0.5 nM, and subsequently, cell death. The characteristics of quercinin-induced cell death included both membrane damage and DNA fragmentation in tobacco cell culture. At higher quercinin concentrations (2 nM), H(2)O(2) formation and ethylene biosynthesis were inhibited. Ethylene at low concentrations proved to be necessary for induction and maintenance of H(2)O(2) production in tobacco cells treated with quercinin. It was demonstrated that external addition of inhibitors of ethylene biosynthesis such as alpha-amino-oxy-acetic acid (AOA) and CoCl(2) also decreased or even inhibited the quercinin-induced oxidative burst, but did not influence cell death induction. These results demonstrate evidence for a requirement of the plant hormone ethylene for the onset of the quercinin-induced oxidative burst.

  1. Microfluidic cell culture systems for drug research.

    PubMed

    Wu, Min-Hsien; Huang, Song-Bin; Lee, Gwo-Bin

    2010-04-21

    In pharmaceutical research, an adequate cell-based assay scheme to efficiently screen and to validate potential drug candidates in the initial stage of drug discovery is crucial. In order to better predict the clinical response to drug compounds, a cell culture model that is faithful to in vivo behavior is required. With the recent advances in microfluidic technology, the utilization of a microfluidic-based cell culture has several advantages, making it a promising alternative to the conventional cell culture methods. This review starts with a comprehensive discussion on the general process for drug discovery and development, the role of cell culture in drug research, and the characteristics of the cell culture formats commonly used in current microfluidic-based, cell-culture practices. Due to the significant differences in several physical phenomena between microscale and macroscale devices, microfluidic technology provides unique functionality, which is not previously possible by using traditional techniques. In a subsequent section, the niches for using microfluidic-based cell culture systems for drug research are discussed. Moreover, some critical issues such as cell immobilization, medium pumping or gradient generation in microfluidic-based, cell-culture systems are also reviewed. Finally, some practical applications of microfluidic-based, cell-culture systems in drug research particularly those pertaining to drug toxicity testing and those with a high-throughput capability are highlighted.

  2. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    NASA Technical Reports Server (NTRS)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground

  3. Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride.

    PubMed

    Navazio, Lorella; Baldan, Barbara; Moscatiello, Roberto; Zuppini, Anna; Woo, Sheridan L; Mariani, Paola; Lorito, Matteo

    2007-07-30

    Calcium is commonly involved as intracellular messenger in the transduction by plants of a wide range of biotic stimuli, including signals from pathogenic and symbiotic fungi. Trichoderma spp. are largely used in the biological control of plant diseases caused by fungal phytopathogens and are able to colonize plant roots. Early molecular events underlying their association with plants are relatively unknown. Here, we investigated the effects on plant cells of metabolite complexes secreted by Trichoderma atroviride wild type P1 and a deletion mutant of this strain on the level of cytosolic free Ca2+ and activation of defense responses. Trichoderma culture filtrates were obtained by growing the fungus alone or in direct antagonism with its fungal host, the necrotrophic pathogen Botrytis cinerea, and then separated in two fractions (>3 and <3 kDa). When applied to aequorin-expressing soybean (Glycine max L.) cell suspension cultures, Trichoderma and Botrytis metabolite mixtures were distinctively perceived and activated transient intracellular Ca2+ elevations with different kinetics, specific patterns of intracellular accumulation of reactive oxygen species and induction of cell death. Both Ca2+ signature and cellular effects were modified by the culture medium from the knock-out mutant of Trichoderma, defective for the production of the secreted 42 kDa endochitinase. New insights are provided into the mechanism of interaction between Trichoderma and plants, indicating that secreted fungal molecules are sensed by plant cells through intracellular Ca2+ changes. Plant cells are able to discriminate signals originating in the single or two-fungal partner interaction and modulate defense responses.

  4. The Specific Nature of Plant Cell Wall Polysaccharides 1

    PubMed Central

    Nevins, Donald J.; English, Patricia D.; Albersheim, Peter

    1967-01-01

    Polysaccharide compositions of cell walls were assessed by quantitative analyses of the component sugars. Cell walls were hydrolyzed in 2 n trifluoroacetic acid and the liberated sugars reduced to their respective alditols. The alditols were acetylated and the resulting alditol acetates separated by gas chromatography. Quantitative assay of the alditol acetates was accomplished by electronically integrating the detector output of the gas chromatograph. Myo-inositol, introduced into the sample prior to hydrolysis, served as an internal standard. The cell wall polysaccharide compositions of plant varieties within a given species are essentially identical. However, differences in the sugar composition were observed in cell walls prepared from different species of the same as well as of different genera. The fact that the wall compositions of different varieties of the same species are the same indicates that the biosynthesis of cell wall polysaccharides is genetically regulated. The cell walls of various morphological parts (roots, hypocotyls, first internodes and primary leaves) of bean plants were each found to have a characteristic sugar composition. It was found that the cell wall sugar composition of suspension-cultured sycamore cells could be altered by growing the cells on different carbon sources. This demonstrates that the biosynthesis of cell wall polysaccharides can be manipulated without fatal consequences. PMID:16656594

  5. Role of polyamines in DNA synthesis of Catharanthus roseus cells grown in suspension culture

    Treesearch

    Rakesh Minocha; Subhash C. Minocha; Atsushi Komamine; Walter C. Shortle

    1990-01-01

    The requirement for polyamines in the proliferation of cells was first demonstrated in bacteria (3). While significant progress has been made in this field using animal cell cultures, only preliminary studies have been reported with plant tissues. Serafini-Fracassini et al. (9) showed a marked increase in polyamine synthesis early during the G 1 phase, concomitant with...

  6. Method for removal of explosives from aqueous solution using suspended plant cells

    DOEpatents

    Jackson, Paul J.; Torres, deceased, Agapito P.; Delhaize, Emmanuel

    1994-01-01

    The use of plant suspension cultures to remove ionic metallic species and TNT-based explosives and their oxidation products from aqueous solution is described. Several plant strains were investigated including D. innoxia, Citrus citrus, and Black Mexican Sweet Corn. All showed significant ability to remove metal ions. Ions removed to sub-ppm levels include barium, iron, and plutonium. D. innoxia cells growing in media containing weapons effluent contaminated with Ba.sup.2+ also remove TNT, other explosives and oxidation products thereof from solution. The use of dead, dehydrated cells was also found to be of use in treating waste directly.

  7. [Primary culture of human normal epithelial cells].

    PubMed

    Tang, Yu; Xu, Wenji; Guo, Wanbei; Xie, Ming; Fang, Huilong; Chen, Chen; Zhou, Jun

    2017-11-28

    The traditional primary culture methods of human normal epithelial cells have disadvantages of low activity of cultured cells, the low cultivated rate and complicated operation. To solve these problems, researchers made many studies on culture process of human normal primary epithelial cell. In this paper, we mainly introduce some methods used in separation and purification of human normal epithelial cells, such as tissue separation method, enzyme digestion separation method, mechanical brushing method, red blood cell lysis method, percoll layered medium density gradient separation method. We also review some methods used in the culture and subculture, including serum-free medium combined with low mass fraction serum culture method, mouse tail collagen coating method, and glass culture bottle combined with plastic culture dish culture method. The biological characteristics of human normal epithelial cells, the methods of immunocytochemical staining, trypan blue exclusion are described. Moreover, the factors affecting the aseptic operation, the conditions of the extracellular environment, the conditions of the extracellular environment during culture, the number of differential adhesion, and the selection and dosage of additives are summarized.

  8. Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices

    DOEpatents

    An, Yuehuei H.; Mironov, Vladimir A.; Gutowska, Anna

    2000-01-01

    A gelling cell culture medium useful for forming a three dimensional matrix for cell culture in vitro is prepared by copolymerizing an acrylamide derivative with a hydrophilic comonomer to form a reversible (preferably thermally reversible) gelling linear random copolymer in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff, mixing the copolymer with an aqueous solvent to form a reversible gelling solution and adding a cell culture medium to the gelling solution to form the gelling cell culture medium. Cells such as chondrocytes or hepatocytes are added to the culture medium to form a seeded culture medium, and temperature of the medium is raised to gel the seeded culture medium and form a three dimensional matrix containing the cells. After propagating the cells in the matrix, the cells may be recovered by lowering the temperature to dissolve the matrix and centrifuging.

  9. Opposite extremes in ethylene/nitric oxide ratio induce cell death in suspension culture and root apices of tomato exposed to salt stress.

    PubMed

    Poór, P; Borbély, P; Kovács, Judit; Papp, Anita; Szepesi, Ágnes; Takács, Z; Tari, Irma

    2014-12-01

    The plant hormone ethylene or the gaseous signalling molecule nitric oxide (NO) may enhance salt stress tolerance by maintaining ion homeostasis, first of all K+/Na+ ratio of tissues. Ethylene and NO accumulation increased in the root apices and suspension culture cells of tomato at sublethal salt stress caused by 100 mM NaCl, however, the induction phase of programmed cell death (PCD) was different at lethal salt concentration. The production of ethylene by root apices and the accumulation of NO in the cells of suspension culture did not increase during the initiation of PCD after 250 mM NaCl treatment. Moreover, cells in suspension culture accumulated higher amount of reactive oxygen species which, along with NO deficiency contributed to cell death induction. The absence of ethylene in the apical root segments and the absence of NO accumulation in the cell suspension resulted in similar ion disequilibrium, namely K+/Na+ ratio of 1.41 ± 0.1 and 1.68 ± 0.3 in intact plant tissues and suspension culture cells, respectively that was not tolerated by tomato.

  10. In vitro plant tissue culture: means for production of biological active compounds.

    PubMed

    Espinosa-Leal, Claudia A; Puente-Garza, César A; García-Lara, Silverio

    2018-05-07

    Plant tissue culture as an important tool for the continuous production of active compounds including secondary metabolites and engineered molecules. Novel methods (gene editing, abiotic stress) can improve the technique. Humans have a long history of reliance on plants for a supply of food, shelter and, most importantly, medicine. Current-day pharmaceuticals are typically based on plant-derived metabolites, with new products being discovered constantly. Nevertheless, the consistent and uniform supply of plant pharmaceuticals has often been compromised. One alternative for the production of important plant active compounds is in vitro plant tissue culture, as it assures independence from geographical conditions by eliminating the need to rely on wild plants. Plant transformation also allows the further use of plants for the production of engineered compounds, such as vaccines and multiple pharmaceuticals. This review summarizes the important bioactive compounds currently produced by plant tissue culture and the fundamental methods and plants employed for their production.

  11. Traditional and Modern Cell Culture in Virus Diagnosis.

    PubMed

    Hematian, Ali; Sadeghifard, Nourkhoda; Mohebi, Reza; Taherikalani, Morovat; Nasrolahi, Abbas; Amraei, Mansour; Ghafourian, Sobhan

    2016-04-01

    Cell cultures are developed from tissue samples and then disaggregated by mechanical, chemical, and enzymatic methods to extract cells suitable for isolation of viruses. With the recent advances in technology, cell culture is considered a gold standard for virus isolation. This paper reviews the evolution of cell culture methods and demonstrates why cell culture is a preferred method for identification of viruses. In addition, the advantages and disadvantages of both traditional and modern cell culture methods for diagnosis of each type of virus are discussed. Detection of viruses by the novel cell culture methods is considered more accurate and sensitive. However, there is a need to include some more accurate methods such as molecular methods in cell culture for precise identification of viruses.

  12. Application of cell co-culture system to study fat and muscle cells.

    PubMed

    Pandurangan, Muthuraman; Hwang, Inho

    2014-09-01

    Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.

  13. Neonatal rat heart cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Akins, Robert E.; Schroedl, Nancy A.; Gonda, Steve R.; Hartzell, Charles R.

    1994-01-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by non-myocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA designed High-Aspect-Ratio-Vessel (HARV) bioreactors provide a low shear environment which allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells in cultured in HARV's adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARV's using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar, however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissue-like organizations of cardiac cells in simulated microgravity.

  14. Neonatal rat heart cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Akins, R. E.; Schroedl, N. A.; Gonda, S. R.; Hartzell, C. R.

    1997-01-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two-dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by nonmyocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA-designed High-Aspect Ratio Vessel (HARV) bioreactors provide a low shear environment that allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells cultured in HARVs adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARVs using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar; however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissuelike organization of cardiac cells in vitro.

  15. Assessment of Cultivation Factors that Affect Biomass and Geraniol Production in Transgenic Tobacco Cell Suspension Cultures

    PubMed Central

    Vasilev, Nikolay; Schmitz, Christian; Grömping, Ulrike; Fischer, Rainer; Schillberg, Stefan

    2014-01-01

    A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN) cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources. PMID:25117009

  16. Assessment of cultivation factors that affect biomass and geraniol production in transgenic tobacco cell suspension cultures.

    PubMed

    Vasilev, Nikolay; Schmitz, Christian; Grömping, Ulrike; Fischer, Rainer; Schillberg, Stefan

    2014-01-01

    A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN) cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼ 5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources.

  17. Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system

    NASA Technical Reports Server (NTRS)

    Torgan, C. E.; Burge, S. S.; Collinsworth, A. M.; Truskey, G. A.; Kraus, W. E.

    2000-01-01

    The growth and repair of adult skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. These cells are responsive to a variety of environmental cues, including mechanical stimuli. The overall goal of the research is to examine the role of mechanical signalling mechanisms in muscle growth and plasticity through utilisation of cell culture systems where other potential signalling pathways (i.e. chemical and electrical stimuli) are controlled. To explore the effects of decreased mechanical loading on muscle differentiation, mammalian myoblasts are cultured in a bioreactor (rotating cell culture system), a model that has been utilised to simulate microgravity. C2C12 murine myoblasts are cultured on microcarrier beads in a bioreactor and followed throughout differentiation as they form a network of multinucleated myotubes. In comparison with three-dimensional control cultures that consist of myoblasts cultured on microcarrier beads in teflon bags, myoblasts cultured in the bioreactor exhibit an attenuation in differentiation. This is demonstrated by reduced immunohistochemical staining for myogenin and alpha-actinin. Western analysis shows a decrease, in bioreactor cultures compared with control cultures, in levels of the contractile proteins myosin (47% decrease, p < 0.01) and tropomyosin (63% decrease, p < 0.01). Hydrodynamic measurements indicate that the decrease in differentiation may be due, at least in part, to fluid stresses acting on the myotubes. In addition, constraints on aggregate size imposed by the action of fluid forces in the bioreactor affect differentiation. These results may have implications for muscle growth and repair during spaceflight.

  18. Morphogenesis of a higher plant from cultured cells and embryos in space

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.; Dutcher, F. R.; Quinn, C. E.; Steward, F. C.

    1982-01-01

    Reference is made to the Cosmos 782 experiment, which showed that cultured totipotent cells of carrot can give rise to embryos with well-developed roots but minimally developed shoots at near-zero g. The problem of whether the development of leafy shoots is sensitive to near-zero g conditions is considered. A test system that would allow this problem to be resolved in a future space flight is described.

  19. Induction of murine embryonic stem cell differentiation by medicinal plant extracts

    PubMed Central

    Reynertson, Kurt A.; Charlson, Mary E.; Gudas, Lorraine J.

    2010-01-01

    Epidemiological evidence indicates that diets high in fruits and vegetables provide a measure of cancer chemoprevention due to phytochemical constituents. Natural products are a rich source of cancer chemotherapy drugs, and primarily target rapidly-cycling tumor cells. Increasing evidence indicates that many cancers contain small populations of resistant, stem-like cells that have the capacity to regenerate tumors following chemotherapy and radiation, and have been linked to the initiation of metastases. Our goal is to discover natural product-based clinical or dietary interventions that selectively target cancer stem cells, inducing differentiation. We adapted an alkaline phosphatase (AP) stain to assay plant extracts for the capacity to induce differentiation in embryonic stem (ES) cells. AP is a characteristic marker of undifferentiated ES cells, and this represents a novel approach to screening medicinal plant extracts. Following a survey of approximately 100 fractions obtained from twelve species of ethnomedically utilized plants, we found fractions from three species that induced differentiation, decreasing AP and transcript levels of pluripotency markers (Nanog, Oct-4, Rex-1). These fractions affected proliferation of murine ES, and human embryonal, prostate, and breast carcinoma cells in a dose-dependent manner. Several phytochemical constituents were isolated; the antioxidant phytochemicals ellagic acid and gallic acid were shown to affect viability of cultured breast carcinoma cells. PMID:20955699

  20. [The investigation of genomes of some species of the genus Gentiana in nature and in vitro cell culture].

    PubMed

    Mel'nyk, V M; Spiridonova, K V; Andrieiev, I O; Strashniuk, N M; Kunakh, V A

    2002-01-01

    The comparative study of the genomes of intact plants-representatives of some species of the genus Gentiana L. as well as cultured cells of G. lutea and G. punctata was performed using restriction analysis. Species specificity of restriction fragment patterns for studied representatives of this genus was revealed. The differences between electrophoretic patterns of digested DNA purified from rhizome and leaves of G. lutea and G. punctata were found. The changes in genomes of G. lutea and G. punctata cells cultured in vitro compared with the genomes of intact plants were detected. The data obtained evidence that some of them may be of nonrandom character.

  1. Effects of several salt marsh plants on mouse spleen and thymus cell proliferation using mtt assay

    NASA Astrophysics Data System (ADS)

    Seo, Youngwan; Lee, Hee-Jung; Kim, You Ah; Youn, Hyun Joo; Lee, Burm-Jong

    2005-12-01

    In the present study, we have tested the effects of 21 salt marsh plants on cell proliferation of mouse immune cells (spleen and thymus) using MTT assay in culture. The methanolic extracts of six salt marsh plants ( Rosa rugosa, Ixeris tamagawaensis, Artemisia capillaris, Tetragonia tetragonoides, Erigeron annus, and Glehnia littoralis) showed very powerful suppressive effects of mouse immune cell death and significant activities of cell proliferation in vitro. Especially, the methanolic extract of Rosa rugosa was found to have fifteen times compared to the control treatment, demonstrating that Rosa rugosa may have a potent stimulation effect on immune cell proliferation. These results suggest that several salt marsh plants including Rosa rugosa could be useful for further study as an immunomodulating agent.

  2. Culturing primary mouse pancreatic ductal cells.

    PubMed

    Reichert, Maximilian; Rhim, Andrew D; Rustgi, Anil K

    2015-06-01

    The most common subtype of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC). PDAC resembles ductal cells morphologically. To study pancreatic ductal cell (PDC) and pancreatic intraepithelial neoplasia (PanIN)/PDAC biology, it is essential to have reliable in vitro culture conditions. Here we describe a methodology to isolate, culture, and passage PDCs and duct-like cells from the mouse pancreas. It can be used to isolate cells from genetically engineered mouse models (GEMMs), providing a valuable tool to study disease models in vitro to complement in vivo findings. The culture conditions allow epithelial cells to outgrow fibroblast and other "contaminating" cell types within a few passages. However, the resulting cultures, although mostly epithelial, are not completely devoid of fibroblasts. Regardless, this protocol provides guidelines for a robust in vitro culture system to isolate, maintain, and expand primary pancreatic ductal epithelial cells. It can be applied to virtually all GEMMs of pancreatic disease and other diseases and cancers that arise from ductal structures. Because most carcinomas resemble ductal structures, this protocol has utility in the study of other cancers in addition to PDAC, such as breast and prostate cancers. © 2015 Cold Spring Harbor Laboratory Press.

  3. Oscillating Cell Culture Bioreactor

    NASA Technical Reports Server (NTRS)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  4. Enhancement of shikonin production in single- and two-phase suspension cultures of Lithospermum erythrorhizon cells using low-energy ultrasound.

    PubMed

    Lin, Lidong; Wu, Jianyong

    2002-04-05

    This work demonstrates the use of low-energy ultrasound (US) to enhance secondary metabolite production in plant cell cultures. Suspension culture of Lithospermum erythrorhizon cells was exposed to low-power US (power density < or = 113.9 mW/cm(3)) for short periods (1-8 min). The US exposure significantly stimulated the shikonin biosynthesis of the cells, and at certain US doses, increased the volumetric shikonin yield by about 60%-70%. Meanwhile, the shikonin excreted from the cells was increased from 20% to 65%-70%, due partially to an increase in the cell membrane permeability by sonication. With combined use of US treatment and in situ product extraction by an organic solvent, or the two-phase culture, the volumetric shikonin yield was increased more than two- to threefold. Increasing in the number of US exposures during the culture process usually resulted in negative effects on shikonin yield but slight stimulation of shikonin excretion. US at relatively high energy levels caused slight cell growth depression (maximum 9% decrease in dry cell weight). Two key enzymes for the secondary metabolite biosynthesis of cells, phenylalanine ammonia lyase and p-hydroxybenzoic acid geranyltransferase, were found to be stimulated by the US. The US stimulation of secondary metabolite biosynthesis was attributed to the metabolic activity of cells activated by US, and more specifically, the defense responses of plant cells to the mechanical stress of US irradiation. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 81--88, 2002; DOI 10.1002/bit.10180

  5. Melatonin redirects carbohydrates metabolism during sugar starvation in plant cells.

    PubMed

    Kobylińska, Agnieszka; Borek, Sławomir; Posmyk, Małgorzata M

    2018-05-01

    Recent studies have shown that melatonin is an important molecule in plant physiology. It seems that the most important is that melatonin efficacy eliminates oxidative stress (direct and indirect antioxidant) and moreover induce plant stress reaction and switch on different defence strategies (preventively and interventively actions). In this report, the impact of exogenous melatonin on carbohydrate metabolism in Nicotiana tabacum L. line Bright Yellow 2 (BY-2) suspension cells during sugar starvation was examined. We analysed starch concentration, α-amylase and PEPCK activity as well as proteolytic activity in culture media. It has been shown that BY-2 cell treatment with 200 nM of melatonin improved viability of sugar-starved cells. It was correlated with higher starch content and phosphoenolpyruvate carboxykinase (PEPCK) activity. The obtained results revealed that exogenous melatonin under specific conditions (stress) can play regulatory role in sugar metabolism, and it may modulate carbohydrate concentration in etiolated BY-2 cells. Moreover, our results confirmed the hypothesis that if the starch is synthesised even in sugar-starved cells, it is highly probable that melatonin shifts the BY-2 cell metabolism on gluconeogenesis pathway and allows for synthesis of carbohydrates from nonsugar precursors, that is amino acids. These points to another defence strategy that was induced by exogenous melatonin applied in plants to overcome adverse environmental conditions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. A continuous perfusion microplate for cell culture.

    PubMed

    Goral, Vasiliy N; Zhou, Chunfeng; Lai, Fang; Yuen, Po Ki

    2013-03-21

    We describe a 96-well microplate with fluidically connected wells that enables the continuous fluid perfusion between wells without the need for external pumping. A single unit in such a perfusion microplate consists of three wells: a source well, a sample (cell culture) well in the middle and a waste well. Fluid perfusion is achieved using a combination of the hydrostatic pressure generated by different liquid levels in the wells and the fluid wicking through narrow strips of a cellulose membrane connecting the wells. There is an excellent correspondence between the observed perfusion flow dynamics and the flow simulations based on Darcy's Law. Hepatocytes (C3A cells) cultured for 4 days in the perfusion microplate with no media exchange in the cell culture well had the same viability as hepatocytes exposed to a daily exchange of media. EOC 20 cells that require media conditioned by LADMAC cells were shown to be equally viable in the adjacent cell culture well of the perfusion microplate with LADMAC cells cultured in the source well. Tegafur, a prodrug, when added to primary human hepatocytes in the source well, was metabolized into a cytotoxic metabolite that kills colon cancer cells (HCT 116) cultured in the adjacent cell culture well; no toxicity was observed when only medium was in the source well. These results suggest that the perfusion microplate is a useful tool for a variety of cell culture applications with benefits ranging from labor savings to enabling in vivo-like toxicity studies.

  7. Role of peroxynitrite in the responses induced by heat stress in tobacco BY-2 cultured cells.

    PubMed

    Malerba, Massimo; Cerana, Raffaella

    2018-07-01

    Temperatures above the optimum are sensed as heat stress (HS) by all living organisms and represent one of the major environmental challenges for plants. Plants can cope with HS by activating specific defense mechanisms to minimize damage and ensure cellular functionality. One of the most common effects of HS is the overproduction of reactive oxygen and nitrogen species (ROS and RNS). The role of ROS and RNS in the regulation of many plant physiological processes is well established. On the contrary, in plants very little is known about the physiological role of peroxynitrite (ONOO - ), the RNS species generated by the interaction between NO and O 2 - . In this work, the role of ONOO - on some of the stress responses induced by HS in tobacco BY-2 cultured cells has been investigated by measuring these responses both in the presence and in the absence of 2,6,8-trihydroxypurine (urate), a specific scavenger of ONOO - . The obtained results suggest a potential role for ONOO - in some of the responses induced by HS in tobacco cultured cells. In particular, ONOO - seems implicated in a form of cell death showing apoptotic features and in the regulation of the levels of proteins involved in the response to stress.

  8. Effect of lunar materials on plant tissue culture.

    NASA Technical Reports Server (NTRS)

    Walkinshaw, C. H.; Venketeswaran, S.; Baur, P. S.; Croley, T. E.; Scholes, V. E.; Weete, J. D.; Halliwell, R. S.; Hall, R. H.

    1973-01-01

    Lunar material collected during the Apollo 11, 12, 14, and 15 missions has been used to treat 12 species of higher plant tissue cultures. Biochemical and morphological studies have been conducted on several of these species. Tobacco tissue cultures treated with 0.22 g of lunar material exhibited increased greening more complex chloroplasts, less cytoplasmic vacuolation and greater vesiculation. Pine tissue cultures reacted to treatment by an increased deposition of tannin-like materials. The percentage of dry weight and soluble protein was increased in cultures treated with either lunar or terrestrial rock materials.

  9. Single-Cell Genomic Analysis in Plants

    PubMed Central

    Hu, Haifei; Scheben, Armin; Edwards, David

    2018-01-01

    Individual cells in an organism are variable, which strongly impacts cellular processes. Advances in sequencing technologies have enabled single-cell genomic analysis to become widespread, addressing shortcomings of analyses conducted on populations of bulk cells. While the field of single-cell plant genomics is in its infancy, there is great potential to gain insights into cell lineage and functional cell types to help understand complex cellular interactions in plants. In this review, we discuss current approaches for single-cell plant genomic analysis, with a focus on single-cell isolation, DNA amplification, next-generation sequencing, and bioinformatics analysis. We outline the technical challenges of analysing material from a single plant cell, and then examine applications of single-cell genomics and the integration of this approach with genome editing. Finally, we indicate future directions we expect in the rapidly developing field of plant single-cell genomic analysis. PMID:29361790

  10. Method for removal of metal atoms from aqueous solution using suspended plant cells

    DOEpatents

    Jackson, Paul J.; Torres, deceased, Agapito P.; Delhaize, Emmanuel

    1992-01-01

    The use of plant suspension cultures to remove ionic metallic species and TNT-based explosives and their oxidation products from aqueous solution is described. Several plant strains were investigated including D. innoxia, Citrus citrus, and Black Mexican Sweet Corn. All showed significant ability to remove metal ions. Ions removed to sub-ppm levels include barium, iron, and plutonium. D. innoxia cells growing in media containing weapons effluent contaminated with Ba.sup.2+ also remove TNT, other explosives and oxidation products thereof from solution. The use of dead, dehydrated cells were also found to be of use in treating waste directly.

  11. Addressing Challenges to Enhance the Bioactives of Withania somnifera through Organ, Tissue, and Cell Culture Based Approaches

    PubMed Central

    Singh, Pritika; Guleri, Rupam; Angurala, Amrita; Kaur, Kuldeep; Kaur, Kulwinder; Kaul, Sunil C.; Wadhwa, Renu

    2017-01-01

    Withania somnifera is a highly valued medicinal plant in traditional home medicine and is known for a wide range of bioactivities. Its commercial cultivation is adversely affected by poor seed viability and germination. Infestation by various pests and pathogens, survival under unfavourable environmental conditions, narrow genetic base, and meager information regarding biosynthesis of secondary metabolites are some of the other existing challenges in the crop. Biotechnological interventions through organ, tissue, and cell culture provide promising options for addressing some of these issues. In vitro propagation facilitates conservation and sustainable utilization of the existing germplasms and broadening the genetic base. It would also provide means for efficient and rapid mass propagation of elite chemotypes and generating uniform plant material round the year for experimentation and industrial applications. The potential of in vitro cell/organ cultures for the production of therapeutically valuable compounds and their large-scale production in bioreactors has received significant attention in recent years. In vitro culture system further provides distinct advantage for studying various cellular and molecular processes leading to secondary metabolite accumulation and their regulation. Engineering plants through genetic transformation and development of hairy root culture system are powerful strategies for modulation of secondary metabolites. The present review highlights the developments and sketches current scenario in this field. PMID:28299323

  12. Basic techniques in mammalian cell tissue culture.

    PubMed

    Phelan, Katy; May, Kristin M

    2015-03-02

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. Copyright © 2015 John Wiley & Sons, Inc.

  13. Polydimethylsiloxane SlipChip for mammalian cell culture applications.

    PubMed

    Chang, Chia-Wen; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung

    2015-11-07

    This paper reports a polydimethylsiloxane (PDMS) SlipChip for in vitro cell culture applications, multiple-treatment assays, cell co-cultures, and cytokine detection assays. The PDMS SlipChip is composed of two PDMS layers with microfluidic channels on each surface that are separated by a thin silicone fluid (Si-fluid) layer. The integration of Si-fluid enables the two PDMS layers to be slid to different positions; therefore, the channel patterns can be re-arranged for various applications. The SlipChip design significantly reduces the complexity of sample handling, transportation, and treatment processes. To apply the developed SlipChip for cell culture applications, human lung adenocarcinoma epithelial cells (A549) and lung fibroblasts (MRC-5) were cultured to examine the biocompatibility of the developed PDMS SlipChip. Moreover, embryonic pluripotent stem cells (ES-D3) were also cultured in the device to evaluate the retention of their stemness in the device. The experimental results show that cell morphology, viability and proliferation are not affected when the cells are cultured in the SlipChip, indicating that the device is highly compatible with mammalian cell culture. In addition, the stemness of the ES-D3 cells was highly retained after they were cultured in the device, suggesting the feasibility of using the SlipChip for stem cell research. Various cell experiments, such as simultaneous triple staining of cells and co-culture of MRC-5 with A549 cells, were also performed to demonstrate the functionalities of the PDMS SlipChip. Furthermore, we used a cytokine detection assay to evaluate the effect of endotoxin (lipopolysaccharides, LPS) treatment on the cytokine secretion of A549 cells using the SlipChip. The developed PDMS SlipChip provides a straightforward and effective platform for various on-chip in vitro cell cultures and consequent analysis, which is promising for a number of cell biology studies and biomedical applications.

  14. Long-term culture and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized mesenchymal cells.

    PubMed

    Garba, Abubakar; Acar, Delphine D; Roukaerts, Inge D M; Desmarets, Lowiese M B; Devriendt, Bert; Nauwynck, Hans J

    2017-09-01

    Mesenchymal cells are multipotent stromal cells with self-renewal, differentiation and immunomodulatory capabilities. We aimed to develop a co-culture model for differentiating hematopoietic cells on top of immortalized mesenchymal cells for studying interactions between hematopoietic and mesenchymal cells, useful for adequately exploring the therapeutic potential of mesenchymal cells. In this study, we investigated the survival, proliferation and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized porcine bone marrow mesenchymal cells for a period of five weeks. Directly after collection, primary porcine bone marrow mesenchymal cells adhered firmly to the bottom of the culture plates and showed a fibroblast-like appearance, one week after isolation. Upon immortalization, porcine bone marrow mesenchymal cells were continuously proliferating. They were positive for simian virus 40 (SV40) large T antigen and the mesenchymal cell markers CD44 and CD55. Isolated red bone marrow cells were added to these immortalized mesenchymal cells. Five weeks post-seeding, 92±6% of the red bone marrow hematopoietic cells were still alive and their number increased 3-fold during five weekly subpassages on top of the immortalized mesenchymal cells. The red bone marrow hematopoietic cells were originally small and round; later, the cells increased in size. Some of them became elongated, while others remained round. Tiny dendrites appeared attaching hematopoietic cells to the underlying immortalized mesenchymal cells. Furthermore, weekly differential-quick staining of the cells indicated the presence of monoblasts, monocytes, macrophages and lymphocytes in the co-cultures. At three weeks of co-culture, flow cytometry analysis showed an increased surface expression of CD172a, CD14, CD163, CD169, CD4 and CD8 up to 37±0.8%, 40±8%, 41±4%, 23±3% and 19±5% of the hematopoietic cells, respectively. In conclusion, continuous mesenchymal cell

  15. Uptake of Heavy Metals from Industrial Wastewater Using In Vitro Plant Cultures.

    PubMed

    Jauhari, Nupur; Menon, Sanjay; Sharma, Neelam; Bharadvaja, Navneeta

    2017-11-01

    The plant species Bacopa monnieri has been observed to reduce the heavy metal concentrations in its vicinity. The present study is a comparison of in vitro culture and soil-grown plants of B. monnieri to remove Cr and Cd, from synthetic solution and effluent obtained from industrial area. Results were obtained at every half hour interval upto 180 min. Samples were observed for light absorption using UV-Visible spectrophotometer. Statistically, both systems reclaimed Cr and Cd from polluted water. In vitro cultures showed 67% and 93% removal of Cr and Cd from industrial wastewater whereas soil-grown plants showed 64% and 83% Cr and Cd removal. However, reduction rate was significantly higher for in vitro culture as compared to soil-grown plants. Besides other advantages, in vitro plant cultures proved to be more potent to detoxify pollutants in less time. This approach can be used for the removal of heavy metals at large scale.

  16. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue. PMID:27600217

  17. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ping, E-mail: fanpinggoodluck@163.com; He, Lan; Pu, Dan

    Research highlights: {yields} The proliferation of dramatic increased by co-cultured with Sertoli cells. {yields} VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. {yields} The MHC expression of ECs induced by INF-{gamma} and IL-6, IL-8 and sICAM induced by TNF-{alpha} decreased respectively after co-cultured with Sertoli cells. {yields} ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertolimore » cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10{sup 3}, 1 x 10{sup 4} or 1 x 10{sup 5} cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-{gamma} and TNF-{alpha} were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10{sup 4} cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P < 0.05). Western blotting showed that 1 x 10{sup 4} cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli

  18. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids

    PubMed Central

    Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A.; Falvo D’Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto

    2016-01-01

    A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future. PMID:27144306

  19. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids.

    PubMed

    Massai, Diana; Isu, Giuseppe; Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A; Falvo D'Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto

    2016-01-01

    A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future.

  20. High density cell culture system

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor)

    1994-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  1. Regulation of callus status and cell-suspending culture in naked seed oat (Avena nuda).

    PubMed

    Cui, L; Fan, Y

    1998-01-01

    The original calli were obtained by inducing culture of mature embryos of naked seed oat on N6 medium. The original calli were white-colored tumor forms, soft outside and hard inside. These kinds of calli are easy to differentiate into plantlets, and they are not the friable type. Friable embryogenic calli could be obtained by cycled regulated culture on IM1-IM4 medium for 7-8 months from the original calli. They became vigorous, lightish yellow in color, with small grainy forms. Well-separated and fast-growing suspending cell lines have been obtained from the above-mentioned embryogenic calli in the liquid medium. Regenerated plants have been obtained for this kind of suspension line by culturing on the medium for differentiation. The surviving percentage for such plantlets was over 95% after planting in the soil.

  2. Cell culture experiments planned for the space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  3. Advances in cell culture: anchorage dependence

    PubMed Central

    Merten, Otto-Wilhelm

    2015-01-01

    Anchorage-dependent cells are of great interest for various biotechnological applications. (i) They represent a formidable production means of viruses for vaccination purposes at very large scales (in 1000–6000 l reactors) using microcarriers, and in the last decade many more novel viral vaccines have been developed using this production technology. (ii) With the advent of stem cells and their use/potential use in clinics for cell therapy and regenerative medicine purposes, the development of novel culture devices and technologies for adherent cells has accelerated greatly with a view to the large-scale expansion of these cells. Presently, the really scalable systems—microcarrier/microcarrier-clump cultures using stirred-tank reactors—for the expansion of stem cells are still in their infancy. Only laboratory scale reactors of maximally 2.5 l working volume have been evaluated because thorough knowledge and basic understanding of critical issues with respect to cell expansion while retaining pluripotency and differentiation potential, and the impact of the culture environment on stem cell fate, etc., are still lacking and require further studies. This article gives an overview on critical issues common to all cell culture systems for adherent cells as well as specifics for different types of stem cells in view of small- and large-scale cell expansion and production processes. PMID:25533097

  4. Basic Techniques in Mammalian Cell Tissue Culture.

    PubMed

    Phelan, Katy; May, Kristin M

    2016-11-01

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  5. Induction of murine embryonic stem cell differentiation by medicinal plant extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynertson, Kurt A.; Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065; Charlson, Mary E.

    Epidemiological evidence indicates that diets high in fruits and vegetables provide a measure of cancer chemoprevention due to phytochemical constituents. Natural products are a rich source of cancer chemotherapy drugs, and primarily target rapidly cycling tumor cells. Increasing evidence indicates that many cancers contain small populations of resistant, stem-like cells that have the capacity to regenerate tumors following chemotherapy and radiation, and have been linked to the initiation of metastases. Our goal is to discover natural product-based clinical or dietary interventions that selectively target cancer stem cells, inducing differentiation. We adapted an alkaline phosphatase (AP) stain to assay plant extractsmore » for the capacity to induce differentiation in embryonic stem (ES) cells. AP is a characteristic marker of undifferentiated ES cells, and this represents a novel approach to screening medicinal plant extracts. Following a survey of approximately 100 fractions obtained from 12 species of ethnomedically utilized plants, we found fractions from 3 species that induced differentiation, decreasing AP and transcript levels of pluripotency markers (Nanog, Oct-4, Rex-1). These fractions affected proliferation of murine ES, and human embryonal, prostate, and breast carcinoma cells in a dose-dependent manner. Several phytochemical constituents were isolated; the antioxidant phytochemicals ellagic acid and gallic acid were shown to affect viability of cultured breast carcinoma cells.« less

  6. Induction of murine embryonic stem cell differentiation by medicinal plant extracts.

    PubMed

    Reynertson, Kurt A; Charlson, Mary E; Gudas, Lorraine J

    2011-01-01

    Epidemiological evidence indicates that diets high in fruits and vegetables provide a measure of cancer chemoprevention due to phytochemical constituents. Natural products are a rich source of cancer chemotherapy drugs, and primarily target rapidly cycling tumor cells. Increasing evidence indicates that many cancers contain small populations of resistant, stem-like cells that have the capacity to regenerate tumors following chemotherapy and radiation, and have been linked to the initiation of metastases. Our goal is to discover natural product-based clinical or dietary interventions that selectively target cancer stem cells, inducing differentiation. We adapted an alkaline phosphatase (AP) stain to assay plant extracts for the capacity to induce differentiation in embryonic stem (ES) cells. AP is a characteristic marker of undifferentiated ES cells, and this represents a novel approach to screening medicinal plant extracts. Following a survey of approximately 100 fractions obtained from 12 species of ethnomedically utilized plants, we found fractions from 3 species that induced differentiation, decreasing AP and transcript levels of pluripotency markers (Nanog, Oct-4, Rex-1). These fractions affected proliferation of murine ES, and human embryonal, prostate, and breast carcinoma cells in a dose-dependent manner. Several phytochemical constituents were isolated; the antioxidant phytochemicals ellagic acid and gallic acid were shown to affect viability of cultured breast carcinoma cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Modular plant culture systems for life support functions

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The current state of knowledge with regard to culture of higher plants in the zero-G environment is assessed; and concepts for the empirical development of small plant growth chambers for the production of salad type vegetables on space shuttle or space station are evaluated. American and Soviet space flight experiences in gravitational biology are summarized.

  8. Visual selection and maintenance of the cell lines with high plant regeneration ability and low ploidy level in Dianthus acicularis by monitoring with flow cytometry analysis.

    PubMed

    Shiba, Tomonori; Mii, Masahiro

    2005-12-01

    Efficient plant regeneration system from cell suspension cultures was established in D. acicularis (2n=90) by monitoring ploidy level and visual selection of the cultures. The ploidy level of the cell cultures closely related to the shoot regeneration ability. The cell lines comprising original ploidy levels (2C+4C cells corresponding to DNA contents of G1 and G2 cells of diploid plant, respectively) showed high regeneration ability, whereas those containing the cells with 8C or higher DNA C-values showed low or no regeneration ability. The highly regenerable cell lines thus selected consisted of compact cell clumps with yellowish color and relatively moderate growth, suggesting that it is possible to select visually the highly regenerable cell lines with the original ploidy level. All the regenerated plantlets from the highly regenerable cell cultures exhibited normal phenotypes and no variations in ploidy level were observed by flow cytometry (FCM) analysis.

  9. Microfluidic cardiac cell culture model (μCCCM).

    PubMed

    Giridharan, Guruprasad A; Nguyen, Mai-Dung; Estrada, Rosendo; Parichehreh, Vahidreza; Hamid, Tariq; Ismahil, Mohamed Ameen; Prabhu, Sumanth D; Sethu, Palaniappan

    2010-09-15

    Physiological heart development and cardiac function rely on the response of cardiac cells to mechanical stress during hemodynamic loading and unloading. These stresses, especially if sustained, can induce changes in cell structure, contractile function, and gene expression. Current cell culture techniques commonly fail to adequately replicate physical loading observed in the native heart. Therefore, there is a need for physiologically relevant in vitro models that recreate mechanical loading conditions seen in both normal and pathological conditions. To fulfill this need, we have developed a microfluidic cardiac cell culture model (μCCCM) that for the first time allows in vitro hemodynamic stimulation of cardiomyocytes by directly coupling cell structure and function with fluid induced loading. Cells are cultured in a small (1 cm diameter) cell culture chamber on a thin flexible silicone membrane. Integrating the cell culture chamber with a pump, collapsible pulsatile valve and an adjustable resistance element (hemostatic valve) in series allow replication of various loading conditions experienced in the heart. This paper details the design, modeling, fabrication and characterization of fluid flow, pressure and stretch generated at various frequencies to mimic hemodynamic conditions associated with the normal and failing heart. Proof-of-concept studies demonstrate successful culture of an embryonic cardiomyoblast line (H9c2 cells) and establishment of an in vivo like phenotype within this system.

  10. Suspension culture of pluripotent stem cells: effect of shear on stem cell fate.

    PubMed

    Keller, Kevin C; Rodrigues, Beatriz; zur Nieden, Nicole I

    2014-01-01

    Despite significant promise, the routine usage of suspension cell culture to manufacture stem cell-derived differentiated cells has progressed slowly. Suspension culture is an innovative way of either expanding or differentiating cells and sometimes both are combined into a single bioprocess. Its advantages over static 2D culturing include a homogeneous and controllable culture environment and producing a large quantity of cells in a fraction of time. This feature makes suspension cell culture ideal for use in stem cell research and eventually ideal in the large-scale production of differentiated cells for regenerative medicine. Because of their tremendous differentiation capacities and unlimited growth properties, pluripotent stem cells (PSCs) in particular are considered potential sources for future cell-replacement therapies. Currently, expansion of PSCs is accomplished in 2D, which only permits a limited amount of cell growth per culture flask before cells need to be passaged. However, before stem cells can be applied clinically, several aspects of their expansion, such as directed growth, but also differentiation, need to be better controlled. This review will summarize recent advantages in suspension culture of PSCs, while at the same time highlighting current challenges.

  11. [Research-oriented experimental course of plant cell and gene engineering for undergraduates].

    PubMed

    Xiaofei, Lin; Rong, Zheng; Morigen, Morigen

    2015-04-01

    Research-oriented comprehensive experimental course for undergraduates is an important part for their training of innovation. We established an optional course of plant cell and gene engineering for undergraduates using our research platform. The course is designed to study the cellular and molecular basis and experimental techniques for plant tissue culture, isolation and culture of protoplast, genetic transformation, and screening and identification of transgenic plants. To develop undergraduates' ability in experimental design and operation, and inspire their interest in scientific research and innovation consciousness, we integrated experimental teaching and practice in plant genetic engineering on the tissue, cellular, and molecular levels. Students in the course practiced an experimental teaching model featured by two-week teaching of principles, independent experimental design and bench work, and ready-to-access laboratory. In this paper, we describe the contents, methods, evaluation system and a few issues to be solved in this course, as well as the general application and significance of the research-oriented experimental course in reforming undergraduates' teaching and training innovative talents.

  12. The evolution of chicken stem cell culture methods.

    PubMed

    Farzaneh, M; Attari, F; Mozdziak, P E; Khoshnam, S E

    2017-12-01

    1. The avian embryo is an excellent model for studying embryology and the production of pharmaceutical proteins in transgenic chickens. Furthermore, chicken stem cells have the potential for proliferation and differentiation and emerged as an attractive tool for various cell-based technologies. 2. The objective of these studies is the derivation and culture of these stem cells is the production of transgenic birds for recombinant biomaterials and vaccine manufacture, drug and cytotoxicity testing, as well as to gain insight into basic science, including cell tracking. 3. Despite similarities among the established chicken stem cell lines, fundamental differences have been reported between their culture conditions and applications. Recent conventional protocols used for expansion and culture of chicken stem cells mostly depend on feeder cells, serum-containing media and static culture. 4. Utilising chicken stem cells for generation of cell-based transgenic birds and a variety of vaccines requires large-scale cell production. However, scaling up the conventional adherent chicken stem cells is challenging and labour intensive. Development of a suspension cell culture process for chicken embryonic stem cells (cESCs), chicken primordial germ cells (PGCs) and chicken induced pluripotent stem cells (ciPSCs) will be an important advance for increasing the growth kinetics of these cells. 6. This review describes various approaches and suggestions to achieve optimal cell growth for defined chicken stem cells cultures and use in future manufacturing applications.

  13. Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition.

    PubMed

    Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena

    2017-01-01

    Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO 3 - ) and ammonium (NH 4 + ). However, the composition of the N source is important, because excess of NH 4 + promotes morphological disorders. Plants cultured on NH 4 + as the sole N source exhibit serious growth inhibition, commonly referred to as "ammonium toxicity syndrome." NH 4 + -mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH 4 + nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH 4 + as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH 4 + toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH 4 + -mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia , a receptor-like kinase involved in the control of cell wall extension.

  14. Mammalian Cell Culture Simplified.

    ERIC Educational Resources Information Center

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A tissue culture experiment that does not require elaborate equipment and that can be used to teach sterile technique, the principles of animal cell line maintenance, and the concept of cell growth curves is described. The differences between cancerous and normal cells can be highlighted. The procedure is included. (KR)

  15. Cultured Human Renal Cortical Cells

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the STS-90 shuttle flight in April 1998, cultured renal cortical cells revealed new information about genes. Timothy Hammond, an investigator in NASA's microgravity biotechnology program was interested in culturing kidney tissue to study the expression of proteins useful in the treatment of kidney diseases. Protein expression is linked to the level of differentiation of the kidney cells, and Hammond had difficulty maintaining differentiated cells in vitro. Intrigued by the improvement in cell differentiation that he observed in rat renal cells cultured in NASA's rotating wall vessel (a bioreactor that simulates some aspects of microgravity) and during an experiment performed on the Russian Space Station Mir, Hammond decided to sleuth out which genes were responsible for controlling differentiation of kidney cells. To do this, he compared the gene activity of human renal cells in a variety of gravitational environments, including the microgravity of the space shuttle and the high-gravity environment of a centrifuge. Hammond found that 1,632 genes out of 10,000 analyzed changed their activity level in microgravity, more than in any of the other environments. These results have important implications for kidney research as well as for understanding the basic mechanism for controlling cell differentiation.

  16. The Cytokinin Requirement for Cell Division in Cultured Nicotiana plumbaginifolia Cells Can Be Satisfied by Yeast Cdc25 Protein Tyrosine Phosphatase. Implications for Mechanisms of Cytokinin Response and Plant Development

    PubMed Central

    Zhang, Kerong; Diederich, Ludger; John, Peter C.L.

    2005-01-01

    Cultured cells of Nicotiana plumbaginifolia, when deprived of exogenous cytokinin, arrest in G2 phase prior to mitosis and then contain cyclin-dependent protein kinase (CDK) that is inactive because phosphorylated on tyrosine (Tyr). The action of cytokinin in stimulating the activation of CDK by removal of inhibitory phosphorylation from Tyr is not a secondary downstream consequence of other hormone actions but is the key primary effect of the hormone in its stimulation of cell proliferation, since cytokinin could be replaced by expression of cdc25, which encodes the main Cdc2 (CDK)-Tyr dephosphorylating enzyme of yeast (Saccharomyces cerevisiae). The cdc25 gene, under control of a steroid-inducible promoter, induced a rise in cdc25 mRNA, accumulation of p67Cdc25 protein, and increase in Cdc25 phosphatase activity that was measured in vitro with Tyr-phosphorylated Cdc2 as substrate. Cdc25 phosphatase activity peaked during mitotic prophase at the time CDK activation was most rapid. Mitosis that was induced by cytokinin also involved increase in endogenous plant CDK Tyr phosphatase activity during prophase, therefore indicating that this is a normal part of plant mitosis. These results suggest a biochemical mechanism for several previously described transgene phenotypes in whole plants and suggest that a primary signal from cytokinin leading to progression through mitosis is the activation of CDK by dephosphorylation of Tyr. PMID:15618425

  17. The cytokinin requirement for cell division in cultured Nicotiana plumbaginifolia cells can be satisfied by yeast Cdc25 protein tyrosine phosphatase: implications for mechanisms of cytokinin response and plant development.

    PubMed

    Zhang, Kerong; Diederich, Ludger; John, Peter C L

    2005-01-01

    Cultured cells of Nicotiana plumbaginifolia, when deprived of exogenous cytokinin, arrest in G2 phase prior to mitosis and then contain cyclin-dependent protein kinase (CDK) that is inactive because phosphorylated on tyrosine (Tyr). The action of cytokinin in stimulating the activation of CDK by removal of inhibitory phosphorylation from Tyr is not a secondary downstream consequence of other hormone actions but is the key primary effect of the hormone in its stimulation of cell proliferation, since cytokinin could be replaced by expression of cdc25, which encodes the main Cdc2 (CDK)-Tyr dephosphorylating enzyme of yeast (Saccharomyces cerevisiae). The cdc25 gene, under control of a steroid-inducible promoter, induced a rise in cdc25 mRNA, accumulation of p67(Cdc25) protein, and increase in Cdc25 phosphatase activity that was measured in vitro with Tyr-phosphorylated Cdc2 as substrate. Cdc25 phosphatase activity peaked during mitotic prophase at the time CDK activation was most rapid. Mitosis that was induced by cytokinin also involved increase in endogenous plant CDK Tyr phosphatase activity during prophase, therefore indicating that this is a normal part of plant mitosis. These results suggest a biochemical mechanism for several previously described transgene phenotypes in whole plants and suggest that a primary signal from cytokinin leading to progression through mitosis is the activation of CDK by dephosphorylation of Tyr.

  18. Skeletal muscle satellite cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Molnar, Greg; Hartzell, Charles R.; Schroedl, Nancy A.; Gonda, Steve R.

    1993-01-01

    Satellite cells are postnatal myoblasts responsible for providing additional nuclei to growing or regenerating muscle cells. Satellite cells retain the capacity to proliferate and differentiate in vitro and therefore provide a useful model to study postnatal muscle development. Most culture systems used to study postnatal muscle development are limited by the two-dimensional (2-D) confines of the culture dish. Limiting proliferation and differentiation of satellite cells in 2-D could potentially limit cell-cell contacts important for developing the level of organization in skeletal muscle obtained in vivo. Culturing satellite cells on microcarrier beads suspended in the High-Aspect-Ratio-Vessel (HARV) designed by NASA provides a low shear, three-dimensional (3-D) environment to study muscle development. Primary cultures established from anterior tibialis muscles of growing rats (approximately 200 gm) were used for all studies and were composed of greater than 75 % satellite cells. Different inoculation densities did not affect the proliferative potential of satellite cells in the HARV. Plating efficiency, proliferation, and glucose utilization were compared between 2-D flat culture and 3-D HARV culture. Plating efficiency (cells attached - cells plated x 100) was similar between the two culture systems. Proliferation was reduced in HARV cultures and this reduction was apparent for both satellite cells and non-satellite cells. Furthermore, reduction in proliferation within the HARV could not be attributed to reduced substrate availability since glucose levels in media from HARV and 2-D cell culture were similar. Morphologically, microcarrier beads within the HARVS were joined together by cells into three-dimensional aggregates composed of greater than 10 beads/aggregate. Aggregation of beads did not occur in the absence of cells. Myotubes were often seen on individual beads or spanning the surface of two beads. In summary, proliferation and differentiation of

  19. Got black swimming dots in your cell culture? Identification of Achromobacter as a novel cell culture contaminant

    PubMed Central

    Gray, Jennifer Sue; Birmingham, Janette Marie; Fenton, Jenifer Imig

    2009-01-01

    ARTICLE SUMMARY Cell culture model systems are utilized for their ease of use, relative inexpensiveness, and potentially limitless sample size. Reliable results cannot be obtained, however, when cultures contain contamination. This report discusses the observation and identification of mobile black specks observed in multiple cell lines. Cultures of the contamination were grown, and DNA was purified from isolated colonies. The 16S rDNA gene was PCR amplified using primers that will amplify the gene from many genera, and then sequenced. Sequencing results matched the members of the genus Achromobacter, bacteria common in the environment. Achromobacter species have been shown to be resistant to multiple antibiotics. Attempts to decontaminate the eukaryotic cell culture used multiple antibiotics at different concentrations. The contaminating Achromobacter was eventually eliminated, without permanently harming the eukaryotic cells, using a combination of the antibiotics ciprofloxacin and piperacillin. PMID:19926304

  20. [Chromosome variability in the tissue culture of rare Gentiana species].

    PubMed

    Tvardovs'ka, M O; Strashniuk, N M; Mel'nyk, V M; Adonin, V I; Kunakh, V A

    2008-01-01

    Cytogenetic analysis of plants and tissue culture of Gentiana lutea, G. punctata, G. acaulis has been carried out. Culturing in vitro was found to result in the changes of chromosome number in the calluses of the species involved. Species specificity for variation of the cultured cell genomes was shown. Contribution of the original plant genotypes to the cytogenetic structure of the tissue culture was established. Gentiana callus tissues (except for in vitro culture of G. punctata, derived from plant of Breskul'ska population) were found to exhibit modal class with the cells of diploid and nearly diploid chromosome sets.

  1. Outside-in control -Does plant cell wall integrity regulate cell cycle progression?

    PubMed

    Gigli-Bisceglia, Nora; Hamann, Thorsten

    2018-04-13

    During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity while, simultaneously, cell wall integrity can influence cellular processes. In yeast and animal cells such a bi-directional relationship also exists between the yeast/animal extra-cellular matrices and the cell cycle. In yeast, the cell wall integrity maintenance mechanism and a dedicated plasmamembrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extra cellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant cell wall integrity maintenance mechanism might also control cell cycle activity in plant cells. This article is protected by copyright. All rights reserved.

  2. Particle Trajectories in Rotating Wall Cell Culture Devices

    NASA Technical Reports Server (NTRS)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  3. Stem cell function during plant vascular development

    PubMed Central

    Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka

    2013-01-01

    The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation. PMID:23169537

  4. Cell proliferation and plant development under novel altered gravity environments.

    PubMed

    Herranz, R; Medina, F J

    2014-01-01

    Gravity is a key factor for life on Earth. It is the only environmental factor that has remained constant throughout evolution, and plants use it to modulate important physiological activities; gravity removal or alteration produces substantial changes in essential functions. For root gravitropism, gravity is sensed in specialised cells, which are capable of detecting magnitudes of the g vector lower than 10(-3) . Then, the mechanosignal is transduced to upper zones of the root, resulting in changes in the lateral distribution of auxin and in the rate of auxin polar transport. Gravity alteration has consequences for cell growth and proliferation rates in root meristems, which are the basis of the developmental programme of a plant, in which regulation via auxin is involved. The effect is disruption of meristematic competence, i.e. the strict coordination between cell proliferation and growth, which characterises meristematic cells. This effect can be related to changes in the transport and distribution of auxin throughout the root. However, similar effects of gravity alteration have been found in plant cell cultures in vitro, in which neither specialised structures for gravity sensing and signal transduction, nor apparent gravitropism have been described. We postulate that gravity resistance, a general mechanism of cellular origin for developing rigid structures in plants capable of resisting the gravity force, could also be responsible for the changes in cell growth and proliferation parameters detected in non-specialised cells. The mechanisms of gravitropism and graviresistance are complementary, the first being mostly sensitive to the direction of the gravity vector, and the second to its magnitude. At a global molecular level, the consequence of gravity alteration is that the genome should be finely tuned to counteract a type of stress that plants have never encountered before throughout evolution. Multigene families and redundant genes present an advantage in

  5. Bioreactor engineering using disposable technology for enhanced production of hCTLA4Ig in transgenic rice cell cultures.

    PubMed

    Kwon, Jun-Young; Yang, Yong-Suk; Cheon, Su-Hwan; Nam, Hyung-Jin; Jin, Gi-Hong; Kim, Dong-Il

    2013-09-01

    Two kinds of disposable bioreactors, air-lift disposable bioreactors (ADB) and wave disposable bioreactors (WDB) were compared with stirred-tank reactors (5-L STR). These bioreactors were successfully applied to transgenic rice cell cultures for the production of recombinant human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig). In both systems, a fed-batch culture method was used to produce hCTLA4Ig efficiently by feeding concentrated amino acids and production levels were enhanced when dissolved oxygen (DO) level was regulated at 30% using pure oxygen sparging. Agitation and aeration rate during cultivation in ADB and WDB were determined by the same mixing time. The results in both disposable bioreactors showed similar values in maximum cell density (11.9 gDCW/L and 12.6 gDCW/L), doubling time (4.8- and 5.0-day), and maximum hCTLA4Ig concentration (43.7 and 43.3 mg/L). Relatively higher cell viability was sustained in the ADB whereas hCTLA4Ig productivity was 1.2-fold higher than that in WDB. The productivity was improved by increasing aeration rate (0.2 vvm). Overall, our experiments demonstrate pneumatically driven disposable bioreactors are applicable for the production of recombinant proteins in plant cell cultures. These results will be useful for development and scale-up studies of disposable bioreactor systems for transgenic plant cell cultures. Copyright © 2013 Wiley Periodicals, Inc.

  6. Embryonic Stem Cells: Isolation, Characterization and Culture

    NASA Astrophysics Data System (ADS)

    Amit, Michal; Itskovitz-Eldor, Joseph

    Embryonic stem cells are pluripotent cells isolated from the mammalian blastocyst. Traditionally, these cells have been derived and cultured with mouse embryonic fibroblast (MEF) supportive layers, which allow their continuous growth in an undifferentiated state. However, for any future industrial or clinical application hESCs should be cultured in reproducible, defined, and xeno-free culture system, where exposure to animal pathogens is prevented. From their derivation in 1998 the methods for culturing hESCs were significantly improved. This chapter wills discuss hESC characterization and the basic methods for their derivation and maintenance.

  7. Human cell culture in a space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  8. Elicitation of gymnemic acid production in cell suspension cultures of Gymnema sylvestre R.Br. through endophytic fungi.

    PubMed

    Netala, Vasudeva Reddy; Kotakadi, Venkata Subbaiah; Gaddam, Susmila Aparna; Ghosh, Sukhendu Bikash; Tartte, Vijaya

    2016-12-01

    The enhancement of plant secondary metabolite production in cell suspension cultures through biotic or abiotic elicitation has become a potential biotechnological approach for commercialization or large-scale production of bioactive compounds. Gymnema sylvestre R.Br. is an important medicinal plant, rich in a group of oleanane triterpenoid saponins called gymnemic acid, well known for its anti-diabetic activity. Two endophytic fungal strains were isolated from the leaves of G. sylvestre and identified as Polyancora globosa and Xylaria sp. based on the PCR amplification and internal transcribed spacer (ITS 1-5.8S-ITS 2) sequencing of 18S rRNA gene. The process of elicitation of cell suspension cultures of G. sylvestre with dried powder of fungal mycelia (DPFM) and extracellular culture filtrate (ECF) of endophytic fungi consistently enhanced the accumulation of gymnemic acid and the DPFM was proved to be an effective elicitor when compared to the ECF. The DPFM elicited the gymnemic acid content in the range of 2.57-10.45-fold, while the ECF elicited the gymnemic acid content in the range of 2.39-7.8-fold. P. globosa, a novel and a rare endophytic fungal strain, has shown a great influence on the production of gymnemic acid. Cell suspension cultures elicited with DPFM of P. globosa produced higher amount of gymnemic acid content (124.23 mg/g dried cell weight) compared to the cultures elicited with DPFM of Xylaria sp. (102.24 mg/g DCW). But the cultures treated with consortium of DPFM of both fungi showed great influence on the production of gymnemic acid (139.98 mg/g DCW) than the cultures treated with DPFM alone. Similarly, cultures treated with consortium of ECF of both fungi produced more gymnemic acid content (94.86 mg/g DCW) compared with cultures treated with ECF of Xylaria sp. (77.93 mg/g DCW) and ECF of P. globosa (78.65 mg/g DCW) alone.

  9. A Diffusible Signal from Arbuscular Mycorrhizal Fungi Elicits a Transient Cytosolic Calcium Elevation in Host Plant Cells1[W

    PubMed Central

    Navazio, Lorella; Moscatiello, Roberto; Genre, Andrea; Novero, Mara; Baldan, Barbara; Bonfante, Paola; Mariani, Paola

    2007-01-01

    The implication of calcium as intracellular messenger in the arbuscular mycorrhizal (AM) symbiosis has not yet been directly demonstrated, although often envisaged. We used soybean (Glycine max) cell cultures stably expressing the bioluminescent Ca2+ indicator aequorin to detect intracellular Ca2+ changes in response to the culture medium of spores of Gigaspora margarita germinating in the absence of the plant partner. Rapid and transient elevations in cytosolic free Ca2+ were recorded, indicating that diffusible molecules released by the mycorrhizal fungus are perceived by host plant cells through a Ca2+-mediated signaling. Similar responses were also triggered by two Glomus isolates. The fungal molecules active in generating the Ca2+ transient were constitutively released in the medium, and the induced Ca2+ signature was not modified by the coculture of germinating spores with plant cells. Even ungerminated spores were able to generate the signaling molecules, as proven when the germination was blocked by a low temperature. The fungal molecules were found to be stable to heat treatment, of small molecular mass (<3 kD), and, on the basis of extraction with an organic solvent, partially lipophilic. Evidence for the specificity of such an early fungal signal to the AM symbiosis is suggested by the lack of a Ca2+ response in cultured cells of the nonhost plant Arabidopsis (Arabidopsis thaliana) and by the up-regulation in soybean cells of genes related to Medicago truncatula DMI1, DMI2, and DMI3 and considered essential for the establishment of the AM symbiosis. PMID:17142489

  10. Cell division in Escherichia coli cultures monitored at single cell resolution

    PubMed Central

    Roostalu, Johanna; Jõers, Arvi; Luidalepp, Hannes; Kaldalu, Niilo; Tenson, Tanel

    2008-01-01

    Background A fundamental characteristic of cells is the ability to divide. To date, most parameters of bacterial cultures, including cell division, have been measured as cell population averages, assuming that all bacteria divide at a uniform rate. Results We monitored the division of individual cells in Escherichia coli cultures during different growth phases. Our experiments are based on the dilution of green fluorescent protein (GFP) upon cell division, monitored by flow cytometry. The results show that the vast majority of E. coli cells in exponentially growing cultures divided uniformly. In cultures that had been in stationary phase up to four days, no cell division was observed. However, upon dilution of stationary phase culture into fresh medium, two subpopulations of cells emerged: one that started dividing and another that did not. These populations were detectable by GFP dilution and displayed different side scatter parameters in flow cytometry. Further analysis showed that bacteria in the non-growing subpopulation were not dead, neither was the difference in growth capacity reducible to differences in stationary phase-specific gene expression since we observed uniform expression of several stress-related promoters. The presence of non-growing persisters, temporarily dormant bacteria that are tolerant to antibiotics, has previously been described within growing bacterial populations. Using the GFP dilution method combined with cell sorting, we showed that ampicillin lyses growing bacteria while non-growing bacteria retain viability and that some of them restart growth after the ampicillin is removed. Thus, our method enables persisters to be monitored even in liquid cultures of wild type strains in which persister formation has low frequency. Conclusion In principle, the approaches developed here could be used to detect differences in cell division in response to different environmental conditions and in cultures of unicellular organisms other than E

  11. Toxicity screening of waste products using cell culture techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petitmermet, M.; Favre, A.; Shah, B.

    1995-12-31

    More than 600,000 tons of residue from waste incineration plants is produced in Switzerland each year. These residues are slag, fly ashes, and residues from extended flue gas cleaning. Because they are contaminated with heavy metals, they have to be deposited in appropriate landfills. Due to the increasing amount of municipal and industrial waste and the decreasing amount of disposal sites, additional treatment of waste and its by-products is becoming more and more important. To decrease the amount of residuals to be deposited, the heavy metal content of the residues has to be reduced by physical, chemical, or biological methodsmore » to acceptably low levels to obtain products suitable for reuse in the construction industry. The cell reactions due to the presence of residues and their extracts were studied using quantitative and qualitative methods. The results of the applied cell culture techniques showed that fly ash was much more cytotoxic than slag. This finding correlates with the chemical analysis. The washed samples were again less cytotoxic than their corresponding unwashed samples due to the lack of water-soluble compounds. The very sensitive response of the cell cultures to toxic substances was used to classify and validate the applied treatment methods.« less

  12. Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent.

    PubMed

    Baluska, F; Jasik, J; Edelmann, H G; Salajová, T; Volkmann, D

    2001-03-01

    Marine macrolides latrunculins are highly specific toxins which effectively depolymerize actin filaments (generally F-actin) in all eukaryotic cells. We show that latrunculin B is effective on diverse cell types in higher plants and describe the use of this drug in probing F-actin-dependent growth and in plant development-related processes. In contrast to other eukaryotic organisms, cell divisions occurs in plant cells devoid of all actin filaments. However, the alignment of the division planes is often distorted. In addition to cell division, postembryonic development and morphogenesis also continue in the absence of F-actin. These experimental data suggest that F-actin is of little importance in the morphogenesis of higher plants, and that plants can develop more or less normally without F-actin. In contrast, F-actin turns out to be essential for cell elongation. When latrunculin B was added during germination, morphologically normal Arabidopsis and rye seedlings developed but, as a result of the absence of cell elongation, these were stunted, resembling either genetic dwarfs or environmental bonsai plants. In conclusion, F-actin is essential for the plant cell elongation, while this F-actin-dependent cell elongation is not an essential feature of plant-specific developmental programs.

  13. Good Cell Culture Practice for stem cells and stem-cell-derived models.

    PubMed

    Pamies, David; Bal-Price, Anna; Simeonov, Anton; Tagle, Danilo; Allen, Dave; Gerhold, David; Yin, Dezhong; Pistollato, Francesca; Inutsuka, Takashi; Sullivan, Kristie; Stacey, Glyn; Salem, Harry; Leist, Marcel; Daneshian, Mardas; Vemuri, Mohan C; McFarland, Richard; Coecke, Sandra; Fitzpatrick, Suzanne C; Lakshmipathy, Uma; Mack, Amanda; Wang, Wen Bo; Yamazaki, Daiju; Sekino, Yuko; Kanda, Yasunari; Smirnova, Lena; Hartung, Thomas

    2017-01-01

    The first guidance on Good Cell Culture Practice (GCCP) dates back to 2005. This document expands this to include aspects of quality assurance for in vitro cell culture focusing on the increasingly diverse cell types and culture formats used in research, product development, testing and manufacture of biotechnology products and cell-based medicines. It provides a set of basic principles of best practice that can be used in training new personnel, reviewing and improving local procedures, and helping to assure standard practices and conditions for the comparison of data between laboratories and experimentation performed at different times. This includes recommendations for the documentation and reporting of culture conditions. It is intended as guidance to facilitate the generation of reliable data from cell culture systems, and is not intended to conflict with local or higher level legislation or regulatory requirements. It may not be possible to meet all recommendations in this guidance for practical, legal or other reasons. However, when it is necessary to divert from the principles of GCCP, the risk of decreasing the quality of work and the safety of laboratory staff should be addressed and any conclusions or alternative approaches justified. This workshop report is considered a first step toward a revised GCCP 2.0.

  14. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro...

  15. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.

    PubMed

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-11-17

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells.

  16. High-Throughput Cancer Cell Sphere Formation for 3D Cell Culture.

    PubMed

    Chen, Yu-Chih; Yoon, Euisik

    2017-01-01

    Three-dimensional (3D) cell culture is critical in studying cancer pathology and drug response. Though 3D cancer sphere culture can be performed in low-adherent dishes or well plates, the unregulated cell aggregation may skew the results. On contrary, microfluidic 3D culture can allow precise control of cell microenvironments, and provide higher throughput by orders of magnitude. In this chapter, we will look into engineering innovations in a microfluidic platform for high-throughput cancer cell sphere formation and review the implementation methods in detail.

  17. Morphology of primary human venous endothelial cell cultures before and after culture medium exchange.

    PubMed

    Krüger-Genge, A; Fuhrmann, R; Jung, F; Franke, R P

    2015-01-01

    The evaluation of the interaction of human, venous endothelial cells (HUVEC) with body foreign materials on the cellular level cannot be performed in vivo, but is investigated in vitro under standard culture conditions. To maintain the vitality, proliferation and morphology of HUVEC seeded on body foreign substrates over days, the cell culture medium is usually exchanged every second day. It is well known, that alterations in the microenvironment of cells bear the risk of influencing cell morphology and function. In the current study the influence of cell culture medium exchange on HUVEC cytoskeletal microfilament structure and function was investigated. HUVEC in the third passage were seeded on extracellular matrix (ECM) - which was secreted from bovine corneal endothelial cells on glass- until functional confluence was reached. The experiment started 11 days after HUVEC seeding with an exchange of the cell culture medium followed by a staining of the actin microfilaments with phalloidin-rhodamin 1.5 and 5 minutes after medium exchange. The microfilaments were documented by use of an Olympus microscope (IMT-2) equipped with a UV lamp and online connected to a TV chain (Sony XC 50 ST/monochrome) implying an OPTIMAS - Image analysis system. Prostacyclin was analysed in the cell culture supernatant. 1.5 min after culture medium exchange in the functionally confluent cultures a slight disturbance of the actin microfilament structure with a broadening of the marginal filament band, a partial disconnection of cell-cell contacts and the appearance of intercellular fenestrations were observed. 5 minutes after medium exchange a redevelopment of the slightly disturbed microfilament structure with a condensation and narrowing of the marginal filament band was seen. 12 h later a further consolidation of the microfilament structure occurred. In addition, a perturbation of the cultured HUVEC occurred after cell culture medium exchange. The prostacyclin concentration in the

  18. Regulation of resveratrol production in Vitis amurensis cell cultures by calcium-dependent protein kinases.

    PubMed

    Aleynova, O A; Dubrovina, A S; Manyakhin, A Y; Karetin, Y A; Kiselev, K V

    2015-02-01

    Resveratrol is a naturally occurring plant stilbene that exhibits a wide range of valuable biological and pharmacological properties. Although the beneficial effects of trans-resveratrol to human health and plant protection against fungal pathogens are well-established, little is known about the molecular mechanisms regulating stilbene biosynthesis in plant cells. It has been recently shown that overexpression of the calcium-dependent protein kinase VaCPK20 gene considerably increased resveratrol accumulation in cell cultures of Vitis amurensis. It is possible that calcium-dependent protein kinases (CDPKs) play an important role in the regulation of resveratrol biosynthesis. In the present work, we investigated the effects of overexpression of other members of the CDPK multigene family (VaCPK9, VaCPK13, VaCPK21, and VaCPK29) on resveratrol accumulation and growth parameters of grape cell cultures. The obtained data show that overexpression of VaCPK29 increased resveratrol content 1.6-2.4-fold and fresh biomass accumulation 1.1-1.4-fold in the four independently transformed cell lines of V. amurensis compared with that in the empty vector-transformed calli. However, overexpression of the VaCPK9, VaCPK13, and VaCPK21 genes did not considerably affect resveratrol content and fresh/dry biomass accumulation in the independently transformed cell lines of V. amurensis. VaCPK29-transformed calli were capable of producing between 1.02 and 1.39 mg/l of resveratrol, while the control calli produced 0.48 to 0.79 mg/l of resveratrol. The data indicate that the VaCPK9, VaCPK13, and VaCPK21 genes are not involved in the regulation of stilbene biosynthesis in grape cells, while the VaCPK29 and VaCPK20 genes are implicated in resveratrol biosynthesis as positive regulators.

  19. Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition

    PubMed Central

    Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena

    2017-01-01

    Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO3–) and ammonium (NH4+). However, the composition of the N source is important, because excess of NH4+ promotes morphological disorders. Plants cultured on NH4+ as the sole N source exhibit serious growth inhibition, commonly referred to as “ammonium toxicity syndrome.” NH4+-mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH4+ nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH4+ as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH4+ toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH4+-mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia, a receptor-like kinase involved in the control of cell wall extension. PMID:28848567

  20. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.

    PubMed

    Halldorsson, Skarphedinn; Lucumi, Edinson; Gómez-Sjöberg, Rafael; Fleming, Ronan M T

    2015-01-15

    Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dishes, flasks or well-plates. Many decades of heuristic optimization have gone into perfecting conventional cell culture devices and protocols. In comparison, even for the most commonly used microfluidic cell culture devices, such as those fabricated from polydimethylsiloxane (PDMS), collective understanding of the differences in cellular behavior between microfluidic and macroscopic culture is still developing. Moving in vitro culture from macroscopic culture to PDMS based devices can come with unforeseen challenges. Changes in device material, surface coating, cell number per unit surface area or per unit media volume may all affect the outcome of otherwise standard protocols. In this review, we outline some of the advantages and challenges that may accompany a transition from macroscopic to microfluidic cell culture. We focus on decisive factors that distinguish macroscopic from microfluidic cell culture to encourage a reconsideration of how macroscopic cell culture principles might apply to microfluidic cell culture. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Determination of specific growth stages of plant cell suspension cultures by monitoring conductivity changes in the medium.

    PubMed

    Hahlbrock, K; Ebel, J; Oaks, A; Auden, J; Liersch, M

    1974-03-01

    Conductivity changes in the medium of cultured soybean (Glycine max L.) cells were shown to be strictly correlated with nitrate uptake and growth of the cultures. A continuous record of the conductivity was used as a simple and reliable method of determining specific growth stages and concomitant peaks in the activities of nitrate reductase and phenylalanine ammonia-lyase.

  2. Ortho-phthalic acid esters in lipophilic extract from the cell culture of Aconitum baicalense Turcz ex Rapaics 1907.

    PubMed

    Semenov, A A; Enikeev, A G; Snetkova, L V; Permyakov, A V; Sokolova, N A; Dudareva, L V

    2016-11-01

    Optically active bis-2R(-)ethylhexyl o-phthalate was obtained with 0.18% yield from dry cultured cells of Aconitum baicalense Turcz ex Rapaics 1907 by extraction with petroleum ether followed by silica gel column chromatography. Its structure was confirmed by the analysis of 13 C and 1 H NMR spectra. Seasonal fluctuations of quantitative phthalate content in A. baicalense cells were identified. The tests were performed under conditions excluding the presence of phthalates in reagents, materials, and laboratory dishes. The same substance was shown to be produced by cultivated cells of other plants. Biosynthesis of esters of ortho-phthalic acid by cultivated plant cells was discovered for the first time.

  3. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory.

    PubMed

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V McNeil; Segarra, Verónica A

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

  4. Multizone Paper Platform for 3D Cell Cultures

    PubMed Central

    Derda, Ratmir; Hong, Estrella; Mwangi, Martin; Mammoto, Akiko; Ingber, Donald E.; Whitesides, George M.

    2011-01-01

    In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures. PMID:21573103

  5. Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum

    PubMed Central

    Thiruvengadam, Muthu; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Lee, Taek-Jun; Kim, Seung-Hyun; Chung, Ill-Min

    2016-01-01

    Anthraquinones (AQs) and phenolic compounds are important phytochemicals that are biosynthesized in cell suspension cultures of Polygonum multiflorum. We wanted to optimize the effects of plant growth regulators (PGRs), media, sucrose, l-glutamine, jasmonic acid (JA), and salicylic acid (SA) for the production of phytochemicals and biomass accumulation in a cell suspension culture of P. multiflorum. The medium containing Murashige and Skoog (MS) salts and 4% sucrose supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L thidiazuron, and 100 µM l-glutamine at 28 days of cell suspension culture was suitable for biomass accumulation and AQ production. Maximum biomass accumulation (12.5 and 12.35 g fresh mass (FM); 3 and 2.93 g dry mass (DM)) and AQ production (emodin 295.20 and 282 mg/g DM; physcion 421.55 and 410.25 mg/g DM) were observed using 100 µM JA and SA, respectively. JA- and SA-elicited cell cultures showed several-fold higher biomass accumulation and AQ production than the control cell cultures. Furthermore, the cell suspension cultures effectively produced 23 phenolic compounds, such as flavonols and hydroxycinnamic and hydroxybenzoic acid derivatives. PGR-, JA-, and SA-elicited cell cultures produced a higher amount of AQs and phenolic compounds. Because of these metabolic changes, the antioxidant, antimicrobial, and anticancer activities were high in the PGR-, JA-, and SA-elicited cell cultures. The results showed that the elicitors (JA and SA) induced the enhancement of biomass accumulation and phytochemical (AQs and phenolic compounds) production as well as biological activities in the cell suspension cultures of P. multiflorum. This optimized protocol can be developed for large-scale biomass accumulation and production of phytochemicals (AQs and phenolic compounds) from cell suspension cultures, and the phytochemicals can be used for various biological activities. PMID:27854330

  6. Plant regeneration from protoplasts of embryogenic cell suspensions of Coffea arabica L. cv. caturra.

    PubMed

    Acuna, J R; de Pena, M

    1991-09-01

    Coffee plants were regenerated from protoplasts isolated from embryogenic cell suspension cultures derived from somatic embryos of Coffea arabica L. cv. caturra. Yields of viable protoplasts ranged from 1×10(5) to 6×10(5) protoplast/g fresh weight. Protoplast preparations usually contained no contaminating cells, and when present, the number of cells never exceeded 0.1% of the total. Plating efficiencies of protoplast ranged from 1 to 10%. Embryogenic protocolonies obtained after several subcultures in a medium supplemented with 0.5 mg/l each of benzylaminopurine, 2,4-dichlorophenoxyacetic acid and naphtaleneacetic acid, were transferred to a medium lacking plant growth regulators. Well differentiated embryos were formed in selected protocolonies that contained many embryos-like structures. Approximately 70% of the somatic embryos developed into green rooted plantlets which were succesfully transferred to vessels containing sterilized scoria. Plants grown for two months in scoria were finally transferred to greenhouse.

  7. Regulation of Water in Plant Cells

    ERIC Educational Resources Information Center

    Kowles, Richard V.

    2010-01-01

    Cell water relationships are important topics to be included in cell biology courses. Differences exist in the control of water relationships in plant cells relative to control in animal cells. One important reason for these differences is that turgor pressure is a consideration in plant cells. Diffusion and osmosis are the underlying factors…

  8. Recent advances in phytoplasma research: from genetic diversity and genome evolution to pathogenic redirection of plant stem cell fate

    USDA-ARS?s Scientific Manuscript database

    Parasitizing phloem sieve cells and being transmitted by insects, phytoplasmas are a unique group of cell wall-less bacteria responsible for numerous plant diseases worldwide. Due to difficulties in establishing axenic culture of phytoplasmas, phenotypic characters suitable for conventional microbia...

  9. Cell culture's spider silk road.

    PubMed

    Perkel, Jeffrey

    2014-06-01

    A number of synthetic and natural materials have been tried in cell culture and tissue engineering applications in recent years. Now Jeffrey Perkel takes a look at one new culture component that might surprise you-spider silk.

  10. Cell culture techniques in honey bee research

    USDA-ARS?s Scientific Manuscript database

    Cell culture techniques are indispensable in most if not all life science disciplines to date. Wherever cell culture models are lacking scientific development is hampered. Unfortunately this has been and still is the case in honey bee research because permanent honey bee cell lines have not yet been...

  11. Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion.

    PubMed

    Lee, Ko-Eun; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Joo, Gil-Jae; Lee, In-Jung; Ko, Jae-Hwan; Kim, Jin-Ho

    2015-09-01

    The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

  12. Magnetic field exposure stiffens regenerating plant protoplast cell walls.

    PubMed

    Haneda, Toshihiko; Fujimura, Yuu; Iino, Masaaki

    2006-02-01

    Single suspension-cultured plant cells (Catharanthus roseus) and their protoplasts were anchored to a glass plate and exposed to a magnetic field of 302 +/- 8 mT for several hours. Compression forces required to produce constant cell deformation were measured parallel to the magnetic field by means of a cantilever-type force sensor. Exposure of intact cells to the magnetic field did not result in any changes within experimental error, while exposure of regenerating protoplasts significantly increased the measured forces and stiffened regenerating protoplasts. The diameters of intact cells or regenerating protoplasts were not changed after exposure to the magnetic field. Measured forces for regenerating protoplasts with and without exposure to the magnetic field increased linearly with incubation time, with these forces being divided into components based on the elasticity of synthesized cell walls and cytoplasm. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye, and no changes were noted after exposure to the magnetic field. Analysis suggested that exposure to the magnetic field roughly tripled the Young's modulus of the newly synthesized cell wall without any lag.

  13. The effect of TRAIL molecule on cell viability in in vitro beta cell culture.

    PubMed

    Tekmen, I; Ozyurt, D; Pekçetin, C; Buldan, Z

    2007-06-01

    Insulin-dependent diabetes mellitus (IDDM) is an organ-specific autoimmune disorder triggered by autoreactive T cells directed to pancreas beta-cell antigens. In this disorder, more than 90% of beta cells are destroyed. Cell death may be mediated via soluble or membrane-bound cell death ligands. One of these ligands may be tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF-alpha superfamily. In the present study, we examined whether TRAIL had cytotoxic effects on adult rat pancreas beta cell cultures and INS1-E rat insulinoma cell line cultures or not. In this study, cell destruction models were built with TRAIL concentrations of 10, 100 and 1000 ng. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used for evaluating cell viability. It was detected that cell cultures with TRAIL added showed no differences statistically when compared with control cultures containing no toxic additions. These results showed that TRAIL did not have significant cytotoxic effects on pancreas beta cell culture and INS-1E rat insulinoma cell line cultures. Detection of the expression of TRAIL receptors and natural apoptosis inhibitor proteins will be favourable to investigate the resistance mechanisms to TRAIL-induced cell death in this cell culture system.

  14. Cell sources for in vitro human liver cell culture models

    PubMed Central

    Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-01-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro. However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro. Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595

  15. Sensing Cell-Culture Assays with Low-Cost Circuitry.

    PubMed

    Pérez, Pablo; Huertas, Gloria; Maldonado-Jacobi, Andrés; Martín, María; Serrano, Juan A; Olmo, Alberto; Daza, Paula; Yúfera, Alberto

    2018-06-11

    An alternative approach for cell-culture end-point protocols is proposed herein. This new technique is suitable for real-time remote sensing. It is based on Electrical Cell-substrate Impedance Spectroscopy (ECIS) and employs the Oscillation-Based Test (OBT) method. Simple and straightforward circuit blocks form the basis of the proposed measurement system. Oscillation parameters - frequency and amplitude - constitute the outcome, directly correlated with the culture status. A user can remotely track the evolution of cell cultures in real time over the complete experiment through a web tool continuously displaying the acquired data. Experiments carried out with commercial electrodes and a well-established cell line (AA8) are described, obtaining the cell number in real time from growth assays. The electrodes have been electrically characterized along the design flow in order to predict the system performance and the sensitivity curves. Curves for 1-week cell growth are reported. The obtained experimental results validate the proposed OBT for cell-culture characterization. Furthermore, the proposed electrode model provides a good approximation for the cell number and the time evolution of the studied cultures.

  16. Agrobacterium tumefaciens mutants affected in attachment to plant cells.

    PubMed Central

    Douglas, C J; Halperin, W; Nester, E W

    1982-01-01

    An analysis of Agrobacterium tumefaciens mutants with Tn5 insertions in chromosomal DNA showed that the chromosome of A. tumefaciens codes for a specific ability of this bacterium to attach to plant cells. This ability is associated with tumorigenesis by A. tumefaciens, the ability of avirulent A. tumefaciens to inhibit tumorigenesis, and the ability to adsorb certain phages. A second class of chromosomal mutations affects tumorigenesis without altering the ability to attach to plant cells. The attachment of A. tumefaciens to plant cells was assayed by mixing radiolabeled bacteria with suspensions of tobacco tissue culture cells or freshly isolated Zinnia leaf mesophyll cells. Under the conditions of this assay, an avirulent Ti plasmid-cured strain attached to the same extent as the same strain containing pTiB6806. Six of eight avirulent mutants with Tn5 insertions in chromosomal DNA showed defective attachment, whereas two retained wild-type attachment ability. In contrast to the strains showing wild-type attachment, the attachment-defective mutants failed to inhibit tumorigenesis when inoculated onto Jerusalem artichoke slices before inoculation of a virulent strain and also showed a loss of sensitivity to two Agrobacterium phages. The loss of phage sensitivity appeared to be due to a loss of ability to adsorb the phages. Staining with Calcofluor indicated that the mutants retained the ability to synthesize cellulose fibrils, which have been implicated in the attachment process. Southern filter hybridizations demonstrated that each mutant contained a single Tn5 insertion, and genetic linkage between the Tn5 insertion in one mutant and the attachment phenotype has also been demonstrated. Images PMID:6292165

  17. Cell Culture as an Alternative in Education.

    ERIC Educational Resources Information Center

    Nardone, Roland M.

    1990-01-01

    Programs that are intended to inform and provide "hands-on" experience for students and to facilitate the introduction of cell culture-based laboratory exercises into the high school and college laboratory are examined. The components of the CellServ Program and the Cell Culture Toxicology Training Programs are described. (KR)

  18. Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway

    PubMed Central

    Gordon-Kamm, William; Dilkes, Brian P.; Lowe, Keith; Hoerster, George; Sun, Xifan; Ross, Margit; Church, Laura; Bunde, Chris; Farrell, Jeff; Hill, Patrea; Maddock, Sheila; Snyder, Jane; Sykes, Louisa; Li, Zhongsen; Woo, Young-min; Bidney, Dennis; Larkins, Brian A.

    2002-01-01

    The genome of the Mastreviruses encodes a replication-associated protein (RepA) that interacts with members of the plant retinoblastoma-related protein family, which are putative cell cycle regulators. Expression of ZmRb1, a maize retinoblastoma-related gene, and RepA inhibited and stimulated, respectively, cell division in tobacco cell cultures. The effect of RepA was mitigated by over-expression of ZmRb1. RepA increased transformation frequency and callus growth rate of high type II maize germplasm. RepA-containing transgenic maize calli remained embryogenic, were readily regenerable, and produced fertile plants that transmitted transgene expression in a Mendelian fashion. In high type II, transformation frequency increased with the strength of the promoter driving RepA expression. When a construct in which RepA was expressed behind its native LIR promoter was used, primary transformation frequencies did not improve for two elite Pioneer maize inbreds. However, when LIR:RepA-containing transgenic embryos were used in subsequent rounds of transformation, frequencies were higher in the RepA+ embryos. These data demonstrate that RepA can stimulate cell division and callus growth in culture, and improve maize transformation. PMID:12185243

  19. The usefulness of three-dimensional cell culture in induction of cancer stem cells from esophageal squamous cell carcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, Daisuke; Kato, Kazunori, E-mail: kzkatou@juntendo.ac.jp; Department of Atopy Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421

    2013-05-17

    Highlights: •Spheroids were created from esophageal carcinoma cells using NanoCulture® Plates. •The proportion of strongly ALDH-positive cells increased in 3-D culture. •Expression of cancer stem cell-related genes was enhanced in 3-D culture. •CA-9 expression was enhanced, suggesting hypoxia had been induced in 3-D culture. •Drug resistance was increased. 3-D culture is useful for inducing cancer stem cells. -- Abstract: In recent years, research on resistance to chemotherapy and radiotherapy in cancer treatment has come under the spotlight, and researchers have also begun investigating the relationship between resistance and cancer stem cells. Cancer stem cells are assumed to be present inmore » esophageal cancer, but experimental methods for identification and culture of these cells have not yet been established. To solve this problem, we created spheroids using a NanoCulture® Plate (NCP) for 3-dimensional (3-D) cell culture, which was designed as a means for experimentally reproducing the 3-D structures found in the body. We investigated the potential for induction of cancer stem cells from esophageal cancer cells. Using flow cytometry we analyzed the expression of surface antigen markers CD44, CD133, CD338 (ABCG2), CD318 (CDCP1), and CD326 (EpCAM), which are known cancer stem cell markers. None of these surface antigen markers showed enhanced expression in 3-D cultured cells. We then analyzed aldehyde dehydrogenase (ALDH) enzymatic activity using the ALDEFLUOR reagent, which can identify immature cells such as stem cells and precursor cells. 3-D-cultured cells were strongly positive for ALDH enzyme activity. We also analyzed the expression of the stem cell-related genes Sox-2, Nanog, Oct3/4, and Lin28 using RT-PCR. Expression of Sox-2, Nanog, and Lin28 was enhanced. Analysis of expression of the hypoxic surface antigen marker carbonic anhydrase-9 (CA-9), which is an indicator of cancer stem cell induction and maintenance, revealed that CA-9

  20. Metabolic Labeling and Membrane Fractionation for Comparative Proteomic Analysis of Arabidopsis thaliana Suspension Cell Cultures

    PubMed Central

    Szymanski, Witold G.; Kierszniowska, Sylwia; Schulze, Waltraud X.

    2013-01-01

    Plasma membrane microdomains are features based on the physical properties of the lipid and sterol environment and have particular roles in signaling processes. Extracting sterol-enriched membrane microdomains from plant cells for proteomic analysis is a difficult task mainly due to multiple preparation steps and sources for contaminations from other cellular compartments. The plasma membrane constitutes only about 5-20% of all the membranes in a plant cell, and therefore isolation of highly purified plasma membrane fraction is challenging. A frequently used method involves aqueous two-phase partitioning in polyethylene glycol and dextran, which yields plasma membrane vesicles with a purity of 95% 1. Sterol-rich membrane microdomains within the plasma membrane are insoluble upon treatment with cold nonionic detergents at alkaline pH. This detergent-resistant membrane fraction can be separated from the bulk plasma membrane by ultracentrifugation in a sucrose gradient 2. Subsequently, proteins can be extracted from the low density band of the sucrose gradient by methanol/chloroform precipitation. Extracted protein will then be trypsin digested, desalted and finally analyzed by LC-MS/MS. Our extraction protocol for sterol-rich microdomains is optimized for the preparation of clean detergent-resistant membrane fractions from Arabidopsis thaliana cell cultures. We use full metabolic labeling of Arabidopsis thaliana suspension cell cultures with K15NO3 as the only nitrogen source for quantitative comparative proteomic studies following biological treatment of interest 3. By mixing equal ratios of labeled and unlabeled cell cultures for joint protein extraction the influence of preparation steps on final quantitative result is kept at a minimum. Also loss of material during extraction will affect both control and treatment samples in the same way, and therefore the ratio of light and heave peptide will remain constant. In the proposed method either labeled or unlabeled

  1. Hydroponics--Studies in Plant Culture With Historical Roots.

    ERIC Educational Resources Information Center

    Lopez, Luz Maria

    1981-01-01

    Presents methods for demonstrating and applying scientific principles by growing plants through water culture (hydroponics), including a review of the history of hydroponics, re-creating some early experiments, and setting up a modern hydroponic system. (CS)

  2. Microfluidic engineered high cell density three-dimensional neural cultures

    NASA Astrophysics Data System (ADS)

    Cullen, D. Kacy; Vukasinovic, Jelena; Glezer, Ari; La Placa, Michelle C.

    2007-06-01

    Three-dimensional (3D) neural cultures with cells distributed throughout a thick, bioactive protein scaffold may better represent neurobiological phenomena than planar correlates lacking matrix support. Neural cells in vivo interact within a complex, multicellular environment with tightly coupled 3D cell-cell/cell-matrix interactions; however, thick 3D neural cultures at cell densities approaching that of brain rapidly decay, presumably due to diffusion limited interstitial mass transport. To address this issue, we have developed a novel perfusion platform that utilizes forced intercellular convection to enhance mass transport. First, we demonstrated that in thick (>500 µm) 3D neural cultures supported by passive diffusion, cell densities <=5.0 × 103 cells mm-3 were required for survival. In 3D neuronal and neuronal-astrocytic co-cultures with increased cell density (>=104 cells mm-3), continuous medium perfusion at 2.0-11.0 µL min-1 improved viability compared to non-perfused cultures (p < 0.01), which exhibited widespread cell death and matrix degradation. In perfused cultures, survival was dependent on proximity to the perfusion source at 2.00-6.25 µL min-1 (p < 0.05); however, at perfusion rates of 10.0-11.0 µL min-1 survival did not depend on the distance from the perfusion source, and resulted in a preservation of cell density with >90% viability in both neuronal cultures and neuronal-astrocytic co-cultures. This work demonstrates the utility of forced interstitial convection in improving the survival of high cell density 3D engineered neural constructs and may aid in the development of novel tissue-engineered systems reconstituting 3D cell-cell/cell-matrix interactions.

  3. Refractive index of plant cell walls

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  4. Xylogenesis in zinnia (Zinnia elegans) cell cultures: unravelling the regulatory steps in a complex developmental programmed cell death event.

    PubMed

    Iakimova, Elena T; Woltering, Ernst J

    2017-04-01

    Physiological and molecular studies support the view that xylogenesis can largely be determined as a specific form of vacuolar programmed cell death (PCD). The studies in xylogenic zinnia cell culture have led to many breakthroughs in xylogenesis research and provided a background for investigations in other experimental models in vitro and in planta . This review discusses the most essential earlier and recent findings on the regulation of xylem elements differentiation and PCD in zinnia and other xylogenic systems. Xylogenesis (the formation of water conducting vascular tissue) is a paradigm of plant developmental PCD. The xylem vessels are composed of fused tracheary elements (TEs)-dead, hollow cells with patterned lignified secondary cell walls. They result from the differentiation of the procambium and cambium cells and undergo cell death to become functional post-mortem. The TE differentiation proceeds through a well-coordinated sequence of events in which differentiation and the programmed cellular demise are intimately connected. For years a classical experimental model for studies on xylogenesis was the xylogenic zinnia (Zinnia elegans) cell culture derived from leaf mesophyll cells that, upon induction by cytokinin and auxin, transdifferentiate into TEs. This cell system has been proven very efficient for investigations on the regulatory components of xylem differentiation which has led to many discoveries on the mechanisms of xylogenesis. The knowledge gained from this system has potentiated studies in other xylogenic cultures in vitro and in planta. The present review summarises the previous and latest findings on the hormonal and biochemical signalling, metabolic pathways and molecular and gene determinants underlying the regulation of xylem vessels differentiation in zinnia cell culture. Highlighted are breakthroughs achieved through the use of xylogenic systems from other species and newly introduced tools and analytical approaches to study the

  5. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    PubMed

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Changes on protein expression associated with salinity tolerance in Brassica cell cultures.

    PubMed

    Martín, J P; Elavummoottil, O C; Moreno, M L

    1993-09-01

    The synthesis of proteins from salt-tolerant Brassica oleracea L. var. botrytis L. subvar. cauliflora (Gars.) DC. (cauliflower) cell cultures is modified in relation to controls in several features. There are nine newly induced polypeptides in tolerant cultures (absent in control conditions). Some of them are only present under low salt levels (85 mM NaCl). Another group seems to be representative of moderate and high salt levels (170 and 255 mM NaCl), and a third group is present in all the salt conditions tested. On the other hand, the synthesis of most of the polypeptides present in control conditions is modified in salt-tolerant cultures by increasing, decreasing or stopping their synthesis in any of the tested conditions. The relationship between these changes in Brassica and other plant systems is discussed.

  7. Biona-C Cell Culture pH Monitoring System

    NASA Technical Reports Server (NTRS)

    Friedericks, C.

    1999-01-01

    Sensors 2000! is developing a system to demonstrate the ability to perform accurate, real-time measurements of pH and CO2 in a cell culture media in Space. The BIONA-C Cell Culture pH Monitoring System consists of S2K! developed ion selective sensors and control electronics integrated with the fluidics of a cell culture system. The integrated system comprises a "rail" in the Cell Culture Module (CCM) of WRAIR (Space Biosciences of Walter Read Army Institute of Research). The CCM is a Space Shuttle mid-deck locker experiment payload. The BIONA-C is displayed along with associated graphics and text explanations. The presentation will stimulate interest in development of sensor technology for real-time cell culture measurements. The transfer of this technology to other applications will also be of interest. Additional information is contained in the original document.

  8. Stereoselective oxidation of racemic 1-arylethanols by basil cultured cells of Ocimum basilicum cv. Purpurascens.

    PubMed

    Itoh, Ken-ichi; Nakamura, Kaoru; Utsukihara, Takamitsu; Sakamaki, Hiroshi; Horiuchi, C Akira

    2008-05-01

    The biotransformation of racemic 1-phenylethanol (30 mg) with plant cultured cells of basil (Ocimum basilicum cv. Purpurascens, 5 g wet wt) by shaking 120 rpm at 25 degrees C for 7 days in the dark gave (R)-(+)-1-phenylethanol and acetophenone in 34 and 24% yields, respectively. The biotransformation can be applied to other 1-arylethanols and basil cells oxidized the (S)-alcohols to the corresponding ketones remaining the (R)-alcohols in excellent ee.

  9. Gene expression analysis of WRKY transcription factors in Arabidopsis thaliana cell cultures during a parabolic flight

    NASA Astrophysics Data System (ADS)

    Babbick, Maren; Barjaktarović, Žarko; Hampp, Ruediger

    Plants sense gravity by specialized cells (statocytes) and adjust growth and development accordingly. It has, however, also been shown that plant cells which are not part of specialized tissues are also able to sense gravitational forces. Therefore we used undifferentiated, homogeneous cell cultures of Arabidopsis thaliana (cv. Columbia) in order to identify early alterations in gene expression as a response to altered gravitational field strengths. In this contribution we report on cell cultures exposed to parabolic flights (approximately 20 sec of microgravity). For this short-term exposure study, we specifically checked for genes at the beginning of signal transduction chains, such as those coding for transcription factors (TFs). TFs are small proteins that regulate expression of their target genes by binding to specific promoter sequences. Our main focus were members of the so-called WRKY TF family. WRKY TFs are known to be involved in various physiological processes like senescence and pathogen defense. By quantifying transcriptional changes of these genes by real-time RT-PCR, we wanted to find out, how gene expression is affected by both hyperand microgravity conditions during a parabolic flight. For this purpose Arabidopsis thaliana callus cultures were metabolically quenched by the injection of RNAlater at the end of the microgravity-phase of each parabola. The data we present will show how fast changes in amounts of transcripts will occur, and to what degree the expression profiles are comparable with data obtained from exposures to hypergravity and simulated microgravity.

  10. Hibiscus syriacus Extract from an Established Cell Culture Stimulates Skin Wound Healing.

    PubMed

    di Martino, O; Tito, A; De Lucia, A; Cimmino, A; Cicotti, F; Apone, F; Colucci, G; Calabrò, V

    2017-01-01

    Higher plants are the source of a wide array of bioactive compounds that support skin integrity and health. Hibiscus syriacus , family Malvaceae, is a plant of Chinese origin known for its antipyretic, anthelmintic, and antifungal properties. The aim of this study was to assess the healing and hydration properties of H. syriacus ethanolic extract (HSEE). We established a cell culture from Hibiscus syriacus leaves and obtained an ethanol soluble extract from cultured cells. The properties of the extract were tested by gene expression and functional analyses on human fibroblast, keratinocytes, and skin explants. HSEE treatment increased the healing potential of fibroblasts and keratinocytes. Specifically, HSEE significantly stimulated fibronectin and collagen synthesis by 16 and 60%, respectively, while fibroblasts contractility was enhanced by 30%. These results were confirmed on skin explants, where HSEE accelerated the wound healing activity in terms of epithelium formation and fibronectin production. Moreover, HSEE increased the expression of genes involved in skin hydration and homeostasis. Specifically, aquaporin 3 and filaggrin genes were enhanced by 20 and 58%, respectively. Our data show that HSEE contains compounds capable of stimulating expression of biomarkers relevant to skin regeneration and hydration thereby counteracting molecular pathways leading to skin damage and aging.

  11. Hibiscus syriacus Extract from an Established Cell Culture Stimulates Skin Wound Healing

    PubMed Central

    di Martino, O.; Tito, A.; De Lucia, A.; Cimmino, A.; Cicotti, F.; Apone, F.; Colucci, G.

    2017-01-01

    Higher plants are the source of a wide array of bioactive compounds that support skin integrity and health. Hibiscus syriacus, family Malvaceae, is a plant of Chinese origin known for its antipyretic, anthelmintic, and antifungal properties. The aim of this study was to assess the healing and hydration properties of H. syriacus ethanolic extract (HSEE). We established a cell culture from Hibiscus syriacus leaves and obtained an ethanol soluble extract from cultured cells. The properties of the extract were tested by gene expression and functional analyses on human fibroblast, keratinocytes, and skin explants. HSEE treatment increased the healing potential of fibroblasts and keratinocytes. Specifically, HSEE significantly stimulated fibronectin and collagen synthesis by 16 and 60%, respectively, while fibroblasts contractility was enhanced by 30%. These results were confirmed on skin explants, where HSEE accelerated the wound healing activity in terms of epithelium formation and fibronectin production. Moreover, HSEE increased the expression of genes involved in skin hydration and homeostasis. Specifically, aquaporin 3 and filaggrin genes were enhanced by 20 and 58%, respectively. Our data show that HSEE contains compounds capable of stimulating expression of biomarkers relevant to skin regeneration and hydration thereby counteracting molecular pathways leading to skin damage and aging. PMID:29333453

  12. Retinoic acid stability in stem cell cultures.

    PubMed

    Sharow, Kyle A; Temkin, Boris; Asson-Batres, Mary Ann

    2012-01-01

    It has been reported that retinoids, such as retinoic acid (RA) and retinol (ROL), dissolved in aqueous solutions are susceptible to oxidative damage when exposed to light, air, and relatively high temperatures, conditions that are normal for culturing stem cells. Thus, questions arise regarding the interpretation of results obtained from studies of mouse embryonic stem cells exposed to retinoids because their isomerization state, their stability in culture conditions, and their interactions with other potential differentiation factors in growth media could influence developmental processes under study. Media samples were supplemented with retinoids and exposed to cell culture conditions with and without mouse embryonic stem cells (mESC), and retinoids were extracted and analyzed using HPLC. To determine whether retinoids are stable in media supplemented with fetal bovine serum (FBS) or in chemically-defined, serum-free media, mESC adapted to each type of growth media were investigated. Studies reported here indicate there was little loss or isomerization of at-RA, 9-cis-RA, 13-cis-RA, or ROL in cell cultures grown in serum-supplemented media when cell cultures were maintained in the dark and manipulated and observed under yellow light. In contrast, the stability of both at-RA and ROL were determined to be greatly reduced in serum-free media as compared with serum-supplemented media. Addition of 6 mg/ml bovine serum albumin was found to stabilize retinoids in serum-free media. It was also determined that ROL is less stable than RA in cell culture conditions.

  13. Rotary orbital suspension culture of embryonic stem cell-derived neural stem/progenitor cells: impact of hydrodynamic culture on aggregate yield, morphology and cell phenotype.

    PubMed

    Laundos, Tiago L; Silva, Joana; Assunção, Marisa; Quelhas, Pedro; Monteiro, Cátia; Oliveira, Carla; Oliveira, Maria J; Pêgo, Ana P; Amaral, Isabel F

    2017-08-01

    Embryonic stem (ES)-derived neural stem/progenitor cells (ES-NSPCs) constitute a promising cell source for application in cell therapies for the treatment of central nervous system disorders. In this study, a rotary orbital hydrodynamic culture system was applied to single-cell suspensions of ES-NSPCs, to obtain homogeneously-sized ES-NSPC cellular aggregates (neurospheres). Hydrodynamic culture allowed the formation of ES-NSPC neurospheres with a narrower size distribution than statically cultured neurospheres, increasing orbital speeds leading to smaller-sized neurospheres and higher neurosphere yield. Neurospheres formed under hydrodynamic conditions (72 h at 55 rpm) showed higher cell compaction and comparable percentages of viable, dead, apoptotic and proliferative cells. Further characterization of cellular aggregates provided new insights into the effect of hydrodynamic shear on ES-NSPC behaviour. Rotary neurospheres exhibited reduced protein levels of N-cadherin and β-catenin, and higher deposition of laminin (without impacting fibronectin deposition), matrix metalloproteinase-2 (MMP-2) activity and percentage of neuronal cells. In line with the increased MMP-2 activity levels found, hydrodynamically-cultured neurospheres showed higher outward migration on laminin. Moreover, when cultured in a 3D fibrin hydrogel, rotary neurospheres generated an increased percentage of neuronal cells. In conclusion, the application of a constant orbital speed to single-cell suspensions of ES-NSPCs, besides allowing the formation of homogeneously-sized neurospheres, promoted ES-NSPC differentiation and outward migration, possibly by influencing the expression of cell-cell adhesion molecules and the secretion of proteases/extracellular matrix proteins. These findings are important when establishing the culture conditions needed to obtain uniformly-sized ES-NSPC aggregates, either for use in regenerative therapies or in in vitro platforms for biomaterial development or

  14. How-To-Do-It: Using Cauliflower to Demonstrate Plant Tissue Culture.

    ERIC Educational Resources Information Center

    Haldeman, Janice H.; Ellis, Jane P.

    1988-01-01

    Presents techniques used for disinfestation of plant material, preparation of equipment and media, and laboratory procedures for tissue culture using cauliflower. Details methods for preparing solutions and plant propagation by cloning. (CW)

  15. INCIDENCE AND DETECTION OF PLEUROPNEUMONIA-LIKE ORGANISMS IN CELL CULTURES BY FLUORESCENT ANTIBODY AND CULTURAL PROCEDURES1

    PubMed Central

    Barile, Michael F.; Malizia, Walter F.; Riggs, Donald B.

    1962-01-01

    Barile, Michael F. (National Institutes of Health, Bethesda, Md.), Walter F. Malizia, and Donald B. Riggs. Incidence and detection of pleuropneumonia-like organisms in cell cultures by fluorescent antibody and cultural procedures. J. Bacteriol. 84:130–136. 1962—A total of 102 tissue-cell cultures from 17 separate laboratories was examined for pleuropneumonia-like organisms (PPLO) by the fluorescent antibody and cultural procedures. PPLO were isolated from 48 of the 49 tissue-cell cultures found positive for PPLO by the fluorescent antibody procedure, and results of the two procedures agreed in 101 of the 102 (99%) cases. PPLO were isolated from none of 10 primary-cell cultures prepared from six animal species and from 48 of 92 (52%) continuous-cell cultures prepared from eight animal species. Cells grown in media containing antibiotics were more frequently contaminated with PPLO (72%) than cells grown in antibiotic-free media (7%). Cultures (91%) from tissue-culture-producing laboratories and cultures (76%) used for propagation of microorganisms were contaminated with PPLO, although none used for tissue-culture metabolic studies was contaminated. In addition, our findings support the view that PPLO contamination of cell cultures is probably owing to bacterial contaminants which revert to L forms in the presence of antibiotics. Images PMID:13865001

  16. Morphological classification of plant cell deaths.

    PubMed

    van Doorn, W G; Beers, E P; Dangl, J L; Franklin-Tong, V E; Gallois, P; Hara-Nishimura, I; Jones, A M; Kawai-Yamada, M; Lam, E; Mundy, J; Mur, L A J; Petersen, M; Smertenko, A; Taliansky, M; Van Breusegem, F; Wolpert, T; Woltering, E; Zhivotovsky, B; Bozhkov, P V

    2011-08-01

    Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during tissue and organ formation and elimination, whereas necrosis is typically found under abiotic stress. Some examples of plant PCD cannot be ascribed to either major class and are therefore classified as separate modalities. These are PCD associated with the hypersensitive response to biotrophic pathogens, which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined.

  17. Cell sources for in vitro human liver cell culture models.

    PubMed

    Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-09-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. © 2016 by the Society for Experimental Biology and Medicine.

  18. Rosmarinic acid and antioxidant enzyme activities in Lavandula vera MM cell suspension culture: a comparative study.

    PubMed

    Georgiev, Milen; Abrashev, Radoslav; Krumova, Ekaterina; Demirevska, Klimentina; Ilieva, Mladenka; Angelova, Maria

    2009-11-01

    The growth and intracellular protein content of lavender (Lavandula vera MM) cell suspension culture was followed along with some antioxidant defense system members-non-enzymatic (rosmarinic acid) and enzymatic [superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6)]. It was found that the media content and the cultivation mode strongly influenced the production of plant defense compounds as well as the ratio between non-enzymatic and enzymatic ones. The bioreactor culture contains about two times more rosmarinic acid, superoxide dismutase, and catalase compared to the shake-flask cultivation. These findings are discussed with respect to the relative stress levels and plant antioxidant orchestra system. It was concluded that investigated defense system components (enzymatic and non-enzymatic) were closely associated in a complex balance. The three isoenzyme forms of SOD (Cu/ZnSOD, FeSOD, and MnSOD) in the cells of Lavandula vera were revealed by polyacrylamide gel electrophoresis analysis, and the FeSOD isoform exhibited highest activity.

  19. Density gradient electrophoresis of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Giranda, V.; Todd, P. W.

    1985-01-01

    Ground based confirmation of the electrophoretic heterogeneity of human embryonic kidney cell cultures, the general characterization of their electrophoretic migration, and observations on the general properties of cultures derived from electrophoretic subpopulations were studied. Cell migration in a density gradient electrophoresis column and cell electrophoretic mobility was determined. The mobility and heterogeneity of cultured human embryonic kidney cells with those of fixed rat erythrocytes as model test particle was compared. Electrophoretically separated cell subpopulations with respect to size, viability, and culture characteristics were examined.

  20. 3-oxo-rhazinilam: a new indole alkaloid from Rauvolfia serpentina x Rhazya stricta hybrid plant cell cultures.

    PubMed

    Gerasimenko, I; Sheludko, Y; Stöckigt, J

    2001-01-01

    A new monoterpenoid indole alkaloid, 3-oxo-rhazinilam (1), was isolated from intergeneric somatic hybrid cell cultures of Rauvolfia serpentina and Rhazya stricta, and the structure was determined by detailed 1D and 2D NMR analysis. It was also proved that 3-oxo-rhazinilam (1) is a natural constituent of the hybrid cells.

  1. Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures

    PubMed Central

    Lijavetzky, Diego; Almagro, Lorena; Belchi-Navarro, Sarai; Martínez-Zapater, José M; Bru, Roque; Pedreño, Maria A

    2008-01-01

    Background Plant cell cultures have been shown as feasible systems for the production of secondary metabolites, being the elicitation with biotic or abiotic stimuli the most efficient strategy to increase the production of those metabolites. Vitaceae phytoalexins constitute a group of molecules belonging to the stilbene family which are derivatives of the trans-resveratrol structure and are produced by plants and cell cultures as a response to biotic and abiotic stresses. The potential benefits of resveratrol on human health have made it one of the most thoroughly studied phytochemical molecules. The aim of this study was to evaluate the elicitor effect of both cyclodextrin (CD) and methyljasmonate (MeJA) on grapevine cell cultures by carrying out a quantitative analysis of their role on resveratrol production and on the expression of stilbene biosynthetic genes in Vitis vinifera cv Monastrell albino cell suspension cultures. Findings MeJA and CD significantly but transiently induced the expression of stilbene biosynthetic genes when independently used to treat grapevine cells. This expression correlated with resveratrol production in CD-treated cells but not in MeJA-treated cells, which growth was drastically affected. In the combined treatment of CD and MeJA cell growth was similarly affected, however resveratrol production was almost one order of magnitude higher, in correlation with maximum expression values for stilbene biosynthetic genes. Conclusion The effect of MeJA on cell division combined with a true and strong elicitor like CD could be responsible for the observed synergistic effect of both compounds on resveratrol production and on the expression of genes in the stilbene pathway. PMID:19102745

  2. Building a plant cell wall at a glance.

    PubMed

    Lampugnani, Edwin R; Khan, Ghazanfar Abbas; Somssich, Marc; Persson, Staffan

    2018-01-29

    Plant cells are surrounded by a strong polysaccharide-rich cell wall that aids in determining the overall form, growth and development of the plant body. Indeed, the unique shapes of the 40-odd cell types in plants are determined by their walls, as removal of the cell wall results in spherical protoplasts that are amorphic. Hence, assembly and remodeling of the wall is essential in plant development. Most plant cell walls are composed of a framework of cellulose microfibrils that are cross-linked to each other by heteropolysaccharides. The cell walls are highly dynamic and adapt to the changing requirements of the plant during growth. However, despite the importance of plant cell walls for plant growth and for applications that we use in our daily life such as food, feed and fuel, comparatively little is known about how they are synthesized and modified. In this Cell Science at a Glance article and accompanying poster, we aim to illustrate the underpinning cell biology of the synthesis of wall carbohydrates, and their incorporation into the wall, in the model plant Arabidopsis . © 2018. Published by The Company of Biologists Ltd.

  3. Inhibitory effect of the Agrobacterium rhizogenes rolC gene on rabdosiin and rosmarinic acid production in Eritrichium sericeum and Lithospermum erythrorhizon transformed cell cultures.

    PubMed

    Bulgakov, Victor P; Veselova, M V; Tchernoded, G K; Kiselev, K V; Fedoreyev, S A; Zhuravlev, Yu N

    2005-06-01

    Rabdosiin and related caffeic acid metabolites have been proposed as active pharmacological agents demonstrating potent anti-HIV and antiallergic activities. We transformed Eritrichium sericeum and Lithospermum erythrorhizon seedlings by the rolC gene, which has been recently described as an activator of plant secondary metabolism. Surprisingly, the rolC-transformed cell cultures of both plants yielded two- to threefold less levels of rabdosiin and rosmarinic acid (RA) than respective control cultures. This result establishes an interesting precedent when the secondary metabolites are differently regulated by a single gene. We show that the rolC gene affects production of rabdosiin and RA irrespective of the methyl jasmonate (MeJA)-mediated and the Ca(2+)-dependent NADPH oxidase pathways. Cantharidin, an inhibitor of serine/threonine phosphatases, partly diminishes the rolC-gene inhibitory effect that indicates involvement of the rolC-gene-mediated signal in plant regulatory controls, mediated by protein phosphatases. We also show that the control MeJA-stimulated E. sericeum root culture produces (-)-rabdosiin up to 3.41% dry weight, representing the highest level of this substance for plant cell cultures reported so far.

  4. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various diagnostic...

  5. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various diagnostic...

  6. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various diagnostic...

  7. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various diagnostic...

  8. Induction of betacyanin formation in Chenopodium album cell cultures by co-cultivation with the duckweed Wolffia arrhiza.

    PubMed

    Rudat, A; Ehwald, R

    1994-02-01

    Cells of Chenopodium album and whole plants of the duckweed Wolffia arrhiza were cocultivated. In the presence of Wolffia arrhiza the synthesis of a red-violet pigment (betacyanin) was induced in several cells or cell clusters of Chenopodium album in the light. The exchange of solutes through the liquid phase was necessary for the induction of pigment formation. The red-violet cells could be selected and subcultivated resulting in a red callus. A reddish cell suspension was obtained in liquid culture in the presence of the duckweeds.

  9. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  10. Three dimensional spheroid cell culture for nanoparticle safety testing.

    PubMed

    Sambale, Franziska; Lavrentieva, Antonina; Stahl, Frank; Blume, Cornelia; Stiesch, Meike; Kasper, Cornelia; Bahnemann, Detlef; Scheper, Thomas

    2015-07-10

    Nanoparticles are widely employed for many applications and the number of consumer products, incorporating nanotechnology, is constantly increasing. A novel area of nanotechnology is the application in medical implants. The widespread use of nanoparticles leads to their higher prevalence in our environment. This, in turn, raises concerns regarding potential risks to humans. Previous studies have shown possible hazardous effects of some nanoparticles on mammalian cells grown in two-dimensional (2D) cultures. However, 2D in vitro cell cultures display several disadvantages such as changes in cell shape, cell function, cell responses and lack of cell-cell contacts. For this reason, the development of better models for mimicking in vivo conditions is essential. In the present work, we cultivated A549 cells and NIH-3T3 cells in three-dimensional (3D) spheroids and investigated the effects of zinc oxide (ZnO-NP) and titanium dioxide nanoparticles (TiO2-NP). The results were compared to cultivation in 2D monolayer culture. A549 cells in 3D cell culture formed loose aggregates which were more sensitive to the toxicity of ZnO-NP in comparison to cells grown in 2D monolayers. In contrast, NIH-3T3 cells showed a compact 3D spheroid structure and no differences in the sensitivity of the NIH-3T3 cells to ZnO-NP were observed between 2D and 3D cultures. TiO2-NP were non-toxic in 2D cultures but affected cell-cell interaction during 3D spheroid formation of A549 and NIH-3T3 cells. When TiO2-NP were directly added during spheroid formation in the cultures of the two cell lines tested, several smaller spheroids were formed instead of a single spheroid. This effect was not observed if the nanoparticles were added after spheroid formation. In this case, a slight decrease in cell viability was determined only for A549 3D spheroids. The obtained results demonstrate the importance of 3D cell culture studies for nanoparticle safety testing, since some effects cannot be revealed in 2D

  11. [Comparative study on alkaloids of tissue-culture seedling and wild plant of Dendrobium huoshanense ].

    PubMed

    Chen, Nai-dong; Gao, Feng; Lin, Xin; Jin, Hui

    2014-06-01

    To compare the composition and content of alkaloid of Dendrobium huoshanense tissue-culture seedling and wild plant. A comparative evaluation on the quality was carried out by HPLC and TLC methods including the composition and the content of alkaloids. Remarkable variation existed in the two kinds of Dendrobium huoshanense. For the tissue-culture plant, only two alkaloids were checked out by both HPLC and TLC while four alkaloids were observed in the wild plant. The alkaloid content of tissue-culture seedling and wild plant was(0. 29 ± 0. 11)%o and(0. 43 ± 0. 15) %o,respectively. Distinguished difference is observed in both composition and content of alkaloids from the annual shoots of different provenances of Dendrobium huoshanense. It suggested that the quality of tissue-culture seedling of Dendrobium huoshanense might be inconsistent with the wild plant. Furthermore, the established alkaloids-knock-out HPLC method would provide a new research tool on quality control of Chinese medicinal materials which contain unknown alkaloids.

  12. Survey of Nitrate Ion Concentrations in Vegetables Cultivated in Plant Factories: Comparison with Open-Culture Vegetables.

    PubMed

    Oka, Yuka; Hirayama, Izumi; Yoshikawa, Mitsuhide; Yokoyama, Tomoko; Iida, Kenji; Iwakoshi, Katsushi; Suzuki, Ayana; Yanagihara, Midori; Segawa, Yukino; Kukimoto, Sonomi; Hamada, Humika; Matsuzawa, Satomi; Tabata, Setsuko; Sasamoto, Takeo

    2017-01-01

    A survey of nitrate-ion concentrations in plant-factory-cultured leafy vegetables was conducted. 344 samples of twenty-one varieties of raw leafy vegetables were examined using HPLC. The nitrate-ion concentrations in plant-factory-cultured leafy vegetables were found to be LOD-6,800 mg/kg. Furthermore, the average concentration values varied among different leafy vegetables. The average values for plant-factory-cultured leafy vegetables were higher than those of open-cultured leafy vegetables reported in previous studies, such as the values listed in the Standard Tables of Food Composition in Japan- 2015 - (Seventh revised edition). For some plant-factory-cultured leafy vegetables, such as salad spinach, the average values were above the maximum permissible levels of nitrate concentration in EC No 1258/2011; however, even when these plant-factory-cultured vegetables were routinely eaten, the intake of nitrate ions in humans did not exceed the ADI.

  13. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  14. Plant-fed versus chemicals-fed rhizobacteria of Lucerne: Plant-only teabags culture media not only increase culturability of rhizobacteria but also recover a previously uncultured Lysobacter sp., Novosphingobium sp. and Pedobacter sp.

    PubMed

    Hegazi, Nabil A; Sarhan, Mohamed S; Fayez, Mohamed; Patz, Sascha; Murphy, Brian R; Ruppel, Silke

    2017-01-01

    In an effort to axenically culture the previously uncultivable populations of the rhizobacteria of Lucerne (Medicago sativa L.), we propose plant-only teabags culture media to mimic the nutritional matrix available in the rhizosphere. Here, we show that culture media prepared from Lucerne powder teabags substantially increased the cultivability of Lucerne rhizobacteria compared with a standard nutrient agar, where we found that the cultivable populations significantly increased by up to 60% of the total bacterial numbers as estimated by Quantitative Real-time Polymerase Chain Reaction (qRT-PCR). Cluster analysis of 16S rDNA Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) of cultivable Colony-Forming Units (CFUs) revealed a more distinct composition and separation of bacterial populations recovered on the plant-only teabags culture media than those developed on a standard nutrient agar. Further, the new plant medium gave preference to the micro-symbiont Sinorhizobium meliloti, and succeeded in isolating a number of not-yet-cultured bacteria, most closely matched to Novosphingobium sp., Lysobacter sp. and Pedobacter sp. The present study may encourage other researchers to consider moving from the well-established standard culture media to the challenging new plant-only culture media. Such a move may reveal previously hidden members of rhizobacteria, and help to further explore their potential environmental impacts.

  15. Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools.

    PubMed

    Díez, José M; Bauman, Ewa; Gajardo, Rodrigo; Jorquera, Juan I

    2015-03-13

    Fetal bovine serum (FBS) is an animal product used as a medium supplement. The animal origin of FBS is a concern if cultured stem cells are to be utilized for human cell therapy. Therefore, a substitute for FBS is desirable. In this study, an industrial, xeno-free, pharmaceutical-grade supplement for cell culture (SCC) under development at Grifols was tested for growth of human mesenchymal stem cells (hMSCs), cell characterization, and differentiation capacity. SCC is a freeze-dried product obtained through cold-ethanol fractionation of industrial human plasma pools from healthy donors. Bone marrow-derived hMSC cell lines were obtained from two commercial suppliers. Cell growth was evaluated by culturing hMSCs with commercial media or media supplemented with SCC or FBS. Cell viability and cell yield were assessed with an automated cell counter. Cell surface markers were studied by indirect immunofluorescence assay. Cells were cultured then differentiated into adipocytes, chondrocytes, osteoblasts, and neurons, as assessed by specific staining and microscopy observation. SCC supported the growth of commercial hMSCs. Starting from the same number of seeded cells in two consecutive passages of culture with medium supplemented with SCC, hMSC yield and cell population doubling time were equivalent to the values obtained with the commercial medium and was consistent among lots. The viability of hMSCs was higher than 90%, while maintaining the characteristic phenotype of undifferentiated hMSCs (positive for CD29, CD44, CD90, CD105, CD146, CD166 and Stro-1; negative for CD14 and CD19). Cultured hMSCs maintained the potential for differentiation into adipocytes, chondrocytes, osteoblasts, and neurons. The tested human plasma-derived SCC sustains the adequate growth of hMSCs, while preserving their differentiation capacity. SCC can be a potential candidate for cell culture supplement in advanced cell therapies.

  16. Differential marker expression by cultures rich in mesenchymal stem cells

    PubMed Central

    2013-01-01

    Background Mesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires standardized techniques for their specific isolation. To date, there are no conclusive marker (s) for the exclusive isolation of mesenchymal stem cells. Our aim was to identify markers differentially expressed between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. We compared and contrasted the phenotype of tissue cultures in which mesenchymal stem cells are rich and rare. By initially assessing mesenchymal stem cell differentiation, we established that bone marrow and breast adipose cultures are rich in mesenchymal stem cells while, in our hands, foreskin fibroblast and olfactory tissue cultures contain rare mesenchymal stem cells. In particular, olfactory tissue cells represent non-stem cell mesenchymal cells. Subsequently, the phenotype of the tissue cultures were thoroughly assessed using immuno-fluorescence, flow-cytometry, proteomics, antibody arrays and qPCR. Results Our analysis revealed that all tissue cultures, regardless of differentiation potential, demonstrated remarkably similar phenotypes. Importantly, it was also observed that common mesenchymal stem cell markers, and fibroblast-associated markers, do not discriminate between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. Examination and comparison of the phenotypes of mesenchymal stem cell and non-stem cell mesenchymal cell cultures revealed three differentially expressed markers – CD24, CD108 and CD40. Conclusion We indicate the importance of establishing differential marker expression between mesenchymal stem cells and non-stem cell mesenchymal cells in order to determine stem cell specific markers. PMID:24304471

  17. Chromosomal instability and telomere shortening in long-term culture of hematopoietic stem cells: insights from a cell culture model of RPS14 haploinsufficiency.

    PubMed

    Thomay, K; Schienke, A; Vajen, B; Modlich, U; Schambach, A; Hofmann, W; Schlegelberger, B; Göhring, G

    2014-01-01

    The fate of cultivated primary hematopoietic stem cells (HSCs) with respect to genetic instability and telomere attrition has not yet been described in great detail. Thus, knowledge of the genetic constitution of HSCs is important when interpreting results of HSCs in culture. While establishing a cell culture model for myelodysplastic syndrome with a deletion in 5q by performing RPS14 knockdown, we found surprising data that may be of importance for any CD34+ cell culture experiments. We performed cytogenetic analyses and telomere length measurement on transduced CD34+ cells and untransduced control cells to observe the effects of long-term culturing. Initially, CD34+ cells had a normal median telomere length of about 12 kb and showed no signs of chromosomal instability. During follow-up, the median telomere length seemed to decrease and, simultaneously, increased chromosomal instability could be observed - in modified and control cells. One culture showed a clonal monosomy 7 - independent of prior RPS14 knockdown. During further culturing, it seemed that the telomeres re-elongated, and chromosomes stabilized, while TERT expression was not elevated. In summary, irrespective of our results of RPS14 knockdown in the long-term culture of CD34+ cells, it becomes clear that cell culture artefacts inducing telomere shortening and chromosomal instability have to be taken into account and regular cytogenetic analyses should always be performed. © 2013 S. Karger AG, Basel.

  18. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory †

    PubMed Central

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K.; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V. McNeil; Segarra, Verónica A.

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented—one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research. PMID:28861134

  19. Foetal hepatic progenitor cells assume a cholangiocytic cell phenotype during two-dimensional pre-culture.

    PubMed

    Anzai, Kazuya; Chikada, Hiromi; Tsuruya, Kota; Ida, Kinuyo; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tesuya; Kamiya, Akihide

    2016-06-23

    Liver consists of parenchymal hepatocytes and other cells. Liver progenitor cell (LPC) is the origin of both hepatocytes and cholangiocytic cells. The analyses of mechanism regulating differentiation of LPCs into these functional cells are important for liver regenerative therapy using progenitor cells. LPCs in adult livers were found to form cysts with cholangiocytic characteristics in 3D culture. In contrast, foetal LPCs cannot form these cholangiocytic cysts in the same culture. Thus, the transition of foetal LPCs into cholangiocytic progenitor cells might occur during liver development. Primary CD45(-)Ter119(-)Dlk1(+) LPCs derived from murine foetal livers formed ALBUMIN (ALB)(+)CYTOKERATIN (CK)19(-) non-cholangiocytic cysts within 3D culture. In contrast, when foetal LPCs were pre-cultured on gelatine-coated dishes, they formed ALB(-)CK19(+) cholangiocytic cysts. When hepatocyte growth factor or oncostatin M, which are inducers of hepatocytic differentiation, was added to pre-culture, LPCs did not form cholangiocytic cysts. These results suggest that the pre-culture on gelatine-coated dishes changed the characteristics of foetal LPCs into cholangiocytic cells. Furthermore, neonatal liver progenitor cells were able to form cholangiocytic cysts in 3D culture without pre-culture. It is therefore possible that the pre-culture of mid-foetal LPCs in vitro functioned as a substitute for the late-foetal maturation step in vivo.

  20. Fuel cell power plant economic and operational considerations

    NASA Technical Reports Server (NTRS)

    Lance, J. R.

    1984-01-01

    Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.

  1. A single-cell and feeder-free culture system for monkey embryonic stem cells.

    PubMed

    Ono, Takashi; Suzuki, Yutaka; Kato, Yosuke; Fujita, Risako; Araki, Toshihiro; Yamashita, Tomoko; Kato, Hidemasa; Torii, Ryuzo; Sato, Naoya

    2014-01-01

    Primate pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), hold great potential for research and application in regenerative medicine and drug discovery. To maximize primate PSC potential, a practical system is required for generating desired functional cells and reproducible differentiation techniques. Much progress regarding their culture systems has been reported to date; however, better methods would still be required for their practical use, particularly in industrial and clinical fields. Here we report a new single-cell and feeder-free culture system for primate PSCs, the key feature of which is an originally formulated serum-free medium containing FGF and activin. In this culture system, cynomolgus monkey ESCs can be passaged many times by single-cell dissociation with traditional trypsin treatment and can be propagated with a high proliferation rate as a monolayer without any feeder cells; further, typical PSC properties and genomic stability can be retained. In addition, it has been demonstrated that monkey ESCs maintained in the culture system can be used for various experiments such as in vitro differentiation and gene manipulation. Thus, compared with the conventional culture system, monkey ESCs grown in the aforementioned culture system can serve as a cell source with the following practical advantages: simple, stable, and easy cell maintenance; gene manipulation; cryopreservation; and desired differentiation. We propose that this culture system can serve as a reliable platform to prepare primate PSCs useful for future research and application.

  2. Peptone Supplementation of Culture Medium Has Variable Effects on the Productivity of CHO Cells

    PubMed Central

    Davami, Fatemeh; Baldi, Lucia; Rajendra, Yashas; M. Wurm, Florian

    2014-01-01

    The optimization of cell culture conditions for growth and productivity of recombinant Chinese hamster ovary (CHO) cells is a critical step in biopharmaceutical manufacturing. In the present study, the effects of the timing and amount of peptone feeding of a recombinant CHO cell line grown in a basal medium in serum-free suspension culture were determined for eight peptones of different origin (plant and casein). The amino acid content and the average molecular weight of the peptones chosen were available. In optimized feeding strategies with single peptones, increase 100 % volumetric productivity and 40 % in cell number were achieved. In feeding strategies with two peptones, several combinations stimulated protein productivity more than either peptone alone, depending on the peptone concentration and time of feeding. Some peptones, which did not stimulate productivity when added alone proved to be effective when used in combination. The combined peptones feeding strategies were more effective with peptones of different origin. Our data support the notion that the origin of peptones provides some guidance in identifying the most effective feeding strategies for recombinant CHO cells. PMID:25317401

  3. Appendix A: The components of the culture media.

    PubMed

    Loyola-Vargas, Víctor M

    2012-01-01

    The success in the technology and application of plant tissue culture is greatly influenced by the nature of the culture medium used. A better understanding of the nutritional requirements of cultured cells and tissues can help to choose the most appropriate culture medium for the explant used. It is also important to pay attention to a number of inaccuracies and errors which have appeared in several widely used plant tissue culture basal medium formulations.

  4. Cell Culture in Microgravity: Opening the Door to Space Cell Biology

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Adaptational response of human cell populations to microgravity is investigated using simulation, short-term Shuttle experiments, and long-term microgravity. Simulation consists of a clinostatically-rotated cell culture system. The system is a horizontally-rotated cylinder completely filled with culture medium. Low speed rotation results in continuous-fall of the cells through the fluid medium. In this setting, cells: 1) aggregate, 2) propagate in three dimensions, 3) synthesize matrix, 4) differentiate, and 5) form sinusoids that facilitate mass transfer. Space cell culture is conducted in flight bioreactors and in static incubators. Cells grown in microgravity are: bovine cartilage, promyelocytic leukemia, kidney proximal tubule cells, adrenal medulla, breast and colon cancer, and endothelium. Cells were cultured in space to test specific hypotheses. Cartilage cells were used to determine structural differences in cartilage grown in space compared to ground-based bioreactors. Results from a 130-day experiment on Mir revealed that cartilage grown in space was substantially more compressible due to insufficient glycosaminoglycan in the matrix. Interestingly, earth-grown cartilage conformed better to the dimensions of the scaffolding material, while the Mir specimens were spherical. The other cell populations are currently being analyzed for cell surface properties, gene expression, and differentiation. Results suggest that some cells spontaneously differentiate in microgravity. Additionally, vast changes in gene expression may occur in response to microgravity. In conclusion, the transition to microgravity may constitute a physical perturbation in cells resulting in unique gene expressions, the consequences of which may be useful in tissue engineering, disease modeling, and space cell biology.

  5. Enrichment of spinal cord cell cultures with motoneurons

    PubMed Central

    1978-01-01

    Spinal cord cell cultures contain several types of neurons. Two methods are described for enriching such cultures with motoneurons (defined here simply as cholinergic cells that are capable of innervating muscle). In the first method, 7-day embryonic chick spinal cord neurons were separated according to size by 1 g velocity sedimentation. It is assumed that cholinergic motoneurons are among the largest cells present at this stage. The spinal cords were dissociated vigorously so that 95-98% of the cells in the initial suspension were isolated from one another. Cells in leading fractions (large cell fractions: LCFs) contain about seven times as much choline acetyltransferase (CAT) activity per unit cytoplasm as do cells in trailing fractions (small cell fractions: SCFs). Muscle cultures seeded with LCFs develop 10-70 times as much CAT as cultures seeded with SCFs and six times as much CAT as cultures seeded with control (unfractionated) spinal cord cells. More than 20% of the large neurons in LCF-muscle cultures innervate nearby myotubes. In the second method, neurons were gently dissociated from 4-day embryonic spinal cords and maintained in vitro. This approach is based on earlier observations that cholinergic neurons are among the first cells to withdraw form the mitotic cycle in the developing chick embryo (Hamburger, V. 1948. J. Comp. Neurol. 88:221- 283; and Levi-Montalcini, R. 1950. J. Morphol. 86:253-283). 4-Day spinal cord-muscle cultures develop three times as much CAT as do 7-day spinal cord-muscle plates, prepared in the same (gentle) manner. More than 50% of the relatively large 4-day neurons innervate nearby myotubes. Thus, both methods are useful first steps toward the complete isolation of motoneurons. Both methods should facilitate study of the development of cholinergic neurons and of nerve-muscle synapse formation. PMID:566275

  6. How do culture media influence in vitro perivascular cell behavior?

    PubMed

    Huber, Birgit; Volz, Ann-Cathrin; Kluger, Petra Juliane

    2015-12-01

    Perivascular cells are multilineage cells located around the vessel wall and important for wall stabilization. In this study, we evaluated a stem cell media and a perivascular cell-specific media for the culture of primary perivascular cells regarding their cell morphology, doubling time, stem cell properties, and expression of cell type-specific markers. When the two cell culture media were compared to each other, perivascular cells cultured in the stem cell medium had a more elongated morphology and a faster doubling rate and cells cultured in the pericyte medium had a more typical morphology, with several filopodia, and a slower doubling rate. To evaluate stem cell properties, perivascular cells, CD146(-) cells, and mesenchymal stem cells (MSCs) were differentiated into the adipogenic, osteogenic, and chondrogenic lineages. It was seen that perivascular cells, as well as CD146(-) cells and MSCs, cultured in stem cell medium showed greater differentiation than cells cultured in pericyte-specific medium. The expression of pericyte-specific markers CD146, neural/glial antigen 2 (NG2), platelet-derived growth factor receptor-β (PDGFR-β), myosin, and α-smooth muscle actin (α-SMA) could be found in both pericyte cultures, as well as to varying amounts in CD146(-) cells, MSCs, and endothelial cells. The here presented work shows that perivascular cells can adapt to their in vitro environment and cell culture conditions influence cell functionality, such as doubling rate or differentiation behavior. Pericyte-specific markers were shown to be expressed also from cells other than perivascular cells. We can further conclude that CD146(+) perivascular cells are inhomogeneous cell population probably containing stem cell subpopulations, which are located perivascular around capillaries. © 2015 International Federation for Cell Biology.

  7. Biogelx: Cell Culture on Self-Assembling Peptide Gels.

    PubMed

    Harper, Mhairi M; Connolly, Michael L; Goldie, Laura; Irvine, Eleanore J; Shaw, Joshua E; Jayawarna, Vineetha; Richardson, Stephen M; Dalby, Matthew J; Lightbody, David; Ulijn, Rein V

    2018-01-01

    Aromatic peptide amphiphiles can form self-supporting nanostructured hydrogels with tunable mechanical properties and chemical compositions. These hydrogels are increasingly applied in two-dimensional (2D) and three-dimensional (3D) cell culture, where there is a rapidly growing need to store, grow, proliferate, and manipulate naturally derived cells within a hydrated, 3D matrix. Biogelx Limited is a biomaterials company, created to commercialize these bio-inspired hydrogels to cell biologists for a range of cell culture applications. This chapter describes methods of various characterization and cell culture techniques specifically optimized for compatibility with Biogelx products.

  8. Recombinant protein production and insect cell culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn (Inventor); Prewett, Tacey (Inventor); Goodwin, Thomas (Inventor); Francis, Karen (Inventor); Andrews, Angela (Inventor); Oconnor, Kim (Inventor)

    1993-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using the cultured insect cells as host for a virus encoding the described polypeptide such as baculovirus. The insect cells can also be a host for viral production.

  9. Socio-cultural contribution to medicinal plants assessment and sustainable development: case of antidiabetic and antihypertensive plants in Cameroon

    PubMed Central

    Tsabang, N; Tsambang, LWD; Yedjou, CG; Tchounwou, Paul B.

    2017-01-01

    Diabetes and hypertension rank among human diseases that are very difficult to control. The medicinal material of Cameroon can provide much information on ethnic folklore practices and traditional aspects of therapeutically important natural products. Cameroon has a very rich cultural diversity with different traditional systems of medicine that need more evidence-based studies on both crude extracts and purified phytomolecules. Therefore, an ethnobotanical study was conducted on 58 socio-cultural population groups living in different phytogeographic units of Cameroon in order to collect various medicinal plants or recipes. A two by two comparison of social-cultural groups of the same phytogeographic unit indicated a significant difference in 86.97% of medicinal plants or recipes comparisons’ cases. A total of two hundred and eight recipes were identified, among which 75 were used for diabetes and hypertension treatment, 74 for hypertension alone, and 59 for diabetes alone. Also, two hundred and three plants were identified among which 33 were cultivated and marketed by 25 farming families engaged in integrated agriculture and selling of antidiabetic and antihypertensive plants to enhance their socio-economic status.

  10. Impact of ethanolic lamiaceae extracts on herpesvirus infectivity in cell culture.

    PubMed

    Reichling, Jürgen; Nolkemper, Silke; Stintzing, Florian C; Schnitzler, Paul

    2008-12-01

    Extracts of medicinal plants are increasingly of interest as novel drugs for antimicrobial and antiviral agents, since microorganisms might develop resistance to commonly used antimicrobial or antiviral agents. Ethanolic extracts from Lamiaceae plants prunella, peppermint, rosemary and thyme were phytochemically characterised. The inhibitory activity of four 20% ethanolic plant extracts and four 80% ethanolic extracts against herpes simplex virus (HSV) strains was tested in cell culture. Rosmarinic acid, a typical compound in Lamiaceae species, was identified in the extracts except for thyme 20% ethanolic extract. In addition, some other phenolic compounds such as apigenin- and luteolin-derivatives were identified in different amounts. All extracts exhibited high and concentration-dependent levels of antiviral activity against free acyclovir-sensitive and acyclovir-resistant HSV-1 strains with 50% inhibitory concentrations of 0.05-0.82 microg/ml. Mechanistically, exposure of free virions as well as host cells to prunella and peppermint 80% ethanolic extracts at maximum non-cytotoxic concentrations prior to infection reduced plaque formation drastically. Thus, both extracts revealed a dual mode of action similar to aqueous lemon balm extracts. Since infectivity of acyclovir-susceptible and acyclovir-resistant HSV strains was significantly reduced with Lamiaceae extracts, the results obtained indicate that ethanolic plant extracts affected herpesvirus prior to and during adsorption and in a different way than acyclovir. Based on its dual mode of action, e.g. antiviral effect against free virions and blocking virus attachment to host cells, prunella and peppermint 80% ethanolic extracts are promising antiviral agents in recurrent herpes labialis for topical therapeutic applications. 2008 S. Karger AG, Basel.

  11. The Development of Plant Biotechnology.

    ERIC Educational Resources Information Center

    Torrey, John G.

    1985-01-01

    Examines major lines of thought leading to what is meant by plant biotechnology, namely, the application of existing techniques of plant organ, tissue, and cell culture, plant molecular biology, and genetic engineering to the improvement of plants and of plant productivity for the benefit of man. (JN)

  12. Ferritin gene transcription is regulated by iron in soybean cell cultures.

    PubMed

    Lescure, A M; Proudhon, D; Pesey, H; Ragland, M; Theil, E C; Briat, J F

    1991-09-15

    Iron-regulated ferritin synthesis in animals is dominated by translational control of stored mRNA; iron-induced transcription of ferritin genes, when it occurs, changes the subunit composition of ferritin mRNA and protein and is coupled to translational control. Ferritins in plants and animals have evolved from a common progenitor, based on the similarity of protein sequence; however, sequence divergence occurs in the C termini; structure prediction suggests that plant ferritin has the E-helix, which, in horse ferritin, forms a large channel at the tetrameric interface. In contemporary plants, a transit peptide is encoded by ferritin mRNA to target the protein to plastids. Iron-regulated synthesis of ferritin in plants and animals appears to be very different since the 50- to 60-fold increases of ferritin protein, previously observed to be induced by iron in cultured soybean cells, is accompanied by an equivalent accumulation of hybridizable ferritin mRNA and by increased transcription of ferritin genes. Ferritin mRNA from iron-induced cells and the constitutive ferritin mRNA from soybean hypocotyls are identical. The iron-induced protein is translocated normally to plastids. Differences in animal ferritin structure coincide with the various iron storage functions (reserve for iron proteins and detoxification). In contrast, the constancy of structure of soybean ferritin, iron-induced and constitutive, coupled with the potential for vacuolar storage of excess iron in plants suggest that rapid synthesis of ferritin from a stored ferritin mRNA may not be needed in plants for detoxification of iron.

  13. Ferritin gene transcription is regulated by iron in soybean cell cultures.

    PubMed Central

    Lescure, A M; Proudhon, D; Pesey, H; Ragland, M; Theil, E C; Briat, J F

    1991-01-01

    Iron-regulated ferritin synthesis in animals is dominated by translational control of stored mRNA; iron-induced transcription of ferritin genes, when it occurs, changes the subunit composition of ferritin mRNA and protein and is coupled to translational control. Ferritins in plants and animals have evolved from a common progenitor, based on the similarity of protein sequence; however, sequence divergence occurs in the C termini; structure prediction suggests that plant ferritin has the E-helix, which, in horse ferritin, forms a large channel at the tetrameric interface. In contemporary plants, a transit peptide is encoded by ferritin mRNA to target the protein to plastids. Iron-regulated synthesis of ferritin in plants and animals appears to be very different since the 50- to 60-fold increases of ferritin protein, previously observed to be induced by iron in cultured soybean cells, is accompanied by an equivalent accumulation of hybridizable ferritin mRNA and by increased transcription of ferritin genes. Ferritin mRNA from iron-induced cells and the constitutive ferritin mRNA from soybean hypocotyls are identical. The iron-induced protein is translocated normally to plastids. Differences in animal ferritin structure coincide with the various iron storage functions (reserve for iron proteins and detoxification). In contrast, the constancy of structure of soybean ferritin, iron-induced and constitutive, coupled with the potential for vacuolar storage of excess iron in plants suggest that rapid synthesis of ferritin from a stored ferritin mRNA may not be needed in plants for detoxification of iron. Images PMID:1896472

  14. Spectroscopic characterization of cell membranes and their constituents of the plant-associated soil bacterium Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Antonyuk, L. P.; Matora, L. Yu.; Serebrennikova, O. B.; Sumaroka, M. V.; Colina, M.; Renou-Gonnord, M.-F.; Ignatov, V. V.

    1999-05-01

    Structural and compositional features of bacterial membranes and some of their isolated constituents (cell surface lipopolysaccharide, phospholipids) of the plant-growth-promoting diazotrophic rhizobacterium Azospirillum brasilense (wild-type strain Sp245) were characterized using Fourier transform infrared (FTIR) spectroscopy and some other techniques. FTIR spectra of the cell membranes were shown to comprise the main vibration modes of the relevant lipopolysaccharide and protein components which are believed to be involved in associative plant-bacterium interactions, as well as of phospholipid constituents. The role and functions of metal cations in the structural organization and physicochemical properties of bacterial cell membranes are also discussed considering their accumulation in the membranes from the culture medium.

  15. Expansion of Endothelial Progenitor Cells in High Density Dot Culture of Rat Bone Marrow Cells

    PubMed Central

    Wang, Ling; Kretlow, James D.; Zhou, Guangdong; Cao, Yilin; Liu, Wei; Zhang, Wen Jie

    2014-01-01

    In vitro expansion of endothelial progenitor cells (EPCs) remains a challenge in stem cell research and its application. We hypothesize that high density culture is able to expand EPCs from bone marrow by mimicking cell-cell interactions of the bone marrow niche. To test the hypothesis, rat bone marrow cells were either cultured in high density (2×105 cells/cm2) by seeding total 9×105 cells into six high density dots or cultured in regular density (1.6×104 cells/cm2) with the same total number of cells. Flow cytometric analyses of the cells cultured for 15 days showed that high density cells exhibited smaller cell size and higher levels of marker expression related to EPCs when compared to regular density cultured cells. Functionally, these cells exhibited strong angiogenic potentials with better tubal formation in vitro and potent rescue of mouse ischemic limbs in vivo with their integration into neo-capillary structure. Global gene chip and ELISA analyses revealed up-regulated gene expression of adhesion molecules and enhanced protein release of pro-angiogenic growth factors in high density cultured cells. In summary, high density cell culture promotes expansion of bone marrow contained EPCs that are able to enhance tissue angiogenesis via paracrine growth factors and direct differentiation into endothelial cells. PMID:25254487

  16. Culture of Cells from Amphibian Embryos.

    ERIC Educational Resources Information Center

    Stanisstreet, Martin

    1983-01-01

    Describes a method for in vitro culturing of cells from amphibian early embryos. Such cells can be used to demonstrate such properties of eukaryote cells as cell motility, adhesion, differentiation, and cell sorting into tissues. The technique may be extended to investigate other factors. (Author/JN)

  17. Enhanced production of L-DOPA in cell cultures of Mucuna pruriens L. and Mucuna prurita H.

    PubMed

    Raghavendra, S; Kumar, V; Ramesh, C K; Khan, M H Moinuddin

    2012-01-01

    A comparative study on the production of 3,4-dihydroxyphenylalanine (L-DOPA) was carried out in cell cultures of two Mucuna species by elicitor treatment and precursor feeding. The influence of elicitors and the precursor molecule on L-DOPA production, polyphenol oxidase (PPO) and tyrosinase activities was also studied. Callus cultures were initiated in Mucuna pruriens L. and Mucuna prurita H. on MS medium supplemented with BAP and IAA at different concentrations. Suspension cultures were established in MS liquid medium supplemented with BAP, IAA, the elicitors methyl jasmonate, chitin and pectin or the precursor L-tyrosine at different concentrations for L-DOPA production. Compared to the controls, several-fold increases in L-DOPA concentration were observed in elicitor-treated and precursor-fed suspension cultures of both plant species. L-DOPA concentrations were comparatively higher in precursor-fed cultures than those receiving elicitor treatments. A parallel increase in tyrosinase and PPO levels was also observed. Loss of cell viability was observed at high concentrations of elicitor-treated cultures, whereas L-tyrosine did not cause any cell death. Compared to elicitor treatments, precursor feeding resulted in higher concentrations of L-DOPA production and tyrosinase activity. The efficacy of L-DOPA production was found to be higher for suspension cultures of M. pruriens compared to M. prurita in all treatments.

  18. Establishment of Genetically Encoded Biosensors for Cytosolic Boric Acid in Plant Cells.

    PubMed

    Fukuda, Makiha; Wakuta, Shinji; Kamiyo, Jio; Fujiwara, Toru; Takano, Junpei

    2018-06-08

    Boron (B) is an essential micronutrient for plants. To maintain B concentration in tissues at appropriate levels, plants use boric acid channels belonging to the NIP subfamily of aquaporins and BOR borate exporters. To regulate B transport, these transporters exhibit different cell-type specific expression, polar localization, and B-dependent post-transcriptional regulation. Here, we describe the development of genetically encoded biosensors for cytosolic boric acid to visualize the spatial distribution and temporal dynamics of B in plant tissues. The biosensors were designed based on the function of the NIP5;1 5'-untranslated region (UTR), which promotes mRNA degradation in response to an elevated cytosolic boric acid concentration. The signal intensities of the biosensor coupled with Venus fluorescent protein and a nuclear localization signal (uNIP5;1-Venus) showed a negative correlation with intracellular B concentrations in cultured tobacco BY-2 cells. When expressed in Arabidopsis thaliana, uNIP5;1-Venus enabled quantification of the B distribution in roots at single-cell resolution. In mature roots, cytosolic B levels in stele were maintained under low-B supply, while those in epidermal, cortical, and endodermal cells were influenced by external B concentrations. Another biosensor coupled with a luciferase protein fused to a destabilization PEST sequence (uNIP5;1-Luc) was used to visualize changes in cytosolic boric acid concentrations. Thus, uNIP5;1-Venus/Luc enables visualization of B transport in various plant cells/tissues. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Cell-specific Labeling Enzymes for Analysis of Cell–Cell Communication in Continuous Co-culture*

    PubMed Central

    Tape, Christopher J.; Norrie, Ida C.; Worboys, Jonathan D.; Lim, Lindsay; Lauffenburger, Douglas A.; Jørgensen, Claus

    2014-01-01

    We report the orthologous screening, engineering, and optimization of amino acid conversion enzymes for cell-specific proteomic labeling. Intracellular endoplasmic-reticulum-anchored Mycobacterium tuberculosis diaminopimelate decarboxylase (DDCM.tub-KDEL) confers cell-specific meso-2,6-diaminopimelate-dependent proliferation to multiple eukaryotic cell types. Optimized lysine racemase (LyrM37-KDEL) supports D-lysine specific proliferation and efficient cell-specific isotopic labeling. When ectopically expressed in discrete cell types, these enzymes confer 90% cell-specific isotopic labeling efficiency after 10 days of co-culture. Moreover, DDCM.tub-KDEL and LyrM37-KDEL facilitate equally high cell-specific labeling fidelity without daily media exchange. Consequently, the reported novel enzyme pairing can be used to study cell-specific signaling in uninterrupted, continuous co-cultures. Demonstrating the importance of increased labeling stability for addressing novel biological questions, we compare the cell-specific phosphoproteome of fibroblasts in direct co-culture with epithelial tumor cells in both interrupted (daily media exchange) and continuous (no media exchange) co-cultures. This analysis identified multiple cell-specific phosphorylation sites specifically regulated in the continuous co-culture. Given their applicability to multiple cell types, continuous co-culture labeling fidelity, and suitability for long-term cell–cell phospho-signaling experiments, we propose DDCM.tub-KDEL and LyrM37-KDEL as excellent enzymes for cell-specific labeling with amino acid precursors. PMID:24820872

  20. Mannose Induces an Endonuclease Responsible for DNA Laddering in Plant Cells

    PubMed Central

    Stein, Joshua C.; Hansen, Geneviève

    1999-01-01

    The effect of d-mannose (Man) on plant cells was studied in two different systems: Arabidopsis roots and maize (Zea mays) suspension-cultured cells. In both systems, exposure to d-Man was associated with a subset of features characteristic of apoptosis, as assessed by oligonucleosomal fragmentation and microscopy analysis. Furthermore, d-Man induced the release of cytochrome c from mitochondria. The specificity of d-Man was evaluated by comparing the effects of diastereomers such as l-Man, d-glucose, and d-galactose. Of these treatments, only d-Man caused a reduction in final fresh weight with concomitant oligonucleosomal fragmentation. Man-induced DNA laddering coincided with the activation of a DNase in maize cytosolic extracts and with the appearance of single 35-kD band detected using an in-gel DNase assay. The DNase activity was further confirmed by using covalently closed circular plasmid DNA as a substrate. It appears that d-Man, a safe and readily accessible compound, offers remarkable features for the study of apoptosis in plant cells. PMID:10482662

  1. Compact Cell Settlers for Perfusion Cultures of Microbial (and Mammalian) Cells.

    PubMed

    Freeman, Cassandra A; Samuel, Premsingh S D; Kompala, Dhinakar S

    2017-07-01

    As microbial secretory expression systems have become well developed for microbial yeast cells, such as Saccharomyces cerevisiae and Pichia pastoris, it is advantageous to develop high cell density continuous perfusion cultures of microbial yeast cells to retain the live and productive yeast cells inside the perfusion bioreactor while removing the dead cells and cell debris along with the secreted product protein in the harvest stream. While the previously demonstrated inclined or lamellar settlers can be used for such perfusion bioreactors for microbial cells, the size and footprint requirements of such inefficiently scaled up devices can be quite large in comparison to the bioreactor size. Faced with this constraint, we have now developed novel, patent-pending compact cell settlers that can be used more efficiently with microbial perfusion bioreactors to achieve high cell densities and bioreactor productivities. Reproducible results from numerous month-long perfusion culture experiments using these devices attached to the 5 L perfusion bioreactor demonstrate very high cell densities due to substantial sedimentation of the larger live yeast cells which are returned to the bioreactor, while the harvest stream from the top of these cell settlers is a significantly clarified liquid, containing less than 30% and more typically less than 10% of the bioreactor cell concentration. Size of cells in the harvest is smaller than that of the cells in the bioreactor. Accumulated protein collected from the harvest and rate of protein accumulation is significantly (> 6x) higher than the protein produced in repeated fed-batch cultures over the same culture duration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:913-922, 2017. © 2017 American Institute of Chemical Engineers.

  2. Development of a microfluidic perfusion 3D cell culture system

    NASA Astrophysics Data System (ADS)

    Park, D. H.; Jeon, H. J.; Kim, M. J.; Nguyen, X. D.; Morten, K.; Go, J. S.

    2018-04-01

    Recently, 3-dimensional in vitro cell cultures have gained much attention in biomedical sciences because of the closer relevance between in vitro cell cultures and in vivo environments. This paper presents a microfluidic perfusion 3D cell culture system with consistent control of long-term culture conditions to mimic an in vivo microenvironment. It consists of two sudden expansion reservoirs to trap incoming air bubbles, gradient generators to provide a linear concentration, and microchannel mixers. Specifically, the air bubbles disturb a flow in the microfluidic channel resulting in the instability of the perfusion cell culture conditions. For long-term stable operation, the sudden expansion reservoir is designed to trap air bubbles by using buoyancy before they enter the culture system. The performance of the developed microfluidic perfusion 3D cell culture system was examined experimentally and compared with analytical results. Finally, it was applied to test the cytotoxicity of cells infected with Ewing’s sarcoma. Cell death was observed for different concentrations of H2O2. For future work, the developed microfluidic perfusion 3D cell culture system can be used to examine the behavior of cells treated with various drugs and concentrations for high-throughput drug screening.

  3. An Introductory Undergraduate Course Covering Animal Cell Culture Techniques

    ERIC Educational Resources Information Center

    Mozdziak, Paul E.; Petitte, James N.; Carson, Susan D.

    2004-01-01

    Animal cell culture is a core laboratory technique in many molecular biology, developmental biology, and biotechnology laboratories. Cell culture is a relatively old technique that has been sparingly taught at the undergraduate level. The traditional methodology for acquiring cell culture training has been through trial and error, instruction when…

  4. Nitrogen metabolism in Lignifying Pinus taeda cell cultures

    NASA Technical Reports Server (NTRS)

    van Heerden, P. S.; Towers, G. H.; Lewis, N. G.

    1996-01-01

    The primary metabolic fate of phyenylalanine, following its deamination in plants, is conscription of its carbon skeleton for lignin, suberin, flavonoid, and related metabolite formation. Since this accounts for approximately 30-40% of all organic carbon, an effective means of recycling the liberated ammonium ion must be operative. In order to establish how this occurs, the uptake and metabolism of various 15N-labeled precursors (15N-Phe, 15NH4Cl, 15N-Gln, and 15N-Glu) in lignifying Pinus taeda cell cultures was investigated, using a combination of high performance liquid chromatography, 15N NMR, and gas chromatograph-mass spectrometry analyses. It was found that the ammonium ion released during active phenylpropanoid metabolism was not made available for general amino acid/protein synthesis. Rather it was rapidly recycled back to regenerate phenylalanine, thereby providing an effective means of maintaining active phenylpropanoid metabolism with no additional nitrogen requirement. These results strongly suggest that, in lignifying cells, ammonium ion reassimilation is tightly compartmentalized.

  5. Cardiac Cells Beating in Culture: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Weaver, Debora

    2007-01-01

    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained…

  6. Which has more stem-cell characteristics: Müller cells or Müller cells derived from in vivo culture in neurospheres?

    PubMed

    Ji, Hong-Pei; Xiong, Yu; Zhang, En-Dong; Song, Wei-Tao; Gao, Zhao-Lin; Yao, Fei; Sun, Hong; Zhou, Rong-Rong; Xia, Xiao-Bo

    2017-01-01

    Müller cells can be acquired from in vitro culture or a neurosphere culture system. Both culture methods yield cells with progenitor-cell characteristics that can differentiate into mature nervous cells. We compared the progenitor-cell traits of Müller cells acquired from each method. Primary murine Müller cells were isolated in serum culture media and used to generate Müller cells derived from neurospheres in serum-free culture conditions. Gene expression of neural progenitor cell markers was examined by Q-PCR in the two groups. Expression of rhodopsin and the cone-rod homeobox protein CRX were assessed after induction with 1 μM all-trans retinoic acid (RA) for 7 days. After more than four passages, many cells were large, flattened, and difficult to passage. A spontaneously immortalized Müller cell line was not established. Three-passage neurospheres yielded few new spheres. Genes coding for Nestin, Sox2, Chx10, and Vimentin were downregulated in cells derived from neurospheres compared to the cells from standard culture, while Pax6 was upregulated. Müller cells from both culture methods were induced into rod photoreceptors, but expression of rhodopsin and CRX was greater in the Müller cells from the standard culture. Both culture methods yielded cells with stem-cell characteristics that can be induced into rod photoreceptor neurons by RA. Serum had no influence on the "stemness" of the cells. Cells from standard culture had greater "stemness" than cells derived from neurospheres. The standard Müller cells would seem to be the best choice for transplantation in cell replacement therapy for photoreceptor degeneration.

  7. Elimination of toxicity from polyurethane foam plugs used for plant culture

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Schwartzkopf, S. H.; Tibbitts, T. W.; Langhans, R. W.

    1985-01-01

    Polyurethane foam plugs commonly are used as collars or supports to grow plants in solution culture. Despite their utility, these foam plugs can be quite toxic to plants, particularly to small seedlings. We have observed tissue injury in tests using plugs to support lettuce, red beet, and potato plants in solution culture. Typically, the injury is initiated on the hypocotyl or stem tissue in direct contact with the foam, and appears within 30 hr as a brownish discoloration on the tissue surface. This discoloration can be followed by complete collapse of affected tissue and eventual death of the seedling. When injury does not progress beyond surface browning, the seedling survives but growth is slowed. In this paper, we report on different treatments that can be used to remove the toxicity of these plugs so they can be used in plant research.

  8. Advanced cell culture techniques for cancer drug discovery.

    PubMed

    Lovitt, Carrie J; Shelper, Todd B; Avery, Vicky M

    2014-05-30

    Human cancer cell lines are an integral part of drug discovery practices. However, modeling the complexity of cancer utilizing these cell lines on standard plastic substrata, does not accurately represent the tumor microenvironment. Research into developing advanced tumor cell culture models in a three-dimensional (3D) architecture that more prescisely characterizes the disease state have been undertaken by a number of laboratories around the world. These 3D cell culture models are particularly beneficial for investigating mechanistic processes and drug resistance in tumor cells. In addition, a range of molecular mechanisms deconstructed by studying cancer cells in 3D models suggest that tumor cells cultured in two-dimensional monolayer conditions do not respond to cancer therapeutics/compounds in a similar manner. Recent studies have demonstrated the potential of utilizing 3D cell culture models in drug discovery programs; however, it is evident that further research is required for the development of more complex models that incorporate the majority of the cellular and physical properties of a tumor.

  9. Advanced Cell Culture Techniques for Cancer Drug Discovery

    PubMed Central

    Lovitt, Carrie J.; Shelper, Todd B.; Avery, Vicky M.

    2014-01-01

    Human cancer cell lines are an integral part of drug discovery practices. However, modeling the complexity of cancer utilizing these cell lines on standard plastic substrata, does not accurately represent the tumor microenvironment. Research into developing advanced tumor cell culture models in a three-dimensional (3D) architecture that more prescisely characterizes the disease state have been undertaken by a number of laboratories around the world. These 3D cell culture models are particularly beneficial for investigating mechanistic processes and drug resistance in tumor cells. In addition, a range of molecular mechanisms deconstructed by studying cancer cells in 3D models suggest that tumor cells cultured in two-dimensional monolayer conditions do not respond to cancer therapeutics/compounds in a similar manner. Recent studies have demonstrated the potential of utilizing 3D cell culture models in drug discovery programs; however, it is evident that further research is required for the development of more complex models that incorporate the majority of the cellular and physical properties of a tumor. PMID:24887773

  10. Learning about Cells as Dynamic Entities: An Inquiry-Driven Cell Culture Project

    ERIC Educational Resources Information Center

    Palombi, Peggy Shadduck; Jagger, Kathleen Snell

    2008-01-01

    Using cultured fibroblast cells, undergraduate students explore cell division and the responses of cultured cells to a variety of environmental changes. The students learn new research techniques and carry out a self-designed experiment. Through this project, students enhance their creative approach to scientific inquiry, learn time-management and…

  11. Plant-fed versus chemicals-fed rhizobacteria of Lucerne: Plant-only teabags culture media not only increase culturability of rhizobacteria but also recover a previously uncultured Lysobacter sp., Novosphingobium sp. and Pedobacter sp.

    PubMed Central

    Hegazi, Nabil A.; Sarhan, Mohamed S.; Fayez, Mohamed; Patz, Sascha; Murphy, Brian R.; Ruppel, Silke

    2017-01-01

    In an effort to axenically culture the previously uncultivable populations of the rhizobacteria of Lucerne (Medicago sativa L.), we propose plant-only teabags culture media to mimic the nutritional matrix available in the rhizosphere. Here, we show that culture media prepared from Lucerne powder teabags substantially increased the cultivability of Lucerne rhizobacteria compared with a standard nutrient agar, where we found that the cultivable populations significantly increased by up to 60% of the total bacterial numbers as estimated by Quantitative Real-time Polymerase Chain Reaction (qRT-PCR). Cluster analysis of 16S rDNA Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) of cultivable Colony-Forming Units (CFUs) revealed a more distinct composition and separation of bacterial populations recovered on the plant-only teabags culture media than those developed on a standard nutrient agar. Further, the new plant medium gave preference to the micro-symbiont Sinorhizobium meliloti, and succeeded in isolating a number of not-yet-cultured bacteria, most closely matched to Novosphingobium sp., Lysobacter sp. and Pedobacter sp. The present study may encourage other researchers to consider moving from the well-established standard culture media to the challenging new plant-only culture media. Such a move may reveal previously hidden members of rhizobacteria, and help to further explore their potential environmental impacts. PMID:28686606

  12. Dynamic cell culture system: a new cell cultivation instrument for biological experiments in space

    NASA Technical Reports Server (NTRS)

    Gmunder, F. K.; Nordau, C. G.; Tschopp, A.; Huber, B.; Cogoli, A.

    1988-01-01

    The prototype of a miniaturized cell cultivation instrument for animal cell culture experiments aboard Spacelab is presented (Dynamic cell culture system: DCCS). The cell chamber is completely filled and has a working volume of 200 microliters. Medium exchange is achieved with a self-powered osmotic pump (flowrate 1 microliter h-1). The reservoir volume of culture medium is 230 microliters. The system is neither mechanically stirred nor equipped with sensors. Hamster kidney (Hak) cells growing on Cytodex 3 microcarriers were used to test the biological performance of the DCCS. Growth characteristics in the DCCS, as judged by maximal cell density, glucose consumption, lactic acid secretion and pH, were similar to those in cell culture tubes.

  13. [Toxicity evaluation of sewage treatment plant effluent of chemical industrial park along the Yangtze River on rat testicular germ cells in vitro].

    PubMed

    Hu, Guan-Jiu; Wang, Xiao-Yi; Shi, Wei; Bai, Chou-Yong; Wu, Jiang; Liu, Hong-Ling; Yu, Hong-Xia

    2009-05-15

    By using rat testicular germ cells in vitro toxicity testing method based on original cells culture, the reproduction toxicity of sewage treatment plant effluent of Chemical Industrial Park along the Yangtze River was evaluated, through cells changes in morphologic, activity and viability parameters. The results showed that both of the effluents from new developed Chemical Industrial Park A and provincial Chemical Industrial Park B contain reproductive toxic substances. The toxicity of Park A has more significant undergone changes in cells activity of sertoli cells (p < 0.01), spermatogenic cells (p < 0.05) and leyding cells (p < 0.05), lactate dehydrogenase activity (p < 0.01) and testosterone secretion (p < 0.01) than that of Park B. Sepermatogenic cells are more sensitive in indicating reproduction toxicity for testicular, compared with leyding cells and sertoli cells. This study demonstrated that, as an indispensable and complementary tool for water quality assessment, rat testicular germ cells in vitro toxicity testing based on original cells culture can be used to comprehensively evaluate the reproduction toxicity of sewage treatment plant effluent, and provide prompt and useful discharge quality information.

  14. Plant cell transformation with Agrobacterium tumefaciens under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Sarnatska, Veresa; Gladun, Hanna; Padalko, Svetlana

    To investigate simulated microgravity (clinorotation) effect on plant cell transformation with Agrobacterium tumefaciens and crown gall formation, the culture of primary explants of potato and Jerusalem artichoke tubers was used. It is found that the efficiency of tumor formation and development in clinorotated explants are considerably reduced. When using the explants isolated from potato tubers clinorotated for 3, 5 and 19 days, drastic reduction of formation and development of crown gall tumors was observed. Conversely, the tumor number and their development increased when potato tubers were clinorotated for one day. As was estimated by us previously, cells of Jerusalem artichoke explants are the most sensitive to agrobacteria on 4-5 h of in vitro culturing and this time corresponds to the certain period of G1-stage of the cell cycle. We have also estimated that this period is characterized by the increase of binding of acridine orange by nuclear chromatin and increase in activity of RNA-polymerase I and II. Inoculation of explants with agrobacteria in this period was the most optimal for transformation and crown gall induction. We estimated that at four - hour clinorotation of explants the intensity of acridine orange binding to nuclei was considerably lower than on 4h in the control. At one-day clinorotation of potato tubers, a considerable increase in template accessibility of chromatin and in activity of RNA-polymerase I and II occurred. These results may serve as an evidence for the ability of plant dormant tissues to respond to microgravity. Another demonstration of dormant tissue response to changed gravity we obtained when investigating pathogenesis-related proteins (PR-proteins). PR-proteins were subjected to nondenaturing PAGE.and we have not found any effect of microgravity on PR-proteins of potato explants with normal or tumorous growth. We may suggest that such response derives from the common effects of two stress factors - wounding and changed

  15. Three-dimensional Tissue Culture Based on Magnetic Cell Levitation

    PubMed Central

    Souza, Glauco R.; Molina, Jennifer R.; Raphael, Robert M.; Ozawa, Michael G.; Stark, Daniel J.; Levin, Carly S.; Bronk, Lawrence F.; Ananta, Jeyarama S.; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A.; Gelovani, Juri G.

    2015-01-01

    Cell culture is an essential tool for drug discovery, tissue engineering, and stem cell research. Conventional tissue culture produces two-dimensional (2D) cell growth with gene expression, signaling, and morphology that can differ from those in vivo and thus compromise clinical relevancy1–5. Here we report a three-dimensional (3D) culture of cells based on magnetic levitation in the presence of hydrogels containing gold and magnetic iron oxide (MIO) nanoparticles plus filamentous bacteriophage. This methodology allows for control of cell mass geometry and guided, multicellular clustering of different cell types in co-culture through spatial variance of the magnetic field. Moreover, magnetic levitation of human glioblastoma cells demonstrates similar protein expression profiles to those observed in human tumor xenografts. Taken together, these results suggest levitated 3D culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and allows for long-term multi-cellular studies. PMID:20228788

  16. The expression of native and cultured human retinal pigment epithelial cells grown in different culture conditions.

    PubMed

    Tian, J; Ishibashi, K; Honda, S; Boylan, S A; Hjelmeland, L M; Handa, J T

    2005-11-01

    To determine the transcriptional proximity of retinal pigment epithelium (RPE) cells grown under different culture conditions and native RPE. ARPE-19 cells were grown under five conditions in 10% CO(2): "subconfluent" in DMEM/F12+10% FBS, "confluent" in serum and serum withdrawn, and "differentiated" for 2.5 months in serum and serum withdrawn medium. Native RPE was laser microdissected. Total RNA was extracted, reverse transcribed, and radiolabelled probes were hybridised to an array containing 5,353 genes. Arrays were evaluated by hierarchical cluster analysis and significance analysis of microarrays. 78% of genes were expressed by native RPE while 45.3--47.7% were expressed by ARPE-19 cells, depending on culture condition. While the most abundant genes were expressed by native and cultured cells, significant differences in low abundance genes were seen. Hierarchical cluster analysis showed that confluent and differentiated, serum withdrawn cultures clustered closest to native RPE, and that serum segregated cultured cells from native RPE. The number of differentially expressed genes and their function, and profile of expressed and unexpressed genes, demonstrate differences between native and cultured cells. While ARPE-19 cells have significant value for studying RPE behaviour, investigators must be aware of how culture conditions can influence the mRNA phenotype of the cell.

  17. Evaluation of the osteogenic differentiation of gingiva-derived stem cells grown on culture plates or in stem cell spheroids: Comparison of two- and three-dimensional cultures.

    PubMed

    Lee, Sung-Il; Ko, Youngkyung; Park, Jun-Beom

    2017-09-01

    Three-dimensional cell culture systems provide a convenient in vitro model for the study of complex cell-cell and cell-matrix interactions in the absence of exogenous substrates. The current study aimed to evaluate the osteogenic differentiation potential of gingiva-derived stem cells cultured in two-dimensional or three-dimensional systems. To the best of our knowledge, the present study is the first to compare the growth of gingiva-derived stem cells in monolayer culture to a three-dimensional culture system with microwells. For three-dimensional culture, gingiva-derived stem cells were isolated and seeded into polydimethylsiloxane-based concave micromolds. Alkaline phosphatase activity and alizarin red S staining assays were then performed to evaluate osteogenesis and the degree of mineralization, respectively. Stem cell spheroids had a significantly increased level of alkaline phosphatase activity and mineralization compared with cells from the two-dimensional culture. In addition, an increase in mineralized deposits was observed with an increase in the loading cell number. The results of present study indicate that gingiva-derived stem cell spheroids exhibit an increased osteogenic potential compared with stem cells from two-dimensional culture. This highlights the potential of three-dimensional culture systems using gingiva-derived stem cells for regenerative medicine applications requiring stem cells with osteogenic potential.

  18. Fundamentals of microfluidic cell culture in controlled microenvironments†

    PubMed Central

    Young, Edmond W. K.; Beebe, David J.

    2010-01-01

    Microfluidics has the potential to revolutionize the way we approach cell biology research. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. One of the key benefits of microfluidics for basic biology is the ability to control parameters of the cell microenvironment at relevant length and time scales. Considerable progress has been made in the design and use of novel microfluidic devices for culturing cells and for subsequent treatment and analysis. With the recent pace of scientific discovery, it is becoming increasingly important to evaluate existing tools and techniques, and to synthesize fundamental concepts that would further improve the efficiency of biological research at the microscale. This tutorial review integrates fundamental principles from cell biology and local microenvironments with cell culture techniques and concepts in microfluidics. Culturing cells in microscale environments requires knowledge of multiple disciplines including physics, biochemistry, and engineering. We discuss basic concepts related to the physical and biochemical microenvironments of the cell, physicochemical properties of that microenvironment, cell culture techniques, and practical knowledge of microfluidic device design and operation. We also discuss the most recent advances in microfluidic cell culture and their implications on the future of the field. The goal is to guide new and interested researchers to the important areas and challenges facing the scientific community as we strive toward full integration of microfluidics with biology. PMID:20179823

  19. A novel three-dimensional cell culture method enhances antiviral drug screening in primary human cells.

    PubMed

    Koban, Robert; Neumann, Markus; Daugs, Aila; Bloch, Oliver; Nitsche, Andreas; Langhammer, Stefan; Ellerbrok, Heinz

    2018-02-01

    Gefitinib is a specific inhibitor of the epidermal growth factor receptor (EGFR) and FDA approved for treatment of non-small cell lung cancer. In a previous study we could show the in vitro efficacy of gefitinib for treatment of poxvirus infections in monolayer (2D) cultivated cell lines. Permanent cell lines and 2D cultures, however, are known to be rather unphysiological; therefore it is difficult to predict whether determined effective concentrations or the drug efficacy per se are transferable to the in vivo situation. 3D cell cultures, which meanwhile are widely distributed across all fields of research, are a promising tool for more predictive in vitro investigations of antiviral compounds. In this study the spreading of cowpox virus and the antiviral efficacy of gefitinib were analyzed in primary human keratinocytes (NHEK) grown in a novel 3D extracellular matrix-based cell culture model and compared to the respective monolayer culture. 3D-cultivated NHEK grew in a polarized and thus a more physiological manner with altered morphology and close cell-cell contact. Infected cultures showed a strongly elevated sensitivity towards gefitinib. EGFR phosphorylation, cell proliferation, and virus replication were significantly reduced in 3D cultures at gefitinib concentrations which were at least 100-fold lower than those in monolayer cultures and well below the level of cytotoxicity. Our newly established 3D cell culture model with primary human cells is an easy-to-handle alternative to conventional monolayer cell cultures and previously described more complex 3D cell culture systems. It can easily be adapted to other cell types and a broad spectrum of viruses for antiviral drug screening and many other aspects of virus research under more in vivo-like conditions. In consequence, it may contribute to a more targeted realization of necessary in vivo experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Development of suspension cell culture model to mimic circulating tumor cells

    PubMed Central

    Park, Ji Young; Jeong, Ae Lee; Joo, Hyun Jeong; Han, Sora; Kim, So-Hyun; Kim, Hye-Youn; Lim, Jong-Seok; Lee, Myeong-Sok; Choi, Hyung-Kyoon; Yang, Young

    2018-01-01

    Circulating tumor cells (CTCs) are essential for the establishment of distant metastasis. Numerous studies have characterized CTCs as metastatic precursors; however, the molecular nature of CTCs has not been completely revealed yet due to the low number of CTCs in the blood stream. As an alternative approach, we developed a long-term suspension cell culture model using human breast cancer cell lines to mimic CTCs. We found that more than 40 passaged suspension cells acquired the ability to enhance metastasis like cancer stem cells. To identify molecular changes acquired during the suspension cell culture, we analyzed metabolic and lipidomic profiles as well as transcriptome in MDA-MB-468 suspension cells. Glutamate and leucine levels increased in suspension cells, and cholesterol synthesis pathway was altered. The inhibition of glutamate metabolic pathway decreased the proliferation of suspension cells compared to that of adherent cells. In the lipidomic profile, PC species containing long chain and polyunsaturated fatty acids increased in suspension cells and these species could be authentic and specific biomarkers for highly metastatic cancers. As this CTC-mimicking suspension cell culture model may easily apply to various types of cancer, we suggest this model as a great tool to develop therapeutic targets and drugs to eradicate metastatic cancer cells. PMID:29416640

  1. Simulated microgravity, Mars gravity, and 2g hypergravity affect cell cycle regulation, ribosome biogenesis, and epigenetics in Arabidopsis cell cultures.

    PubMed

    Kamal, Khaled Y; Herranz, Raúl; van Loon, Jack J W A; Medina, F Javier

    2018-04-23

    Gravity is the only component of Earth environment that remained constant throughout the entire process of biological evolution. However, it is still unclear how gravity affects plant growth and development. In this study, an in vitro cell culture of Arabidopsis thaliana was exposed to different altered gravity conditions, namely simulated reduced gravity (simulated microgravity, simulated Mars gravity) and hypergravity (2g), to study changes in cell proliferation, cell growth, and epigenetics. The effects after 3, 14, and 24-hours of exposure were evaluated. The most relevant alterations were found in the 24-hour treatment, being more significant for simulated reduced gravity than hypergravity. Cell proliferation and growth were uncoupled under simulated reduced gravity, similarly, as found in meristematic cells from seedlings grown in real or simulated microgravity. The distribution of cell cycle phases was changed, as well as the levels and gene transcription of the tested cell cycle regulators. Ribosome biogenesis was decreased, according to levels and gene transcription of nucleolar proteins and the number of inactive nucleoli. Furthermore, we found alterations in the epigenetic modifications of chromatin. These results show that altered gravity effects include a serious disturbance of cell proliferation and growth, which are cellular functions essential for normal plant development.

  2. PLANT CULTURAL SYSTEM FOR MONITORING EVAPOTRANSPIRATION AND PHYSIOLOGICAL RESPONSES UNDER FIELD CONDITIONS

    EPA Science Inventory

    A plant culture system incorporating the water-table root-screen method for controlling plant water status was adapted for use in open-top field exposure chambers for studying the effects of drought stress on physiological responses. The daily transpiration rates of the plants we...

  3. Magnetic 3D Cell Culturing

    NASA Image and Video Library

    2017-07-11

    iss052e014201 (7/11/2017) --- NASA astronaut Peggy Whitson uses a microscope to view Magnetic 3D Biocells. This investigation uses magnetized cells and tools to make it easier to handle cells and cultures and to improve the reproducibility of experiments.

  4. Laser-mediated perforation of plant cells

    NASA Astrophysics Data System (ADS)

    Wehner, Martin; Jacobs, Philipp; Esser, Dominik; Schinkel, Helga; Schillberg, Stefan

    2007-07-01

    The functional analysis of plant cells at the cellular and subcellular levels requires novel technologies for the directed manipulation of individual cells. Lasers are increasingly exploited for the manipulation of plant cells, enabling the study of biological processes on a subcellular scale including transformation to generate genetically modified plants. In our setup either a picosecond laser operating at 1064 nm wavelength or a continuous wave laser diode emitting at 405 nm are coupled into an inverse microscope. The beams are focused to a spot size of about 1.5 μm and the tobacco cell protoplasts are irradiated. Optoporation is achieved when targeting the laser focal spot at the outermost edge of the plasma membrane. In case of the picosecond laser a single pulse with energy of about 0.4 μJ was sufficient to perforate the plasma membrane enabling the uptake of dye or DNA from the surrounding medium into the cytosol. When the ultraviolet laser diode at a power level of 17 mW is employed an irradiation time of 200 - 500 milliseconds is necessary to enable the uptake of macromolecules. In the presence of an EYFP encoding plasmid with a C-terminal peroxisomal signal sequence in the surrounding medium transient transformation of tobacco protoplasts could be achieved in up to 2% of the optoporated cells. Single cell perforation using this novel optoporation method shows that isolated plant cells can be permeabilized without direct manipulation. This is a valuable procedure for cell-specific applications, particularly where the import of specific molecules into plant cells is required for functional analysis.

  5. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  6. Primary Human Uterine Leiomyoma Cell Culture Quality Control: Some Properties of Myometrial Cells Cultured under Serum Deprivation Conditions in the Presence of Ovarian Steroids.

    PubMed

    Bonazza, Camila; Andrade, Sheila Siqueira; Sumikawa, Joana Tomomi; Batista, Fabrício Pereira; Paredes-Gamero, Edgar J; Girão, Manoel J B C; Oliva, Maria Luiza V; Castro, Rodrigo Aquino

    2016-01-01

    Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary cells and cell lines change over time in culture. Thus, we report methods based on our experience for monitoring primary cell culture of human myometrial cells derived from uterine leiomyoma. We standardized the best procedure of tissue dissociation required for the study of multiple genetic marker systems that include species-specific antigens, expression of myofibroblast or myoblast markers, growth curve, serum deprivation, starvation by cell cycle synchronization, culture on collagen coated plates, and 17 β-estradiol (E2) and progesterone (P4) effects. The results showed that primary myometrial cells from patients with uterine leiomyoma displayed myoblast phenotypes before and after in vitro cultivation, and leiomyoma cells differentiated into mature myocyte cells under the appropriate differentiation-inducing conditions (serum deprivation). These cells grew well on collagen coated plates and responded to E2 and P4, which may drive myometrial and leiomyoma cells to proliferate and adhere into a focal adhesion complex involvement in a paracrine manner. The establishment of these techniques as routine procedures will improve the understanding of the myometrial physiology and pathogenesis of myometrium-derived diseases such as leiomyoma. Mimicking the in vivo environment of fibrotic conditions can prevent false results and enhance results that are based on cell culture integrity.

  7. Trickle water and feeding system in plant culture and light-dark cycle effects on plant growth

    NASA Technical Reports Server (NTRS)

    Takano, T.; Inada, K.; Takanashi, J.

    1987-01-01

    Rockwool, as an inert medium covered or bagged with polyethylene film, can be effectively used for plant culture in space stations. The most important machine is the pump adjusting the dripping rate in the feeding system. Hydro-aeroponics may be adaptable to a space laboratory. The shortening of the light-dark cycles inhibits plant growth and induces an abnormal morphogenesis. A photoperiod of 12 hr dark may be needed for plant growth.

  8. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    PubMed

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-05

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  9. Hybrid proline-rich proteins: novel players in plant cell elongation?

    PubMed Central

    Dvořáková, Lenka; Srba, Miroslav; Opatrny, Zdenek; Fischer, Lukas

    2012-01-01

    Background and Aims Hybrid proline-rich proteins (HyPRPs) represent a large family of putative cell-wall proteins characterized by the presence of a variable N-terminal domain and a conserved C-terminal domain that is related to non-specific lipid transfer proteins. The function of HyPRPs remains unclear, but their widespread occurrence and abundant expression patterns indicate that they may be involved in a basic cellular process. Methods To elucidate the cellular function of HyPRPs, we modulated the expression of three HyPRP genes in tobacco (Nicotiana tabacum) BY-2 cell lines and in potato (Solanum tuberosum) plants. Key Results In BY-2 lines, over-expression of the three HyPRP genes with different types of N-terminal domains resulted in similar phenotypic changes, namely increased cell elongation, both in suspension culture and on solid media where the over-expression resulted in enhanced calli size. The over-expressing cells showed increased plasmolysis in a hypertonic mannitol solution and accelerated rate of protoplast release, suggesting loosening of the cell walls. In contrast to BY-2 lines, no phenotypic changes were observed in potato plants over-expressing the same or analogous HyPRP genes, presumably due to more complex compensatory mechanisms in planta. Conclusions Based on the results from BY-2 lines, we propose that HyPRPs, more specifically their C-terminal domains, represent a novel group of proteins involved in cell expansion. PMID:22028464

  10. Biomaterials for 4D stem cell culture

    PubMed Central

    Hilderbrand, Amber M.; Ovadia, Elisa M.; Rehmann, Matthew S.; Kharkar, Prathamesh M.; Guo, Chen; Kloxin, April M.

    2017-01-01

    Stem cells reside in complex three-dimensional (3D) environments within the body that change with time, promoting various cellular functions and processes such as migration and differentiation. These complex changes in the surrounding environment dictate cell fate yet, until recently, have been challenging to mimic within cell culture systems. Hydrogel-based biomaterials are well suited to mimic aspects of these in vivo environments, owing to their high water content, soft tissue-like elasticity, and often-tunable biochemical content. Further, hydrogels can be engineered to achieve changes in matrix properties over time to better mimic dynamic native microenvironments for probing and directing stem cell function and fate. This review will focus on techniques to form hydrogel-based biomaterials and modify their properties in time during cell culture using select addition reactions, cleavage reactions, or non-covalent interactions. Recent applications of these techniques for the culture of stem cells in four dimensions (i.e., in three dimensions with changes over time) also will be discussed for studying essential stem cell processes. PMID:28717344

  11. Using Peat Pellets in Liquid Media to Root Sunflower Tissue Culture Plants

    USDA-ARS?s Scientific Manuscript database

    Traditional plant breeding is often limited by the genetic diversity within a species. The use of biotechnology allows introducing into a plant, specific traits that come from the same or another plant species. In this paper, we focus on tissue culture of sunflower (Helianthus annus L., Asteraceae...

  12. Research on equipment of micro-pressure measure and control in loading experiment of plant cell mechanics

    NASA Astrophysics Data System (ADS)

    Zhang, Lian; Yu, Chengbo; Tao, Hongyan; Chen, Xuejun; Zhai, Feng

    2005-12-01

    The equipment is developed to measure and control micro-pressure in loading experiment of plant cell mechanics. The motivation for the development of this equipment was to maintain a stationary micro-pressure on the agar of culturing cells to keep cytoactive in biology experiments. A singlechip controls the stepping motor of this equipment to drive loading equipment in the system, in order to load between 50mN and 250mN under a constant voltage. The accuracy is estimated to be +/-0.4 mN. The structure and control system of this equipment is introduced and described in detail. The experimental results show that the equipment is capable of maintaining a constant, stationary micropressure in cell culturing application and is worth of extending and applying.

  13. Hydrofocusing Bioreactor for Three-Dimensional Cell Culture

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly

    2003-01-01

    The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.

  14. Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells.

    PubMed

    Yamashita, Tomoko; Miyamoto, Yuki; Bando, Yoshio; Ono, Takashi; Kobayashi, Sakurako; Doi, Ayano; Araki, Toshihiro; Kato, Yosuke; Shirakawa, Takayuki; Suzuki, Yutaka; Yamauchi, Junji; Yoshida, Shigetaka; Sato, Naoya

    2017-01-01

    Oligodendrocytes myelinate axons and form myelin sheaths in the central nervous system. The development of therapies for demyelinating diseases, including multiple sclerosis and leukodystrophies, is a challenge because the pathogenic mechanisms of disease remain poorly understood. Primate pluripotent stem cell-derived oligodendrocytes are expected to help elucidate the molecular pathogenesis of these diseases. Oligodendrocytes have been successfully differentiated from human pluripotent stem cells. However, it is challenging to prepare large amounts of oligodendrocytes over a short amount of time because of manipulation difficulties under conventional primate pluripotent stem cell culture methods. We developed a proprietary dissociated monolayer and feeder-free culture system to handle pluripotent stem cell cultures. Because the dissociated monolayer and feeder-free culture system improves the quality and growth of primate pluripotent stem cells, these cells could potentially be differentiated into any desired functional cells and consistently cultured in large-scale conditions. In the current study, oligodendrocyte progenitor cells and mature oligodendrocytes were generated within three months from monkey embryonic stem cells. The embryonic stem cell-derived oligodendrocytes exhibited in vitro myelinogenic potency with rat dorsal root ganglion neurons. Additionally, the transplanted oligodendrocyte progenitor cells differentiated into myelin basic protein-positive mature oligodendrocytes in the mouse corpus callosum. This preparative method was used for human induced pluripotent stem cells, which were also successfully differentiated into oligodendrocyte progenitor cells and mature oligodendrocytes that were capable of myelinating rat dorsal root ganglion neurons. Moreover, it was possible to freeze, thaw, and successfully re-culture the differentiating cells. These results showed that embryonic stem cells and human induced pluripotent stem cells maintained in a

  15. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  16. The impact of cell culture equipment on energy loss.

    PubMed

    Davies, Lleucu B; Kiernan, Michael N; Bishop, Joanna C; Thornton, Catherine A; Morgan, Gareth

    2014-01-01

    Light energy of discrete wavelengths supplied via lasers and broadband intense pulsed light have been used therapeutically for many years. In vitro models complement clinical studies, especially for the elucidation of underlying mechanisms of action. Clarification that light energy reaches the cells is necessary when developing protocols for the treatment of cells using in vitro models. Few studies report on energy loss in cell culture equipment. The ability of energy from light with therapeutic potential to reach cells in culture needs to be determined; this includes determining the proportion of light energy lost within standard cell culture media and cell culture vessels. The energy absorption of cell culture media, with/without the pH indicator dye phenol red, and the loss of energy within different plastics and glassware used typically for in vitro cell culture were investigated using intense pulsed light and a yellow pulsed dye laser. Media containing phenol red have a distinctive absorption peak (560 nm) absent in phenol red-free media and restored by the addition of phenol red. For both light sources, energy loss was lowest in standard polystyrene tissue culture flasks or multi-well plates and highest in polypropylene vessels or glass tubes. The effects of phenol red-free media on the absorption of energy varied with the light source used. Phenol red-free media are the media of choice; polystyrene vessels with flat surfaces such as culture flasks or multi-well plates should be used in preference to polypropylene or glass vessels.

  17. Surface modified alginate microcapsules for 3D cell culture

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  18. High-Aspect-Ratio Rotating Cell-Culture Vessel

    NASA Technical Reports Server (NTRS)

    Wolf, David A.; Sams, Clarence; Schwarz, Ray P.

    1992-01-01

    Cylindrical rotating cell-culture vessel with thin culture-medium layer of large surface area provides exchange of nutrients and products of metabolism with minimal agitation. Rotation causes averaging of buoyant forces otherwise separating components of different densities. Vessel enables growth of cells in homogeneous distribution with little agitation and little shear stress.

  19. Vacuum-assisted cell loading enables shear-free mammalian microfluidic culture

    PubMed Central

    Kolnik, Martin; Tsimring, Lev S; Hasty, Je

    2012-01-01

    Microfluidic perfusion cultures for mammalian cells provide a novel means for probing single-cell behavior but require the management of culture parameters such as flow-induced shear stress. Methods to eliminate shear stress generally focus on capturing cells in regions with high resistance to fluid flow. Here, we present a novel trapping design to easily and reliably load a high density of cells into culture chambers that are extremely isolated from potentially damaging flow effects. We utilize a transient on-chip vacuum to remove air from the culture chambers and rapidly replace the volume with a liquid cell suspension. We demonstrate the ability of this simple and robust method to load and culture three commonly used cell lines. We show how the incorporation of an on-chip function generator can be used for dynamic stimulation of cells during long-term continuous perfusion culture. PMID:22961584

  20. A co-culture device with a tunable stiffness to understand combinatorial cell-cell and cell-matrix interactions.

    PubMed

    Rao, Nikhil; Grover, Gregory N; Vincent, Ludovic G; Evans, Samantha C; Choi, Yu Suk; Spencer, Katrina H; Hui, Elliot E; Engler, Adam J; Christman, Karen L

    2013-11-01

    Cell behavior on 2-D in vitro cultures is continually being improved to better mimic in vivo physiological conditions by combining niche cues including multiple cell types and substrate stiffness, which are well known to impact cell phenotype. However, no system exists in which a user can systematically examine cell behavior on a substrate with a specific stiffness (elastic modulus) in culture with a different cell type, while maintaining distinct cell populations. We demonstrate the modification of a silicon reconfigurable co-culture system with a covalently linked hydrogel of user-defined stiffness. This device allows the user to control whether two separate cell populations are in contact with each other or only experience paracrine interactions on substrates of controllable stiffness. To illustrate the utility of this device, we examined the role of substrate stiffness combined with myoblast co-culture on adipose derived stem cell (ASC) differentiation and found that the presence of myoblasts and a 10 kPa substrate stiffness increased ASC myogenesis versus co-culture on stiff substrates. As this example highlights, this technology better controls the in vitro microenvironment, allowing the user to develop a more thorough understanding of the combined effects of cell-cell and cell-matrix interactions.

  1. A Community-Based Culture Collection for Targeting Novel Plant Growth-Promoting Bacteria from the Sugarcane Microbiome

    PubMed Central

    Armanhi, Jaderson Silveira Leite; de Souza, Rafael Soares Correa; Damasceno, Natália de Brito; de Araújo, Laura M.; Imperial, Juan; Arruda, Paulo

    2018-01-01

    The soil-plant ecosystem harbors an immense microbial diversity that challenges investigative approaches to study traits underlying plant-microbe association. Studies solely based on culture-dependent techniques have overlooked most microbial diversity. Here we describe the concomitant use of culture-dependent and -independent techniques to target plant-beneficial microbial groups from the sugarcane microbiome. The community-based culture collection (CBC) approach was used to access microbes from roots and stalks. The CBC recovered 399 unique bacteria representing 15.9% of the rhizosphere core microbiome and 61.6–65.3% of the endophytic core microbiomes of stalks. By cross-referencing the CBC (culture-dependent) with the sugarcane microbiome profile (culture-independent), we designed a synthetic community comprised of naturally occurring highly abundant bacterial groups from roots and stalks, most of which has been poorly explored so far. We then used maize as a model to probe the abundance-based synthetic inoculant. We show that when inoculated in maize plants, members of the synthetic community efficiently colonize plant organs, displace the natural microbiota and dominate at 53.9% of the rhizosphere microbial abundance. As a result, inoculated plants increased biomass by 3.4-fold as compared to uninoculated plants. The results demonstrate that abundance-based synthetic inoculants can be successfully applied to recover beneficial plant microbes from plant microbiota. PMID:29354144

  2. Application of 3D printing to prototype and develop novel plant tissue culture systems.

    PubMed

    Shukla, Mukund R; Singh, Amritpal S; Piunno, Kevin; Saxena, Praveen K; Jones, A Maxwell P

    2017-01-01

    Due to the complex process of designing and manufacturing new plant tissue culture vessels through conventional means there have been limited efforts to innovate improved designs. Further, development and availability of low cost, energy efficient LEDs of various spectra has made it a promising light source for plant growth in controlled environments. However, direct replacement of conventional lighting sources with LEDs does not address problems with uniformity, spectral control, or the challenges in conducting statistically valid experiments to assess the effects of light. Prototyping using 3D printing and LED based light sources could help overcome these limitations and lead to improved culture systems. A modular culture vessel design in which the fluence rate and spectrum of light are independently controlled was designed, prototyped using 3D printing, and evaluated for plant growth. This design is compatible with semi-solid and liquid based culture systems. Observations on morphology, chlorophyll content, and chlorophyll fluorescence based stress parameters from in vitro plants cultured under different light spectra with similar overall fluence rate indicated different responses in Nicotiana tabacum and Artemisia annua plantlets. This experiment validates the utility of 3D printing to design and test functional vessels and demonstrated that optimal light spectra for in vitro plant growth is species-specific. 3D printing was successfully used to prototype novel culture vessels with independently controlled variable fluence rate/spectra LED lighting. This system addresses several limitations associated with current lighting systems, providing more uniform lighting and allowing proper replication/randomization for experimental plant biology while increasing energy efficiency. A complete procedure including the design and prototyping of a culture vessel using 3D printing, commercial scale injection molding of the prototype, and conducting a properly replicated

  3. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide.

    PubMed

    Huang, Li-Fen; Tan, Chia-Chun; Yeh, Ju-Fang; Liu, Hsin-Yi; Liu, Yu-Kuo; Ho, Shin-Lon; Lu, Chung-An

    2015-01-01

    Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%-92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp.

  4. Polyamine and ethylene biosynthesis in relation to somatic embryogenesis in carrot (Daucus carota L.) cell cultures

    Treesearch

    Subhash C. Minocha; Cheryl A. Robie; Akhtar J. Khan; Nancy S. Papa; Andrew I. Samuelsen; Rakesh Minocha

    1990-01-01

    Carrot cell cultures provide a model experimental system for the analysis of biochemical and molecular events associated with morphogenesis in plants (3, 4, 5, 14). Among the biochemical changes accompanying somatic embryogenesis in this tissue is an increased biosynthesis ofpolyamines (1, 2, 7, 10, 11, 13). A variety of inhibitors of polyamine biosynthetic enzymes...

  5. Primary Human Uterine Leiomyoma Cell Culture Quality Control: Some Properties of Myometrial Cells Cultured under Serum Deprivation Conditions in the Presence of Ovarian Steroids

    PubMed Central

    Sumikawa, Joana Tomomi; Batista, Fabrício Pereira; Paredes-Gamero, Edgar J.; Girão, Manoel J. B. C.; Oliva, Maria Luiza V.

    2016-01-01

    Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary cells and cell lines change over time in culture. Thus, we report methods based on our experience for monitoring primary cell culture of human myometrial cells derived from uterine leiomyoma. We standardized the best procedure of tissue dissociation required for the study of multiple genetic marker systems that include species-specific antigens, expression of myofibroblast or myoblast markers, growth curve, serum deprivation, starvation by cell cycle synchronization, culture on collagen coated plates, and 17 β-estradiol (E2) and progesterone (P4) effects. The results showed that primary myometrial cells from patients with uterine leiomyoma displayed myoblast phenotypes before and after in vitro cultivation, and leiomyoma cells differentiated into mature myocyte cells under the appropriate differentiation-inducing conditions (serum deprivation). These cells grew well on collagen coated plates and responded to E2 and P4, which may drive myometrial and leiomyoma cells to proliferate and adhere into a focal adhesion complex involvement in a paracrine manner. The establishment of these techniques as routine procedures will improve the understanding of the myometrial physiology and pathogenesis of myometrium-derived diseases such as leiomyoma. Mimicking the in vivo environment of fibrotic conditions can prevent false results and enhance results that are based on cell culture integrity. PMID:27391384

  6. Constructing a High Density Cell Culture System

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor)

    1996-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  7. Vasopressin in reaggregated cell cultures of the developing hypothalamus.

    PubMed

    Notter, M F; Gash, D M; Sladek, C D; Scharoun, S L

    1984-03-01

    A microsystem for rotation-mediated aggregate cell culture studies has been devised to examine vasopressin (VP) biosynthesis of developing rat hypothalamus. Trypsin-dispersed hypothalamic tissue was placed into 24 well tissue culture dishes and VP content of culture medium and cells was measured over time by a radioimmunoassay. Reaggregates formed within 4 hr when rotated at 70 rpm in a humid CO2 incubator. Nineteen days post coitus (dpc) hypothalamic reaggregates had 336 pg VP/10(6) cells while the medium showed 260 pg VP/ml after four days. Measurable VP was seen in fetal tissue after ten days while comparable amounts of VP were present in one day neonatal hypothalamus over this same period. Morphological examination of reaggregates indicated the presence of viable cells throughout the cell mass after ten days of culture. Co-cultivation studies with dispersed posterior pituitary indicated that reaggregates from one day neonate hypothalamus had significantly increased VP levels when co-cultured with one day neonatal posterior pituitary; however, this effect was not seen with 19 dpc co-cultures. These data demonstrate that development of neurosecretory activity of discrete regions of the hypothalamus can be examined early in vitro in a reaggregate cell culture system.

  8. Cultures of human liver cells in simulated microgravity environment

    NASA Astrophysics Data System (ADS)

    Yoffe, B.; Darlington, G. J.; Soriano, H. E.; Krishnan, B.; Risin, D.; Pellis, N. R.; Khaoustov, V. I.

    1999-01-01

    We used microgravity-simulated bioreactors that create the unique environment of low shear force and high-mass transfer to establish long-term cultures of primary human liver cells (HLC). To assess the feasibility of establishing HLC cultures, human liver cells obtained either from cells dissociated by collagenase perfusion or minced tissues were cultured in rotating vessels. Formation of multidimensional tissue-like spheroids (up to 1.0 cm) comprised of hepatocytes and biliary epithelial cells that arranged as bile duct-like structures along newly formed vascular sprouts were observed. Electron microscopy revealed clusters of round hepatocytes and bile canaliculi with multiple microvilli and tight junctions. Scanning EM revealed rounded hepatocytes that were organized in tight clusters surrounded by a complex mesh of extracellular matrix. Also, we observed that co-culture of hepatocytes with endothelial cells stimulate albumin mRNA expression. In summary, a simulated microgravity environment is conducive for the establishment of long-term HLC cultures and allows the dissection of the mechanism of liver regeneration and cell-to-cell interactions that resembles in vivo conditions.

  9. UV-Induced Cell Death in Plants

    PubMed Central

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  10. Efficient Culture of Human Naïve and Memory B cells for Use as Antigen-presenting Cells

    PubMed Central

    Su, Kuei-Ying; Watanabe, Akiko; Yeh, Chen-Hao; Kelsoe, Garnett; Kuraoka, Masayuki

    2016-01-01

    The ability to culture and expand B cells in vitro has become a useful tool for studying human immunity. A limitation of current methods for human B-cell culture is the capacity to support mature B-cell proliferation. We have developed a culture method to support the efficient activation and proliferation of both naïve and memory human B cells. This culture supports extensive B-cell proliferation, with approximately 103-fold increases following 8 days in culture, and 106-fold increases when cultures are split and cultured for 8 more days. In culture, a significant fraction of naïve B cells undergo isotype switching and differentiate into plasmacytes. Culture-derived (CD) B cells are readily cryopreserved, and when recovered, retain their ability to proliferate and differentiate. Significantly, proliferating CD B cells express high levels of MHCII, CD80, and CD86. CD B cells act as APCs and present both alloantigens and microbial antigens to T cells. We are able to activate and expand antigen-specific memory B cells; these cultured cells are highly effective in presenting antigen to T cells. We have characterized the TCR repertoire of rare antigen-specific CD4+ T cells that proliferated in response to tetanus toxoid (TT) presented by autologous CD B cells. TCR Vβ usage by TT-activated CD4+ T cells differs from both resting and unspecifically activated CD4+ T cells. Moreover, we found that TT-specific TCR Vβ usage by CD4+ T cells was substantially different between donors. This culture method provides a platform for studying the BCR and TCR repertoires within a single individual. PMID:27815447

  11. Super-resolution Microscopy in Plant Cell Imaging.

    PubMed

    Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef

    2015-12-01

    Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Plant cell shape: modulators and measurements

    PubMed Central

    Ivakov, Alexander; Persson, Staffan

    2013-01-01

    Plant cell shape, seen as an integrative output, is of considerable interest in various fields, such as cell wall research, cytoskeleton dynamics and biomechanics. In this review we summarize the current state of knowledge on cell shape formation in plants focusing on shape of simple cylindrical cells, as well as in complex multipolar cells such as leaf pavement cells and trichomes. We summarize established concepts as well as recent additions to the understanding of how cells construct cell walls of a given shape and the underlying processes. These processes include cell wall synthesis, activity of the actin and microtubule cytoskeletons, in particular their regulation by microtubule associated proteins, actin-related proteins, GTP'ases and their effectors, as well as the recently-elucidated roles of plant hormone signaling and vesicular membrane trafficking. We discuss some of the challenges in cell shape research with a particular emphasis on quantitative imaging and statistical analysis of shape in 2D and 3D, as well as novel developments in this area. Finally, we review recent examples of the use of novel imaging techniques and how they have contributed to our understanding of cell shape formation. PMID:24312104

  13. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cell and tissue culture supplies and equipment... SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2240 Cell and tissue culture supplies and equipment. (a) Identification. Cell and tissue culture...

  14. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cell and tissue culture supplies and equipment... SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2240 Cell and tissue culture supplies and equipment. (a) Identification. Cell and tissue culture...

  15. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cell and tissue culture supplies and equipment... SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2240 Cell and tissue culture supplies and equipment. (a) Identification. Cell and tissue culture...

  16. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cell and tissue culture supplies and equipment... SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2240 Cell and tissue culture supplies and equipment. (a) Identification. Cell and tissue culture...

  17. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cell and tissue culture supplies and equipment... SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2240 Cell and tissue culture supplies and equipment. (a) Identification. Cell and tissue culture...

  18. Cell fusion and nuclear fusion in plants.

    PubMed

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Protopine production by fumaria cell suspension cultures: effect of light.

    PubMed

    Georgieva, Lidiya; Ivanov, Ivan; Marchev, Andrey; Aneva, Ina; Denev, Panteley; Georgiev, Vasil; Pavlov, Atanas

    2015-05-01

    Protopine biosynthesis in Fumaria rostellata and Fumaria officinalis cell suspensions was investigated. For the first time, we reported for calli and cell suspensions obtained from F. rostellata and F. officinalis. Callus induction was initiated on a Murashige and Skoog medium, supplemented with sucrose and various concentrations of plant growth regulators: 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). The best morphological characteristics, growth behavior, and protopine biosynthesis were observed for two callus lines (5FRL14 and 12FOL1) cultivated under submerged conditions, at low concentration of 2,4-D (0.2 and 0.5 mg/L) and higher concentration of BAP (2.0 and 3.0 mg/L). The maximal yield of protopine was accumulated from cell suspension of F. rostellata (line 5FRL14) cultivated under illumination-49.6 mg/L. Time courses of utilization of sucrose, ammonium, nitrate, and phosphate ions in cultural liquid and acetylcholinesterase inhibitory activity of alkaloid extracts of studied suspensions are also presented.

  20. SUSPENSION CULTURE AND PLANT REGENERATION OF TYPHA LATIFOLIA

    EPA Science Inventory

    This study is the first reported attempt to generate a growth curve from Typha latifolia L. (broadleaf cattail) callus cells in suspension culture. Several media and hormone combinations were tested for their capacity to induce callus cell formation from T. latifolia leaf section...

  1. Cultural significance of medicinal plant families and species among Quechua farmers in Apillapampa, Bolivia.

    PubMed

    Thomas, Evert; Vandebroek, Ina; Sanca, Sabino; Van Damme, Patrick

    2009-02-25

    Medicinal plant use was investigated in Apillapampa, a community of subsistence farmers located in the semi-arid Bolivian Andes. The main objectives were to identify the culturally most significant medicinal plant families and species in Apillapampa. A total of 341 medicinal plant species was inventoried during guided fieldtrips and transect sampling. Data on medicinal uses were obtained from fifteen local Quechua participants, eight of them being traditional healers. Contingency table and binomial analyses of medicinal plants used versus the total number of inventoried species per family showed that Solanaceae is significantly overused in traditional medicine, whereas Poaceae is underused. Also plants with a shrubby habitat are significantly overrepresented in the medicinal plant inventory, which most likely relates to their year-round availability to people as compared to most annual plants that disappear in the dry season. Our ranking of medicinal species according to cultural importance is based upon the Quality Use Agreement Value (QUAV) index we developed. This index takes into account (1) the average number of medicinal uses reported for each plant species by participants; (2) the perceived quality of those medicinal uses; and (3) participant consensus. According to the results, the QUAV index provides an easily derived and valid appraisal of a medicinal plant's cultural significance.

  2. Protein farnesyltransferase in plants: molecular characterization and involvement in cell cycle control.

    PubMed Central

    Qian, D; Zhou, D; Ju, R; Cramer, C L; Yang, Z

    1996-01-01

    Farnesylation is required for membrane targeting, protein-protein interactions, and the biological activity of key regulatory proteins, such as Ras small GTPases and protein kinases in a wide range of eukaryotes. In this report, we describe the molecular identification of a plant protein farnesyltransferase (FTase) and evidence for its role in the control of the cell cycle in plants. A pea gene encoding a homolog of the FTase beta subunit was previously cloned using a polymerase chain reaction-based strategy. A similar approach was used to clone a pea gene encoding a homolog of the FTase alpha subunit. The biochemical function of the pea FTase homologs was demonstrated by the reconstitution of FTase enzyme activity using FTase fusion proteins coexpressed in Escherichia coll. RNA gel blot analyses showed that levels of FTase mRNAs are generally higher in tissues, such as those of nodules, that are active in cell division. The relationship of FTase to cell division was further analyzed during the growth of suspension-cultured tobacco BY-2 cells. A biphasic fluctuation of FTase enzyme activity preceded corresponding changes in mitotic activity at the early log phase of cell growth. Moreover, manumycin, a specific inhibitor of FTase, was effective in inhibiting mitosis and growth in these cells. Using synchronized BY-2 cells, manumycin completely blocked mitosis when added at the early S phase but not when added at the G2 phase. These data suggest that FTase is required for the plant cell cycle, perhaps by modulating the progression through the S phase and the transition from G1 to the S phase. PMID:8989889

  3. Early effects of altered gravity environments on plant cell growth and cell proliferation: Characterization of morphofunctional nucleolar types in an Arabidopsis cell culture system

    NASA Astrophysics Data System (ADS)

    Manzano, Ana Isabel; Herranz, Raul; Manzano, Aránzazu; Van Loon, Jack; Medina, Francisco Javier

    2016-02-01

    Changes in the cell growth rate of an in vitro cellular system in Arabidopsis thaliana induced by short exposure to an altered gravity environment have been estimated by a novel approach. The method consisted of defining three structural nucleolar types which are easy and reliable indicators of the ribosome biogenesis activity and, consequently, of protein biosynthesis, a parameter strictly correlated to cell growth in this cellular system. The relative abundance of each nucleolar type was statistically assessed in different conditions of gravity. Samples exposed to simulated microgravity for 200 min showed a significant decrease in nucleolar activity compared to 1g controls, whereas samples exposed to hypergravity (2g) for the same period showed nucleolar activity slightly increased,. These effects could be considered as an early cellular response to the environmental alteration, given the short duration of the treatment. The functional significance of the structural data was validated by a combination of several different well-known parameters, using microscopical, flow cytometry, qPCR and proteomic approaches, which showed that the decreased cell growth rate was decoupled from an increased cell proliferation rate under simulated microgravity, and the opposite trend was observed under hypergravity. Actually, not all parameters tested showed the same quantitative changes, indicating that the response to the environmental alteration is time-dependent. These results are in agreement with previous observations in root meristematic cells and they show the ability of plant cells to produce a response to gravity changes, independently of their integration into plant organs.

  4. Cell-to-cell communication via plasmodesmata in vascular plants

    PubMed Central

    Sevilem, Iris; Miyashima, Shunsuke; Helariutta, Ykä

    2013-01-01

    In plant development, cell-to-cell signaling is mediated by mobile signals, including transcription factors and small RNA molecules. This communication is essential for growth and patterning. Short-range movement of signals occurs in the extracellular space via the apoplastic pathway or directly from cell-to-cell via the symplastic pathway. Symplastic transport is mediated by plant specific structures called plasmodesmata, which are plasma membrane-lined pores that traverse the cell walls of adjacent cells thus connecting their cytoplasms. However, a thorough understanding of molecules moving via plasmodesmata and regulatory networks relying on symplastic signaling is lacking. Traffic via plasmodesmata is highly regulated, and callose turnover is known to be one mechanism. In Arabidopsis, plasmodesmata apertures can be regulated in a spatially and temporally specific manner with the icals3m, an inducible vector system expressing the mutated CalS3 gene encoding a plasmodesmata localized callose synthase that increases callose deposition at plasmodesmata. We discuss strategies to use the icals3m system for global analyses on symplastic signaling in plants. PMID:23076211

  5. A practical guide to microfluidic perfusion culture of adherent mammalian cells.

    PubMed

    Kim, Lily; Toh, Yi-Chin; Voldman, Joel; Yu, Hanry

    2007-06-01

    Culturing cells at microscales allows control over microenvironmental cues, such as cell-cell and cell-matrix interactions; the potential to scale experiments; the use of small culture volumes; and the ability to integrate with microsystem technologies for on-chip experimentation. Microfluidic perfusion culture in particular allows controlled delivery and removal of soluble biochemical molecules in the extracellular microenvironment, and controlled application of mechanical forces exerted via fluid flow. There are many challenges to designing and operating a robust microfluidic perfusion culture system for routine culture of adherent mammalian cells. The current literature on microfluidic perfusion culture treats microfluidic design, device fabrication, cell culture, and micro-assays independently. Here we systematically present and discuss important design considerations in the context of the entire microfluidic perfusion culture system. These design considerations include the choice of materials, culture configurations, microfluidic network fabrication and micro-assays. We also present technical issues such as sterilization; seeding cells in both 2D and 3D configurations; and operating the system under optimized mass transport and shear stress conditions, free of air-bubbles. The integrative and systematic treatment of the microfluidic system design and fabrication, cell culture, and micro-assays provides novices with an effective starting point to build and operate a robust microfludic perfusion culture system for various applications.

  6. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT-MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT-MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Signal transduction in artichoke [Cynara cardunculus L. subsp. scolymus (L.) Hayek] callus and cell suspension cultures under nutritional stress.

    PubMed

    Lattanzio, Vincenzo; Caretto, Sofia; Linsalata, Vito; Colella, Giovanni; Mita, Giovanni

    2018-06-01

    Stimulated production of secondary phenolic metabolites and proline was studied by using cell cultures of artichoke [Cynara cardunculus L. subsp. scolymus (L.) Hayek] submitted to nutritional stress. Artichoke cell cultures accumulated phenolic secondary metabolites in a pattern similar to that seen in artichoke leaves and heads (capitula). This paper shows that both callus and cell suspension cultures under nutritional stress accumulated phenolic compounds and proline, at the same time their biomass production was negatively affected by nutrient deficiency. The results obtained strongly suggest that plant tissues respond to nutrient deprivation by a defensive costly mechanism, which determines the establishment of a mechanism of trade-off between growth and adaptive response. Furthermore, the results of this research suggest that perception of abiotic stress and increased phenolic metabolites are linked by a sequence of biochemical processes that also involves the intracellular free proline and the oxidative pentose phosphate pathway. The main conclusion of this paper is that, once calli and cell suspension cultures respond to nutrient deficiency, in acclimated cells the establishment of a negative correlation between primary metabolism (growth) and secondary metabolism (defence compounds) is observed. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Induction of viral interference by IPNV-carrier cells on target cells: A cell co-culture study.

    PubMed

    Parreño, Ricardo; Torres, Susana; Almagro, Lucía; Belló-Pérez, Melissa; Estepa, Amparo; Perez, Luis

    2016-11-01

    IPNV is a salmonid birnavirus that possesses the ability to establish asymptomatic persistent infections in a number of valuable fish species. The presence of IPNV may interfere with subsequent infection by other viruses. In the present study we show that an IPNV-carrier cell line (EPC IPNV ) can induce an antiviral state in fresh EPC by co-cultivating both cell types in three different ways: a "droplet" culture system, a plastic chamber setup, and a transmembrane (Transwell ® ) system. All three cell co-culture methods were proven useful to study donor/target cell interaction. Naïve EPC cells grown in contact with EPC IPNV cells develop resistance to VHSV superinfection. The transmembrane system seems best suited to examine gene expression in donor and target cells separately. Our findings point to the conclusion that one or more soluble factors produced by the IPNV carrier culture induce the innate immune response within the target cells. This antiviral response is associated to the up-regulation of interferon (ifn) and mx gene expression in target EPC cells. To our knowledge this is the first article describing co-culture systems to study the interplay between virus-carrier cells and naive cells in fish. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Alterations in Taxol production in plant cell culture via manipulation of the phenylalanine ammonia lyase pathway.

    PubMed

    Brincat, Michelle C; Gibson, Donna M; Shuler, Michael L

    2002-01-01

    One approach to increasing secondary metabolite production in plant cell culture is to manipulate metabolic pathways to utilize more resources toward production of one desired compound or class of compounds, such as diverting carbon flux from competing secondary pathways. Since phenylalanine provides both the phenylisoserine side chain and the benzoyl moiety at C-2 of Taxol, we speculated that blockage of the phenylpropanoid pathway might divert phenylalanine into Taxol biosynthesis. We used specific enzyme inhibitors to target the first enzyme in the phenylpropanoid pathway, phenylalanine ammonia lyase (PAL), the critical control point for conversion of L-phenylalanine to trans-cinnamic acid. Cinnamic acid acted quickly in reducing PAL activity by 40-50%, without affecting total protein levels, but it generally inhibited the taxane pathway, reducing Taxol by 90% of control levels. Of the taxanes produced, 13-acetyl-9-dihydro-baccatin III and 9-dihydrobaccatin III doubled as a percentage of total taxanes in C93AD and CO93P cells treated with 0.20 and 0.25 mM cinnamic acid, when all other taxanes were lowered. The PAL inhibitor alpha-aminooxyacetic acid (AOA) almost entirely shut down Taxol production at both 0.5 and 1.5 mM, whereas L-alpha-aminooxy-beta-phenylpropionic acid (AOPP) had the opposite effect, slightly enhancing Taxol production at 1 microM but having no effect at 10 microM. The discrepancy in the effectiveness of AOA and AOPP and the lack of effect with addition of phenylalanine or benzoic acid derivatives further indicates that the impact of cinnamic acid on Taxol is related not to its effect on PAL but rather to a specific effect on the taxane pathway. On the basis of these results, a less direct route for inhibiting the phenylpropanoid pathway may be required to avoid unwanted side effects and potentially enhance Taxol production.

  10. A cross-cultural analysis of Jammu, Kashmir and Ladakh (India) medicinal plant use.

    PubMed

    Gairola, Sumeet; Sharma, Jyotsana; Bedi, Yashbir Singh

    2014-09-11

    Jammu & Kashmir (J&K) is a predominantly Himalayan state in the north-western part of India. It has three geographically distinct divisions viz., Jammu, Kashmir and Ladakh, which are immensely rich in their biological and cultural diversity. Medicinal plants are an important element of indigenous medical system of the region. The main goal of the present article is to examine the use of ethnomedicinal plants in three divisions of J&K and to discuss cross-cultural consensus on the use of medicinal plants in these divisions. The article also discusses the gaps in the current state of knowledge on ethnomedicinal plants of the region and gives recommendations for the future studies. Scientific literature on ethnomedicinal field studies conducted in J&K state of India available in the journals, edited books and other scientific databases viz., CAB international, DOAJ, Google Scholar, PubMed, Science direct, SciFinder, Scopus and Web of Science were searched. Only field based ethnomedicinal surveys from last four decades up to December 2013 reporting first hand information on the medicinal plants used to treat human health related ailments by indigenous communities of J&K were included in this study. Venn diagram was used to analyze the cross-cultural consensus on the use of ethnomedicinal plants in the three divisions of J&K. A total of 948 plant taxa (923 angiosperms, 12 gymnosperms and 13 pteridophytes) belonging to 129 families, 509 genera, 937 species and 11 varieties have so far been reported to have a traditional medicinal use by indigenous communities of J&K. Asteraceae (60 genera, 132 spp.) was the most frequently used family followed by Fabaceae (32 genera, 50 spp.) and Lamiaceae (27 genera, 55 spp.). 514, 415 and 397 medicinal plants were used in Jammu, Kashmir and Ladakh divisions, respectively. Sixty eight plant taxa were used in all the three divisions, whereas 95 plants were common between Ladakh and Jammu, 127 plants between Ladakh and Kashmir, and 216

  11. High-throughput combinatorial cell co-culture using microfluidics.

    PubMed

    Tumarkin, Ethan; Tzadu, Lsan; Csaszar, Elizabeth; Seo, Minseok; Zhang, Hong; Lee, Anna; Peerani, Raheem; Purpura, Kelly; Zandstra, Peter W; Kumacheva, Eugenia

    2011-06-01

    Co-culture strategies are foundational in cell biology. These systems, which serve as mimics of in vivo tissue niches, are typically poorly defined in terms of cell ratios, local cues and supportive cell-cell interactions. In the stem cell niche, the ability to screen cell-cell interactions and identify local supportive microenvironments has a broad range of applications in transplantation, tissue engineering and wound healing. We present a microfluidic platform for the high-throughput generation of hydrogel microbeads for cell co-culture. Encapsulation of different cell populations in microgels was achieved by introducing in a microfluidic device two streams of distinct cell suspensions, emulsifying the mixed suspension, and gelling the precursor droplets. The cellular composition in the microgels was controlled by varying the volumetric flow rates of the corresponding streams. We demonstrate one of the applications of the microfluidic method by co-encapsulating factor-dependent and responsive blood progenitor cell lines (MBA2 and M07e cells, respectively) at varying ratios, and show that in-bead paracrine secretion can modulate the viability of the factor dependent cells. Furthermore, we show the application of the method as a tool to screen the impact of specific growth factors on a primary human heterogeneous cell population. Co-encapsulation of IL-3 secreting MBA2 cells with umbilical cord blood cells revealed differential sub-population responsiveness to paracrine signals (CD14+ cells were particularly responsive to locally delivered IL-3). This microfluidic co-culture platform should enable high throughput screening of cell co-culture conditions, leading to new strategies to manipulate cell fate. This journal is © The Royal Society of Chemistry 2011

  12. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture.

    PubMed

    Radzki, W; Gutierrez Mañero, F J; Algar, E; Lucas García, J A; García-Villaraco, A; Ramos Solano, B

    2013-09-01

    Iron is one of the essential elements for a proper plant development. Providing plants with an accessible form of iron is crucial when it is scant or unavailable in soils. Chemical chelates are the only current alternative and are highly stable in soils, therefore, posing a threat to drinking water. The aim of this investigation was to quantify siderophores produced by two bacterial strains and to determine if these bacterial siderophores would palliate chlorotic symptoms of iron-starved tomato plants. For this purpose, siderophore production in MM9 medium by two selected bacterial strains was quantified, and the best was used for biological assay. Bacterial culture media free of bacteria (S) and with bacterial cells (BS), both supplemented with Fe were delivered to 12-week-old plants grown under iron starvation in hydroponic conditions; controls with full Hoagland solution, iron-free Hoagland solution and water were also conducted. Treatments were applied twice along the experiment, with a week in between. At harvest, plant yield, chlorophyll content and nutritional status in leaves were measured. Both the bacterial siderophore treatments significantly increased plant yield, chlorophyll and iron content over the positive controls with full Hoagland solution, indicating that siderophores are effective in providing Fe to the plant, either with or without the presence of bacteria. In summary, siderophores from strain Chryseobacterium C138 are effective in supplying Fe to iron-starved tomato plants by the roots, either with or without the presence of bacteria. Based on the amount of siderophores produced, an effective and economically feasible organic Fe chelator could be developed.

  13. Recombinant Protein Production and Insect Cell Culture and Process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  14. Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cacao L.

    PubMed

    Parra, O; Gallego, A M; Urrea, A; Rojas, L F; Correa, C; Atehortúa, L

    2017-02-01

    Cocoa butter (CB) is composed of 96% palmitic, stearic, oleic, linoleic and linolenic fatty acids that are responsible for the hardness, texture and fusion properties of chocolate. Through in vitro plant cell culture it is possible to modify CB lipid profiles and to study the fatty acid biosynthesis pathway on a subcellular level, evaluating fundamental aspects to enhance in vitro fatty acid production in a specific and controlled way. In this research, culture media was supplemented with acetate, biotin, pyruvate, bicarbonate and glycerol at three different concentrations and the effects on the biomass production (g/L), cell viability, and fatty acids profile and production was evaluated in in vitro cell suspensions culture. It was found that biotin stimulated fatty acid synthesis without altering cell viability and cell growth. It was also evident a change in the lipid profile of cell suspensions, increasing middle and long chain fatty acids proportion, which are unusual to those reported in seeds; thus implying that it is possible to modify lipid profiles according to the treatment used. According to the results of sucrose gradients and enzyme assays performed, it is proposed that cacao cells probably use the pentose phosphate pathway, mitochondria being the key organelle in the carbon flux for the synthesis of reductant power and fatty acid precursors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Three-dimensional cell culture models for investigating human viruses.

    PubMed

    He, Bing; Chen, Guomin; Zeng, Yi

    2016-10-01

    Three-dimensional (3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover, these models bridge the gap between traditional two-dimensional (2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition, 3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.

  16. Metabolite profiling of microfluidic cell culture conditions for droplet based screening.

    PubMed

    Bjork, Sara M; Sjostrom, Staffan L; Andersson-Svahn, Helene; Joensson, Haakan N

    2015-07-01

    We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets, such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast. Metabolite profiling provides a more nuanced estimate of cell state compared to proliferation studies alone. We show that the choice of droplet incubation format impacts cell proliferation and metabolite production. The standard syringe incubation of droplets exhibited metabolite profiles similar to oxygen limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format.

  17. A Cell Culture Approach to Optimized Human Corneal Endothelial Cell Function

    PubMed Central

    Bartakova, Alena; Kuzmenko, Olga; Alvarez-Delfin, Karen; Kunzevitzky, Noelia J.; Goldberg, Jeffrey L.

    2018-01-01

    Purpose Cell-based therapies to replace corneal endothelium depend on culture methods to optimize human corneal endothelial cell (HCEC) function and minimize endothelial-mesenchymal transition (EnMT). Here we explore contribution of low-mitogenic media on stabilization of phenotypes in vitro that mimic those of HCECs in vivo. Methods HCECs were isolated from cadaveric donor corneas and expanded in vitro, comparing continuous presence of exogenous growth factors (“proliferative media”) to media without those factors (“stabilizing media”). Identity based on canonical morphology and expression of surface marker CD56, and function based on formation of tight junction barriers measured by trans-endothelial electrical resistance assays (TEER) were assessed. Results Primary HCECs cultured in proliferative media underwent EnMT after three to four passages, becoming increasingly fibroblastic. Stabilizing the cells before each passage by switching them to a media low in mitogenic growth factors and serum preserved canonical morphology and yielded a higher number of cells. HCECs cultured in stabilizing media increased both expression of the identity marker CD56 and also tight junction monolayer integrity compared to cells cultured without stabilization. Conclusions HCECs isolated from donor corneas and expanded in vitro with a low-mitogenic media stabilizing step before each passage demonstrate more canonical structural and functional features and defer EnMT, increasing the number of passages and total canonical cell yield. This approach may facilitate development of HCEC-based cell therapies. PMID:29625488

  18. Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells

    PubMed Central

    Akopian, Veronika; Beil, Stephen; Benvenisty, Nissim; Brehm, Jennifer; Christie, Megan; Ford, Angela; Fox, Victoria; Gokhale, Paul J.; Healy, Lyn; Holm, Frida; Hovatta, Outi; Knowles, Barbara B.; Ludwig, Tenneille E.; McKay, Ronald D. G.; Miyazaki, Takamichi; Nakatsuji, Norio; Oh, Steve K. W.; Pera, Martin F.; Rossant, Janet; Stacey, Glyn N.; Suemori, Hirofumi

    2010-01-01

    There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support, but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study, five separate laboratories, each with experience in human embryonic stem cell culture, used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods, with propagation in the presence of Knockout Serum Replacer, FGF-2, and mouse embryonic fibroblast feeder cell layers serving as a positive control. The cultures were assessed for up to ten passages for attachment, death, and differentiated morphology by phase contrast microscopy, for growth by serial cell counts, and for maintenance of stem cell surface marker expression by flow cytometry. Of the eight culture systems, only the control and those based on two commercial media, mTeSR1 and STEMPRO, supported maintenance of most cell lines for ten passages. Cultures grown in the remaining media failed before this point due to lack of attachment, cell death, or overt cell differentiation. Possible explanations for relative success of the commercial formulations in this study, and the lack of success with other formulations from academic groups compared to previously published results, include: the complex combination of growth factors present in the commercial preparations; improved development, manufacture, and quality control in the commercial products; differences in epigenetic adaptation to culture in vitro between different ES cell lines grown in different laboratories. PMID:20186512

  19. Culture and Characterization of Circulating Endothelial Progenitor Cells in Patients with Renal Cell Carcinoma.

    PubMed

    Gu, Wenyu; Sun, Wei; Guo, Changcheng; Yan, Yang; Liu, Min; Yao, Xudong; Yang, Bin; Zheng, Junhua

    2015-07-01

    Although emerging evidence demonstrates increased circulating endothelial progenitor cells in patients with solid tumors, to our knowledge it is still unknown whether such cells can be cultured from patients with highly angiogenic renal cell carcinoma. We cultured and characterized circulating endothelial progenitor cells from patients with renal cell carcinoma. The circulating endothelial progenitor cell level (percent of CD45(-)CD34(+) VEGF-R2(+) cells in total peripheral blood mononuclear cells) was quantified in 47 patients with renal cell carcinoma and 40 healthy controls. Peripheral blood mononuclear cells were then isolated from 33 patients with renal cell carcinoma and 30 healthy controls to culture and characterize circulating endothelial progenitor cells. The circulating endothelial progenitor cell level was significantly higher in patients with renal cell carcinoma than in healthy controls (0.276% vs 0.086%, p <0.001). A colony of circulating endothelial progenitor cells first emerged significantly earlier in patient than in control preparations (6.72 vs 14.67 days, p <0.001). The culture success rate (87.8% vs 40.0% of participants) and the number of colonies (10.06 vs 1.83) were significantly greater for patients than for controls (each p <0.001). The circulating endothelial progenitor cell level correlated positively with the number of patient colonies (r = 0.762, p <0.001). Cells cultured from patients and controls showed a similar growth pattern, immunophenotype, ability to uptake Ac-LDL and bind lectin, and form capillary tubes in vitro. However, significantly more VEGF-R2(+) circulating endothelial progenitor cells were found in preparations from patients with renal cell carcinoma than from healthy controls (21.1% vs 13.4%, p <0.001). Earlier emergence of circulating endothelial progenitor cell colonies, a higher cell culture success rate and more colonies were found for patients with renal cell carcinoma than for healthy controls. Results

  20. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure.

    PubMed

    Akahane, M; Shimizu, T; Kira, T; Onishi, T; Uchihara, Y; Imamura, T; Tanaka, Y

    2016-11-01

    To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis.Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569-576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1. © 2016 Akahane et al.

  1. 21st Century Cell Culture for 21st Century Toxicology.

    PubMed

    Pamies, David; Hartung, Thomas

    2017-01-17

    There is no good science in bad models. Cell culture is especially prone to artifacts. A number of novel cell culture technologies have become more broadly available in the 21st century, which allow overcoming limitations of traditional culture and are more physiologically relevant. These include the use of stem-cell derived human cells, cocultures of different cell types, scaffolds and extracellular matrices, perfusion platforms (such as microfluidics), 3D culture, organ-on-chip technologies, tissue architecture, and organ functionality. The physiological relevance of such models is further enhanced by the measurement of biomarkers (e.g., key events of pathways), organ specific functionality, and more comprehensive assessment cell responses by high-content methods. These approaches are still rarely combined to create microphysiological systems. The complexity of the combination of these technologies can generate results closer to the in vivo situation but increases the number of parameters to control, bringing some new challenges. In fact, we do not argue that all cell culture needs to be that sophisticated. The efforts taken are determined by the purpose of our experiments and tests. If only a very specific molecular target to cell response is of interest, a very simple model, which reflects this, might be much more suited to allow standardization and high-throughput. However, the less defined the end point of interest and cellular response are, the better we should approximate organ- or tissue-like culture conditions to make physiological responses more probable. Besides these technologic advances, important progress in the quality assurance and reporting on cell cultures as well as the validation of cellular test systems brings the utility of cell cultures to a new level. The advancement and broader implementation of Good Cell Culture Practice (GCCP) is key here. In toxicology, this is a major prerequisite for meaningful and reliable results, ultimately

  2. Quantitative volumetric Raman imaging of three dimensional cell cultures

    NASA Astrophysics Data System (ADS)

    Kallepitis, Charalambos; Bergholt, Mads S.; Mazo, Manuel M.; Leonardo, Vincent; Skaalure, Stacey C.; Maynard, Stephanie A.; Stevens, Molly M.

    2017-03-01

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  3. Plant regeneration from cell suspension-derived protoplasts of Primula malacoides and Primula obconica.

    PubMed

    Mizuhiro, M; Kenichi, Y; Ito, K; Kadowaki, S; Ohashi, H; Mii, M

    2001-05-01

    Protoplasts were isolated from cell suspension cultures of Primula malacoides cv. 'Lovely Tokyo' and P. obconica cv. 'Aalsmeer Giant White'. P. obconica protoplasts were embedded in 0.1% (w/v) gellan gum-solidified discs comprising MS medium supplemented with 3 mg/l of 2,4-D or picloram, 0.1 mg/l of zeatin, 0.2 M glucose and 0.2 M mannitol, and surrounded by a liquid medium of the same composition except for the addition of 0.1% (w/v) activated charcoal. The protoplasts formed visible colonies, which were transferred to the regeneration medium containing 30 g/l of sucrose, 0.1 mg/l of picloram and 2 mg/l of zeatin for shoot induction. P. malacoides protoplasts formed visible colonies when cultured in disc culture using 0.1% (w/v) gellan gum-solidified MS medium containing 5 mg/l of 2,4-D, 1 mg/l of NAA, 0.1 mg/l of zeatin and 0.4 M glucose. Small calli were transferred to MS medium supplemented with 5 mg/l of zeatin for shoot regeneration. The shoots of both species readily rooted on plant growth regulator-free 1/2 MS medium and successfully acclimatized to greenhouse conditions. The protoplast-derived plants showed some alterations in morphological characteristics from those of the in-vitro-germinated control plants.

  4. Plant-soil feedbacks from 30-year family-specific soil cultures: phylogeny, soil chemistry and plant life stage.

    PubMed

    Mehrabi, Zia; Bell, Thomas; Lewis, Owen T

    2015-06-01

    Intraspecific negative feedback effects, where performance is reduced on soils conditioned by conspecifics, are widely documented in plant communities. However, interspecific feedbacks are less well studied, and their direction, strength, causes, and consequences are poorly understood. If more closely related species share pathogens, or have similar soil resource requirements, plants may perform better on soils conditioned by more distant phylogenetic relatives. There have been few empirical tests of this prediction across plant life stages, and none of which attempt to account for soil chemistry. Here, we test the utility of phylogeny for predicting soil feedback effects on plant survival and performance (germination, seedling survival, growth rate, biomass). We implement a full factorial experiment growing species representing five families on five plant family-specific soil sources. Our experiments exploit soils that have been cultured for over 30 years in plant family-specific beds at Oxford University Botanic Gardens. Plant responses to soil source were idiosyncratic, and species did not perform better on soils cultured by phylogenetically more distant relatives. The magnitude and sign of feedback effects could, however, be explained by differences in the chemical properties of "home" and "away" soils. Furthermore, the direction of soil chemistry-related plant-soil feedbacks was dependent on plant life stage, with the effects of soil chemistry on germination success and accumulation of biomass inversely related. Our results (1) suggest that the phylogenetic distance between plant families cannot predict plant-soil feedbacks across multiple life stages, and (2) highlight the need to consider changes in soil chemistry as an important driver of population responses. The contrasting responses at plant life stages suggest that studies focusing on brief phases in plant demography (e.g., germination success) may not give a full picture of plant-soil feedback effects.

  5. [Comparative immunophenotypic characterization of human and monkey permanent lymphoid culture cells].

    PubMed

    Agrba, V Z; Lapin, B A; Medvedeva, N M; Ignatova, I E; Karal-Ogly, D D

    2007-01-01

    The aim of the study was to define the comparative immunophenotypic characteristics ofwidely spread lymphoid cell cultures, derived from Burkett's lymphoma named as Raji and P3HR-1 in comparison with analogous monkey cultures. It has been shown that P3HR-1 culture consists of similar type cells - activated B-lymphocytes CD23 with k phenotype, which demonstrates its monoclonality. Raji culture includes cells with markers of immature B-lymphocytes CD10 and CD24, as well as elements expressing CD10 antigens. T-cell markers were found in none of the cultures. In contrast to human cells, monkey lymphoid culture expressed both B- and T-cell markers. Moreover, in one of them, obtained from a green monkey, T-cells of suppressor type (CD8) prevailed. The immunophenotypic characteristics of primate lymphoid cell cultures, revealed by the study, are of great importance for their proper application to medical and biological studies.

  6. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tissue culture media for human ex vivo tissue and... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  7. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tissue culture media for human ex vivo tissue and... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  8. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tissue culture media for human ex vivo tissue and... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  9. Primary Cell Culture of Live Neurosurgically Resected Aged Adult Human Brain Cells and Single Cell Transcriptomics.

    PubMed

    Spaethling, Jennifer M; Na, Young-Ji; Lee, Jaehee; Ulyanova, Alexandra V; Baltuch, Gordon H; Bell, Thomas J; Brem, Steven; Chen, H Isaac; Dueck, Hannah; Fisher, Stephen A; Garcia, Marcela P; Khaladkar, Mugdha; Kung, David K; Lucas, Timothy H; O'Rourke, Donald M; Stefanik, Derek; Wang, Jinhui; Wolf, John A; Bartfai, Tamas; Grady, M Sean; Sul, Jai-Yoon; Kim, Junhyong; Eberwine, James H

    2017-01-17

    Investigation of human CNS disease and drug effects has been hampered by the lack of a system that enables single-cell analysis of live adult patient brain cells. We developed a culturing system, based on a papain-aided procedure, for resected adult human brain tissue removed during neurosurgery. We performed single-cell transcriptomics on over 300 cells, permitting identification of oligodendrocytes, microglia, neurons, endothelial cells, and astrocytes after 3 weeks in culture. Using deep sequencing, we detected over 12,000 expressed genes, including hundreds of cell-type-enriched mRNAs, lncRNAs and pri-miRNAs. We describe cell-type- and patient-specific transcriptional hierarchies. Single-cell transcriptomics on cultured live adult patient derived cells is a prime example of the promise of personalized precision medicine. Because these cells derive from subjects ranging in age into their sixties, this system permits human aging studies previously possible only in rodent systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Hairy-root organ cultures for the production of human acetylcholinesterase

    PubMed Central

    Woods, Ryan R; Geyer, Brian C; Mor, Tsafrir S

    2008-01-01

    Background Human cholinesterases can be used as a bioscavenger of organophosphate toxins used as pesticides and chemical warfare nerve agents. The practicality of this approach depends on the availability of the human enzymes, but because of inherent supply and regulatory constraints, a suitable production system is yet to be identified. Results As a promising alternative, we report the creation of "hairy root" organ cultures derived via Agrobacterium rhizogenes-mediated transformation from human acetylcholinesterase-expressing transgenic Nicotiana benthamiana plants. Acetylcholinesterase-expressing hairy root cultures had a slower growth rate, reached to the stationary phase faster and grew to lower maximal densities as compared to wild type control cultures. Acetylcholinesterase accumulated to levels of up to 3.3% of total soluble protein, ~3 fold higher than the expression level observed in the parental plant. The enzyme was purified to electrophoretic homogeneity. Enzymatic properties were nearly identical to those of the transgenic plant-derived enzyme as well as to those of mammalian cell culture derived enzyme. Pharmacokinetic properties of the hairy-root culture derived enzyme demonstrated a biphasic clearing profile. We demonstrate that master banking of plant material is possible by storage at 4°C for up to 5 months. Conclusion Our results support the feasibility of using plant organ cultures as a successful alternative to traditional transgenic plant and mammalian cell culture technologies. PMID:19105816

  11. The Effect of Primary Cancer Cell Culture Models on the Results of Drug Chemosensitivity Assays: The Application of Perfusion Microbioreactor System as Cell Culture Vessel

    PubMed Central

    Chen, Yi-Dao; Huang, Shiang-Fu; Wang, Hung-Ming

    2015-01-01

    To precisely and faithfully perform cell-based drug chemosensitivity assays, a well-defined and biologically relevant culture condition is required. For the former, a perfusion microbioreactor system capable of providing a stable culture condition was adopted. For the latter, however, little is known about the impact of culture models on the physiology and chemosensitivity assay results of primary oral cavity cancer cells. To address the issues, experiments were performed. Results showed that minor environmental pH change could significantly affect the metabolic activity of cells, demonstrating the importance of stable culture condition for such assays. Moreover, the culture models could also significantly influence the metabolic activity and proliferation of cells. Furthermore, the choice of culture models might lead to different outcomes of chemosensitivity assays. Compared with the similar test based on tumor-level assays, the spheroid model could overestimate the drug resistance of cells to cisplatin, whereas the 2D and 3D culture models might overestimate the chemosensitivity of cells to such anticancer drug. In this study, the 3D culture models with same cell density as that in tumor samples showed comparable chemosensitivity assay results as the tumor-level assays. Overall, this study has provided some fundamental information for establishing a precise and faithful drug chemosensitivity assay. PMID:25654105

  12. Immunogenicity is preferentially induced in sparse dendritic cell cultures

    PubMed Central

    Nasi, Aikaterini; Bollampalli, Vishnu Priya; Sun, Meng; Chen, Yang; Amu, Sylvie; Nylén, Susanne; Eidsmo, Liv; Rothfuchs, Antonio Gigliotti; Réthi, Bence

    2017-01-01

    We have previously shown that human monocyte-derived dendritic cells (DCs) acquired different characteristics in dense or sparse cell cultures. Sparsity promoted the development of IL-12 producing migratory DCs, whereas dense cultures increased IL-10 production. Here we analysed whether the density-dependent endogenous breaks could modulate DC-based vaccines. Using murine bone marrow-derived DC models we show that sparse cultures were essential to achieve several key functions required for immunogenic DC vaccines, including mobility to draining lymph nodes, recruitment and massive proliferation of antigen-specific CD4+ T cells, in addition to their TH1 polarization. Transcription analyses confirmed higher commitment in sparse cultures towards T cell activation, whereas DCs obtained from dense cultures up-regulated immunosuppressive pathway components and genes suggesting higher differentiation plasticity towards osteoclasts. Interestingly, we detected a striking up-regulation of fatty acid and cholesterol biosynthesis pathways in sparse cultures, suggesting an important link between DC immunogenicity and lipid homeostasis regulation. PMID:28276533

  13. Immunogenicity is preferentially induced in sparse dendritic cell cultures.

    PubMed

    Nasi, Aikaterini; Bollampalli, Vishnu Priya; Sun, Meng; Chen, Yang; Amu, Sylvie; Nylén, Susanne; Eidsmo, Liv; Rothfuchs, Antonio Gigliotti; Réthi, Bence

    2017-03-09

    We have previously shown that human monocyte-derived dendritic cells (DCs) acquired different characteristics in dense or sparse cell cultures. Sparsity promoted the development of IL-12 producing migratory DCs, whereas dense cultures increased IL-10 production. Here we analysed whether the density-dependent endogenous breaks could modulate DC-based vaccines. Using murine bone marrow-derived DC models we show that sparse cultures were essential to achieve several key functions required for immunogenic DC vaccines, including mobility to draining lymph nodes, recruitment and massive proliferation of antigen-specific CD4+ T cells, in addition to their TH1 polarization. Transcription analyses confirmed higher commitment in sparse cultures towards T cell activation, whereas DCs obtained from dense cultures up-regulated immunosuppressive pathway components and genes suggesting higher differentiation plasticity towards osteoclasts. Interestingly, we detected a striking up-regulation of fatty acid and cholesterol biosynthesis pathways in sparse cultures, suggesting an important link between DC immunogenicity and lipid homeostasis regulation.

  14. Bags versus flasks: a comparison of cell culture systems for the production of dendritic cell-based immunotherapies.

    PubMed

    Fekete, Natalie; Béland, Ariane V; Campbell, Katie; Clark, Sarah L; Hoesli, Corinne A

    2018-04-19

    In recent years, cell-based therapies targeting the immune system have emerged as promising strategies for cancer treatment. This review summarizes manufacturing challenges related to production of antigen presenting cells as a patient-tailored cancer therapy. Understanding cell-material interactions is essential because in vitro cell culture manipulations to obtain mature antigen-producing cells can significantly alter their in vivo performance. Traditional antigen-producing cell culture protocols often rely on cell adhesion to surface-treated hydrophilic polystyrene flasks. More recent commercial and investigational cancer immunotherapy products were manufactured using suspension cell culture in closed hydrophobic fluoropolymer bags. The shift to closed cell culture systems can decrease risks of contamination by individual operators, as well as facilitate scale-up and automation. Selecting closed cell culture bags over traditional open culture systems entails different handling procedures and processing controls, which can affect product quality. Changes in culture vessels also entail changes in vessel materials and geometry, which may alter the cell microenvironment and resulting cell fate decisions. Strategically designed culture systems will pave the way for the generation of more sophisticated and highly potent cell-based cancer vaccines. As an increasing number of cell-based therapies enter the clinic, the selection of appropriate cell culture vessels and materials becomes a critical consideration that can impact the therapeutic efficacy of the product, and hence clinical outcomes and patient quality of life. © 2018 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  15. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    NASA Astrophysics Data System (ADS)

    Frampton, John

    Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was

  16. Benefits and Limitations of Protein Hydrolysates as Components of Serum-Free Media for Animal Cell Culture Applications

    NASA Astrophysics Data System (ADS)

    Lobo-Alfonso, Juliet; Price, Paul; Jayme, David

    Increased understanding of influential factors for the cultivation of animal cells, combined with heightened regulatory concern over potential transmission of adventitious contaminants associated with serum and other animal-derived components, has elevated interest in using protein hydrolysates as serum replacements or nutrient supplements. This paper reviews the chemistry and biology of various hydrolysates derived from animal, plant and microbial sources. It provides specific examples of a beneficial selection of plant and yeast hydrolysates as ingredients of serum-free nutrient formulations for bioproduction applications of cultured mammalian and insect cells. Strategies for customizing and optimizing nutrients for specialized applications and general benefits and limitations of protein hydrolysates for biopharmaceutical production are also discussed.

  17. Morphological and Immunohistochemical Characterization of Canine Osteosarcoma Spheroid Cell Cultures.

    PubMed

    Gebhard, C; Gabriel, C; Walter, I

    2016-06-01

    Spheroid cell culture emerges as powerful in vitro tool for experimental tumour research. In this study, we established a scaffold-free three-dimensional spheroid system built from canine osteosarcoma (OS) cells (D17). Spheroids (7, 14 and 19 days of cultivation) and monolayer cultures (2 and 7 days of cultivation) were evaluated and compared on light and electron microscopy. Monolayer and spheroid cultures were tested for vimentin, cytokeratin, alkaline phosphatase, osteocalcin and collagen I by means of immunohistochemistry. The spheroid cell culture exhibited a distinct network of collagen I in particular after 19-day cultivation, whereas in monolayer cultures, collagen I was arranged as a lamellar basal structure. Necrotic centres of large spheroids, as observed in 14- and 19-day cultures, were characterized by significant amounts of osteocalcin. Proliferative activity as determined by Ki-67 immunoreactivity showed an even distribution in two-dimensional cultures. In spheroids, proliferation was predominating in the peripheral areas. Metastasis-associated markers ezrin and S100A4 were shown to be continuously expressed in monolayer and spheroid cultures. We conclude that the scaffold-free spheroid system from canine OS cells has the ability to mimic the architecture of the in vivo tumour, in particular cell-cell and cell-matrix interactions. © 2015 The Authors. Anatomia, Histologia, Embryologia Published by Blackwell Verlag GmbH.

  18. Plant Systems Biology at the Single-Cell Level.

    PubMed

    Libault, Marc; Pingault, Lise; Zogli, Prince; Schiefelbein, John

    2017-11-01

    Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Electrolytic Valving Isolation for Cell Co-Culture Microenvironment with Controlled Cell Pairing Ratios

    PubMed Central

    Chen, Yu-Chih; Ingram, Patrick; Yoon, Euisik

    2016-01-01

    Cancer-stromal interaction is a critical process in tumorigenesis. Conventional dish-based co-culture assays simply mix two cell types in the same dish; thus, they are deficient in controlling cell locations and precisely tracking single cell behavior from heterogeneous cell populations. Microfluidic technology can provide a good spatial temporal control of microenvironments, but the control has been typically realized by using external pumps, making long-term cultures cumbersome and bulky. In this work, we present a cell-cell interaction microfluidic platform that can accurately control co-culture microenvironment by using a novel electrolytic cell isolation scheme without using any valves or pneumatic pumps. The proposed microfluidic platform can also precisely control the number of interacting cells and pairing ratios to emulate cancer niches. More than 80% of the chambers captured the desired number of cells. The duration of cell isolation can be adjusted by electrolytic bubble generation and removal. We verified that electrolytic process has a negligible effect on cell viability and proliferation in our platform. To the best of our knowledge, this work is the first attempt to incorporate electrolytic bubble generation as a cell isolation method in microfluidics. For proof of feasibility, we performed cell-cell interaction assays between prostate cancer (PC3) cells and myoblast (C2C12) cells. The preliminary results demonstrated the potential of using electrolysis for micro-environmental control during cell culture. Also, the ratio controlled cell-cell interaction assays was successfully performed showing that the cell pairing ratios of PC3 to C2C12 affected the proliferation rate of myoblast cells due to increased secretion of growth factors from prostate cancer cells. PMID:25118341

  20. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight

    NASA Astrophysics Data System (ADS)

    Zupanska, Agata K.; Schultz, Eric R.; Yao, JiQiang; Sng, Natasha J.; Zhou, Mingqi; Callaham, Jordan B.; Ferl, Robert J.; Paul, Anna-Lisa

    2017-11-01

    Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight.

  1. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight.

    PubMed

    Zupanska, Agata K; Schultz, Eric R; Yao, JiQiang; Sng, Natasha J; Zhou, Mingqi; Callaham, Jordan B; Ferl, Robert J; Paul, Anna-Lisa

    2017-11-01

    Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight. Key Words: ARG1-Spaceflight-Gene expression

  2. Engineering cell-compatible paper chips for cell culturing, drug screening, and mass spectrometric sensing.

    PubMed

    Chen, Qiushui; He, Ziyi; Liu, Wu; Lin, Xuexia; Wu, Jing; Li, Haifang; Lin, Jin-Ming

    2015-10-28

    Paper-supported cell culture is an unprecedented development for advanced bioassays. This study reports a strategy for in vitro engineering of cell-compatible paper chips that allow for adherent cell culture, quantitative assessment of drug efficiency, and label-free sensing of intracellular molecules via paper spray mass spectrometry. The polycarbonate paper is employed as an excellent alternative bioscaffold for cell distribution, adhesion, and growth, as well as allowing for fluorescence imaging without light scattering. The cell-cultured paper chips are thus amenable to fabricate 3D tissue construction and cocultures by flexible deformation, stacks and assembly by layers of cells. As a result, the successful development of cell-compatible paper chips subsequently offers a uniquely flexible approach for in situ sensing of live cell components by paper spray mass spectrometry, allowing profiling the cellular lipids and quantitative measurement of drug metabolism with minimum sample pretreatment. Consequently, the developed paper chips for adherent cell culture are inexpensive for one-time use, compatible with high throughputs, and amenable to label-free and rapid analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Preparative electrophoresis of cultured human cells: Effect of cell cycle phase

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Todd, P. W.; Goolsby, C. L.; Walker, J. T.

    1985-01-01

    Human epithelioid T-1E cells were cultured in suspension and subjected to density gradient electrophoresis upward in a vertical column. It is indicated that the most rapidly migrating cells were at the beginning of the cell cycle and the most slowly migrating cells were at the end of the cell cycle. The fastest migrating cells divided 24 hr later than the slowest migrating cells. Colonies developing from slowly migrating cells had twice as many cells during exponential growth as did the most rapidly migrating cells, and the numbers of cells per colony at any time was inversely related to the electrophoretic migration rate. The DNA measurements by fluorescence flow cytometry indicates that the slowest migrating cell populations are enriched in cells that have twice as much DNA as the fastest migrating cells. It is concluded that electrophoretic mobility of these cultured human cells declines steadily through the cell cycle and that the mobility is lowest at the end of G sub 2 phase and highest at the beginning of G sub 1 phase.

  4. Chemotherapy in heterogeneous cultures of cancer cells with interconversion

    NASA Astrophysics Data System (ADS)

    Dilão, Rui

    2015-02-01

    Recently, the interconversion between differentiated and stem-like cancer cells has been observed. Here, we model the in vitro growth of heterogeneous cell cultures in the presence of interconversion from differentiated cancer cells to cancer stem cells (CSCs), showing that, by targeting only CSC with cytotoxic agents, it is not always possible to eradicate cancer. We have determined the kinetic conditions under which cytotoxic agents in in vitro heterogeneous cultures of cancer cells eradicate cancer. In particular, we have shown that the chemotherapeutic elimination of in vitro cultures of heterogeneous cancer cells is effective only if it targets all cancer cell types, and if the induced death rates for the different subpopulations of cancer cell types are large enough. The quantitative results of the model are compared and validated with experimental data.

  5. T cell resistance to activation by dendritic cells requires long-term culture in simulated microgravity

    NASA Astrophysics Data System (ADS)

    Bradley, Jillian H.; Stein, Rachel; Randolph, Brad; Molina, Emily; Arnold, Jennifer P.; Gregg, Randal K.

    2017-11-01

    Immune impairment mediated by microgravity threatens the success of space exploration requiring long-duration spaceflight. The cells of most concern, T lymphocytes, coordinate the host response against microbial and cancerous challenges leading to elimination and long-term protection. T cells are activated upon recognition of specific microbial peptides bound on the surface of antigen presenting cells, such as dendritic cells (DC). Subsequently, this engagement results in T cell proliferation and differentiation into effector T cells driven by autocrine interleukin-2 (IL-2) and other cytokines. Finally, the effector T cells acquire the weaponry needed to destroy microbial invaders and tumors. Studies conducted on T cells during spaceflight, or using Earth-based culture systems, have shown reduced production of cytokines, proliferation and effector functions as compared to controls. This may account for the cases of viral reactivation events and opportunistic infections associated with astronauts of numerous missions. This work has largely been based upon the outcome of T cell activation by stimulatory factors that target select T cell signaling pathways rather than the complex, signaling events related to the natural process of antigen presentation by DC. This study tested the response of an ovalbumin peptide-specific T cell line, OT-II TCH, to activation by DC when the T cells were cultured 24-120 h in a simulated microgravity (SMG) environment generated by a rotary cell culture system. Following 72 h culture of T cells in SMG (SMG-T) or control static (Static-T) conditions, IL-2 production by the T cells was reduced in SMG-T cells compared to Static-T cells upon stimulation by phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, when the SMG-T cells were stimulated with DC and peptide, IL-2 was significantly increased compared to Static-T cells. Such enhanced IL-2 production by SMG-T cells peaked at 72 h SMG culture time and decreased thereafter. When

  6. Demonstration of the economic feasibility of plant tissue culture for jojoba (Simmondsia chinensis) and Euphorbia spp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sluis, C.

    1980-09-01

    The economic feasibility of plant tissue culture was demonstrated as applied to two plants: jojoba (Simmondsia chinensis) and Euphorbia spp. The gopher weed (Euphorbia lathyris) was selected as the species of Euphorbia to research due to the interest in this plant as a potential source of hydrocarbon-like compounds. High yield female selections of jojoba were chosen from native stands and were researched to determine the economic feasibility of mass producing these plants via a tissue culture micropropagation program. The female jojoba selection was successfully mass produced through tissue culture. Modifications in initiation techniques, as well as in multiplication media andmore » rooting parameters, were necessary to apply the tissue culture system, which had been developed for juvenile seedling tissue, to mature jojobas. Since prior attempts at transfer of tissue cultured plantlets were unsuccessful, transfer research was a major part of the project and has resulted in a system for transfer of rooted jojoba plantlets to soil. Euphorbia lathyris was successfully cultured using shoot tip cultures. Media and procedures were established for culture initiation, multiplication of shoots, callus induction and growth, and root initiation. Well-developed root systems were not attained and root initiation percentages should be increased if the system is to become commercially feasible.« less

  7. Morphological study of the TK cholangiocarcinoma cell line with three-dimensional cell culture.

    PubMed

    Akiyoshi, Kohei; Kamada, Minori; Akiyama, Nobutake; Suzuki, Masafumi; Watanabe, Michiko; Fujioka, Kouki; Ikeda, Keiichi; Mizuno, Shuichi; Manome, Yoshinobu

    2014-04-01

    Cholangiocarcinoma is an intractable carcinoma originating from the bile duct epithelium. To gain an understanding of the cell biology of cholangiocarcinoma, in vitro cell culture is valuable. However, well‑characterized cell lines are limited. In the present study, the morphology of the TK cholangiocarcinoma cell line was analyzed by three‑dimensional culture. Dispersed TK cells were injected into a gelatin mesh scaffold and cultivated for 3‑20 days. The morphology of the TK cells was investigated by phase‑contrast microscopy, optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TK cells were observed to proliferate three-dimensionally in the scaffold. The cells exhibited a globoid structure and attached to the scaffold. The SEM observation demonstrated typical microvilli and plicae on the surface of the structure. Light microscopy and TEM confirmed intercellular and cell‑to‑scaffold attachment in the three‑dimensional mesh. The culture also exhibited the formation of a duct-like structure covered by structured microvilli. In conclusion, three‑dimensional culture of TK cells demonstrated the morphological characteristics of cholangiocarcinoma in vitro. Production of high levels of carbohydrate antigen (CA)19‑9, CA50 and carcinoembryonic antigen was previously confirmed in the TK cell line. As a characteristic morphology was demonstrated in the present study, the TK cholangiocarcinoma cell line may be useful as an experimental model for further study of cholangiocarcinoma.

  8. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  9. Emulsions Containing Perfluorocarbon Support Cell Cultures

    NASA Technical Reports Server (NTRS)

    Ju, Lu-Kwang; Lee, Jaw Fang; Armiger, William B.

    1990-01-01

    Addition of emulsion containing perfluorocarbon liquid to aqueous cell-culture medium increases capacity of medium to support mammalian cells. FC-40 Fluorinert (or equivalent) - increases average density of medium so approximately equal to that of cells. Cells stay suspended in medium without mechanical stirring, which damages them. Increases density enough to prevent cells from setting, and increases viscosity of medium so oxygen bubbled through it and nutrients stirred in with less damage to delicate cells.

  10. Molecular characterization of a cDNA encoding copper/zinc superoxide dismutase from cultured cells of Manihot esculenta.

    PubMed

    Shin, Seung-Yong; Lee, Haeng-Soon; Kwon, Suk-Yoon; Kwon, Soon-Tae; Kwak, Sang-Soo

    2005-01-01

    Superoxide dismutase (SOD) cDNA, mSOD2, encoding cytosolic copper/zinc SOD (CuZnSOD) cDNA was isolated from suspension-cultured cells of cassava (Manihot esculenta Crantz) by cDNA library screening, and its expression was investigated in relation to environmental stress. mSOD2 is 774 bp in length with an open reading frame (ORF) of 152 amino acids, corresponding to a protein of predicted molecular mass 15 kDa and a pI of 5.22. One copy of the mSOD2 gene was found to be present in the cassava genome by Southern analysis using an mSOD2 cDNA-specific probe. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed diverse expression patterns for the mSOD2 gene in various tissues of intact cassava plants, at various stages of the growth in suspension cultures, and in the leaf tissues exposed to different stresses. The mSOD2 gene was highly expressed in suspension-cultured cells and in the stems of intact plants. However, it was expressed at low levels in leaves and roots. During suspension cell growth, the mSOD2 transcript progressively increased during culture. Moreover, the mSOD2 gene in excised cassava leaves responded to various stresses in different ways. In particular, it was highly induced in leaf tissue by several abiotic stresses, including high temperature (37 degrees C), chilling (4 degrees C), methyl viologen (MV) exposure, and wounding treatment. These results indicate that the mSOD2 gene is involved in the antioxidative process triggered by oxidative stress induced by environmental change.

  11. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells.

    PubMed

    Rydahl, Maja G; Fangel, Jonatan U; Mikkelsen, Maria Dalgaard; Johansen, I Elisabeth; Andreas, Amanda; Harholt, Jesper; Ulvskov, Peter; Jørgensen, Bodil; Domozych, David S; Willats, William G T

    2015-01-01

    The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying mechanics of the cell wall in a single plant cell.

  12. Pure cultures and characterization of yak Sertoli cells.

    PubMed

    Zhang, Hua; Liu, Ben; Qiu, Yuan; Fan, Jiang feng; Yu, Si jiu

    2013-12-01

    The culture of primary Sertoli cells has become an important resource in the study of their function. However, their use is limited because of contamination of isolated cells with other testicular cells, mainly germ cells. The aim was to establish technique to obtain pure yak Sertoli cells as well as to study the growth kinetics and biological characteristics of Sertoli cells in vitro. Two-step enzyme digestion was used to separate and culture yak Sertoli cells. Cultured using starvation method and the hypotonic treatment were also invented to get pure yak Sertoli cells. Furthermore, the purification of Yak Sertoli cells were identified according to their characteristics, such as bipolar corpuscular around the nucleus and expression of Fasl, in addition to their morphology. The average viability of the Sertoli cells was 97% before freezing and 94.5% after thawing, indicating that cryopreservation in liquid nitrogen had little influence on the viability of Sertoli cells. The growth tendency of yak Sertoli cells was similar to an S-shaped growth curve. Purified yak Sertoli cells frequently exhibited bipolar corpuscula in nucleus after Feulgen staining, and did have a positive reaction of Fasl by the immunocytochemical identification. After recovery chromosomal analysis of Sertoli cells had a normal chromosomal number of 60, comprising 29 pairs of autosomes and one pair of sex chromosomes. Assays for bacteria, fungi and mycoplasmas were negative. In conclusion, yak Sertoli cells have been successfully purified and cultured in vitro, and maintain stable biological characteristics after thawing. Therefore, it will not only preserve the genetic resources of yaks at the cellular level, but also provide valuable materials for transgenic research and feeder layer and nuclear donor cells in yak somatic cell cloning technology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. NMR methods for metabolomics of mammalian cell culture bioreactors.

    PubMed

    Aranibar, Nelly; Reily, Michael D

    2014-01-01

    Metabolomics has become an important tool for measuring pools of small molecules in mammalian cell cultures expressing therapeutic proteins. NMR spectroscopy has played an important role, largely because it requires minimal sample preparation, does not require chromatographic separation, and is quantitative. The concentrations of large numbers of small molecules in the extracellular media or within the cells themselves can be measured directly on the culture supernatant and on the supernatant of the lysed cells, respectively, and correlated with endpoints such as titer, cell viability, or glycosylation patterns. The observed changes can be used to generate hypotheses by which these parameters can be optimized. This chapter focuses on the sample preparation, data acquisition, and analysis to get the most out of NMR metabolomics data from CHO cell cultures but could easily be extended to other in vitro culture systems.

  14. Methods for Maintaining Insect Cell Cultures

    PubMed Central

    Lynn, Dwight E.

    2002-01-01

    Insect cell cultures are now commonly used in insect physiology, developmental biology, pathology, and molecular biology. As the field has advanced from methods development to a standard procedure, so has the diversity of scientists using the technique. This paper describes methods that are effective for maintaining various insect cell lines. The procedures are differentiated between loosely or non-attached cell strains, attached cell strains, and strongly adherent cell strains. PMID:15455043

  15. Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors

    PubMed Central

    Edmondson, Rasheena; Broglie, Jessica Jenkins; Adcock, Audrey F.

    2014-01-01

    Abstract Three-dimensional (3D) cell culture systems have gained increasing interest in drug discovery and tissue engineering due to their evident advantages in providing more physiologically relevant information and more predictive data for in vivo tests. In this review, we discuss the characteristics of 3D cell culture systems in comparison to the two-dimensional (2D) monolayer culture, focusing on cell growth conditions, cell proliferation, population, and gene and protein expression profiles. The innovations and development in 3D culture systems for drug discovery over the past 5 years are also reviewed in the article, emphasizing the cellular response to different classes of anticancer drugs, focusing particularly on similarities and differences between 3D and 2D models across the field. The progression and advancement in the application of 3D cell cultures in cell-based biosensors is another focal point of this review. PMID:24831787

  16. Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture.

    PubMed

    Jin, Liting; Qu, Ying; Gomez, Liliana J; Chung, Stacey; Han, Bingchen; Gao, Bowen; Yue, Yong; Gong, Yiping; Liu, Xuefeng; Amersi, Farin; Dang, Catherine; Giuliano, Armando E; Cui, Xiaojiang

    2018-02-20

    Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro . We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation.

  17. Antitumor Activity of Rat Mesenchymal Stem Cells during Direct or Indirect Co-Culturing with C6 Glioma Cells.

    PubMed

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Mel'nikov, P A; Cherepanov, S A; Levinsky, A B; Chehonin, V P

    2016-02-01

    The tumor-suppressive effect of rat mesenchymal stem cells against low-differentiated rat C6 glioma cells during their direct and indirect co-culturing and during culturing of C6 glioma cells in the medium conditioned by mesenchymal stem cells was studied in an in vitro experiment. The most pronounced antitumor activity of mesenchymal stem cells was observed during direct co-culturing with C6 glioma cells. The number of live C6 glioma cells during indirect co-culturing and during culturing in conditioned medium was slightly higher than during direct co-culturing, but significantly differed from the control (C6 glioma cells cultured in medium conditioned by C6 glioma cells). The cytotoxic effect of medium conditioned by mesenchymal stem cells was not related to medium depletion by glioma cells during their growth. The medium conditioned by other "non-stem" cells (rat astrocytes and fibroblasts) produced no tumor-suppressive effect. Rat mesenchymal stem cells, similar to rat C6 glioma cells express connexin 43, the main astroglial gap junction protein. During co-culturing, mesenchymal stem cells and glioma C6 cells formed functionally active gap junctions. Gap junction blockade with connexon inhibitor carbenoxolone attenuated the antitumor effect observed during direct co-culturing of C6 glioma cells and mesenchymal stem cells to the level produced by conditioned medium. Cell-cell signaling mediated by gap junctions can be a mechanism of the tumor-suppressive effect of mesenchymal stem cells against C6 glioma cells. This phenomenon can be used for the development of new methods of cell therapy for high-grade malignant gliomas.

  18. Advances in tissue engineering through stem cell-based co-culture.

    PubMed

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.

  19. An analysis of the productivity of a CELSS continuous algal culture system

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Fernandez, E.; Arnett, K.

    1986-01-01

    One of the most attractive aspects of using algal cultures as plant components for a Closed Ecological Life Support Systems (CELSS) is the efficiency with which they can be grown. Although algae are not necessarily intrinsically more efficient than higher plants, the ease which they can be handled and manipulated (more like chemical reagents than plants), and the culturing techniques available, result in much higher growth rates than are usually attainable with higher plants. Furthermore, preliminary experiments have demonstrated that algal growth and physiology is not detectable altered in a microgravity environment, (1) whereas the response of higher plants to zero gravity is unknown. In order to rationally design and operate culture systems, it is necessary to understand how the macroparameters of a culture system, e.g., productivity, are related to the physiological aspects of the algal culture. A first principles analysis of culture system is discussed, and a mathematical model that describes the relationship of culture productivity to the cell concentration of light-limited culture is derived. The predicted productivity vs cell concentration curve agrees well with the experimental data obtained to test this model, indicating that this model permits an accurate prediction of culture productivity given the growth parameters of the system.

  20. Curcumin Chemosensitizes 5-Fluorouracil Resistant MMR-Deficient Human Colon Cancer Cells in High Density Cultures

    PubMed Central

    Shakibaei, Mehdi; Buhrmann, Constanze; Kraehe, Patricia; Shayan, Parviz; Lueders, Cora; Goel, Ajay

    2014-01-01

    Objective Treatment of colorectal cancer (CRC) remains a clinical challenge, as more than 15% of patients are resistant to 5-Fluorouracil (5-FU)-based chemotherapeutic regimens, and tumor recurrence rates can be as high as 50–60%. Cancer stem cells (CSC) are capable of surviving conventional chemotherapies that permits regeneration of original tumors. Therefore, we investigated the effectiveness of 5-FU and plant polyphenol (curcumin) in context of DNA mismatch repair (MMR) status and CSC activity in 3D cultures of CRC cells. Methods High density 3D cultures of CRC cell lines HCT116, HCT116+ch3 (complemented with chromosome 3) and their corresponding isogenic 5-FU-chemo-resistant derivative clones (HCT116R, HCT116+ch3R) were treated with 5-FU either without or with curcumin in time- and dose-dependent assays. Results Pre-treatment with curcumin significantly enhanced the effect of 5-FU on HCT116R and HCR116+ch3R cells, in contrast to 5-FU alone as evidenced by increased disintegration of colonospheres, enhanced apoptosis and by inhibiting their growth. Curcumin and/or 5-FU strongly affected MMR-deficient CRC cells in high density cultures, however MMR-proficient CRC cells were more sensitive. These effects of curcumin in enhancing chemosensitivity to 5-FU were further supported by its ability to effectively suppress CSC pools as evidenced by decreased number of CSC marker positive cells, highlighting the suitability of this 3D culture model for evaluating CSC marker expression in a close to vivo setting. Conclusion Our results illustrate novel and previously unrecognized effects of curcumin in enhancing chemosensitization to 5-FU-based chemotherapy on DNA MMR-deficient and their chemo-resistant counterparts by targeting the CSC sub-population. (246 words in abstract). PMID:24404205

  1. Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high density cultures.

    PubMed

    Shakibaei, Mehdi; Buhrmann, Constanze; Kraehe, Patricia; Shayan, Parviz; Lueders, Cora; Goel, Ajay

    2014-01-01

    Treatment of colorectal cancer (CRC) remains a clinical challenge, as more than 15% of patients are resistant to 5-Fluorouracil (5-FU)-based chemotherapeutic regimens, and tumor recurrence rates can be as high as 50-60%. Cancer stem cells (CSC) are capable of surviving conventional chemotherapies that permits regeneration of original tumors. Therefore, we investigated the effectiveness of 5-FU and plant polyphenol (curcumin) in context of DNA mismatch repair (MMR) status and CSC activity in 3D cultures of CRC cells. High density 3D cultures of CRC cell lines HCT116, HCT116+ch3 (complemented with chromosome 3) and their corresponding isogenic 5-FU-chemo-resistant derivative clones (HCT116R, HCT116+ch3R) were treated with 5-FU either without or with curcumin in time- and dose-dependent assays. Pre-treatment with curcumin significantly enhanced the effect of 5-FU on HCT116R and HCR116+ch3R cells, in contrast to 5-FU alone as evidenced by increased disintegration of colonospheres, enhanced apoptosis and by inhibiting their growth. Curcumin and/or 5-FU strongly affected MMR-deficient CRC cells in high density cultures, however MMR-proficient CRC cells were more sensitive. These effects of curcumin in enhancing chemosensitivity to 5-FU were further supported by its ability to effectively suppress CSC pools as evidenced by decreased number of CSC marker positive cells, highlighting the suitability of this 3D culture model for evaluating CSC marker expression in a close to vivo setting. Our results illustrate novel and previously unrecognized effects of curcumin in enhancing chemosensitization to 5-FU-based chemotherapy on DNA MMR-deficient and their chemo-resistant counterparts by targeting the CSC sub-population. (246 words in abstract).

  2. Phase Transition of Gonococci in Mammalian Cell Cultures

    PubMed Central

    Tyeryar, Franklin J.; Quan, Alice L.; Rene, Anthony A.; Weiss, Emilio

    1974-01-01

    Neisseria gonorrhoeae was cultivated in mammalian cell cultures in an effort to determine if this environment will elicit a T4 → T1 transition. Of four avirulent (T4) isolates tested, only one, H4, yielded T1 colonies. This change was consistently obtained in HeLa, WI-38, and MK2 cells, even when the multiplicity of the gonococcal infection was less than 1 per culture. Growth of the gonococci took place primarily on the surface of the cells, as demonstrated by light and electron microscopy, but occasional bacteria were undoubtedly intracellular. T1 colonies were seen at 24 h and were the major population at 48 h. This shift was favored by the presence of viable cells, since smaller yields of T1 were obtained when the cells were irradiated or heat inactivated. It was also favored by low pH, since T1 recovery was reduced when the buffering capacity of the medium was increased. Although the results suggest that T1 gonococci derived from H4 have a selective advantage over T4 in cell cultures, this is not true of all T1 and T4 colony types. F62 T4, which does not undergo a T4 → T1 shift, propagated as well as T1 in HeLa cell cultures. The change in colony type of strain H4 to T1 was accompanied by formation of pili and by gain in capacity for deoxyribonucleic acid-mediated transformation. It is concluded that gonococci can undergo T4 → T1 phase transition in mammalian cell cultures, but this property is not retained by all strains. Images PMID:4215765

  3. Production of Zebrafish Offspring from Cultured Female Germline Stem Cells

    PubMed Central

    Wong, Ten-Tsao; Tesfamichael, Abraham; Collodi, Paul

    2013-01-01

    Zebrafish female germline stem cell (FGSC) cultures were generated from a transgenic line of fish that expresses Neo and DsRed under the control of the germ cell specific promoter, ziwi [Tg(ziwi:neo);Tg(ziwi:DsRed)]. Homogeneous FGSC cultures were established by G418 selection and continued to express ziwi for more than 6 weeks along with the germ cell markers nanos3, dnd, dazl and vasa. A key component of the cell culture system was the use of a feeder cell line that was initiated from ovaries of a transgenic line of fish [Tg(gsdf:neo)] that expresses Neo controlled by the zebrafish gonadal soma derived factor (gsdf) promoter. The feeder cell line was selected in G418 and engineered to express zebrafish leukemia inhibitory factor (Lif), basic fibroblast growth factor (Fgf2) and glial-cell-line derived neurotrophic factor (Gdnf). These factors were shown to significantly enhance FGSC growth, survival and germline competency in culture. Results from cell transplantation experiments revealed that the cultured FGSCs were able to successfully colonize the gonad of sterile recipient fish and generate functional gametes. Up to 20% of surviving recipient fish that were injected with the cultured FGSCs were fertile and generated multiple batches of normal offspring for at least 6 months. The FGSC cultures will provide an in vitro system for studies of zebrafish germ cell growth and differentiation and their high frequency of germline transmission following transplantation could form the basis of a stem cell-mediated strategy for gene transfer and manipulation of the zebrafish genome. PMID:23671620

  4. Tissue-culture investigations into mechanisms of biomass enhancement. Annual report, June 1984-July 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabors, M.W.

    1985-07-01

    The cost effectiveness of biogas production can be considerably improved by producing cultivars of sorghum and Napier grass with increased biomass and tolerance to common soil stresses such as salinity and drought. In addition, increased fertilizer efficiency of plants used for biomass is also desired. Tissue-culture methodologies provide a means for generating improved sorghum and Napier grass cultivars and for selecting cells and plants with tolerance to salinity, drought, and low levels of applied nitrogen fertilizer. To this end, tissue cultures of sorghum and Napier grass were established. Media were devised to enhance high-frequency, long-term plant production from these cultures.more » Existing methods were considerably improved and the first plant regeneration techniques from callus cultures of sweet sorghum were devised. Over 1000 plants were regenerated from callus cultures during the first year. These are being used in biomass production assays. Tissue culture selection for salt tolerance has been initiated using high levels of NaCl or hydroxyproline in the medium. Sodium chloride stress represents direct selection; hydroxyproline stress selects cells with increased levels of proline, an amino acid known to be associated with salt tolerance. Selection for cell variants efficient in reducing nitrate are planned; cells will be grown in the presence of chlorate, a nitrate analogue. Selections are carried out on either solid or liquid media. Cell suspension systems, allowing more efficient selection, are being developed for all cultivars under study.« less

  5. Adaptive optical imaging through complex living plant cells

    NASA Astrophysics Data System (ADS)

    Tamada, Yosuke; Hayano, Yutaka; Murata, Takashi; Oya, Shin; Honma, Yusuke; Kanazawa, Minoru; Miura, Noriaki; Hasebe, Mitsuyasu; Kamei, Yasuhiro; Hattori, Masayuki

    2017-04-01

    Live-cell imaging using fluorescent molecules is now essential for biological researches. However, images of living cells are accompanied with blur, which becomes stronger according to the depth inside the cells and tissues. This image blur is caused by the disturbance on light that goes through optically inhomogeneous living cells and tissues. Here, we show adaptive optics (AO) imaging of living plant cells. AO has been developed in astronomy to correct the disturbance on light caused by atmospheric turbulence. We developed AO microscope effective for the observation of living plant cells with strong disturbance by chloroplasts, and successfully obtained clear images inside plant cells.

  6. Retinal pigment epithelium culture;a potential source of retinal stem cells.

    PubMed

    Akrami, Hassan; Soheili, Zahra-Soheila; Khalooghi, Keynoush; Ahmadieh, Hamid; Rezaie-Kanavi, Mojgan; Samiei, Shahram; Davari, Malihe; Ghaderi, Shima; Sanie-Jahromi, Fatemeh

    2009-07-01

    To establish human retinal pigment epithelial (RPE) cell culture as a source for cell replacement therapy in ocular diseases. Human cadaver globes were used to isolate RPE cells. Each globe was cut into several pieces of a few millimeters in size. After removing the sclera and choroid, remaining tissues were washed in phosphate buffer saline and RPE cells were isolated using dispase enzyme solution and cultured in Dulbecco's Modified Eagle's Medium: Nutrient Mixture F-12 supplemented with 10% fetal calf serum. Primary cultures of RPE cells were established and spheroid colonies related to progenitor/stem cells developed in a number of cultures. The colonies included purely pigmented or mixed pigmented and non-pigmented cells. After multiple cellular passages, several types of photoreceptors and neural-like cells were detected morphologically. Cellular plasticity in RPE cell cultures revealed promising results in terms of generation of stem/progenitor cells from human RPE cells. Whether the spheroids and neural-like retinal cells were directly derived from retinal stem cells or offspring of trans-differentiating or de-differentiating RPE cells remains to be answered.

  7. Silencing of tryptamine biosynthesis for production of nonnatural alkaloids in plant culture.

    PubMed

    Runguphan, Weerawat; Maresh, Justin J; O'Connor, Sarah E

    2009-08-18

    Natural products have long served as both a source and inspiration for pharmaceuticals. Modifying the structure of a natural product often improves the biological activity of the compound. Metabolic engineering strategies to ferment "unnatural" products have been enormously successful in microbial organisms. However, despite the importance of plant derived natural products, metabolic engineering strategies to yield unnatural products from complex, lengthy plant pathways have not been widely explored. Here, we show that RNA mediated suppression of tryptamine biosynthesis in Catharanthus roseus hairy root culture eliminates all production of monoterpene indole alkaloids, a class of natural products derived from two starting substrates, tryptamine and secologanin. To exploit this chemically silent background, we introduced an unnatural tryptamine analog to the production media and demonstrated that the silenced plant culture could produce a variety of novel products derived from this unnatural starting substrate. The novel alkaloids were not contaminated by the presence of the natural alkaloids normally present in C. roseus. Suppression of tryptamine biosynthesis therefore did not appear to adversely affect expression of downstream biosynthetic enzymes. Targeted suppression of substrate biosynthesis therefore appears to be a viable strategy for programming a plant alkaloid pathway to more effectively produce desirable unnatural products. Moreover, although tryptamine is widely found among plants, this silenced line demonstrates that tryptamine does not play an essential role in growth or development in C. roseus root culture. Silencing the biosynthesis of an early starting substrate enhances our ability to harness the rich diversity of plant based natural products.

  8. [Genetic regulation of plant shoot stem cells].

    PubMed

    Al'bert, E V; Ezhova, T A

    2013-02-01

    This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.

  9. Enrichment of skin-derived neural precursor cells from dermal cell populations by altering culture conditions.

    PubMed

    Bayati, Vahid; Gazor, Rohoullah; Nejatbakhsh, Reza; Negad Dehbashi, Fereshteh

    2016-01-01

    As stem cells play a critical role in tissue repair, their manipulation for being applied in regenerative medicine is of great importance. Skin-derived precursors (SKPs) may be good candidates for use in cell-based therapy as the only neural stem cells which can be isolated from an accessible tissue, skin. Herein, we presented a simple protocol to enrich neural SKPs by monolayer adherent cultivation to prove the efficacy of this method. To enrich neural SKPs from dermal cell populations, we have found that a monolayer adherent cultivation helps to increase the numbers of neural precursor cells. Indeed, we have cultured dermal cells as monolayer under serum-supplemented (control) and serum-supplemented culture, followed by serum free cultivation (test) and compared. Finally, protein markers of SKPs were assessed and compared in both experimental groups and differentiation potential was evaluated in enriched culture. The cells of enriched culture concurrently expressed fibronectin, vimentin and nestin, an intermediate filament protein expressed in neural and skeletal muscle precursors as compared to control culture. In addition, they possessed a multipotential capacity to differentiate into neurogenic, glial, adipogenic, osteogenic and skeletal myogenic cell lineages. It was concluded that serum-free adherent culture reinforced by growth factors have been shown to be effective on proliferation of skin-derived neural precursor cells (skin-NPCs) and drive their selective and rapid expansion.

  10. T cell resistance to activation by dendritic cells requires long-term culture in simulated microgravity.

    PubMed

    Bradley, Jillian H; Stein, Rachel; Randolph, Brad; Molina, Emily; Arnold, Jennifer P; Gregg, Randal K

    2017-11-01

    Immune impairment mediated by microgravity threatens the success of space exploration requiring long-duration spaceflight. The cells of most concern, T lymphocytes, coordinate the host response against microbial and cancerous challenges leading to elimination and long-term protection. T cells are activated upon recognition of specific microbial peptides bound on the surface of antigen presenting cells, such as dendritic cells (DC). Subsequently, this engagement results in T cell proliferation and differentiation into effector T cells driven by autocrine interleukin-2 (IL-2) and other cytokines. Finally, the effector T cells acquire the weaponry needed to destroy microbial invaders and tumors. Studies conducted on T cells during spaceflight, or using Earth-based culture systems, have shown reduced production of cytokines, proliferation and effector functions as compared to controls. This may account for the cases of viral reactivation events and opportunistic infections associated with astronauts of numerous missions. This work has largely been based upon the outcome of T cell activation by stimulatory factors that target select T cell signaling pathways rather than the complex, signaling events related to the natural process of antigen presentation by DC. This study tested the response of an ovalbumin peptide-specific T cell line, OT-II TCH, to activation by DC when the T cells were cultured 24-120 h in a simulated microgravity (SMG) environment generated by a rotary cell culture system. Following 72 h culture of T cells in SMG (SMG-T) or control static (Static-T) conditions, IL-2 production by the T cells was reduced in SMG-T cells compared to Static-T cells upon stimulation by phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, when the SMG-T cells were stimulated with DC and peptide, IL-2 was significantly increased compared to Static-T cells. Such enhanced IL-2 production by SMG-T cells peaked at 72 h SMG culture time and decreased thereafter

  11. Proteomic Analysis of Host Cell Protein Dynamics in the Culture Supernatants of Antibody-Producing CHO Cells

    PubMed Central

    Park, Jin Hyoung; Jin, Jong Hwa; Lim, Myung Sin; An, Hyun Joo; Kim, Jong Won; Lee, Gyun Min

    2017-01-01

    Chinese hamster ovary (CHO) cells are the most common cell line used for the production of therapeutic proteins including monoclonal antibodies (mAbs). Host cell proteins (HCPs), secreted and released from lysed cells, accumulate extracellularly during the cultures of recombinant CHO (rCHO) cells, potentially impairing product quality. In an effort to maintain good mAb quality during the cultures, HCPs accumulated extracellularly in batch and fed-batch cultures of a mAb-producing rCHO cell line were identified and quantified by nanoflow liquid chromatography-tandem mass spectrometry, followed by their gene ontology and functional analysis. Due to higher cell concentration and longer culture duration, more HCPs were identified and quantitated in fed-batch culture (2145 proteins identified and 1673 proteins quantified) than in batch culture (1934 proteins identified and 1486 proteins quantified). Clustering analysis of HCPs showed that the concentration profiles of HCPs affecting mAb quality (Lgmn, Ctsd, Gbl1, and B4galt1) correlated with changes in mAb quality attributes such as aggregation, charge variants, and N-glycosylation during the cultures. Taken together, the dataset of HCPs obtained in this study provides insights into determining the appropriate target proteins to be removed during both the cultures and purification steps for ensuring good mAb quality. PMID:28281648

  12. Cell fiber-based three-dimensional culture system for highly efficient expansion of human induced pluripotent stem cells.

    PubMed

    Ikeda, Kazuhiro; Nagata, Shogo; Okitsu, Teru; Takeuchi, Shoji

    2017-06-06

    Human pluripotent stem cells are a potentially powerful cellular resource for application in regenerative medicine. Because such applications require large numbers of human pluripotent stem cell-derived cells, a scalable culture system of human pluripotent stem cell needs to be developed. Several suspension culture systems for human pluripotent stem cell expansion exist; however, it is difficult to control the thickness of cell aggregations in these systems, leading to increased cell death likely caused by limited diffusion of gases and nutrients into the aggregations. Here, we describe a scalable culture system using the cell fiber technology for the expansion of human induced pluripotent stem (iPS) cells. The cells were encapsulated and cultured within the core region of core-shell hydrogel microfibers, resulting in the formation of rod-shaped or fiber-shaped cell aggregations with sustained thickness and high viability. By encapsulating the cells with type I collagen, we demonstrated a long-term culture of the cells by serial passaging at a high expansion rate (14-fold in four days) while retaining its pluripotency. Therefore, our culture system could be used for large-scale expansion of human pluripotent stem cells for use in regenerative medicine.

  13. Molecular Cloning and Characterization of a Xanthone Prenyltransferase from Hypericum calycinum Cell Cultures.

    PubMed

    Fiesel, Tobias; Gaid, Mariam; Müller, Andreas; Bartels, Joana; El-Awaad, Islam; Beuerle, Till; Ernst, Ludger; Behrends, Sönke; Beerhues, Ludger

    2015-08-27

    In plants, prenylation of metabolites is widely distributed to generate compounds with efficient defense potential and distinct pharmacological activities profitable to human health. Prenylated compounds are formed by members of the prenyltransferase (PT) superfamily, which catalyze the addition of prenyl moieties to a variety of acceptor molecules. Cell cultures of Hypericum calycinum respond to elicitor treatment with the accumulation of the prenylated xanthone hyperxanthone E. A cDNA encoding a membrane-bound PT (HcPT) was isolated from a subtracted cDNA library and transcript preparations of H. calycinum. An increase in the HcPT transcript level preceded hyperxanthone E accumulation in cell cultures of H. calycinum treated with elicitor. The HcPT cDNA was functionally characterized by expression in baculovirus-infected insect cells. The recombinant enzyme catalyzed biosynthesis of 1,3,6,7-tetrahydroxy-8-prenylxanthone through regiospecific C-8 prenylation of 1,3,6,7-tetrahydroxyxanthone, indicating its involvement in hyperxanthone E formation. The enzymatic product shared significant structural features with the previously reported cholinesterase inhibitor γ-mangostin. Thus, our findings may offer a chance for semisynthesis of new active agents to be involved in the treatment of Alzheimer's disease.

  14. Somatic embryogenesis and polyamines in woody plants

    Treesearch

    Rakesh Minocha; Subhash C. Minocha; Liisa Kaarina Simola

    1995-01-01

    The formation of whole plants from cultured cells is interesting not only because of its applications for mass propagation but also as a prime example of the process of controlled development and differentiation in plants. Cultures capable of producing somatic embryos with high frequency provide ideal experimental systems to study and understand the biochemical basis...

  15. Modeling Physiological Events in 2D vs. 3D Cell Culture

    PubMed Central

    Duval, Kayla; Grover, Hannah; Han, Li-Hsin; Mou, Yongchao; Pegoraro, Adrian F.; Fredberg, Jeffery

    2017-01-01

    Cell culture has become an indispensable tool to help uncover fundamental biophysical and biomolecular mechanisms by which cells assemble into tissues and organs, how these tissues function, and how that function becomes disrupted in disease. Cell culture is now widely used in biomedical research, tissue engineering, regenerative medicine, and industrial practices. Although flat, two-dimensional (2D) cell culture has predominated, recent research has shifted toward culture using three-dimensional (3D) structures, and more realistic biochemical and biomechanical microenvironments. Nevertheless, in 3D cell culture, many challenges remain, including the tissue-tissue interface, the mechanical microenvironment, and the spatiotemporal distributions of oxygen, nutrients, and metabolic wastes. Here, we review 2D and 3D cell culture methods, discuss advantages and limitations of these techniques in modeling physiologically and pathologically relevant processes, and suggest directions for future research. PMID:28615311

  16. Inhibition of apoptosis using exosomes in Chinese hamster ovary cell culture.

    PubMed

    Han, Seora; Rhee, Won Jong

    2018-05-01

    Animal cell culture technology for therapeutic protein production has shown significant improvement over the last few decades. Chinese hamster ovary (CHO) cells have been widely adapted for the production of biopharmaceutical drugs. In the biopharmaceutical industry, it is crucial to develop cell culture media and culturing conditions to achieve the highest productivity and quality. However, CHO cells are significantly affected by apoptosis in the bioreactors, resulting in a substantial decrease in product quantity and quality. Thus, to overcome the obstacle of apoptosis in CHO cell culture, it is critical to develop a novel method that does not have minimal concern of safety or cost. Herein, we showed for the first time that exosomes, which are nano-sized extracellular vesicles, derived from CHO cells inhibited apoptosis in CHO cell culture when supplemented to the culture medium. Flow cytometric and microscopic analyses revealed that substantial amounts of exosomes were delivered to CHO cells. Higher cell viability after staurosporine treatment was observed by exosome supplementation (67.3%) as compared to control (41.1%). Furthermore, exosomes prevented the mitochondrial membrane potential loss and caspase-3 activation, meaning that the exosomes enhanced cellular activities under pro-apoptotic condition. As the exosomes supplements are derived from CHO cells themselves, it is not only beneficial for the biopharmaceutical productivity of CHO cell culture to inhibit apoptosis, but also from a regulatory standpoint to diminish any safety concerns. Thus, we conclude that the method developed in this research may contribute to the biopharmaceutical industry where minimizing apoptosis in CHO cell culture is beneficial. © 2018 Wiley Periodicals, Inc.

  17. Isolation of total RNA from yeast cell cultures.

    PubMed

    Ares, Manuel

    2012-10-01

    This article describes two procedures for isolating total RNA from yeast cell cultures. The first allows the convenient isolation of total RNA from early log-phase cultures (vegetative cells). RNA isolated in this way is intact and sufficiently pure for use in microarray experiments, primer extension, and RNase protection mapping. With additional treatment to remove contaminating genomic DNA, the preparation is suitable for reverse transcription-polymerase chain reaction (RT-PCR), quantitative PCR (qPCR), cDNA library construction, high-throughput sequencing of RNA, or other manipulations. However, compared to vegetative cells, the isolation of RNA from cells late in meiosis (asci and ascospores) requires additional effort. This is because a tough cell wall composed of heavily cross-linked polysaccharides and proteins is built around the four spores during meiosis and ascospore development. Therefore, an alternative protocol is presented for extracting RNA from cells late in meiosis. This alternative may also be preferable for cells from stationary cultures or from yeast strains and other fungal species isolated from the environment.

  18. Isolation and Characterization of Poliovirus in Cell Culture Systems.

    PubMed

    Thorley, Bruce R; Roberts, Jason A

    2016-01-01

    The isolation and characterization of enteroviruses by cell culture was accepted as the "gold standard" by clinical virology laboratories. Methods for the direct detection of all enteroviruses by reverse transcription polymerase chain reaction, targeting a conserved region of the genome, have largely supplanted cell culture as the principal diagnostic procedure. However, the World Health Organization's Global Polio Eradication Initiative continues to rely upon cell culture to isolate poliovirus due to the lack of a reliable sensitive genetic test for direct typing of enteroviruses from clinical specimens. Poliovirus is able to infect a wide range of mammalian cell lines, with CD155 identified as the primary human receptor for all three seroytpes, and virus replication leads to an observable cytopathic effect. Inoculation of cell lines with extracts of clinical specimens and subsequent passaging of the cells leads to an increased virus titre. Cultured isolates of poliovirus are suitable for testing by a variety of methods and remain viable for years when stored at low temperature.This chapter describes general procedures for establishing a cell bank and routine passaging of cell lines. While the sections on specimen preparation and virus isolation focus on poliovirus, the protocols are suitable for other enteroviruses.

  19. [Isolation, purification and primary culture of rat pancreatic beta-cells].

    PubMed

    Liu, Yu-Pu; Lü, Qing-Guo; Tong, Nan-Wei

    2009-01-01

    To isolate and purify rat pancreatic beta-cells and to explore the best conditions for the primary culture of the pancreatic beta-cells in vitro. The pancreas of Norman Wistar rats were digested by collagenase V. The islets were purified by mesh sieve. The activity of the islets was stimulated by different concentrations of glucose and detected by dithizone dye. The purified islets were put into RPMI-1640 nutritive medium for culture overnight. The cultured islets were digested again with trypsin and DNAase to obtain the suspension containing single pancreatic cells. The beta-cells were separated and purified in a fluorescence-activated cell sorter (FACS) in the medium containing 2.8 mmol/L glucose. The purified beta-cells were identified by immunohistochemistry and glucose stimulating test. Ham's F-10 with different concentrations of glucose and 3-Isobutyl-1-methylxanthine (IBMX) were used as nutritive medium for the primary cell culture for 24 hours. The best conditions for the culture were identified. An average of 550 +/- 90 islets with fine activities were obtained per rat. The purification with FACS obtained about 5688 beta-cells per rat, with a recovery rate of (93.69 +/- 1.26)% and a purity of (85.5 +/- 1.24)%. A concentration of 10.0 mmol/L and 16.0 mmol/L glucose in primary culture for 24 hours produced the highest survival rates of beta-cells, but IBMX did not increase the survival rates of beta-cells. FACS is effective in purifying pancreatic beta-cells from the suspension with a medium containing 2.8 mmol/L glucose. Pancreatic beta-cells maintain relatively high activities in Ham's F-10 medium containing 10.0-16.0 mmol/L glucose in primary culture.

  20. Enhancement of matrix production and cell proliferation in human annulus cells under bioreactor culture.

    PubMed

    Yang, Xinlin; Wang, Daidong; Hao, Jianrong; Gong, Meiqing; Arlet, Vincent; Balian, Gary; Shen, Francis H; Li, Xudong Joshua

    2011-06-01

    Tissue engineering is a promising approach for treatment of disc degeneration. Herein, we evaluated effects of rotating bioreactor culture on the extracellular matrix production and proliferation of human annulus fibrosus (AF) cells. AF cells were embedded into alginate beads, and then cultured up to 3 weeks in a rotating wall vessel bioreactor or a static vessel. By real-time reverse transcription-polymerase chain reaction, expression of aggrecan, collagen type I and type II, and collagen prolyl 4-hydroxylase II was remarkably elevated, whereas expression of matrix metalloproteinase 3 and a disintegrin and metalloproteinase with thrombospondin motifs 5 was significantly decreased under bioreactor. Biochemical analysis revealed that the levels of the whole cell-associated proteoglycan and collagen were approximately five- and twofolds in rotating bioreactor, respectively, compared to those in static culture. Moreover, AF cell proliferation was augmented in rotating bioreactor. DNA contents were threefolds higher in rotating bioreactor than that in static culture. Expression of the proliferating cell nuclear antigen was robustly enhanced in rotating bioreactor as early as 1 week. Our findings suggested that rotating bioreactor culture would be an effective technique for expansion of human annulus cells for tissue engineering driven treatment of disc degeneration.

  1. Evolution and diversity of plant cell walls: from algae to flowering plants.

    PubMed

    Popper, Zoë A; Michel, Gurvan; Hervé, Cécile; Domozych, David S; Willats, William G T; Tuohy, Maria G; Kloareg, Bernard; Stengel, Dagmar B

    2011-01-01

    All photosynthetic multicellular Eukaryotes, including land plants and algae, have cells that are surrounded by a dynamic, complex, carbohydrate-rich cell wall. The cell wall exerts considerable biological and biomechanical control over individual cells and organisms, thus playing a key role in their environmental interactions. This has resulted in compositional variation that is dependent on developmental stage, cell type, and season. Further variation is evident that has a phylogenetic basis. Plants and algae have a complex phylogenetic history, including acquisition of genes responsible for carbohydrate synthesis and modification through a series of primary (leading to red algae, green algae, and land plants) and secondary (generating brown algae, diatoms, and dinoflagellates) endosymbiotic events. Therefore, organisms that have the shared features of photosynthesis and possession of a cell wall do not form a monophyletic group. Yet they contain some common wall components that can be explained increasingly by genetic and biochemical evidence.

  2. SAHA-induced TRAIL-sensitisation of Multiple Myeloma cells is enhanced in 3D cell culture.

    PubMed

    Arhoma, A; Chantry, A D; Haywood-Small, S L; Cross, N A

    2017-11-15

    Multiple Myeloma (MM) is currently incurable despite many novel therapies. Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) is a potential anti-tumour agent although effects as a single agent are limited. In this study, we investigated whether the Histone Deacetylase (HDAC) inhibitor SAHA can enhance TRAIL-induced apoptosis and target TRAIL resistance in both suspension culture, and 3D cell culture as a model of disseminated MM lesions that form in bone. The effects of SAHA and/or TRAIL in 6 Multiple Myeloma cell lines were assessed in both suspension cultures and in an Alginate-based 3D cell culture model. The effect of SAHA and/or TRAIL was assessed on apoptosis by assessment of nuclear morphology using Hoechst 33342/Propidium Iodide staining. Viable cell number was assessed by CellTiter-Glo luminescence assay, Caspase-8 and -9 activities were measured by Caspase-Glo™ assay kit. TRAIL-resistant cells were generated by culture of RPMI 8226 and NCI-H929 by acute exposure to TRAIL followed by selection of TRAIL-resistant cells. TRAIL significantly induced apoptosis in a dose-dependent manner in OPM-2, RPMI 8226, NCI-H929, U266, JJN-3 MM cell lines and ADC-1 plasma cell leukaemia cells. SAHA amplified TRAIL responses in all lines except OPM-2, and enhanced TRAIL responses were both via Caspase-8 and -9. SAHA treatment induced growth inhibition that further increased in the combination treatment with TRAIL in MM cells. The co-treatment of TRAIL and SAHA reduced viable cell numbers all cell lines. TRAIL responses were further potentiated by SAHA in 3D cell culture in NCI-H929, RPMI 8226 and U266 at lower TRAIL + SAHA doses than in suspension culture. However TRAIL responses in cells that had been selected for TRAIL resistance were not further enhanced by SAHA treatment. SAHA is a potent sensitizer of TRAIL responses in both TRAIL sensitive and resistant cell lines, in both suspension and 3D culture, however SAHA did not sensitise TRAIL-sensitive cell

  3. Genome Editing of Erythroid Cell Culture Model Systems.

    PubMed

    Yik, Jinfen J; Crossley, Merlin; Quinlan, Kate G R

    2018-01-01

    Genome editing to introduce specific mutations or to knock out genes in model cell systems has become an efficient platform for research in the fields of molecular biology, genetics, and cell biology. With recent rapid improvements in genome editing techniques, bench-top manipulation of the genome in cell culture has become progressively easier. The application of this knowledge to erythroid cell culture systems now allows the rapid analysis of the downstream effects of virtually any engineered gene disruption or modification in cell systems. Here, we describe a CRISPR/Cas9-based approach to making genomic modifications in erythroid lineage cells which we have successfully used in both murine (MEL) and human (K562) erythroleukaemia immortalized cell lines.

  4. Arabinogalactan Proteins Are Involved in Salt-Adaptation and Vesicle Trafficking in Tobacco by-2 Cell Cultures

    PubMed Central

    Olmos, Enrique; García De La Garma, Jesús; Gomez-Jimenez, Maria C.; Fernandez-Garcia, Nieves

    2017-01-01

    Arabinogalactan proteins (AGPs) are a highly diverse family of glycoproteins that are commonly found in most plant species. However, little is known about the physiological and molecular mechanisms of their function. AGPs are involved in different biological processes such as cell differentiation, cell expansion, tissue development and somatic embryogenesis. AGPs are also involved in abiotic stress response such as salinity modulating cell wall expansion. In this study, we describe how salt-adaptation in tobacco BY-2 cell cultures induces important changes in arabinogalactan proteins distribution and contents. Using the immuno-dot blot technique with different anti-AGP antibodies (JIM13, JIM15, and others), we observed that AGPs were highly accumulated in the culture medium of salt-adapted tobacco cells, probably due to the action of phospholipases. We located these AGP epitopes using immunogold labeling in the cytoplasm associated to the endoplasmic reticulum, the golgi apparatus, and vesicles, plasma membrane and tonoplast. Our results show that salt-adaptation induced a significant reduction of the cytoplasm, plasma membrane and tonoplast content of these epitopes. Yariv reagent was added to the control and salt-adapted tobacco cell cultures, leading to cell death induction in control cells but not in salt-adapted cells. Ultrastructural and immunogold labeling revealed that cell death induced by Yariv reagent in control cells was due to the interaction of Yariv reagent with the AGPs linked to the plasma membranes. Finally, we propose a new function of AGPs as a possible sodium carrier through the mechanism of vesicle trafficking from the apoplast to the vacuoles in salt-adapted tobacco BY-2 cells. This mechanism may contribute to sodium homeostasis during salt-adaptation to high saline concentrations. PMID:28676820

  5. Arabinogalactan Proteins Are Involved in Salt-Adaptation and Vesicle Trafficking in Tobacco by-2 Cell Cultures.

    PubMed

    Olmos, Enrique; García De La Garma, Jesús; Gomez-Jimenez, Maria C; Fernandez-Garcia, Nieves

    2017-01-01

    Arabinogalactan proteins (AGPs) are a highly diverse family of glycoproteins that are commonly found in most plant species. However, little is known about the physiological and molecular mechanisms of their function. AGPs are involved in different biological processes such as cell differentiation, cell expansion, tissue development and somatic embryogenesis. AGPs are also involved in abiotic stress response such as salinity modulating cell wall expansion. In this study, we describe how salt-adaptation in tobacco BY-2 cell cultures induces important changes in arabinogalactan proteins distribution and contents. Using the immuno-dot blot technique with different anti-AGP antibodies (JIM13, JIM15, and others), we observed that AGPs were highly accumulated in the culture medium of salt-adapted tobacco cells, probably due to the action of phospholipases. We located these AGP epitopes using immunogold labeling in the cytoplasm associated to the endoplasmic reticulum, the golgi apparatus, and vesicles, plasma membrane and tonoplast. Our results show that salt-adaptation induced a significant reduction of the cytoplasm, plasma membrane and tonoplast content of these epitopes. Yariv reagent was added to the control and salt-adapted tobacco cell cultures, leading to cell death induction in control cells but not in salt-adapted cells. Ultrastructural and immunogold labeling revealed that cell death induced by Yariv reagent in control cells was due to the interaction of Yariv reagent with the AGPs linked to the plasma membranes. Finally, we propose a new function of AGPs as a possible sodium carrier through the mechanism of vesicle trafficking from the apoplast to the vacuoles in salt-adapted tobacco BY-2 cells. This mechanism may contribute to sodium homeostasis during salt-adaptation to high saline concentrations.

  6. A novel cell division factor from tobacco 2B-13 cells that induced cell division in auxin-starved tobacco BY-2 cells

    NASA Astrophysics Data System (ADS)

    Shimizu, Takashi; Eguchi, Kentaro; Nishida, Ikuo; Laukens, Kris; Witters, Erwin; van Onckelen, Harry; Nagata, Toshiyuki

    2006-06-01

    Effects of auxin as plant hormones are widespread; in fact in almost all aspects of plant growth and development auxin plays a pivotal role. Although auxin is required for propagating cell division in plant cells, its effect upon cell division is least understood. If auxin is depleted from the culture medium, cultured cells cease to divide. It has been demonstrated in this context that the addition of auxin to auxin-starved nondividing tobacco BY-2 cells induced semisynchronous cell division. On the other hand, there are some cell lines, named habituated cells, that can grow without auxin. The cause and reason for the habituated cells have not been clarified. A habituated cell line named 2B-13 is derived from the tobacco BY-2 cell line, which has been most intensively studied among plant cell lines. When we tried to find the difference between two cell lines of BY-2 and 2B-13 cells, we found that the addition of culture filtrated from the auxin-habituated 2B-13 cells induced semisynchronous cell division in auxin-starved BY-2 cells. The cell division factor (CDF) that is responsible for inducing cell division in auxin-starved BY-2 cells was purified to near-homogeneity by sequential passage through a hydroxyapatite column, a ConA Sepharose column and a Sephadex gel filtration column. The resulting purified fraction appeared as a single band of high molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels by silver staining and was able to induce cell division in auxin-starved BY-2 cells. Identification of the protein by MALD-TOF-MS/MS revealed that it is structurally related to P-glycoprotein from Gossypioides kirkii, which belongs to ATP-binding cassette (ABC)-transporters. The significance of CDF as a possible ABC-transporter is discussed in relationship to auxin-autotrophic growth and auxin-signaling pathway.

  7. Culture of human anulus fibrosus cells on polyamide nanofibers: extracellular matrix production.

    PubMed

    Gruber, Helen E; Hoelscher, Gretchen; Ingram, Jane A; Hanley, Edward N

    2009-01-01

    Studies were approved by the authors' Human Subjects Institutional Review Board. Human anulus cells were tested for growth and extracellular matrix (ECM) production in vitro. To investigate cell attachment, cell proliferation, and ECM production of human intervertebral disc anulus cells seeded onto randomly oriented electrospun polyamide nanofibers. Because nanofibrillar matrices have the potential to promote microenvironments, which may mimic in vivo conditions and resemble connective tissue, their utilization opens new avenues for cell-based tissue engineering applications for disc cells. Anulus cells were isolated from 4 cervical spine surgical disc specimens, expanded, and seeded into either routine plastic culture (control) or a nanofiber surface of randomly oriented electrospun polyamide nanofibers (Ultra-Web-coated culture dish, Corning) with a positive charge or without a charge. Cells were cultured for 9 days, digital images captured, cells harvested, embedded in paraffin, and examined for production of extracellular matrix (ECM). Additional anulus cultures were tested to quantitatively assess total proteoglycan production and cell proliferation under control or nanofiber cultures. Cells attached well and exhibited cell extensions within the nanofiber layers; cells on the charged nanofiber surface deposited greater amounts of chondroitin sulfate than of type II collagen than cells cultured on the uncharged nanofiber surface. Results showed that culture of anulus cells on nanofibers was permissive for secretion and assembly of type II collagen and chondroitin sulfate. Significantly greater total proteoglycan formation was present after culture on the nanofiber with added charge conditions {control, 0.6116 microg/mL +/- 0.186 [4] [mean +/- sem(n)] vs. 1.201 +/- 0.2509 [4], P < 0.05}. Cell proliferation, however, did not differ among treatment groups. Culture of anulus cells on nanofibers was found to be permissive for secretion and assembly of type II

  8. Contributions of 3D Cell Cultures for Cancer Research.

    PubMed

    Ravi, Maddaly; Ramesh, Aarthi; Pattabhi, Aishwarya

    2017-10-01

    Cancer cell lines have contributed immensely in understanding the complex physiology of cancers. They are excellent material for studies as they offer homogenous samples without individual variations and can be utilised with ease and flexibility. Also, the number of assays and end-points one can study is almost limitless; with the advantage of improvising, modifying or altering several variables and methods. Literally, a new dimension to cancer research has been achieved by the advent of 3Dimensional (3D) cell culture techniques. This approach increased many folds the ways in which cancer cell lines can be utilised for understanding complex cancer biology. 3D cell culture techniques are now the preferred way of using cancer cell lines to bridge the gap between the 'absolute in vitro' and 'true in vivo'. The aspects of cancer biology that 3D cell culture systems have contributed include morphology, microenvironment, gene and protein expression, invasion/migration/metastasis, angiogenesis, tumour metabolism and drug discovery, testing chemotherapeutic agents, adaptive responses and cancer stem cells. We present here, a comprehensive review on the applications of 3D cell culture systems for these aspects of cancers. J. Cell. Physiol. 232: 2679-2697, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Establishment and characterization of American elm cell suspension cultures

    Treesearch

    Steven M. Eshita; Joseph C. Kamalay; Vicki M. Gingas; Daniel A. Yaussy

    2000-01-01

    Cell suspension cultures of Dutch elm disease (DED)-tolerant and DED-susceptible American elms clones have been established and characterized as prerequisites for contrasts of cellular responses to pathogen-derived elicitors. Characteristics of cultured elm cell growth were monitored by A700 and media conductivity. Combined cell growth data for all experiments within a...

  10. Retinal Pigment Epithelium Culture;a Potential Source of Retinal Stem Cells

    PubMed Central

    Akrami, Hassan; Soheili, Zahra-Soheila; Khalooghi, Keynoush; Ahmadieh, Hamid; Rezaie-Kanavi, Mojgan; Samiei, Shahram; Davari, Malihe; Ghaderi, Shima; Sanie-Jahromi, Fatemeh

    2009-01-01

    Purpose To establish human retinal pigment epithelial (RPE) cell culture as a source for cell replacement therapy in ocular diseases. Methods Human cadaver globes were used to isolate RPE cells. Each globe was cut into several pieces of a few millimeters in size. After removing the sclera and choroid, remaining tissues were washed in phosphate buffer saline and RPE cells were isolated using dispase enzyme solution and cultured in Dulbecco’s Modified Eagle’s Medium: Nutrient Mixture F-12 supplemented with 10% fetal calf serum. Results Primary cultures of RPE cells were established and spheroid colonies related to progenitor/stem cells developed in a number of cultures. The colonies included purely pigmented or mixed pigmented and non-pigmented cells. After multiple cellular passages, several types of photoreceptors and neural-like cells were detected morphologically. Conclusion Cellular plasticity in RPE cell cultures revealed promising results in terms of generation of stem/progenitor cells from human RPE cells. Whether the spheroids and neural-like retinal cells were directly derived from retinal stem cells or offspring of trans-differentiating or de-differentiating RPE cells remains to be answered. PMID:23198062

  11. Urokinase production by electrophoretically separated cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Plank, L. D.; Giranda, V.; Sedor, K.; Todd, P. W.

    1985-01-01

    Urokinase is a plasminogen activator found in urine. Relatively pure preparations have been tested in Europe, Japan and the United States for the treatment of deep vein thrombosis and other dangerous blood clots. Human embryonic kidney cell cultures have been found to produce urokinase at much higher concentrations, but less than 5% of the cells in typical cultures are producers. Since human diploid cells become senescent in culture the selection of clones derived from single cells will not provide enough material to be useful, so a bulk purification method is needed for the isolation of urokinase producing cell populations. Preparative cell electrophoresis was chosen as the method, since evidence exists that human embryonic cell cultures are richly heterogeneous with respect to electrophoretic mobility, and preliminary electrophoretic separations on the Apollo-Soyuz space flight produced cell populations that were rich in urokinase production. Similarly, erythropoietin is useful in the treatment of certain anemias and is a kidney cell duct, and electrophoretically enriched cell populations producing this product have been reported. Thus, there is a clear need for diploid human cells that produce these products, and there is evidence that such cells should be separable by free-flow cell electrophoresis.

  12. Transgenic Russian wildrye (Psathyrostachys juncea) plants obtained by biolistic transformation of embryogenic suspension cells.

    PubMed

    Wang, Z-Y; Bell, J; Lehmann, D

    2004-07-01

    Russian wildrye (Psathyrostachys juncea (Fisch.) Nevski) is a cool-season forage species well adapted to semi-arid climates. We are interested in developing biotechnological methods to improve this monocot forage species. Single genotype-derived embryogenic suspension cultures were established from the Russian wildrye cultivar Bozoisky-Select, and were used as target cells for biolistic transformation. A chimeric hygromycin phosphotransferase gene (hph) was used as the selectable marker, and a chimeric beta-glucuronidase (gusA) gene was co-transformed with hph. Resistant calli were obtained from 29% of the bombarded dishes after selection with 200 mg/l hygromycin. Plants were regenerated from 45% of the hygromycin resistant calli. Thirty-six transgenic Russian wildrye plants were recovered after microprojectile bombardment of suspension cells and subsequent hygromycin selection. The transgenic nature of the regenerated plants was demonstrated by Southern hybridization analysis using undigested and digested genomic DNA samples. When a second gene (gusA) was co-transformed with hph, a reasonably high co-transformation frequency of 78% was observed. Transgenic expression of gusA was confirmed by GUS staining of shoot and leaf tissues. Fertile transgenic plants were obtained after two winters of vernalization under field conditions. This is the first report on the generation of transgenic plants in Russian wildrye.

  13. Dispersible oxygen microsensors map oxygen gradients in three-dimensional cell cultures.

    PubMed

    Lesher-Pérez, Sasha Cai; Kim, Ge-Ah; Kuo, Chuan-Hsien; Leung, Brendan M; Mong, Sanda; Kojima, Taisuke; Moraes, Christopher; Thouless, M D; Luker, Gary D; Takayama, Shuichi

    2017-09-26

    Phase fluorimetry, unlike the more commonly used intensity-based measurement, is not affected by differences in light paths from culture vessels or by optical attenuation through dense 3D cell cultures and hydrogels thereby minimizing dependence on signal intensity for accurate measurements. This work describes the use of phase fluorimetry on oxygen-sensor microbeads to perform oxygen measurements in different microtissue culture environments. In one example, cell spheroids were observed to deplete oxygen from the cell-culture medium filling the bottom of conventional microwells within minutes, whereas oxygen concentrations remained close to ambient levels for several days in hanging-drop cultures. By dispersing multiple oxygen microsensors in cell-laden hydrogels, we also mapped cell-generated oxygen gradients. The spatial oxygen mapping was sufficiently precise to enable the use of computational models of oxygen diffusion and uptake to give estimates of the cellular oxygen uptake rate and the half-saturation constant. The results show the importance of integrated design and analysis of 3D cell cultures from both biomaterial and oxygen supply aspects. While this paper specifically tests spheroids and cell-laden gel cultures, the described methods should be useful for measuring pericellular oxygen concentrations in a variety of biomaterials and culture formats.

  14. Spectro-microscopy of living plant cells.

    PubMed

    Harter, Klaus; Meixner, Alfred J; Schleifenbaum, Frank

    2012-01-01

    Spectro-microscopy, a combination of fluorescence microscopy with spatially resolved spectroscopic techniques, provides new and exciting tools for functional cell biology in living organisms. This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context. The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells. Moreover, the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT). Furthermore, a new spectro-microscopic technique, fluorescence intensity decay shape analysis microscopy (FIDSAM), has been developed. FIDSAM is capable of imaging low-expressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts. In addition, FIDSAM provides a very effective and sensitive tool on the basis of Förster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction. Finally, we report on the quantitative analysis of the photosystem I and II (PSI/PSII) ratio in the chloroplasts of living Arabidopsis plants at room temperature, using high-resolution, spatially resolved fluorescence spectroscopy. With this technique, it was not only possible to measure PSI/PSII ratios, but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSI/PSII ratio to different light conditions. In summary, the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches. Therefore, novel cell physiological and molecular topics can be addressed and valuable insights into

  15. From Three-Dimensional Cell Culture to Organs-on-Chips

    PubMed Central

    Huh, Dongeun; Hamilton, Geraldine A.; Ingber, Donald E.

    2014-01-01

    Three-dimensional (3D) cell culture models have recently garnered great attention because they often promote levels of cell differentiation and tissue organization not possible in conventional two-dimensional (2D) culture systems. Here, we review new advances in 3D culture that leverage microfabrication technologies from the microchip industry and microfluidics approaches to create cell culture microenvironments that both support tissue differentiation and recapitulate the tissue-tissue interfaces, spatiotemporal chemical gradients, and mechanical microenvironments of living organs. These ‘organs-on-chips’ permit study of human physiology in an organ-specific context, enable development of novel in vitro disease models, and could potentially serve as replacements for animals used in drug development and toxin testing. PMID:22033488

  16. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.

    PubMed

    Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio

    2018-02-01

    Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  17. Biosynthesis of plant cell wall polysaccharides.

    PubMed

    Gibeaut, D M; Carpita, N C

    1994-09-01

    The cell wall is the principal structural element of plant form. Cellulose, long crystals of several dozen glucan chains, forms the microfibrillar foundation of plant cell walls and is synthesized at the plasma membrane. Except for callose, all other noncellulosic components are secreted to the cell surface and form a porous matrix assembled around the cellulose microfibrils. These diverse noncellulosic polysaccharides and proteins are made in the endomembrane system. Many questions about the biosynthesis and modification within the Golgi apparatus and integration of cell components at the cell surface remain unanswered. The lability of synthetic complexes upon isolation is one reason for slow progress. However, with new methods of membrane isolation and analysis of products in vitro, recent advances have been made in purifying active synthases from plasma membrane and Golgi apparatus. Likely synthase polypeptides have been identified by affinity-labeling techniques, but we are just beginning to understand the unique features of the coordinated assembly of complex polysaccharides. Nevertheless, such progress renews hope that the first gene of a synthase for a wall polysaccharide from higher plants is within our grasp.

  18. Animal-cell culture media: History, characteristics, and current issues.

    PubMed

    Yao, Tatsuma; Asayama, Yuta

    2017-04-01

    Cell culture technology has spread prolifically within a century, a variety of culture media has been designed. This review goes through the history, characteristics and current issues of animal-cell culture media. A literature search was performed on PubMed and Google Scholar between 1880 and May 2016 using appropriate keywords. At the dawn of cell culture technology, the major components of media were naturally derived products such as serum. The field then gradually shifted to the use of chemical-based synthetic media because naturally derived ingredients have their disadvantages such as large batch-to-batch variation. Today, industrially important cells can be cultured in synthetic media. Nevertheless, the combinations and concentrations of the components in these media remain to be optimized. In addition, serum-containing media are still in general use in the field of basic research. In the fields of assisted reproductive technologies and regenerative medicine, some of the medium components are naturally derived in nearly all instances. Further improvements of culture media are desirable, which will certainly contribute to a reduction in the experimental variation, enhance productivity among biopharmaceuticals, improve treatment outcomes of assisted reproductive technologies, and facilitate implementation and popularization of regenerative medicine.

  19. [Dependence of ion transport across the plasma membrane on cell culture density. II. Active and passive cation transport during the growth of L cell cultures].

    PubMed

    Marakhova, I I; Sal'nikov, K V; Vinogradova, T A

    1985-10-01

    Rubidium and lithium influxes as well as intracellular potassium and sodium contents were investigated in L cells during the culture growth. In sparse culture over the cell densities 0.5-3 X 10(4) cells/cm2 ouabain-sensitive rubidium influx is small and ouabain-resistant lithium influx in high. With the increase in culture density up to 4-5 X 10(4) cells/cm2 the active rubidium influx, mediated by ouabain-sensitive component, is enhanced, and ion "leakage" tested by lithium influx is diminished. Simultaneously with the exponential growth of culture the intracellular potassium content is increased and the intracellular sodium content is decreased resulting in the higher K/Na ratio in cell. During the further transition to dense culture and in stationary state (10-17 X 10(4) cells/cm2) the sodium content and lithium influx do not change significantly, but the potassium content is decreased. The decrease in intracellular potassium is correlated with that in the portion of cells in S-phase from 27-30 to 12%. Thus, in transformed cells the density-dependent alterations in membrane cation transport are observed.

  20. Restricted exchange microenvironments for cell culture.

    PubMed

    Hoh, Jan H; Werbin, Jeffrey L; Heinz, William F

    2018-03-01

    Metabolite diffusion in tissues produces gradients and heterogeneous microenvironments that are not captured in standard 2D cell culture models. Here we describe restricted exchange environment chambers (REECs) in which diffusive gradients are formed and manipulated on length scales approximating those found in vivo. In REECs, cells are grown in 2D in an asymmetric chamber (<50 μL) formed between a coverglass and a glass bottom cell culture dish separated by a thin (~100 μm) gasket. Diffusive metabolite exchange between the chamber and bulk media occurs through one or more openings micromachined into the coverglass. Cell-generated concentration gradients form radially in REECs with a single round opening (~200 μm diameter). At steady state only cells within several hundred micrometers of the opening experience metabolite concentrations that permit survival which is analogous to diffusive exchange near a capillary in tissue. The chamber dimensions, the openings' shape, size, and number, and the cellular density and metabolic activity define the gradient structure. For example, two parallel slots above confluent cells produce the 1D equivalent of a spheroid. Using REECs, we found that fibroblasts align along the axis of diffusion while MDCK cells do not. MDCK cells do, however, exhibit significant morphological variations along the diffusive gradient.

  1. Cell culture imaging using microimpedance tomography.

    PubMed

    Linderholm, Pontus; Marescot, Laurent; Loke, Meng Heng; Renaud, Philippe

    2008-01-01

    We present a novel, inexpensive, and fast microimpedance tomography system for two-dimensional imaging of cell and tissue cultures. The system is based on four-electrode measurements using 16 planar microelectrodes (5 microm x 4 mm) integrated into a culture chamber. An Agilent 4294A impedance analyzer combined with a front-end amplifier is used for the impedance measurements. Two-dimensional images are obtained using a reconstruction algorithm. This system is capable of accurately resolving the shape and position of a human hair, yielding vertical cross sections of the object. Human epithelial stem cells (YF 29) are also grown directly on the device surface. Tissue growth can be followed over several days. A rapid resistivity decrease caused by permeabilized cell membranes is also monitored, suggesting that this technique can be used in electroporation studies.

  2. If you build it, will they eat it? Consumer preferences for plant-based and cultured meat burgers.

    PubMed

    Slade, Peter

    2018-06-01

    In a hypothetical choice experiment consumers were given the option of purchasing burgers that were made from beef, plant-based protein, or cultured meat. Willingness to purchase plant-based and cultured meat burgers is linked to age, sex, views of other food technologies, and attitudes towards the environment and agriculture. Although consumers were told that all burgers tasted the same, there was a marked preference for beef burgers. A mixed-logit model predicts that, if prices were equal, 65% of consumers would purchase the beef burger, 21% would purchase the plant-based burger, 11% would purchase the cultured meat burger, and 4% would make no purchase. Preferences for plant-based and cultured meat burgers are found to be highly, but not perfectly, correlated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. TNT removal from culture media by three commonly available wild plants growing in the Caribbean.

    PubMed

    Correa-Torres, Sandra N; Pacheco-Londoño, Leonardo C; Espinosa-Fuentes, Eduardo A; Rodríguez, Lolita; Souto-Bachiller, Fernando A; Hernández-Rivera, Samuel P

    2012-01-01

    Plants growing in the Caribbean, Rubia tinctorum, Lippia dulcis and Spermacoce remota, were used in vitro to remove TNT from culture media. Plants were found to be resistant to high TNT levels. S. remota was able to remove TNT in less than 48 h. Part of the TNT was physically removed from the culture media by evaporation.

  4. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com; Hong, Yan; Liang, Wenmei

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neuralmore » stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.« less

  5. Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics.

    PubMed

    Baert, Yoni; Braye, Aude; Struijk, Robin B; van Pelt, Ans M M; Goossens, Ellen

    2015-11-01

    To assess whether testicular cell dynamics are altered during long-term culture after testicular tissue cryopreservation. Experimental basic science study. Reproductive biology laboratory. Testicular tissue with normal spermatogenesis was obtained from six donors. None. Detection and comparison of testicular cells from fresh and frozen tissues during long-term culture. Human testicular cells derived from fresh (n = 3) and cryopreserved (n = 3) tissues were cultured for 2 months and analyzed with quantitative reverse-transcription polymerase chain reaction and immunofluorescence. Spermatogonia including spermatogonial stem cells (SSCs) were reliably detected by combining VASA, a germ cell marker, with UCHL1, a marker expressed by spermatogonia. The established markers STAR, ACTA2, and SOX9 were used to analyze the presence of Leydig cells, peritubular myoid cells, and Sertoli cells, respectively. No obvious differences were found between the cultures initiated from fresh or cryopreserved tissues. Single or small groups of SSCs (VASA(+)/UCHL1(+)) were detected in considerable amounts up to 1 month of culture, but infrequently after 2 months. SSCs were found attached to the feeder monolayer, which expressed markers for Sertoli cells, Leydig cells, and peritubular myoid cells. In addition, VASA(-)/UCHL1(+) cells, most likely originating from the interstitium, also contributed to this monolayer. Apart from Sertoli cells, all somatic cell types could be detected throughout the culture period. Testicular tissue can be cryopreserved before long-term culture without modifying its outcome, which encourages implementation of testicular tissue banking for fertility preservation. However, because of the limited numbers of SSCs available after 2 months, further exploration and optimization of the culture system is needed. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Nanopillar based electrochemical biosensor for monitoring microfluidic based cell culture

    NASA Astrophysics Data System (ADS)

    Gangadharan, Rajan

    In-vitro assays using cultured cells have been widely performed for studying many aspects of cell biology and cell physiology. These assays also form the basis of cell based sensing. Presently, analysis procedures on cell cultures are done using techniques that are not integrated with the cell culture system. This approach makes continuous and real-time in-vitro measurements difficult. It is well known that the availability of continuous online measurements for extended periods of time will help provide a better understanding and will give better insight into cell physiological events. With this motivation we developed a highly sensitive, selective and stable microfluidic electrochemical glucose biosensor to make continuous glucose measurements in cell culture media. The performance of the microfluidic biosensor was enhanced by adding 3D nanopillars to the electrode surfaces. The microfluidic glucose biosensor consisted of three electrodes---Enzyme electrode, Working electrode, and Counter electrode. All these electrodes were enhanced with nanopillars and were optimized in their respective own ways to obtain an effective and stable biosensing device in cell culture media. For example, the 'Enzyme electrode' was optimized for enzyme immobilization via either a polypyrrole-based or a self-assembled-monolayer-based immobilization method, and the 'Working electrode' was modified with Prussian Blue or electropolymerized Neutral Red to reduce the working potential and also the interference from other interacting electro-active species. The complete microfluidic biosensor was tested for its ability to monitor glucose concentration changes in cell culture media. The significance of this work is multifold. First, the developed device may find applications in continuous and real-time measurements of glucose concentrations in in-vitro cell cultures. Second, the development of a microfluidic biosensor will bring technical know-how toward constructing continuous glucose

  7. (Hydroxyproline-rich glycoproteins of the plant cell wall)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varner, J.E.

    1990-01-01

    We are studying the chemistry and architecture of plant cells walls, the extracellular matrices that taken together shape the plant and provide mechanical support for the plant. Cell walls are dynamic structures that regulate, or are the site of, many physiological processes, in addition to being the cells' first line of defense against invading pathogens. In the past year we have examined the role of the cell wall enzyme ascorbic acid oxidase as related to the structure of the wall and its possible interactions with hydroxyproline-rich glycoproteins of the wall.

  8. Specific detection of cultivable Helicobacter pylori cells from wastewater treatment plants.

    PubMed

    Moreno, Yolanda; Ferrús, M Antonía

    2012-10-01

    Helicobacter pylori is present in surface water and wastewater, and biofilms in drinking water systems have been reported as possible reservoirs of H. pylori. However, its ability to survive in an infectious state in the environment is hindered because it rapidly loses its cultivability. The aim of this study was to determine the presence of cultivable and therefore viable H. pylori in wastewater treatment plants to understand the role of wastewater in the pathogen's transmission. A modified filter technique was used to obtain a positive H. pylori culture, and specific detection of this pathogen was achieved with FISH and PCR techniques. A total of six positive H. pylori cultures were obtained from the water samples, and molecular techniques positively identified H. pylori in 21 culture-negative samples. The combination of a culturing procedure after sample filtration followed by the application of a molecular method, such as PCR or FISH, provides a specific tool for the detection, identification, and direct visualization of cultivable and therefore viable H. pylori cells from complex mixed communities such as water samples. © 2012 Blackwell Publishing Ltd.

  9. Microfluidic Cell Culture Device

    NASA Technical Reports Server (NTRS)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  10. Morphology and function of lacrimal gland acinar cells in primary culture.

    PubMed

    Hann, L E; Tatro, J B; Sullivan, D A

    1989-01-01

    The objectives of the current investigation were fourfold: (1) to establish an effective procedure for the isolation of acinar cells from the rat lacrimal gland; (2) to evaluate the functional capacity of freshly isolated cells; (3) to determine defined culture conditions which permit maintenance of viable, differentiated cells, as well as secretory component (SC) production, during long-term culture; and (4) to characterize the morphological features of cultured cells. Acinar cells were isolated by serial incubation of gland fragments in chelating and enzymatic solutions, followed by centrifugation through a Ficoll gradient. The yield of viable cells/gland appeared to be age-dependent: cell recovery was inversely proportional to the age of the animals. Immunofluorescence analysis of freshly isolated cells showed the presence of SC, the IgA antibody receptor, within isolated cells. In addition, experiments with a labeled analog (Nle4-D-Phe7-alpha MSH) of alpha-melanocyte-stimulating hormone (alpha-MSH) demonstrated specific binding sites on freshly isolated cells; alpha-MSH is a known modulator of acinar protein secretion. Maximum binding of the alpha-MSH analog occurred within 30 min, was dependent upon cell density and was reduced by coincubation with unlabeled alpha-MSH. To determine the culture requirements of acinar cells, cells were cultured on a variety of substrates (plastic or modified plastic [Primaria], coated with or without extracellular matrix [Matrigel]) in the presence or absence of various supplements and/or fetal calf serum (FCS) for 0.7 to 3.5 weeks. Cell attachment, function and long-term viability required an extracellular matrix. Moreover, in long term cultures (25 days), acinar cell attachment was enhanced by the inclusion of supplements to media containing 10% FCS. Replacement of serum with fibroblast growth factor, high-density lipoprotein and an increased concentration of epidermal growth factor resulted in a distinct "cobblestone

  11. Identification of a population of cells with hematopoietic stem cell properties in mouse aorta-gonad-mesonephros cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobuhisa, Ikuo; Ohtsu, Naoki; Okada, Seiji

    The aorta-gonad-mesonephros (AGM) region is a primary source of definitive hematopoietic cells in the midgestation mouse embryo. In cultures of dispersed AGM regions, adherent cells containing endothelial cells are observed first, and then non-adherent hematopoietic cells are produced. Here we report on the characterization of hematopoietic cells that emerge in the AGM culture. Based on the expression profiles of CD45 and c-Kit, we defined three cell populations: CD45{sup low} c-Kit{sup +} cells that had the ability to form hematopoietic cell colonies in methylcellulose media and in co-cultures with stromal cells; CD45{sup low} c-Kit{sup -} cells that showed a granulocyte morphology;more » CD45{sup high} c-Kit{sup low/-} that exhibited a macrophage morphology. In co-cultures of OP9 stromal cells and freshly prepared AGM cultures, CD45{sup low} c-Kit{sup +} cells from the AGM culture had the abilities to reproduce CD45{sup low} c-Kit{sup +} cells and differentiate into CD45{sup low} c-Kit{sup -} and CD45{sup high} c-Kit{sup low/-} cells, whereas CD45{sup low} c-Kit{sup -} and CD45{sup high} c-Kit{sup low/-} did not produce CD45{sup low} c-Kit{sup +} cells. Furthermore, CD45{sup low} c-Kit{sup +} cells displayed a long-term repopulating activity in adult hematopoietic tissue when transplanted into the liver of irradiated newborn mice. These results indicate that CD45{sup low} c-Kit{sup +} cells from the AGM culture have the potential to reconstitute multi-lineage hematopoietic cells.« less

  12. Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells.

    PubMed

    Huang, Hongzhou; Ding, Ying; Sun, Xiuzhi S; Nguyen, Thu A

    2013-01-01

    Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing.

  13. Peptide Hydrogelation and Cell Encapsulation for 3D Culture of MCF-7 Breast Cancer Cells

    PubMed Central

    Sun, Xiuzhi S.; Nguyen, Thu A.

    2013-01-01

    Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing. PMID:23527204

  14. Bean Yellow Dwarf Virus replicons for high-level transgene expression in transgenic plants and cell cultures.

    PubMed

    Zhang, Xiuren; Mason, Hugh

    2006-02-05

    A novel stable transgenic plant expression system was developed using elements of the replication machinery of Bean Yellow Dwarf Virus (BeYDV). The system contains two transgenes: 1) The BeYDV replicon vector with an expression cassette flanked by cis-acting DNA elements of BeYDV, and 2) The viral replication initiator protein (Rep) controlled by an alcohol-inducible promoter. When Rep expression was triggered by treatment with ethanol, it induced release of the BeYDV replicon from stably integrated T-DNA and episomal replication to high copy number. Replicon amplification resulted in substantially increased transgene mRNA levels (up to 80-fold) and translation products (up to 10-fold) after induction of Rep expression by ethanol treatment in tobacco NT1 cells and leaves of whole potato plants. Thus, the BeYDV stable transformant replicon system is a powerful tool for plant-based production of recombinant proteins. (c) 2005 Wiley Periodicals, Inc.

  15. Horizontally rotated cell culture system with a coaxial tubular oxygenator

    NASA Technical Reports Server (NTRS)

    Wolf, David A. (Inventor); Schwarz, Ray P. (Inventor); Trinh, Tinh T. (Inventor)

    1991-01-01

    The present invention relates to a horizontally rotating bioreactor useful for carrying out cell and tissue culture. For processing of mammalian cells, the system is sterilized and fresh fluid medium, microcarrier beads, and cells are admitted to completely fill the cell culture vessel. An oxygen containing gas is admitted to the interior of the permeable membrane which prevents air bubbles from being introduced into the medium. The cylinder is rotated at a low speed within an incubator so that the circular motion of the fluid medium uniformly suspends the microbeads throughout the cylinder during the cell growth period. The unique design of this cell and tissue culture device was initially driven by two requirements imposed by its intended use for feasibility studies for three dimensional culture of living cells and tissues in space by JSC. They were compatible with microgravity and simulation of microgravity in one G. The vessels are designed to approximate the extremely quiescent low shear environment obtainable in space.

  16. Redox regulation of plant stem cell fate.

    PubMed

    Zeng, Jian; Dong, Zhicheng; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong

    2017-10-02

    Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H 2 O 2 ) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS-metabolizing enzymes. The superoxide anion (O2·-) is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H 2 O 2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H 2 O 2 negatively regulates O2·- biosynthesis in stem cells, and increasing H 2 O 2 levels or scavenging O2·- leads to the termination of stem cells. Our results provide a mechanistic framework for ROS-mediated control of plant stem cell fate and demonstrate that the balance between O2·- and H 2 O 2 is key to stem cell maintenance and differentiation. © 2017 The Authors.

  17. [Advance in study of vascular endothelial cell and smooth muscle cell co-culture system].

    PubMed

    Li, Yujie; Yang, Qing; Weng, Xiaogang; Chen, Ying; Ruan, Congxiao; Li, Dan; Zhu, Xiaoxing

    2012-02-01

    The interactions between endothelial cells (EC) and smooth muscle cells (SMC) contribute to vascular physiological functions and also cause the occurrence and development of different kinds of diseases. Currently, EC-SMC co-culture model is the best way to study the interactions between the two kinds of cells. This article summarizes existing EC-SMC co-culture models and their effects on the structure and functions of the two kinds of cells. Microscopically speaking, it provides a basis for in-depth studies on their interactions as well as a reference for the establishment of in vitro EC-SMC co-culture system that is closer to organic physiology or pathology state.

  18. Dynamic cell culture system (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  19. Cell Culture on MEMS Platforms: A Review

    PubMed Central

    Ni, Ming; Tong, Wen Hao; Choudhury, Deepak; Rahim, Nur Aida Abdul; Iliescu, Ciprian; Yu, Hanry

    2009-01-01

    Microfabricated systems provide an excellent platform for the culture of cells, and are an extremely useful tool for the investigation of cellular responses to various stimuli. Advantages offered over traditional methods include cost-effectiveness, controllability, low volume, high resolution, and sensitivity. Both biocompatible and bio-incompatible materials have been developed for use in these applications. Biocompatible materials such as PMMA or PLGA can be used directly for cell culture. However, for bio-incompatible materials such as silicon or PDMS, additional steps need to be taken to render these materials more suitable for cell adhesion and maintenance. This review describes multiple surface modification strategies to improve the biocompatibility of MEMS materials. Basic concepts of cell-biomaterial interactions, such as protein adsorption and cell adhesion are covered. Finally, the applications of these MEMS materials in Tissue Engineering are presented. PMID:20054478

  20. Do cancer cells in human and meristematic cells in plant exhibit similar responses toward plant extracts with cytotoxic activities?

    PubMed

    Khalifa, Noha S; Barakat, Hoda S; Elhallouty, Salwa; Salem, Dina

    2015-01-01

    We examined the effect of water extracts of Persea americana fruit, and of the leaves of Tabernamontana divericata, Nerium oleander and Annona cherimolia (positive control) on Vicia faba root cells. We had confirmed in our previously published data the cytotoxicity of these plant extracts on four human cancer cell lines: liver (HepG-2), lung (A549), colon (HT-29) and breast (MCF-7). Vicia faba roots were soaked in plant extracts at dilutions of 100, 1,250, 2,500, 5,000, 10,000, 20,000 ppm for 4 and 24 h. All treatments resulted in a significant reduction in the mitotic index in a dose dependant manner. Root cells treated with T. divericata, N. oleander and A. cherimolia exhibited a decrease in prophase cell percentage, increase in micronuclei and chromosomal abnormalities as concentration increased. The P. americana treatment showed the highest cytotoxic effect on cancer cells, prophase cell percentage increased linearly with the applied concentration and no micronuclei were detected. This study shows that root tip assay of beans can be used in initial screening for new plant extracts to validate their use as candidates for containing active cytotoxic agents against malignant cells. This will greatly help in exploring new plant extracts as drugs for cancer treatment.