Science.gov

Sample records for plant cell differentiation

  1. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    ERIC Educational Resources Information Center

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  2. Differential scanning calorimetry of plant cell walls

    SciTech Connect

    Lin, Liangshiou; Varner, J.E. ); Yuen, H.K. )

    1991-03-15

    High-sensitivity differential scanning calorimetry has been used to study the phase transition of cell wall preparations of the elongating and mature regions of soybean hypocotyls and of celery epidermis and collenchyma strands. A step-like transition believed to be glass transition was observed in walls isolated from the elongating region of soybean hypocotyls at 52.9C. Addition of 1 mM CaCl{sub 2} to the cell wall preparation increased the transition temperature to 60.8C and greatly reduced the transition magnitude. In walls from the mature region, the transition was small and occurred at a higher temperature (60.1C). Addition of calcium to the mature region cell wall had little effect on the transition. Based on the known interactions between calcium and pectin, the authors propose that calcium affects the glass transition by binding to the polygalacturonate backbone of wall pectin, resulting in a more rigid wall with a smaller transition at a higher temperature. The mature region either has more calcium in the wall or has more methyl-esterified pectin, making it less responsive to added calcium.

  3. Plant Phosphoglycerolipids: The Gatekeepers of Vascular Cell Differentiation

    PubMed Central

    Gujas, Bojan; Rodriguez-Villalon, Antia

    2016-01-01

    In higher plants, the plant vascular system has evolved as an inter-organ communication network essential to deliver a wide range of signaling factors among distantly separated organs. To become conductive elements, phloem and xylem cells undergo a drastic differentiation program that involves the degradation of the majority of their organelles. While the molecular mechanisms regulating such complex process remain poorly understood, it is nowadays clear that phosphoglycerolipids display a pivotal role in the regulation of vascular tissue formation. In animal cells, this class of lipids is known to mediate acute responses as signal transducers and also act as constitutive signals that help defining organelle identity. Their rapid turnover, asymmetrical distribution across subcellular compartments as well as their ability to rearrange cytoskeleton fibers make phosphoglycerolipids excellent candidates to regulate complex morphogenetic processes such as vascular differentiation. Therefore, in this review we aim to summarize, emphasize and connect our current understanding about the involvement of phosphoglycerolipids in phloem and xylem differentiation. PMID:26904069

  4. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling

    NASA Astrophysics Data System (ADS)

    Kondo, Yuki; Ito, Tasuku; Nakagami, Hirofumi; Hirakawa, Yuki; Saito, Masato; Tamaki, Takayuki; Shirasu, Ken; Fukuda, Hiroo

    2014-03-01

    During plant radial growth typically seen in trees, procambial and cambial cells act as meristematic cells in the vascular system to self-proliferate and differentiate into xylem cells. These two processes are regulated by a signalling pathway composed of a peptide ligand and its receptor; tracheary element differentiation inhibitory factor (TDIF) and TDIF RECEPTOR (TDR). Here we show that glycogen synthase kinase 3 proteins (GSK3s) are crucial downstream components of the TDIF signalling pathway suppressing xylem differentiation from procambial cells. TDR interacts with GSK3s at the plasma membrane and activates GSK3s in a TDIF-dependent fashion. Consistently, a specific inhibitor of plant GSK3s strongly induces xylem cell differentiation through BRI1-EMS SUPPRESSOR 1 (BES1), a well-known target transcription factor of GSK3s. Our findings provide insight into the regulation of cell fate determination in meristem maintenance.

  5. Control of plant cell differentiation by histone modification and DNA methylation.

    PubMed

    Ikeuchi, Momoko; Iwase, Akira; Sugimoto, Keiko

    2015-12-01

    How cells differentiate and acquire diverse arrays of determined states in multicellular organisms is a fundamental and yet unanswered question in biology. Molecular genetic studies over the last few decades have identified many transcriptional regulators that activate or repress gene expression to promote cell differentiation in plant development. What has recently emerged as an additional important regulatory layer is the control at the epigenetic level by which locus-specific DNA methylation and histone modification alter the chromatin state and limit the expression of key developmental regulators to specific windows of time and space. Accumulating evidence suggests that histone acetylation is commonly linked with active transcription and this mechanism is adopted to control sequential progression of cell differentiation. Histone H3 trimethylation at lysine 27 and DNA methylation are both associated with gene repression, and these mechanisms are often utilised to promote and/or maintain the differentiated status of plant cells. PMID:26454697

  6. How-to-Do-It: Cytokinin Induced Cell Division & Differentiation Using Intact Plants.

    ERIC Educational Resources Information Center

    Bohnsack, Charles W.

    1989-01-01

    Presents a procedure by which cytokinins are used to induce a population of dividing and differentiating cells on the cut surface of the roots of an intact plant. Includes the method used, results, and suggestions for a variety of variables that may be tested. (RT)

  7. Induction of murine embryonic stem cell differentiation by medicinal plant extracts.

    PubMed

    Reynertson, Kurt A; Charlson, Mary E; Gudas, Lorraine J

    2011-01-01

    Epidemiological evidence indicates that diets high in fruits and vegetables provide a measure of cancer chemoprevention due to phytochemical constituents. Natural products are a rich source of cancer chemotherapy drugs, and primarily target rapidly cycling tumor cells. Increasing evidence indicates that many cancers contain small populations of resistant, stem-like cells that have the capacity to regenerate tumors following chemotherapy and radiation, and have been linked to the initiation of metastases. Our goal is to discover natural product-based clinical or dietary interventions that selectively target cancer stem cells, inducing differentiation. We adapted an alkaline phosphatase (AP) stain to assay plant extracts for the capacity to induce differentiation in embryonic stem (ES) cells. AP is a characteristic marker of undifferentiated ES cells, and this represents a novel approach to screening medicinal plant extracts. Following a survey of approximately 100 fractions obtained from 12 species of ethnomedically utilized plants, we found fractions from 3 species that induced differentiation, decreasing AP and transcript levels of pluripotency markers (Nanog, Oct-4, Rex-1). These fractions affected proliferation of murine ES, and human embryonal, prostate, and breast carcinoma cells in a dose-dependent manner. Several phytochemical constituents were isolated; the antioxidant phytochemicals ellagic acid and gallic acid were shown to affect viability of cultured breast carcinoma cells. PMID:20955699

  8. Induction of murine embryonic stem cell differentiation by medicinal plant extracts

    PubMed Central

    Reynertson, Kurt A.; Charlson, Mary E.; Gudas, Lorraine J.

    2010-01-01

    Epidemiological evidence indicates that diets high in fruits and vegetables provide a measure of cancer chemoprevention due to phytochemical constituents. Natural products are a rich source of cancer chemotherapy drugs, and primarily target rapidly-cycling tumor cells. Increasing evidence indicates that many cancers contain small populations of resistant, stem-like cells that have the capacity to regenerate tumors following chemotherapy and radiation, and have been linked to the initiation of metastases. Our goal is to discover natural product-based clinical or dietary interventions that selectively target cancer stem cells, inducing differentiation. We adapted an alkaline phosphatase (AP) stain to assay plant extracts for the capacity to induce differentiation in embryonic stem (ES) cells. AP is a characteristic marker of undifferentiated ES cells, and this represents a novel approach to screening medicinal plant extracts. Following a survey of approximately 100 fractions obtained from twelve species of ethnomedically utilized plants, we found fractions from three species that induced differentiation, decreasing AP and transcript levels of pluripotency markers (Nanog, Oct-4, Rex-1). These fractions affected proliferation of murine ES, and human embryonal, prostate, and breast carcinoma cells in a dose-dependent manner. Several phytochemical constituents were isolated; the antioxidant phytochemicals ellagic acid and gallic acid were shown to affect viability of cultured breast carcinoma cells. PMID:20955699

  9. Induction of murine embryonic stem cell differentiation by medicinal plant extracts

    SciTech Connect

    Reynertson, Kurt A.; Charlson, Mary E.; Gudas, Lorraine J.

    2011-01-01

    Epidemiological evidence indicates that diets high in fruits and vegetables provide a measure of cancer chemoprevention due to phytochemical constituents. Natural products are a rich source of cancer chemotherapy drugs, and primarily target rapidly cycling tumor cells. Increasing evidence indicates that many cancers contain small populations of resistant, stem-like cells that have the capacity to regenerate tumors following chemotherapy and radiation, and have been linked to the initiation of metastases. Our goal is to discover natural product-based clinical or dietary interventions that selectively target cancer stem cells, inducing differentiation. We adapted an alkaline phosphatase (AP) stain to assay plant extracts for the capacity to induce differentiation in embryonic stem (ES) cells. AP is a characteristic marker of undifferentiated ES cells, and this represents a novel approach to screening medicinal plant extracts. Following a survey of approximately 100 fractions obtained from 12 species of ethnomedically utilized plants, we found fractions from 3 species that induced differentiation, decreasing AP and transcript levels of pluripotency markers (Nanog, Oct-4, Rex-1). These fractions affected proliferation of murine ES, and human embryonal, prostate, and breast carcinoma cells in a dose-dependent manner. Several phytochemical constituents were isolated; the antioxidant phytochemicals ellagic acid and gallic acid were shown to affect viability of cultured breast carcinoma cells.

  10. Effects of Plants on Osteogenic Differentiation and Mineralization of Periodontal Ligament Cells: A Systematic Review.

    PubMed

    Costa, Cláudio Rodrigues Rezende; Amorim, Bruna Rabelo; de Magalhães, Pérola; De Luca Canto, Graziela; Acevedo, Ana Carolina; Guerra, Eliete Neves Silva

    2016-04-01

    This systematic review aimed to evaluate the effects of plants on osteogenic differentiation and mineralization of human periodontal ligament cells. The included studies were selected using five different electronic databases. The reference list of the included studies was crosschecked, and a partial gray literature search was undertaken using Google Scholar and ProQuest. The methodology of the selected studies was evaluated using GRADE. After a two-step selection process, eight studies were identified. Six different types of plants were reported in the selected studies, which were Morinda citrifolia, Aloe vera, Fructus cnidii, Zanthoxylum schinifolium, Centella asiatica, and Epimedium species. They included five types of isolated plant components: acemannan, osthole, hesperetin, asiaticoside, and icariin. In addition, some active substances of these components were identified as polysaccharides, coumarins, flavonoids, and triterpenes. The studies demonstrated the potential effects of plants on osteogenic differentiation, cell proliferation, mineral deposition, and gene and protein expression. Four studies showed that periodontal ligament cells induce mineral deposition after plant treatment. Although there are few studies on the subject, current evidence suggests that plants are potentially useful for the treatment of periodontal diseases. However, further investigations are required to confirm the promising effect of these plants in regenerative treatments. PMID:26822584

  11. Application of atmospheric plasma sources in growth and differentiation of plant and mammalian stem cells

    NASA Astrophysics Data System (ADS)

    Puac, Nevena

    2014-10-01

    The expansion of the plasma medicine and its demand for in-vivo treatments resulted in fast development of various plasma devices that operate at atmospheric pressure. These sources have to fulfill all demands for application on biological samples. One of the sources that meet all the requirements needed for treatment of biological material is plasma needle. Previously, we have used this device for sterilization of planctonic samples of bacteria, MRSA biofilm, for improved differentiation of human periodontal stem cells into osteogenic line and for treatment of plant meristematic cells. It is well known that plasma generates reactive oxygen species (ROS) and reactive nitrogen species (RNS) that strongly affect metabolism of living cells. One of the open issues is to correlate external plasma products (electrons, ions, RNS, ROS, photons, strong fields etc.) with the immediate internal response which triggers or induces effects in the living cell. For that purpose we have studied the kinetics of enzymes which are typical indicators of the identity of reactive species from the plasma created environment that can trigger signal transduction in the cell and ensue cell activity. In collaboration with Suzana Zivkovicm, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; Nenad Selakovic, Institute of Physics, University of Belgrade; Milica Milutinovic, Jelena Boljevic, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; and Gordana Malovic, Zoran Lj. Petrovic, Institute of Physics, University of Belgrade. Grants III41011, ON171037 and ON173024, MESTD, Serbia.

  12. Cooperative antiproliferative and differentiation-enhancing activity of medicinal plant extracts in acute myeloid leukemia cells.

    PubMed

    Zhamanbayeva, Gulzhan T; Aralbayeva, Araylim N; Murzakhmetova, Maira K; Tuleukhanov, Sultan T; Danilenko, Michael

    2016-08-01

    Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy with poor prognosis and limited treatment options. Sea buckthorn (Hippophae rhamnoides) berries, dog rose (Rosa canina) rosehips, and garden sage (Salvia officinalis) and oregano (Origanum vulgare) aerial parts are widely used in traditional medicine and exhibit antitumor effects in preclinical models. However, these plants remain scarcely tested for antileukemic activity. Here, we show that their water-ethanol leaf extracts reduced the growth and viability of AML cells and, at non-cytotoxic doses, potentiated cell differentiation induced by a low concentration of 1α,25-dihydroxyvitamin D3, the hormonal form of vitamin D, in a cell type-dependent manner. The latter effect was accompanied by upregulation of the vitamin D receptor protein components and its transcriptional activity. Furthermore, at minimally effective doses the extracts cooperated with one another to produce marked cytostatic effects associated with a partial S-phase arrest and a modest induction of apoptosis. In contrast, these combinations only slightly affected the growth and viability of proliferating normal human peripheral blood mononuclear cells. In addition, the extracts strongly inhibited microsomal lipid peroxidation and protected normal erythrocytes against hypoosmotic shock. Our results suggest that further exploration of the enhanced antileukemic effects of the combinations tested here may lead to the development of alternative therapeutic and preventive approaches against AML. PMID:27470342

  13. Plant stem cell niches.

    PubMed

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis. PMID:22404469

  14. Differential Top10 promoter regulation by six tetracycline analogues in plant cells

    NASA Technical Reports Server (NTRS)

    Love, John; Allen, George C.; Gatz, Christiane; Thompson, William F.; Brown, C. S. (Principal Investigator)

    2002-01-01

    The effects of five tetracycline analogues, anhydrotetracycline, doxycycline, minocycline, oxytetracycline, and tetracycline, on Top10 promoter activity in NT1 tobacco tissue culture cells have been analysed. The concentration that repressed Top10 promoter activity, the level of transgene repression and the kinetics of transgene de-repression were determined for each analogue, and could not be predicted from in vitro binding affinity to the tetracycline repressor or from comparison with animal cells. Doxycycline had the most potent effect on the Top10 promoter and completely inhibited transgene expression at 4 nmol l(-1). Tetracycline was the most versatile of the analogues tested; tetracycline inhibited the Top10 promoter at 10 nmol l(-1) and was easily washed out to restore Top10-driven expression in 12-24 h. A study was also made of the suitability for plant research of a novel tetracycline analogue, GR33076X. In animal cells, GR33076X de-repressed Top10 promoter activity in the presence of inhibitory concentrations of anhydrotetracycline. In NT1, it is shown that GR 33076X can antagonize repression of the Top10 promoter in the presence of tetracycline, but not of anhydrotetracycline or of doxycycline. Different tetracycline analogues can therefore be used to regulate the Top10 promoter in plant cells and this property may be exploited in planning an optimum course of transgene regulation.

  15. Differential Localization of Carbohydrate Epitopes in Plant Cell Walls in the Presence and Absence of Arbuscular Mycorrhizal Fungi.

    PubMed Central

    Balestrini, R.; Hahn, M. G.; Faccio, A.; Mendgen, K.; Bonfante, P.

    1996-01-01

    Two monoclonal antibodies (McAbs) generated against rhamnogalacturonan I and characterized as specific for a terminal [alpha]-(1->2)-linked fucosyl-containing epitope (CCRC-M1) and for an arabinosylated [beta]-(1,6)-galactan epitope (CCRC-M7) were used in immunogold experiments to determine the distribution of the epitopes in four plants. Allium porrum, Zea mays, Trifolium repens, and Nicotiana tabacum plants were chosen as representatives of monocots and dicots with different wall structures. Analyses were performed on root tissues in the presence and absence of arbuscular mycorrhizal fungi. A differential localization of the two cell wall epitopes was found between tissues and between species: for example, in leek, CCRC-M1 labeled epidermal and hypodermal cells, whereas CCRC-M7 labeled cortical cells only. Clover walls were labeled by both McAbs, whereas maize and tobacco were only labeled by CCRC-M7. In the presence of the arbuscular mycorrhizal fungi, labeling was additionally found in an apoplastic compartment typical of the symbiosis (the interface) occurring around the intracellular hyphae. Epitopes binding both McAbs were found in the interfacial material, and their distribution mirrored the pattern found in the host cell wall. These findings demonstrate that the composition of the interface zone in a fungus-plant symbiosis reflects the composition of the wall of the host cell. PMID:12226286

  16. Stomagenesis versus myogenesis: Parallels in intrinsic and extrinsic regulation of transcription factor mediated specialized cell-type differentiation in plants and animals.

    PubMed

    Putarjunan, Aarthi; Torii, Keiko U

    2016-05-01

    Although the last common unicellular ancestor of plants and animals diverged several billion years ago, and while having developed unique developmental programs that facilitate differentiation and proliferation specific to plant and animal systems, there still exists a high degree of conservation in the logic regulating these developmental processes within these two seemingly diverse kingdoms. Stomatal differentiation in plants involves a series of orchestrated cell division events mediated by a family of closely related bHLH transcription factors (TFs) to create a pair of mature guard cells. These TFs are in turn regulated by a number of upstream signaling components that ultimately function to achieve lineage specific differentiation and organized tissue patterning on the plant epidermis. The logic involved in the specification of the myogenic differentiation program in animals is intriguingly similar to stomatal differentiation in plants: Closely-related myogenic bHLHs, known as MRFs (Myogenic Regulatory Factors) provide lineage specificity essential for cell-fate determination. These MRFs, similar to the bHLHs in plants, are regulated by several upstream signaling cascades that succinctly regulate each differentiation step, leading to the production of mature muscle fibers. This review aims at providing a perspective on the emerging parallels in the logic employed by key bHLH transcription factors and their upstream signaling components that function to precisely regulate key cell-state transition events in the stomatal as well as myogenic cell lineages. PMID:27125444

  17. Differential effect of plant lectins on mast cells of different origins.

    PubMed

    Lopes, F C; Cavada, B S; Pinto, V P T; Sampaio, A H; Gomes, J C

    2005-06-01

    Histamine release induced by plant lectins was studied with emphasis on the carbohydrate specificity, external calcium requirement, metal binding sites, and mast cell heterogeneity and on the importance of antibodies bound to the mast cell membrane to the lectin effect. Peritoneal mast cells were obtained by direct lavage of the rat peritoneal cavity and guinea pig intestine and hamster cheek pouch mast cells were obtained by dispersion with collagenase type IA. Histamine release was induced with concanavalin A (Con A), lectins from Canavalia brasiliensis, mannose-specific Cymbosema roseum, Maackia amurensis, Parkia platycephala, Triticum vulgaris (WGA), and demetallized Con A and C. brasiliensis, using 1-300 microg/ml lectin concentrations applied to Wistar rat peritoneal mast cells, peaking on 26.9, 21.0, 29.1, 24.9, 17.2, 10.7, 19.9, and 41.5%, respectively. This effect was inhibited in the absence of extracellular calcium. The lectins were also active on hamster cheek pouch mast cells (except demetallized Con A) and on Rowett nude rat (animal free of immunoglobulins) peritoneal mast cells (except for mannose-specific C. roseum, P. platycephala and WGA). No effect was observed in guinea pig intestine mast cells. Glucose-saturated Con A and C. brasiliensis also released histamine from Wistar rat peritoneal mast cells. These results suggest that histamine release induced by lectins is influenced by the heterogeneity of mast cells and depends on extracellular calcium. The results also suggest that this histamine release might occur by alternative mechanisms, because the usual mechanism of lectins is related to their binding properties to metals from which depend the binding to sugars, which would be their sites to bind to immunoglobulins. In the present study, we show that the histamine release by lectins was also induced by demetallized lectins and by sugar-saturated lectins (which would avoid their binding to other sugars). Additionally, the lectins also released

  18. Effect of microgravity environment on cell wall regeneration, cell divisions, growth, and differentiation of plants from protoplasts (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Rasmussen, Ole

    1992-01-01

    The primary goal of this project is to investigate if microgravity has any influence on growth and differentiation of protoplasts. Formation of new cell walls on rapeseed protoplasts takes place within the first 24 hours after isolation. Cell division can be observed after 2-4 days and formation of cell aggregates after 5-7 days. Therefore, it is possible during the 7 day IML-1 Mission to investigate if cell wall formation, cell division, and cell differentiation are influenced by microgravity. Protoplasts of rapeseeds and carrot will be prepared shortly before launch and injected into 0.6 ml polyethylene bags. Eight bags are placed in an aluminum block inside the ESA Type 1 container. The containers are placed at 4 C in PTCU's and transferred to orbiter mid-deck. At 4 C all cell processes are slowed down, including cell wall formation. Latest access to the shuttle will be 12 hours before launch. In orbit the containers will be transferred from the PTC box to the 22 C Biorack incubator. The installation of a 1 g centrifuge in Biorack will make it possible to distinguish between effects of near weightlessness and effects caused by cosmic radiation and other space flight factors including vibrations. Parallel control experiments will be carried out on the ground. Other aspects of the experiment are discussed.

  19. Light induction of cell type differentiation and cell-type-specific gene expression in cotyledons of a C(4) plant, Flaveria trinervia.

    PubMed

    Shu, G; Pontieri, V; Dengler, N G; Mets, L J

    1999-11-01

    In Flaveria trinervia (Asteraceae) seedlings, light-induced signals are required for differentiation of cotyledon bundle sheath cells and mesophyll cells and for cell-type-specific expression of Rubisco small subunit genes (bundle sheath cell specific) and the genes that encode pyruvate orthophosphate dikinase and phosphoenolpyruvate carboxylase (mesophyll cell specific). Both cell type differentiation and cell-type-specific gene expression were complete by d 7 in light-grown seedlings, but were arrested beyond d 4 in dark-grown seedlings. Our results contrast with those found for another C(4) dicot, Amaranthus hypochondriacus, in which light was not required for either process. The differences between the two C(4) dicot species in cotyledon cell differentiation may arise from differences in embryonic and post-embryonic cotyledon development. Our results illustrate that a common C(4) photosynthetic mechanism can be established through different developmental pathways in different species, and provide evidence for independent evolutionary origins of C(4) photosynthetic mechanisms within dicotyledonous plants. PMID:10557221

  20. Cell Differentiation and Checkpoint

    PubMed Central

    Sancho, Sara Cuesta; Ouchi, Toru

    2015-01-01

    DNA damage is induced in many types of cells by internal and external cell stress. When DNA is damaged, DNA Damage Response (DDR) programs are activated to repair the DNA lesions in order to preserve genomic integrity and suppress subsequent malignant transformation. Among these programs is cell cycle checkpoint that ensures cell cycle arrest and subsequent repair of the damaged DNA, apoptosis and senescence in various phases of the cell cycle. Moreover, recent studies have established the cell differentiation checkpoint, the other type of the checkpoint that is specifically activated in the course of differentiation. We will discuss the evidences that support the link between DNA damage proteins and C2C12 cell differentiation. PMID:26998525

  1. Genetically Engineered Plant Viral Nanoparticles Direct Neural Cells Differentiation and Orientation.

    PubMed

    Feng, Sheng; Lu, Lin; Zan, Xingjie; Wu, Yehong; Lin, Yuan; Wang, Qian

    2015-09-01

    An important aim of tissue engineering is to design biomimetic materials with specific cell binding motifs and precisely controlled structural organization, thereby providing biochemical and physical cues for desired cellular behaviors. Previously, our group generated genetically modified tobacco mosaic virus (TMV) displaying integrin binding motifs, RGD1, RGD7, PSHRN3, P15, and DGEA. The resulting rod-like virus particles displaying integrin binding motifs were biocompatible with Neuro 2A (N2a), a mouse neural crest-derived cell line, and could promote the neurite outgrowth of N2a. The genetically modified viruses could be assembled with aligned orientation in the capillary by applying a shear force. The resulting aligned substrates were able to dictate directional neurite outgrowth of N2a cells. Therefore, this method could be potentially applied for neural tissue engineering, as a neural conduit for repairing peripheral nerve injuries. PMID:26247572

  2. Plant Stem Cells.

    PubMed

    Greb, Thomas; Lohmann, Jan U

    2016-09-12

    Among the trending topics in the life sciences, stem cells have received a fair share of attention in the public debate - mostly in connection with their potential for biomedical application and therapies. While the promise of organ regeneration and the end of cancer have captured our imagination, it has gone almost unnoticed that plant stem cells represent the ultimate origin of much of the food we eat, the oxygen we breathe, as well the fuels we burn. Thus, plant stem cells may be ranked among the most important cells for human well-being. Research by many labs in the last decades has uncovered a set of independent stem cell systems that fulfill the specialized needs of plant development and growth in four dimensions. Surprisingly, the cellular and molecular design of these systems is remarkably similar, even across diverse species. In some long-lived plants, such as trees, plant stem cells remain active over hundreds or even thousands of years, revealing the exquisite precision in the underlying control of proliferation, self-renewal and differentiation. In this minireview, we introduce the basic features of the three major plant stem cell systems building on these facts, highlight their modular design at the level of cellular layout and regulatory underpinnings and briefly compare them with their animal counterparts. PMID:27623267

  3. Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1.

    PubMed

    Tang, Yan; Hong, Ya-Zhen; Bai, Hua-Jun; Wu, Qiang; Chen, Charlie Degui; Lang, Jing-Yu; Boheler, Kenneth R; Yang, Huang-Tian

    2016-06-01

    Histone demethylases have emerged as key regulators of biological processes. The H3K9me2 demethylase plant homeo domain finger protein 8(PHF8), for example, is involved in neuronal differentiation, but its potential function in the differentiation of embryonic stem cells (ESCs) to cardiomyocytes is poorly understood. Here, we explored the role of PHF8 during mesodermal and cardiac lineage commitment of mouse ESCs (mESCs). Using a phf8 knockout (ph8(-/Y) ) model, we found that deletion of phf8 in ESCs did not affect self-renewal, proliferation or early ectodermal/endodermal differentiation, but it did promote the mesodermal lineage commitment with the enhanced cardiomyocyte differentiation. The effects were accompanied by a reduction in apoptosis through a caspase 3-independent pathway during early ESC differentiation, without significant differences between differentiating wide-type (ph8(+/Y) ) and ph8(-/Y) ESCs in cell cycle progression or proliferation. Functionally, PHF8 promoted the loss of a repressive mark H3K9me2 from the transcription start site of a proapoptotic gene pmaip1 and activated its transcription. Furthermore, knockdown of pmaip1 mimicked the phenotype of ph8(-/Y) by showing the decreased apoptosis during early differentiation of ESCs and promoted mesodermal and cardiac commitment, while overexpression of pmaip1 or phf8 rescued the phenotype of ph8(-/Y) ESCs by increasing the apoptosis and weakening the mesodermal and cardiac differentiation. These results reveal that the histone demethylase PHF8 regulates mesodermal lineage and cell fate decisions in differentiating mESCs through epigenetic control of the gene critical to programmed cell death pathways. Stem Cells 2016;34:1527-1540. PMID:26866517

  4. ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change

    PubMed Central

    Menand, Benoît

    2013-01-01

    The TOR (target of rapamycin) protein, a large phosphatidylinositol 3-kinase-like protein kinase (PIKK) that is conserved in eukaryotes and is a central regulator of growth and metabolism. The analysis of function of TOR in plant growth and development has been limited by the fact that plants are very poorly sensitive to rapamycin. As the kinase domain of TOR is highly conserved, this study analysed the dose-dependent effect of three sets of first- and second-generation ATP-competitive inhibitors (called asTORis for active-site TOR inhibitors) recently developed for the human TOR kinase on Arabidopsis thaliana growth. All six asTORis inhibited plant root growth in a dose-dependent manner, with 50% growth inhibitory doses (GI50) of <10 μM and <1 μM for the first- and second-generation inhibitors, respectively, similarly to the values in mammalian cells. A genetic approach further demonstrated that only asTORis inhibited root growth in an AtTOR gene-dosage-dependent manner. AsTORis decreased the length of: (i) the meristematic zone (MZ); (ii) the division zone in the MZ; (iii) epidermal cells in the elongation zone; and (iv) root hair cells. Whereas meristematic cells committed to early differentiation, the pattern of cell differentiation was not affected per se. AsTORis-induced root hair growth phenotype was shown to be specific by using other growth inhibitors blocking the cell cycle or translation. AsTORis dose-dependent inhibition of growth and root hairs was also observed in diverse groups of flowering plants, indicating that asTORis can be used to study the TOR pathway in other angiosperms, including crop plants. PMID:23963679

  5. Changes in nuclear, nucleolar and cytoplasmic RNA content during growth and differentiation of root parenchyma cells in plant species with different dynamics of DNA endoreplication.

    PubMed

    Marciniak, K; Bilecka, A

    1985-01-01

    Using cytophotometric method, after staining preparations with gallocyanin RNA content was examined in nucleus, nucleolus and cytoplasm of six species of angiospermal plants in successive (1-7 mm) segments of root representing successive zones of differentiation. During the cell cycle, RNA content duplicates in the nucleus, nucleolus and cytoplasm of meristematic cells. On the other hand, during growth and differentiation of parenchyma cells in species with endoreplication the content of nucleolar RNA does not increase in proportion with DNA content. High level of endoreplication is connected with high nucleolar RNA content and low cytoplasmic RNA content. In species without endoreplication at low nucleolar RNA content, a considerable growth of cytoplasmic RNA content takes place. PMID:2417894

  6. Travelling Waves of Cell Differentiation.

    PubMed

    Benmir, M; Bessonov, N; Boujena, S; Volpert, V

    2015-12-01

    The paper is devoted to modelling of cell differentiation in an initially homogeneous cell population. The mechanism which provides coexistence of two cell lineages in the initially homogeneous cell population is suggested. If cell differentiation is initiated locally in space in the population of undifferentiated cells, it can propagate as a travelling wave converting undifferentiated cells into differentiated ones. We suggest a model of this process which takes into account intracellular regulation, extracellular regulation and different cell types. They include undifferentiated cells and two types of differentiated cells. When a cell differentiates, its choice between two types of differentiated cells is determined by the concentrations of intracellular proteins. Differentiated cells can either stimulate differentiation into their own cell lineage or into another cell lineage. In the case of the positive feedback, only one lineage of differentiated cells will finally appear. In the case of negative feedback, both of them can coexist. In this case a periodic spatial pattern emerges behind the wave. PMID:26141967

  7. The PLASTID DIVISION1 and 2 Components of the Chloroplast Division Machinery Determine the Rate of Chloroplast Division in Land Plant Cell Differentiation[C][W

    PubMed Central

    Okazaki, Kumiko; Kabeya, Yukihiro; Suzuki, Kenji; Mori, Toshiyuki; Ichikawa, Takanari; Matsui, Minami; Nakanishi, Hiromitsu; Miyagishima, Shin-ya

    2009-01-01

    In most algae, the chloroplast division rate is held constant to maintain the proper number of chloroplasts per cell. By contrast, land plants evolved cell and chloroplast differentiation systems in which the size and number of chloroplasts change along with their respective cellular function by regulation of the division rate. Here, we show that PLASTID DIVISION (PDV) proteins, land plant–specific components of the division apparatus, determine the rate of chloroplast division. Overexpression of PDV proteins in the angiosperm Arabidopsis thaliana and the moss Physcomitrella patens increased the number but decreased the size of chloroplasts; reduction of PDV levels resulted in the opposite effect. The level of PDV proteins, but not other division components, decreased during leaf development, during which the chloroplast division rate also decreased. Exogenous cytokinins or overexpression of the cytokinin-responsive transcription factor CYTOKININ RESPONSE FACTOR2 increased the chloroplast division rate, where PDV proteins, but not other components of the division apparatus, were upregulated. These results suggest that the integration of PDV proteins into the division machinery enabled land plant cells to change chloroplast size and number in accord with the fate of cell differentiation. PMID:19567705

  8. Phosphorylation-Dependent Differential Regulation of Plant Growth, Cell Death, and Innate Immunity by the Regulatory Receptor-Like Kinase BAK1

    PubMed Central

    Schwessinger, Benjamin; Roux, Milena; Kadota, Yasuhiro; Ntoukakis, Vardis; Sklenar, Jan; Jones, Alexandra; Zipfel, Cyril

    2011-01-01

    Plants rely heavily on receptor-like kinases (RLKs) for perception and integration of external and internal stimuli. The Arabidopsis regulatory leucine-rich repeat RLK (LRR-RLK) BAK1 is involved in steroid hormone responses, innate immunity, and cell death control. Here, we describe the differential regulation of three different BAK1-dependent signaling pathways by a novel allele of BAK1, bak1-5. Innate immune signaling mediated by the BAK1-dependent RKs FLS2 and EFR is severely compromised in bak1-5 mutant plants. However, bak1-5 mutants are not impaired in BR signaling or cell death control. We also show that, in contrast to the RD kinase BRI1, the non-RD kinases FLS2 and EFR have very low kinase activity, and we show that neither was able to trans-phosphorylate BAK1 in vitro. Furthermore, kinase activity for all partners is completely dispensable for the ligand-induced heteromerization of FLS2 or EFR with BAK1 in planta, revealing another pathway specific mechanistic difference. The specific suppression of FLS2- and EFR-dependent signaling in bak1-5 is not due to a differential interaction of BAK1-5 with the respective ligand-binding RK but requires BAK1-5 kinase activity. Overall our results demonstrate a phosphorylation-dependent differential control of plant growth, innate immunity, and cell death by the regulatory RLK BAK1, which may reveal key differences in the molecular mechanisms underlying the regulation of ligand-binding RD and non-RD RKs. PMID:21593986

  9. Importance of symplasmic communication in cell differentiation

    PubMed Central

    Marzec, Marek; Kurczynska, Ewa

    2014-01-01

    Symplasmic communication via plasmodesmata (PD) is part of the system of information exchange between plant cells. Molecules that pass through the PD include ions, some hormones, minerals, amino acids, and sugars but also proteins, transcription factors, and different classes of RNA, and as such PD can participate in the coordination of plant growth and development. This review summarizes the current literature on this subject and the role of PD in signal exchange, the importance of symplasmic communication and symplasmic domains in plant cell differentiation, and highlights the future prospective in the exploration of PD functions in plants. Moreover, this review also describes the potential use of barley root epidermis and non-zygotic embryogenesis in study of symplasmic communication during cell differentiation. PMID:24476959

  10. Rethinking differentiation: Stem cells, regeneration, and plasticity

    PubMed Central

    Alvarado, Alejandro Sánchez; Yamanaka, Shinya

    2014-01-01

    Cell differentiation is an essential process for the development, growth, reproduction and longevity of all multicellular organisms, and its regulation has been the focus of intense investigation for the past 4 decades. The study of natural and induced stem cells has ushered an age of re-examination of what it means to be a stem or a differentiated cell. Past and recent discoveries in plants and animals, as well as novel experimental manipulations are beginning to erode many of these established concepts, and are forcing a re-evaluation of the experimental systems and paradigms presently being used to explore these and other biological process. PMID:24679530

  11. Communication is key: Reducing DEK1 activity reveals a link between cell-cell contacts and epidermal cell differentiation status.

    PubMed

    Galletti, Roberta; Ingram, Gwyneth C

    2015-01-01

    Plant epidermis development requires not only the initial acquisition of tissue identity, but also the ability to differentiate specific cell types over time and to maintain these differentiated states throughout the plant life. To set-up and maintain differentiation, plants activate specific transcriptional programs. Interfering with these programs can prevent differentiation and/or force differentiated cells to lose their identity and re-enter a proliferative state. We have recently shown that the Arabidopsis Defective Kernel 1 (DEK1) protein is required both for the differentiation of epidermal cells and for the maintenance of their fully differentiated state. Defects in DEK1 activity lead to a deregulation of the expression of epidermis-specific differentiation-promoting HD-ZIP IV transcription factors. Here we propose a working model in which DEK1, by maintaining cell-cell contacts, and thus communication between neighboring cells, influences HD-ZIP IV gene expression and epidermis differentiation. PMID:27064205

  12. Stem cell factors in plants: chromatin connections.

    PubMed

    Kornet, N; Scheres, B

    2008-01-01

    The progression of pluripotent stem cells to differentiated cell lineages requires major shifts in cell differentiation programs. In both mammals and higher plants, this process appears to be controlled by a dedicated set of transcription factors, many of which are kingdom specific. These divergent transcription factors appear to operate, however, together with a shared suite of factors that affect the chromatin state. It is of major importance to investigate whether such shared global control mechanisms indicate a common mechanistic basis for preservation of the stem cell state, initiation of differentiation programs, and coordination of cell state transitions. PMID:19150963

  13. The illuminated plant cell.

    PubMed

    Mathur, Jaideep

    2007-11-01

    The past decade has provided biologists with a palette of genetically encoded, multicolored fluorescent proteins. The living plant cell turned into a 'coloring book' and today, nearly every text-book organelle has been highlighted in scintillating fluorescent colors. This review provides a concise listing of the earliest representative fluorescent-protein probes used to highlight various targets within the plant cell, and introduces the idea of using the numerous multicolor, subcellular probes for the development of an early intracellular response profile of plants. PMID:17933577

  14. Changes in nuclear and nucleolar protein content during the growth and differentiation of root parenchyma cells in plant species with different DNA-endoreplication dynamics.

    PubMed

    Marciniak, K; Bilecka, A

    1986-01-01

    Using cytophotometric procedures, we measured the nuclear and nucleolar protein content of successive zones of growth and differentiation in consecutive (1-7 mm) root segments obtained from eight species of the Angiospermae after staining the preparations with Feulgen-Naphthol Yellow S (F-NYS). In meristematic cells the nuclear and nucleolar protein content was found to double during the cell cycle. In species in which differentiation occurs at the same time as nuclear DNA endoreplication, i.e. Vicia faba subsp. minor, V. faba subsp. major, Pisum sativum, Hordeum vulgare and Amaryllis belladonna, the pool of nuclear proteins observed during the G2 phase of the cell cycle was seen in the differentiated zone in nuclei containing 8C DNA. Species in which differentiation is not accompanied by the process of nuclear DNA endoreplication, i.e. Levisticum officinale, Tulipa kaufmanniana and Haemanthus katharinae, exhibited the highest nuclear proteins content during the G2 phase of the cell cycle; comparably high values were not found in the differentiated zone. A decrease in nucleolar protein content was observed during the process of differentiation, this tendency being more evident in the studied species that do not exhibit endoreplication. PMID:3733472

  15. Plant cell technologies in space: Background, strategies and prospects

    NASA Technical Reports Server (NTRS)

    Kirkorian, A. D.; Scheld, H. W.

    1987-01-01

    An attempt is made to summarize work in plant cell technologies in space. The evolution of concepts and the general principles of plant tissue culture are discussed. The potential for production of high value secondary products by plant cells and differentiated tissue in automated, precisely controlled bioreactors is discussed. The general course of the development of the literature on plant tissue culture is highlighted.

  16. Minimal model for stem-cell differentiation

    NASA Astrophysics Data System (ADS)

    Goto, Yusuke; Kaneko, Kunihiko

    2013-09-01

    To explain the differentiation of stem cells in terms of dynamical systems theory, models of interacting cells with intracellular protein expression dynamics are analyzed and simulated. Simulations were carried out for all possible protein expression networks consisting of two genes under cell-cell interactions mediated by the diffusion of a protein. Networks that show cell differentiation are extracted and two forms of symmetric differentiation based on Turing's mechanism and asymmetric differentiation are identified. In the latter network, the intracellular protein levels show oscillatory dynamics at a single-cell level, while cell-to-cell synchronicity of the oscillation is lost with an increase in the number of cells. Differentiation to a fixed-point-type behavior follows with a further increase in the number of cells. The cell type with oscillatory dynamics corresponds to a stem cell that can both proliferate and differentiate, while the latter fixed-point type only proliferates. This differentiation is analyzed as a saddle-node bifurcation on an invariant circle, while the number ratio of each cell type is shown to be robust against perturbations due to self-consistent determination of the effective bifurcation parameter as a result of the cell-cell interaction. Complex cell differentiation is designed by combing these simple two-gene networks. The generality of the present differentiation mechanism, as well as its biological relevance, is discussed.

  17. Measurement of Total Site Mercury Emissions from a Chlor-Alkali Plant Using Ultraviolet Differential Optical Absorption Spectroscopy and Cell Room Roof-Vent Monitoring

    EPA Science Inventory

    Mercury-cell chlor-alkali plants can emit significant quantities of fugitive elemental mercury vapor to the air as part of production operations and maintenance activities. In the fall of 2006, the U.S. Environmental Protection Agency (EPA) conducted a measurement project at a ch...

  18. A putative Arabidopsis thaliana glycosyltransferase, At4g01220, which is closely related to three plant cell wall-specific xylosyltransferases, is differentially expressed spatially and temporally.

    PubMed

    Fangel, Jonatan U; Petersen, Bent L; Jensen, Niels B; Willats, William G T; Bacic, Antony; Egelund, Jack

    2011-03-01

    Plant cell wall polysaccharides are amongst the most complex, heterogeneous and abundant bio-molecules on earth. This makes the biosynthetic enzymes, namely the glycosyltransferases and polysaccharide synthases, important research targets in plant science and biotechnology. As an initial step to characterize At4g01220, a putative Arabidopsis thaliana encoding glycosyltransferases in CAZy GT-family-77 that is similar to three known xylosyltransferases involved in the biosynthesis of the pectic polysaccharide, rhamnogalacturonan II, we conducted an expression analysis. In transgenic Arabidopsis thaliana plants containing a fusion between the At4g01220 promoter and the gusA reporter gene we found the expression to be spatially and developmentally regulated. Analysis of Nicotiana benthamiana transfected with the At2g01220::YFP fusion protein revealed that the fusion protein resided in a Brefeldin A-sensitive compartment consistent with a sub-cellular location in the Golgi apparatus. In addition, in silico expression analysis from the Genevestigator database revealed that At4g01220 was up-regulated upon treatment with isoxaben, an inhibitor of cellulose synthesis, which, together with a co-expression analysis that identified a number of plant cell wall co-related biosynthetic genes, suggests involvement in cell wall biosynthesis with pectin being a prime candidate. The data presented provide insights into the expression, sub-cellular location and regulation of At4g01220 under various conditions and may help elucidate its specific function. PMID:21421394

  19. Differential induction of adaptive responses by paraquat and hydrogen peroxide against the genotoxicity of methyl mercuric chloride, maleic hydrazide and ethyl methane sulfonate in plant cells in vivo.

    PubMed

    Patra, J; Panda, K K; Panda, B B

    1997-10-24

    Induction of adaptive response by conditioning doses of paraquat (PQ) and hydrogen peroxide (H2O2) in embryonic shoot cells of Hordeum vulgare and root meristem cells of Allium cepa was tested against the genotoxicity of challenge doses of methyl mercuric chloride (MMCl), maleic hydrazide (MH) or ethylmethane sulfonate (EMS). Plant tissue fixed at different recovery hours following the challenge treatments was analysed for cells with genotoxicity markers that include spindle or chromosome aberrations and micronuclei. The results provided clear-cut evidence that whereas H2O2 induced adaptive response for the chromosome damage caused by MMCl and MH, PQ induced the same for MMCl and EMS, but not for damage caused by MH. The findings pointed to the differences in the underlying mechanisms of oxidative responses induced by H2O2 and O2-. PMID:9393614

  20. Differential growth inhibitory effects of highly oxygenated guaianolides isolated from the Middle Eastern indigenous plant Achillea falcata in HCT-116 colorectal cancer cells.

    PubMed

    Tohme, Rita; Al Aaraj, Lamis; Ghaddar, Tarek; Gali-Muhtasib, Hala; Saliba, Najat A; Darwiche, Nadine

    2013-01-01

    Medicinal plants play a crucial role in traditional medicine and in the maintenance of human health worldwide. Sesquiterpene lactones represent an interesting group of plant-derived compounds that are currently being tested as lead drugs in cancer clinical trials. Achillea falcata is a medicinal plant indigenous to the Middle Eastern region and belongs to the Asteraceae family, which is known to be rich in sesquiterpene lactones. We subjected Achillea falcata extracts to bioassay-guided fractionation against the growth of HCT-116 colorectal cancer cells and identified four secotanapartholides, namely 3-β-methoxy-isosecotanapartholide (1), isosecotanapartholide (2), tanaphallin (3), and 8-hydroxy-3-methoxyisosecotanapartholide (4). Three highly oxygenated guaianolides were isolated for the first time from Achillea falcata, namely rupin A (5), chrysartemin B (6), and 1β, 2β-epoxy-3β,4α,10α-trihydroxyguaian-6α,12-olide (7). These sesquiterpene lactones showed no or minor cytotoxicity while exhibiting promising anticancer effects against HCT-116 cells. Further structure-activity relationship studies related the bioactivity of the tested compounds to their skeleton, their lipophilicity, and to the type of functional groups neighboring the main alkylating center of the molecule. PMID:23860275

  1. Sumoylation differentially regulates Sp1 to control cell differentiation

    PubMed Central

    Gong, Lili; Ji, Wei-Ke; Hu, Xiao-Hui; Hu, Wen-Feng; Tang, Xiang-Cheng; Huang, Zhao-Xia; Li, Ling; Liu, Mugen; Xiang, Shi-Hua; Wu, Erxi; Woodward, Zachary; Liu, Yi-Zhi; Nguyen, Quan Dong; Li, David Wan-Cheng

    2014-01-01

    The mammalian small ubiquitin-like modifiers (SUMOs) are actively involved in regulating differentiation of different cell types. However, the functional differences between SUMO isoforms and their mechanisms of action remain largely unknown. Using the ocular lens as a model system, we demonstrate that different SUMOs display distinct functions in regulating differentiation of epithelial cells into fiber cells. During lens differentiation, SUMO1 and SUMO2/3 displayed different expression, localization, and targets, suggesting differential functions. Indeed, overexpression of SUMO2/3, but not SUMO1, inhibited basic (b) FGF-induced cell differentiation. In contrast, knockdown of SUMO1, but not SUMO2/3, also inhibited bFGF action. Mechanistically, specificity protein 1 (Sp1), a major transcription factor that controls expression of lens-specific genes such as β-crystallins, was positively regulated by SUMO1 but negatively regulated by SUMO2. SUMO2 was found to inhibit Sp1 functions through several mechanisms: sumoylating it at K683 to attenuate DNA binding, and at K16 to increase its turnover. SUMO2 also interfered with the interaction between Sp1 and the coactivator, p300, and recruited a repressor, Sp3 to β-crystallin gene promoters, to negatively regulate their expression. Thus, stable SUMO1, but diminishing SUMO2/3, during lens development is necessary for normal lens differentiation. In support of this conclusion, SUMO1 and Sp1 formed complexes during early and later stages of lens development. In contrast, an interaction between SUMO2/3 and Sp1 was detected only during the initial lens vesicle stage. Together, our results establish distinct roles of different SUMO isoforms and demonstrate for the first time, to our knowledge, that Sp1 acts as a major transcription factor target for SUMO control of cell differentiation. PMID:24706897

  2. Fetal Leydig Cells: Progenitor Cell Review Maintenance and Differentiation

    PubMed Central

    BARSOUM, IVRAYM B.; YAO, HUMPHREY H.-C.

    2012-01-01

    In most eutherian mammals, sexually dimorphic masculinization is established by androgen-producing fetal Leydig cells in the embryonic testis. Fetal Leydig cells, which lack expression of the testis-determining gene SRY, arise after the appearance of SRY-expressing Sertoli cells. Therefore, the appearance and differentiation of fetal Leydig cells are probably regulated by factors derived from Sertoli cells. Results from mouse genetic models have revealed that maintenance and differentiation of fetal Leydig cell population depends upon a balance between differentiation-promoting and differentiation-suppressing mechanisms. Although paracrine signaling via Sertoli cell–derived Hedgehog ligands is necessary and sufficient for fetal Leydig cell formation, cell-cell interaction via Notch signaling and intracellular transcription factors such as POD1 are implicated as suppressors of fetal Leydig cell differentiation. This review provides a model that summarizes the recent findings in fetal Leydig cell development. PMID:19875489

  3. Regulation of cell division in higher plants

    SciTech Connect

    Jacobs, T.W.

    1992-01-01

    Cell division is arguably the most fundamental of all developmental processes. In higher plants, mitotic activity is largely confined to foci of patterned cell divisions called meristems. From these perpetually embryonic tissues arise the plant's essential organs of light capture, support, protection and reproduction. Once an adequate understanding of plant cell mitotic regulation is attained, unprecedented opportunities will ensue for analyzing and genetically controlling diverse aspects of development, including plant architecture, leaf shape, plant height, and root depth. The mitotic cycle in a variety of model eukaryotic systems in under the control of a regulatory network of striking evolutionary conservation. Homologues of the yeast cdc2 gene, its catalytic product, p34, and the cyclin regulatory subunits of the MPF complex have emerged as ubiquitous mitotic regulators. We have cloned cdc2-like and cyclin genes from pea. As in other eukaryotic model systems, p34 of Pisum sativum is a subunit of a high molecular weight complex which binds the fission yeast p13 protein and displays histone H1 kinase activity in vitro. Our primary objective in this study is to gain baseline information about the regulation of this higher plant cell division control complex in non-dividing, differentiated cells as well as in synchronous and asynchronous mitotic cells. We are investigating cdc2 and cyclin expression at the levels of protein abundance, protein phosphorylation and quaternary associations.

  4. Cell division, differentiation and dynamic clustering

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko; Yomo, Tetsuya

    1994-08-01

    A novel mechanism for cell differentiation is proposed, based on the dynamic clustering in a globally coupled nonlinear system. A simple model with metabolic reaction, active transport of chemicals from media, and cell division is found to show three successive stages with the growth of the number of cells; coherent growth, dynamic clustering, and fixed cell differentiation. At the last stage, disparity in activities, germ line segregation, somatic cell differentiation, and homeochaotic stability against external perturbation are found. Our results, providing a simple interpretation of the experiments of the preceding paper, imply that cell differentiation can occur without a spatial pattern. From dynamical systems viewpoint, the new concept of “open chaos” is proposed, as a novel and general scenario for systems with growing numbers of elements, also seen in economics and sociology.

  5. DNA repair in murine embryonic stem cells and differentiated cells

    SciTech Connect

    Tichy, Elisia D. Stambrook, Peter J.

    2008-06-10

    Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells.

  6. Differentiation of hepatocytes from pluripotent stem cells

    PubMed Central

    Mallanna, Sunil K.

    2014-01-01

    Differentiation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells into hepatocyte-like cells provides a platform to study the molecular basis of human hepatocyte differentiation, to develop cell culture models of liver disease, and to potentially provide hepatocytes for treatment of end-stage liver disease. Additionally, hepatocyte-like cells generated from human pluripotent stem cells could serve as platforms for drug discovery, determination of pharmaceutical induced hepatotoxicity, and evaluation of idiosyncratic drug-drug interactions. Here, we describe a step-wise protocol previously developed in our laboratory that facilitates the highly efficient and reproducible differentiation of human pluripotent stem cells into hepatocyte-like cells. Our protocol uses defined culture conditions and closely recapitulates key developmental events that are found to occur during hepatogenesis. PMID:24510789

  7. Cell proliferation and differentiation in chemical leukemogenesis

    NASA Technical Reports Server (NTRS)

    Irons, R. D.; Stillman, W. S.; Clarkson, T. W. (Principal Investigator)

    1993-01-01

    In tissues such as bone marrow with normally high rates of cell division, proliferation is tightly coordinated with cell differentiation. Survival, proliferation and differentiation of early hematopoietic progenitor cells depend on the growth factors, interleukin 3 (IL-3) and/or granulocyte-macrophage colony stimulating factor (GM-CSF) and their synergism with other cytokines. We provide evidence that a characteristic shared by a diverse group of compounds with demonstrated leukemogenic potential is the ability to act synergistically with GM-CSF. This results in an increase in recruitment of a resting population of hematopoietic progenitor cells normally unresponsive to the cytokine and a twofold increase in the size of the proliferating cell population normally regarded to be at risk of transformation in leukemogenesis. These findings support the possibility that transient alterations in hematopoietic progenitor cell differentiation may be an important factor in the early stages of development of leukemia secondary to chemical or drug exposure.

  8. Retinal progenitor cells, differentiation, and barriers to cell cycle reentry.

    PubMed

    Davis, Denise M; Dyer, Michael A

    2010-01-01

    Neurogenesis in the retina occurs via the coordination of proliferation, cell cycle exit and differentiation of retinal progenitor cells. Until recently, it was widely assumed that once a retinal progenitor cell produced a postmitotic neuron, there was no possibility for cell-cycle re-entry. However, recent studies have shown that mature differentiated horizontal neurons with reduced Rb pathway function can re-enter the cell cycle and proliferate while maintaining their differentiated features. This chapter will explore the molecular and cellular mechanisms that help to keep differentiated retinal neurons and glia postmitotic. We propose that there are cell-type specific barriers to cell-cycle re-entry by differentiated neurons and these may include apoptosis, chromatin/epigenetics mechanisms, cellular morphology and/or metabolic demands that are distinct across cell populations. Our data suggest that differentiated neurons span a continuum of cellular properties related to their ability to re-enter the cell cycle and undergo cytokinesis while maintaining their differentiated features. A deeper understanding of these processes may allow us to begin to explain the cell type specificity of neuronal cell death and tumor susceptibility. For example, neurons that have more barriers to cell-cycle re-entry may be less likely to form tumors but more likely to undergo degeneration. Conversely, neurons that have fewer barriers to cell-cycle re-entry may be more likely to form tumors but less likely to undergo degeneration. PMID:20959166

  9. Hepatic Differentiation from Human Ips Cells Using M15 Cells.

    PubMed

    Umeda, Kahoko; Shiraki, Nobuaki; Kume, Shoen

    2016-01-01

    Here, we describe a procedure of human iPS cells differentiation into the definitive endoderm, further into albumin-expressing and albumin-secreting hepatocyte, using M15, a mesonephros- derived cell line. Approximately 90 % of human iPS cells differentiated into SOX17-positive definitive endoderm then approximately 50 % of cells became albumin-positive cells, and secreted ALB protein. This M15 feeder system for endoderm and hepatic differentiation is a simple and efficient method, and useful for elucidating molecular mechanisms for hepatic fate decision, and could represent an attractive approach for a surrogate cell source for pharmaceutical studies. PMID:25417065

  10. Stem cell isolation: Differential stickiness

    NASA Astrophysics Data System (ADS)

    Abilez, Oscar J.; Wu, Joseph C.

    2013-06-01

    Technologies to isolate colonies of human pluripotent stem cells from other cell types in a high-throughput manner are lacking. A microfluidic-based approach that exploits differences in the adhesion strength between these cells and a substrate may soon fill the gap.

  11. [EFFECTS OF DIFFERENT CLASSES OF PLANT HORMONES ON MAMMALIAN CELLS].

    PubMed

    Vildanova, M S; Smirnova, E A

    2016-01-01

    Plant hormones are signal molecules of different chemical structure, secreted by plant cells and acting at low concentrations as regulators of plant growth and differentiation. Certain plant hormones are similar to animal hormones or can be produced by animal cells. A number of studies show that the effect of biologically active components of plant origin including plant/phytohormones is much wider than was previously thought, but so far there are no objective criteria for assessing the influence of phytohormones on the physiological state of animal cells. Presented in the survey data show that plant hormones, which have different effects on plant growth and development (jasmonic, abscisic and gibberellic acids), are not neutral to the cells of animal origin, and animal cells response to them may be either positive or negative. PMID:27220246

  12. Cancer stem cells and differentiation therapy.

    PubMed

    Sell, Stewart

    2006-01-01

    Cancers arise from stem cells in adult tissues and the cells that make up a cancer reflect the same stem cell --> progeny --> differentiation progression observed in normal tissues. All adult tissues are made up of lineages of cells consisting of tissue stem cells and their progeny (transit-amplifying cells and terminally differentiated cells); the number of new cells produced in normal tissue lineages roughly equals the number of old cells that die. Cancers result from maturation arrest of this process, resulting in continued proliferation of cells and a failure to differentiate and die. The biological behavior, morphological appearance, and clinical course of a cancer depend on the stage of maturation at which the genetic lesion is activated. This review makes a comparison of cancer cells to embryonic stem cells and to adult tis sue stem cells while addressing two basic questions: (1) Where do cancers come from?, and (2) How do cancers grow? The answers to these questions are critical to the development of approaches to the detection, prevention, and treatment of cancer. PMID:16557043

  13. Exploring the cell signalling in hepatocyte differentiation.

    PubMed

    Vasconcellos, Rebecca; Alvarenga, Érika C; Parreira, Ricardo C; Lima, Swiany S; Resende, Rodrigo R

    2016-11-01

    The liver is the second largest organ in the human body and is responsible for several functions that directly contribute to homeostasis. Hepatocytes are the main parenchymal liver cells that regulate multiple biochemical and metabolic functions and the synthesis of substances important to the body. Mesenchymal stem cells (MSCs) are a group of stem cells derived from the mesoderm, which can be obtained from various tissues. Under certain conditions, MSCs can differentiate into several cell types, including hepatocytes. Post-transcriptional regulations of liver development signalling and hepatocyte differentiation have been demonstrated. At the post-transcriptional level, microRNAs have emerged as precursors for determining cell fate during differentiation. MicroRNAs (miRNAs) are small non-coding RNAs involved in the post-transcriptional regulation of gene expression. They can determine the stem cell fate by repressing the translation of target mRNAs. In this review, we outline signalling pathways involved in stem cell differentiation to hepatocytes and its interplay with liver development. Hepatic differentiation models in two-dimensional and three-dimensional cultures used to analyse signalling mechanisms will be described. We also highlight the possible miRNAs involved in this process and the transdifferentiation signalling mechanisms present in hepatocytes. PMID:27555287

  14. A paired comparison between glioblastoma "stem cells" and differentiated cells.

    PubMed

    Schneider, Matthias; Ströbele, Stephanie; Nonnenmacher, Lisa; Siegelin, Markus D; Tepper, Melanie; Stroh, Sebastien; Hasslacher, Sebastian; Enzenmüller, Stefanie; Strauss, Gudrun; Baumann, Bernd; Karpel-Massler, Georg; Westhoff, Mike-Andrew; Debatin, Klaus-Michael; Halatsch, Marc-Eric

    2016-04-01

    Cancer stem cells (CSC) have been postulated to be responsible for the key features of a malignancy and its maintenances, as well as therapy resistance, while differentiated cells are believed to make up the rapidly growing tumour bulk. It is therefore important to understand the characteristics of those two distinct cell populations in order to devise treatment strategies which effectively target both cohorts, in particular with respect to cancers, such as glioblastoma. Glioblastoma is the most common primary brain tumour in adults, with a mean patient survival of 12-15 months. Importantly, therapeutic improvements have not been forthcoming in the last decade. In this study we compare key features of three pairs of glioblastoma cell populations, each pair consisting of stem cell-like and differentiated cells derived from an individual patient. Our data suggest that while growth rates and expression of key survival- and apoptosis-mediating proteins are more similar according to differentiation status than genetic similarity, we found no intrinsic differences in response to standard therapeutic interventions, namely exposure to radiation or the alkylating agent temozolomide. Interestingly, we could demonstrate that both stem cell-like and differentiated cells possess the ability to form stem cell-containing tumours in immunocompromised mice and that differentiated cells could potentially be dedifferentiated to potential stem cells. Taken together our data suggest that the differences between tumour stem cell and differentiated cell are particular fluent in glioblastoma. PMID:26519239

  15. Optimal design of proportional-integral controllers for stand-alone solid oxide fuel cell power plant using differential evolution algorithm.

    PubMed

    Ahmed, Ashik; Ullah, Md Shahid

    2016-01-01

    This paper proposes the application of differential evolution (DE) algorithm for the optimal tuning of proportional-integral (PI) controller designed to improve the small signal dynamic response of a stand-alone solid oxide fuel cell (SOFC) system. The small signal model of the study system is derived and considered for the controller design as the target here is to track small variations in SOFC load current. Two PI controllers are incorporated in the feedback loops of hydrogen and oxygen partial pressures with an aim to improve the small signal dynamic responses. The controller design problem is formulated as the minimization of an eigenvalue based objective function where the target is to find out the optimal gains of the PI controllers in such a way that the discrepancy of the obtained and desired eigenvalues are minimized. Eigenvalue and time domain simulations are presented for both open-loop and closed loop systems. To test the efficacy of DE over other optimization tools, the results obtained with DE are compared with those obtained by particle swarm optimization (PSO) algorithm and invasive weed optimization (IWO) algorithm. Three different types of load disturbances are considered for the time domain based results to investigate the performances of different optimizers under different sorts of load variations. Moreover, non-parametric statistical analyses, namely, one sample Kolmogorov-Smirnov (KS) test and paired sample t test are used to identify the statistical advantage of one optimizer over the other for the problem under study. The presented results suggest the supremacy of DE over PSO and IWO in finding the optimal solution. PMID:27066389

  16. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM)

    NASA Astrophysics Data System (ADS)

    Steinbach, G.; Pawlak, K.; Pomozi, I.; Tóth, E. A.; Molnár, A.; Matkó, J.; Garab, G.

    2014-03-01

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316-25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM.

  17. Tinospora cordifolia Induces Differentiation and Senescence Pathways in Neuroblastoma Cells.

    PubMed

    Mishra, Rachana; Kaur, Gurcharan

    2015-08-01

    Children diagnosed with neuroblastomas often suffer from severe side as well as late effects of conventional treatments like chemotherapy and radiotherapy. Recent advances in understanding of molecular pathways involved in cellular differentiation and apoptosis have helped in the development of new therapeutic approach based on differentiation-based therapy of malignant tumours. Natural medicines with their holistic therapeutic approach are known to selectively eliminate cancer cells thus provide a better substitute for the conventional treatment modes. The current study was aimed to investigate the anti-cancer potential of aqueous ethanolic extract of Tinospora cordifolia (TCE) using IMR-32 human neuroblastoma cell line as a model system. TCE is highly recommended in Ayurveda for its general body and metal health-promoting properties. TCE treatment was seen to arrest the majority of cells in G0/G1 phase and modulated the expression of DNA clamp sliding protein (PCNA) and cyclin D1. Further, TCE-treated cells showed differentiation as revealed by their morphology and the expression of neuronal cell specific differentiation markers NF200, MAP-2 and NeuN in neuroblastoma cells. The differentiated phenotype was associated with induction of senescence and pro-apoptosis pathways by enhancing expression of senescence marker mortalin and Rel A subunit of nuclear factor kappa beta (NFkB) along with decreased expression of anti-apoptotic marker, Bcl-xl. TCE exhibited anti-metastatic activity and significantly reduced cell migration in the scratched area along with downregulation of neural cell adhesion molecule (NCAM) polysialylation and secretion of matrix metalloproteinases (MMPs). Our data suggest that crude extract or active phytochemicals from this plant may be a potential candidate for differentiation-based therapy of malignant neuroblastoma cells. PMID:25280667

  18. Plant cell walls to ethanol.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...

  19. Spatial and Temporal Distribution of Polyamine Levels and Polyamine Anabolism in Different Organs/Tissues of the Tobacco Plant. Correlations with Age, Cell Division/Expansion, and Differentiation1

    PubMed Central

    Paschalidis, Konstantinos A.; Roubelakis-Angelakis, Kalliopi A.

    2005-01-01

    Polyamine (PA) titers and biosynthesis follow a basipetal decrease along the tobacco (Nicotiana tabacum) plant axis, and they also correlate negatively with cell size. On the contrary, the titers of arginine (Arg), ornithine (Orn), and arginase activity increase with age. The free (soluble)/total-PA ratios gradually increase basipetally, but the soluble conjugated decrease, with spermidine (Spd) mainly to determine these changes. The shoot apical meristems are the main site of Spd and spermine biosynthesis, and the hypogeous tissues synthesize mostly putrescine (Put). High and low Spd syntheses are correlated with cell division and expansion, respectively. Put biosynthetic pathways are differently regulated in hyper- and hypogeous tobacco tissues: Only Arg decarboxylase is responsible for Put synthesis in old hypergeous vascular tissues, whereas, in hypogeous tissues, arginase-catalyzed Orn produces Put via Orn decarboxylase. Furthermore, Orn decarboxylase expression coincides with early cell divisions in marginal sectors of the lamina, and Spd synthase strongly correlates with later cell divisions in the vascular regions. This detailed spatial and temporal profile of the free, soluble-conjugated, and insoluble-conjugated fractions of Put, Spd, and spermine in nearly all tobacco plant organs and the profile of enzymes of PA biosynthesis at the transcript, protein, and specific activity levels, along with the endogenous concentrations of the precursor amino acids Arg and Orn, offer new insight for further understanding the physiological role(s) of PAs. The results are discussed in the light of age dependence, cell division/expansion, differentiation, phytohormone gradients, senescence, and sink-source relationships. PMID:15849310

  20. Lignin Induces ES Cells to Differentiate into Neuroectodermal Cells through Mediation of the Wnt Signaling Pathway

    PubMed Central

    Inoue, Yu; Hasegawa, Seiji; Yamada, Takaaki; Date, Yasushi; Mizutani, Hiroshi; Nakata, Satoru; Akamatsu, Hirohiko

    2013-01-01

    Embryonic stem cells (ES cells) are characterized by their pluripotency and infinite proliferation potential. Ever since ES cells were first established in 1981, there have been a growing number of studies aimed at clinical applications of ES cells. In recent years, various types of differentiation inducement systems using ES cells have been established. Further studies have been conducted to utilize differentiation inducement systems in the field of regenerative medicine. For cellular treatments using stem cells including ES cells, differentiation induction should be performed in a sufficient manner to obtain the intended cell lineages. Lignin is a high-molecular amorphous material that forms plants together with cellulose and hemicelluloses, in which phenylpropane fundamental units are complexly condensed. Lignin derivatives have been shown to have several bioactive functions. In spite of these findings, few studies have focused on the effects of lignin on stem cells. Our study aimed to develop a novel technology using lignin to effectively induce ES cells to differentiate into neuroectodermal cells including ocular cells and neural cells. Since lignin can be produced at a relatively low cost in large volumes, its utilization is expected for more convenient differentiation induction technologies and in the field of regenerative medicine in the future. PMID:23805217

  1. Pasteurella multocida Toxin Manipulates T Cell Differentiation

    PubMed Central

    Hildebrand, Dagmar; Heeg, Klaus; Kubatzky, Katharina F.

    2015-01-01

    Pasteurella multocida causes various diseases in a broad range of wild and domestic animals. Toxigenic strains of the serotypes A and D produce an AB protein toxin named Pasteurella multocida toxin (PMT). PMT constitutively activates the heterotrimeric G protein subunits Gαq, Gα13, and Gαi through deamidation of a glutamine residue, which results in cytoskeletal rearrangements as well as increased proliferation and survival of the host cell. In human monocytes, PMT alters the lipopolysaccharide (LPS)-induced activation toward a phenotype that suppresses T cell activation. Here we describe that the toxin also modulates CD4-positive T helper (Th) cells directly. PMT amplifies the expansion of Th cells through enhanced cell cycle progression and suppression of apoptosis and manipulates the differentiation of Th subclasses through activation of Signal Transducers and Activators of Transcription (STAT) family members and induction of subtype-specific master transcription factors. A large population of toxin-treated T cells is double-positive for Foxp3 and RORγt, the transcription factors expressed by Treg and Th17 cells, respectively. This suggests that these cells could have the potential to turn into Th17 cells or suppressive Treg cells. However, in terms of function, the PMT-differentiated cells behave as inflammatory Th17 cells that produce IL-17 and trigger T cell proliferation. PMID:26635744

  2. Plant cell membranes

    SciTech Connect

    Packer, L.; Douce, R.

    1987-01-01

    The contents of this book are: Cells, Protoplasts, Vacuoles and Liposomes; Tonoplasts; Nuclei, Endolplasmic Reticulum, and Plasma Membrane; Peroxisomes; Plastids; Teneral Physical and Biochemical Methods; and Mitochondira.

  3. Differentiation and Characterization of Myeloid Cells

    PubMed Central

    Gupta, Dipti; Shah, Hetavi Parag; Malu, Krishnakumar; Berliner, Nancy; Gaines, Peter

    2015-01-01

    Recent molecular studies of myeloid differentiation have utilized several in vitro models of myelopoiesis, generated from either ex vivo differentiated bone marrow progenitors or induced immortalized myeloid cell lines. Ex vivo differentiation begins with an enriched population of bone marrow-derived hematopoietic stem cells generated by lineage depletion and/or positive selection for CD34+ antigen (human) or Sca-1+ (mouse) cells, which are then expanded and subsequently induced in vitro in a process that recapitulates normal myeloid development. Myeloid cell lines include two human leukemic cell lines, NB-4 and HL-60, which have been demonstrated to undergo retinoic acid–induced myeloid development, however, both cell lines exhibit defects in the upregulation of late-expressed neutrophil-specific genes. Multiple murine factor–dependent cell models of myelopoiesis are also available that express the full range of neutrophil maturation markers, including: 32Dcl3 cells, which undergo G-CSF-induced myeloid maturation, EML/EPRO cells, which develop into mature neutrophils in response to cytokines and retinoic acid, and ER-Hoxb8 cells, which undergo myeloid maturation upon removal of estradial in the maintenance medium. In this unit, the induction of myeloid maturation in each of these model systems is described, including their differentiation to either neutrophils or macrophages, if applicable. Commonly used techniques to test for myeloid characteristics of developing cells are also described, including flow cytometry and real time RT-PCR. Together, these assays provide a solid foundation for in vitro investigations of myeloid development with either human or mouse models. PMID:24510620

  4. Signal transduction and Th17 cell differentiation

    PubMed Central

    O’Shea, John J.; Steward-Tharp, Scott M.; Laurence, Arian; Watford, Wendy T.; Wei, Lai; Adamson, Adewole S.; Fan, Samuel

    2009-01-01

    The paradigm of effector T helper cell differentiation into either Th1 or Th2 lineages has been notably shaken by the discovery of a third lineage of cells that selectively produce interleukin (IL)-17. Characterization of this new subset, referred to as Th17, has provided exciting new insights into immunoregulation, host defense and the pathogenesis of autoimmune diseases. Additionally, the discovery of this T cell subset has offered a fresh look at such concepts as lineage commitment and terminal differentiation. The transcriptional regulatory events and epigenetic modifications that control these processes are diverse and complex, and despite the rapid pace at which data continues to accumulate, many questions remain to be answered. Here we review our current understanding of the signaling pathways, molecular interactions and transcriptional events that lead to Th17 differentiation and effector function, as well as the epigenetic modifications that accompany them. PMID:19379825

  5. Synchronized Cell Cycle Arrest Promotes Osteoclast Differentiation

    PubMed Central

    Kwon, Minsuk; Kim, Jin-Man; Lee, Kyunghee; Park, So-Young; Lim, Hyun-Sook; Kim, Taesoo; Jeong, Daewon

    2016-01-01

    Osteoclast progenitors undergo cell cycle arrest before differentiation into osteoclasts, induced by exposure to macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The role of such cell cycle arrest in osteoclast differentiation has remained unclear, however. We here examined the effect of synchronized cell cycle arrest on osteoclast formation. Osteoclast progenitors deprived of M-CSF in culture adopted a uniform morphology and exhibited cell cycle arrest at the G0–G1 phase in association with both down-regulation of cyclins A and D1 as well as up-regulation of the cyclin-dependent kinase inhibitor p27Kip1. Such M-CSF deprivation also promoted the differentiation of osteoclast progenitors into multinucleated osteoclasts expressing high levels of osteoclast marker proteins such as NFATc1, c-Fos, Atp6v0d2, cathepsin K, and integrin β3 on subsequent exposure to M-CSF and RANKL. Our results suggest that synchronized arrest and reprogramming of osteoclast progenitors renders them poised to respond to inducers of osteoclast formation. Further characterization of such effects may facilitate induction of the differentiation of heterogeneous and multipotent cells into desired cell lineages. PMID:27517906

  6. Lymphatic endothelial differentiation in pulmonary lymphangioleiomyomatosis cells.

    PubMed

    Davis, Jennifer M; Hyjek, Elizabeth; Husain, Aliya N; Shen, Le; Jones, Jennifer; Schuger, Lucia A

    2013-08-01

    Pulmonary lymphangioleiomyomatosis (LAM) is a rare, low-grade neoplasm affecting almost exclusively women of childbearing age. LAM belongs to the family of perivascular epithelioid cell tumors, characterized by spindle and epithelioid cells with smooth muscle and melanocytic differentiation. LAM cells infiltrate the lungs, producing multiple, bilateral lesions rich in lymphatic channels and forming cysts, leading to respiratory insufficiency. Here we used antibodies against four lymphatic endothelial markers-podoplanin (detected by D2-40), prospero homeobox 1 (PROX1), vascular endothelial growth factor receptor 3 (VEGFR-3), and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1)-to determine whether LAM cells show lymphatic differentiation. Twelve of 12 diagnostic biopsy specimens (early-stage LAM) and 19 of 19 explants (late-stage LAM) showed immunopositivity for D2-40 in most neoplastic cells. PROX1, VEGFR-3, and LYVE1 immunoreactivity varied from scarce in the early stage to abundant in the late stage. Lymphatic endothelial, smooth muscle, and melanocytic markers were partially co-localized. These findings indicate that lymphatic endothelial differentiation is a feature of LAM and provide evidence of a previously unidentified third lineage of differentiation in this neoplasm. This study has implications for the histological diagnosis of LAM, the origin of the neoplastic cells, and potential future treatment with drugs targeting lymphangiogenesis. PMID:23609227

  7. Synchronized Cell Cycle Arrest Promotes Osteoclast Differentiation.

    PubMed

    Kwon, Minsuk; Kim, Jin-Man; Lee, Kyunghee; Park, So-Young; Lim, Hyun-Sook; Kim, Taesoo; Jeong, Daewon

    2016-01-01

    Osteoclast progenitors undergo cell cycle arrest before differentiation into osteoclasts, induced by exposure to macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The role of such cell cycle arrest in osteoclast differentiation has remained unclear, however. We here examined the effect of synchronized cell cycle arrest on osteoclast formation. Osteoclast progenitors deprived of M-CSF in culture adopted a uniform morphology and exhibited cell cycle arrest at the G₀-G₁ phase in association with both down-regulation of cyclins A and D1 as well as up-regulation of the cyclin-dependent kinase inhibitor p27(Kip1). Such M-CSF deprivation also promoted the differentiation of osteoclast progenitors into multinucleated osteoclasts expressing high levels of osteoclast marker proteins such as NFATc1, c-Fos, Atp6v0d2, cathepsin K, and integrin β3 on subsequent exposure to M-CSF and RANKL. Our results suggest that synchronized arrest and reprogramming of osteoclast progenitors renders them poised to respond to inducers of osteoclast formation. Further characterization of such effects may facilitate induction of the differentiation of heterogeneous and multipotent cells into desired cell lineages. PMID:27517906

  8. Bioprinting and Differentiation of Stem Cells.

    PubMed

    Irvine, Scott A; Venkatraman, Subbu S

    2016-01-01

    The 3D bioprinting of stem cells directly into scaffolds offers great potential for the development of regenerative therapies; in particular for the fabrication of organ and tissue substitutes. For this to be achieved; the lineage fate of bioprinted stem cell must be controllable. Bioprinting can be neutral; allowing culture conditions to trigger differentiation or alternatively; the technique can be designed to be stimulatory. Such factors as the particular bioprinting technique; bioink polymers; polymer cross-linking mechanism; bioink additives; and mechanical properties are considered. In addition; it is discussed that the stimulation of stem cell differentiation by bioprinting may lead to the remodeling and modification of the scaffold over time matching the concept of 4D bioprinting. The ability to tune bioprinting properties as an approach to fabricate stem cell bearing scaffolds and to also harness the benefits of the cells multipotency is of considerable relevance to the field of biomaterials and bioengineering. PMID:27617991

  9. Differentiation and characterization of myeloid cells.

    PubMed

    Gupta, Dipti; Shah, Hetavi Parag; Malu, Krishnakumar; Berliner, Nancy; Gaines, Peter

    2014-01-01

    Ex vivo differentiation of myeloid cells begins with an enriched population of bone marrow-derived hematopoietic stem cells generated by lineage depletion and/or positive selection for CD34(+) antigen (human) or Sca-1(+) (mouse) cells, which are then expanded and subsequently induced in vitro in a process that recapitulates normal myeloid development. Myeloid cell lines include two human leukemic cell lines, NB-4 and HL-60, which have been demonstrated to undergo retinoic acid-induced myeloid development; however, both cell lines exhibit defects in the up-regulation of late-expressed neutrophil-specific genes. Multiple murine factor-dependent cell models of myelopoiesis are also available that express the full range of neutrophil maturation markers, including: 32Dcl3 cells, which undergo G-CSF-induced myeloid maturation; EML/EPRO cells, which develop into mature neutrophils in response to cytokines and retinoic acid; and ER-Hoxb8 cells, which undergo myeloid maturation upon removal of estradiol in the maintenance medium. In this unit, the induction of myeloid maturation in each of these model systems is described, including their differentiation to either neutrophils or macrophages, if applicable. Commonly used techniques to test for myeloid characteristics of developing cells are also described, including flow cytometry and real time RT-PCR. PMID:24510620

  10. TCPs, WUSs, and WINDs: families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation

    PubMed Central

    Ikeda, Miho; Ohme-Takagi, Masaru

    2014-01-01

    In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP), WUSCHEL (WUS), and WOUND INDUCED DEDIFFERENTIATION (WIND1) families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS, and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators. PMID:25232356

  11. Signaling involved in stem cell reprogramming and differentiation

    PubMed Central

    Tanabe, Shihori

    2015-01-01

    Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have revealed that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell programming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review, the molecular interactions and signaling pathways related to stem cell differentiation are discussed. PMID:26328015

  12. Sonic Hedgehog regulates thymic epithelial cell differentiation

    PubMed Central

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L.; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-01-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus. PMID

  13. Sonic Hedgehog regulates thymic epithelial cell differentiation.

    PubMed

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-04-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus. PMID

  14. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division.

    PubMed

    Høyem, Marte Rørvik; Måløy, Frode; Jakobsen, Per; Brandsdal, Bjørn Olav

    2015-09-01

    We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated cells, then changes in the population dynamics of the differentiated cells can lead to changes in the population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be affected by modifying the death rate of the differentiated cells. This result is interesting because stem cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our result implies that stem cells can be manipulated indirectly by medical treatments that target the differentiated cells. PMID:25997796

  15. Plant cell remodeling by autophagy

    PubMed Central

    Kim, Jimi; Lee, Han Nim; Chung, Taijoon

    2014-01-01

    Plant seedlings are not photoautotrophs until they are equipped with photosynthetic machinery. Some plant cells are remodeled after being exposed to light, and a group of peroxisomal proteins are degraded during the remodeling. Autophagy was proposed as one of the mechanisms for the degradation of peroxisomal proteins. We recently showed that ATG7-dependent autophagy is partially responsible for the degradation of obsolete peroxisomal proteins during Arabidopsis seedling growth. PMID:24492493

  16. Cardiogenic Differentiation and Transdifferentiation of Progenitor Cells

    PubMed Central

    Reinecke, Hans; Minami, Elina; Zhu, Wei-Zhong; Laflamme, Michael A.

    2009-01-01

    In recent years, cell transplantation has drawn tremendous interest as a novel approach to preserving or even restoring contractile function to infarcted hearts. A typical human infarct involves the loss of approximately one billion cardiomyocytes, and so many investigators have sought to identify endogenous or exogenous stem cells with the capacity to differentiate into committed cardiomyocytes and repopulate lost myocardium. As a result of these efforts, dozens of stem cell types have been reported to have cardiac potential. These include pluripotent embryonic stem cells as well various adult stem cells resident in compartments including bone marrow, peripheral tissues, and the heart itself. Some of these cardiogenic progenitors have been reported to contribute replacement muscle through endogenous reparative processes or via cell transplantation in preclinical cardiac injury models. However, considerable disagreement exists regarding the efficiency and even the reality of cardiac differentiation by many of these stem cell types, making these issues a continuing source of controversy in the field. In this review, we consider approaches to cell fate mapping and establishing the cardiac phenotype, as well as the current state of the evidence for the cardiogenic and regenerative potential of the major candidate stem cell types. PMID:18988903

  17. BCOR regulates myeloid cell proliferation and differentiation.

    PubMed

    Cao, Q; Gearhart, M D; Gery, S; Shojaee, S; Yang, H; Sun, H; Lin, D-C; Bai, J-W; Mead, M; Zhao, Z; Chen, Q; Chien, W-W; Alkan, S; Alpermann, T; Haferlach, T; Müschen, M; Bardwell, V J; Koeffler, H P

    2016-05-01

    BCOR is a component of a variant Polycomb group repressive complex 1 (PRC1). Recently, we and others reported recurrent somatic BCOR loss-of-function mutations in myelodysplastic syndrome and acute myelogenous leukemia (AML). However, the role of BCOR in normal hematopoiesis is largely unknown. Here, we explored the function of BCOR in myeloid cells using myeloid murine models with Bcor conditional loss-of-function or overexpression alleles. Bcor mutant bone marrow cells showed significantly higher proliferation and differentiation rates with upregulated expression of Hox genes. Mutation of Bcor reduced protein levels of RING1B, an H2A ubiquitin ligase subunit of PRC1 family complexes and reduced H2AK119ub upstream of upregulated HoxA genes. Global RNA expression profiling in murine cells and AML patient samples with BCOR loss-of-function mutation suggested that loss of BCOR expression is associated with enhanced cell proliferation and myeloid differentiation. Our results strongly suggest that BCOR plays an indispensable role in hematopoiesis by inhibiting myeloid cell proliferation and differentiation and offer a mechanistic explanation for how BCOR regulates gene expression such as Hox genes. PMID:26847029

  18. Chromatin dynamics during cellular differentiation in the female reproductive lineage of flowering plants.

    PubMed

    Baroux, Célia; Autran, Daphné

    2015-07-01

    Sexual reproduction in flowering plants offers a number of remarkable aspects to developmental biologists. First, the spore mother cells - precursors of the plant reproductive lineage - are specified late in development, as opposed to precocious germline isolation during embryogenesis in most animals. Second, unlike in most animals where meiosis directly produces gametes, plant meiosis entails the differentiation of a multicellular, haploid gametophyte, within which gametic as well as non-gametic accessory cells are formed. These observations raise the question of the factors inducing and modus operandi of cell fate transitions that originate in floral tissues and gametophytes, respectively. Cell fate transitions in the reproductive lineage imply cellular reprogramming operating at the physiological, cytological and transcriptome level, but also at the chromatin level. A number of observations point to large-scale chromatin reorganization events associated with cellular differentiation of the female spore mother cells and of the female gametes. These include a reorganization of the heterochromatin compartment, the genome-wide alteration of the histone modification landscape, and the remodeling of nucleosome composition. The dynamic expression of DNA methyltransferases and actors of small RNA pathways also suggest additional, global epigenetic alterations that remain to be characterized. Are these events a cause or a consequence of cellular differentiation, and how do they contribute to cell fate transition? Does chromatin dynamics induce competence for immediate cellular functions (meiosis, fertilization), or does it also contribute long-term effects in cellular identity and developmental competence of the reproductive lineage? This review attempts to review these fascinating questions. PMID:26031902

  19. Differentiation of human innate lymphoid cells (ILCs).

    PubMed

    Juelke, Kerstin; Romagnani, Chiara

    2016-02-01

    During the last years, a high complexity in innate lymphoid lineages now collectively referred to as innate lymphoid cells (ILCs) has been revealed. ILCs can be grouped according to their effector functions and transcriptional requirements into three main groups, termed group 1, 2 and 3 ILCs. The differentiation of ILC lineages from hematopoietic precursors and the molecular switches guiding their developmental fate have started to be characterized both in mice and humans. In this review, we discuss the origin, differentiation stages and plasticity of human ILC subsets as well as the signals that drive ILC lineage commitment and acquisition of their unique effector programs. PMID:26707651

  20. Ethylene stimulates tracheary element differentiation in Zinnia elegans cell cultures.

    PubMed

    Pesquet, Edouard; Tuominen, Hannele

    2011-04-01

    The exact role of ethylene in xylogenesis remains unclear, but the Zinnia elegans cell culture system provides an excellent model with which to study its role during the differentiation of tracheary elements (TEs) in vitro. Here, we analysed ethylene homeostasis and function during Z. elegans TE differentiation using biochemical, molecular and pharmacological methods. Ethylene evolution was confined to specific stages of TE differentiation. It was found to peak at the time of TE maturation and to correlate with the activity of the ethylene biosynthetic 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase. The ethylene precursor ACC was exported and accumulated to high concentrations in the extracellular medium, which also displayed a high capacity to convert ACC into ethylene. The effects of adding inhibitors of the ethylene biosynthetic ACC synthase and ACC oxidase enzymes to the TE cultures demonstrated for the first time strict dependence of TE differentiation on ethylene biosynthesis and a stimulatory effect of ethylene on the rate of TE differentiation. In a whole-plant context, our results suggest that ethylene synthesis occurs in the apoplast of the xylem elements and that ethylene participates, in a paracrine manner, in the control of the cambial stem cell pool size during secondary xylem formation. PMID:21219334

  1. Differential white cell count by centrifugal microfluidics.

    SciTech Connect

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  2. Epigenetic Mechanisms Regulating Mesenchymal Stem Cell Differentiation

    PubMed Central

    Pérez-Campo, Flor M.; Riancho, José A.

    2015-01-01

    Human Mesenchymal Stem Cells (hMSCs) have emerged in the last few years as one of the most promising therapeutic cell sources and, in particular, as an important tool for regenerative medicine of skeletal tissues. Although they present a more restricted potency than Embryonic Stem (ES) cells, the use of hMCS in regenerative medicine avoids many of the drawbacks characteristic of ES cells or induced pluripotent stem cells. The challenge in using these cells lies into developing precise protocols for directing cellular differentiation to generate a specific cell lineage. In order to achieve this goal, it is of the upmost importance to be able to control de process of fate decision and lineage commitment. This process requires the coordinate regulation of different molecular layers at transcriptional, posttranscriptional and translational levels. At the transcriptional level, switching on and off different sets of genes is achieved not only through transcriptional regulators, but also through their interplay with epigenetic modifiers. It is now well known that epigenetic changes take place in an orderly way through development and are critical in the determination of lineage-specific differentiation. More importantly, alteration of these epigenetic changes would, in many cases, lead to disease generation and even tumour formation. Therefore, it is crucial to elucidate how epigenetic factors, through their interplay with transcriptional regulators, control lineage commitment in hMSCs. PMID:27019612

  3. Identification of novel proteins differentially expressed in pluripotent embryonic stem cells and differentiated cells.

    PubMed

    Enomoto, Kei; Watanabe-Susaki, Kanako; Kowno, Megumi; Takada, Hitomi; Intoh, Atsushi; Yamanaka, Yuko; Hirano, Hisashi; Sugino, Hiromu; Asashima, Makoto; Kurisaki, Akira

    2015-01-01

    Mammalian pluripotent stem cells possess properties of self-renewal and pluripotency. These abilities are maintained by the strict regulation of pluripotent stem cell-specific transcription factor network and unique properties of chromatin in the stem cells. Although these major signaling pathways robustly control the characteristics of stem cells, other regulatory factors, such as metabolic pathways, are also known to modulate stem cell proliferation and differentiation. In this study, we fractionated protein samples from mouse embryonic stem (ES) cells cultured with or without the leukemia inhibitory factor (LIF). Protein expression was quantified by 2-dimensional differential gel electrophoresis (2D-DIGE). In total, 44 proteins were identified as being differentially expressed in the pluripotent stem cells and the differentiated cells. Surprisingly, half of the identified proteins were the proteins localized in mitochondria, which supply cellular energy and regulate cell cycle, development, and cell death. Some of these identified proteins are involved in the metabolic function and the regulation of pluripotency. Further analysis of the identified proteins could provide new information for the manipulation of pluripotency in ES cells. PMID:26399336

  4. Measurement of Total Site Mercury Emissions from Chlor-Alkali Plant Using Ultraviolet Differential Optical Absorption Spectroscopy and Cell Room Roof-Vent Monitoring

    EPA Science Inventory

    This technical note describes a United States Environmental Protection Agency (U.S. EPA) measurement project to determine elemental mercury (Hg0) emissions from a mercury cell chlor-alkali (MCCA) facility in the southeastern U.S. during a 53-day monitoring campaign in the fall of...

  5. 21 CFR 864.5220 - Automated differential cell counter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automated differential cell counter. 864.5220... § 864.5220 Automated differential cell counter. (a) Identification. An automated differential cell... have the capability to flag, count, or classify immature or abnormal hematopoietic cells of the...

  6. 21 CFR 864.5220 - Automated differential cell counter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automated differential cell counter. 864.5220... § 864.5220 Automated differential cell counter. (a) Identification. An automated differential cell... have the capability to flag, count, or classify immature or abnormal hematopoietic cells of the...

  7. 21 CFR 864.5220 - Automated differential cell counter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated differential cell counter. 864.5220... § 864.5220 Automated differential cell counter. (a) Identification. An automated differential cell... have the capability to flag, count, or classify immature or abnormal hematopoietic cells of the...

  8. 21 CFR 864.5220 - Automated differential cell counter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automated differential cell counter. 864.5220... § 864.5220 Automated differential cell counter. (a) Identification. An automated differential cell... have the capability to flag, count, or classify immature or abnormal hematopoietic cells of the...

  9. 21 CFR 864.5220 - Automated differential cell counter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated differential cell counter. 864.5220... § 864.5220 Automated differential cell counter. (a) Identification. An automated differential cell... have the capability to flag, count, or classify immature or abnormal hematopoietic cells of the...

  10. Cis- and trans-zeatin differentially modulate plant immunity

    PubMed Central

    Großkinsky, Dominik; Edelsbrunner, Kerstin; Pfeifhofer, Hartwig; van der Graaff, Eric; Roitsch, Thomas

    2013-01-01

    Phytohormones are essential regulators of various processes in plant growth and development. Several phytohormones are also known to regulate plant responses to environmental stress and pathogens. Only recently, cytokinins have been demonstrated to play an important role in plant immunity. Increased levels of cytokinins such as trans-zeatin, which are considered highly active, induced resistance against mainly (hemi)biotrophic pathogens in different plant species. In contrast, cis-zeatin is commonly regarded as a cytokinin exhibiting low or no activity. Here we comparatively study the impact of both zeatin isomers on the infection of Nicotiana tabacum by the (hemi)biotrophic microbial pathogen Pseudomonas syringae. We demonstrate a biological effect of cis-zeatin and a differential effect of the two zeatin isomers on symptom development, defense responses and bacterial multiplication. PMID:23656869

  11. Mechanical regulation of mesenchymal stem cell differentiation.

    PubMed

    Steward, Andrew J; Kelly, Daniel J

    2015-12-01

    Biophysical cues play a key role in directing the lineage commitment of mesenchymal stem cells or multipotent stromal cells (MSCs), but the mechanotransductive mechanisms at play are still not fully understood. This review article first describes the roles of both substrate mechanics (e.g. stiffness and topography) and extrinsic mechanical cues (e.g. fluid flow, compression, hydrostatic pressure, tension) on the differentiation of MSCs. A specific focus is placed on the role of such factors in regulating the osteogenic, chondrogenic, myogenic and adipogenic differentiation of MSCs. Next, the article focuses on the cellular components, specifically integrins, ion channels, focal adhesions and the cytoskeleton, hypothesized to be involved in MSC mechanotransduction. This review aims to illustrate the strides that have been made in elucidating how MSCs sense and respond to their mechanical environment, and also to identify areas where further research is needed. PMID:25382217

  12. GATA2 regulates dendritic cell differentiation.

    PubMed

    Onodera, Koichi; Fujiwara, Tohru; Onishi, Yasushi; Itoh-Nakadai, Ari; Okitsu, Yoko; Fukuhara, Noriko; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2016-07-28

    Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin(-)Sca-1(+)Kit(+) cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte-related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation. PMID:27259979

  13. Phosphatidylinositol 3 kinase modulation of trophoblast cell differentiation

    PubMed Central

    2010-01-01

    Background The trophoblast lineage arises as the first differentiation event during embryogenesis. Trophoblast giant cells are one of several end-stage products of trophoblast cell differentiation in rodents. These cells are located at the maternal-fetal interface and are capable of invasive and endocrine functions, which are necessary for successful pregnancy. Rcho-1 trophoblast stem cells can be effectively used as a model for investigating trophoblast cell differentiation. In this report, we evaluated the role of the phosphatidylinositol 3-kinase (PI3K) signaling pathway in the regulation of trophoblast cell differentiation. Transcript profiles from trophoblast stem cells, differentiated trophoblast cells, and differentiated trophoblast cells following disruption of PI3K signaling were generated and characterized. Results Prominent changes in gene expression accompanied the differentiation of trophoblast stem cells. PI3K modulated the expression of a subset of trophoblast cell differentiation-dependent genes. Among the PI3K-responsive genes were those encoding proteins contributing to the invasive and endocrine phenotypes of trophoblast giant cells. Conclusions Genes have been identified with differential expression patterns associated with trophoblast stem cells and trophoblast cell differentiation; a subset of these genes are regulated by PI3K signaling, including those impacting the differentiated trophoblast giant cell phenotype. PMID:20840781

  14. Regulation of Water in Plant Cells

    ERIC Educational Resources Information Center

    Kowles, Richard V.

    2010-01-01

    Cell water relationships are important topics to be included in cell biology courses. Differences exist in the control of water relationships in plant cells relative to control in animal cells. One important reason for these differences is that turgor pressure is a consideration in plant cells. Diffusion and osmosis are the underlying factors…

  15. Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research.

    PubMed

    Arsovski, Andrej A; Haughn, George W; Western, Tamara L

    2010-07-01

    Plant cells are encased within a complex polysaccharide wall that strengthens the cell and has key roles in all aspects of plant cell growth, differentiation, and interaction with the environment. This dynamic structure is under continual modification during plant development, and its synthesis and modification require the activity of a myriad of enzymes. The mucilage secretory cells (MSCs) of the Arabidopsis thaliana seed coat provide a model for the discovery of novel genes involved in the synthesis, secretion and modification of cell wall components, particularly pectin. These cells synthesize copious amounts of pectinaceous mucilage during development and, upon hydration of the desiccated seed, the mucilage rapidly swells, bursts from the MSCs and surrounds the seed in a gelatinous capsule. Several genes affecting MSC differentiation, pectin synthesis, and mucilage release have been identified and additional genes involved in these and related processes including pectin secretion and the mechanical alteration of cell walls await to be discovered. PMID:20505351

  16. Regio- and stereoselectivities in plant cell biotransformation

    SciTech Connect

    Hamada, H.

    1995-12-01

    The ability of plant cultured cells to convert foreign substrates into more useful substances is of considerable interest. Therefore I have studied biotransformation of foreign substrate by plant cell suspension cultures. In this presentation, I report regio- and stereoselectivities in biotransformation of steroids and indole alkaloids and taxol by plant (tobacco, periwinkle, moss, orchid) cell suspension cultures.

  17. IMPAN cells: a pancreatic model for differentiation into endocrine cells.

    PubMed

    Klein, T; Frandsen, U; Heller, R S; Serup, P

    2001-11-15

    It is currently believed that pancreatic progenitor or stem cells exist in the ductal cell population and that these cells have the ability to be grown and differentiated into endocrine cells for the treatment of diabetes. In this study, we have examined this potential in IMPAN (Immortalized Pancreatic) cells. These cells are derived from the adult H-2K(b)-tsA58 transgenic mouse. We observed an increased mRNA expression of insulin, proendocrine gene neurogenin 3, and beta-cell transcription factor Pdx1 when the cells were grown on bovine collagen I gels. The induction profile of these three genes was similar under the tested conditions. No glucagon or other endocrine-specific transcription factors were detectable. Application of GIP, GLP-1 derivative NN2211, and activin-A/betacellulin to IMPAN cells in normal culture did not lead to endocrine differentiation. In conclusion, it appears that the ability of IMPAN cells to mature to endocrine cells is limited. PMID:11697865

  18. Differentiation and characterization of myeloid cells.

    PubMed

    Gaines, Peter; Berliner, Nancy

    2005-07-01

    Recent molecular studies of myeloid differentiation have utilized several in vitro models of myelopoiesis. Hematopoietic progenitors expressing the CD34+ antigen can be induced in vitro in a process that recapitulates the normal myeloid development. Two human leukemic cell lines, NB-4 and HL-60, have been demonstrated to undergo retinoic acid-induced myeloid development, however, both cell lines exhibit defects in the upregulation of late-expressed neutrophil-specific genes. In contrast, two murine factor-dependent cell models of myelopoiesis express the full range of neutrophil maturation markers: 32Dcl3 cells, which undergo G-CSF-induced myeloid maturation, and EML/EPRO cells, which develop into mature neutrophils in response to cytokines and retinoic acid. In this unit, the induction of myeloid maturation in each of these model systems is described. Commonly used techniques to test for myeloid characteristics of developing cells are also described. Together, these assays provide a solid foundation for in vitro investigations of myeloid development. PMID:18432952

  19. Integration of developmental and environmental signals into cell proliferation and differentiation through RETINOBLASTOMA-RELATED 1.

    PubMed

    Harashima, Hirofumi; Sugimoto, Keiko

    2016-02-01

    Plants continuously form new organs during post-embryonic development, thus progression of the proliferative cell cycle and subsequent transition into differentiation must be tightly controlled by developmental and environmental cues. Recent studies have begun to uncover how cell proliferation and cell differentiation are coordinated at the molecular level through tight transcriptional regulation of cell cycle and/or developmental regulators. Accumulating evidence suggests that RETINOBLASTOMA-RELATED 1 (RBR1), the Arabidopsis homolog of the human tumor suppressor Retinoblastoma (Rb), functions as a molecular hub linking cell proliferation, differentiation, and environmental response. In this review we will discuss recent findings on cell cycle regulation, highlighting the emerging roles of RBR1 as a key integrator of internal differentiation cues and external stimuli into the cell cycle machinery. PMID:26799131

  20. Probing stem cell differentiation using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-03-01

    A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  1. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny.

    PubMed

    Kavi Kishor, Polavarapu B; Hima Kumari, P; Sunita, M S L; Sreenivasulu, Nese

    2015-01-01

    Proline is a proteogenic amino acid and accumulates both under stress and non-stress conditions as a beneficial solute in plants. Recent discoveries point out that proline plays an important role in plant growth and differentiation across life cycle. It is a key determinant of many cell wall proteins that plays important roles in plant development. The role of extensins, arabinogalactan proteins and hydroxyproline- and proline-rich proteins as important components of cell wall proteins that play pivotal roles in cell wall signal transduction cascades, plant development and stress tolerance is discussed in this review. Molecular insights are also provided here into the plausible roles of proline transporters modulating key events in plant development. In addition, the roles of proline during seed developmental transitions including storage protein synthesis are discussed. PMID:26257754

  2. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny

    PubMed Central

    Kavi Kishor, Polavarapu B.; Hima Kumari, P.; Sunita, M. S. L.; Sreenivasulu, Nese

    2015-01-01

    Proline is a proteogenic amino acid and accumulates both under stress and non-stress conditions as a beneficial solute in plants. Recent discoveries point out that proline plays an important role in plant growth and differentiation across life cycle. It is a key determinant of many cell wall proteins that plays important roles in plant development. The role of extensins, arabinogalactan proteins and hydroxyproline- and proline-rich proteins as important components of cell wall proteins that play pivotal roles in cell wall signal transduction cascades, plant development and stress tolerance is discussed in this review. Molecular insights are also provided here into the plausible roles of proline transporters modulating key events in plant development. In addition, the roles of proline during seed developmental transitions including storage protein synthesis are discussed. PMID:26257754

  3. Differential Effect of Plant Lipids on Membrane Organization

    PubMed Central

    Grosjean, Kevin; Mongrand, Sébastien; Beney, Laurent; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2015-01-01

    The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains. PMID:25575593

  4. Pathogen Tactics to Manipulate Plant Cell Death.

    PubMed

    Mukhtar, M Shahid; McCormack, Maggie E; Argueso, Cristiana T; Pajerowska-Mukhtar, Karolina M

    2016-07-11

    Cell death is a vital process for multicellular organisms. Programmed cell death (PCD) functions in a variety of processes including growth, development, and immune responses for homeostasis maintenance. In particular, plants and animals utilize PCD to control pathogen invasion and infected cell populations. Despite some similarity, there are a number of key differences between how these organisms initiate and regulate cell death. In contrast to animals, plants are sessile, lack a circulatory system, and have additional cellular structures, including cell walls and chloroplasts. Plant cells have the autonomous ability to induce localized cell death using conserved eukaryotic pathways as well as unique plant-specific pathways. Thus, in order to successfully infect host cells, pathogens must subvert immune responses and avoid detection to prevent PCD and allow infection. Here we discuss the roles of cell death in plant immune responses and the tactics pathogens utilize to avert cell death. PMID:27404256

  5. Polynucleotide phosphorylase from plant cells.

    PubMed

    Schumacher-Wittkopf, E; Richter, G; Schulze, S

    1984-06-01

    The isolation of polynucleotide phosphorylase (EC 2. 7. 7. 8) from suspension cultured plant cells of parsley (Petroselinum sativum) and from tomato seedlings (Lycopersicon esculentum) is described. The procedure includes an ultracentrifugation step, a glycerol density gradient centrifugation and preparative gel electrophoresis under nondenaturing conditions. Isoelectric focusing gives rise to a major component (pI ≈ 7.5) and to a minor one (pI ≈ 5). The enzyme contains five subunits with apparent Mr values of 160 000, 140 000, 70 000, 34 000 and 12 000, the 70 000-dalton one being a glycoprotein. PMID:24253429

  6. Embryogenic plant cells in microgravity

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1991-01-01

    In view of circumstantial evidence for the role of gravity (g) in shaping the embryo environment, normal embryo development may not occur reliably and efficiently in the microgravity environment of space. Attention must accordingly be given to those aspects of higher plant reproductive biology in space environments required for the production of viable embryos in a 'seed to seed to seed' experiment. It is suggested that cultured cells can be grown to be morphogenetically competent, and can be evaluated as to their ability to simulate embryogenic events usually associated with fertilized eggs in the embryo sac of the ovule in the ovary.

  7. Soft matrix supports osteogenic differentiation of human dental follicle cells

    SciTech Connect

    Viale-Bouroncle, Sandra; Voellner, Florian; Moehl, Christoph; Kuepper, Kevin; Brockhoff, Gero; Reichert, Torsten E.; Schmalz, Gottfried; Morsczeck, Christian

    2011-07-08

    Highlights: {yields} Rigid stiffness supports osteogenic differentiation in mesenchymal stem cells (MSCs). {yields} Our study examined stiffness and differentiation of dental follicle cells (DFCs). {yields} Soft ECMs have a superior capacity to support the osteogenic differentiation of DFCs. {yields} DFCs and MSCs react contrarily to soft and rigid surface stiffness. -- Abstract: The differentiation of stem cells can be directed by the grade of stiffness of the developed tissue cells. For example a rigid extracellular matrix supports the osteogenic differentiation in bone marrow derived mesenchymal stem cells (MSCs). However, less is known about the relation of extracellular matrix stiffness and cell differentiation of ectomesenchymal dental precursor cells. Our study examined for the first time the influence of the surface stiffness on the proliferation and osteogenic differentiation of human dental follicle cells (DFCs). Cell proliferation of DFCs was only slightly decreased on cell culture surfaces with a bone-like stiffness. The osteogenic differentiation in DFCs could only be initiated with a dexamethasone based differentiation medium after using varying stiffness. Here, the softest surface improved the induction of osteogenic differentiation in comparison to that with the highest stiffness. In conclusion, different to bone marrow derived MSCs, soft ECMs have a superior capacity to support the osteogenic differentiation of DFCs.

  8. Stochasticity and Spatial Interaction Govern Stem Cell Differentiation Dynamics

    NASA Astrophysics Data System (ADS)

    Smith, Quinton; Stukalin, Evgeny; Kusuma, Sravanti; Gerecht, Sharon; Sun, Sean X.

    2015-07-01

    Stem cell differentiation underlies many fundamental processes such as development, tissue growth and regeneration, as well as disease progression. Understanding how stem cell differentiation is controlled in mixed cell populations is an important step in developing quantitative models of cell population dynamics. Here we focus on quantifying the role of cell-cell interactions in determining stem cell fate. Toward this, we monitor stem cell differentiation in adherent cultures on micropatterns and collect statistical cell fate data. Results show high cell fate variability and a bimodal probability distribution of stem cell fraction on small (80-140 μm diameter) micropatterns. On larger (225-500 μm diameter) micropatterns, the variability is also high but the distribution of the stem cell fraction becomes unimodal. Using a stochastic model, we analyze the differentiation dynamics and quantitatively determine the differentiation probability as a function of stem cell fraction. Results indicate that stem cells can interact and sense cellular composition in their immediate neighborhood and adjust their differentiation probability accordingly. Blocking epithelial cadherin (E-cadherin) can diminish this cell-cell contact mediated sensing. For larger micropatterns, cell motility adds a spatial dimension to the picture. Taken together, we find stochasticity and cell-cell interactions are important factors in determining cell fate in mixed cell populations.

  9. Dystroglycan depletion inhibits the functions of differentiated HL-60 cells.

    PubMed

    Martínez-Zárate, Alma Delia; Martínez-Vieyra, Ivette; Alonso-Rangel, Lea; Cisneros, Bulmaro; Winder, Steve J; Cerecedo, Doris

    2014-06-01

    Dystroglycan has recently been characterized in blood tissue cells, as part of the dystrophin glycoprotein complex but to date nothing is known of its role in the differentiation process of neutrophils. We have investigated the role of dystroglycan in the human promyelocytic leukemic cell line HL-60 differentiated to neutrophils. Depletion of dystroglycan by RNAi resulted in altered morphology and reduced properties of differentiated HL-60 cells, including chemotaxis, respiratory burst, phagocytic activities and expression of markers of differentiation. These findings strongly implicate dystroglycan as a key membrane adhesion protein involved in the differentiation process in HL-60 cells. PMID:24792180

  10. Chromatin dynamics during cellular differentiation in the female reproductive lineage of flowering plants

    PubMed Central

    Baroux, Célia; Autran, Daphné

    2015-01-01

    Sexual reproduction in flowering plants offers a number of remarkable aspects to developmental biologists. First, the spore mother cells – precursors of the plant reproductive lineage – are specified late in development, as opposed to precocious germline isolation during embryogenesis in most animals. Second, unlike in most animals where meiosis directly produces gametes, plant meiosis entails the differentiation of a multicellular, haploid gametophyte, within which gametic as well as non-gametic accessory cells are formed. These observations raise the question of the factors inducing and modus operandi of cell fate transitions that originate in floral tissues and gametophytes, respectively. Cell fate transitions in the reproductive lineage imply cellular reprogramming operating at the physiological, cytological and transcriptome level, but also at the chromatin level. A number of observations point to large-scale chromatin reorganization events associated with cellular differentiation of the female spore mother cells and of the female gametes. These include a reorganization of the heterochromatin compartment, the genome-wide alteration of the histone modification landscape, and the remodeling of nucleosome composition. The dynamic expression of DNA methyltransferases and actors of small RNA pathways also suggest additional, global epigenetic alterations that remain to be characterized. Are these events a cause or a consequence of cellular differentiation, and how do they contribute to cell fate transition? Does chromatin dynamics induce competence for immediate cellular functions (meiosis, fertilization), or does it also contribute long-term effects in cellular identity and developmental competence of the reproductive lineage? This review attempts to review these fascinating questions. PMID:26031902

  11. Plant Cell Adaptive Responses to Microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    Microgravity is an abnormal environmental condition that plays no role in the functioning of biosphere. Nevertheless, the chronic effect of microgravity in space flight as an unfamiliar factor does not prevent the development of adaptive reactions at the cellular level. In real microgravity in space flight under the more or less optimal conditions for plant growing, namely temperature, humidity, CO2, light intensity and directivity in the hardware angiosperm plants perform an “reproductive imperative”, i.e. they flower, fruit and yield viable seeds. It is known that cells of a multicellular organism not only take part on reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of the identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and subcellular level in real and simulated microgravity is considered. Cytological studies of plants developing in real and simulated microgravity made it possible to establish that the processes of mitosis, cytokinesis, and tissue differentiation of vegetative and generative organs are largely normal. At the same time, under microgravity, essential reconstruction in the structural and functional organization of cell organelles and cytoskeleton, as well as changes in cell metabolism and homeostasis have been described. In addition, new interesting data concerning the influence of altered gravity on lipid peroxidation intensity, the level of reactive oxygen species, and antioxidant system activity, just like on the level of gene expression and synthesis of low-molecular and high-molecular heat shock proteins were recently obtained. So, altered gravity caused time-dependent increasing of the HSP70 and HSP90 levels in cells, that may indicate temporary strengthening of their functional loads that is necessary for re-establish a new cellular homeostasis. Relative qPCR results showed that

  12. Substrate & Cell Compliance Effects on Cell Spreading and Differentiation

    NASA Astrophysics Data System (ADS)

    Discher, Dennis; Sheehan, Maureen; Engler, Adam

    2004-03-01

    The stiffness of the substrate that a cell adheres to is emerging as a critically important physical factor in the response of many cell types. The effects are seen with cells on gels as well as cells on cells - highlighting implications for organism development. The basis for the effects lies in the fact that cells literally 'feel' their substrate. Like other anchorage dependent cells, muscle cells feel their substrate and are found in our studies to spread more and organize their cytoskeleton and focal adhesions much more so on rigid glass and stiff substrates than on soft gels. Such spreading is not necessarily physiological or conducive to biological function. Collagen density certainly factors into cell on gel adhesive spreading, with minimal spreading on very low collagen and a weak maximum in cell spreading on intermediate collagen densities. Bell-shaped curves are readily modeled to highlight the coupling between ligand density and substrate stiffness. Most surprising, however, spreading on soft gels is found to be almost independent of adhesive ligand density: even with high collagen densities, the minimal spreading of cells cannot be over-ridden. Remarkably, muscle cells show the strongest tendency to differentiate and striate their acto-myosin on gels that have a stiffness similar to relaxed muscle. Cells gown on top of other cells also show a very strong tendency to striate, even if the underlying cells do not striate; elasticity measurements appear to unify all of the effects. The implications for organismal development as well as cell biological studies can be very important.

  13. DNA methyltransferase-3-dependent nonrandom template segregation in differentiating embryonic stem cells.

    PubMed

    Elabd, Christian; Cousin, Wendy; Chen, Robert Y; Chooljian, Marc S; Pham, Joey T; Conboy, Irina M; Conboy, Michael J

    2013-10-14

    Asymmetry of cell fate is one fundamental property of stem cells, in which one daughter cell self-renews, whereas the other differentiates. Evidence of nonrandom template segregation (NRTS) of chromosomes during asymmetric cell divisions in phylogenetically divergent organisms, such as plants, fungi, and mammals, has already been shown. However, before this current work, asymmetric inheritance of chromatids has never been demonstrated in differentiating embryonic stem cells (ESCs), and its molecular mechanism has remained unknown. Our results unambiguously demonstrate NRTS in asymmetrically dividing, differentiating human and mouse ESCs. Moreover, we show that NRTS is dependent on DNA methylation and on Dnmt3 (DNA methyltransferase-3), indicating a molecular mechanism that regulates this phenomenon. Furthermore, our data support the hypothesis that retention of chromatids with the "old" template DNA preserves the epigenetic memory of cell fate, whereas localization of "new" DNA strands and de novo DNA methyltransferase to the lineage-destined daughter cell facilitates epigenetic adaptation to a new cell fate. PMID:24127215

  14. Integument cell differentiation in dandelions (Taraxacum, Asteraceae, Lactuceae) with special attention paid to plasmodesmata.

    PubMed

    Płachno, Bartosz J; Kurczyńska, Ewa; Świątek, Piotr

    2016-09-01

    The aim of the paper is to determine what happens with plasmodesmata when mucilage is secreted into the periplasmic space in plant cells. Ultrastructural analysis of the periendothelial zone mucilage cells was performed on examples of the ovule tissues of several sexual and apomictic Taraxacum species. The cytoplasm of the periendothelial zone cells was dense, filled by numerous organelles and profiles of rough endoplasmic reticulum and active Golgi dictyosomes with vesicles that contained fibrillar material. At the beginning of the differentiation process of the periendothelial zone, the cells were connected by primary plasmodesmata. However, during the differentiation and the thickening of the cell walls (mucilage deposition), the plasmodesmata become elongated and associated with cytoplasmic bridges. The cytoplasmic bridges may connect the protoplast to the plasmodesmata through the mucilage layers in order to maintain cell-to-cell communication during the differentiation of the periendothelial zone cells. PMID:26454638

  15. Regulation of cell division in higher plants. Progress report

    SciTech Connect

    Jacobs, T.W.

    1992-07-01

    Cell division is arguably the most fundamental of all developmental processes. In higher plants, mitotic activity is largely confined to foci of patterned cell divisions called meristems. From these perpetually embryonic tissues arise the plant`s essential organs of light capture, support, protection and reproduction. Once an adequate understanding of plant cell mitotic regulation is attained, unprecedented opportunities will ensue for analyzing and genetically controlling diverse aspects of development, including plant architecture, leaf shape, plant height, and root depth. The mitotic cycle in a variety of model eukaryotic systems in under the control of a regulatory network of striking evolutionary conservation. Homologues of the yeast cdc2 gene, its catalytic product, p34, and the cyclin regulatory subunits of the MPF complex have emerged as ubiquitous mitotic regulators. We have cloned cdc2-like and cyclin genes from pea. As in other eukaryotic model systems, p34 of Pisum sativum is a subunit of a high molecular weight complex which binds the fission yeast p13 protein and displays histone H1 kinase activity in vitro. Our primary objective in this study is to gain baseline information about the regulation of this higher plant cell division control complex in non-dividing, differentiated cells as well as in synchronous and asynchronous mitotic cells. We are investigating cdc2 and cyclin expression at the levels of protein abundance, protein phosphorylation and quaternary associations.

  16. Transplantation and differentiation of donor cells in the cloned pigs

    SciTech Connect

    Shimada, Arata; Tomii, Ryo; Kano, Koichiro; Nagashima, Hiroshi . E-mail: hnagas@isc.meiji.ac.jp

    2006-06-02

    The application of nuclear transfer technology is an interesting approach to investigate stem and progenitor cell transplantation therapy. If stem cells are used as a nuclear donor, donor cells can engraft into cloned animals without histocompatible problems. However, it is still uncertain whether donor cells can engraft to cloned animal and differentiate in vivo. To address this problem, we transplanted donor cells to dermal tissues of cloned pigs developed by using preadipocytes as donor cells. Preadipocytes are adipocytic progenitor which can differentiate to mature adipocytes in vitro. We showed that the donor preadipocytes were successfully transplanted into the cloned pigs without immune rejection and they differentiated into mature adipocytes in vivo 3 weeks after transplantation. In contrast, allogenic control preadipocytes, which can differentiate in vitro, did not differentiate in vivo. These results indicate that donor progenitor cells can differentiate in cloned animal.

  17. (Study of plant cells and tumors): Progress report

    SciTech Connect

    Not Available

    1989-01-01

    Studies of the cell and molecular biology of animal cell tumors has long been recognized as a fertile and productive area for obtaining new and fundamental insights into mechanisms regulating the growth and differentiation of animal cells. As a novel approach to studying similar phenomena in plant cells, we have isolated a number of tumors in the small cruciferous plant Arabidopsis thaliana and have begun to characterize these at the cellular and molecular levels. Studies at the cellular level should lead to new insights into the relationships between hormones, cell growth and cell differentiation, while studies at the molecular level may reveal and allow us to isolate genes involved either in the hormone response, or in other important aspects of the cells' growth regulatory network. Tumors were induced on the plant by irradiation of seed or seedlings with Co-60 gamma rays. When placed in culture, these tumors were able to grow on hormone-free medium, in contrast to normal plant tissues which requires both an auxin and a cytokinin for growth. In the first phase of this project, we have concentrated on characterizing the growth, general phenotype, and hormonal sensitivity of the tumors. These studies will lead into a molecular analysis of the changes expressed in each tumor which may be responsible for the altered phenotype. 7 refs., 1 tab.

  18. Partial differential equations and fractal analysis to plant leaf identification

    NASA Astrophysics Data System (ADS)

    Brandoli Machado, Bruno; Casanova, Dalcimar; Nunes Gonçalves, Wesley; Martinez Bruno, Odemir

    2013-02-01

    Texture is an important visual attribute used to plant leaf identification. Although there are many methods of texture analysis, some of them specifically for interpreting leaf images is still a challenging task because of the huge pattern variation found in nature. In this paper, we investigate the leaf texture modeling based on the partial differential equations and fractal dimension theory. Here, we are first interested in decomposing the original texture image into two components f = u + v, such that u represents a cartoon component, while v represents the oscillatory component. We demonstrate how this procedure enhance the texture component on images. Our modeling uses the non-linear partial differential equation (PDE) of Perona-Malik. Based on the enhanced texture component, we estimated the fractal dimension by the Bouligand-Minkowski method due to its precision in quantifying structural properties of images. The feature vectors are then used as inputs to our classification system, based on linear discriminant analysis. We validate our approach on a benchmark with 8000 leaf samples. Experimental results indicate that the proposed approach improves average classification rates in comparison with traditional methods. The results suggest that the proposed approach can be a feasible step for plant leaf identification, as well as different real-world applications.

  19. Notch as a Possible Cell Differentiation Factor in Pleomorphic Adenomas

    PubMed Central

    Takamine, Keisuke; Ueda, Yukiko; Nakano, Keisuke; Ochiai, Takanaga; Sugita, Yoshihiko; Kubo, Katsutoshi; Maeda, Hatsuhiko; Hasegawa, Hiromasa; Kawakami, Toshiyuki

    2015-01-01

    The expression of Notch in 30 cases of pleomorphic adenoma was examined by immunohistochemistry. Comparing the results of our study with previous literatures, from the partial CK7 expression and substantial Notch expression in ductal epithelial cells as well as the Notch expression in solid tumor nests, it can be inferred that Notch is involved in cell differentiation. CK13 expression was observed in cells undergoing squamous metaplasia and Notch expression was seen in the nucleus of basal and squamous cells. The intense Notch expression in basal cells and weak expression in squamous cells suggests that Notch is involved in the differentiation from basal to squamous cell. Moreover, the loss of nuclear expression on the inner layer would signify that differentiation is about to end or has been terminated. Notch was expressed in the cytoplasm of cartilage cells and in the cell membrane of mucous cells but not in the nucleus indicating that differentiation has been concluded. Notch involvement is suspected in cell differentiation in areas showing ductal structures and squamous metaplasia. In summary, Notch is involved in cell differentiation of ductal cells in PA. Nuclear expression was shown in tumor cells in solid nests and surrounding structures. Moreover, Notch is expressed by basal cells undergoing squamous metaplasia suggesting the participation of Notch in cell differentiation in PA. PMID:26516303

  20. Natural Paradigms of Plant Cell Wall Degradation

    SciTech Connect

    Wei, H.; Xu, Q.; Taylor, L. E.; Baker, J. O.; Tucker, M. P.; Ding, S. Y.

    2009-01-01

    Natural processes of recycling carbon from plant cell walls are slow but very efficient, generally involving microbial communities and their secreted enzymes. Efficient combinations of microbial communities and enzymes act in a sequential and synergistic manner to degrade plant cell walls. Recent understanding of plant cell wall ultra-structure, as well as the carbon metabolism, ATP production, and ecology of participating microbial communities, and the biochemical properties of their cellulolytic enzymes have led to new perspectives on saccharification of biomass. Microbial communities are dynamic functions of the chemical and structural compositions of plant cell wall components. The primitive 'multicellularity' exhibited by certain cellulolytic microorganisms may play a role in facilitating cell-cell communication and cell-plant cell wall-substrate interaction.

  1. Specification of epidermal cell fate in plant shoots.

    PubMed

    Takada, Shinobu; Iida, Hiroyuki

    2014-01-01

    Land plants have evolved a single layer of epidermal cells, which are characterized by mostly anticlinal cell division patterns, formation of a waterproof coat called cuticle, and unique cell types such as stomatal guard cells and trichomes. The shoot epidermis plays important roles not only to protect plants from dehydration and pathogens but also to ensure their proper organogenesis and growth control. Extensive molecular genetic studies in Arabidopsis and maize have identified a number of genes that are required for epidermal cell differentiation. However, the mechanism that specifies shoot epidermal cell fate during plant organogenesis remains largely unknown. Particularly, little is known regarding positional information that should restrict epidermal cell fate to the outermost cell layer of the developing organs. Recent studies suggested that certain members of the HD-ZIP class IV homeobox genes are possible master regulators of shoot epidermal cell fate. Here, we summarize the roles of the regulatory genes that are involved in epidermal cell fate specification and discuss the possible mechanisms that limit the expression and/or activity of the master transcriptional regulators to the outermost cell layer in plant shoots. PMID:24616724

  2. Differentiation of plant age in grasses using remote sensing

    NASA Astrophysics Data System (ADS)

    Knox, Nichola M.; Skidmore, Andrew K.; van der Werff, Harald M. A.; Groen, Thomas A.; de Boer, Willem F.; Prins, Herbert H. T.; Kohi, Edward; Peel, Mike

    2013-10-01

    Phenological or plant age classification across a landscape allows for examination of micro-topographical effects on plant growth, improvement in the accuracy of species discrimination, and will improve our understanding of the spatial variation in plant growth. In this paper six vegetation indices used in phenological studies (including the newly proposed PhIX index) were analysed for their ability to statistically differentiate grasses of different ages in the sequence of their development. Spectra of grasses of different ages were collected from a greenhouse study. These were used to determine if NDVI, NDWI, CAI, EVI, EVI2 and the newly proposed PhIX index could sequentially discriminate grasses of different ages, and subsequently classify grasses into their respective age category. The PhIX index was defined as: (AVNIRn+log(ASWIR2n))/(AVNIRn-log(ASWIR2n)), where AVNIRn and ASWIR2n are the respective normalised areas under the continuum removed reflectance curve within the VNIR (500-800 nm) and SWIR2 (2000-2210 nm) regions. The PhIX index was found to produce the highest phenological classification accuracy (Overall Accuracy: 79%, and Kappa Accuracy: 75%) and similar to the NDVI, EVI and EVI2 indices it statistically sequentially separates out the developmental age classes. Discrimination between seedling and dormant age classes and the adult and flowering classes was problematic for most of the tested indices. Combining information from the visible near infrared (VNIR) and shortwave infrared region (SWIR) region into a single phenological index captures the phenological changes associated with plant pigments and the ligno-cellulose absorption feature, providing a robust method to discriminate the age classes of grasses. This work provides a valuable contribution into mapping spatial variation and monitoring plant growth across savanna and grassland ecosystems.

  3. Successful differentiation to T cells, but unsuccessful B-cell generation, from B-cell-derived induced pluripotent stem cells.

    PubMed

    Wada, Haruka; Kojo, Satoshi; Kusama, Chie; Okamoto, Naoki; Sato, Yorino; Ishizuka, Bunpei; Seino, Ken-ichiro

    2011-01-01

    Forced expression of certain transcription factors in somatic cells results in generation of induced pluripotent stem (iPS) cells, which differentiate into various cell types. We investigated T-cell and B-cell lineage differentiation from iPS cells in vitro. To evaluate the impact of iPS cell source, murine splenic B-cell-derived iPS (B-iPS) cells were generated after retroviral transduction of four transcription factors (Oct4, Sox2, Klf4 and c-Myc). B-iPS cells were identical to embryonic stem (ES) cells and mouse embryonic fibroblast (MEF)-derived iPS cells in morphology, ES cell marker expression as well as teratoma and chimera mouse formation. Both B-iPS and MEF-derived iPS cells differentiated into lymphocytes in OP9 co-culture systems. Both efficiently differentiated into T-cell lineage that produced IFN-γ on T-cell receptor stimulation. However, iPS cells including B-iPS cells were relatively resistant to B-cell lineage differentiation. One of the reasons of the failure of B-cell lineage differentiation seemed due to a defect of Pax5 expression in the differentiated cells. Therefore, current in vitro differentiation systems using iPS cells are sufficient for inducing T-cell but not B-cell lineage. PMID:21135032

  4. Plant Proteases Involved in Regulated Cell Death.

    PubMed

    Zamyatnin, A A

    2015-12-01

    Each plant genome encodes hundreds of proteolytic enzymes. These enzymes can be divided into five distinct classes: cysteine-, serine-, aspartic-, threonine-, and metalloproteinases. Despite the differences in their structural properties and activities, members of all of these classes in plants are involved in the processes of regulated cell death - a basic feature of eukaryotic organisms. Regulated cell death in plants is an indispensable mechanism supporting plant development, survival, stress responses, and defense against pathogens. This review summarizes recent advances in studies of plant proteolytic enzymes functioning in the initiation and execution of distinct types of regulated cell death. PMID:26878575

  5. Refractive index of plant cell walls

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  6. Cell-to-cell communication in plants, animals, and fungi: a comparative review

    NASA Astrophysics Data System (ADS)

    Bloemendal, Sandra; Kück, Ulrich

    2013-01-01

    Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.

  7. What can plants do for cell biology?

    PubMed Central

    Bezanilla, Magdalena

    2013-01-01

    Historically, cell biologists studied organisms that represented a reasonable sampling of life's diversity, whereas recently research has narrowed into a few model systems. As a result, the cells of plants have been relatively neglected. Here I choose three examples to illustrate how plants have been informative and could be even more so. Owing to their ease of imaging and genetic tractability, multicellular plant model systems provide a unique opportunity to address long-standing questions in cell biology. PMID:23943803

  8. Gravity, chromosomes, and organized development in aseptically cultured plant cells

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1993-01-01

    The objectives of the PCR experiment are: to test the hypothesis that microgravity will in fact affect the pattern and developmental progression of embryogenically competent plant cells from one well-defined, critical stage to another; to determine the effects of microgravity in growth and differentiation of embryogenic carrot cells grown in cell culture; to determine whether microgravity or the space environment fosters an instability of the differentiated state; and to determine whether mitosis and chromosome behavior are adversely affected by microgravity. The methods employed will consist of the following: special embryogenically competent carrot cell cultures will be grown in cell culture chambers provided by NASDA; four cell culture chambers will be used to grow cells in liquid medium; two dishes (plant cell culture dishes) will be used to grow cells on a semi-solid agar support; progression to later embryonic stages will be induced in space via crew intervention and by media manipulation in the case of liquid grown cell cultures; progression to later stages in case of semi-solid cultures will not need crew intervention; embryo stages will be fixed at a specific interval (day 6) in flight only in the case of liquid-grown cultures; and some living cells and somatic embryos will be returned for continued post-flight development and 'grown-out.' These will derive from the semi-solid grown cultures.

  9. Differential Expression of Proteins and mRNAs from Border Cells and Root Tips of Pea.

    PubMed Central

    Brigham, L. A.; Woo, H. H.; Nicoll, S. M.; Hawes, M. C.

    1995-01-01

    Many plants release large numbers of metabolically active root border cells into the rhizosphere. We have proposed that border cells, cells produced by the root cap meristem that separate from the rest of the root upon reaching the periphery of the cap, are a singularly differentiated part of the root system that modulates the environment of the plant root by producing specific substances to be released into the rhizosphere. Proteins synthesized in border cells exhibit profiles that are very distinct from those of the root tip (root cap, root meristem, and adjacent cells). In vivo-labeling experiments demonstrate that 13% of the proteins that are abundant in preparations from border cells are undetectable in root tip preparations. Twenty-five percent of the proteins synthesized by border cells in a 1-h period are rapidly excreted into the incubation medium. Quantitative variation in levels of specific marker proteins, including glutamine synthetase, heat-shock protein 70, and isoflavone reductase, also occurs between border cells and cells in the root tip. mRNA differential-display assays demonstrate that these large qualitative and quantitative differences in protein expression are correlated with similarly distinct patterns of gene expression. These observations are consistent with the hypothesis that a major switch in gene expression accompanies differentiation into root border cells, as expected for cells with specialized functions in plant development. PMID:12228604

  10. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    SciTech Connect

    Darvill, Alan; Hahn, Michael G.; O'Neill, Malcolm A.; York, William S.

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  11. Differentiation of chicken umbilical cord mesenchymal stem cells into beta-like pancreatic islet cells.

    PubMed

    Bai, Chunyu; Gao, Yuhua; Li, Qian; Feng, Yuan; Yu, Yanze; Meng, Gentong; Zhang, Minghai; Guan, Weijun

    2015-04-01

    In this study, we explored the possibility of using in vitro differentiation to create functional beta-like islet cells from chicken umbilical cord mesenchymal stem cells (UCMSCs). Passaged UCMSCs were induced to differentiate into pancreatic beta-like islet cells. Differentiated cells were observed through dithizone staining, and Pdx1 and insulin expressed in differentiated cells were detected with immunofluorescence. Insulin and C-peptide production from differentiated cells were analyzed using ELISA and western blotting. Differentiated cells were found to not only express Pdx1, insulin, and C-peptide, but also to display a glucose-responsive secretion of these hormones. PMID:24303870

  12. Phenazopyridine induces and synchronizes neuronal differentiation of embryonic stem cells.

    PubMed

    Suter, David M; Preynat-Seauve, Olivier; Tirefort, Diderik; Feki, Anis; Krause, Karl-Heinz

    2009-09-01

    Embryonic stem (ES) cells are powerful tools to understand mechanisms of neuronal differentiation and to engineer neurons for in vitro studies and cell therapy. We developed a screening approach to identify small organic molecules driving neuronal differentiation of ES cells. For this purpose, we used a lentivector carrying a dual luciferase reporter system to engineer an ES cell line which allowed us to screen for small organic molecules enhancing neuronal differentiation. One of them, phenazopyridine, was further analysed in human ES cells. Phenazopyridine: (i) enhanced neuronal differentiation, (ii) increased cell survival, (iii) decreased the amount of non-neuronal and undifferentiated cells and (iv) synchronized the cellular differentiation state. Phenazopyridine allowed the development of a differentiation protocol compatible with the generation of clinical grade neural precursors, which were able differentiate into different neuronal subtypes, astrocytes and oligodendrocytes. In summary, we describe a powerful approach to identify small molecules directing stem cell differentiation. This led to the establishment of a new application for an old drug and the development of a novel clinical grade protocol for neuronal differentiation of ES cells. PMID:20196783

  13. Human embryonic stem cell differentiation toward regional specific neural precursors.

    PubMed

    Erceg, Slaven; Ronaghi, Mohammad; Stojković, Miodrag

    2009-01-01

    Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that have the capacity to differentiate into a wide variety of cell types. This potentiality represents a promising source to overcome many human diseases by providing an unlimited supply of all cell types, including cells with neural characteristics. Therefore, this review summarizes early neural development and the potential of hESCs to differentiate under in vitro conditions, examining at the same time the potential use of differentiated hESCs for therapeutic applications for neural tissue and cell regeneration. PMID:18845761

  14. Human Embryonic Stem Cell Differentiation Toward Regional Specific Neural Precursors

    PubMed Central

    Erceg, Slaven; Ronaghi, Mohammad; Stojković, Miodrag

    2009-01-01

    Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that have the capacity to differentiate into a wide variety of cell types. This potentiality represents a promising source to overcome many human diseases by providing an unlimited supply of all cell types, including cells with neural characteristics. Therefore, this review summarizes early neural development and the potential of hESCs to differentiate under in vitro conditions, examining at the same time the potential use of differentiated hESCs for therapeutic applications for neural tissue and cell regeneration. PMID:18845761

  15. SETD7 Regulates the Differentiation of Human Embryonic Stem Cells

    PubMed Central

    Castaño, Julio; Morera, Cristina; Sesé, Borja; Boue, Stephanie; Bonet-Costa, Carles; Martí, Merce; Roque, Alicia; Jordan, Albert; Barrero, Maria J.

    2016-01-01

    The successful use of specialized cells in regenerative medicine requires an optimization in the differentiation protocols that are currently used. Understanding the molecular events that take place during the differentiation of human pluripotent cells is essential for the improvement of these protocols and the generation of high quality differentiated cells. In an effort to understand the molecular mechanisms that govern differentiation we identify the methyltransferase SETD7 as highly induced during the differentiation of human embryonic stem cells and differentially expressed between induced pluripotent cells and somatic cells. Knock-down of SETD7 causes differentiation defects in human embryonic stem cell including delay in both the silencing of pluripotency-related genes and the induction of differentiation genes. We show that SETD7 methylates linker histone H1 in vitro causing conformational changes in H1. These effects correlate with a decrease in the recruitment of H1 to the pluripotency genes OCT4 and NANOG during differentiation in the SETD7 knock down that might affect the proper silencing of these genes during differentiation. PMID:26890252

  16. Hematopoietic Stem Cell: Self-renewal versus Differentiation

    PubMed Central

    Seita, Jun; Weissman, Irving L.

    2010-01-01

    The mammalian blood system, containing more than ten distinct mature cell types, stands on one specific cell type, hematopoietic stem cell (HSC). Within the system, only HSC possess the ability of both multi-potency and self-renewal. Multi-potency is the ability to differentiate into all functional blood cells. Self-renewal is the ability to give rise to HSC itself without differentiation. Since mature blood cells are predominantly short lived, HSC continuously provide more differentiated progenitors while properly maintaining the HSC pool size properly throughout life by precisely balancing self-renewal and differentiation. Thus, understanding the mechanisms of self-renewal and differentiation of HSC has been a central issue. In this review, we focus on the hierarchical structure of the hematopoietic system, the current understanding of microenvironment and molecular cues regulating self-renewal and differentiation of adult HSC, and the currently emerging systems approaches to understand HSC biology. PMID:20890962

  17. The cell biology of lignification in higher plants

    PubMed Central

    Barros, Jaime; Serk, Henrik; Granlund, Irene; Pesquet, Edouard

    2015-01-01

    Background Lignin is a polyphenolic polymer that strengthens and waterproofs the cell wall of specialized plant cell types. Lignification is part of the normal differentiation programme and functioning of specific cell types, but can also be triggered as a response to various biotic and abiotic stresses in cells that would not otherwise be lignifying. Scope Cell wall lignification exhibits specific characteristics depending on the cell type being considered. These characteristics include the timing of lignification during cell differentiation, the palette of associated enzymes and substrates, the sub-cellular deposition sites, the monomeric composition and the cellular autonomy for lignin monomer production. This review provides an overview of the current understanding of lignin biosynthesis and polymerization at the cell biology level. Conclusions The lignification process ranges from full autonomy to complete co-operation depending on the cell type. The different roles of lignin for the function of each specific plant cell type are clearly illustrated by the multiple phenotypic defects exhibited by knock-out mutants in lignin synthesis, which may explain why no general mechanism for lignification has yet been defined. The range of phenotypic effects observed include altered xylem sap transport, loss of mechanical support, reduced seed protection and dispersion, and/or increased pest and disease susceptibility. PMID:25878140

  18. Plant Response to Differential Soil Water Content and Salinity

    NASA Astrophysics Data System (ADS)

    Moradi, A. B.; Dara, A.; Kamai, T.; Ngo, A.; Walker, R.; Hopmans, J. W.

    2011-12-01

    Root-zone soil water content is extremely dynamic, governed by complex and coupled processes such as root uptake, irrigation, evaporation, and leaching. Root uptake of water and nutrients is influenced by these conditions and the processes involved. Plant roots are living and functioning in a dynamic environment that is subjected to extreme changes over relatively short time and small distances. In order to better manage our agricultural resources and cope with increasing constraints of water limitation, environmental concerns and climate change, it is vital to understand plants responses to these changes in their environment. We grew chick pea (Cicer arietinum) plants, in boxes of 30 x 25 x 1 cm dimensions filled with fine sand. Layers of coarse sand (1.5 cm thick) were embedded in the fine-sand media to divide the root growth environment into sections that were hydraulically disconnected from each other. This way, each section could be independently treated with differential levels of water and salinity. The root growth and distribution in the soil was monitored on daily bases using neutron radiography. Daily water uptake was measured by weighing the containers. Changes of soil water content in each section of the containers were calculated from the neutron radiographs. Plants that part of their root system was stressed with drought or salinity showed no change in their daily water uptake rate. The roots in the stressed sections stayed turgid during the stress period and looked healthy in the neutron images. However the uptake rate was severely affected when the soil in the non-stressed section started to dry. The plants were then fully irrigated with water and the water uptake rate recovered to its initial rate shortly after irrigation. The neutron radiographs clearly illustrated the shrinkage and recovery of the roots under stress and the subsequent relief. This cycle was repeated a few times and the same trend could be reproduced. Our results show that plants

  19. Lipid changes associated with erythroid differentiation of Friend erythroleukemia cells.

    PubMed

    Fallani, A; Arcangeli, A; Ruggieri, S

    1987-01-01

    Friend erythroleukemia cells were induced to differentiate by dimethyl sulfoxide (DMSO) and hexamethylene-bis-acetamide (HBMA) in order to investigate whether their lipid characteristics, common to other systems of transformed cells, revert to a normal differentiation pattern. DBA/2 mouse erythrocytes were examined as a model of terminal differentiation in erythroid lineage. Variants of erythroleukemia cells not inducible to erythroid differentiation by DMSO and HMBA were also used in this study, in order to test whether lipid modifications occurring in differentiated erythroleukemia cells were related to the differentiation process or caused by specific effects of the inducers. Friend erythroleukemia cells showed the same lipid characteristics as those found in other transformed cell types. That is, a high level of ether-linked lipids and low percentages of long chain polyunsaturated fatty acids along with an accumulation of monoenoic fatty acids in phospholipids. These lipid characteristics remained unchanged when erythroleukemia cells were induced to differentiation by either DMSO or HMBA. However, other lipid components of erythroleukemia cells, e.g., phosphatidylethanolamine and triglycerides, were affected by erythroid differentiation. There were also changes of some lipid components of erythroleukemia cells, such as cholesteryl esters, which were related to specific effects of the inducers. Both DMSO- and HMBA-resistant variants differed from the inducible erythroleukemia cells, mainly in their ether-linked phospholipid pattern. PMID:3475757

  20. Chemically induced bidirectional differentiation of embryonal carcinoma cells in vitro.

    PubMed Central

    Speers, W. C.; Birdwell, C. R.; Dixon, F. J.

    1979-01-01

    N,N-dimethylacetamide, hexamethylene bisacetamide, and Polybrene induced rapid and extensive differentiation in vitro in an otherwise slowly differentiating subline of embryonal carcinoma cells. The type of differentiated cell induced was dependent on the spatial organization of the stem cells during drug treatment. In monalayer culture "epithelial" cells were produced exclusively. However, treatment of aggregated suspension cultures yielded predominantly "fibroblast-like" cells. The undifferentiated embryonal carcinoma cells and the two differentiated cell types were morphologically distinct when examined by light microscopy, scanning electron microscopy, and transmission electron microscopy; and they had differences in cell surface antigens. Both differential cell types produced large amounts of fibronectin, whereas the embryonal carcinoma cells produced only minimal amounts. This system provides a convenient way to induce relatively synchronous differentiation of embryonal carcinoma cells into specific differentiated cell types. Images Figure 5 Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 PMID:507191

  1. Cell Fate and Differentiation of the Developing Ocular Lens

    PubMed Central

    Greiling, Teri M. S.; Aose, Masamoto

    2010-01-01

    Purpose. Even though zebrafish development does not include the formation of a lens vesicle, the authors' hypothesis is that the processes of cell differentiation are similar in zebrafish and mammals and determine cell fates in the lens. Methods. Two-photon live embryo imaging was used to follow individual fluorescently labeled cells in real-time from the placode stage at 16 hours postfertilization (hpf) until obvious morphologic differentiation into epithelium or fiber cells had occurred at approximately 28 hpf. Immunohistochemistry was used to label proliferating, differentiating, and apoptotic cells. Results. Similar to the mammal, cells in the teleost peripheral lens placode migrated to the anterior lens mass and differentiated into an anterior epithelium. Cells in the central lens placode migrated to the posterior lens mass and differentiated into primary fiber cells. Anterior and posterior polarization in the zebrafish lens mass was similar to mammalian lens vesicle polarization. Primary fiber cell differentiation was apparent at approximately 21 hpf, before separation of the lens from the surface ectoderm, as evidenced by cell elongation, exit from the cell cycle, and expression of Zl-1, a marker for fiber differentiation. TUNEL labeling demonstrated that apoptosis was not a primary mechanism for lens separation from the surface ectoderm. Conclusions. Despite the absence of a lens vesicle in the zebrafish embryo, lens organogenesis appears to be well conserved among vertebrates. Results using three-dimensional live embryo imaging of zebrafish development showed minimal differences and strong similarities in the fate of cells in the zebrafish and mammalian lens placode. PMID:19834024

  2. Polarity establishment, morphogenesis, and cultured plant cells in space

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1989-01-01

    Plant development entails an orderly progression of cellular events both in terms of time and geometry. There is only circumstantial evidence that, in the controlled environment of the higher plant embryo sac, gravity may play a role in embryo development. It is still not known whether or not normal embryo development and differentiation in higher plants can be expected to take place reliably and efficiently in the micro g space environment. It seems essential that more attention be given to studying aspects of reproductive biology in order to be confident that plants will survive seed to seed to seed in a space environment. Until the time arrives when successive generations of plants can be grown, the best that can be done is utilize the most appropriate systems and begin, piece meal, to accumulate information on important aspects of plant reproduction. Cultured plant cells can play an important role in these activities since they can be grown so as to be morphogenetically competent, and thus can simulate those embryogenic events more usually identified with fertilized eggs in the embryo sac of the ovule in the ovary. Also, they can be manipulated with relative ease. The extreme plasticity of such demonstrably totipotent cell systems provides a means to test environmental effects such as micro g on a potentially free-running entity. The successful manipulation and management of plant cells and propagules in space also has significance for exploitation of biotechnologies in space since such systems, perforce, are an important vehicle whereby many genetic engineering manipulations are achieved.

  3. Graphene Oxide promotes embryonic stem cell differentiation to haematopoietic lineage

    PubMed Central

    Garcia-Alegria, Eva; Iluit, Maria; Stefanska, Monika; Silva, Claudio; Heeg, Sebastian; Kimber, Susan J.; Kouskoff, Valerie; Lacaud, Georges; Vijayaraghavan, Aravind; Batta, Kiran

    2016-01-01

    Pluripotent stem cells represent a promising source of differentiated tissue-specific stem and multipotent progenitor cells for regenerative medicine and drug testing. The realisation of this potential relies on the establishment of robust and reproducible protocols of differentiation. Several reports have highlighted the importance of biomaterials in assisting directed differentiation. Graphene oxide (GO) is a novel material that has attracted increasing interest in the field of biomedicine. In this study, we demonstrate that GO coated substrates significantly enhance the differentiation of mouse embryonic stem (ES) cells to both primitive and definitive haematopoietic cells. GO does not affect cell proliferation or survival of differentiated cells but rather enhances the transition of haemangioblasts to haemogenic endothelial cells, a key step during haematopoietic specification. Importantly, GO also improves, in addition to murine, human ES cell differentiation to blood cells. Taken together, our study reveals a positive role for GO in haematopoietic differentiation and suggests that further functionalization of GO could represent a valid strategy for the generation of large numbers of functional blood cells. Producing these cells would accelerate haematopoietic drug toxicity testing and treatment of patients with blood disorders or malignancies. PMID:27197878

  4. Graphene Oxide promotes embryonic stem cell differentiation to haematopoietic lineage.

    PubMed

    Garcia-Alegria, Eva; Iluit, Maria; Stefanska, Monika; Silva, Claudio; Heeg, Sebastian; Kimber, Susan J; Kouskoff, Valerie; Lacaud, Georges; Vijayaraghavan, Aravind; Batta, Kiran

    2016-01-01

    Pluripotent stem cells represent a promising source of differentiated tissue-specific stem and multipotent progenitor cells for regenerative medicine and drug testing. The realisation of this potential relies on the establishment of robust and reproducible protocols of differentiation. Several reports have highlighted the importance of biomaterials in assisting directed differentiation. Graphene oxide (GO) is a novel material that has attracted increasing interest in the field of biomedicine. In this study, we demonstrate that GO coated substrates significantly enhance the differentiation of mouse embryonic stem (ES) cells to both primitive and definitive haematopoietic cells. GO does not affect cell proliferation or survival of differentiated cells but rather enhances the transition of haemangioblasts to haemogenic endothelial cells, a key step during haematopoietic specification. Importantly, GO also improves, in addition to murine, human ES cell differentiation to blood cells. Taken together, our study reveals a positive role for GO in haematopoietic differentiation and suggests that further functionalization of GO could represent a valid strategy for the generation of large numbers of functional blood cells. Producing these cells would accelerate haematopoietic drug toxicity testing and treatment of patients with blood disorders or malignancies. PMID:27197878

  5. Pathological modifications of plant stem cell destiny

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In higher plants, the shoot apex contains undifferentiated stem cells that give rise to various tissues and organs. The fate of these stem cells determines the pattern of plant growth as well as reproduction; and such fate is genetically preprogrammed. We found that a bacterial infection can derai...

  6. Primary pulmonary germ cell tumor with blastomatous differentiation.

    PubMed

    Miller, R R; Champagne, K; Murray, R C

    1994-11-01

    We describe the clinical and pathologic findings of a patient with mixed blastoma-germ cell malignancy primary in the lung. Serum alpha-fetoprotein levels were elevated at presentation, and normalized with anti-germ cell chemotherapy. The resection specimen contained massively necrotic germ cell tumor with viable mature neural tissue, plus viable biphasic blastoma with stromal bone and skeletal muscle differentiation. It is not clear whether the germ cell component represents unusual differentiation of a somatic cell line or whether the blastoma component represents an unusual pattern of teratomatous differentiation. PMID:7525163

  7. Augmentation of differentiation and gap junction function by kaempferol in partially differentiated colon cancer cells.

    PubMed

    Nakamura, Yasushi; Chang, Chia-Cheng; Mori, Toshio; Sato, Kenji; Ohtsuki, Kozo; Upham, Brad L; Trosko, James E

    2005-03-01

    Kaempferol induces differentiation in partially differentiated colon cancer cells which express low levels of connexin43 protein and connexin43 mRNA (KNC cells). Differentiation was observed as changes in cell morphology and the activity of alkaline phosphatase. Increased differentiation in kaempferol-treated KNC cells correlated with restoration of gap junctional intercellular communication (GJIC), increased levels of connexin43 protein and its phosphorylation status. Phosphorylation (activation) of Stat3 and Erk was also reduced by kaempferol. An inhibitor of Stat3 phosphorylation also induced morphological changes in KNC cells similar to those in kaempferol-treated cells, suggesting that kaempferol-induced differentiation may be mediated by inhibition of Stat3 phosphorylation. These effects were not observed in HCT116 cells, a poorly differentiated colon cancer cell line deficient in expression of connexin43 mRNA and connexin43 protein. In conclusion, kaempferol might function as an anticancer agent by re-establishing GJIC through enhancement of the expression and phosphorylation of connexin43 protein in a tumorigenic colon cancer cell line that already expresses connexin43 mRNA via a Stat3-dependent mechanism. In contrast, kaempferol had no effect in a tumorigenic colon cancer cell line that did not express connexin43 mRNA and was deficient in GJIC. PMID:15618237

  8. Differentiation of Mucilage Secretory Cells of the Arabidopsis Seed Coat1

    PubMed Central

    Western, Tamara L.; Skinner, Debra J.; Haughn, George W.

    2000-01-01

    In some plant species, including Arabidopsis, fertilization induces the epidermal cells of the outer ovule integument to differentiate into a specialized seed coat cell type with a unique morphology and containing large quantities of polysaccharide mucilage (pectin). Such seed coat mucilage cells are necessary for neither viability nor germination under normal laboratory conditions. Thus, the Arabidopsis seed coat offers a unique system with which to use genetics to identify genes controlling cell morphogenesis and complex polysaccharide biosynthesis and secretion. As a first step in the application of this system, we have used microscopy to investigate the structure and differentiation of Arabidopsis seed coat mucilage cells, including cell morphogenesis and the synthesis, secretion, and extrusion of mucilage. During seed coat development in Arabidopsis, the epidermal cells of the outer ovule integument grow and differentiate into cells that produce large quantities of mucilage between the primary cell wall and plasma membrane. Concurrent with mucilage production, the cytoplasm is shaped into a column in the center of the cell. Following mucilage secretion the cytoplasmic column is surrounded by a secondary cell wall to form a structure known as the columella. Thus, differentiation of the seed coat mucilage cells involves a highly regulated series of events including growth, morphogenesis, mucilage biosynthesis and secretion, and secondary cell wall synthesis. PMID:10677428

  9. Electrical Property Characterization of Neural Stem Cells in Differentiation

    PubMed Central

    Sun, He; Chen, Deyong; Li, Zhaohui; Fan, Beiyuan; George, Julian; Xue, Chengcheng; Cui, Zhanfeng; Wang, Junbo

    2016-01-01

    Electrical property characterization of stem cells could be utilized as a potential label-free biophysical approach to evaluate the differentiation process. However, there has been a lack of technology or tools that can quantify the intrinsic cellular electrical markers (e.g., specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm)) for a large amount of stem cells or differentiated cells. In this paper, a microfluidic platform enabling the high-throughput quantification of Cspecific membrane and σcytoplasm from hundreds of single neural stem cells undergoing differentiation was developed to explore the feasibility to characterize the neural stem cell differentiation process without biochemical staining. Experimental quantification using biochemical markers (e.g., Nestin, Tubulin and GFAP) of neural stem cells confirmed the initiation of the differentiation process featured with gradual loss in cellular stemness and increased cell markers for neurons and glial cells. The recorded electrical properties of neural stem cells undergoing differentiation showed distinctive and unique patterns: 1) in the suspension culture before inducing differentiation, a large distribution and difference in σcytoplasm among individual neural stem cells was noticed, which indicated heterogeneity that may result from the nature of suspension culture of neurospheres; and 2) during the differentiation in adhering monolayer culture, significant changes and a large difference in Cspecific membrane were located indicating different expressions of membrane proteins during the differentiation process, and a small distribution difference in σcytoplasm was less significant that indicated the relatively consistent properties of cytoplasm during the culture. In summary, significant differences in Cspecific membrane and σcytoplasm were observed during the neural stem cell differentiation process, which may potentially be used as label-free biophysical markers

  10. Nitric oxide-cyclic GMP signaling in stem cell differentiation

    PubMed Central

    Mujoo, Kalpana; Krumenacker, Joshua S.; Murad, Ferid

    2011-01-01

    The nitric oxide-cyclic GMP (NO-cGMP) pathway mediates important physiological functions associated with various integrative body systems including the cardiovascular and nervous systems. Furthermore, NO regulates cell growth, survival, apoptosis, proliferation and differentiation at the cellular level. To understand the significance of the NO-cGMP pathway in development and differentiation, studies have been conducted both in developing embryos and stem cells. Manipulation of the NO-cGMP pathway by employing activators and inhibitors as pharmacological probes and/or genetic manipulation of NO signaling components has implicated the involvement of this pathway in regulation of stem cell differentiation. This review will focus on some of the work pertaining to the role of NO-cGMP in differentiation of stem cells into cells of various lineages particularly into myocardial cells and stem cell based therapy. PMID:22019632

  11. The topographical regulation of embryonic stem cell differentiation.

    PubMed Central

    Murray, Patricia; Edgar, David

    2004-01-01

    The potential use of pluripotent stem cells for tissue repair or replacement is now well recognized. While the ability of embryonic stem (ES) cells to differentiate into all cells of the body is undisputed, their use is currently restricted by our limited knowledge of the mechanisms controlling their differentiation. This review discusses recent work by ourselves and others investigating the intercellular signalling events that occur within aggregates of mouse ES cells. The work illustrates that the processes of ES cell differentiation, epithelialization and programmed cell death are dependent upon their location within the aggregates and coordinated by the extracellular matrix. Establishment of the mechanisms involved in these events is not only of use for the manipulation of ES cells themselves, but it also throws light on the ways in which differentiation is coordinated during embryogenesis. PMID:15306413

  12. Reprogramming of plant cells induced by 6b oncoproteins from the plant pathogen Agrobacterium.

    PubMed

    Ito, Masaki; Machida, Yasunori

    2015-05-01

    Reprogramming of plant cells is an event characterized by dedifferentiation, reacquisition of totipotency, and enhanced cell proliferation, and is typically observed during formation of the callus, which is dependent on plant hormones. The callus-like cell mass, called a crown gall tumor, is induced at the sites of infection by Agrobacterium species through the expression of hormone-synthesizing genes encoded in the T-DNA region, which probably involves a similar reprogramming process. One of the T-DNA genes, 6b, can also by itself induce reprogramming of differentiated cells to generate tumors and is therefore recognized as an oncogene acting in plant cells. The 6b genes belong to a group of Agrobacterium T-DNA genes, which include rolB, rolC, and orf13. These genes encode proteins with weakly conserved sequences and may be derived from a common evolutionary origin. Most of these members can modify plant growth and morphogenesis in various ways, in most cases without affecting the levels of plant hormones. Recent studies have suggested that the molecular function of 6b might be to modify the patterns of transcription in the host nuclei, particularly by directly targeting the host transcription factors or by changing the epigenetic status of the host chromatin through intrinsic histone chaperone activity. In light of the recent findings on zygotic resetting of nucleosomal histone variants in Arabidopsis thaliana, one attractive idea is that acquisition of totipotency might be facilitated by global changes of epigenetic status, which might be induced by replacement of histone variants in the zygote after fertilization and in differentiated cells upon stimulation by plant hormones as well as by expression of the 6b gene. PMID:25694001

  13. JAB1 accelerates odontogenic differentiation of dental pulp stem cells.

    PubMed

    Lian, Min; Zhang, Ye; Shen, Qijie; Xing, Jing; Lu, Xiaohui; Huang, Dan; Cao, Peipei; Shen, Shuling; Zheng, Ke; Zhang, Jinlong; Chen, Jie; Wang, Yi; Feng, Guijuan; Feng, Xingmei

    2016-06-01

    Jun activation domain-binding protein 1 (JAB1) is a multifunctional protein that participates in the control of cell proliferation and the stability of multiple proteins. JAB1 regulates several key proteins, and thereby produces varied effects on cell cycle progression, genome stability and cell survival. Some studies have shown that the loss of JAB1 in osteochondral progenitor cells severely impairs embryonic limb development in mice. However, the biological significance of JAB1 activity in the odontogenic differentiation of dental pulp stem cells (DPSCs) remains unclear. This study aimed to determine the role of JAB1, a key player in tooth development, in reparative dentin formation, especially odontogenic differentiation. We found that increased expression of JAB1 promoted odontogenic differentiation of DPSCs via Wnt/β-catenin signaling. The role of JAB1 in the odontogenic differentiation of DPSCs was further confirmed by knocking down JAB1. Our findings provide novel insights on odontogenic differentiation of DPSCs. PMID:26989054

  14. Effects of THAP11 on Erythroid Differentiation and Megakaryocytic Differentiation of K562 Cells

    PubMed Central

    Kong, Xiang-Zhen; Yin, Rong-Hua; Ning, Hong-Mei; Zheng, Wei-Wei; Dong, Xiao-Ming; Yang, Yang; Xu, Fei-Fei; Li, Jian-Jie; Zhan, Yi-Qun; Yu, Miao; Ge, Chang-Hui; Zhang, Jian-Hong; Chen, Hui; Li, Chang-Yan; Yang, Xiao-Ming

    2014-01-01

    Hematopoiesis is a complex process regulated by sets of transcription factors in a stage-specific and context-dependent manner. THAP11 is a transcription factor involved in cell growth, ES cell pluripotency, and embryogenesis. Here we showed that THAP11 was down-regulated during erythroid differentiation but up-regulated during megakaryocytic differentiation of cord blood CD34+ cells. Overexpression of THAP11 in K562 cells inhibited the erythroid differentiation induced by hemin with decreased numbers of benzidine-positive cells and decreased mRNA levels of α-globin (HBA) and glycophorin A (GPA), and knockdown of THAP11 enhanced the erythroid differentiation. Conversely, THAP11 overexpression accelerated the megakaryocytic differentiation induced by phorbol myristate acetate (PMA) with increased percentage of CD41+ cells, increased numbers of 4N cells, and elevated CD61 mRNA levels, and THAP11 knockdown attenuated the megakaryocytic differentiation. The expression levels of transcription factors such as c-Myc, c-Myb, GATA-2, and Fli1 were changed by THAP11 overexpression. In this way, our results suggested that THAP11 reversibly regulated erythroid and megakaryocytic differentiation. PMID:24637716

  15. Crucial Genes and Pathways in Chicken Germ Stem Cell Differentiation

    PubMed Central

    Zhang, Zhentao; Elsayed, Ahmed Kamel; Shi, Qingqing; Zhang, Yani; Zuo, Qisheng; Li, Dong; Lian, Chao; Tang, Beibei; Xiao, Tianrong; Xu, Qi; Chang, Guobin; Chen, Guohong; Zhang, Lei; Wang, Kehua; Wang, Yingjie; Jin, Kai; Wang, Yilin; Song, Jiuzhou; Cui, Hengmi; Li, Bichun

    2015-01-01

    Male germ cell differentiation is a subtle and complex regulatory process. Currently, its regulatory mechanism is still not fully understood. In our experiment, we performed the first comprehensive genome and transcriptome-wide analyses of the crucial genes and signaling pathways in three kinds of crucial cells (embryonic stem cells, primordial germ cell, and spermatogonial stem cells) that are associated with the male germ cell differentiation. We identified thousands of differentially expressed genes in this process, and from these we chose 173 candidate genes, of which 98 genes were involved in cell differentiation, 19 were involved in the metabolic process, and 56 were involved in the differentiation and metabolic processes, like GAL9, AMH, PLK1, and PSMD7 and so on. In addition, we found that 18 key signaling pathways were involved mainly in cell proliferation, differentiation, and signal transduction processes like TGF-β, Notch, and Jak-STAT. Further exploration found that the candidate gene expression patterns were the same between in vitro induction experiments and transcriptome results. Our results yield clues to the mechanistic basis of male germ cell differentiation and provide an important reference for further studies. PMID:25847247

  16. Parvalbumin-Positive Basket Cells Differentiate Among Hippocampal Pyramidal Cells

    PubMed Central

    Lee, Sang-Hun; Marchionni, Ivan; Bezaire, Marianne; Varga, Csaba; Danielson, Nathan; Lovett-Barron, Matthew; Losonczy, Attila; Soltesz, Ivan

    2014-01-01

    Summary CA1 pyramidal cells (PCs) are not homogeneous, but rather can be grouped by molecular, morphological, and functional properties. However, less is known about synaptic sources differentiating PCs. Using paired recordings in vitro, 2-photon Ca2+ imaging in vivo and computational modeling, we found that parvalbumin-expressing basket cells (PVBCs) evoked greater inhibition in CA1 PCs located in the deep compared to superficial layer of stratum pyramidale. In turn, analysis of reciprocal connectivity revealed more frequent excitatory inputs to PVBCs by superficial PCs, demonstrating bias in target selection by both the excitatory and inhibitory local connections in CA1. Additionally, PVBCs further segregated among deep PCs, preferentially innervating the amygdala-projecting PCs but receiving preferential excitation from the prefrontal cortex-projecting PCs, thus revealing distinct perisomatic inhibitory interactions between separate output channels. These results demonstrate the presence of heterogeneous PVBC-PC microcircuits, potentially contributing to the sparse and distributed structure of hippocampal network activity. PMID:24836505

  17. Advances and challenges in the differentiation of pluripotent stem cells into pancreatic β cells

    PubMed Central

    Abdelalim, Essam M; Emara, Mohamed M

    2015-01-01

    Pluripotent stem cells (PSCs) are able to differentiate into several cell types, including pancreatic β cells. Differentiation of pancreatic β cells depends on certain transcription factors, which function in a coordinated way during pancreas development. The existing protocols for in vitro differentiation produce pancreatic β cells, which are not highly responsive to glucose stimulation except after their transplantation into immune-compromised mice and allowing several weeks for further differentiation to ensure the maturation of these cells in vivo. Thus, although the substantial improvement that has been made for the differentiation of induced PSCs and embryonic stem cells toward pancreatic β cells, several challenges still hindering their full generation. Here, we summarize recent advances in the differentiation of PSCs into pancreatic β cells and discuss the challenges facing their differentiation as well as the different applications of these potential PSC-derived β cells. PMID:25621117

  18. Plant cells use auxin efflux to explore geometry.

    PubMed

    Zaban, Beatrix; Liu, Wenwen; Jiang, Xingyu; Nick, Peter

    2014-01-01

    Cell movement is the central mechanism for animal morphogenesis. Plant cell development rather relies on flexible alignment of cell axis adjusting cellular differentiation to directional cues. As central input, vectorial fields of mechanical stress and gradients of the phytohormone auxin have been discussed. In tissue contexts, mechanical and chemical signals will always act in concert; experimentally it is difficult to dissect their individual roles. We have designed a novel approach, based on cells, where directionality has been eliminated by removal of the cell wall. We impose a new axis using a microfluidic set-up to generate auxin gradients. Rectangular microvessels are integrated orthogonally with the gradient. Cells in these microvessels align their new axis with microvessel geometry before touching the wall. Auxin efflux is necessary for this touch-independent geometry exploration and we suggest a model, where auxin gradients can be used to align cell axis in tissues with minimized mechanical tensions. PMID:25068254

  19. Activin A programs the differentiation of human TFH cells.

    PubMed

    Locci, Michela; Wu, Jennifer E; Arumemi, Fortuna; Mikulski, Zbigniew; Dahlberg, Carol; Miller, Andrew T; Crotty, Shane

    2016-08-01

    Follicular helper T cells (TFH cells) are CD4(+) T cells specialized in helping B cells and are associated both with protective antibody responses and autoimmune diseases. The promise of targeting TFH cells therapeutically has been limited by fragmentary understanding of extrinsic signals that regulate the differentiation of human TFH cells. A screen of a human protein library identified activin A as a potent regulator of TFH cell differentiation. Activin A orchestrated the expression of multiple genes associated with the TFH program, independently or in concert with additional signals. TFH cell programming by activin A was antagonized by the cytokine IL-2. Activin A's ability to drive TFH cell differentiation in vitro was conserved in non-human primates but not in mice. Finally, activin-A-induced TFH programming was dependent on signaling via SMAD2 and SMAD3 and was blocked by pharmacological inhibitors. PMID:27376469

  20. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    PubMed

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation. PMID:26074079

  1. Fourier transform infrared spectroscopic analysis of cell differentiation

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kimura, Akinori; Kushibiki, Toshihiro; Awazu, Kunio

    2007-02-01

    Stem cells and its differentiations have got a lot of attentions in regenerative medicine. The process of differentiations, the formation of tissues, has become better understood by the study using a lot of cell types progressively. These studies of cells and tissue dynamics at molecular levels are carried out through various approaches like histochemical methods, application of molecular biology and immunology. However, in case of using regenerative sources (cells, tissues and biomaterials etc.) clinically, they are measured and quality-controlled by non-invasive methods from the view point of safety. Recently, the use of Fourier Transform Infrared spectroscopy (FT-IR) has been used to monitor biochemical changes in cells, and has gained considerable importance. The objective of this study is to establish the infrared spectroscopy of cell differentiation as a quality control of cell sources for regenerative medicine. In the present study, as a basic study, we examined the adipose differentiation kinetics of preadipocyte (3T3-L1) and the osteoblast differentiation kinetics of bone marrow mesenchymal stem cells (Kusa-A1) to analyze the infrared absorption spectra. As a result, we achieved to analyze the adipose differentiation kinetics using the infrared absorption peak at 1739 cm-1 derived from ester bonds of triglyceride and osteoblast differentiation kinetics using the infrared absorption peak at 1030 cm-1 derived from phosphate groups of calcium phosphate.

  2. T follicular helper cell differentiation, function, and roles in disease

    PubMed Central

    Crotty, Shane

    2014-01-01

    Summary Follicular helper T (Tfh) cells are specialized providers of T cell help to B cells, and are essential for germinal center formation, affinity maturation, and the development of most high affinity antibodies and memory B cells. Tfh cell differentiation is a multi-stage, multi-factorial process involving B cell lymphoma 6 (Bcl6) and other transcription factors. This article reviews understanding of Tfh cell biology, including their differentiation, migration, transcriptional regulation, and B cell help functions. Tfh cells are critical components of many protective immune responses against pathogens. As such, there is strong interest in harnessing Tfh cells to improve vaccination strategies. Tfh cells also have roles in a range of other diseases, particularly autoimmune diseases. Overall, there have been dramatic advances in this young field, but there is much to be learned about Tfh cell biology in the interest of applying that knowledge to biomedical needs. PMID:25367570

  3. Temporal competition between differentiation programs determines cell fate choice

    NASA Astrophysics Data System (ADS)

    Kuchina, Anna; Espinar, Lorena; Cagatay, Tolga; Balbin, Alejandro; Alvarado, Alma; Garcia-Ojalvo, Jordi; Suel, Gurol

    2011-03-01

    During pluripotent differentiation, cells adopt one of several distinct fates. The dynamics of this decision-making process are poorly understood, since cell fate choice may be governed by interactions between differentiation programs that are active at the same time. We studied the dynamics of decision-making in the model organism Bacillus subtilis by simultaneously measuring the activities of competing differentiation programs (sporulation and competence) in single cells. We discovered a precise switch-like point of cell fate choice previously hidden by cell-cell variability. Engineered artificial crosslinks between competence and sporulation circuits revealed that the precision of this choice is generated by temporal competition between the key players of two differentiation programs. Modeling suggests that variable progression towards a switch-like decision might represent a general strategy to maximize adaptability and robustness of cellular decision-making.

  4. Early stage differentiation of thallus cells of Porphyra haitanensis (Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Wang, Sujuan; Sun, Yunlong; Lu, Anming; Wang, Guangyuan

    1987-09-01

    The early stage differentiation of thallus cells of Porphyra haitanensis T. J. Chang et B. F. Zheng was studied. Protoplasts or single cells were isolated from the blades using enzyme mixture comprising 2% sea snail gut enzyme and 1% cellulase. The isolated protoplasts or single cells were incubated in the MES medium. The cell differentiations were examined under the microscope at intervals after incubation. Four types of cell differentiation, namely, normal, abnormal, carposporangial and spermatorangial, and rhizoidal types, were observed. Since normal cell differentiations occur mostly in small thalli 50 mm in length and middle portions of big thalli 200 mm in length, it is essential to select tissues from these two kinds of thalli essential for commercial production.

  5. Asymmetric cell division in plant development.

    PubMed

    Heidstra, Renze

    2007-01-01

    Plant embryogenesis creates a seedling with a basic body plan. Post-embryonically the seedling elaborates with a lifelong ability to develop new tissues and organs. As a result asymmetric cell divisions serve essential roles during embryonic and postembryonic development to generate cell diversity. This review highlights selective cases of asymmetric division in the model plant Arabidopsis thaliana and describes the current knowledge on fate determinants and mechanisms involved. Common themes that emerge are: 1. role of the plant hormone auxin and its polar transport machinery; 2. a MAP kinase signaling cascade and; 3. asymmetric segregating transcription factors that are involved in several asymmetric cell divisions. PMID:17585494

  6. The Effect of Spaceflight on Cartilage Cell Cycle and Differentiation

    NASA Technical Reports Server (NTRS)

    Doty, Stephen B.; Stiner, Dalina; Telford, William G.

    2000-01-01

    In vivo studies have shown that spaceflight results in loss of bone and muscle. In an effort to understand the mechanisms of these changes, cell cultures of cartilage, bone and muscle have been subjected to spaceflight to study the microgravity effects on differentiated cells. However it now seems possible that the cell differentiation process itself may be the event(s) most affected by spaceflight. For example, osteoblast-like cells have been shown to have reduced cellular activity in microgravity due to an underdifferentiated state (Carmeliet, et al, 1997). And reduced human lymphocyte growth in spaceflight was related to increased apoptosis (Lewis, et al, 1998). Which brings us to the question of whether reduced cellular activity in space is due to an effect on the differentiated cell, an effect on the cell cycle and cell proliferation, or an effect on cell death. This question has not been specifically addressed on previous flights and was the question behind die present study.

  7. Differential requirement for OBF-1 during antibody-secreting cell differentiation

    PubMed Central

    Corcoran, Lynn M.; Hasbold, Jhagvaral; Dietrich, Wendy; Hawkins, Edwin; Kallies, Axel; Nutt, Stephen L.; Tarlinton, David M.; Matthias, Patrick; Hodgkin, Philip D.

    2005-01-01

    Resting B cells can be cultured to induce antibody-secreting cell (ASC) differentiation in vitro. A quantitative analysis of cell behavior during such a culture allows the influences of different stimuli and gene products to be measured. The application of this analytical system revealed that the OBF-1 transcriptional coactivator, whose loss impairs antibody production in vivo, has two effects on ASC development. Although OBF-1 represses early T cell–dependent (TD) differentiation, it is also critical for the completion of the final stages of ASC development. Under these conditions, the loss of OBF-1 blocks the genetic program of ASC differentiation so that Blimp-1/prdm1 induction fails, and bcl-6, Pax5, and AID are not repressed as in control ASC. Retroviral complementation confirmed that OBF-1 was the critical entity. Surprisingly, when cells were cultured in lipopolysaccharide to mimic T cell–independent conditions, OBF-1–null B cells differentiated normally to ASC. In the OBF-1−/− ASC generated under either culture regimen, antibody production was normal or only modestly reduced, revealing that Ig genes are not directly dependent on OBF-1 for their expression. The differential requirement for OBF-1 in TD ASC generation was confirmed in vivo. These studies define a new regulatory role for OBF-1 in determining the cell-autonomous capacity of B cells to undergo terminal differentiation in response to different immunological signals. PMID:15867091

  8. T cells induce terminal differentiation of transformed B cells to mature plasma cell tumors.

    PubMed

    Hilbert, D M; Shen, M Y; Rapp, U R; Rudikoff, S

    1995-01-31

    Major interest in the analysis of mature plasma cell neoplasias of mice and humans has focused on identification of precursor cells that give rise to mature malignant plasma cells. Although several laboratories have recently suggested that such cells are present in the granulomas of pristane-treated mice and the bone marrow of some multiple myeloma patients, the in vivo cellular interactions required for their differentiation into mature plasma cell tumors remains unclear. Given the extensive interactions of peripheral T cells and normal B cells, we assessed the potential role of T cells in plasma-cell tumor development, by using a myc, raf-containing retrovirus, J3V1, to induce plasmacytomas in normal BALB/c mice, T-cell-deficient nude mice, and T-cell-reconstituted nude mice. The B-lineage tumors arising in normal BALB/c mice were uniformly mature plasmacytomas, most of which secreted immunoglobulin. In contrast, nude mice yielded predominantly non-immunoglobulin-secreting B-cell lymphomas with a phenotype characteristic of peripheral B cells. T-cell reconstitution of nude mice prior to tumor induction resulted in a shift from B-cell lymphomas to plasmacytomas. These results imply that transformation can occur prior to terminal differentiation of B cells and that such transformed cells can be driven to terminal differentiation by peripheral T cells. These findings further suggest that, in human multiple myeloma, the ability of T cells to influence the differentiation state of transformed B cells may provide a mechanism by which malignant plasma cells found in the bone marrow could arise from clonotypically related less-mature B cells found in both the bone marrow and periphery. PMID:7846031

  9. Fibronectin and stem cell differentiation – lessons from chondrogenesis

    PubMed Central

    Singh, Purva; Schwarzbauer, Jean E.

    2012-01-01

    Summary The extracellular matrix (ECM) is an intricate network of proteins that surrounds cells and has a central role in establishing an environment that is conducive to tissue-specific cell functions. In the case of stem cells, this environment is the stem cell niche, where ECM signals participate in cell fate decisions. In this Commentary, we describe how changes in ECM composition and mechanical properties can affect cell shape and stem cell differentiation. Using chondrogenic differentiation as a model, we examine the changes in the ECM that occur before and during mesenchymal stem cell differentiation. In particular, we focus on the main ECM protein fibronectin, its temporal expression pattern during chondrogenic differentiation, its potential effects on functions of differentiating chondrocytes, and how its interactions with other ECM components might affect cartilage development. Finally, we discuss data that support the possibility that the fibronectin matrix has an instructive role in directing cells through the condensation, proliferation and/or differentiation stages of cartilage formation. PMID:22976308

  10. Quantitative phosphoproteome analysis of embryonic stem cell differentiation toward blood

    PubMed Central

    Piazzi, Manuela; Williamson, Andrew; Lee, Chia-Fang; Pearson, Stella; Lacaud, Georges; Kouskoff, Valerie; McCubrey, James A.; Cocco, Lucio; Whetton, Anthony D.

    2015-01-01

    Murine embryonic stem (ES) cells can differentiate in vitro into three germ layers (endodermic, mesodermic, ectodermic). Studies on the differentiation of these cells to specific early differentiation stages has been aided by an ES cell line carrying the Green Fluorescent Protein (GFP) targeted to the Brachyury (Bry) locus which marks mesoderm commitment. Furthermore, expression of the Vascular Endothelial Growth Factor receptor 2 (Flk1) along with Bry defines hemangioblast commitment. Isobaric-tag for relative and absolute quantification (iTRAQTM) and phosphopeptide enrichment coupled to liquid chromatography separation and mass spectrometry allow the study of phosphorylation changes occurring at different stages of ES cell development using Bry and Flk1 expression respectively. We identified and relatively quantified 37 phosphoentities which are modulated during mesoderm-induced ES cells differentiation, comparing epiblast-like, early mesoderm and hemangioblast-enriched cells. Among the proteins differentially phosphorylated toward mesoderm differentiation were: the epigenetic regulator Dnmt3b, the protein kinase GSK3b, the chromatin remodeling factor Smarcc1, the transcription factor Utf1; as well as protein specifically related to stem cell differentiation, as Eomes, Hmga2, Ints1 and Rif1. As most key factors regulating early hematopoietic development have also been implicated in various types of leukemia, understanding the post-translational modifications driving their regulation during normal development could result in a better comprehension of their roles during abnormal hematopoiesis in leukemia. PMID:25890499

  11. Gossypol-Induced Differentiation in Human Leukemia HL-60 Cells

    PubMed Central

    Wang, Wen-Qing; Li, Rong; Bai, Qing-Xian; Liu, Yu-Hong; Zhang, Wei-Ping; Wang, Juan-Hong; Wang, Zhe; Li, Yuan-Fei; Chen, Xie-Qun; Huang, Gao-Sheng

    2006-01-01

    The main treatment of leukemia is traditional radiochemotherapy, which is associated with serious side effects. In the past twenty years, differentiation was found as an important effective measure to treat leukemia with fewer side effects. Gossypol, a natural compound which has been used as an effective contraceptive drug, has been proposed to be a potent drug to treat leukemia, but the differentiation effect has not been studied. In the present study, we investigated the pro-differentiated effects, in vitro, of gossypol on the classic human myeloid leukemia HL-60 cell line. The effects of gossypol were investigated by using morphological changes, nitroblue tetrazolium (NBT) reduction, surface markers, cell-cycle analysis and Western blot analysis, etc. When HL-60 cells were incubated with low concentrations of gossypol (2-5μM) for 48hr, a prominent G0/G1 arrest was observed. At 96 hr of treatment, 90% of HL-60 cells differentiated, as evidenced by morphological changes, NBT reduction, and increase in cell surface expression of some molecules were detected. This study is the first to identify gossypol’s pro-differentiated effects on the leukemia cell line, and it induced differentiation through the PBK (PDZ-binding kinase)/TOPK (T-LAKcell-originated protein kinase) (PBK/TOPK) pathway. It is concluded that gossypol could induce differentiation in the leukemia HL-60 cells, and it may be a potential therapeutic agent, chemoprevention or chemotherapeutic adjuvant especially in combination drug therapy for leukemia. PMID:23675007

  12. Differentiation signalobody: Demonstration of antigen-dependent osteoclast differentiation from a progenitor cell line.

    PubMed

    Nakabayashi, Hideto; Aoyama, Saeko; Kawahara, Masahiro; Nagamune, Teruyuki

    2016-09-01

    A "cytokine-less" in vitro differentiation method would be promising for cost-effective mass production of cells used for regenerative medicine. In this study, we developed a differentiation signalobody S-RANK, in which the extracellular domain of receptor activator of nuclear factor kappa-B (RANK) is replaced with a single-chain variable fragment (scFv) to attain signaling in response to an inexpensive antigen. A murine macrophage cell line RAW264, which is known to differentiate into an osteoclast by RANK ligand (RANKL), was lentivirally transduced with S-RANK. When the resultant cells were cultured with a specific antigen, the cells differentiated into multinucleated tartrate-resistant acid phosphatase-positive osteoclasts. The differentiation efficiency was almost comparable to those induced by RANKL. In addition, the signaling analysis demonstrated that nuclear factor kappa-B and mitogen-activated protein kinase signaling pathways, which are the major signaling pathways downstream of wild-type RANK, were also activated by S-RANK. These results demonstrate that S-RANK sufficiently mimics signal transduction of wild-type RANK. Differentiation signalobodies may be applied for controlling differentiation of other cell types by using appropriate signaling domains. PMID:26979343

  13. WBC (White Blood Cell) Differential Count

    MedlinePlus

    ... Results of a differential are usually reported as absolute values of the five types of WBCs and/or ... a percent of the total number of WBCs. Absolute values are calculated by multiplying the total number of ...

  14. Role of Hox genes in stem cell differentiation

    PubMed Central

    Seifert, Anne; Werheid, David F; Knapp, Silvana M; Tobiasch, Edda

    2015-01-01

    Hox genes are an evolutionary highly conserved gene family. They determine the anterior-posterior body axis in bilateral organisms and influence the developmental fate of cells. Embryonic stem cells are usually devoid of any Hox gene expression, but these transcription factors are activated in varying spatial and temporal patterns defining the development of various body regions. In the adult body, Hox genes are among others responsible for driving the differentiation of tissue stem cells towards their respective lineages in order to repair and maintain the correct function of tissues and organs. Due to their involvement in the embryonic and adult body, they have been suggested to be useable for improving stem cell differentiations in vitro and in vivo. In many studies Hox genes have been found as driving factors in stem cell differentiation towards adipogenesis, in lineages involved in bone and joint formation, mainly chondrogenesis and osteogenesis, in cardiovascular lineages including endothelial and smooth muscle cell differentiations, and in neurogenesis. As life expectancy is rising, the demand for tissue reconstruction continues to increase. Stem cells have become an increasingly popular choice for creating therapies in regenerative medicine due to their self-renewal and differentiation potential. Especially mesenchymal stem cells are used more and more frequently due to their easy handling and accessibility, combined with a low tumorgenicity and little ethical concerns. This review therefore intends to summarize to date known correlations between natural Hox gene expression patterns in body tissues and during the differentiation of various stem cells towards their respective lineages with a major focus on mesenchymal stem cell differentiations. This overview shall help to understand the complex interactions of Hox genes and differentiation processes all over the body as well as in vitro for further improvement of stem cell treatments in future regenerative

  15. Differential growth and plant tropisms: a study assisted by computer simulation.

    PubMed

    Barlow, P W; Brain, P; Adam, J S

    1989-01-01

    Tropisms and other movements of a plant organ result from alterations in local rates of cell elongation and a consequent development of a growth differential between its opposite sides. Relative elemental rates of elongation (RELELs) are useful to characterize the pattern of growth along and round an organ. We assume that the value of the RELEL at a given point is dependent on distance from the tip and that the distribution of values along the organ surface can be characterized in terms of the spread and the position of the maximum value. A computer model is described which accommodates these parameters and simulates tropic curvatures due to differential growth. Additional regulatory functions help to return the simulated organ to its original orientation. Particular attention is given to the simulation of root gravitropism because here not only do each of the various growth and regulatory parameters have a known biological counterpart, but some can also be given an actual quantitative value. The growth characteristics relate to the biophysical properties of cells in the elongation zone of the root, while the regulatory functions relate to aspects of the graviperception and transmission systems. We believe that, given a suitably flexible model, computer simulation is a powerful means of characterizing, in a quantitative way, the contribution of each parameter to the elongation of plant organs in general and their tropisms in particular. PMID:11541038

  16. Epigenetic Control of Cell Division and Cell Differentiation in the Root Apex

    PubMed Central

    Takatsuka, Hirotomo; Umeda, Masaaki

    2015-01-01

    Epigenetics is defined as heritable changes in gene expression and genome integrity that are accompanied by no alteration in DNA sequence. Throughout plant life cycle, many processes, including genome imprinting, stress responses, and cellular differentiation, are known to be determined by epigenetic regulation. The root apex is also considered to be under the control of epigenetic regulation for optimal growth under variable environments. Recent reports reveal that epigenetic control is especially important in the stem cell niche and the meristematic zone where both cell production and cell specification occur. DNA methylation, histone methylation, and histone acetylation are well-known epigenetic modifications, and each epigenetic modification has distinct roles in roots. Here, we review the updated findings that demonstrate the significance of epigenetic regulation in root apex of Arabidopsis. PMID:26734056

  17. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  18. Directed Myogenic Differentiation of Human Induced Pluripotent Stem Cells.

    PubMed

    Shoji, Emi; Woltjen, Knut; Sakurai, Hidetoshi

    2016-01-01

    Patient-derived induced pluripotent stem cells (iPSCs) have opened the door to recreating pathological conditions in vitro using differentiation into diseased cells corresponding to each target tissue. Yet for muscular diseases, a method for reproducible and efficient myogenic differentiation from human iPSCs is required for in vitro modeling. Here, we introduce a myogenic differentiation protocol mediated by inducible transcription factor expression that reproducibly and efficiently drives human iPSCs into myocytes. Delivering a tetracycline-inducible, myogenic differentiation 1 (MYOD1) piggyBac (PB) vector to human iPSCs enables the derivation of iPSCs that undergo uniform myogenic differentiation in a short period of time. This differentiation protocol yields a homogenous skeletal muscle cell population, reproducibly reaching efficiencies as high as 70-90 %. MYOD1-induced myocytes demonstrate characteristics of mature myocytes such as cell fusion and cell twitching in response to electric stimulation within 14 days of differentiation. This differentiation protocol can be applied widely in various types of patient-derived human iPSCs and has great prospects in disease modeling particularly with inherited diseases that require studies of early pathogenesis and drug screening. PMID:25971915

  19. Transcriptional Regulatory Networks for CD4 T Cell Differentiation

    PubMed Central

    Zhu, Jinfang

    2015-01-01

    CD4+ T cells play a central role in controlling the adaptive immune response by secreting cytokines to activate target cells. Naïve CD4+ T cells differentiate into at least four subsets, Th1, Th2, Th17, and inducible regulatory T cells, each with unique functions for pathogen elimination. The differentiation of these subsets is induced in response to cytokine stimulation, which is translated into Stat activation, followed by induction of master regulator transcription factors. In addition to these factors, multiple other transcription factors, both subset specific and shared, are also involved in promoting subset differentiation. This review will focus on the network of transcription factors that control CD4+ T cell differentiation. PMID:24839135

  20. Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation

    SciTech Connect

    Choi, Yoon Jung; Lee, Jue Yeon; Lee, Seung Jin; Chung, Chong-Pyoung; Park, Yoon Jeong

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Doxazocin directly up-regulated bone metabolism at a low dose. Black-Right-Pointing-Pointer Doxazocin induced osteoblastic stem cell differentiation without affecting cell proliferation. Black-Right-Pointing-Pointer This osteogenic stem cell differentiation is mediated by ERK-signal dependent pathway. -- Abstract: Recent researches have indicated a role for antihypertensive drugs including alpha- or beta-blockers in the prevention of bone loss. Some epidemiological studies reported the protective effects of those agents on fracture risk. However, there is limited information on the association with those agents especially at the mechanism of action. In the present study, we investigated the effects of doxazosin, an alpha-blocker that is clinically used for the treatment of benign prostatic hyperplasia (BPH) along with antihypertensive medication, on the osteogenic stem cell differentiation. We found that doxazosin increased osteogenic differentiation of human mesenchymal stem cells, detected by Alizarin red S staining and calcein. Doxazosin not only induced expression of alkaline phosphatase, type I collagen, osteopontin, and osteocalcin, it also resulted in increased phosphorylation of extracellular signal-regulated kinase (ERK1/2), a MAP kinase involved in osteoblastic differentiation. Treatment with U0126, a MAP kinase inhibitor, significantly blocked doxazosin-induced osteoblastic differentiation. Unrelated to activation of osteogenic differentiation by doxazosin, we found that there were no significant changes in adipogenic differentiation or in the expression of adipose-specific genes, including peroxisome proliferator-activated receptor {gamma}, aP2, or LPL. In this report, we suggest that doxazosin has the ability to increase osteogenic cell differentiation via ERK1/2 activation in osteogenic differentiation of adult stem cells, which supports the protective effects of antihypertensive drug on fracture risk and

  1. Transcriptional Enhancers in the Regulation of T Cell Differentiation

    PubMed Central

    Nguyen, Michelle L. T.; Jones, Sarah A.; Prier, Julia E.; Russ, Brendan E.

    2015-01-01

    The changes in phenotype and function that characterize the differentiation of naïve T cells to effector and memory states are underscored by large-scale, coordinated, and stable changes in gene expression. In turn, these changes are choreographed by the interplay between transcription factors and epigenetic regulators that act to restructure the genome, ultimately ensuring lineage-appropriate gene expression. Here, we focus on the mechanisms that control T cell differentiation, with a particular focus on the role of regulatory elements encoded within the genome, known as transcriptional enhancers (TEs). We discuss the central role of TEs in regulating T cell differentiation, both in health and disease. PMID:26441967

  2. Regulatory T cells inhibit CD34+ cell differentiation into NK cells by blocking their proliferation.

    PubMed

    Pedroza-Pacheco, Isabela; Shah, Divya; Domogala, Anna; Luevano, Martha; Blundell, Michael; Jackson, Nicola; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2016-01-01

    Graft versus Host Disease (GvHD) remains one of the main complications after hematopoietic stem cell transplantation (HSCT). Due to their ability to suppress effector cells, regulatory T cells (Tregs) have been proposed as a cellular therapy to prevent GvHD, however they also inhibit the functions of natural killer (NK) cells, key effectors of the Graft versus Leukemia effect. In this study, we have explored whether a Tregs therapy will also impact on NK cell differentiation. Using an in vitro model of hematopoietic stem cell (HSC) differentiation into NK cells, we found that activated Tregs led to a 90% reduction in NK cell numbers when added at the time of commitment to the NK cell lineage. This effect was contact dependent and was reversible upon Tregs depletion. The few NK cells that developed in these cultures were mature and exhibited normal functions. Furthermore, adoptive transfer of activated Tregs in rag(-/-) γc(-/-) mice abrogated HSC differentiation into NK cells thus confirming our in vitro findings. Collectively, these results demonstrate for the first time that activated Tregs can inhibit NK cell differentiation from HSC under specific conditions. PMID:26915707

  3. Regulatory T cells inhibit CD34+ cell differentiation into NK cells by blocking their proliferation

    PubMed Central

    Pedroza-Pacheco, Isabela; Shah, Divya; Domogala, Anna; Luevano, Martha; Blundell, Michael; Jackson, Nicola; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2016-01-01

    Graft versus Host Disease (GvHD) remains one of the main complications after hematopoietic stem cell transplantation (HSCT). Due to their ability to suppress effector cells, regulatory T cells (Tregs) have been proposed as a cellular therapy to prevent GvHD, however they also inhibit the functions of natural killer (NK) cells, key effectors of the Graft versus Leukemia effect. In this study, we have explored whether a Tregs therapy will also impact on NK cell differentiation. Using an in vitro model of hematopoietic stem cell (HSC) differentiation into NK cells, we found that activated Tregs led to a 90% reduction in NK cell numbers when added at the time of commitment to the NK cell lineage. This effect was contact dependent and was reversible upon Tregs depletion. The few NK cells that developed in these cultures were mature and exhibited normal functions. Furthermore, adoptive transfer of activated Tregs in rag-/- γc-/- mice abrogated HSC differentiation into NK cells thus confirming our in vitro findings. Collectively, these results demonstrate for the first time that activated Tregs can inhibit NK cell differentiation from HSC under specific conditions. PMID:26915707

  4. Interplay of Matrix Stiffness and Cell-Cell Contact in Regulating Differentiation of Stem Cells.

    PubMed

    Ye, Kai; Cao, Luping; Li, Shiyu; Yu, Lin; Ding, Jiandong

    2016-08-31

    Stem cells are capable of sensing and responding to the mechanical properties of extracellular matrixes (ECMs). It is well-known that, while osteogenesis is promoted on the stiff matrixes, adipogenesis is enhanced on the soft ones. Herein, we report an "abnormal" tendency of matrix-stiffness-directed stem cell differentiation. Well-defined nanoarrays of cell-adhesive arginine-glycine-aspartate (RGD) peptides were modified onto the surfaces of persistently nonfouling poly(ethylene glycol) (PEG) hydrogels to achieve controlled specific cell adhesion and simultaneously eliminate nonspecific protein adsorption. Mesenchymal stem cells were cultivated on the RGD-nanopatterned PEG hydrogels with the same RGD nanospacing but different hydrogel stiffnesses and incubated in the induction medium to examine the effect of matrix stiffness on osteogenic and adipogenic differentiation extents. When stem cells were kept at a low density during the induction period, the differentiation tendency was consistent with the previous reports in the literature; however, both lineage commitments were favored on the stiff matrices at a high cell density. We interpreted such a complicated stiffness effect at a high cell density in two-dimensional culture as the interplay of matrix stiffness and cell-cell contact. As a result, this study strengthens the essence of the stiffness effect and highlights the combinatory effects of ECM cues and cell cues on stem cell differentiation. PMID:26600563

  5. Structural properties of scaffolds: Crucial parameters towards stem cells differentiation

    PubMed Central

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Tian, Lingling; Shamirzaei-Jeshvaghani, Elham; Dehghani, Leila; Ramakrishna, Seeram

    2015-01-01

    Tissue engineering is a multidisciplinary field that applies the principles of engineering and life-sciences for regeneration of damaged tissues. Stem cells have attracted much interest in tissue engineering as a cell source due to their ability to proliferate in an undifferentiated state for prolonged time and capability of differentiating to different cell types after induction. Scaffolds play an important role in tissue engineering as a substrate that can mimic the native extracellular matrix and the properties of scaffolds have been shown to affect the cell behavior such as the cell attachment, proliferation and differentiation. Here, we focus on the recent reports that investigated the various aspects of scaffolds including the materials used for scaffold fabrication, surface modification of scaffolds, topography and mechanical properties of scaffolds towards stem cells differentiation effect. We will present a more detailed overview on the effect of mechanical properties of scaffolds on stem cells fate. PMID:26029344

  6. Serum-Induced Differentiation of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Sullivan, David A.; Liu, Yang; Kam, Wendy R.; Ding, Juan; Green, Karin M.; Shaffer, Scott A.; Hatton, Mark P.; Liu, Shaohui

    2014-01-01

    Purpose. We hypothesize that culturing immortalized human meibomian gland epithelial cells in serum-containing medium will induce their differentiation. The purpose of this investigation was to begin to test our hypothesis, and explore the impact of serum on gene expression and lipid accumulation in human meibomian gland epithelial cells. Methods. Immortalized and primary human meibomian gland epithelial cells were cultured in the presence or absence of serum. Cells were evaluated for lysosome and lipid accumulation, polar and neutral lipid profiles, and gene expression. Results. Our results support our hypothesis that serum stimulates the differentiation of human meibomian gland epithelial cells. This serum-induced effect is associated with a significant increase in the expression of genes linked to cell differentiation, epithelium development, the endoplasmic reticulum, Golgi apparatus, vesicles, and lysosomes, and a significant decrease in gene activity related to the cell cycle, mitochondria, ribosomes, and translation. These cellular responses are accompanied by an accumulation of lipids within lysosomes, as well as alterations in the fatty acid content of polar and nonpolar lipids. Of particular importance, our results show that the molecular and biochemical changes of immortalized human meibomian gland epithelial cells during differentiation are analogous to those of primary cells. Conclusions. Overall, our findings indicate that immortalized human meibomian gland epithelial cells may serve as an ideal preclinical model to identify factors that control cellular differentiation in the meibomian gland. PMID:24867579

  7. Differentiation of Multipotent Vascular Stem Cells Contributes to Vascular Diseases

    PubMed Central

    Tang, Zhenyu; Wang, Aijun; Yuan, Falei; Yan, Zhiqiang; Liu, Bo; Chu, Julia S.; Helms, Jill A.

    2012-01-01

    It is generally accepted that the de-differentiation of smooth muscle cells (SMCs) from contractile to proliferative/synthetic phenotype has an important role during vascular remodeling and diseases. Here we provide evidence that challenges this theory. We identify a new type of multipotent vascular stem cell (MVSC) in blood vessel wall. MVSCs express markers including Sox17, Sox10 and S100β, are cloneable, have telomerase activity, and can differentiate into neural cells and mesenchymal stem cell (MSC)-like cells that subsequently differentiate into SMCs. On the other hand, we use lineage tracing with smooth muscle myosin heavy chain as a marker to show that MVSCs and proliferative or synthetic SMCs do not arise from the de-differentiation of mature SMCs. Upon vascular injuries, MVSCs, instead of SMCs, become proliferative, and MVSCs can differentiate into SMCs and chondrogenic cells, thus contributing to vascular remodeling and neointimal hyperplasia. These findings support a new hypothesis that the differentiation of MVSCs, rather than the de-differentiation of SMCs, contributes to vascular remodeling and diseases. PMID:22673902

  8. Catalysts of plant cell wall loosening

    PubMed Central

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyloglucan endotransglycosylase/hydrolase (XTH), and pectin methylesterases, and offer a critical assessment of their wall-loosening activity PMID:26918182

  9. Mechanism of Action of Two Flavone Isomers Targeting Cancer Cells with Varying Cell Differentiation Status

    PubMed Central

    Parsons, Laura B.; Miller, Gerald E.; Whitted, Crystal; Lynch, Kayla E.; Ramsauer, Robert E.; Patel, Jasmine U.; Wyatt, Jarrett E.; Street, Doris S.; Adams, Carolyn B.; McPherson, Brian; Tsui, Hei Man; Evans, Julie A.; Livesay, Christopher; Torrenegra, Ruben D.; Palau, Victoria E.

    2015-01-01

    Apoptosis can be triggered in two different ways, through the intrinsic or the extrinsic pathway. The intrinsic pathway is mediated by the mitochondria via the release of cytochrome C while the extrinsic pathway is prompted by death receptor signals and bypasses the mitochondria. These two pathways are closely related to cell proliferation and survival signaling cascades, which thereby constitute possible targets for cancer therapy. In previous studies we introduced two plant derived isomeric flavonoids, flavone A and flavone B which induce apoptosis in highly tumorigenic cancer cells of the breast, colon, pancreas, and the prostate. Flavone A displayed potent cytotoxic activity against more differentiated carcinomas of the colon (CaCo-2) and the pancreas (Panc28), whereas flavone B cytotoxic action is observed on poorly differentiated carcinomas of the colon (HCT 116) and pancreas (MIA PaCa). Apoptosis is induced by flavone A in better differentiated colon cancer CaCo-2 and pancreatic cancer Panc 28 cells via the intrinsic pathway by the inhibition of the activated forms of extracellular signal-regulated kinase (ERK) and pS6, and subsequent loss of phosphorylation of Bcl-2 associated death promoter (BAD) protein, while apoptosis is triggered by flavone B in poorly differentiated colon cancer HCT 116 and MIA PaCa pancreatic cancer cells through the extrinsic pathway with the concomitant upregulation of the phosphorylated forms of ERK and c-JUN at serine 73. These changes in protein levels ultimately lead to activation of apoptosis, without the involvement of AKT. PMID:26606169

  10. Effects of cell-cell contact and oxygen tension on chondrogenic differentiation of stem cells.

    PubMed

    Cao, Bin; Li, Zhenhua; Peng, Rong; Ding, Jiandong

    2015-09-01

    While cell condensation has been thought to enhance chondrogenesis, no direct evidence so far confirms that cell-cell contact itself increases chondrogenic differentiation of stem cells, since the change of cell-cell contact is usually coupled with those of other cell geometry cues and soluble factors in cell culture. The present study semi-quantitatively examined the effect of cell-cell contact in a decoupled way. We fabricated two-dimensional micropatterns with cell-adhesive peptide arginine-glycine-aspartate (RGD) microdomains on a nonfouling poly(ethylene glycol) (PEG) hydrogel. Mesenchymal stem cells (MSCs) were well localized on the microdomains for a long time. Based on our micropattern design, single MSCs or cell clusters with given cell numbers (1, 2, 3, 6 and 15) and a similar spreading area per cell were achieved on the same substrate, thus the interference of soluble factor difference from cell autocrine and that of cell spreading area were ruled out. After 9-day chondrogenic induction, collagen II was stained to characterize the chondrogenic induction results; the mRNA expression levels of SOX9, collagen II, aggrecan, HIF-1α and collagen I were also detected. The statistics confirmed unambiguously that the extent of the chondrogenic differentiation increased with cell-cell contact, and even a linear relation between differentiation extent and contact extent was established within the examined range. The cell-cell contact effect worked under both hypoxia (5% O2) and normoxia (21% O2) conditions, and the hypoxia condition promoted the chondrogenic induction of MSCs on adhesive microdomains more efficiently than the normoxia condition under the same cell-cell contact extents. PMID:26113183

  11. Gremlins sabotage the mechanisms of cancer stem cell differentiation.

    PubMed

    Seoane, Joan

    2014-06-16

    BMP is highly expressed in glioblastoma and promotes differentiation of cancer stem cells (CSCs). Recently, Yan and colleagues found the explanation to this apparent paradox by showing that the antagonist of BMP, Gremlin1, is secreted by CSCs to protect them against the BMP-induced differentiation. PMID:24937457

  12. The organelle of differentiation in embryos: the cell state splitter.

    PubMed

    Gordon, Natalie K; Gordon, Richard

    2016-01-01

    The cell state splitter is a membraneless organelle at the apical end of each epithelial cell in a developing embryo. It consists of a microfilament ring and an intermediate filament ring subtending a microtubule mat. The microtubules and microfilament ring are in mechanical opposition as in a tensegrity structure. The cell state splitter is bistable, perturbations causing it to contract or expand radially. The intermediate filament ring provides metastability against small perturbations. Once this snap-through organelle is triggered, it initiates signal transduction to the nucleus, which changes gene expression in one of two readied manners, causing its cell to undergo a step of determination and subsequent differentiation. The cell state splitter also triggers the cell state splitters of adjacent cells to respond, resulting in a differentiation wave. Embryogenesis may be represented then as a bifurcating differentiation tree, each edge representing one cell type. In combination with the differentiation waves they propagate, cell state splitters explain the spatiotemporal course of differentiation in the developing embryo. This review is excerpted from and elaborates on "Embryogenesis Explained" (World Scientific Publishing, Singapore, 2016). PMID:26965444

  13. Tenuigenin promotes proliferation and differentiation of hippocampal neural stem cells.

    PubMed

    Chen, Yujing; Huang, Xiaobo; Chen, Wenqiang; Wang, Ningqun; Li, Lin

    2012-04-01

    The present study was to investigate the influence of tenuigenin, an active ingredient of Polygala tenuifolia Willd, on the proliferation and differentiation of hippocampal neural stem cells in vitro. Tenuigenin was added to a neurosphere culture and neurosphere growth was measured using MTT assay. The influence of tenuigenin on the proliferation of neural progenitors was examined by Clone forming assay and BrdU detection. In addition, the differentiation of neural stem cells was compared using immunocytochemistry for β III-tubulin and GFAP. The results showed that addition of tenuigenin to the neural stem cell medium increased the number of newly formed neurospheres. More neurons were also obtained when tenuigenin was added in the differentiation medium. These findings suggest that tenuigenin is involved in regulating the proliferation and differentiation of hippocampal neural stem cells. This result may be one of the underlying reasons for tenuigenin's nootropic and anti-aging effects. PMID:22179853

  14. COMPUTATION MODELING OF TCDD DISRUPTION OF B CELL TERMINAL DIFFERENTIATION

    EPA Science Inventory

    In this study, we established a computational model describing the molecular circuit underlying B cell terminal differentiation and how TCDD may affect this process by impinging upon various molecular targets.

  15. T Cell Receptor Signaling in the Control of Regulatory T Cell Differentiation and Function

    PubMed Central

    Li, Ming O.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self-tolerance and inflammatory responses. Recent studies have revealed a discrete mode of TCR signaling that regulates Treg cell differentiation, maintenance and function and that impacts on gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of Treg cells in the context of their function in health and disease. PMID:27026074

  16. Improvement of Cell Survival During Human Pluripotent Stem Cell Definitive Endoderm Differentiation.

    PubMed

    Wang, Han; Luo, Xie; Yao, Li; Lehman, Donna M; Wang, Pei

    2015-11-01

    Definitive endoderm (DE) is a vital precursor for internal organs such as liver and pancreas. Efficient protocol to differentiate human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) to DE is essential for regenerative medicine and for modeling diseases; yet, poor cell survival during DE differentiation remains unsolved. In this study, our use of B27 supplement in modified differentiation protocols has led to a substantial improvement. We used an SOX17-enhanced green fluorescent protein (eGFP) reporter hESC line to compare and modify established DE differentiation protocols. Both total live cell numbers and the percentages of eGFP-positive cells were used to assess differentiation efficiency. Among tested protocols, three modified protocols with serum-free B27 supplement were developed to generate a high number of DE cells. Massive cell death was avoided during DE differentiation and the percentage of DE cells remained high. When the resulting DE cells were further differentiated toward the pancreatic lineage, the expression of pancreatic-specific markers was significantly increased. Similar high DE differentiation efficiency was observed in H1 hESCs and iPSCs through the modified protocols. In B27 components, bovine serum albumin was found to facilitate DE differentiation and cell survival. Using our modified DE differentiation protocols, satisfactory quantities of quality DE can be produced as primary material for further endoderm lineage differentiation. PMID:26132288

  17. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  18. Plant cell shape: modulators and measurements

    PubMed Central

    Ivakov, Alexander; Persson, Staffan

    2013-01-01

    Plant cell shape, seen as an integrative output, is of considerable interest in various fields, such as cell wall research, cytoskeleton dynamics and biomechanics. In this review we summarize the current state of knowledge on cell shape formation in plants focusing on shape of simple cylindrical cells, as well as in complex multipolar cells such as leaf pavement cells and trichomes. We summarize established concepts as well as recent additions to the understanding of how cells construct cell walls of a given shape and the underlying processes. These processes include cell wall synthesis, activity of the actin and microtubule cytoskeletons, in particular their regulation by microtubule associated proteins, actin-related proteins, GTP'ases and their effectors, as well as the recently-elucidated roles of plant hormone signaling and vesicular membrane trafficking. We discuss some of the challenges in cell shape research with a particular emphasis on quantitative imaging and statistical analysis of shape in 2D and 3D, as well as novel developments in this area. Finally, we review recent examples of the use of novel imaging techniques and how they have contributed to our understanding of cell shape formation. PMID:24312104

  19. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-23

    In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

  20. SOCS3 induces neurite differentiation and promotes neuronal cell survival.

    PubMed

    Mishra, Kanchan Kumar; Gupta, Sakshi; Banerjee, Kakoli

    2016-06-01

    Cytokines and growth factors play an important role in neuronal survival as well as cell death. The family of suppressors of cytokine signalling (SOCS) proteins, which includes SOCS1-7 and cytokine-induced suppressor (CIS), has been shown to act as negative regulators of cytokine-induced signalling. In this report, we highlight the role of SOCS3 in regulating neuronal differentiation and survival. We observed increased SOCS3 expression upon differentiation of PC12 cells as well as neural stem cells. SOCS3 overexpression upregulated differentiation of both neural stem cells and PC12 cells even in the absence of NGF, as evidenced by enhanced neurite outgrowth and upregulation of GAP43, marker associated with neurite outgrowth. siRNA-mediated silencing of SOCS3 confirmed the potential role of SOCS3 in neuritogenesis. We observed that, SOCS3-induced neurite differentiation was mediated via the PI3 kinase pathway. Another interesting observation was that SOCS3 overexpression promoted neuronal cell survival under H2 O2 -mediated stress indicating its fundamental role in cell survival. In conclusion, our results indicate that SOCS3 promotes differentiation and survival of neural cells and could be potentially useful in future therapy for treatment of neurodegenerative disorders. © 2016 IUBMB Life, 68(6):468-476, 2016. PMID:27118613

  1. DIRECTED DIFFERENTIATION OF EMBRYONIC STEM CELLS INTO BLADDER TISSUE

    PubMed Central

    Oottamasathien, Siam; Wang, YongQing; Williams, Karin; Franco, Omar E.; Wills, Marcia L.; Thomas, John C.; Saba, Katrina; Sharif-Afshar, Ali-Reza; Makari, John H.; Bhowmick, Neil A; DeMarco, Romano T.; Hipkens, Susan; Magnuson, Mark; Brock, John W.; Hayward, Simon W.; Pope, John C.; Matusik, Robert J.

    2007-01-01

    Manipulatable models of bladder development which interrogate specific pathways are badly needed. Such models will allow a systematic investigation of the multitude of pathologies which result from developmental defects of the urinary bladder. In the present communication, we describe a model in which mouse embryonic stem (ES) cells are directed to differentiate to form bladder tissue by specific interactions with fetal bladder mesenchyme. This model allows us to visualize the various stages in the differentiation of urothelium from ES cells, including the commitment to an endodermal cell lineage, with the temporal profile characterized by examining the induction of specific endodermal transcription factors (Foxa1 and Foxa2). In addition, final functional urothelial differentiation was characterized by examining uroplakin expression. It is well established that ES cells will spontaneously develop teratomas when grown within immunocompromised mouse hosts. We determined the specific mesenchymal to ES cell ratios necessary to dictate organ-specific differentiation while completely suppressing teratomatous growth. Embryonic mesenchyme is well established as an inductive tissue which dictates organ-specific programming of epithelial tissues. The present study demonstrates that embryonic bladder mesenchyme can also steer ES cells towards developing specific endodermal derived urothelium. These approaches allow us to capture specific stages of stem cell differentiation and to better define stem cell hierarchies. PMID:17289017

  2. Proteome changes during bone mesenchymal stem cell differentiation into photoreceptor-like cells in vitro

    PubMed Central

    Hong, Yu; Xu, Guo-Xing

    2011-01-01

    Human bone marrow stem cell (BMSC) may be directed to differentiate into multiple cell types, including adipocyte, chondrocyte, osteocyte and photoreceptor, among others. At present, little is known about the features of the BMSC and the protein control mechanism underlying their differentiation into photoreceptor-like cells. In the present study, BMSCs are induced to differentiate into photoreceptor-like cells in an in vitro model simulating the in vivo microenvironment. Up to 32 proteins are identified and differentially expressed through two-dimensional difference gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to establish a differential protein database for photoreceptor-like cells from BMSC-induced differentiation. Western blot analysis further confirms the expression of some of the identified proteins. The present study proposes the total protein expression and possible molecular mechanism during the differentiation of BMSCs into photoreceptor cells. PMID:22553704

  3. Quantitative Aspects of Cyclosis in Plant Cells.

    ERIC Educational Resources Information Center

    Howells, K. F.; Fell, D. A.

    1979-01-01

    Describes an exercise which is currently used in a course in cell physiology at Oxford Polytechnic in England. This exercise can give students some idea of the molecular events involved in bringing about movement of chloroplasts (and other organelles) in plant cells. (HM)

  4. Plant expansins: diversity and interactions with plant cell walls

    PubMed Central

    Cosgrove, Daniel J.

    2015-01-01

    Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable and even understandable ways. PMID:26057089

  5. Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation.

    PubMed

    Mao, Angelo S; Shin, Jae-Won; Mooney, David J

    2016-08-01

    The mechanical properties of the microenvironment and direct contact-mediated cell-cell interactions are two variables known to be important in the determination of stem cell differentiation fate, but little is known about the interplay of these cues. Here, we use a micropatterning approach on polyacrylamide gels of tunable stiffnesses to study how homotypic cell-cell contacts and mechanical stiffness affect different stages of osteogenesis of mesenchymal stem cells (MSCs). Nuclear localization of transcription factors associated with osteogenesis depended on substrate stiffness and was independent of the degree of cell-cell contact. However, expression of alkaline phosphatase, an early protein marker for osteogenesis, increased only in cells with both direct contact with neighboring cells and adhesion to stiffer substrates. Finally, mature osteogenesis, as assessed by calcium deposition, was low in micropatterned cells, even on stiff substrates and in multicellular clusters. These results indicate that substrate stiffness and the presence of neighboring cells regulate osteogenesis in MSCs. PMID:27203745

  6. Interferons Mediate Terminal Differentiation of Human Cortical Thymic Epithelial Cells

    PubMed Central

    Vidalain, Pierre-Olivier; Laine, David; Zaffran, Yona; Azocar, Olga; Servet-Delprat, Christine; Wild, T. Fabian; Rabourdin-Combe, Chantal; Valentin, Hélène

    2002-01-01

    In the thymus, epithelial cells comprise a heterogeneous population required for the generation of functional T lymphocytes, suggesting that thymic epithelium disruption by viruses may compromise T-cell lymphopoiesis in this organ. In a previous report, we demonstrated that in vitro, measles virus induced differentiation of cortical thymic epithelial cells as characterized by (i) cell growth arrest, (ii) morphological and phenotypic changes, and (iii) apoptotis as a final step of this process. In the present report, we have analyzed the mechanisms involved. First, measles virus-induced differentiation of thymic epithelial cells is shown to be strictly dependent on beta interferon (IFN-β) secretion. In addition, transfection with double-stranded RNA, a common intermediate of replication for a broad spectrum of viruses, is reported to similarly mediate thymic epithelial cell differentiation through IFN-β induction. Finally, we demonstrated that recombinant IFN-α, IFN-β, or IFN-γ was sufficient to induce differentiation and apoptosis of uninfected thymic epithelial cells. These observations suggested that interferon secretion by either infected cells or activated leukocytes, such as plasmacytoid dendritic cells or lymphocytes, may induce thymic epithelium disruption in a pathological context. Thus, we have identified a new mechanism that may contribute to thymic atrophy and altered T-cell lymphopoiesis associated with many infections. PMID:12050353

  7. Tryptanthrin induces growth inhibition and neuronal differentiation in the human neuroblastoma LA-N-1 cells.

    PubMed

    Liao, Xuemei; Leung, Kwok Nam

    2013-04-25

    Neuroblastoma is one of the most common extracranial solid cancers found in young children. The prognosis of neuroblastoma patients in advanced stages having N-myc amplification remains poor despite intensive multimodal therapy. Agents that trigger neuroblastoma cells to undergo cellular differentiation and thereby stop proliferation have attracted considerable interest as an alternative therapy. Tryptanthrin (12-dihydro-6,12-dioxoindolo-(2,1-b)-quinazoline) is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants known as Banlangen. It has been shown to possess various biological activities, such as anti-microbial, anti-inflammatory and anti-tumor activities. However, its effects and mechanism(s) of action on human neuroblastoma cells remain poorly understood. Therefore, the objective of this study is to investigate the effects of tryptanthrin on the growth and differentiation of human neuroblastoma LA-N-1 cells with N-myc amplification. Our results show that tryptanthrin inhibited the growth of the human neuroblastoma cells in a dose- and time-dependent manner. Mechanistic studies indicated that tryptanthrin induced cell cycle arrest of the human neuroblastoma LA-N-1 cells at the G0/G1 phase. Tryptanthrin also induced neuronal differentiation of LA-N-1 cells, as assessed by morphological criteria, enhancement of acetylcholine esterase activity and up-regulation of various differentiation markers. Moreover, tryptanthrin treatment led to the significant reduction of N-myc expression in LA-N-1 cells while siRNA directed against N-myc induced morphological differentiation of LA-N-1 cells. These results, when taken together, suggest that tryptanthrin suppressed the growth and induced neuronal differentiation in the human neuroblastoma LA-N-1 cells and might be exploited as a potential therapeutic candidate for the treatment of high-risk neuroblastomas with N-myc-amplification. PMID:23500671

  8. Integrating human stem cell expansion and neuronal differentiation in bioreactors

    PubMed Central

    Serra, Margarida; Brito, Catarina; Costa, Eunice M; Sousa, Marcos FQ; Alves, Paula M

    2009-01-01

    Background Human stem cells are cellular resources with outstanding potential for cell therapy. However, for the fulfillment of this application, major challenges remain to be met. Of paramount importance is the development of robust systems for in vitro stem cell expansion and differentiation. In this work, we successfully developed an efficient scalable bioprocess for the fast production of human neurons. Results The expansion of undifferentiated human embryonal carcinoma stem cells (NTera2/cl.D1 cell line) as 3D-aggregates was firstly optimized in spinner vessel. The media exchange operation mode with an inoculum concentration of 4 × 105 cell/mL was the most efficient strategy tested, with a 4.6-fold increase in cell concentration achieved in 5 days. These results were validated in a bioreactor where similar profile and metabolic performance were obtained. Furthermore, characterization of the expanded population by immunofluorescence microscopy and flow cytometry showed that NT2 cells maintained their stem cell characteristics along the bioreactor culture time. Finally, the neuronal differentiation step was integrated in the bioreactor process, by addition of retinoic acid when cells were in the middle of the exponential phase. Neurosphere composition was monitored and neuronal differentiation efficiency evaluated along the culture time. The results show that, for bioreactor cultures, we were able to increase significantly the neuronal differentiation efficiency by 10-fold while reducing drastically, by 30%, the time required for the differentiation process. Conclusion The culture systems developed herein are robust and represent one-step-forward towards the development of integrated bioprocesses, bridging stem cell expansion and differentiation in fully controlled bioreactors. PMID:19772662

  9. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-19

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  10. [The differentiation potential of stem cells (the problem of plasticity)].

    PubMed

    Chertkov, I L; Drize, N I

    2005-01-01

    Numerous publications on the ability of adult stem cells to differentiate into the cells of various tissues, not always homodermic (stem cell flexibility), to contain serious methodic errors. The main flexibility phenomena, such as "transdifferentiation" of hemopoietic stem cells into hepatocytes, cardiomyocytes, beta-cells of islets of Langerhans, neurons etc., are caused not by a shift of the differentiation path, but by cell merging, resulting in appearance of hybrids with unusual markers of cells of non-hemopoietic origin. The second most frequent error is wrong identification of macrophages and lymphocytes, which are present in any tissue and have the donor's genotype in chimeras. Even when the cause of the error is unknown, the phenomenon of unusual cell formation is exclusively rare and never bears therapeutic potential. In general, it is at least too early to revise the main tenets of the stem cell doctrine. Embryonic stem cells are totipotent indeed; however, the time of their clinical use has not come yet. Attempts to induce their ordered differentiation keep on failing; they very often lead to formation of teratomas and, even if necessary cells such as hemopoietic stem cells are formed, they do not work after administration into an organism that has been exposed to radiation. Clinical use of embryonic stem cells do not seem possible in this decade. PMID:16320705

  11. Differentiation of human alloreactive CD8+ T cells in vitro

    PubMed Central

    Rentenaar, Rob J; Vosters, Jelle L G; Van Diepen, Frank N J; Remmerswaal, Ester B M; Van Lier, René A W; Ten Berge, Ineke J M

    2002-01-01

    Expansion and differentiation of alloantigen-reactive CD8+ T cells in mixed lymphocyte cultures was followed by measurement of the loss of carboxyfluorescein diacetate succinimidyl ester (CFSE) fluorescence of responder cells. Proliferation of CD8+ T cells became detectable on day 4 of culture and, 2 days later, > 60% of the CD8+ T cells in culture were dividing alloreactive lymphocytes. In parallel with expansion, CD8+ T-cell differentiation was initiated, as evidenced by an increase in the number of CD45RA− and CD27− T cells and acquisition of the ability to produce interferon-γ after restimulation with the specific alloantigen. Finally, although short-term stimulation and measurement of intracellular cytokine production allowed visualization of alloreactive CD8+ T cells expanded in vitro, this procedure did not detect circulating alloreactive CD8+ T cells activated in vivo in recipients of allogeneic kidney grafts. PMID:11918689

  12. Mutagenesis and differentiation induction in mammalian cells by environmental chemicals

    SciTech Connect

    Friedman, J.; Huberman, E.

    1980-01-01

    These studies indicate that in agreement with the somatic mutation hypothesis, chemical carcinogens: (1) are mutagenic for mammalian cells as tested in the cell-mediated assay; (2) the degree of mutagenicity is correlated with their degree of carcinogenicity; (3) that at least in cases when analyzed carefully the metabolites responsible for mutagenesis are also responsible for initiating the carcinogenic event; and (4) that a cell organ type specificity can be established using the cell-mediated assay. Studies with HL-60 cells and HO melanoma cells and those of others suggest that tumor-promoting phorbol diesters can alter cell differentiation in various cell types and that the degree of the observed alteration in the differentiation properties may be related to the potency of the phorbol esters. Thus these and similar systems may serve as models for both studies and identification of certain types of tumor promoting agents. (ERB)

  13. Integrin Signaling, Cell Survival, and Anoikis: Distinctions, Differences, and Differentiation

    PubMed Central

    Vachon, Pierre H.

    2011-01-01

    Cell survival and apoptosis implicate an increasing complexity of players and signaling pathways which regulate not only the decision-making process of surviving (or dying), but as well the execution of cell death proper. The same complex nature applies to anoikis, a form of caspase-dependent apoptosis that is largely regulated by integrin-mediated, cell-extracellular matrix interactions. Not surprisingly, the regulation of cell survival, apoptosis, and anoikis furthermore implicates additional mechanistic distinctions according to the specific tissue, cell type, and species. Incidentally, studies in recent years have unearthed yet another layer of complexity in the regulation of these cell processes, namely, the implication of cell differentiation state-specific mechanisms. Further analyses of such differentiation state-distinct mechanisms, either under normal or physiopathological contexts, should increase our understanding of diseases which implicate a deregulation of integrin function, cell survival, and anoikis. PMID:21785723

  14. Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells

    PubMed Central

    Müller, Petra; Bulnheim, Ulrike; Diener, Annette; Lüthen, Frank; Teller, Marianne; Klinkenberg, Ernst-Dieter; Neumann, Hans-Georg; Nebe, Barbara; Liebold, Andreas; Steinhoff, Gustav; Rychly, Joachim

    2008-01-01

    Abstract Although studies in vivo revealed promising results in bone regeneration after implantation of scaffolds together with osteogenic progenitor cells, basic questions remain how material surfaces control the biology of mesenchymal stem cells (MSC). We used human MSC derived from bone marrow and studied the osteogenic differentiation on calcium phosphate surfaces. In osteogenic differentiation medium MSC differentiated to osteoblasts on hydroxyapatite and BONITmatrix®, a degradable xerogel composite, within 14 days. Cells revealed a higher alkaline phosphatase (ALP) activity and increased RNA expression of collagen I and osteocalcin using real-time RTPCR compared with cells on tissue culture plastic. To test whether material surface characteristics alone are able to stimulate osteogenic differentiation, MSC were cultured on the materials in expansion medium without soluble additives for osteogenic differentiation. Indeed, cells on calcium phosphate without osteogenic differentiation additives developed to osteoblasts as shown by increased ALP activity and expression of osteogenic genes, which was not the case on tissue culture plastic. Because we reasoned that the stimulating effect on osteogenesis by calcium phosphate surfaces depends on an altered cell–extracellular matrix interaction we studied the dynamic behaviour of focal adhesions using cells transfected with GFP labelled vinculin. On BONITmatrix®, an increased mobility of focal adhesions was observed compared with cells on tissue culture plastic. In conclusion, calcium phosphate surfaces are able to drive MSC to osteoblasts in the absence of osteogenic differentiation supplements in the medium. An altered dynamic behaviour of focal adhesions on calcium phosphate surfaces might be involved in the molecular mechanisms which promote osteogenic differentiation. PMID:18366455

  15. Adult mesenchymal stem cells: differentiation potential and therapeutic applications.

    PubMed

    Jackson, L; Jones, D R; Scotting, P; Sottile, V

    2007-01-01

    Adult mesenchymal stem cells (MSCs) are a population of multipotent cells found primarily in the bone marrow. They have long been known to be capable of osteogenic, adipogenic and chondrogenic differentiation and are currently the subject of a number of trials to assess their potential use in the clinic. Recently, the plasticity of these cells has come under close scrutiny as it has been suggested that they may have a differentiation potential beyond the mesenchymal lineage. Myogenic and in particular cardiomyogenic potential has been shown in vitro. MSCs have also been shown to have the ability to form neural cells both in vitro and in vivo, although the molecular mechanisms underlying these apparent transdifferentiation events are yet to be elucidated. We describe here the cellular characteristics and differentiation potential of MSCs, which represent a promising stem cell population for future applications in regenerative medicine. PMID:17495381

  16. Microtubule networks for plant cell division.

    PubMed

    de Keijzer, Jeroen; Mulder, Bela M; Janson, Marcel E

    2014-09-01

    During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called cell plate, which is constructed by localized deposition of membrane and cell wall material. Construction starts in the centre of the cell at the locus of the mitotic spindle and continues radially towards the existing plasma membrane. Finally the membrane of the cell plate and plasma membrane fuse to form two individual plasma membranes. Two microtubule-based cytoskeletal networks, the phragmoplast and the pre-prophase band (PPB), jointly control cytokinesis in plants. The bipolar microtubule array of the phragmoplast regulates cell plate deposition towards a cortical position that is templated by the ring-shaped microtubule array of the PPB. In contrast to most animal cells, plants do not use centrosomes as foci of microtubule growth initiation. Instead, plant microtubule networks are striking examples of self-organizing systems that emerge from physically constrained interactions of dispersed microtubules. Here we will discuss how microtubule-based activities including growth, shrinkage, severing, sliding, nucleation and bundling interrelate to jointly generate the required ordered structures. Evidence mounts that adapter proteins sense the local geometry of microtubules to locally modulate the activity of proteins involved in microtubule growth regulation and severing. Many of the proteins and mechanisms involved have roles in other microtubule assemblies as well, bestowing broader relevance to insights gained from plants. PMID:25136380

  17. Differential cell photosensitivity following porphyrin photodynamic therapy.

    PubMed

    Gomer, C J; Rucker, N; Murphree, A L

    1988-08-15

    Experiments were performed to determine if differences in porphyrin photosensitivity could be observed for cells with varying efficiency in DNA damage repair, as well as for cells which make up components of the vasculature. Photofrin II is undergoing current clinical evaluation for photodynamic therapy of solid tumors, and therefore the retention, dark toxicity, and photosensitizing effects of this drug on human DNA repair-deficient fibroblasts (ataxia telangiectasia and xeroderma pigmentosum) were compared to normal human fibroblasts. In addition, bovine cells of endothelial, smooth muscle, and fibroblast origin were compared for porphyrin retention, toxicity, and photosensitivity. All human fibroblasts exhibited porphyrin-induced dark toxicity, but there were no significant differences in photosensitization or porphyrin retention for any of these cell lines. However, bovine endothelial cells were considerably more photosensitive than smooth muscle or fibroblast cells treated under identical conditions. All bovine cells accumulated similar levels of porphyrin, and therefore the increased sensitivity of the endothelial cells was not due to differences in porphyrin retention. These results provide additional evidence that nuclear damage and/or repair is not a dominant factor in the cytotoxicity induced by porphyrin photosensitization. In addition, these results indicate that endothelial cell photosensitivity may play a role in the vascular damage observed following photodynamic therapy. PMID:2969280

  18. Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells.

    PubMed

    Kaliman, P; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1996-08-01

    Skeletal muscle differentiation involves myoblast alignment, elongation, and fusion into multinucleate myotubes, together with the induction of regulatory and structural muscle-specific genes. Here we show that two phosphatidylinositol 3-kinase inhibitors, LY294002 and wortmannin, blocked an essential step in the differentiation of two skeletal muscle cell models. Both inhibitors abolished the capacity of L6E9 myoblasts to form myotubes, without affecting myoblast proliferation, elongation, or alignment. Myogenic events like the induction of myogenin and of glucose carrier GLUT4 were also blocked and myoblasts could not exit the cell cycle, as measured by the lack of mRNA induction of p21 cyclin-dependent kinase inhibitor. Overexpresssion of MyoD in 10T1/2 cells was not sufficient to bypass the myogenic differentiation blockade by LY294002. Upon serum withdrawal, 10T1/2-MyoD cells formed myotubes and showed increased levels of myogenin and p21. In contrast, LY294002-treated cells exhibited none of these myogenic characteristics and maintained high levels of Id, a negative regulator of myogenesis. These data indicate that whereas phosphatidylinositol 3-kinase is not indispensable for cell proliferation or in the initial events of myoblast differentiation, i.e. elongation and alignment, it appears to be essential for terminal differentiation of muscle cells. PMID:8702591

  19. Histone content increases in differentiating embryonic stem cells.

    PubMed

    Karnavas, Theodoros; Pintonello, Luisa; Agresti, Alessandra; Bianchi, Marco E

    2014-01-01

    Mouse Embryonic Stem Cells (ESCs) are pluripotent mammalian cells derived from the Inner Cell Mass (ICM) of mouse blastocysts, which give rise to all three embryonic germ layers both in vivo and in vitro. Mouse ESCs have a distinct epigenetic landscape and a more decondensed chromatin compared to differentiated cells. Numerous studies have shown that distinct histone modifications in ESCs serve as hallmarks of pluripotency. However, so far it is still unknown whether the total histone content (as opposed to histone modifications) remains the same in cells of different developmental stage and differentiation capacity. In this work we show that total histone content differs between pluripotent and differentiated cells. In vitro spontaneous differentiation from ESCs to Embryoid Bodies (EBs) and directed differentiation toward neuronal and endodermal cells entails an increase in histone content. Primary MEFs also contain more histones than ESCs. We suggest that the difference in histone content is an additional hallmark of pluripotency, in addition to and besides histone modifications. PMID:25221520

  20. The transcriptional landscape of αβ T cell differentiation

    PubMed Central

    Mingueneau, Michael; Kreslavsky, Taras; Gray, Daniel; Heng, Tracy; Cruse, Richard; Ericson, Jeffrey; Bendall, Sean; Spitzer, Matt; Nolan, Garry; Kobayashi, Koichi; von Boehmer, Harald; Mathis, Diane; Benoist, Christophe

    2013-01-01

    αβT cell differentiation from thymic precursors is a complex process, explored here with the breadth of ImmGen expression datasets, analyzing how differentiation of thymic precursors gives rise to transcriptomes. After surprisingly gradual changes though early T commitment, transit through the CD4+CD8+ stage involves a shutdown or rare breadth, and correlating tightly with MYC. MHC-driven selection promotes a large-scale transcriptional reactivation. We identify distinct signatures that mark cells destined for positive selection versus apoptotic deletion. Differential expression of surprisingly few genes accompany CD4 or CD8 commitment, a similarity that carries through to peripheral T cells and their activation, revealed by mass cytometry phosphoproteomics. The novel transcripts identified as candidate mediators of key transitions help define the “known unknown” of thymocyte differentiation. PMID:23644507

  1. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    SciTech Connect

    Liu, Jui Tung; Bain, Lisa J.

    2014-12-15

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  2. Microenvironment influences vascular differentiation of murine cardiovascular progenitor cells.

    PubMed

    Gluck, Jessica M; Delman, Connor; Chyu, Jennifer; MacLellan, W Robb; Shemin, Richard J; Heydarkhan-Hagvall, Sepideh

    2014-11-01

    We examined the effects of the microenvironment on vascular differentiation of murine cardiovascular progenitor cells (CPCs). We isolated CPCs and seeded them in culture exposed to the various extracellular matrix (ECM) proteins in both two-dimensional (2D) and 3D culture systems. To better understand the contribution of the microenvironment to vascular differentiation, we analyzed endothelial and smooth muscle cell differentiation at both day 7 and day 14. We found that laminin and vitronectin enhanced vascular endothelial cell differentiation while fibronectin enhanced vascular smooth muscle cell differentiation. We also observed that the effects of the 3D electrospun scaffolds were delayed and not noticeable until the later time point (day 14), which may be due to the amount of time necessary for the cells to migrate to the interior of the scaffold. The study characterized the contributions of both ECM proteins and the addition of a 3D culture system to continued vascular differentiation. Additionally, we demonstrated the capability bioengineer a CPC-derived vascular graft. PMID:24687591

  3. Genes associated with T helper 17 cell differentiation and function.

    PubMed

    Nalbant, Ayten; Eskier, Doga

    2016-01-01

    Interleukin-17 (IL-17)-producing T helper cells (Th17 cells) constitute a lineage of CD4 effector T helper cells that is distinct from the Th1 and Th2 CD4 phenotypes. In humans, Th17 differentiation is induced in the presence of the cytokines IL-1 beta, IL-6 and TGF beta, whereas IL-23 maintains Th17 survival. Effector human Th17 cells express several cytokines and cell surface markers, including IL-17A, IL-17F, IL-22, IL-26, CCR6 and TNFalpha. Studies on human cells have revealed that the RORC2 transcription factor plays an effective role in Th17 differentiation. Th17 cells contribute to the host immune response by involving various pathologies, including rheumatoid arthritis, multiple sclerosis and Crohn's disease. However, the full extent of their contribution to diseases is being investigated. The differentiation of Th17 cells is controlled by many transcription factors, including ROR gammat, IRF4, RUNX1, BATF, and STAT3. This review covers the general principles of CD4 T helper differentiation and the known transcription factors that play a role in the recently discovered Th17 cells. PMID:27100349

  4. Asymmetric growth of root epidermal cells is related to the differentiation of root hair cells in Hordeum vulgare (L.)

    PubMed Central

    Marzec, Marek

    2013-01-01

    The root epidermis of most vascular plants harbours two cell types, namely trichoblasts (capable of producing a root hair) and atrichoblasts. Here, in vivo analysis, confocal laser-scanning microscopy, transmission electron microscopy, histological analysis, and three-dimensional reconstruction were used to characterize the cell types present in the barley root epidermis and their distribution in the tissue. Both trichoblasts and atrichoblasts were present in the wild-type cultivars and could be distinguished from one another at an early stage. Trichoblast/atrichoblast differentiation depended on asymmetric cell expansion after a period of symmetrical cell division. After asymmetric growth, only the shorter epidermal cells could produce root hairs, whereas the longer cells became atrichoblasts. Moreover, the root epidermis did not develop root hairs at all if the epidermal cells did not differentiate into two asymmetric cell types. The root hairless phenotype of bald root barley (brb) and root hairless 1.b (rhl1.b) mutants was caused by a mutation in a gene related to the asymmetric expansion of the root epidermal cells. Additionally, the results showed that the mechanism of trichoblast/atrichoblast differentiation is not evolutionally conserved across the subfamilies of the Poaceae; in the Pooideae subfamily, both asymmetric division and asymmetric cell expansion have been observed. PMID:24043851

  5. Stat3 Is Important for Follicular Regulatory T Cell Differentiation

    PubMed Central

    Wu, Hao; Xie, Markus M.; Liu, Hong; Dent, Alexander L.

    2016-01-01

    The production of antibody is precisely controlled during the germinal center (GC) reaction. This process is dependent on the help from follicular T helper (Tfh) cells to germinal center (GC) B cells and is regulated by regulatory follicular T helper (Tfr) cells. How Tfr cells develop and how their suppressive activity functions are not well understood. Here, we found that Stat3 is indispensible for Tfr cell differentiation. After immunization with Sheep Red Blood Cells (SRBC), the loss of Tfr cells caused by deletion of Stat3 in Treg cells does not affect the size of Tfh or GC B cell population, but rather leads to strongly enhanced production of antigen-specific IgG1 and IgG2b. In Peyer’s patches (PPs) in the gut, we found that Stat3 expression in Treg cells is also required for Tfr cell formation to commensal organisms. However, loss of Tfr cells in the gut did not affect the numbers of Tfh cells and GC B cells, nor affect IgG1 or IgA switching by GC B cells. Overall, our study has uncovered unique roles of Stat3 in Tfr cell differentiation and the regulation of the antibody response. PMID:27148746

  6. A Role of TDIF Peptide Signaling in Vascular Cell Differentiation is Conserved Among Euphyllophytes

    PubMed Central

    Hirakawa, Yuki; Bowman, John L.

    2015-01-01

    Peptide signals mediate a variety of cell-to-cell communication crucial for plant growth and development. During Arabidopsis thaliana vascular development, a CLE (CLAVATA3/EMBRYO SURROUNDING REGION-related) family peptide hormone, TDIF (tracheary element differentiation inhibitory factor), regulates procambial cell fate by its inhibitory activity on xylem differentiation. To address if this activity is conserved among vascular plants, we performed comparative analyses of TDIF signaling in non-flowering vascular plants (gymnosperms, ferns and lycophytes). We identified orthologs of TDIF/CLE as well as its receptor TDR/PXY (TDIF RECEPTOR/PHLOEM INTERCALATED WITH XYLEM) in Ginkgo biloba, Adiantum aethiopicum, and Selaginella kraussiana by RACE-PCR. The predicted TDIF peptide sequences in seed plants and ferns were identical to that of A. thaliana TDIF. We examined the effects of exogenous CLE peptide-motif sequences of TDIF in these species. We found that liquid culturing of dissected leaves or shoots was useful for examining TDIF activity during vascular development. TDIF treatment suppressed xylem/tracheary element differentiation of procambial cells in G. biloba and A. aethiopicum leaves. In contrast, neither TDIF nor putative endogenous TDIF inhibited xylem differentiation in developing shoots and rhizophores of S. kraussiana. These data suggest that activity of TDIF in vascular development is conserved among extant euphyllophytes. In addition to the conserved function, via liquid culturing of its bulbils, we found a novel inhibitory activity on root growth in the fern Asplenium × lucrosum suggesting lineage-specific co-option of peptide signaling occurred during the evolution of vascular plant organs. PMID:26635860

  7. A Role of TDIF Peptide Signaling in Vascular Cell Differentiation is Conserved Among Euphyllophytes.

    PubMed

    Hirakawa, Yuki; Bowman, John L

    2015-01-01

    Peptide signals mediate a variety of cell-to-cell communication crucial for plant growth and development. During Arabidopsis thaliana vascular development, a CLE (CLAVATA3/EMBRYO SURROUNDING REGION-related) family peptide hormone, TDIF (tracheary element differentiation inhibitory factor), regulates procambial cell fate by its inhibitory activity on xylem differentiation. To address if this activity is conserved among vascular plants, we performed comparative analyses of TDIF signaling in non-flowering vascular plants (gymnosperms, ferns and lycophytes). We identified orthologs of TDIF/CLE as well as its receptor TDR/PXY (TDIF RECEPTOR/PHLOEM INTERCALATED WITH XYLEM) in Ginkgo biloba, Adiantum aethiopicum, and Selaginella kraussiana by RACE-PCR. The predicted TDIF peptide sequences in seed plants and ferns were identical to that of A. thaliana TDIF. We examined the effects of exogenous CLE peptide-motif sequences of TDIF in these species. We found that liquid culturing of dissected leaves or shoots was useful for examining TDIF activity during vascular development. TDIF treatment suppressed xylem/tracheary element differentiation of procambial cells in G. biloba and A. aethiopicum leaves. In contrast, neither TDIF nor putative endogenous TDIF inhibited xylem differentiation in developing shoots and rhizophores of S. kraussiana. These data suggest that activity of TDIF in vascular development is conserved among extant euphyllophytes. In addition to the conserved function, via liquid culturing of its bulbils, we found a novel inhibitory activity on root growth in the fern Asplenium × lucrosum suggesting lineage-specific co-option of peptide signaling occurred during the evolution of vascular plant organs. PMID:26635860

  8. Differential responses of scirrhous and well-differentiated gastric cancer cells to orthotopic fibroblasts.

    PubMed Central

    Yashiro, M.; Chung, Y. S.; Kubo, T.; Hato, F.; Sowa, M.

    1996-01-01

    Scirrhous gastric cancer cells proliferate rapidly with fibrosis, when the cancer cells invade into the submucosa of the stomach. To investigate the mechanisms responsible for the rapid proliferation, the growth interaction between gastric cancer cells and fibroblasts was examined. Human gastric cancer cell lines established from scirrhous carcinoma or well-differentiated adenocarcinoma were used. Human fibroblast cell lines were obtained from various organs. The growth interaction between gastric cancer cells and fibroblasts was examined by calculating the number of cancer cells or by measuring [3H]thymidine incorporation of cancer cells. Gastric fibroblasts specifically stimulated the growth of scirrhous gastric cancer cells, but not that of well-differentiated adenocarcinoma cells. The growth factor(s) produced from gastric fibroblasts were then partially purified and characterised. The growth-promoting factor(s) had apparent molecular weights of 10000 dalton and was sensitive both to heat and proteinase treatment. No inhibition for the factor(s) was achieved with defined anti-growth factor antibodies. In this study, differential responses of scirrhous and well-differentiated gastric cancer cells to orthotopic fibroblasts were shown. Rapid proliferation of scirrhous gastric carcinoma should be partly controlled by orthotopic fibroblasts. The growth factor(s) from gastric fibroblasts, which was distinct from various defined growth factors such as epidermal growth factor (EGF), basic fibroblast growth factor (b-FGF), transforming growth factor-alpha (TGF-alpha), keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF), insulin-like growth factor I (IGF-I), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF) and transforming growth factor beta 1 (TGF-beta 1) may play an important role in the progression of scirrhous gastric cancer cells. PMID:8855981

  9. Oncogenic NRAS Primes Primary Acute Myeloid Leukemia Cells for Differentiation.

    PubMed

    Brendel, Cornelia; Teichler, Sabine; Millahn, Axel; Stiewe, Thorsten; Krause, Michael; Stabla, Kathleen; Ross, Petra; Huynh, Minh; Illmer, Thomas; Mernberger, Marco; Barckhausen, Christina; Neubauer, Andreas

    2015-01-01

    RAS mutations are frequently found among acute myeloid leukemia patients (AML), generating a constitutively active signaling protein changing cellular proliferation, differentiation and apoptosis. We have previously shown that treatment of AML patients with high-dose cytarabine is preferentially beneficial for those harboring oncogenic RAS. On the basis of a murine AML cell culture model, we ascribed this effect to a RAS-driven, p53-dependent induction of differentiation. Hence, in this study we sought to confirm the correlation between RAS status and differentiation of primary blasts obtained from AML patients. The gene expression signature of AML blasts with oncogenic NRAS indeed corresponded to a more mature profile compared to blasts with wildtype RAS, as demonstrated by gene set enrichment analysis (GSEA) and real-time PCR analysis of myeloid ecotropic viral integration site 1 homolog (MEIS1) in a unique cohort of AML patients. In addition, in vitro cell culture experiments with established cell lines and a second set of primary AML cells showed that oncogenic NRAS mutations predisposed cells to cytarabine (AraC) driven differentiation. Taken together, our findings show that AML with inv(16) and NRAS mutation have a differentiation gene signature, supporting the notion that NRAS mutation may predispose leukemic cells to AraC induced differentiation. We therefore suggest that promotion of differentiation pathways by specific genetic alterations could explain the superior treatment outcome after therapy in some AML patient subgroups. Whether a differentiation gene expression status may generally predict for a superior treatment outcome in AML needs to be addressed in future studies. PMID:25901794

  10. Monoclonal antibodies against plant cell wall polysaccharides

    SciTech Connect

    Hahn, M.G.; Bucheli, E.; Darvill, A.; Albersheim, P. )

    1989-04-01

    Monoclonal antibodies (McAbs) are useful tools to probe the structure of plant cell wall polysaccharides and to localize these polysaccharides in plant cells and tissues. Murine McAbs were generated against the pectic polysaccharide, rhamnogalacturonan I (RG-I), isolated from suspension-cultured sycamore cells. The McAbs that were obtained were grouped into three classes based upon their reactivities with a variety of plant polysaccharides and membrane glycoproteins. Eleven McAbs (Class I) recognize epitope(s) that appear to be immunodominant and are found in RG-I from sycamore and maize, citrus pectin, polygalacturonic acid, and membrane glycoproteins from suspension-cultured cells of sycamore, maize, tobacco, parsley, and soybean. A second group of five McAbs (Class II) recognize epitope(s) present in sycamore RG-I, but do not bind to any of the other polysaccharides or glycoproteins recognized by Class I. Lastly, one McAb (Class III) reacts with sycamore RG-I, sycamore and tamarind xyloglucan, and sycamore and rice glucuronoarabinoxylan, but does not bind to maize RG-I, polygalacturonic acid or the plant membrane glycoproteins recognized by Class I. McAbs in Classes II and III are likely to be useful in studies of the structure, biosynthesis and localization of plant cell wall polysaccharides.

  11. Differential Regulation of Cellular Senescence and Differentiation by Prolyl Isomerase Pin1 in Cardiac Progenitor Cells*

    PubMed Central

    Toko, Haruhiro; Hariharan, Nirmala; Konstandin, Mathias H.; Ormachea, Lucia; McGregor, Michael; Gude, Natalie A.; Sundararaman, Balaji; Joyo, Eri; Joyo, Anya Y.; Collins, Brett; Din, Shabana; Mohsin, Sadia; Uchida, Takafumi; Sussman, Mark A.

    2014-01-01

    Autologous c-kit+ cardiac progenitor cells (CPCs) are currently used in the clinic to treat heart disease. CPC-based regeneration may be further augmented by better understanding molecular mechanisms of endogenous cardiac repair and enhancement of pro-survival signaling pathways that antagonize senescence while also increasing differentiation. The prolyl isomerase Pin1 regulates multiple signaling cascades by modulating protein folding and thereby activity and stability of phosphoproteins. In this study, we examine the heretofore unexplored role of Pin1 in CPCs. Pin1 is expressed in CPCs in vitro and in vivo and is associated with increased proliferation. Pin1 is required for cell cycle progression and loss of Pin1 causes cell cycle arrest in the G1 phase in CPCs, concomitantly associated with decreased expression of Cyclins D and B and increased expression of cell cycle inhibitors p53 and retinoblastoma (Rb). Pin1 deletion increases cellular senescence but not differentiation or cell death of CPCs. Pin1 is required for endogenous CPC response as Pin1 knock-out mice have a reduced number of proliferating CPCs after ischemic challenge. Pin1 overexpression also impairs proliferation and causes G2/M phase cell cycle arrest with concurrent down-regulation of Cyclin B, p53, and Rb. Additionally, Pin1 overexpression inhibits replicative senescence, increases differentiation, and inhibits cell death of CPCs, indicating that cell cycle arrest caused by Pin1 overexpression is a consequence of differentiation and not senescence or cell death. In conclusion, Pin1 has pleiotropic roles in CPCs and may be a molecular target to promote survival, enhance repair, improve differentiation, and antagonize senescence. PMID:24375406

  12. Cell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Jimi, Eijiro

    2016-01-01

    Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs) and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3), which was recently reported to regulate the balance between osteoblast and adipocyte formation from BMMSCs. We also discuss evidence implicating canonical Wnt signalling, which plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing adipogenesis in the bone marrow environment. PMID:27298623

  13. Metabolic regulation of T cell differentiation and function

    PubMed Central

    Park, Benjamin V.; Pan, Fan

    2016-01-01

    Upon encountering pathogens, T cells mount immune responses by proliferating, increasing cellular mass and differentiating. These cellular changes impose significant energetic challenges on T cells. It was believed that TCR and cytokine-mediated signaling are dominant dictators of T cell-mediated immune responses. Recently, it was recognized that T cells utilize metabolic transporters and metabolic sensors that allow them to rapidly respond to nutrient-limiting inflammatory environments. Metabolic sensors allow T cells to find a balance between energy consumption (anabolic metabolism) and production (catabolic metabolism) in order to mount effective immune responses. Also, metabolic regulators interact with cytokine-dependent transcriptional regulators, suggesting a more integrative and advanced model of T cell activation and differentiation. In this review, we will discuss recent discoveries regarding the roles of metabolic regulators in effector and memory T cell development and their interaction with canonical transcription factors. PMID:26277275

  14. Auxin Deprivation Induces Synchronous Golgi Differentiation in Suspension-Cultured Tobacco BY-2 Cells1

    PubMed Central

    Winicur, Zev M.; Feng Zhang, Guo; Andrew Staehelin, L.

    1998-01-01

    To date, the lack of a method for inducing plant cells and their Golgi stacks to differentiate in a synchronous manner has made it difficult to characterize the nature and extent of Golgi retailoring in biochemical terms. Here we report that auxin deprivation can be used to induce a uniform population of suspension-cultured tobacco (Nicotiana tabacum cv BY-2) cells to differentiate synchronously during a 4-d period. Upon removal of auxin, the cells stop dividing, undergo elongation, and differentiate in a manner that mimics the formation of slime-secreting epidermal and peripheral root-cap cells. The morphological changes to the Golgi apparatus include a proportional increase in the number of trans-Golgi cisternae, a switch to larger-sized secretory vesicles that bud from the trans-Golgi cisternae, and an increase in osmium staining of the secretory products. Biochemical alterations include an increase in large, fucosylated, mucin-type glycoproteins, changes in the types of secreted arabinogalactan proteins, and an increase in the amounts and types of molecules containing the peripheral root-cap-cell-specific epitope JIM 13. Taken together, these findings support the hypothesis that auxin deprivation can be used to induce tobacco BY-2 cells to differentiate synchronously into mucilage-secreting cells. PMID:9625703

  15. Propolis Inhibits Neurite Outgrowth in Differentiating SH-SY5Y Human Neuroblastoma Cells.

    PubMed

    Kim, Han Bit; Yoo, Byung Sun

    2016-07-01

    Propolis is a multicomponent, active, complex resinous substance collected by honeybees from a variety of plant sources. We have studied the effect of propolis on neurite outgrowth of SH-SY5Y human neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Propolis, at a concentration of 3 μg/mL, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells treated with propolis (0.3~3 μg/mL) for 48 hr was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 0.3 to 3 μg/mL propolis resulted in decreased level of transglutaminase and 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The results indicate that propolis is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells. PMID:27437091

  16. Propolis Inhibits Neurite Outgrowth in Differentiating SH-SY5Y Human Neuroblastoma Cells

    PubMed Central

    Kim, Han Bit; Yoo, Byung Sun

    2016-01-01

    Propolis is a multicomponent, active, complex resinous substance collected by honeybees from a variety of plant sources. We have studied the effect of propolis on neurite outgrowth of SH-SY5Y human neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Propolis, at a concentration of 3 μg/mL, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells treated with propolis (0.3~3 μg/mL) for 48 hr was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 0.3 to 3 μg/mL propolis resulted in decreased level of transglutaminase and 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The results indicate that propolis is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells. PMID:27437091

  17. Cholesterol starvation induces differentiation of human leukemia HL-60 cells.

    PubMed

    Sánchez-Martín, Carolina C; Dávalos, Alberto; Martín-Sánchez, Covadonga; de la Peña, Gema; Fernández-Hernando, Carlos; Lasunción, Miguel A

    2007-04-01

    Cholesterol metabolism is particularly active in malignant, proliferative cells, whereas cholesterol starvation has been shown to inhibit cell proliferation. Inhibition of enzymes involved in cholesterol biosynthesis at steps before the formation of 7-dehydrocholesterol has been shown to selectively affect cell cycle progression from G(2) phase in human promyelocytic HL-60 cells. In the present work, we explored whether cholesterol starvation by culture in cholesterol-free medium and treatment with different distal cholesterol biosynthesis inhibitors induces differentiation of HL-60 cells. Treatment with SKF 104976, an inhibitor of lanosterol 14-alpha demethylase, or with zaragozic acid, which inhibits squalene synthase, caused morphologic changes alongside respiratory burst activity and expression of cluster of differentiation antigen 11c (CD11c) but not cluster of differentiation antigen 14. These effects were comparable to those produced by all-trans retinoic acid, which induces HL-60 cells to differentiate following a granulocyte lineage. In contrast, they differed from those produced by vitamin D(3), which promotes monocyte differentiation. The specificity of the response was confirmed by addition of cholesterol to the culture medium. Treatment with PD 98059, an inhibitor of extracellular signal-regulated kinase, abolished both the activation of NADPH oxidase and the expression of the CD11c marker. In sharp contrast, BM 15766, which inhibits sterol Delta(7)-reductase, failed to induce differentiation or arrest cell proliferation. These results show that changes in the sterol composition may trigger a differentiation response and highlight the potential of cholesterol pathway inhibition as a possible tool for use in cancer therapy. PMID:17409448

  18. Regulation of cell division in higher plants. Final technical report

    SciTech Connect

    Jacobs, Thomas W.

    2000-02-29

    Research in the latter part of the grant period was divided into two parts: (1) expansion of the macromolecular tool kit for studying plant cell division; (2) experiments in which the roles played by plant cell cycle regulators were to be cast in the light of the emerging yeast and animal cell paradigm for molecular control of the mitotic cycle. The first objectives were accomplished to a very satisfactory degree. With regard to the second part of the project, we were driven to change our objectives for two reasons. First, the families of cell cycle control genes that we cloned encoded such closely related members that the prospects for success at raising distinguishing antisera against each were sufficiently dubious as to be impractical. Epitope tagging is not feasible in Pisum sativum, our experimental system, as this species is not realistically transformable. Therefore, differentiating the roles of diverse cyclins and cyclin-dependent kinases was problematic. Secondly, our procedure for generating mitotically synchronized pea root meristems for biochemical studies was far too labor intensive for the proposed experiments. We therefore shifted our objectives to identifying connections between the conserved proteins of the cell cycle engine and factors that interface it with plant physiology and development. In this, we have obtained some very exciting results.

  19. Hyaluronan scaffold supports osteogenic differentiation of bone marrow concentrate cells.

    PubMed

    Cavallo, C; Desando, G; Ferrari, A; Zini, N; Mariani, E; Grigolo, B

    2016-01-01

    Osteochondral lesions are considered a challenge for orthopedic surgeons. Currently, the treatments available are often unsatisfactory and unable to stimulate tissue regeneration. Tissue engineering offers a new therapeutic strategy, taking into account the role exerted by cells, biomaterial and growth factors in restoring tissue damage. In this light, Mesenchymal Stem Cells (MSCs) have been indicated as a fascinating tool for regenerative medicine thanks to their ability to differentiate into bone, cartilage and adipose tissue. However, in vitro-cultivation of MSCs could be associated with some risks such as de-differentiation/reprogramming, infection and contaminations of the cells. To overcome these shortcomings, a new approach is represented by the use of Bone Marrow Concentrate (BMC), that could allow the delivery of cells surrounded by their microenvironment in injured tissue. For this purpose, cells require a tridimensional scaffold that can support their adhesion, proliferation and differentiation. This study is focused on the potentiality of BMC seeded onto a hyaluronan-based scaffold (Hyaff-11) to differentiate into osteogenic lineage. This process depends on the specific interaction between cells derived from bone marrow (surrounded by their niche) and scaffold, that create an environment able to support the regeneration of damaged tissue. The data obtained from the present study demonstrate that BMC grown onto Hyaff-11 are able to differentiate toward osteogenic sense, producing specific osteogenic genes and matrix proteins. PMID:27358127

  20. The role of purinergic receptors in stem cell differentiation

    PubMed Central

    Kaebisch, Constanze; Schipper, Dorothee; Babczyk, Patrick; Tobiasch, Edda

    2014-01-01

    A major challenge modern society has to face is the increasing need for tissue regeneration due to degenerative diseases or tumors, but also accidents or warlike conflicts. There is great hope that stem cell-based therapies might improve current treatments of cardiovascular diseases, osteochondral defects or nerve injury due to the unique properties of stem cells such as their self-renewal and differentiation potential. Since embryonic stem cells raise severe ethical concerns and are prone to teratoma formation, adult stem cells are still in the focus of research. Emphasis is placed on cellular signaling within these cells and in between them for a better understanding of the complex processes regulating stem cell fate. One of the oldest signaling systems is based on nucleotides as ligands for purinergic receptors playing an important role in a huge variety of cellular processes such as proliferation, migration and differentiation. Besides their natural ligands, several artificial agonists and antagonists have been identified for P1 and P2 receptors and are already used as drugs. This review outlines purinergic receptor expression and signaling in stem cells metabolism. We will briefly describe current findings in embryonic and induced pluripotent stem cells as well as in cancer-, hematopoietic-, and neural crest-derived stem cells. The major focus will be placed on recent findings of purinergic signaling in mesenchymal stem cells addressed in in vitro and in vivo studies, since stem cell fate might be manipulated by this system guiding differentiation towards the desired lineage in the future. PMID:26900431

  1. Silicon Micropore based Electromechanical Transducer to Differentiate Tumor Cells

    NASA Astrophysics Data System (ADS)

    Ali, Waqas; Raza, Muhammad U.; Khanzada, Raja R.; Kim, Young-Tae; Iqbal, Samir M.

    2015-03-01

    Solid-state micropores have been used before to differentiate cancer cells from normal cells using size-based filtering. Tumor cells differ from normal ones not only in size but also in physical properties like elasticity, shape, motility etc. Tumor cells show different physical attributes depending on the stage and type of cancer. We report a micropore based electromechanical transducer that differentiated cancer cells based on their mechanophysical properties. The device was interfaced with a high-speed patch-clamp measurement system that biased the ionic solution across the silicon-based membrane. The bias resulted in the flow of ionic current. Electrical pulses were generated when cells passed through. Different cells depicted characteristic pulses. Translocation profiles of cells that were either small or were more elastic and flexible caused electrical pulses shorter in widths and amplitudes whereas cells with larger size or lesser elasticity/flexibility showed deeper and wider pulses. Three non-small cell lung cancer (NSCLC) cell lines NCI-H1155, A549 and NCI-H460 were successfully differentiated. NCI-H1155, due to their comparatively smaller size, were found quickest in translocating through. The solid-sate micropore based electromechanical transducer could process the whole blood sample of cancer patient without any pre-processing requirements and is ideal for point-of-care applications. Support Acknowledged from NSF through ECCS-1201878.

  2. Aloin enhances cisplatin antineoplastic activity in B16-F10 melanoma cells by transglutaminase-induced differentiation.

    PubMed

    Tabolacci, Claudio; Rossi, Stefania; Lentini, Alessandro; Provenzano, Bruno; Turcano, Lorenzo; Facchiano, Francesco; Beninati, Simone

    2013-01-01

    Aloin, a natural anthracycline from aloe plant, is a hydroxyanthraquinone derivative shown to have antitumor properties. This study demonstrated that aloin exerted inhibition of cell proliferation, adhesion and invasion abilities of B16-F10 melanoma cells under non-cytotoxic concentrations. Furthermore, aloin induced melanoma cell differentiation through the enhancement of melanogenesis and transglutaminase activity. To improve the growth-inhibiting effect of anticancer agents, we found that the combined treatment of cells with aloin and low doses of cisplatin increases the antiproliferative activity of aloin. The results suggest that aloin possesses antineoplastic and antimetastatic properties, exerted likely through the induction of melanoma cell differentiation. PMID:22139409

  3. Metal-accelerated oxidation in plant cell death

    SciTech Connect

    Czuba, M. )

    1993-05-01

    Cadmium and mercury toxicity is further enhanced by external oxidizing conditions O[sub 3] or inherent plant processes. Lepidium sativum L, Lycopersicon esculentum Mill., or Phaseolus vulgaris L, were grown inpeat-lite to maturity under continuous cadmium exposure followed by one oxidant (O[sub 3]-6 hr. 30 pphm) exposure, with or without foliar calcium pretreatments. In comparison, Daucus carota, L and other species grown in a 71-V suspension, with or without 2,4-D were exposed continuously to low levels of methylmercury during exponential growth and analyzed in aggregates of distinct populations. Proteins were extracted and analyzed. Mechanisms of toxicity and eventual cell death are Ca-mediated and involve chloroplast, stomatal-water relations and changes in oxidant-anti-oxidant components in cells. Whether the metal-accelerated oxidative damage proceeds to cell death, depends on the species and its differential biotransformation system and cell association component.

  4. Differential protein network analysis of the immune cell lineage.

    PubMed

    Clancy, Trevor; Hovig, Eivind

    2014-01-01

    Recently, the Immunological Genome Project (ImmGen) completed the first phase of the goal to understand the molecular circuitry underlying the immune cell lineage in mice. That milestone resulted in the creation of the most comprehensive collection of gene expression profiles in the immune cell lineage in any model organism of human disease. There is now a requisite to examine this resource using bioinformatics integration with other molecular information, with the aim of gaining deeper insights into the underlying processes that characterize this immune cell lineage. We present here a bioinformatics approach to study differential protein interaction mechanisms across the entire immune cell lineage, achieved using affinity propagation applied to a protein interaction network similarity matrix. We demonstrate that the integration of protein interaction networks with the most comprehensive database of gene expression profiles of the immune cells can be used to generate hypotheses into the underlying mechanisms governing the differentiation and the differential functional activity across the immune cell lineage. This approach may not only serve as a hypothesis engine to derive understanding of differentiation and mechanisms across the immune cell lineage, but also help identify possible immune lineage specific and common lineage mechanism in the cells protein networks. PMID:25309909

  5. Cell cycle imaging with quantitative differential interference contrast microscopy

    NASA Astrophysics Data System (ADS)

    Kostyk, Piotr; Phelan, Shelley; Xu, Min

    2013-02-01

    We report a microscopic approach for determining cell cycle stages by measuring the nuclear optical path length (OPL) with quantitative differential interference contrast (DIC) microscopy. The approach is validated by the excellent agreement between the proportion of proliferating-to-quiescent cancerous breast epithelial cells obtained from DIC microscopy, and that from a standard immunofluorescence assay.

  6. Dexamethasone Suppresses Oxysterol-Induced Differentiation of Monocytic Cells

    PubMed Central

    Son, Yonghae; Kim, Bo-Young; Eo, Seong-Kug; Park, Young Chul; Kim, Koanhoi

    2016-01-01

    Oxysterol like 27-hydroxycholesterol (27OHChol) has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined whether dexamethasone (Dx) affects 27OHChol-induced differentiation using THP-1 cells. Treatment of monocytic cells with Dx resulted in almost complete inhibition of transcription and surface expression of CD80, CD83, and CD88 induced by 27OHChol. Elevated surface levels of MHC class I and II molecules induced by 27OHChol were reduced to basal levels by treatment with Dx. A decreased endocytosis ability caused by 27OHChol was recovered by Dx. We also examined effects of Dx on expression of CD molecules involved in atherosclerosis. Increased levels of surface protein and transcription of CD105, CD137, and CD166 by treatment with 27OHChol were significantly inhibited by cotreatment with Dx. These results indicate that Dx inhibits 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules whose levels are associated with atherosclerosis. In addition, we examined phosphorylation of AKT induced by 27OHChol and effect of Dx, where cotreatment with Dx inhibited the phosphorylation of AKT. The current study reports that Dx regulates oxysterol-mediated dendritic cell differentiation of monocytic cells. PMID:27340507

  7. Manifold gasket accommodating differential movement of fuel cell stack

    SciTech Connect

    Kelley, Dana A.; Farooque, Mohammad

    2007-11-13

    A gasket for use in a fuel cell system having at least one externally manifolded fuel cell stack, for sealing the manifold edge and the stack face. In accordance with the present invention, the gasket accommodates differential movement between the stack and manifold by promoting slippage at interfaces between the gasket and the dielectric and between the gasket and the stack face.

  8. Cell line models of differentiation: preadipocytes and adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The intense study of adipocyte biology spurred by interest in regulating body composition and metabolism has given rise to a number of in vitro cell models. These in vitro models have been invaluable in determining the mechanisms involved in adipocyte differentiation. In addition in vitro cell sys...

  9. Glycan Profiling of Plant Cell Wall Polymers using Microarrays

    PubMed Central

    Moller, Isabel E.; Pettolino, Filomena A.; Hart, Charlie; Lampugnani, Edwin R.; Willats, William G.T.; Bacic, Antony

    2012-01-01

    Plant cell walls are complex matrixes of heterogeneous glycans which play an important role in the physiology and development of plants and provide the raw materials for human societies (e.g. wood, paper, textile and biofuel industries)1,2. However, understanding the biosynthesis and function of these components remains challenging. Cell wall glycans are chemically and conformationally diverse due to the complexity of their building blocks, the glycosyl residues. These form linkages at multiple positions and differ in ring structure, isomeric or anomeric configuration, and in addition, are substituted with an array of non-sugar residues. Glycan composition varies in different cell and/or tissue types or even sub-domains of a single cell wall3. Furthermore, their composition is also modified during development1, or in response to environmental cues4. In excess of 2,000 genes have Plant cell walls are complex matrixes of heterogeneous glycans been predicted to be involved in cell wall glycan biosynthesis and modification in Arabidopsis5. However, relatively few of the biosynthetic genes have been functionally characterized 4,5. Reverse genetics approaches are difficult because the genes are often differentially expressed, often at low levels, between cell types6. Also, mutant studies are often hindered by gene redundancy or compensatory mechanisms to ensure appropriate cell wall function is maintained7. Thus novel approaches are needed to rapidly characterise the diverse range of glycan structures and to facilitate functional genomics approaches to understanding cell wall biosynthesis and modification. Monoclonal antibodies (mAbs)8,9 have emerged as an important tool for determining glycan structure and distribution in plants. These recognise distinct epitopes present within major classes of plant cell wall glycans, including pectins, xyloglucans, xylans, mannans, glucans and arabinogalactans. Recently their use has been extended to large-scale screening experiments

  10. Tocopherol production in plant cell cultures.

    PubMed

    Caretto, Sofia; Nisi, Rossella; Paradiso, Annalisa; De Gara, Laura

    2010-05-01

    Tocopherols, collectively known as vitamin E, are lipophilic antioxidants, essential dietary components for mammals and exclusively synthesized by photosynthetic organisms. Of the four forms (alpha, beta, gamma and delta), alpha-tocopherol is the major vitamin E form present in green plant tissues, and has the highest vitamin E activity. Synthetic alpha-tocopherol, being a racemic mixture of eight different stereoisomers, always results less effective than the natural form (R,R,R) alpha-tocopherol. This raises interest in obtaining this molecule from natural sources, such as plant cell cultures. Plant cell and tissue cultures are able to produce and accumulate valuable metabolites that can be used as food additives, nutraceuticals and pharmaceuticals. Sunflower cell cultures, growing under heterotrophic conditions, were exploited to establish a suitable in vitro production system of natural alpha-tocopherol. Optimization of culture conditions, precursor feeding and elicitor application were used to improve the tocopherol yields of these cultures. Furthermore, these cell cultures were useful to investigate the relationship between alpha-tocopherol biosynthesis and photomixotrophic culture conditions, revealing the possibility to enhance tocopherol production by favouring sunflower cell photosynthetic properties. The modulation of alpha-tocopherol levels in plant cell cultures can provide useful hints for a regulatory impact on tocopherol metabolism. PMID:20166145

  11. Expression of bacterial genes in plant cells.

    PubMed Central

    Fraley, R T; Rogers, S G; Horsch, R B; Sanders, P R; Flick, J S; Adams, S P; Bittner, M L; Brand, L A; Fink, C L; Fry, J S; Galluppi, G R; Goldberg, S B; Hoffmann, N L; Woo, S C

    1983-01-01

    Chimeric bacterial genes conferring resistance to aminoglycoside antibiotics have been inserted into the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid and introduced into plant cells by in vitro transformation techniques. The chimeric genes contain the nopaline synthase 5' and 3' regulatory regions joined to the genes for neomycin phosphotransferase type I or type II. The chimeric genes were cloned into an intermediate vector, pMON120, and inserted into pTiB6S3 by recombination and then introduced into petunia and tobacco cells by cocultivating A. tumefaciens cells with protoplast-derived cells. Southern hybridization was used to confirm the presence of the chimeric genes in the transformed plant tissues. Expression of the chimeric genes was determined by the ability of the transformed cells to proliferate on medium containing normally inhibitory levels of kanamycin (50 micrograms/ml) or other aminoglycoside antibiotics. Plant cells transformed by wild-type pTiB6S3 or derivatives carrying the bacterial neomycin phosphotransferase genes with their own promoters failed to grow under these conditions. The significance of these results for plant genetic engineering is discussed. Images PMID:6308651

  12. Involvement of Plant Stem Cells or Stem Cell-Like Cells in Dedifferentiation

    PubMed Central

    Jiang, Fangwei; Feng, Zhenhua; Liu, Hailiang; Zhu, Jian

    2015-01-01

    Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to procambium cells (stem cell-like cells) are dedifferentiated and survive more easily than other cell types. This finding indicates that stem cells or stem cell-like cells may influence the dedifferentiating niche. In this paper, we provide a brief overview of stem cell maintenance and dedifferentiation regulation. We also summarize current knowledge of genetic and epigenetic mechanisms underlying the balance between differentiation and dedifferentiation. Furthermore, we discuss the correlation of stem cells or stem cell-like cells with dedifferentiation. PMID:26635851

  13. Substrate Induced Osteoblast-Like Differentiation of Stromal Stem Cells

    NASA Astrophysics Data System (ADS)

    Belizar, Jacqueline; Glaser, Reena; Hung, Matthew; Simon, Marcia; Jurukovski, Vladimir; Rafailovich, Miriam; Shih, Alice

    2009-03-01

    We have demonstrated that Adipose-derived stem cells (ASCs) can be induced to biomineralize on a polybutadiene (PB) coated Si substrate. The cells began to generate calcium phosphate deposits after a five-day incubation period in the absence of dexamethasone. Control cells plated on tissue culture PS culture dish (TCP) did not biomineralize. In addition, the biomineralizing culture retained proliferative cells In order to determine whether the induction was transient, we transferred the cells exposed to polybutadiene after 14 and 28-day incubation periods to TCP dishes. These cells continued to biominerlize. Genetic testing is underway which will determine whether differentiation is maintained after transfer.

  14. Somatic mutation and cell differentiation in neoplastic transformation

    SciTech Connect

    Huberman, E.; Collart, F.R.

    1987-01-01

    In brief, the authors suggest that tumor formation may result from continuous expression of growth facilitating genes that, as a result of irreversible changes during the initiation step, are placed under the control of genes expressed during normal differentiation. Thus, to understand carcinogenesis, we must decipher the processes that lead to the acquisition of a mature phenotype in both normal and tumor cells and characterize the growth dependency of tumor cells to inducers of cell differentiation. Furthermore, the growth of a variety of tumors may be controlled through the use of inducers of maturation that activate genes located beyond the gene that is altered during tumor initiation. 22 refs., 3 figs.

  15. Evaluation of a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay (Keystone Sym)

    EPA Science Inventory

    Our goal is to establish an in vitro model system to evaluate chemical effects using a single stem cell culture technique that would improve throughput and provide quantitative markers of differentiation and cell number. To this end, we have used an adherent cell differentiation ...

  16. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-27

    The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

  17. Detection of Osteogenic Differentiation by Differential Mineralized Matrix Production in Mesenchymal Stromal Cells by Raman Spectroscopy

    PubMed Central

    Chen, He-Guei; Chiang, Hui-Hua Kenny; Lee, Oscar Kuang-Sheng

    2013-01-01

    Mesenchymal stromal cells (MSCs) hold great potential in skeletal tissue engineering and regenerative medicine. However, conventional methods that are used in molecular biology to evaluate osteogenic differentiation of MSCs require a relatively large amount of cells. Cell lysis and cell fixation are also required and all these steps are time-consuming. Therefore, it is imperative to develop a facile technique which can provide real-time information with high sensitivity and selectivity to detect the osteogenic maturation of MSCs. In this study, we use Raman spectroscopy as a biosensor to monitor the production of mineralized matrices during osteogenic induction of MSCs. In summary, Raman spectroscopy is an excellent biosensor to detect the extent of maturation level during MSCs-osteoblast differentiation with a non-disruptive, real-time and label free manner. We expect that this study will promote further investigation of stem cell research and clinical applications. PMID:23734254

  18. Osmosis in Poisoned Plant Cells.

    ERIC Educational Resources Information Center

    Tatina, Robert

    1998-01-01

    Describes two simple laboratory exercises that allow students to test hypotheses concerning the requirement of cell energy for osmosis. The first exercise involves osmotically-caused changes in the length of potato tubers and requires detailed quantitative observations. The second exercise involves osmotically-caused changes in turgor of Elodea…

  19. Differential migration and proliferation of geometrical ensembles of cell clusters

    SciTech Connect

    Kumar, Girish; Chen, Bo; Co, Carlos C.; Ho, Chia-Chi

    2011-06-10

    Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell-cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.

  20. Isolation and in vitro differentiation of human erythroid precursor cells.

    PubMed

    Kim, H C; Marks, P A; Rifking, R A; Maniatis, G M; Bank, A

    1976-05-01

    There is decreased beta-globin production in beta-thalassemic reticulocytes and nucleated erythroid cells. In this study, we have examined whether unbalanced globin synthesis is expressed at all stages of human erythroid cell maturation. In order to determine the pattern of globin synthesis in early erythroid cells during erythroid cell maturation, an in vitro culture system using human bone marrow erythroid precursor cells has been developed. Early erythroid precursor cells (proerythroblasts and basophilic erythroblasts) have been isolated from nonthalassemic and thalassemic human bone marrows by lysing more mature erythroid cells, using complement and a rabbit antiserum prepared against normal human red cells. In the presence of erythropoietin, differentiation and proliferation of erythroid cells in demonstrable in liquid suspension culture for 24-48 hr, as determined by morphological criteria and by an increase in globin synthesis. The ratio of alpha- to beta-globin chain synthesis in nonthalassemic cells in approximately 1 at all stages of erythroid cell differentiation during culture. In cells from four patients with homozygous beta- thalassemia there is decreased beta-globin synthesis compared to alpha-globin synthesis, both in early erythroid precursor cells and during their maturation in culture. These findings indicate that unbalanced globin chain synthesis is expressed at all stages of red cell maturation in homozygous beta-thalassemia. PMID:1260133

  1. Calcium signaling in plant cells in microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, E.

    Changes in the intracellular Ca 2 + concentration in altered gravity (microgravity and clinostating) evidence that Ca2 + signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in eighties, a review highlighting the performed research and the possible significance of such Ca 2 + changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumably specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2 + ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravis ensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane

  2. Formaldehyde exposure impairs the function and differentiation of NK cells.

    PubMed

    Kim, Eun-Mi; Lee, Hwa-Youn; Lee, Eun-Hee; Lee, Ki-Mo; Park, Min; Ji, Kon-Young; Jang, Ji-Hun; Jeong, Yun-Hwa; Lee, Kwang-Ho; Yoon, Il-Joo; Kim, Su-Man; Jeong, Moon-Jin; Kim, Kwang Dong; Kang, Hyung-Sik

    2013-11-25

    We investigated the cytotoxic effects of formaldehyde (FA) on lymphocytes. FA-exposed mice showed a profound reduction not only in the number of natural killer (NK) cells but also in the expression of NK cell-specific receptors, but these mice did not exhibit decreases in the numbers of T or B lymphocytes. FA exposure also induced decreases in NK cytolytic activity and in the expression of NK cell-associated genes, such as IFN-γ, perforin and CD122. To determine the effect of FA on tumorigenicity, C57BL/6 mice were subcutaneously injected with B16F10 melanoma cells after FA exposure. The mass of the B16F10 tumor and the concentration of extravascular polymorphonuclear leukocytes were greater than those in unexposed tumor-bearing control mice. The number and cytolytic activity of NK cells were also reduced in B16F10 tumor-bearing mice exposed to FA. To determine how FA reduces the NK cell number, NK precursor (pNK) cells were treated with FA, and the differentiation status of the NK cells was analyzed. NK cell differentiation was impaired by FA treatment in a concentration-dependent manner. These findings indicate that FA exposure may promote tumor progression by impairing NK cell function and differentiation. PMID:24060340

  3. Sox2 in the differentiation of cochlear progenitor cells

    PubMed Central

    Kempfle, Judith S.; Turban, Jack L.; Edge, Albert S. B.

    2016-01-01

    HMG domain transcription factor, Sox2, is a critical gene for the development of cochlear hair cells, the receptor cells for hearing, but this has been ascribed to expansion of the progenitors that become hair cells. Here, we show that Sox2 activated Atoh1, a transcription factor important for hair cell differentiation, through an interaction with the 3′ enhancer of Atoh1. Binding to consensus sequences in the Atoh1 enhancer was dependent on the level of Sox2, and the extent of enhancer binding correlated to the extent of activation. Atoh1 activation by Sox2 was required for embryonic hair cell development: deletion of Sox2 in an inducible mutant, even after progenitor cells were fully established, halted development of hair cells, and silencing also inhibited postnatal differentiation of hair cells induced by inhibition of γ-secretase. Sox2 is thus required in the cochlea to both expand the progenitor cells and initiate their differentiation to hair cells. PMID:26988140

  4. [B-cell neoplasms with plasmacellular and plasmablastic differentiation].

    PubMed

    Fend, F; Quintanilla-Martínez, L

    2013-05-01

    Plasma cell malignancies are tumors of terminally differentiated B-cells in which the neoplastic plasma cells are the dominant and proliferating tumor cell component. Plasma cell myeloma (PCM) is one of the most common hematological neoplasms and typically does not cause diagnostic problems. A morphologically and immunophenotypically detectable plasmacellular orplasmablastic differentiation is, however, commonly observed in a wide range of mature B-cell lymphomas. A confident separation of the distinct entities requires the integration of clinical and morphological findings as well as an adequate phenotyping of both the plasma cell and the B-cell component if present. Detection of lymphotropic viruses, specific translocations and novel molecular markers, such as the MYD88 L265P mutation occurring in the vast majority of lymphoplasmacytic lymphomas complement our diagnostic repertoire. In this review we describe the most commonly observed diagnostic problems in separating small B-cell lymphomas from PCM and high-grade B-cell non-Hodgkin lymphoma (B-NHL) with plasmablastic differentiation from extramedullary spread of aggressive PCM and provide helpful criteria for routine diagnostics. PMID:23462793

  5. Sox2 in the differentiation of cochlear progenitor cells.

    PubMed

    Kempfle, Judith S; Turban, Jack L; Edge, Albert S B

    2016-01-01

    HMG domain transcription factor, Sox2, is a critical gene for the development of cochlear hair cells, the receptor cells for hearing, but this has been ascribed to expansion of the progenitors that become hair cells. Here, we show that Sox2 activated Atoh1, a transcription factor important for hair cell differentiation, through an interaction with the 3' enhancer of Atoh1. Binding to consensus sequences in the Atoh1 enhancer was dependent on the level of Sox2, and the extent of enhancer binding correlated to the extent of activation. Atoh1 activation by Sox2 was required for embryonic hair cell development: deletion of Sox2 in an inducible mutant, even after progenitor cells were fully established, halted development of hair cells, and silencing also inhibited postnatal differentiation of hair cells induced by inhibition of γ-secretase. Sox2 is thus required in the cochlea to both expand the progenitor cells and initiate their differentiation to hair cells. PMID:26988140

  6. Distinct Signaling Pathways and Transcriptome Response Signatures Differentiate Ammonium- and Nitrate-supplied Plants

    PubMed Central

    Patterson, Kurt; Cakmak, Turgay; Cooper, Andrew; Lager, Ida; Rasmusson, Allan G.; Escobar, Matthew A.

    2010-01-01

    Nitrogen is the only macronutrient that is commonly available to plants in both oxidized and reduced forms, mainly nitrate and ammonium. The physiological and molecular effects of nitrate supply have been well studied, but comparatively little is known about ammonium nutrition and its differential effects on cell function and gene expression. We have used a physiologically realistic hydroponic growth system to compare the transcriptomes and redox status of the roots of ammonium- and nitrate-supplied Arabidopsis thaliana plants. While ~60% of nitrogen-regulated genes displayed common responses to both ammonium and nitrate, significant “nitrate-specific” and “ammonium-specific” gene sets were identified. Pathways involved in cytokinin response and reductant generation/distribution were specifically altered by nitrate, while a complex biotic stress response and changes in nodulin gene expression were characteristic of ammonium-supplied plants. Nitrate supply was associated with a rapid decrease in H2O2 production, potentially due to an increased export of reductant from the mitochondrial matrix. The underlying basis of the nitrate- and ammonium-specific patterns of gene expression appears to be different signals elaborated from each nitrogen source, including alterations in extracellular pH that are associated with ammonium uptake, downstream metabolites in the ammonium assimilation pathway, and the presence or absence of the nitrate ion. PMID:20444219

  7. Natural Product Vibsanin A Induces Differentiation of Myeloid Leukemia Cells through PKC Activation.

    PubMed

    Yu, Zu-Yin; Xiao, He; Wang, Li-Mei; Shen, Xing; Jing, Yu; Wang, Lin; Sun, Wen-Feng; Zhang, Yan-Feng; Cui, Yu; Shan, Ya-Jun; Zhou, Wen-Bing; Xing, Shuang; Xiong, Guo-Lin; Liu, Xiao-Lan; Dong, Bo; Feng, Jian-Nan; Wang, Li-Sheng; Luo, Qing-Liang; Zhao, Qin-Shi; Cong, Yu-Wen

    2016-05-01

    All-trans retinoic acid (ATRA)-based cell differentiation therapy has been successful in treating acute promyelocytic leukemia, a unique subtype of acute myeloid leukemia (AML). However, other subtypes of AML display resistance to ATRA-based treatment. In this study, we screened natural, plant-derived vibsane-type diterpenoids for their ability to induce differentiation of myeloid leukemia cells, discovering that vibsanin A potently induced differentiation of AML cell lines and primary blasts. The differentiation-inducing activity of vibsanin A was mediated through direct interaction with and activation of protein kinase C (PKC). Consistent with these findings, pharmacological blockade of PKC activity suppressed vibsanin A-induced differentiation. Mechanistically, vibsanin A-mediated activation of PKC led to induction of the ERK pathway and decreased c-Myc expression. In mouse xenograft models of AML, vibsanin A administration prolonged host survival and inhibited PKC-mediated inflammatory responses correlated with promotion of skin tumors in mice. Collectively, our results offer a preclinical proof of concept for vibsanin A as a myeloid differentiation-inducing compound, with potential application as an antileukemic agent. Cancer Res; 76(9); 2698-709. ©2016 AACR. PMID:26984756

  8. Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides

    PubMed Central

    Nesher, Iris; Barhoom, Sima; Sharon, Amir

    2008-01-01

    Background In order to initiate plant infection, fungal spores must germinate and penetrate into the host plant. Many fungal species differentiate specialized infection structures called appressoria on the host surface, which are essential for successful pathogenic development. In the model plant pathogen Magnaporthe grisea completion of mitosis and autophagy cell death of the spore are necessary for appressoria-mediated plant infection; blocking of mitosis prevents appressoria formation, and prevention of autophagy cell death results in non-functional appressoria. Results We found that in the closely related plant pathogen Colletotrichum gloeosporioides, blocking of the cell cycle did not prevent spore germination and appressoria formation. The cell cycle always lagged behind the morphogenetic changes that follow spore germination, including germ tube and appressorium formation, differentiation of the penetrating hypha, and in planta formation of primary hyphae. Nuclear division was arrested following appressorium formation and was resumed in mature appressoria after plant penetration. Unlike in M. grisea, blocking of mitosis had only a marginal effect on appressoria formation; development in hydroxyurea-treated spores continued only for a limited number of cell divisions, but normal numbers of fully developed mature appressoria were formed under conditions that support appressoria formation. Similar results were also observed in other Colletotrichum species. Spores, germ tubes, and appressoria retained intact nuclei and remained viable for several days post plant infection. Conclusion We showed that in C. gloeosporioides the differentiation of infection structures including appressoria precedes mitosis and can occur without nuclear division. This phenomenon was also found to be common in other Colletotrichum species. Spore cell death did not occur during plant infection and the fungus primary infection structures remained viable throughout the infection cycle

  9. Transplantation Dose Alters the Differentiation Program of Hematopoietic Stem Cells.

    PubMed

    Brewer, Casey; Chu, Elizabeth; Chin, Mike; Lu, Rong

    2016-05-24

    Hematopoietic stem cell (HSC) transplantation is the most prevalent stem cell therapy, but it remains a risky procedure. To improve this treatment, it is important to understand how transplanted stem cells rebuild the blood and immune systems and how this process is impacted by transplantation variables such as the HSC dose. Here, we find that, in the long term following transplantation, 70%-80% of donor-HSC-derived clones do not produce all measured blood cell types. High HSC doses lead to more clones that exhibit balanced lymphocyte production, whereas low doses produce more T-cell-specialized clones. High HSC doses also produce significantly higher proportions of early-differentiating clones compared to low doses. These complex differentiation behaviors uncover the clonal-level regeneration dynamics of hematopoietic regeneration and suggest that transplantation dose can be exploited to improve stem cell therapy. PMID:27184851

  10. Osteogenic differentiation of human dental papilla mesenchymal cells

    SciTech Connect

    Ikeda, Etsuko; Hirose, Motohiro . E-mail: motohiro-hirose@aist.go.jp; Kotobuki, Noriko; Shimaoka, Hideki; Tadokoro, Mika; Maeda, Masahiko; Hayashi, Yoshiko; Kirita, Tadaaki; Ohgushi, Hajime

    2006-04-21

    We isolated dental papilla from impacted human molar and proliferated adherent fibroblastic cells after collagenase treatment of the papilla. The cells were negative for hematopoietic markers but positive for CD29, CD44, CD90, CD105, and CD166. When the cells were further cultured in the presence of {beta}-glycerophosphate, ascorbic acid, and dexamethasone for 14 days, mineralized areas together with osteogenic differentiation evidenced by high alkaline phosphatase activity and osteocalcin contents were observed. The differentiation was confirmed at both protein and gene expression levels. The cells can also be cryopreserved and, after thawing, could show in vivo bone-forming capability. These results indicate that mesenchymal type cells localize in dental papilla and that the cells can be culture expanded/utilized for bone tissue engineering.

  11. Controlling Redox Status for Stem Cell Survival, Expansion, and Differentiation

    PubMed Central

    Sart, Sébastien; Song, Liqing; Li, Yan

    2015-01-01

    Reactive oxygen species (ROS) have long been considered as pathological agents inducing apoptosis under adverse culture conditions. However, recent findings have challenged this dogma and physiological levels of ROS are now considered as secondary messengers, mediating numerous cellular functions in stem cells. Stem cells represent important tools for tissue engineering, drug screening, and disease modeling. However, the safe use of stem cells for clinical applications still requires culture improvements to obtain functional cells. With the examples of mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs), this review investigates the roles of ROS in the maintenance of self-renewal, proliferation, and differentiation of stem cells. In addition, this work highlights that the tight control of stem cell microenvironment, including cell organization, and metabolic and mechanical environments, may be an effective approach to regulate endogenous ROS generation. Taken together, this paper indicates the need for better quantification of ROS towards the accurate control of stem cell fate. PMID:26273419

  12. Activated mast cells promote differentiation of B cells into effector cells

    PubMed Central

    Palm, Anna-Karin E.; Garcia-Faroldi, Gianni; Lundberg, Marcus; Pejler, Gunnar; Kleinau, Sandra

    2016-01-01

    Based on the known accumulation of mast cells (MCs) in B cell-dependent inflammatory diseases, including rheumatoid arthritis, we hypothesized that MCs directly modulate B cells. We show here that degranulated, and to a lesser extent naïve or IgE-sensitized, MCs activate both naïve and B cell receptor-activated B cells. This was shown by increased proliferation, blast formation, and expression of CD19, MHC class II and CD86 in the B cells. Further, MCs stimulated the secretion of IgM and IgG in IgM+ B cells, indicating that MCs can induce class-switch recombination in B cells. We also show that coculture of MCs with B cells promotes surface expression of L-selectin, a homing receptor, on the B cells. The effects of MCs on B cells were partly dependent on cell-cell contact and both follicular and marginal zone B cells could be activated by MCs. Our findings suggest that degranulated MCs support optimal activation of B cells, a finding that is in line with in vivo studies showing that MCs frequently degranulate in the context of B-cell driven pathologies such as arthritis. Together, our findings show that MCs have the capacity to differentiate B cells to effector cells. PMID:26847186

  13. Differentiated kidney epithelial cells repair injured proximal tubule.

    PubMed

    Kusaba, Tetsuro; Lalli, Matthew; Kramann, Rafael; Kobayashi, Akio; Humphreys, Benjamin D

    2014-01-28

    Whether kidney proximal tubule harbors a scattered population of epithelial stem cells is a major unsolved question. Lineage-tracing studies, histologic characterization, and ex vivo functional analysis results conflict. To address this controversy, we analyzed the lineage and clonal behavior of fully differentiated proximal tubule epithelial cells after injury. A CreER(T2) cassette was knocked into the sodium-dependent inorganic phosphate transporter SLC34a1 locus, which is expressed only in differentiated proximal tubule. Tamoxifen-dependent recombination was absolutely specific to proximal tubule. Clonal analysis after injury and repair showed that the bulk of labeled cells proliferate after injury with increased clone size after severe compared with mild injury. Injury to labeled proximal tubule epithelia induced expression of CD24, CD133, vimentin, and kidney-injury molecule-1, markers of putative epithelial stem cells in the human kidney. Similar results were observed in cultured proximal tubules, in which labeled clones proliferated and expressed dedifferentiation and injury markers. When mice with completely labeled kidneys were subject to injury and repair there was no dilution of fate marker despite substantial proliferation, indicating that unlabeled progenitors do not contribute to kidney repair. During nephrogenesis and early kidney growth, single proximal tubule clones expanded, suggesting that differentiated cells also contribute to tubule elongation. These findings provide no evidence for an intratubular stem-cell population, but rather indicate that terminally differentiated epithelia reexpress apparent stem-cell markers during injury-induced dedifferentiation and repair. PMID:24127583

  14. Lack of vimentin impairs endothelial differentiation of embryonic stem cells.

    PubMed

    Boraas, Liana C; Ahsan, Tabassum

    2016-01-01

    The cytoskeletal filament vimentin is inherent to the endothelial phenotype and is critical for the proper function of endothelial cells in adult mice. It is unclear, however, if the presence of vimentin is necessary during differentiation to the endothelial phenotype. Here we evaluated gene and protein expression of differentiating wild type embryonic stem cells (WT ESCs) and vimentin knockout embryonic stem cells (VIM -/- ESCs) using embryoid bodies (EBs) formed from both cell types. Over seven days of differentiation VIM -/- EBs had altered morphology compared to WT EBs, with a rippled outer surface and a smaller size due to decreased proliferation. Gene expression of pluripotency markers decreased similarly for EBs of both cell types; however, VIM -/- EBs had impaired differentiation towards the endothelial phenotype. This was quantified with decreased expression of markers along the specification pathway, specifically the early mesodermal marker Brachy-T, the lateral plate mesodermal marker FLK1, and the endothelial-specific markers TIE2, PECAM, and VE-CADHERIN. Taken together, these results indicate that the absence of vimentin impairs spontaneous differentiation of ESCs to the endothelial phenotype in vitro. PMID:27480130

  15. Lack of vimentin impairs endothelial differentiation of embryonic stem cells

    PubMed Central

    Boraas, Liana C.; Ahsan, Tabassum

    2016-01-01

    The cytoskeletal filament vimentin is inherent to the endothelial phenotype and is critical for the proper function of endothelial cells in adult mice. It is unclear, however, if the presence of vimentin is necessary during differentiation to the endothelial phenotype. Here we evaluated gene and protein expression of differentiating wild type embryonic stem cells (WT ESCs) and vimentin knockout embryonic stem cells (VIM −/− ESCs) using embryoid bodies (EBs) formed from both cell types. Over seven days of differentiation VIM −/− EBs had altered morphology compared to WT EBs, with a rippled outer surface and a smaller size due to decreased proliferation. Gene expression of pluripotency markers decreased similarly for EBs of both cell types; however, VIM −/− EBs had impaired differentiation towards the endothelial phenotype. This was quantified with decreased expression of markers along the specification pathway, specifically the early mesodermal marker Brachy-T, the lateral plate mesodermal marker FLK1, and the endothelial-specific markers TIE2, PECAM, and VE-CADHERIN. Taken together, these results indicate that the absence of vimentin impairs spontaneous differentiation of ESCs to the endothelial phenotype in vitro. PMID:27480130

  16. THY-1 Receptor Expression Differentiates Cardiosphere-Derived Cells with Divergent Cardiogenic Differentiation Potential

    PubMed Central

    Gago-Lopez, Nuria; Awaji, Obinna; Zhang, Yiqiang; Ko, Christopher; Nsair, Ali; Liem, David; Stempien-Otero, April; MacLellan, W. Robb

    2014-01-01

    Summary Despite over a decade of intense research, the identity and differentiation potential of human adult cardiac progenitor cells (aCPC) remains controversial. Cardiospheres have been proposed as a means to expand aCPCs in vitro, but the identity of the progenitor cell within these 3D structures is unknown. We show that clones derived from cardiospheres could be subdivided based on expression of thymocyte differentiation antigen 1 (THY-1/CD90) into two distinct populations that exhibit divergent cardiac differentiation potential. One population, which is CD90+, expressed markers consistent with a mesenchymal/myofibroblast cell. The second clone type was CD90− and could form mature, functional myocytes with sarcomeres albeit at a very low rate. These two populations of cardiogenic clones displayed distinct cell surface markers and unique transcriptomes. Our study suggests that a rare aCPC exists in cardiospheres along with a mesenchymal/myofibroblast cell, which demonstrates incomplete cardiac myocyte differentiation. PMID:24936447

  17. Differentiation patterns of mouse embryonic stem cells and induced pluripotent stem cells into neurons.

    PubMed

    Nakamura, Mai; Kamishibahara, Yu; Kitazawa, Ayako; Kawaguchi, Hideo; Shimizu, Norio

    2016-05-01

    Mouse embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have the ability to differentiate in vitro into various cell lineages including neurons. The differentiation of these cells into neurons has potential applications in regenerative medicine. Previously, we reported that a chick dorsal root ganglion (DRG)-conditioned medium (CM) promoted the differentiation of mouse ES and iPS cells into neurons. Here, we used real-time PCR to investigate the differentiation patterns of ES and iPS cells into neurons when DRG-CM was added. DRG-CM promoted the expression levels of βIII-tubulin gene (a marker of postmitotic neurons) in ES and iPS cells. ES cells differentiated into neurons faster than iPS cells, and the maximum peaks of gene expression involved in motor, sensory, and dopaminergic neurons were different. Rho kinase (ROCK) inhibitors could be very valuable at numerous stages in the production and use of stem cells in basic research and eventual cell-based therapies. Thus, we investigated whether the addition of a ROCK inhibitor Y-27632 and DRG-CM on the basis of the differentiation patterns promotes the neuronal differentiation of ES cells. When the ROCK inhibitor was added to the culture medium at the initial stages of cultivation, it stimulated the neuronal differentiation of ES cells more strongly than that stimulated by DRG-CM. Moreover, the combination of the ROCK inhibitor and DRG-CM promoted the neuronal differentiation of ES cells when the ROCK inhibitor was added to the culture medium at day 3. The ROCK inhibitor may be useful for promoting neuronal differentiation of ES cells. PMID:25354731

  18. Cell Cycle–Dependent Differentiation Dynamics Balances Growth and Endocrine Differentiation in the Pancreas

    PubMed Central

    Kim, Yung Hae; Larsen, Hjalte List; Rué, Pau; Lemaire, Laurence A.; Ferrer, Jorge; Grapin-Botton, Anne

    2015-01-01

    Organogenesis relies on the spatiotemporal balancing of differentiation and proliferation driven by an expanding pool of progenitor cells. In the mouse pancreas, lineage tracing at the population level has shown that the expanding pancreas progenitors can initially give rise to all endocrine, ductal, and acinar cells but become bipotent by embryonic day 13.5, giving rise to endocrine cells and ductal cells. However, the dynamics of individual progenitors balancing self-renewal and lineage-specific differentiation has never been described. Using three-dimensional live imaging and in vivo clonal analysis, we reveal the contribution of individual cells to the global behaviour and demonstrate three modes of progenitor divisions: symmetric renewing, symmetric endocrinogenic, and asymmetric generating a progenitor and an endocrine progenitor. Quantitative analysis shows that the endocrine differentiation process is consistent with a simple model of cell cycle–dependent stochastic priming of progenitors to endocrine fate. The findings provide insights to define control parameters to optimize the generation of β-cells in vitro. PMID:25786211

  19. Cell cycle-dependent differentiation dynamics balances growth and endocrine differentiation in the pancreas.

    PubMed

    Kim, Yung Hae; Larsen, Hjalte List; Rué, Pau; Lemaire, Laurence A; Ferrer, Jorge; Grapin-Botton, Anne

    2015-03-01

    Organogenesis relies on the spatiotemporal balancing of differentiation and proliferation driven by an expanding pool of progenitor cells. In the mouse pancreas, lineage tracing at the population level has shown that the expanding pancreas progenitors can initially give rise to all endocrine, ductal, and acinar cells but become bipotent by embryonic day 13.5, giving rise to endocrine cells and ductal cells. However, the dynamics of individual progenitors balancing self-renewal and lineage-specific differentiation has never been described. Using three-dimensional live imaging and in vivo clonal analysis, we reveal the contribution of individual cells to the global behaviour and demonstrate three modes of progenitor divisions: symmetric renewing, symmetric endocrinogenic, and asymmetric generating a progenitor and an endocrine progenitor. Quantitative analysis shows that the endocrine differentiation process is consistent with a simple model of cell cycle-dependent stochastic priming of progenitors to endocrine fate. The findings provide insights to define control parameters to optimize the generation of β-cells in vitro. PMID:25786211

  20. Regulation of endothelial cell differentiation and specification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The circulatory system is the first organ system to develop in the vertebrate embryo and is critical throughout gestation for the delivery of oxygen and nutrients to, as well as removal of metabolic waste products from, growing tissues. Endothelial cells, which constitute the luminal layer of all bl...

  1. Sertoli Cell Differentiation in Pubertal Boars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meishan boars experience puberty at a younger age than crossbred (BX) boars in association with earlier cessation of Sertoli cell proliferation and smaller post pubertal testicular size. The current study defined changes in expression, assessed by immunohistochemistry, of anti-Mullerian hormone (AMH...

  2. Transcriptional control of dendritic cell differentiation.

    PubMed

    Sasaki, Izumi; Kaisho, Tsuneyasu

    2014-01-01

    Dendritic cells (DCs) are professional antigen presenting cells involved critically not only in provoking innate immune responses but also in establishing adaptive immune responses. Dendritic cells are heterogenous and divided into several subsets, including plasmactyoid DCs (pDCs) and several types of conventional DCs (cDCs), which show subset-specific functions. Plasmactyoid DCs are featured by their ability to produce large amounts of type I interferons (IFNs) in response to nucleic acid sensors, TLR7 and TLR9 and involved in anti-viral immunity and pathogenesis of certain autoimmune disorders such as psoriasis. Conventional DCs include the DC subsets with high crosspresentation activity, which contributes to anti-viral and anti-tumor immunity. These subsets are generated from hematopoietic stem cells (HSCs) via several intermediate progenitors and the development is regulated by the transcriptional mechanisms in which subset-specific transcription factors play major roles. We have recently found that an Ets family transcription factor, SPI-B, which is abundantly expressed in pDCs among DC subsets, plays critical roles in functions and late stage development of pDCs. SPI-B functions in cooperation with other transcription factors, especially, interferon regulatory factor (IRF) family members. Here we review the transcription factor-based molecular mechanisms for generation and functions of DCs, mainly by focusing on the roles of SPI-B and its relatives. PMID:24875951

  3. Glucosylceramides are critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis.

    PubMed

    Msanne, Joseph; Chen, Ming; Luttgeharm, Kyle D; Bradley, Amanda M; Mays, Elizabeth S; Paper, Janet M; Boyle, Daniel L; Cahoon, Rebecca E; Schrick, Kathrin; Cahoon, Edgar B

    2015-10-01

    Glucosylceramides (GlcCer), glucose-conjugated sphingolipids, are major components of the endomembrane system and plasma membrane in most eukaryotic cells. Yet the quantitative significance and cellular functions of GlcCer are not well characterized in plants and other multi-organ eukaryotes. To address this, we examined Arabidopsis lines that were lacking or deficient in GlcCer by insertional disruption or by RNA interference (RNAi) suppression of the single gene for GlcCer synthase (GCS, At2g19880), the enzyme that catalyzes GlcCer synthesis. Null mutants for GCS (designated 'gcs-1') were viable as seedlings, albeit strongly reduced in size, and failed to develop beyond the seedling stage. Heterozygous plants harboring the insertion allele exhibited reduced transmission through the male gametophyte. Undifferentiated calli generated from gcs-1 seedlings and lacking GlcCer proliferated in a manner similar to calli from wild-type plants. However, gcs-1 calli, in contrast to wild-type calli, were unable to develop organs on differentiation media. Consistent with a role for GlcCer in organ-specific cell differentiation, calli from gcs-1 mutants formed roots and leaves on media supplemented with the glucosylated sphingosine glucopsychosine, which was readily converted to GlcCer independent of GCS. Underlying these phenotypes, gcs-1 cells had altered Golgi morphology and fewer cisternae per Golgi apparatus relative to wild-type cells, indicative of protein trafficking defects. Despite seedling lethality in the null mutant, GCS RNAi suppression lines with ≤2% of wild-type GlcCer levels were viable and fertile. Collectively, these results indicate that GlcCer are essential for cell-type differentiation and organogenesis, and plant cells produce amounts of GlcCer in excess of that required for normal development. PMID:26313010

  4. Optical quantification of forces at play during stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Ritter, Christine M.; Brickman, Joshua M.; Oddershede, Lene B.

    2016-03-01

    A cell is in constant interaction with its environment, it responds to external mechanical, chemical and biological signals. The response to these signals can be of various nature, for instance intra-cellular mechanical re-arrangements, cell-cell interactions, or cellular reinforcements. Optical methods are quite attractive for investigating the mechanics inside living cells as, e.g., optical traps are amongst the only nanotools that can reach and manipulate, measure forces, inside a living cell. In the recent years it has become increasingly evident that not only biochemical and biomolecular cues, but also that mechanical ones, play an important roles in stem cell differentiation. The first evidence for the importance of mechanical cues emerged from studies showing that substrate stiffness had an impact on stem cell differentiation. Recently, techniques such as optical tweezers and stretchers have been applied to stem cells, producing new insights into the role of mechanics in regulating renewal and differentiation. Here, we describe how optical tweezers and optical stretchers can be applied as a tool to investigate stem cell mechanics and some of the recent results to come out of this work.

  5. Placental-derived stem cells: Culture, differentiation and challenges.

    PubMed

    Oliveira, Maira S; Barreto-Filho, João B

    2015-05-26

    Stem cell therapy is a promising approach to clinical healing in several diseases. A great variety of tissues (bone marrow, adipose tissue, and placenta) are potentially sources of stem cells. Placenta-derived stem cells (p-SCs) are in between embryonic and mesenchymal stem cells, sharing characteristics with both, such as non-carcinogenic status and property to differentiate in all embryonic germ layers. Moreover, their use is not ethically restricted as fetal membranes are considered medical waste after birth. In this context, the present review will be focused on the biological properties, culture and potential cell therapy uses of placental-derived stem cells. Immunophenotype characterization, mainly for surface marker expression, and basic principles of p-SC isolation and culture (mechanical separation or enzymatic digestion of the tissues, the most used culture media, cell plating conditions) will be presented. In addition, some preclinical studies that were performed in different medical areas will be cited, focusing on neurological, liver, pancreatic, heart, muscle, pulmonary, and bone diseases and also in tissue engineering field. Finally, some challenges for stem cell therapy applications will be highlighted. The understanding of the mechanisms involved in the p-SCs differentiation and the achievement of pure cell populations (after differentiation) are key points that must be clarified before bringing the preclinical studies, performed at the bench, to the medical practice. PMID:26029347

  6. The microRNA-dependent cell fate of multipotent stromal cells differentiating to endothelial cells.

    PubMed

    Cha, Min-Ji; Choi, Eunhyun; Lee, Seahyoung; Song, Byeong-Wook; Yoon, Cheesoon; Hwang, Ki-Chul

    2016-02-15

    In the endothelial recovery process, bone marrow-derived MSCs are a potential source of cells for both research and therapy, and their capacities to self-renew and to differentiate into all the cell types in the human body make them a promising therapeutic agent for remodeling cellular differentiation and a valuable resource for the treatment of many diseases. Based on the results provided in a miRNA database, we selected miRNAs with unique targets in cell fate-related signaling pathways. The tested miRNAs targeting GSK-3β (miR-26a), platelet-derived growth factor receptor, and CD133 (miR-26a and miR-29b) induced MSC differentiation into functional ECs, whereas miRNAs targeting VEGF receptor (miR-15, miR-144, miR-145, and miR-329) inhibited MSC differentiation into ECs through VEGF stimulation. In addition, the expression levels of these miRNAs were correlated with in vivo physiological endothelial recovery processes. These findings indicate that the miRNA expression profile is distinct for cells in different stages of differentiation from MSCs to ECs and that specific miRNAs can function as regulators of endothelialization. PMID:26854694

  7. The Role of Lymphatic Niches in T Cell Differentiation

    PubMed Central

    Capece, Tara; Kim, Minsoo

    2016-01-01

    Long-term immunity to many viral and bacterial pathogens requires CD8+ memory T cell development, and the induction of long-lasting CD8+ memory T cells from a naïve, undifferentiated state is a major goal of vaccine design. Formation of the memory CD8+ T cell compartment is highly dependent on the early activation cues received by naïve CD8+ T cells during primary infection. This review aims to highlight the cellularity of various niches within the lymph node and emphasize recent evidence suggesting that distinct types of T cell activation and differentiation occur within different immune contexts in lymphoid organs. PMID:27306645

  8. Metabolic profiling of hematopoietic stem and progenitor cells during proliferation and differentiation into red blood cells.

    PubMed

    Daud, Hasbullah; Browne, Susan; Al-Majmaie, Rasoul; Murphy, William; Al-Rubeai, Mohamed

    2016-01-25

    An understanding of the metabolic profile of cell proliferation and differentiation should support the optimization of culture conditions for hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and maturation into red blood cells. We have evaluated the key metabolic parameters during each phase of HSPC culture for red blood cell production in serum-supplemented (SS) and serum-free (SF) conditions. A simultaneous decrease in growth rate, total protein content, cell size, and the percentage of cells in the S/G2 phase of cell cycle, as well as an increase in the percentage of cells with a CD71(-)/GpA(+) surface marker profile, indicates HSPC differentiation into red blood cells. Compared with proliferating HSPCs, differentiating HSPCs showed significantly lower glucose and glutamine consumption rates, lactate and ammonia production rates, and amino acid consumption and production rates in both SS and SF conditions. Furthermore, extracellular acidification was associated with late proliferation phase, suggesting a reduced cellular metabolic rate during the transition from proliferation to differentiation. Under both SS and SF conditions, cells demonstrated a high metabolic rate with a mixed metabolism of both glycolysis and oxidative phosphorylation (OXPHOS) in early and late proliferation, an increased dependence on OXPHOS activity during differentiation, and a shift to glycolytic metabolism only during maturation phase. These changes indicate that cell metabolism may have an important impact on the ability of HSPCs to proliferate and differentiate into red blood cells. PMID:26013297

  9. Proteasomal degradation of glutamine synthetase regulates schwann cell differentiation.

    PubMed

    Saitoh, Fuminori; Araki, Toshiyuki

    2010-01-27

    Rapid saltatory nerve conduction is facilitated by myelin structure, which is composed of Schwann cells in the peripheral nervous system. Schwann cells drastically change their phenotype following peripheral nerve injury. These phenotypic changes are required for efficient degeneration/regeneration. We previously identified ZNRF1 as an E3 ubiquitin ligase containing a RING finger motif, whose expression is upregulated in the Schwann cells following nerve injury. This suggested that posttranscriptional regulation of protein expression in Schwann cells may be involved in their phenotypic changes during nerve degeneration/regeneration. Here we report the identification of glutamine synthetase (GS), an enzyme that synthesizes glutamine using glutamate and ammonia, as a substrate for E3 activity of ZNRF1 in Schwann cells. GS is known to be highly expressed in differentiated Schwann cells, but its functional significance has remained unclear. We found that during nerve degeneration/regeneration, GS expression is controlled mostly by ZNRF1-dependent proteasomal degradation. We also found that Schwann cells increase oxidative stress upon initiation of nerve degeneration, which promotes carbonylation and subsequent degradation of GS. Surprisingly, we discovered that GS expression regulates Schwann cell differentiation; i.e., increased GS expression promotes myelination via its enzymatic activity. Among the substrates and products of GS, increased glutamate concentration inhibited myelination and yet promoted Schwann cell proliferation by activating metabotropic glutamate receptor signaling. This would suggest that GS may exert its effect on Schwann cell differentiation by regulating glutamate concentration. These results indicate that the ZNRF1-GS system may play an important role in correlating Schwann cell metabolism with its differentiation. PMID:20107048

  10. 5-azacytidine promotes terminal differentiation of hepatic progenitor cells.

    PubMed

    He, Yun; Cui, Jiejie; He, Tongchuan; Bi, Yang

    2015-08-01

    5-azacytidine (5-azaC) is known to induce cardiomyocyte differentiation. However, its function in hepatocyte differentiation is unclear. The present study investigated the in vitro capability of 5-azaC to promote maturation and differentiation of mouse embryonic hepatic progenitor cells, with the aim of developing an approach for improving hepatic differentiation. Mouse embryonic hepatic progenitor cells (HP14.5 cells) were treated with 5-azaC at concentrations from 0 to 20 μmol/l, in addition to hepatocyte induction culture medium. Hepatocyte induction medium induces HP14.5 cell differentiation. 5-azaC may enhance the albumin promotor-driven Gaussia luciferase (ALB-GLuc) activity in induced HP14.5 cells. In the present study 2 μmol/l was found to be the optimum concentration with which to achieve this. The expression of hepatocyte-associated factors was not significantly different between the group treated with 5-azaC alone and the control group. The mRNA levels of ALB; cytokeratin 18 (CK18); tyrosine aminotransferase (TAT); and cytochrome p450, family 1, member A1 (CYP1A1); in addition to the protein levels of ALB, CK18 and uridine diphosphate glucuronyltransferase 1A (UGT1A) in the induced group with 5-azaC, were higher than those in the induced group without 5-azaC, although no significant differences were detected in expression of the hepatic stem cell markers, DLK and α-fetoprotein, between the two groups. Treatment with 5-azaC alone did not affect glycogen synthesis or indocyanine green (ICG) metabolic function in HP14.5 cells, although it significantly increased ICG uptake and periodic acid-Schiff-positive cell numbers amongst HP14.5 cells. Therefore, the present study demonstrated that treatment with 5-azaC alone exerted no effects on the maturation and differentiation of HP14.5 cells. However, 5-azaC exhibited a synergistic effect on the terminal differentiation of induced hepatic progenitor cells in association with a hepatic induction medium. PMID

  11. Turning terminally differentiated skeletal muscle cells into regenerative progenitors.

    PubMed

    Wang, Heng; Lööf, Sara; Borg, Paula; Nader, Gustavo A; Blau, Helen M; Simon, András

    2015-01-01

    The ability to repeatedly regenerate limbs during the entire lifespan of an animal is restricted to certain salamander species among vertebrates. This ability involves dedifferentiation of post-mitotic cells into progenitors that in turn form new structures. A long-term enigma has been how injury leads to dedifferentiation. Here we show that skeletal muscle dedifferentiation during newt limb regeneration depends on a programmed cell death response by myofibres. We find that programmed cell death-induced muscle fragmentation produces a population of 'undead' intermediate cells, which have the capacity to resume proliferation and contribute to muscle regeneration. We demonstrate the derivation of proliferating progeny from differentiated, multinucleated muscle cells by first inducing and subsequently intercepting a programmed cell death response. We conclude that cell survival may be manifested by the production of a dedifferentiated cell with broader potential and that the diversion of a programmed cell death response is an instrument to achieve dedifferentiation. PMID:26243583

  12. Derivation and differentiation of haploid human embryonic stem cells.

    PubMed

    Sagi, Ido; Chia, Gloryn; Golan-Lev, Tamar; Peretz, Mordecai; Weissbein, Uri; Sui, Lina; Sauer, Mark V; Yanuka, Ofra; Egli, Dieter; Benvenisty, Nissim

    2016-04-01

    Diploidy is a fundamental genetic feature in mammals, in which haploid cells normally arise only as post-meiotic germ cells that serve to ensure a diploid genome upon fertilization. Gamete manipulation has yielded haploid embryonic stem (ES) cells from several mammalian species, but haploid human ES cells have yet to be reported. Here we generated and analysed a collection of human parthenogenetic ES cell lines originating from haploid oocytes, leading to the successful isolation and maintenance of human ES cell lines with a normal haploid karyotype. Haploid human ES cells exhibited typical pluripotent stem cell characteristics, such as self-renewal capacity and a pluripotency-specific molecular signature. Moreover, we demonstrated the utility of these cells as a platform for loss-of-function genetic screening. Although haploid human ES cells resembled their diploid counterparts, they also displayed distinct properties including differential regulation of X chromosome inactivation and of genes involved in oxidative phosphorylation, alongside reduction in absolute gene expression levels and cell size. Surprisingly, we found that a haploid human genome is compatible not only with the undifferentiated pluripotent state, but also with differentiated somatic fates representing all three embryonic germ layers both in vitro and in vivo, despite a persistent dosage imbalance between the autosomes and X chromosome. We expect that haploid human ES cells will provide novel means for studying human functional genomics and development. PMID:26982723

  13. Dental pulp stem cell (DPSC) isolation, characterization, and differentiation.

    PubMed

    Ferro, Federico; Spelat, Renza; Baheney, Chelsea S

    2014-01-01

    Dental pulp stem cells (DPSC) have been proposed as an alternative to pluripotent stem cells to study multilineage differentiation in vitro and for therapeutic application. Standard culture media for isolation and expansion of stem cells includes animal sera or animal-derived matrix components (e.g., Matrigel(®)). However, animal-derived reagents raise significant concerns with respect to the translational ability of these cells due to the possibility of infection and/or severe immune reaction. For these reasons clinical grade substitutes to animal components are needed in order for stem cells to reach their full therapeutic potential. In this chapter we detail a method for isolation and proliferation of DPSC in a chemically defined medium containing a low percentage of human serum. We demonstrate that in this defined culture medium a 1.25 % human serum component sufficiently replaces fetal bovine serum. This method allows for isolation of a morphologically and phenotypically uniform population of DPSCs from dental pulp tissue. DPSCs represent a rapidly proliferating cell population that readily differentiates into the osteoblastic, neuronal, myocytic, and hepatocytic lineages. This multilineage capacity of these DPSCs suggests that they may have a more broad therapeutic application than lineage-restricted adult stem cell populations such as mesenchymal stem cells. Further the culture protocol presented here makes these cells more amenable to human application than current expansion techniques for other pluripotent stem cells (embryonic stem cell lines or induced pluripotent stem cells). PMID:25173163

  14. Accumulation of differentiating intestinal stem cell progenies drives tumorigenesis.

    PubMed

    Zhai, Zongzhao; Kondo, Shu; Ha, Nati; Boquete, Jean-Philippe; Brunner, Michael; Ueda, Ryu; Lemaitre, Bruno

    2015-01-01

    Stem cell self-renewal and differentiation are coordinated to maintain tissue homeostasis and prevent cancer. Mutations causing stem cell proliferation are traditionally the focus of cancer studies. However, the contribution of the differentiating stem cell progenies in tumorigenesis is poorly characterized. Here we report that loss of the SOX transcription factor, Sox21a, blocks the differentiation programme of enteroblast (EB), the intestinal stem cell progeny in the adult Drosophila midgut. This results in EB accumulation and formation of tumours. Sox21a tumour initiation and growth involve stem cell proliferation induced by the unpaired 2 mitogen released from accumulating EBs generating a feed-forward loop. EBs found in the tumours are heterogeneous and grow towards the intestinal lumen. Sox21a tumours modulate their environment by secreting matrix metalloproteinase and reactive oxygen species. Enterocytes surrounding the tumours are eliminated through delamination allowing tumour progression, a process requiring JNK activation. Our data highlight the tumorigenic properties of transit differentiating cells. PMID:26690827

  15. Accumulation of differentiating intestinal stem cell progenies drives tumorigenesis

    PubMed Central

    Zhai, Zongzhao; Kondo, Shu; Ha, Nati; Boquete, Jean-Philippe; Brunner, Michael; Ueda, Ryu; Lemaitre, Bruno

    2015-01-01

    Stem cell self-renewal and differentiation are coordinated to maintain tissue homeostasis and prevent cancer. Mutations causing stem cell proliferation are traditionally the focus of cancer studies. However, the contribution of the differentiating stem cell progenies in tumorigenesis is poorly characterized. Here we report that loss of the SOX transcription factor, Sox21a, blocks the differentiation programme of enteroblast (EB), the intestinal stem cell progeny in the adult Drosophila midgut. This results in EB accumulation and formation of tumours. Sox21a tumour initiation and growth involve stem cell proliferation induced by the unpaired 2 mitogen released from accumulating EBs generating a feed-forward loop. EBs found in the tumours are heterogeneous and grow towards the intestinal lumen. Sox21a tumours modulate their environment by secreting matrix metalloproteinase and reactive oxygen species. Enterocytes surrounding the tumours are eliminated through delamination allowing tumour progression, a process requiring JNK activation. Our data highlight the tumorigenic properties of transit differentiating cells. PMID:26690827

  16. Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation.

    PubMed

    Wang, Maojun; Wang, Pengcheng; Tu, Lili; Zhu, Sitao; Zhang, Lin; Li, Zhonghua; Zhang, Qinghua; Yuan, Daojun; Zhang, Xianlong

    2016-05-19

    Epigenetic modifications are highlighted for their great importance in regulating plant development, but their function associated with single-cell differentiation remains undetermined. Here, we used the cotton fibre, which is the epidermal hair on the cotton ovule, as a model to investigate the regulatory role of DNA methylation in cell differentiation. The level of CHH (H = A, T, or C) DNA methylation level was found to increase during fibre development, accompanied by a decrease in RNA-directed DNA methylation (RdDM). Examination of nucleosome positioning revealed a gradual transition from euchromatin to heterochromatin for chromatin dynamics in developing fibres, which could shape the DNA methylation landscape. The observed increase in DNA methylation in fibres, compared with other ovule tissue, was demonstrated to be mediated predominantly by an active H3K9me2-dependent pathway rather than the RdDM pathway, which was inactive. Furthermore, integrated multi-omics analyses revealed that dynamic DNA methylation played a role in the regulation of lipid biosynthesis and spatio-temporal modulation of reactive oxygen species during fibre differentiation. Our study illustrates two divergent pathways mediating a continuous increase of DNA methylation and also sheds further light on the epigenetic basis for single-cell differentiation in plants. These data and analyses are made available to the wider research community through a comprehensive web portal. PMID:27067544

  17. Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation

    PubMed Central

    Wang, Maojun; Wang, Pengcheng; Tu, Lili; Zhu, Sitao; Zhang, Lin; Li, Zhonghua; Zhang, Qinghua; Yuan, Daojun; Zhang, Xianlong

    2016-01-01

    Epigenetic modifications are highlighted for their great importance in regulating plant development, but their function associated with single-cell differentiation remains undetermined. Here, we used the cotton fibre, which is the epidermal hair on the cotton ovule, as a model to investigate the regulatory role of DNA methylation in cell differentiation. The level of CHH (H = A, T, or C) DNA methylation level was found to increase during fibre development, accompanied by a decrease in RNA-directed DNA methylation (RdDM). Examination of nucleosome positioning revealed a gradual transition from euchromatin to heterochromatin for chromatin dynamics in developing fibres, which could shape the DNA methylation landscape. The observed increase in DNA methylation in fibres, compared with other ovule tissue, was demonstrated to be mediated predominantly by an active H3K9me2-dependent pathway rather than the RdDM pathway, which was inactive. Furthermore, integrated multi-omics analyses revealed that dynamic DNA methylation played a role in the regulation of lipid biosynthesis and spatio-temporal modulation of reactive oxygen species during fibre differentiation. Our study illustrates two divergent pathways mediating a continuous increase of DNA methylation and also sheds further light on the epigenetic basis for single-cell differentiation in plants. These data and analyses are made available to the wider research community through a comprehensive web portal. PMID:27067544

  18. ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation.

    PubMed

    Boutté, Yohann; Jonsson, Kristoffer; McFarlane, Heather E; Johnson, Errin; Gendre, Delphine; Swarup, Ranjan; Friml, Jirí; Samuels, Lacey; Robert, Stéphanie; Bhalerao, Rishikesh P

    2013-10-01

    The plant hormone indole-acetic acid (auxin) is essential for many aspects of plant development. Auxin-mediated growth regulation typically involves the establishment of an auxin concentration gradient mediated by polarly localized auxin transporters. The localization of auxin carriers and their amount at the plasma membrane are controlled by membrane trafficking processes such as secretion, endocytosis, and recycling. In contrast to endocytosis or recycling, how the secretory pathway mediates the localization of auxin carriers is not well understood. In this study we have used the differential cell elongation process during apical hook development to elucidate the mechanisms underlying the post-Golgi trafficking of auxin carriers in Arabidopsis. We show that differential cell elongation during apical hook development is defective in Arabidopsis mutant echidna (ech). ECH protein is required for the trans-Golgi network (TGN)-mediated trafficking of the auxin influx carrier AUX1 to the plasma membrane. In contrast, ech mutation only marginally perturbs the trafficking of the highly related auxin influx carrier LIKE-AUX1-3 or the auxin efflux carrier PIN-FORMED-3, both also involved in hook development. Electron tomography reveals that the trafficking defects in ech mutant are associated with the perturbation of secretory vesicle genesis from the TGN. Our results identify differential mechanisms for the post-Golgi trafficking of de novo-synthesized auxin carriers to plasma membrane from the TGN and reveal how trafficking of auxin influx carriers mediates the control of differential cell elongation in apical hook development. PMID:24043780

  19. HEXIM1 Induces Differentiation of Human Pluripotent Stem Cells

    PubMed Central

    Ding, Vanessa; Lew, Qiao Jing; Chu, Kai Ling; Natarajan, Subaashini; Rajasegaran, Vikneswari; Gurumurthy, Meera; Choo, Andre B. H.; Chao, Sheng-Hao

    2013-01-01

    Hexamethylene bisacetamide inducible protein 1 (HEXIM1) is best known as the inhibitor of positive transcription elongation factor b (P-TEFb), which is composed of cyclin-dependent kinase 9 (CDK9)/cyclin T1. P-TEFb is an essential regulator for the transcriptional elongation by RNA polymerase II. A genome-wide study using human embryonic stem cells shows that most mRNA synthesis is regulated at the stage of transcription elongation, suggesting a possible role for P-TEFb/HEXIM1 in the gene regulation of stem cells. In this report, we detected a marked increase in HEXIM1 protein levels in the differentiated human pluripotent stem cells (hPSCs) induced by LY294002 treatment. Since no changes in CDK9 and cyclin T1 were observed in the LY294002-treated cells, increased levels of HEXIM1 might lead to inhibition of P-TEFb activity. However, treatment with a potent P-TEFb inhibiting compound, flavopiridol, failed to induce hPSC differentiation, ruling out the possible requirement for P-TEFb kinase activity in hPSC differentiation. Conversely, differentiation was observed when hPSCs were incubated with hexamethylene bisacetamide, a HEXIM1 inducing reagent. The involvement of HEXIM1 in the regulation of hPSCs was further supported when overexpression of HEXIM1 concomitantly induced hPSC differentiation. Collectively, our study demonstrates a novel role of HEXIM1 in regulating hPSC fate through a P-TEFb-independent pathway. PMID:23977357

  20. Genomic characterization of plant cell wall degrading enzymes and in silico analysis of xylanses and polygalacturonases of Fusarium virguliforme

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell wall degrading enzymes (PCWDEs) are important effectors for plant pathogens to invade plants. In this study, the composition of PCWDEs in Fusarium virguliforme that were grown for 5-days and 20 days in liquid medium was determined by RNA-Seq. Differential expression analysis showed more P...

  1. Decreased ferroportin promotes myeloma cell growth and osteoclast differentiation.

    PubMed

    Gu, Zhimin; Wang, He; Xia, Jiliang; Yang, Ye; Jin, Zhendong; Xu, Hongwei; Shi, Jumei; De Domenico, Ivana; Tricot, Guido; Zhan, Fenghuang

    2015-06-01

    Iron homeostasis is disrupted in multiple myeloma, a difficult-to-cure plasma cell malignancy with lytic bone lesions. Here, we systematically analyzed iron gene expression signature and demonstrated that mRNA expression of iron exporter ferroportin (FPN1) is significantly downregulated in myeloma cells and correlates negatively with clinic outcome. Restoring expression of FPN1 reduces intracellular liable iron pool, inhibits STAT3-MCL-1 signaling, and suppresses myeloma cells growth. Furthermore, we demonstrated that mRNA of FPN1 is also downregulated at the initial stages of osteoclast differentiation and suppresses myeloma cell-induced osteoclast differentiation through regulating iron regulator TFRC, NF-κB, and JNK pathways. Altogether, we demonstrated that downregulation of FPN1 plays critical roles in promoting myeloma cell growth and bone resorption in multiple myeloma. PMID:25855377

  2. Regulation of the differentiation of PC12 pheochromocytoma cells.

    PubMed Central

    Fujita, K; Lazarovici, P; Guroff, G

    1989-01-01

    The PC12 clone, developed from a pheochromocytoma tumor of the rat adrenal medulla, has become a premiere model for the study of neuronal differentiation. When treated in culture with nanomolar concentrations of nerve growth factor, PC12 cells stop dividing, elaborate processes, become electrically excitable, and will make synapses with appropriate muscle cells in culture. The changes induced by nerve growth factor lead to cells that, by any number of criteria, resemble mature sympathetic neurons. These changes are accompanied by a series of biochemical alterations occurring in the membrane, the cytoplasm, and the nucleus of the cell. Some of these events are independent of changes in transcription, while others clearly involve changes in gene expression. A number of the alterations seen in the cells involve increases or decreases in the phosphorylation of key cellular proteins. The information available thus far allows the construction of a hypothesis regarding the biochemical basis of PC12 differentiation. PMID:2647474

  3. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation

    PubMed Central

    Maul, Timothy M.; Chew, Douglas W.; Nieponice, Alejandro

    2011-01-01

    Mesenchymal stem cell (MSC) therapy has demonstrated applications in vascular regenerative medicine. Although blood vessels exist in a mechanically dynamic environment, there has been no rigorous, systematic analysis of mechanical stimulation on stem cell differentiation. We hypothesize that mechanical stimuli, relevant to the vasculature, can differentiate MSCs toward smooth muscle (SMCs) and endothelial cells (ECs). This was tested using a unique experimental platform to differentially apply various mechanical stimuli in parallel. Three forces, cyclic stretch, cyclic pressure, and laminar shear stress, were applied independently to mimic several vascular physiologic conditions. Experiments were conducted using subconfluent MSCs for 5 days and demonstrated significant effects on morphology and proliferation depending upon the type, magnitude, frequency, and duration of applied stimulation. We have defined thresholds of cyclic stretch that potentiate SMC protein expression, but did not find EC protein expression under any condition tested. However, a second set of experiments performed at confluence and aimed to elicit the temporal gene expression response of a select magnitude of each stimulus revealed that EC gene expression can be increased with cyclic pressure and shear stress in a cell-contact-dependent manner. Further, these MSCs also appear to express genes from multiple lineages simultaneously which may warrant further investigation into post-transcriptional mechanisms for controlling protein expression. To our knowledge, this is the first systematic examination of the effects of mechanical stimulation on MSCs and has implications for the understanding of stem cell biology, as well as potential bioreactor designs for tissue engineering and cell therapy applications. PMID:21253809

  4. Vacuolar staining methods in plant cells.

    PubMed

    Scheuring, David; Schöller, Maria; Kleine-Vehn, Jürgen; Löfke, Christian

    2015-01-01

    Commercially available fluorescent dyes enable the fast and specific visualization of plant vacuoles, allowing for investigation of membrane dynamics and vacuolar biogenesis in living cells. Here, we describe different approaches tinting the tonoplast or the vacuolar lumen with a range of dyes, and illustrate its utilization with established fluorescent-tagged marker lines. PMID:25408446

  5. Integrated bioprocessing for plant cell cultures.

    PubMed

    Choi, J W; Cho, G H; Byun, S Y; Kim, D I

    2001-01-01

    Plant cell suspension culture has become the focus of much attention as a tool for the production of secondary metabolites including paclitaxel, a well-known anticancer agent. Recently, it has also been regarded as one of the host systems for the production of recombinant proteins. In order to produce phytochemicals using plant cell cultures, efficient processes must be developed with adequate bioreactor design. Most of the plant secondary metabolites are toxic to cells at the high concentrations required during culture. Therefore, if the product could be removed in situ during culture, productivity might be enhanced due to the alleviation of this toxicity. In situ removal or extractive bioconversion of such products can be performed by in situ extraction with various kinds of organic solvents. In situ adsorption using polymeric resins is another possibility. Using the fact that secondary metabolites are generally hydrophobic, various integrated bioprocessing techniques can be designed not only to lower toxicity, but also to enhance productivity. In this article, in situ extraction, in situ adsorption, utilization of cyclodextrins, and the application of aqueous two-phase systems in plant cell cultures are reviewed. PMID:11729756

  6. Physical plasticity of the nucleus in stem cell differentiation

    PubMed Central

    Pajerowski, J. David; Dahl, Kris Noel; Zhong, Franklin L.; Sammak, Paul J.; Discher, Dennis E.

    2007-01-01

    Cell differentiation in embryogenesis involves extensive changes in gene expression structural reorganization within the nucleus, including chromatin condensation and nucleoprotein immobilization. We hypothesized that nuclei in naive stem cells would therefore prove to be physically plastic and also more pliable than nuclei in differentiated cells. Micromanipulation methods indeed show that nuclei in human embryonic stem cells are highly deformable and stiffen 6-fold through terminal differentiation, and that nuclei in human adult stem cells possess an intermediate stiffness and deform irreversibly. Because the nucleo-skeletal component Lamin A/C is not expressed in either type of stem cell, we knocked down Lamin A/C in human epithelial cells and measured a deformability similar to that of adult hematopoietic stem cells. Rheologically, lamin-deficient states prove to be the most fluid-like, especially within the first ≈10 sec of deformation. Nuclear distortions that persist longer than this are irreversible, and fluorescence-imaged microdeformation with photobleaching confirms that chromatin indeed flows, distends, and reorganizes while the lamina stretches. The rheological character of the nucleus is thus set largely by nucleoplasm/chromatin, whereas the extent of deformation is modulated by the lamina. PMID:17893336

  7. Extending SILAC to Proteomics of Plant Cell Lines[C][W][OA

    PubMed Central

    Schütz, Wolfgang; Hausmann, Niklas; Krug, Karsten; Hampp, Rüdiger; Macek, Boris

    2011-01-01

    Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) is a widespread method for metabolic labeling of cells and tissues in quantitative proteomics; however, incomplete incorporation of the label has so far restricted its wider use in plants. Here, we argue that differential labeling by two different versions of the labeled amino acids renders SILAC fully applicable to dark-grown plant cell lines. By comparing Arabidopsis thaliana cell cultures labeled with two versions of heavy Lys (Lys-4 and Lys-8), we show that this simple modification of the SILAC protocol enables similar quantitation accuracy, precision, and reproducibility as conventional SILAC in animal cells. PMID:21540437

  8. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-22

    Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

  9. X Inactivation Lessons from Differentiating Mouse Embryonic Stem Cells.

    PubMed

    Pintacuda, Greta; Cerase, Andrea

    2015-10-01

    X chromosome inactivation (XCI) is the dosage compensation mechanism that evolved in female mammals to correct the genetic imbalance of X-linked genes between sexes. X chromosome inactivation occurs in early development when one of the two X chromosomes of females is nearly-completely silenced. Differentiating Embryonic Stem cells (ESC) are regarded as a useful tool to study XCI, since they recapitulate many events occurring during early development. In this review we aim to summarise the advances in the field and to discuss the close connection between cell differentiation and X chromosome inactivation, with a particular focus on mouse ESCs. PMID:26198263

  10. Effects of human mesenchymal stem cells on the differentiation of dendritic cells from CD34+ cells.

    PubMed

    Chen, Lei; Zhang, Wei; Yue, Han; Han, Qin; Chen, Bin; Shi, Mingxia; Li, Jing; Li, Binzong; You, Shengguo; Shi, Yufang; Zhao, Robert Chunhua

    2007-10-01

    Mesenchymal stem cells (MSCs) have profound immunomodulatory functions both in vitro and in vivo. However, their effects on the differentiation of dendritic cells (DCs) are unknown. In this study, we employed an in vitro model to investigate the effects of human MSCs on the development of DCs. CD34(+) cells isolated from cord blood were cultured under conventional DC(cDC) or plasmacytoid DC (pDC) differentiation conditions, in the presence or absence of MSCs or their conditioned medium. Here we show that both MSCs and their conditioned medium dramatically increased the numbers of cells generated under either condition. The percentage of cells with the cDC phenotype is significantly reduced in the presence of MSCs or their conditioned medium, whereas the percentage of pDC increased. The capacity of cDCs from MSCs or their conditioned medium-treated CD34(+) cells to stimulate allogeneic T cells was weakened. Furthermore, MSCs can skew the DC function from cDC to pDC, thus biasing the immune system toward Th2 and away from Th1 responses. Blocking the prostaglandin E(2) (PGE(2)) synthesis of MSCs can reverse most of these influences of MSCs on DCs differentiation and function. Therefore, MSCs can significantly influence DC development through PGE(2) production. PMID:17999594

  11. Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells

    PubMed Central

    Zhang, Jin; Nuebel, Esther; Wisidagama, Dona R R; Setoguchi, Kiyoko; Hong, Jason S; Van Horn, Christine M; Imam, Sarah S; Vergnes, Laurent; Malone, Cindy S; Koehler, Carla M; Teitell, Michael A

    2013-01-01

    Measurements of glycolysis and mitochondrial function are required to quantify energy metabolism in a wide variety of cellular contexts. In human pluripotent stem cells (hPSCs) and their differentiated progeny, this analysis can be challenging because of the unique cell properties, growth conditions and expense required to maintain these cell types. Here we provide protocols for analyzing energy metabolism in hPSCs and their early differentiated progenies that are generally applicable to mature cell types as well. Our approach has revealed distinct energy metabolism profiles used by hPSCs, differentiated cells, a variety of cancer cells and Rho-null cells. The protocols measure or estimate glycolysis on the basis of the extracellular acidification rate, and they measure or estimate oxidative phosphorylation on the basis of the oxygen consumption rate. Assays typically require 3 h after overnight sample preparation. Companion methods are also discussed and provided to aid researchers in developing more sophisticated experimental regimens for extended analyses of cellular bioenergetics. PMID:22576106

  12. Differentiation capacity of epithelial cells in the sponge Suberites domuncula.

    PubMed

    Schröder, Heinz C; Perović-Ottstadt, Sanja; Wiens, Matthias; Batel, Renato; Müller, Isabel M; Müller, Werner E G

    2004-05-01

    Sponges (phylum Porifera) represent the oldest metazoans. Their characteristic metazoan adhesion molecules and transcription factors enable them to establish a complex "Bauplan"; three major differentiated cell types (epithelial cells, skeletal cells/sclerocytes, and contractile cells) can be distinguished. Since no molecular markers are as yet available to distinguish these somatic cells or the corresponding embryonic cells from which they originate, we have selected the following three genes for their characterization: noggin (a signaling molecule in development), a caspase that encodes an apoptotic molecule, and silicatein. Silicatein is an enzyme that is involved in the synthesis of siliceous spicules and can hence be considered as a marker for scleroblasts. We have used the demosponge Suberites domuncula as a model system. During the hatching of the gemmules (asexual reproduction bodies) of S. domuncula, the expression of both noggin and caspase increases, whereas no transcripts for silicatein can be detected, irrespective of the presence of silicate or ferric iron (Fe3+) in the medium. In contrast, in adult specimens, silicate/Fe3+ cause an increased expression of these genes. In situ analysis has revealed that the first cells that express noggin, caspase, and silicatein lie in the epithelial layer of the pinacoderm. In a later phase, the noggin- and silicatein-positive cells migrate into the mesohyl, where they are found in association with spicules. Thus, the pinacoderm of sponges contains cells that have a differentiating capacity and from which somatic cells, such as skeletal cells/sclerocytes, derive. PMID:15024642

  13. Uncoupling T-cell expansion from effector differentiation in cell-based immunotherapy

    PubMed Central

    2013-01-01

    Summary Adoptive cellular immunotherapy (ACT) is a potentially curative therapy for patients with advanced cancer. Eradication of tumor in mouse models and humans correlates with both a high dose of adoptively transferred cells and cells with a minimally differentiated phenotype that maintain replicative capacity and multipotency. We speculate that response to ACT not only requires transfer of cells with immediate cytolytic effector function to kill the bulk of fast-growing tumor, but also transfer of tumor-specific cells that maintain an ability for self-renewal and the capacity to produce a continual supply of cytolytic effector progeny until all malignant cells are eliminated. Current in vitro methods to expand cells to sufficient numbers and still maintain a minimally differentiated phenotype are hindered by the biological coupling of clonal expansion and effector differentiation. Therefore, a better understanding of the physiologic mechanism that couples cell expansion and differentiation in CD8+ T cells may improve the efficacy of ACT. PMID:24329803

  14. In vitro differentiation of murine embryonic stem cells into keratinocyte-like cells.

    PubMed

    Haase, Ingo; Knaup, Renate; Wartenberg, Maria; Sauer, Heinrich; Hescheler, Jürgen; Mahrle, Gustav

    2007-12-01

    Embryonic stem (ES) cells are omnipotent; they can differentiate into every cell type of the body. The development of culture conditions that allow their differentiation has made it conceivable to produce large numbers of cells with lineage-specific characteristics in vitro. Here, we describe a method by which murine ES cells can be differentiated into cells with characteristics of epidermal keratinocytes. Keratinocyte-like cells were isolated from embryoid bodies and grown in culture. Potential applications of this method are the in vitro differentiation of cells of interest from ES cells of mice with lethal phenotypes during embryonic development and the production of genetically modified epidermal keratinocytes that could be used as temporary wound dressing or as carriers of genes of interest in gene therapeutic treatments. PMID:17716780

  15. Roles of Nrf2 in cell proliferation and differentiation.

    PubMed

    Murakami, Shohei; Motohashi, Hozumi

    2015-11-01

    The Keap1-Nrf2 system plays pivotal roles in defense mechanisms by regulating cellular redox homeostasis. Nrf2 is an inducible transcription factor that activates a battery of genes encoding antioxidant proteins and phase II enzymes in response to oxidative stress and electrophilic xenobiotics. The activity of Nrf2 is regulated by Keap1, which promotes the ubiquitination and subsequent degradation of Nrf2 under normal conditions and releases the inhibited Nrf2 activity upon exposure to the stresses. Though an impressive contribution of the Keap1-Nrf2 system to the protection from exogenous and endogenous electrophilic insults has been well established, a line of evidence has suggested that the Keap1-Nrf2 system has various novel functions, particularly in cell proliferation and differentiation. Because the proliferation and differentiation of diverse cell types are often influenced and modulated by the cellular redox balance, Nrf2 has been considered to control these cellular processes by regulating the cellular levels of reactive oxygen species (ROS). In addition, analyses of the genome-wide distribution of Nrf2 have identified new sets of Nrf2 target genes whose products are involved in cell proliferation and differentiation but not necessarily in the regulation of oxidative stress. Considering the most characteristic features of Nrf2 as an inducible transcription factor, a newly emerged concept proposes that the Keap1-Nrf2 system translates environmental stresses into regulatory network signals in cell fate determination. In this review, we introduce the contribution of Nrf2 to lineage-specific differentiation, maintenance and differentiation of stem cells, and proliferation of normal and cancer cells, and we discuss how the response to fluctuating environments modulates cell behavior through the Keap1-Nrf2 system. PMID:26119783

  16. Proliferation of differentiated glial cells in the brain stem.

    PubMed

    Barradas, P C; Cavalcante, L A

    1998-02-01

    Classical studies of macroglial proliferation in muride rodents have provided conflicting evidence concerning the proliferating capabilities of oligodendrocytes and microglia. Furthermore, little information has been obtained in other mammalian orders and very little is known about glial cell proliferation and differentiation in the subclass Metatheria although valuable knowledge may be obtained from the protracted period of central nervous system maturation in these forms. Thus, we have studied the proliferative capacity of phenotypically identified brain stem oligodendrocytes by tritiated thymidine radioautography and have compared it with known features of oligodendroglial differentiation as well as with proliferation of microglia in the opossum Didelphis marsupialis. We have detected a previously undescribed ephemeral, regionally heterogeneous proliferation of oligodendrocytes expressing the actin-binding, ensheathment-related protein 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), that is not necessarily related to the known regional and temporal heterogeneity of expression of CNPase in cell bodies. On the other hand, proliferation of microglia tagged by the binding of Griffonia simplicifolia B4 isolectin, which recognizes an alpha-D-galactosyl-bearing glycoprotein of the plasma membrane of macrophages/microglia, is known to be long lasting, showing no regional heterogeneity and being found amongst both ameboid and differentiated ramified cells, although at different rates. The functional significance of the proliferative behavior of these differentiated cells is unknown but may provide a low-grade cell renewal in the normal brain and may be augmented under pathological conditions. PMID:9686148

  17. Regulation of T Cell Differentiation and Function by EZH2.

    PubMed

    Karantanos, Theodoros; Chistofides, Anthos; Barhdan, Kankana; Li, Lequn; Boussiotis, Vassiliki A

    2016-01-01

    The enhancer of zeste homolog 2 (EZH2), one of the polycomb-group proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2) and induces the trimethylation of the histone H3 lysine 27 (H3K27me3) promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity, while the three other protein components of PRC2, namely EED, SUZ12, and RpAp46/48, induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency, and cancer biology, being currently at the cutting edge of research. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft-versus-host disease (GVHD). The aim of this review is to summarize the current knowledge regarding the role of EZH2 in the regulation of the differentiation and function of T cells focusing on possible applications in various immune-mediated conditions, including autoimmune disorders and GVHD. PMID:27199994

  18. Regulation of T Cell Differentiation and Function by EZH2

    PubMed Central

    Karantanos, Theodoros; Chistofides, Anthos; Barhdan, Kankana; Li, Lequn; Boussiotis, Vassiliki A.

    2016-01-01

    The enhancer of zeste homolog 2 (EZH2), one of the polycomb-group proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2) and induces the trimethylation of the histone H3 lysine 27 (H3K27me3) promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity, while the three other protein components of PRC2, namely EED, SUZ12, and RpAp46/48, induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency, and cancer biology, being currently at the cutting edge of research. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft-versus-host disease (GVHD). The aim of this review is to summarize the current knowledge regarding the role of EZH2 in the regulation of the differentiation and function of T cells focusing on possible applications in various immune-mediated conditions, including autoimmune disorders and GVHD. PMID:27199994

  19. Fluorescence activated cell sorting of plant protoplasts.

    PubMed

    Bargmann, Bastiaan O R; Birnbaum, Kenneth D

    2010-01-01

    High-resolution, cell type-specific analysis of gene expression greatly enhances understanding of developmental regulation and responses to environmental stimuli in any multicellular organism. In situ hybridization and reporter gene visualization can to a limited extent be used to this end but for high resolution quantitative RT-PCR or high-throughput transcriptome-wide analysis the isolation of RNA from particular cell types is requisite. Cellular dissociation of tissue expressing a fluorescent protein marker in a specific cell type and subsequent Fluorescence Activated Cell Sorting (FACS) makes it possible to collect sufficient amounts of material for RNA extraction, cDNA synthesis/amplification and microarray analysis. An extensive set of cell type-specific fluorescent reporter lines is available to the plant research community. In this case, two marker lines of the Arabidopsis thaliana root are used: P(SCR;)::GFP (endodermis and quiescent center) and P(WOX5;)::GFP (quiescent center). Large numbers (thousands) of seedlings are grown hydroponically or on agar plates and harvested to obtain enough root material for further analysis. Cellular dissociation of plant material is achieved by enzymatic digestion of the cell wall. This procedure makes use of high osmolarity-induced plasmolysis and commercially available cellulases, pectinases and hemicellulases to release protoplasts into solution. FACS of GFP-positive cells makes use of the visualization of the green versus the red emission spectra of protoplasts excited by a 488 nm laser. GFP-positive protoplasts can be distinguished by their increased ratio of green to red emission. Protoplasts are typically sorted directly into RNA extraction buffer and stored for further processing at a later time. This technique is revealed to be straightforward and practicable. Furthermore, it is shown that it can be used without difficulty to isolate sufficient numbers of cells for transcriptome analysis, even for very scarce

  20. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin

    PubMed Central

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J.; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F.; Psathaki, Olympia E.; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R.; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34+ hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34+ hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34+ hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34+ cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. PMID:25326431

  1. Differential induction of meristematic stem cells of Catharanthus roseus and their characterization.

    PubMed

    Moon, So Hyun; Venkatesh, Jelli; Yu, Jae-Woong; Park, Se Won

    2015-11-01

    Plant cell culture technology has been introduced for the mass production of the many useful components. A variety of plant-derived compounds is being used in various fields, such as pharmaceuticals, foods, and cosmetics. Plant cell cultures are believed to be derived from the dedifferentiation process. In the present study, an undifferentiated cambial meristematic cell (CMCs) of Catharanthus is isolated using histological and genetic methods, and compared with dedifferentiation-derived callus (DDCs) cultures. Furthermore, differential culture conditions for both DDCs- and CMCs-derived cell lines were established. A suitable media for the increased accumulation of terpenoid indole alkaloids (TIAs) was also standardized. Compared with DDCs, CMCs showed marked accumulation of TIAs in cell lines grown on media with 1.5 mg·mL(-1) of NAA and 0.5 mg·mL(-1) of kinetin. CMCs-derived cultures of Catharanthus, as a source of key anticancer drugs (viblastine and vincristine), would overcome the obstacles usually associated with the production of natural metabolites through the use of DDCs. Cell culture systems that are derived from CMCs may also provide a cost-effective and eco-friendly basis for the sustainable production of a number of important plant natural products. PMID:26298518

  2. Regulatory T Cells: Differentiation and Function.

    PubMed

    Plitas, George; Rudensky, Alexander Y

    2016-09-01

    The immune system of vertebrate animals has evolved to mount an effective defense against a diverse set of pathogens while minimizing transient or lasting impairment in tissue function that could result from the inflammation caused by immune responses to infectious agents. In addition, misguided immune responses to "self" and dietary antigens, as well as to commensal microorganisms, can lead to a variety of inflammatory disorders, including autoimmunity, metabolic syndrome, allergies, and cancer. Regulatory T cells expressing the X chromosome-linked transcription factor Foxp3 suppress inflammatory responses in diverse biological settings and serve as a vital mechanism of negative regulation of immune-mediated inflammation. Cancer Immunol Res; 4(9); 721-5. ©2016 AACR. PMID:27590281

  3. Retinoic acid-induced neural differentiation of embryonal carcinoma cells.

    PubMed Central

    Jones-Villeneuve, E M; Rudnicki, M A; Harris, J F; McBurney, M W

    1983-01-01

    We have previously shown that the P19 line of embryonal carcinoma cells develops into neurons, astroglia, and fibroblasts after aggregation and exposure to retinoic acid. The neurons were initially identified by their morphology and by the presence of neurofilaments within their cytoplasm. We have more fully documented the neuronal nature of these cells by showing that their cell surfaces display tetanus toxin receptors, a neuronal cell marker, and that choline acetyl-transferase and acetyl cholinesterase activities appear coordinately in neuron-containing cultures. Several days before the appearance of neurons, there is a marked decrease in the amount of an embryonal carcinoma surface antigen, and at the same time there is a substantial decrease in the volumes of individual cells. Various retinoids were able to induce the development of neurons in cultures of aggregated P19 cells, but it did not appear that polyamine metabolism was involved in the effect. We have isolated a mutant clone which does not differentiate in the presence of any of the drugs which are normally effective in inducing differentiation of P19 cells. This mutant and others may help to elucidate the chain of events triggered by retinoic acid and other differentiation-inducing drugs. Images PMID:6656766

  4. T helper cell differentiation more than just cytokines.

    PubMed

    Zygmunt, Beata; Veldhoen, Marc

    2011-01-01

    CD4(+) T helper (T(H)) cells play a critical role in orchestrating a pleiotropy of immune activities against a large variety of pathogens. It is generally thought that this is achieved through the acquisition of highly specialized functions after activation followed by the differentiation into various functional subsets. The differentiation process of naive precursor T(H) cells into defined effector subsets is controlled by cells of the innate immune system and their complex array of effector molecules such as secreted cytokines and membrane bound costimulatory molecules. These provide a unique quantitative or qualitative signal initiating T(H) development, which is subsequently reinforced via T cell-mediated feedback signals and selective survival and proliferative cues, ultimately resulting in the predominance of a particular T cell subset. In recent years, the number of defined T(H)cell subsets has expanded and the once rigid division of labor among them has been blurred with reports of plasticity among the subsets. In this chapter, we summarize and speculate on the current knowledge of the differentiation requirements of T(H) cell lineages, with particular focus on the T(H)17 subset. PMID:21569915

  5. Cell responses to FGFR3 signalling: growth, differentiation and apoptosis

    SciTech Connect

    L'Hote, Corine G.M. . E-mail: Corine.LHote@cancer.org.uk; Knowles, Margaret A.

    2005-04-01

    FGFR3 is a receptor tyrosine kinase (RTK) of the FGF receptor family, known to have a negative regulatory effect on long bone growth. Fgfr3 knockout mice display longer bones and, accordingly, most germline-activating mutations in man are associated with dwarfism. Somatically, some of the same activating mutations are associated with the human cancers multiple myeloma, cervical carcinoma and carcinoma of the bladder. How signalling through FGFR3 can lead to either chondrocyte apoptosis or cancer cell proliferation is not fully understood. Although FGFR3 can be expressed as two main splice isoforms (IIIb or IIIc), there is no apparent link with specific cell responses, which may rather be associated with the cell type or its differentiation status. Depending on cell type, differential activation of STAT proteins has been observed. STAT1 phosphorylation seems to be involved in inhibition of chondrocyte proliferation while activation of the ERK pathway inhibits chondrocyte differentiation and B-cell proliferation (as in multiple myeloma). The role of FGFR3 in epithelial cancers (bladder and cervix) is not known. Some of the cell specificity may arise via modulation of signalling by crosstalk with other signalling pathways. Recently, inhibition of the ERK pathway in achondroplastic mice has provided hope for an approach to the treatment of dwarfism. Further understanding of the ability of FGFR3 to trigger different responses depending on cell type and cellular context may lead to treatments for both skeletal dysplasias and cancer.

  6. Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 1. Plant products.

    PubMed

    Inácio, Caio Teves; Chalk, Phillip Michael; Magalhães, Alberto M T

    2015-01-01

    Among the lighter elements having two or more stable isotopes (H, C, N, O, S), δ(15)N appears to be the most promising isotopic marker to differentiate plant products from conventional and organic farms. Organic plant products vary within a range of δ(15)N values of +0.3 to +14.6%, while conventional plant products range from negative to positive values, i.e. -4.0 to +8.7%. The main factors affecting δ(15)N signatures of plants are N fertilizers, biological N2 fixation, plant organs and plant age. Correlations between mode of production and δ(13)C (except greenhouse tomatoes warmed with natural gas) or δ(34)S signatures have not been established, and δ(2)H and δ(18)O are unsuitable markers due to the overriding effect of climate on the isotopic composition of plant-available water. Because there is potential overlap between the δ(15)N signatures of organic and conventionally produced plant products, δ(15)N has seldom been used successfully as the sole criterion for differentiation, but when combined with complementary analytical techniques and appropriate statistical tools, the probability of a correct identification increases. The use of organic fertilizers by conventional farmers or the marketing of organic produce as conventional due to market pressures are additional factors confounding correct identification. The robustness of using δ(15)N to differentiate mode of production will depend on the establishment of databases that have been verified for individual plant products. PMID:24915332

  7. Differentiation state determines neural effects on microvascular endothelial cells

    SciTech Connect

    Muffley, Lara A.; Pan, Shin-Chen; Smith, Andria N.; Ga, Maricar; Hocking, Anne M.; Gibran, Nicole S.

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  8. Cell-Imprinted Substrates Modulate Differentiation, Redifferentiation, and Transdifferentiation.

    PubMed

    Bonakdar, Shahin; Mahmoudi, Morteza; Montazeri, Leila; Taghipoor, Mojtaba; Bertsch, Arnaud; Shokrgozar, Mohammad Ali; Sharifi, Shahriar; Majidi, Mohammad; Mashinchian, Omid; Hamrang Sekachaei, Mohammad; Zolfaghari, Pegah; Renaud, Philippe

    2016-06-01

    Differentiation of stem cells into mature cells through the use of physical approaches is of great interest. Here, we prepared smart nanoenvironments by cell-imprinted substrates based on chondrocytes, tenocytes, and semifibroblasts as templates and demonstrated their potential for differentiation, redifferentiation, and transdifferentiation. Analysis of shape and upregulation/downregulation of specific genes of stem cells, which were seeded on these cell-imprinted substrates, confirmed that imprinted substrates have the capability to induce specific shapes and molecular characteristics of the cell types that were used as templates for cell-imprinting. Interestingly, immunofluorescent staining of a specific protein in chondrocytes (i.e., collagen type II) confirmed that adipose-derived stem cells, semifibroblasts, and tenocytes can acquire the chondrocyte phenotype after a 14 day culture on chondrocyte-imprinted substrates. In summary, we propose that common polystyrene tissue culture plates can be replaced by this imprinting technique as an effective and promising way to regulate any cell phenotype in vitro with significant potential applications in regenerative medicine and cell-based therapies. PMID:27196338

  9. Differentiation and transdifferentiation potentials of cancer stem cells

    PubMed Central

    Liu, Allan Yi; Ouyang, Gaoliang

    2015-01-01

    Tumor cells actively contribute to constructing their own microenvironment during tumorigenesis and tumor progression. The tumor microenvironment contains multiple types of stromal cells that work together with the extracellular matrix and local and systemic factors to coordinately contribute to tumor initiation and progression. Tumor cells and their stromal compartments acquire many genetic and/or epigenetic alternations to facilitate tumor growth and metastasis. The cancer stem cell (CSC) concept has been widely applied to interpreting tumor initiation, growth, metastasis, dormancy and relapse. CSCs have differentiation abilities to generate the original lineage cells that are similar to their normal stem cell counterparts. Interestingly, recent evidence demonstrates that CSCs also have the potential to transdifferentiate into vascular endothelial cells and pericytes, indicating that CSCs can transdifferentiate into other lineage cells for promoting tumor growth and metastasis in some tissue contexts instead of only recruiting stromal cells from local or distant tissues. Although the transdifferentiation of CSCs into tumor stromal cells provides a new dimension that explains tumor heterogeneity, many aspects of CSC transdifferentiation remain elusive. In this review, we summarize the multi-lineage differentiation and transdifferentiation potentials of CSCs as well as discuss their potential contributions to tumor heterogeneity and tumor microenvironment in tumor progression. PMID:26474460

  10. Model microgravity enhances endothelium differentiation of mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Nan, Yayun; Wang, Huan; Chen, Jun; Wang, Nanding; Xie, Juan; Ma, Jing; Wang, Zongren

    2013-02-01

    Mesenchymal stem cells (MSCs) are capable of differentiation into multilineage cell types under certain induction conditions. Previous studies have demonstrated that physical environments and mechanical force can influence MSC fate, indicating that these factors may be favorable inducers for clinical treatment. Our previous study found that MSCs are spread with a spindle shape when cultured in normal gravity (NG), and under modeled microgravity (MMG) for 72 h, they become unspread and round and their cytoskeleton fibers are reorganized. These morphological changes affected the function of MSCs through the activity of RhoA. We examined the responses of MSCs under MMG stimulation, followed with VEGF differentiation. We found that MSCs under MMG for 72 h were differentiated into endothelial-like cells by detecting the expression of endothelial-specific molecules (Flk-1 and vWF), which were also able to form a capillary network. Their endothelial differentiation potential was improved under MMG compared with that under NG. We believe that this method is a novel choice of MMG stimulation for neovascularization. This phenomenon may increase the potential of MSC differentiation, which might be a new strategy for the treatment of various vascular diseases and improve vascularization in tissue engineering.

  11. Transdifferentiation of differentiated stem cells contributes to remyelination.

    PubMed

    Chelluboina, Bharath; Dinh, Dzung H; Veeravalli, Krishna Kumar

    2015-01-01

    Evidence suggests that transdifferentiation of mesenchymal stem cells (MSCs) into various neuronal cells contributes to functional recovery after experimental spinal cord injury. Qiu et al. have recently published an exciting article in Stem Cell Research & Therapy demonstrating the transdifferentiation of already differentiated MSCs that contributes to remyelination of injured/regenerating axons, and thereby to functional recovery of spinal cord injured animals. The authors highlight the importance of interaction between neurotrophin-3 and tropomyosin receptor kinase C for the observed effects. This study provided important evidence that manipulation of rat bone marrow-derived MSCs before transplantation could enhance the therapeutic benefit of cell-based treatment. PMID:26437650

  12. In vitro Differentiation Potential of Mesenchymal Stem Cells

    PubMed Central

    Gimble, Jeffrey M.; Guilak, Farshid; Nuttall, Mark E.; Sathishkumar, Solomon; Vidal, Martin; Bunnell, Bruce A.

    2008-01-01

    Summary Mesenchymal stem cells (MSCs) represent a class of multipotent progenitor cells that have been isolated from multiple tissue sites. Of these, adipose tissue and bone marrow offer advantages in terms of access, abundance, and the extent of their documentation in the literature. This review focuses on the in vitro differentiation capability of cells derived from adult human tissue. Multiple, independent studies have demonstrated that MSCs can commit to mesodermal (adipocyte, chondrocyte, hematopoietic support, myocyte, osteoblast, tenocyte), ectodermal (epithelial, glial, neural), and endodermal (hepatocyte, islet cell) lineages. The limitations and promises of these studies in the context of tissue engineering are discussed. PMID:21547120

  13. How to let go: pectin and plant cell adhesion

    PubMed Central

    Daher, Firas Bou; Braybrook, Siobhan A.

    2015-01-01

    Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell’s life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells’ ability to hang on, and how it lets go. PMID:26236321

  14. Differential allelopathic expression of different plant parts of Achillea biebersteinii.

    PubMed

    Abu-Romman, Saeid

    2016-06-01

    Achillea biebersteinii (Asteraceae) is a perennial medicinal plant and has a wide distributional range in the Mediterranean region. The present study investigated the inhibitory effects of different plant parts of A. biebersteinii on germination characteristics and seedling growth of wild barley (Hordeum spontaneum). Water extracts were prepared by incubating separately five grams of dried powder of roots, stems, leaves and flowers of A. biebersteinii in 100 ml of distilled water for 24 h and distilled water was used as the control. The water extracts from different plant parts of A. biebersteinii differed in their effects on the germination and seedling growth of wild barley. Water extracts prepared from leaves and flowers were more suppressive to germination of wild barley than root and stem extracts. The maximum inhibition in radical and plumule growth of germinating caryopses and in root and shoot growth of greenhouse-grown wild barley was recorded for leaf extract followed by flower extract. The lowest Chl a, Chl b and total chlorophyll and protein contents were resulted after exposure to leaf extracts. According to these results, the inhibitory effects of different A. biebersteinii plant parts can be arranged in the order: leaf > flower > stem > root. PMID:27165527

  15. Control of NKT cell differentiation by tissue-specific microenvironments.

    PubMed

    Yang, Yang; Ueno, Aito; Bao, Min; Wang, Zhongying; Im, Jin Seon; Porcelli, Steven; Yoon, Ji-Won

    2003-12-01

    CD1d-restricted Valpha14 NKT cells play an important role in both Th1- and Th2-type immune responses. To determine whether NKT cells develop two functionally distinct subsets that provoke different types of responses, we examined the phenotypes and cellular functions of NK1.1(+) and DX5(+) T cells. We found that both NK1.1(+) and DX5(+) T cells are CD1d-restricted Valpha14 T cells with identical Ag specificities, phenotypes, tissue locations, and functions. Similar to the NK1.1 marker, the DX5 marker (CD49b) is expressed on mature NKT cells in both NK1.1 allele-positive and allele-negative strains. However, when NK1.1(+) and DX5(+) NKT cells isolated from different tissues were compared, we found that thymic and splenic NKT cells differed not only in their cytokine profiles, but also in their phenotype and requirements for costimulatory signals. Thymic NKT cells displayed the phenotype of activated T cells and could be fully activated by TCR ligation. In contrast, splenic NKT cells displayed the phenotype of memory T cells and required a costimulatory signal for activation. Furthermore, the function and phenotype of thymic and splenic NKT cells were modulated by APCs from various tissues that expressed different levels of costimulatory molecules. Modulation of NKT cell function and differentiation may be mediated by synergic effects of costimulatory molecules on the surface of APCs. The results of the present study suggest that the costimulatory signals of tissue-specific APCs are key factors for NKT cell differentiation, and these signals cannot be replaced by anti-CD28 or anti-CD40 ligand Abs. PMID:14634102

  16. Effects of trichostatins on differentiation of murine erythroleukemia cells

    SciTech Connect

    Yoshida, M.; Nomura, S.; Beppu, T.

    1987-07-15

    The fungistatic antibiotics trichostatins (TS) A and C were isolated from culture broth of Streptomyces platensis No. 145 and were found to be potent inducers of differentiation in murine erythroleukemia (Friend and RV133) cells at concentrations of 1.5 X 10(-8) M for TSA and 5 X 10(-7) M for TSC. Differentiation induced by TS was cooperatively enhanced by UV irradiation but not by treatment with dimethyl sulfoxide. This enhanced activity was completely inhibited by adding cycloheximide to the culture medium 2 h after exposure to TS, suggesting that TS are dimethyl sulfoxide-type inducers of erythroid differentiation. No inhibitory effect of TS was observed on macromolecular synthesis in cultured cells.

  17. Control of Differentiation of a Mammary Cell Line by Lipids

    NASA Astrophysics Data System (ADS)

    Dulbecco, Renato; Bologna, Mauro; Unger, Michael

    1980-03-01

    A rat mammary cell line (LA7) undergoes spontaneous differentiation into domes due to production of specific inducers by the cells. Some of these inducers may be lipids, and we show that lipids regulate this differentiation as both inducers and inhibitors. One inhibitor is the tumor promoter tetradecanoyl-13 phorbol 12-acetate. The inducers are saturated fatty acids of two groups: butyric acid and acids with chain lengths from C13 to C16, especially myristic acid (C14). Other inducers are myristoyl and palmitoyl lysolecithins, myristic acid methyl ester, and two cationic detergents with a tetradecenyl chain. We propose that the lipids with a C14-C16 alkyl chain affect differentiation by recognizing specific receptors through their alkyl chains and that the effects obtained depend on the head groups. These lipids may be physiological regulators in the mammary gland.

  18. Regeneration niche differentiates functional strategies of desert woody plant species

    PubMed Central

    Briggs, John M.

    2010-01-01

    Plant communities vary dramatically in the number and relative abundance of species that exhibit facilitative interactions, which contributes substantially to variation in community structure and dynamics. Predicting species’ responses to neighbors based on readily measurable functional traits would provide important insight into the factors that structure plant communities. We measured a suite of functional traits on seedlings of 20 species and mature plants of 54 species of shrubs from three arid biogeographic regions. We hypothesized that species with different regeneration niches—those that require nurse plants for establishment (beneficiaries) versus those that do not (colonizers)—are functionally different. Indeed, seedlings of beneficiary species had lower relative growth rates, larger seeds and final biomass, allocated biomass toward roots and height at a cost to leaf mass fraction, and constructed costly, dense leaf and root tissues relative to colonizers. Likewise at maturity, beneficiaries had larger overall size and denser leaves coupled with greater water use efficiency than colonizers. In contrast to current hypotheses that suggest beneficiaries are less “stress-tolerant” than colonizers, beneficiaries exhibited conservative functional strategies suited to persistently dry, low light conditions beneath canopies, whereas colonizers exhibited opportunistic strategies that may be advantageous in fluctuating, open microenvironments. In addition, the signature of the regeneration niche at maturity indicates that facilitation expands the range of functional diversity within plant communities at all ontogenetic stages. This study demonstrates the utility of specific functional traits for predicting species’ regeneration niches in hot deserts, and provides a framework for studying facilitation in other severe environments. Electronic supplementary material The online version of this article (doi:10.1007/s00442-010-1741-y) contains supplementary

  19. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    SciTech Connect

    Macoch, Mélinda; Morzadec, Claudie; Fardel, Olivier; Vernhet, Laurent

    2013-01-15

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  20. Induced differentiation of adipose-derived stromal cells into myoblasts.

    PubMed

    Wu, Guizhu; Zheng, Xiu; Jiang, Zhongqing; Wang, Jinhua; Song, Yanfeng

    2010-06-01

    This study aimed to induce the differentiation of isolated and purified adipose-derived stromal cells (ADSCs) into myoblasts, which may provide a new strategy for tissue engineering in patients with stress urinary incontinence (SUI). ADSCs, isolated and cultured ex vivo, were identified by flow cytometry and induced to differentiate into myoblasts in the presence of an induction solution consisting of DMEM supplemented with 5-azacytidine (5-aza), 5% FBS, and 5% horse serum. Cellular morphology was observed under an inverted microscope. Ultrastructural changes occurring during the differentiation were observed by transmission electron microscopy and confocal laser scanning microscopy. Cellular immunohistochemical staining was applied to determine the expression of desmin protein in cells with and without induced differentiation. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to detect mRNA and protein expression, respectively, of sarcomeric and desmin smooth muscle proteins. The results showed that ADSCs were mainly of a spindle or polygon shape. Flow cytometry analysis revealed that ADSCs did not express CD34, CD45, and CD106 but high levels of CD44 and CD90, which confirmed that the cultured cells were indeed ADSCs. After induction with a 5-aza-containing solution, morphological changes in ADSCs, including irregular cell size, were observed. Cells gradually changed from long spindles to polygons and star-shaped cells with microvilli on the cell surface. Many organelles were observed and the cytoplasm was found to contain many mitochondria, rough endoplasmic reticulum (rER), and myofilament-like structures. Cell immunohistochemical staining revealed different levels of desmin expression in each phase of the induction process, with the highest expression level found on day 28 of induction. RT-PCR and Western blot results confirmed significantly higher desmin gene expression in induced cells compared with control cells, but no

  1. Zfp423 Promotes Adipogenic Differentiation of Bovine Stromal Vascular Cells

    PubMed Central

    Huang, Yan; Das, Arun Kr; Yang, Qi-Yuan; Zhu, Mei-Jun; Du, Min

    2012-01-01

    Intramuscular fat or marbling is critical for the palatability of beef. In mice, very recent studies show that adipocytes and fibroblasts share a common pool of progenitor cells, with Zinc finger protein 423 (Zfp423) as a key initiator of adipogenic differentiation. To evaluate the role of Zfp423 in intramuscular adipogenesis and marbling in beef cattle, we sampled beef muscle for separation of stromal vascular cells. These cells were immortalized with pCI neo-hEST2 and individual clones were selected by G418. A total of 288 clones (3×96 well plates) were isolated and induced to adipogenesis. The presence of adipocytes was assessed by Oil-Red-O staining. Three clones with high and low adipogenic potential respectively were selected for further analyses. In addition, fibro/adipogenic progenitor cells were selected using a surface marker, platelet derived growth factor receptor (PDGFR) α. The expression of Zfp423 was much higher (307.4±61.9%, P<0.05) in high adipogenic cells, while transforming growth factor (TGF)-β was higher (156.1±48.7%, P<0.05) in low adipogenic cells. Following adipogenic differentiation, the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) were much higher (239.4±84.1% and 310.7±138.4%, respectively, P<0.05) in high adipogenic cells. Over-expression of Zfp423 in stromal vascular cells and cloned low adipogenic cells dramatically increased their adipogenic differentiation, accompanied with the inhibition of TGF-β expression. Zfp423 knockdown by shRNA in high adipogenic cells largely prevented their adipogenic differentiation. The differential regulation of Zfp423 and TGF-β between low and high adipogenic cells is associated with the DNA methylation in their promoters. In conclusion, data show that Zfp423 is a critical regulator of adipogenesis in stromal vascular cells of bovine muscle, and Zfp423 may provide a molecular target for enhancing intramuscular adipogenesis

  2. Citalopram increases the differentiation efficacy of bone marrow mesenchymal stem cells into neuronal-like cells

    PubMed Central

    Verdi, Javad; Mortazavi-Tabatabaei, Seyed Abdolreza; Sharif, Shiva; Verdi, Hadi; Shoae-Hassani, Alireza

    2014-01-01

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was decreased in citalopram-treated bone marrow mesenchymal stem cells than in control cells in neurobasal medium. In addition, the cumulative population doubling level of the citalopram-treated cells was significantly increased compared to that of control cells. Also BrdU incorporation was elevated in citalopram-treated cells. These findings suggest that citalopram can improve the neuronal-like cell differentiation of bone marrow mesenchymal stem cells by increasing cell proliferation and survival while maintaining their neuronal characteristics. PMID:25206899

  3. Bile acids induce hepatic differentiation of mesenchymal stem cells

    PubMed Central

    Sawitza, Iris; Kordes, Claus; Götze, Silke; Herebian, Diran; Häussinger, Dieter

    2015-01-01

    Mesenchymal stem cells (MSC) have the potential to differentiate into multiple cell lineages and their therapeutic potential has become obvious. In the liver, MSC are represented by stellate cells which have the potential to differentiate into hepatocytes after stimulation with growth factors. Since bile acids can promote liver regeneration, their influence on liver-resident and bone marrow-derived MSC was investigated. Physiological concentrations of bile acids such as tauroursodeoxycholic acid were able to initiate hepatic differentiation of MSC via the farnesoid X receptor and transmembrane G-protein-coupled bile acid receptor 5 as investigated with knockout mice. Notch, hedgehog, transforming growth factor-β/bone morphogenic protein family and non-canonical Wnt signalling were also essential for bile acid-mediated differentiation, whereas β-catenin-dependent Wnt signalling was able to attenuate this process. Our findings reveal bile acid-mediated signalling as an alternative way to induce hepatic differentiaion of stem cells and highlight bile acids as important signalling molecules during liver regeneration. PMID:26304833

  4. Phenotypic plasticity within yeast colonies: differential partitioning of cell fates.

    PubMed

    Piccirillo, Sarah; Kapros, Tamas; Honigberg, Saul M

    2016-05-01

    Across many phyla, a common aspect of multicellularity is the organization of different cell types into spatial patterns. In the budding yeast Saccharomyces cerevisiae, after diploid colonies have completed growth, they differentiate to form alternating layers of sporulating cells and feeder cells. In the current study, we found that as yeast colonies developed, the feeder cell layer was initially separated from the sporulating cell layer. Furthermore, the spatial pattern of sporulation in colonies depended on the colony's nutrient environment; in two environments in which overall colony sporulation efficiency was very similar, the pattern of feeder and sporulating cells within the colony was very different. As noted previously, under moderately suboptimal conditions for sporulation-low acetate concentration or high temperature-the number of feeder cells increases as does the dependence of sporulation on the feeder-cell transcription factor, Rlm1. Here we report that even under a condition that is completely blocked sporulation, the number of feeder cells still increased. These results suggest broader implications to our recently proposed "Differential Partitioning provides Environmental Buffering" or DPEB hypothesis. PMID:26743103

  5. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells

    SciTech Connect

    Vaca, Pilar; Berna, Genoveva; Araujo, Raquel; Carneiro, Everardo M.; Bedoya, Francisco J.; Soria, Bernat; Martin, Franz

    2008-03-10

    The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice. Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells.

  6. Silk scaffolds with tunable mechanical capability for cell differentiation

    PubMed Central

    Bai, Shumeng; Han, Hongyan; Huang, Xiaowei; Xu, Weian; Kaplan, David L.; Zhu, Hesun; Lu, Qiang

    2015-01-01

    Bombyx mori silk fibroin is a promising biomaterial for tissue regeneration and is usually considered an “inert” material with respect to actively regulating cell differentiation due to few specific cell signaling peptide domains in the primary sequence and the generally stiffer mechanical properties due to crystalline content formed in processing. In the present study, silk fibroin porous 3D scaffolds with nanostructures and tunable stiffness were generated via a silk fibroin nanofiber-assisted lyophilization process. The silk fibroin nanofibers with high β-sheet content were added into the silk fibroin solutions to modulate the self-assembly, and to directly induce water-insoluble scaffold formation after lyophilization. Unlike previously reported silk fibroin scaffold formation processes, these new scaffolds had lower overall β-sheet content and softer mechanical properties for improved cell compatibility. The scaffold stiffness could be further tuned to match soft tissue mechanical properties, which resulted in different differentiation outcomes with rat bone marrow-derived mesenchymal stem cells towards myogenic and endothelial cells, respectively. Therefore, these silk fibroin scaffolds regulate cell differentiation outcomes due to their mechanical features. PMID:25858557

  7. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    PubMed

    Ma, Yun-Yun; Sun, Lin; Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification. PMID:27589055

  8. Silk scaffolds with tunable mechanical capability for cell differentiation.

    PubMed

    Bai, Shumeng; Han, Hongyan; Huang, Xiaowei; Xu, Weian; Kaplan, David L; Zhu, Hesun; Lu, Qiang

    2015-07-01

    Bombyx mori silk fibroin is a promising biomaterial for tissue regeneration and is usually considered an "inert" material with respect to actively regulating cell differentiation due to few specific cell signaling peptide domains in the primary sequence and the generally stiffer mechanical properties due to crystalline content formed in processing. In the present study, silk fibroin porous 3D scaffolds with nanostructures and tunable stiffness were generated via a silk fibroin nanofiber-assisted lyophilization process. The silk fibroin nanofibers with high β-sheet content were added into the silk fibroin solutions to modulate the self-assembly, and to directly induce water-insoluble scaffold formation after lyophilization. Unlike previously reported silk fibroin scaffold formation processes, these new scaffolds had lower overall β-sheet content and softer mechanical properties for improved cell compatibility. The scaffold stiffness could be further tuned to match soft tissue mechanical properties, which resulted in different differentiation outcomes with rat bone marrow-derived mesenchymal stem cells toward myogenic and endothelial cells, respectively. Therefore, these silk fibroin scaffolds regulate cell differentiation outcomes due to their mechanical features. PMID:25858557

  9. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the

  10. 3. Right side of Zinc Plant, from Cell Room midpoint ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Right side of Zinc Plant, from Cell Room midpoint to Plant Office (foreground) and #5 Roaster and Concentrate Handling (background). View is to the east. - Sullivan Electrolytic Zinc Plant, Government Gulch, Kellogg, Shoshone County, ID

  11. A Pmk1-interacting gene is involved in appressorium differentiation and plant infection in Magnaporthe oryzae.

    PubMed

    Zhang, Haifeng; Xue, Chaoyang; Kong, Lingan; Li, Guotian; Xu, Jin-Rong

    2011-08-01

    In the rice blast fungus Magnaporthe oryzae, the PMK1 mitogen-activated protein (MAP) kinase gene regulates appressorium formation and infectious growth. Its homologs in many other fungi also play critical roles in fungal development and pathogenicity. However, the targets of this important MAP kinase and its interacting genes are not well characterized. In this study, we constructed two yeast two-hybrid libraries of M. oryzae and screened for Pmk1-interacting proteins. Among the nine Pmk1-interacting clones (PICs) identified, two of them, PIC1 and PIC5, were selected for further characterization. Pic1 has one putative nuclear localization signal and one putative MAP kinase phosphorylation site. Pic5 contains one transmembrane domain and two functionally unknown CTNS (cystinosin/ERS1p repeat) motifs. The interaction of Pmk1 with Pic1 or Pic5 was confirmed by coimmunoprecipitation assays. Targeted gene deletion of PIC1 had no apparent effects on vegetative growth and pathogenicity but resulted in a significant reduction in conidiation and abnormal germ tube differentiation on onion epidermal cells. Deletion of PIC5 led to a reduction in conidiation and hyphal growth. Autolysis of aerial hyphae became visible in cultures older than 4 days. The pic5 mutant was defective in germ tube growth and appressorium differentiation. It was reduced in appressorial penetration and virulence on the plant. Both PIC1 and PIC5 are conserved in filamentous ascomycetes, but none of their orthologs have been functionally characterized. Our data indicate that PIC5 is a novel virulence factor involved in appressorium differentiation and pathogenesis in M. oryzae. PMID:21642506

  12. Induced Pluripotent Stem (iPS) Cell Culture Methods and Induction of Differentiation into Endothelial Cells

    PubMed Central

    Chatterjee, Ishita; Li, Fei; Kohler, Erin E.; Rehman, Jalees; Malik, Asrar B.; Wary, Kishore K.

    2015-01-01

    Summary The studies of stem cell behavior and differentiation in a developmental context is complex, time-consuming and expensive, and for this reason, cell culture remains a method of choice for developmental and regenerative biology and mechanistic studies. Similar to ES cells, iPS cells have the ability to differentiate into endothelial cells (ECs), and the route for differentiation appears to mimic the developmental process that occurs during the formation of an embryo. Traditional EC induction methods from embryonic stem (ES) cells rely mostly on the formation the embryoid body (EB), which employs feeder or feeder-free conditions in the presence or absence of supporting cells. Similar to ES cells, iPS cells can be cultured in feeder-layer or feeder-free conditions. Here, we describe the iPS cell culture methods and induction differentiation of these cells into ECs. We use anti-mouse Flk1 and anti-mouse VE-cadherin to isolate and characterize mouse ECs, because these antibodies are commercially available and their use has been described in the literature, including by our group. The ECs produced by this method have been used by our laboratory, and we have demonstrated their in vivo potential. We also discuss how iPS cells differ in their ability to differentiate into endothelial cells in culture. PMID:25687301

  13. Evaluation of a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay (SOT)

    EPA Science Inventory

    The Embryonic Stem Cell Test (EST) has been used to evaluate the effects of xenobiotics using three endpoints, stem cell differentiation, stem cell viability and 3T3-cell viability. Our research goal is to establish amodel system that would evaluate chemical effects using a singl...

  14. Putative intermediates in the nerve cell differentiation pathway in hydra have properties of multipotent stem cells

    SciTech Connect

    Holstein, T.W.; David, C.N. )

    1990-12-01

    We have investigated the properties of nerve cell precursors in hydra by analyzing the differentiation and proliferation capacity of interstitial cells in the peduncle of Hydra oligactis, which is a region of active nerve cell differentiation. Our results indicate that about 50% of the interstitial cells in the peduncle can grow rapidly and also give rise to nematocyte precursors when transplanted into a gastric environment. If these cells were committed nerve cell precursors, one would not expect them to differentiate into nematocytes nor to proliferate apparently without limit. Therefore we conclude that cycling interstitial cells in peduncles are not intermediates in the nerve cell differentiation pathway but are stem cells. The remaining interstitial cells in the peduncle are in G1 and have the properties of committed nerve cell precursors. Thus, the interstitial cell population in the peduncle contains both stem cells and noncycling nerve precursors. The presence of stem cells in this region makes it likely that these cells are the immediate targets of signals which give rise to nerve cells.

  15. Angiotensin II directly impairs adipogenic differentiation of human preadipose cells.

    PubMed

    Palominos, Marisol M; Dünner, Natalia H; Wabitsch, Martin; Rojas, Cecilia V

    2015-10-01

    Angiotensin II reduces adipogenic differentiation of preadipose cells present in the stroma-vascular fraction of human adipose tissue, which also includes several cell types. Because of the ability of non-adipose lineage cells in the stroma-vascular fraction to respond to angiotensin II, it is not possible to unequivocally ascribe the anti-adipogenic response to a direct effect of this hormone on preadipose cells. Therefore, we used the human Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte cell strain to investigate the consequences of angiotensin II treatment on adipogenic differentiation under serum-free conditions, by assessing expression of typical adipocyte markers perilipin and fatty acid-binding protein 4 (FABP4), at the transcript and protein level. Reverse transcription-polymerase chain reaction showed that perilipin and FABP4 transcripts were, respectively, reduced to 0.33 ± 0.07 (P < 0.05) and 0.41 ± 0.19-fold (P < 0.05) in SGBS cells induced to adipogenic differentiation in the presence of angiotensin II. Western Blot analysis corroborated reduction of the corresponding proteins to 0.23 ± 0.21 (P < 0.01) and 0.46 ± 0.30-fold (P < 0.01) the respective controls without angiotensin II. Angiotensin II also impaired morphological changes associated with early adipogenesis. Hence, we demonstrated that angiotensin II is able to directly reduce adipogenic differentiation of SGBS preadipose cells. PMID:26112903

  16. Biomaterials Approach to Expand and Direct Differentiation of Stem Cells

    PubMed Central

    Chai, Chou; Leong, Kam W

    2008-01-01

    Stem cells play increasingly prominent roles in tissue engineering and regenerative medicine. Pluripotent embryonic stem (ES) cells theoretically allow every cell type in the body to be regenerated. Adult stem cells have also been identified and isolated from every major tissue and organ, some possessing apparent pluripotency comparable to that of ES cells. However, a major limitation in the translation of stem cell technologies to clinical applications is the supply of cells. Advances in biomaterials engineering and scaffold fabrication enable the development of ex vivo cell expansion systems to address this limitation. Progress in biomaterial design has also allowed directed differentiation of stem cells into specific lineages. In addition to delivering biochemical cues, various technologies have been developed to introduce micro- and nano-scale features onto culture surfaces to enable the study of stem cell responses to topographical cues. Knowledge gained from these studies portends the alteration of stem cell fate in the absence of biological factors, which would be valuable in the engineering of complex organs comprising multiple cell types. Biomaterials may also play an immunoprotective role by minimizing host immunoreactivity toward transplanted cells or engineered grafts. PMID:17264853

  17. Genetic and Ecotypic Differentiation in a Californian Plant Polyploid Complex (Grindelia, Asteraceae)

    PubMed Central

    Moore, Abigail J.; Moore, William L.; Baldwin, Bruce G.

    2014-01-01

    Studies of ecotypic differentiation in the California Floristic Province have contributed greatly to plant evolutionary biology since the pioneering work of Clausen, Keck, and Hiesey. The extent of gene flow and genetic differentiation across interfertile ecotypes that span major habitats in the California Floristic Province is understudied, however, and is important for understanding the prospects for local adaptation to evolve or persist in the face of potential gene flow across populations in different ecological settings. We used microsatellite data to examine local differentiation in one of these lineages, the Pacific Coast polyploid complex of the plant genus Grindelia (Asteraceae). We examined 439 individuals in 10 different populations. The plants grouped broadly into a coastal and an inland set of populations. The coastal group contained plants from salt marshes and coastal bluffs, as well as a population growing in a serpentine grassland close to the coast, while the inland group contained grassland plants. No evidence for hybridization was found at the single location where adjacent populations of the two groups were sampled. In addition to differentiation along ecotypic lines, there was also a strong signal of local differentiation, with the plants grouping strongly by population. The strength of local differentiation is consistent with the extensive morphological variation observed across populations and the history of taxonomic confusion in the group. The Pacific Clade of Grindelia and other young Californian plant groups warrant additional analysis of evolutionary divergence along the steep coast-to-inland climatic gradient, which has been associated with local adaptation and ecotype formation since the classic studies of Clausen, Keck, and Hiesey. PMID:24755840

  18. Characterization of Cellulose Synthesis in Plant Cells

    PubMed Central

    Maleki, Samaneh Sadat; Mohammadi, Kourosh; Ji, Kong-shu

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family. PMID:27314060

  19. Characterization of Cellulose Synthesis in Plant Cells.

    PubMed

    Maleki, Samaneh Sadat; Mohammadi, Kourosh; Ji, Kong-Shu

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family. PMID:27314060

  20. Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants.

    PubMed Central

    Schaller, A; Oecking, C

    1999-01-01

    Systemin is an important mediator of wound-induced defense gene activation in tomato plants, and it elicits a rapid alkalinization of the growth medium of cultured Lycopersicon peruvianum cells. A possible mechanistic link between proton fluxes across the plasma membrane and the induction of defense genes was investigated by modulating plasma membrane H+-ATPase activity. Inhibitors of H+-ATPase (erythrosin B, diethyl stilbestrol, and vanadate) were found to alkalinize the growth medium of L. peruvianum cell cultures and to induce wound response genes in whole tomato plants. Conversely, an activator of the H+-ATPase (fusicoccin) acidified the growth medium of L. peruvianum cell cultures and suppressed systemin-induced medium alkalinization. Likewise, in fusicoccin-treated tomato plants, the wound- and systemin-triggered accumulation of wound-responsive mRNAs was found to be suppressed. However, fusicoccin treatment of tomato plants led to the accumulation of salicylic acid and the expression of pathogenesis-related genes. Apparently, the wound and pathogen defense signaling pathways are differentially regulated by changes in the proton electrochemical gradient across the plasma membrane. In addition, alkalinization of the L. peruvianum cell culture medium was found to depend on the influx of Ca2+ and the activity of a protein kinase. Reversible protein phosphorylation was also shown to be involved in the induction of wound response genes. The plasma membrane H+-ATPase as a possible target of a Ca2+-activated protein kinase and its role in defense signaling are discussed. PMID:9927643

  1. Chemo-mechanical control of neural stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Geishecker, Emily R.

    Cellular processes such as adhesion, proliferation, and differentiation are controlled in part by cell interactions with the microenvironment. Cells can sense and respond to a variety of stimuli, including soluble and insoluble factors (such as proteins and small molecules) and externally applied mechanical stresses. Mechanical properties of the environment, such as substrate stiffness, have also been suggested to play an important role in cell processes. The roles of both biochemical and mechanical signaling in fate modification of stem cells have been explored independently. However, very few studies have been performed to study well-controlled chemo-mechanotransduction. The objective of this work is to design, synthesize, and characterize a chemo-mechanical substrate to encourage neuronal differentiation of C17.2 neural stem cells. In Chapter 2, Polyacrylamide (PA) gels of varying stiffnesses are functionalized with differing amounts of whole collagen to investigate the role of protein concentration in combination with substrate stiffness. As expected, neurons on the softest substrate were more in number and neuronal morphology than those on stiffer substrates. Neurons appeared locally aligned with an expansive network of neurites. Additional experiments would allow for statistical analysis to determine if and how collagen density impacts C17.2 differentiation in combination with substrate stiffness. Due to difficulties associated with whole protein approaches, a similar platform was developed using mixed adhesive peptides, derived from fibronectin and laminin, and is presented in Chapter 3. The matrix elasticity and peptide concentration can be individually modulated to systematically probe the effects of chemo-mechanical signaling on differentiation of C17.2 cells. Polyacrylamide gel stiffness was confirmed using rheological techniques and found to support values published by Yeung et al. [1]. Cellular growth and differentiation were assessed by cell counts

  2. Fuel cell power plant economic and operational considerations

    NASA Technical Reports Server (NTRS)

    Lance, J. R.

    1984-01-01

    Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.

  3. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering.

    PubMed

    Song, Bing; Jiang, Wenkai; Alraies, Amr; Liu, Qian; Gudla, Vijay; Oni, Julia; Wei, Xiaoqing; Sloan, Alastair; Ni, Longxing; Agarwal, Meena

    2016-01-01

    Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering. PMID:26880982

  4. The ability of mouse nuclear transfer embryonic stem cells to differentiate into primordial germ cells

    PubMed Central

    Mansouri, Vahid; Salehi, Mohammad; Nourozian, Mohsen; Fadaei, Fatemeh; Farahani, Reza Mastery; Piryaei, Abbas; Delbari, Ali

    2015-01-01

    Nuclear transfer embryonic stem cells (ntESCs) show stem cell characteristics such as pluripotency but cause no immunological disorders. Although ntESCs are able to differentiate into somatic cells, the ability of ntESCs to differentiate into primordial germ cells (PGCs) has not been examined. In this work, we examined the capacity of mouse ntESCs to differentiate into PGCs in vitro. ntESCs aggregated to form embryoid bodies (EB) in EB culture medium supplemented with bone morphogenetic protein 4(BMP4) as the differentiation factor. The expression level of specific PGC genes was compared at days 4 and 8 using real time PCR. Flow cytometry and immunocytochemical staining were used to detect Mvh as a specific PGC marker. ntESCs expressed particular genes related to different stages of PGC development. Flow cytometry and immunocytochemical staining confirmed the presence of Mvh protein in a small number of cells. There were significant differences between cells that differentiated into PGCs in the group treated with Bmp4 compared to non-treated cells. These findings indicate that ntESCs can differentiate into putative PGCs. Improvement of ntESC differentiation into PGCs may be a reliable means of producing mature germ cells. PMID:26273226

  5. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering

    PubMed Central

    Song, Bing; Jiang, Wenkai; Alraies, Amr; Liu, Qian; Gudla, Vijay; Oni, Julia; Wei, Xiaoqing; Sloan, Alastair; Ni, Longxing; Agarwal, Meena

    2016-01-01

    Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering. PMID:26880982

  6. Differentiation of cultured epithelial cells: Response to toxic agents

    SciTech Connect

    Rice, R.H.; LaMontagne, A.D.; Petito, C.T.; Rong, Xianhui )

    1989-03-01

    Cell culture systems are instrumental in elucidating regulation of normal function and mechanisms of its perturbation by toxic substances. To this end, three applications of epithelial cells cultured with 3T3 feeder layer support are described. First, treatment of the premalignant human epidermal keratinocyte line SCC-12F2 with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate suppressed cell growth and differentiation. This agent produced a biphasic growth response greatly inhibiting cell growth at 1 to 10 nM, but much less above 100 nM. Expression of the differentiated functions involucrin and transglutaminase was found to be inhibited markedly at concentrations above 10 nM. Second, 3-methylcholanthrene toxicity was surveyed in a variety of rat epithelial cell types. The two most sensitive to growth inhibition were epidermal and mammary epithelial cells, while those from bladder, prostate, thyroid, and endometrium were insensitive to growth inhibition. Finally, expression of estrogen receptors in rat endometrial cells was shown to be stimulated by the cAmP-elevating agent forskolin. Maximal stimulation of 3- to 6-fold occurred in 6 hr, compatible with a requirement for protein synthesis. Pursuit of such results will aid in understanding differences in response among cell types and species, in elucidating mechanisms of action of known toxic substances and, ultimately, in predicting toxicity of less well understood agents.

  7. An improved protocol to study the plant cell wall proteome

    PubMed Central

    Printz, Bruno; Dos Santos Morais, Raphaël; Wienkoop, Stefanie; Sergeant, Kjell; Lutts, Stanley; Hausman, Jean-Francois; Renaut, Jenny

    2015-01-01

    Cell wall proteins were extracted from alfalfa stems according to a three-steps extraction procedure using sequentially CaCl2, EGTA, and LiCl-complemented buffers. The efficiency of this protocol for extracting cell wall proteins was compared with the two previously published methods optimized for alfalfa stem cell wall protein analysis. Following LC-MS/MS analysis the three-steps extraction procedure resulted in the identification of the highest number of cell wall proteins (242 NCBInr identifiers) and gave the lowest percentage of non-cell wall proteins (about 30%). However, the three protocols are rather complementary than substitutive since 43% of the identified proteins were specific to one protocol. This three-step protocol was therefore selected for a more detailed proteomic characterization using 2D-gel electrophoresis. With this technique, 75% of the identified proteins were shown to be fraction-specific and 72.7% were predicted as belonging to the cell wall compartment. Although, being less sensitive than LC-MS/MS approaches in detecting and identifying low-abundant proteins, gel-based approaches are valuable tools for the differentiation and relative quantification of protein isoforms and/or modified proteins. In particular isoforms, having variations in their amino-acid sequence and/or carrying different N-linked glycan chains were detected and characterized. This study highlights how the extracting protocols as well as the analytical techniques devoted to the study of the plant cell wall proteome are complementary and how they may be combined to elucidate the dynamism of the plant cell wall proteome in biological studies. Data are available via ProteomeXchange with identifier PXD001927. PMID:25914713

  8. A plant cell division algorithm based on cell biomechanics and ellipse-fitting

    PubMed Central

    Abera, Metadel K.; Verboven, Pieter; Defraeye, Thijs; Fanta, Solomon Workneh; Hertog, Maarten L. A. T. M.; Carmeliet, Jan; Nicolai, Bart M.

    2014-01-01

    Background and Aims The importance of cell division models in cellular pattern studies has been acknowledged since the 19th century. Most of the available models developed to date are limited to symmetric cell division with isotropic growth. Often, the actual growth of the cell wall is either not considered or is updated intermittently on a separate time scale to the mechanics. This study presents a generic algorithm that accounts for both symmetrically and asymmetrically dividing cells with isotropic and anisotropic growth. Actual growth of the cell wall is simulated simultaneously with the mechanics. Methods The cell is considered as a closed, thin-walled structure, maintained in tension by turgor pressure. The cell walls are represented as linear elastic elements that obey Hooke's law. Cell expansion is induced by turgor pressure acting on the yielding cell-wall material. A system of differential equations for the positions and velocities of the cell vertices as well as for the actual growth of the cell wall is established. Readiness to divide is determined based on cell size. An ellipse-fitting algorithm is used to determine the position and orientation of the dividing wall. The cell vertices, walls and cell connectivity are then updated and cell expansion resumes. Comparisons are made with experimental data from the literature. Key Results The generic plant cell division algorithm has been implemented successfully. It can handle both symmetrically and asymmetrically dividing cells coupled with isotropic and anisotropic growth modes. Development of the algorithm highlighted the importance of ellipse-fitting to produce randomness (biological variability) even in symmetrically dividing cells. Unlike previous models, a differential equation is formulated for the resting length of the cell wall to simulate actual biological growth and is solved simultaneously with the position and velocity of the vertices. Conclusions The algorithm presented can produce different

  9. Differential regulation of the histone chaperone HIRA during muscle cell differentiation by a phosphorylation switch

    PubMed Central

    Yang, Jae-Hyun; Song, Tae-Yang; Jo, Chanhee; Park, Jinyoung; Lee, Han-Young; Song, Ilang; Hong, Suji; Jung, Kwan Young; Kim, Jaehoon; Han, Jeung-Whan; Youn, Hong-Duk; Cho, Eun-Jung

    2016-01-01

    Replication-independent incorporation of variant histone H3.3 has a profound impact on chromatin function and numerous cellular processes, including the differentiation of muscle cells. The histone chaperone HIRA and H3.3 have essential roles in MyoD regulation during myoblast differentiation. However, the precise mechanism that determines the onset of H3.3 deposition in response to differentiation signals is unclear. Here we show that HIRA is phosphorylated by Akt kinase, an important signaling modulator in muscle cells. By generating a phosphospecific antibody, we found that a significant amount of HIRA was phosphorylated in myoblasts. The phosphorylation level of HIRA and the occupancy of phosphorylated protein on muscle genes gradually decreased during cellular differentiation. Remarkably, the forced expression of the phosphomimic form of HIRA resulted in reduced H3.3 deposition and suppressed the activation of muscle genes in myotubes. Our data show that HIRA phosphorylation limits the expression of myogenic genes, while the dephosphorylation of HIRA is required for proficient H3.3 deposition and gene activation, demonstrating that the phosphorylation switch is exploited to modulate HIRA/H3.3-mediated muscle gene regulation during myogenesis. PMID:27515126

  10. Fuel cell power plants for transportation applications

    SciTech Connect

    Huff, J.R.

    1991-12-31

    Over the past 35 years, the transportation sector has accounted fr approximately 25% of the total gross energy consumption in the United States. As the largest energy user in the United States, transportation accounts for approximately 66% of the country`s current petroleum consumption. Fuel cell power plants using nonpetroleum fuels such as methanol could significantly reduce US dependency on petroleum resources. They offer the additional advantage of minimal air pollution thereby addressing another issue of major concern in the US fuel cell power plant use in city buses and other vehicles is being explored in a number of US Department of Energy and industrial programs that will be described in this paper. 5 refs.

  11. PU.1 silencing leads to terminal differentiation of erythroleukemia cells

    SciTech Connect

    Atar, Orna; Levi, Ben-Zion . E-mail: blevi@technion.ac.il

    2005-04-22

    The transcription factor PU.1 plays a central role in development and differentiation of hematopoietic cells. Evidence from PU.1 knockout mice indicates a pivotal role for PU.1 in myeloid lineage and B-lymphocyte development. In addition, PU.1 is a key player in the development of Friend erythroleukemia disease, which is characterized by proliferation and differentiation arrest of proerythrocytes. To study the role of PU.1 in erythroleukemia, we have used murine erythroleukemia cells, isolated from Friend virus-infected mice. Expression of PU.1 small interfering RNA in these cells led to significant inhibition of PU.1 levels. This was accompanied by inhibition of proliferation and restoration in the ability of the proerythroblastic cells to produce hemoglobin, i.e., reversion of the leukemic phenotype. The data suggest that overexpression of PU.1 gene is the immediate cause for maintaining the leukemic phenotype of the disease by retaining the self-renewal capacity of transformed erythroblastic cells and by blocking the terminal differentiation program towards erythrocytes.

  12. Cdon, a cell surface protein, mediates oligodendrocyte differentiation and myelination.

    PubMed

    Wang, Li-Chun; Almazan, Guillermina

    2016-06-01

    During central nervous system development, oligodendrocyte progenitors (OLPs) establish multiple branched processes and axonal contacts to initiate myelination. A complete understanding of the molecular signals implicated in cell surface interaction to initiate myelination/remyelination is currently lacking. The objective of our study was to assess whether Cdon, a cell surface protein that was shown to participate in muscle and neuron cell development, is involved in oligodendrocyte (OLG) differentiation and myelination. Here, we demonstrate that endogenous Cdon protein is expressed in OLPs, increasing in the early differentiation stages and decreasing in mature OLGs. Immunocytochemistry of endogenous Cdon showed localization on both OLG cell membranes and cellular processes exhibiting puncta- or varicosity-like structures. Cdon knockdown with siRNA decreased protein levels by 62% as well as two myelin-specific proteins, MBP and MAG. Conversely, overexpression of full-length rat Cdon increased myelin proteins in OLGs. The complexity of OLGs branching and contact point numbers with axons were also increased in Cdon overexpressing cells growing alone or in coculture with dorsal root ganglion neurons (DRGNs). Furthermore, myelination of DRGNs was decreased when OLPs were transfected with Cdon siRNA. Altogether, our results suggest that Cdon participates in OLG differentiation and myelination, most likely in the initial stages of development. GLIA 2016;64:1021-1033. PMID:26988125

  13. Differentiation and Genomic Instability in a Human Mammary Cell Model

    NASA Technical Reports Server (NTRS)

    Richmond, R.; Kale, R.; Pettengill, O.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Harvest of prophylactic mastectomy specimens from an obligate heterozygote for ataxia-telangiectasia provided autologous fibroblasts as well epithelial cells (HMEC). The routine availability of these autologous cells has provided an opportunity to study cell-cell interactions in coculture and monoculture, and in 3-dimensional cultures grown in the NASA rotating bioreactor. HMEC and stromal fibroblasts grown in 2-dimensional monoculture were both observed to produce extracellular matrix. Similar matrix was encountered in 3-dimensional cultures containing HMEC. Metaphases were analyzed. For stromal fibroblasts, genomic aberrations were found in 18% of metaphase spreads. For HMEC, aberrations were greater such that a majority were found to be abnormal. The level of genomic instability determined for these noncancerous cells in 2-dimensional monoculture should be useful for generating a human cell model that can correlate the effects of differentiation in 3-dimensional coculture on the level of genomic instability.

  14. STELLA Facilitates Differentiation of Germ Cell and Endodermal Lineages of Human Embryonic Stem Cells

    PubMed Central

    Wongtrakoongate, Patompon; Jones, Mark; Gokhale, Paul J.; Andrews, Peter W.

    2013-01-01

    Stella is a developmentally regulated gene highly expressed in mouse embryonic stem (ES) cells and in primordial germ cells (PGCs). In human, the gene encoding the STELLA homologue lies on chromosome 12p, which is frequently amplified in long-term cultured human ES cells. However, the role played by STELLA in human ES cells has not been reported. In the present study, we show that during retinoic acid (RA)-induced differentiation of human ES cells, expression of STELLA follows that of VASA, a marker of germline differentiation. By contrast, human embryonal carcinoma cells express STELLA at a higher level compared with both karyotypically normal and abnormal human ES cell lines. We found that over-expression of STELLA does not interfere with maintenance of the stem cell state of human ES cells, but following retinoic acid induction it leads to up-regulation of germline- and endodermal-associated genes, whereas neural markers PAX6 and NEUROD1 are down-regulated. Further, STELLA over-expression facilitates the differentiation of human ES cells into BE12-positive cells, in which the expression of germline- and endodermal-associated genes is enriched, and suppresses differentiation of the neural lineage. Taken together, this finding suggests a role for STELLA in facilitating germline and endodermal differentiation of human ES cells. PMID:23457636

  15. Osteoblastic differentiation of monkey embryonic stem cells in vitro.

    PubMed

    Yamashita, Akihiro; Takada, Tatsuyuki; Narita, Junko; Yamamoto, Gaku; Torii, Ryuzo

    2005-01-01

    Monkey embryonic stem (ES) cell is a useful tool for preclinical studies of regenerative medicine. In this paper, we investigated whether monkey ES cells can be differentiated into osteoblasts in vitro using factors known to promote osteogenesis. We prepared embryoid bodies (EB) in the presence of retinoic acid (RA) and subsequently differentiated in the medium containing either dexamethasone (DEX) or bone morphogenetic protein (BMP)-2 in addition to osteogenic supplements (OS), specifically ascorbic acid and beta-glycerophosphate. RA treatment during EB formation induced osteoblastic marker genes, such as collagen type 1, osteopontin, and Cbfa1. For the expression of osteocalcin, however, cultivation with medium containing either DEX or BMP-2 in addition to OS was required. These results showed that osteoblasts could be derived from monkey ES cells in vitro and BMP-2 + OS was effective to induce calcification. PMID:16390259

  16. Eccrine syringofibroadenoma associated with well-differentiated squamous cell carcinoma.

    PubMed

    Kacerovska, Denisa; Nemcova, Jana; Michal, Michal; Kazakov, Dmitry V

    2008-12-01

    We report a case of an eccrine syringofibroadenoma (ESFA) associated with well-differentiated squamous cell carcinoma. The patient was an 85-year-old man, who had a 2.5x2.5-cm, brown-colored ulcerated nodule, with a fragile, flesh-colored bleeding surface located beyond the metacarpophalangeal joint of the second finger of his left hand. Histopathologically, there were areas of a well-differentiated squamous cell carcinoma, alternating with the typical area of ESFA characterized by anastomosing cords, strands, and columns of epithelial cells extending from the crusted epidermis into a thickened, edematous, myxoid vascular-rich dermis. Immunohistochemically, the areas with dysplastic epithelium were positive for p16, whereas the benign ESFA parts tested negative. Human papillomavirus was detected in the lesional tissue by polymerase chain reaction, and the subsequent sequencing analysis demonstrated that the virus was close to human papillomavirus type 107. PMID:19033931

  17. Immunological characterization of exocyst complex subunits in cell differentiation.

    PubMed

    Wang, Sheng; Hsu, Shu C

    2003-06-01

    We have generated monoclonal antibodies (MAbs) against three proteins sec6, sec15, and exo84. These proteins have been shown to be components of the exocyst complex, a macromolecule required for many biological processes such as kidney epithelial formation and neuronal development. These antibodies can detect the three proteins by enzyme-linked immunoadsorbent assay (ELISA), Western blotting, immunofluorescence microscopy, and immunoprecipitation. Using these antibodies, we found that the three proteins have similar subcellular localization which changes upon cell differentiation. These three proteins also co-immunoprecipitate with each other. These results suggest that at least three exocyst subunits associate with each other in vivo and redistribute in response to cell differentiation. In the future, these antibodies should be useful in the cell biological and functional analysis of the exocyst complex under physiological and pathological conditions. PMID:12954101

  18. Bacterial cell identification in differential interference contrast microscopy images

    PubMed Central

    2013-01-01

    Background Microscopy image segmentation lays the foundation for shape analysis, motion tracking, and classification of biological objects. Despite its importance, automated segmentation remains challenging for several widely used non-fluorescence, interference-based microscopy imaging modalities. For example in differential interference contrast microscopy which plays an important role in modern bacterial cell biology. Therefore, new revolutions in the field require the development of tools, technologies and work-flows to extract and exploit information from interference-based imaging data so as to achieve new fundamental biological insights and understanding. Results We have developed and evaluated a high-throughput image analysis and processing approach to detect and characterize bacterial cells and chemotaxis proteins. Its performance was evaluated using differential interference contrast and fluorescence microscopy images of Rhodobacter sphaeroides. Conclusions Results demonstrate that the proposed approach provides a fast and robust method for detection and analysis of spatial relationship between bacterial cells and their chemotaxis proteins. PMID:23617824

  19. How do plant cell walls extend?

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    This article briefly summarizes recent work that identifies the biophysical and biochemical processes that give rise to the extension of plant cell walls. I begin with the biophysical notion of stress relaxation of the wall and follow with recent studies of wall enzymes thought to catalyze wall extension and relaxation. Readers should refer to detailed reviews for more comprehensive discussion of earlier literature (Taiz, 1984; Carpita and Gibeaut, 1993; Cosgrove, 1993).

  20. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation

    PubMed Central

    Engquist, Elise N.; Mehanna, Elie; Lui, Kathy O.; Tsankov, Alexander M.

    2015-01-01

    Driving human pluripotent stem cells (hPSCs) into specific lineages is an inefficient and challenging process. We show that a potent Src inhibitor, PP1, regulates expression of genes involved in the G1 to S phase transition of the cell cycle, activates proteins in the retinoblastoma family, and subsequently increases the differentiation propensities of hPSCs into all three germ layers. We further demonstrate that genetic suppression of Src regulates the activity of the retinoblastoma protein and enhances the differentiation potential of hPSCs across all germ layers. These positive effects extend beyond the initial germ layer specification and enable efficient differentiation at subsequent stages of differentiation. PMID:26416968

  1. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation.

    PubMed

    Chetty, Sundari; Engquist, Elise N; Mehanna, Elie; Lui, Kathy O; Tsankov, Alexander M; Melton, Douglas A

    2015-09-28

    Driving human pluripotent stem cells (hPSCs) into specific lineages is an inefficient and challenging process. We show that a potent Src inhibitor, PP1, regulates expression of genes involved in the G1 to S phase transition of the cell cycle, activates proteins in the retinoblastoma family, and subsequently increases the differentiation propensities of hPSCs into all three germ layers. We further demonstrate that genetic suppression of Src regulates the activity of the retinoblastoma protein and enhances the differentiation potential of hPSCs across all germ layers. These positive effects extend beyond the initial germ layer specification and enable efficient differentiation at subsequent stages of differentiation. PMID:26416968

  2. Signaling Control of Differentiation of Embryonic Stem Cells toward Mesendoderm.

    PubMed

    Wang, Lu; Chen, Ye-Guang

    2016-04-10

    Mesendoderm (ME) refers to the primitive streak in mammalian embryos, which has the ability to further differentiate into mesoderm and endoderm. A better understanding on the regulatory networks of ME differentiation of embryonic stem (ES) cells would provide important insights on early embryo patterning and a possible guidance for ES applications in regenerative medicine. Studies on developmental biology and embryology have offered a great deal of knowledge about key signaling pathways involved in primitive streak formation. Recently, various chemically defined recipes have been formulated to induce differentiation of ES cells toward ME in vitro, which greatly facilitate the elucidation of the regulatory mechanisms of different signals involved in ME specification. Among the extrinsic signals, transforming growth factor-β/Activin signaling and Wnt signaling have been shown to be the most critical ones. On another side, intrinsic epigenetic regulation has been indicated to be important in ME determination. In this review, we summarize the current understanding on the extrinsic and intrinsic regulations of ES cells-to-ME differentiation and the crosstalk among them, aiming to get a general overview on ME specification and primitive streak formation. PMID:26119455

  3. Differentiation of HL60 cells: involvement of protein phosphorylation

    SciTech Connect

    Spearman, T.N.; Fontana, J.A.; Butcher, F.R.; Durham, J.P.

    1986-05-01

    The addition of retinoic acid (RA) to the human promyelocytic leukemic cell line HL60 in culture results in the cessation of growth and the acquisition of a more mature phenotype. Previous work in these laboratories has demonstrated a concomitant increase in the activity of calcium-dependent, phospholipid-sensitive protein kinase (PK-C). HL60 cells were incubated with /sup 32/P-P/sub i/ in the absence and presence of RA, homogenized, and aliquots subjected to two-dimensional electrophoresis. A comparison of autoradiograms made from these gels revealed several phosphoproteins whose radiolabeling was affected by RA. The radiolabeling of one particular phosphoprotein (49kd, pI 4.8) was found to be increased prior to phenotypic evidence of differentiation. It was demonstrated via incubating HL60 cytosol with /sup 32/P -ATP and Ca/sup 2 +/ in the absence and presence of phosphatidylserine and resolving the labeled proteins as above that this protein is phosphorylated by PK-C. The labeling of this protein was also increased by RA in other leukemic cell lines which showed phenotypic evidence of differentiation while no effect was seen in HL60 sublines resistant to RA or in mature neutrophils (the end product of myeloid differentiation). These results suggest that this protein may be an important intermediate in myeloid differentiation.

  4. Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development.

    PubMed Central

    Hemerly, A; Engler, J de A; Bergounioux, C; Van Montagu, M; Engler, G; Inzé, D; Ferreira, P

    1995-01-01

    Because plant cells do not move and are surrounded by a rigid cell wall, cell division rates and patterns are believed to be directly responsible for generating new structures throughout development. To study the relationship between cell division and morphogenesis, transgenic tobacco and Arabidopsis plants were constructed expressing dominant mutations in a key regulator of the Arabidopsis cell cycle, the Cdc2a kinase. Plants constitutively overproducing the wild-type Cdc2a or the mutant form predicted to accelerate the cell cycle did not exhibit a significantly altered development. In contrast, a mutation expected to arrest the cell cycle abolished cell division when expressed in Arabidopsis, whereas some tobacco plants constitutively producing this mutant protein were recovered. These plants had a reduced histone H1 kinase activity and contained considerably fewer cells. These cells were, however, much larger and underwent normal differentiation. Morphogenesis, histogenesis and developmental timing were unaffected. The results indicate that, in plants, the developmental controls defining shape can act independently from cell division rates. Images PMID:7664733

  5. Lessons from the embryonic neural stem cell niche for neural lineage differentiation of pluripotent stem cells.

    PubMed

    Solozobova, Valeriya; Wyvekens, Nicolas; Pruszak, Jan

    2012-09-01

    Pluripotent stem cells offer an abundant and malleable source for the generation of differentiated cells for transplantation as well as for in vitro screens. Patterning and differentiation protocols have been developed to generate neural progeny from human embryonic or induced pluripotent stem cells. However, continued refinement is required to enhance efficiency and to prevent the generation of unwanted cell types. We summarize and interpret insights gained from studies of embryonic neuroepithelium. A multitude of factors including soluble molecules, interactions with the extracellular matrix and neighboring cells cooperate to control neural stem cell self-renewal versus differentiation. Applying these findings and concepts to human stem cell systems in vitro may yield more appropriately patterned cell types for biomedical applications. PMID:22628111

  6. Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells

    PubMed Central

    Chen, Song; Zhang, Wei; Wang, Ji-Ming; Duan, Hong-Tao; Kong, Jia-Hui; Wang, Yue-Xin; Dong, Meng; Bi, Xue; Song, Jian

    2016-01-01

    AIM To investigate whether umbilical cord human mesenchymal stem cell (UC-MSC) was able to differentiate into neural stem cell and neuron in vitro. METHODS The umbilical cords were obtained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee. UC-MSC were isolated by adherent culture in the medium contains 20% fetal bovine serum (FBS), then they were maintained in the medium contain 10% FBS and induced to neural cells in neural differentiation medium. We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron in vitro by using flow cytometry, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence (IF) analyzes. RESULTS A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk. Flow cytometric study revealed that these cells expressed common markers of MSCs, such as CD105 (SH2), CD73 (SH3) and CD90. After induction of differentiation of neural stem cells, the cells began to form clusters; RT-PCR and IF showed that the neuron specific enolase (NSE) and neurogenic differentiation 1-positive cells reached 87.3%±14.7% and 72.6%±11.8%, respectively. Cells showed neuronal cell differentiation after induced, including neuron-like protrusions, plump cell body, obviously and stronger refraction. RT-PCR and IF analysis showed that microtubule-associated protein 2 (MAP2) and nuclear factor-M-positive cells reached 43.1%±10.3% and 69.4%±19.5%, respectively. CONCLUSION Human umbilical cord derived MSCs can be cultured and proliferated in vitro and differentiate into neural stem cells, which may be a valuable source for cell therapy of neurodegenerative eye diseases. PMID:26949608

  7. Differential Expression of miRNA Regulates T Cell Differentiation and Plasticity During Visceral Leishmaniasis Infection.

    PubMed

    Pandey, Rajan Kumar; Sundar, Shyam; Prajapati, Vijay Kumar

    2016-01-01

    Visceral leishmaniasis (VL) is a tropical neglected disease caused by Leishmania donovani, results in significant mortality in the Indian subcontinent. The plasticity of T cell proliferation and differentiation depends on microRNA mediated gene regulation which leads Th1/Th2 or Th17/Treg type of immune response during human VL. This study depicts the identification of target immune signaling molecule and transcription factors, which play a role in T-cell proliferation and differentiation followed by the identification of miRNA controlling their gene expression using three web servers' viz., TargetScan, miRPath and miRDB. This study provides the bioinformatics evidences that seed region present in the miRNAs miR-29-b, miR-29a, have the putative binding site in the 3'-untranslated region (UTR) of TBX21 transcription factor of CD4(+) T helper (Th1), which may suppress the Th1 specific protective immune response. Development of Th2 type specific immune response can be suppressed by binding of miR-135 and miR-126 miRNAs over the 3'-UTR region of GATA-3 transcription factor of Th2 specific CD4(+) T helper cells. MiRNA identified against Th2/Treg immune cells are important and their over expression or administration can be used for developing the Th1/Th17 type of protective immune response during VL infection. This study indicates that miRNAs have the capacity to regulate immune signaling, cytokine production and immune cell migration to control the VL infection in human. This observation warrants further investigation for the development of miRNA based therapy controlling T cell differentiation in human VL. PMID:26941729

  8. Differential Expression of miRNA Regulates T Cell Differentiation and Plasticity During Visceral Leishmaniasis Infection

    PubMed Central

    Pandey, Rajan Kumar; Sundar, Shyam; Prajapati, Vijay Kumar

    2016-01-01

    Visceral leishmaniasis (VL) is a tropical neglected disease caused by Leishmania donovani, results in significant mortality in the Indian subcontinent. The plasticity of T cell proliferation and differentiation depends on microRNA mediated gene regulation which leads Th1/Th2 or Th17/Treg type of immune response during human VL. This study depicts the identification of target immune signaling molecule and transcription factors, which play a role in T-cell proliferation and differentiation followed by the identification of miRNA controlling their gene expression using three web servers’ viz., TargetScan, miRPath and miRDB. This study provides the bioinformatics evidences that seed region present in the miRNAs miR-29-b, miR-29a, have the putative binding site in the 3′-untranslated region (UTR) of TBX21 transcription factor of CD4+ T helper (Th1), which may suppress the Th1 specific protective immune response. Development of Th2 type specific immune response can be suppressed by binding of miR-135 and miR-126 miRNAs over the 3′-UTR region of GATA-3 transcription factor of Th2 specific CD4+ T helper cells. MiRNA identified against Th2/Treg immune cells are important and their over expression or administration can be used for developing the Th1/Th17 type of protective immune response during VL infection. This study indicates that miRNAs have the capacity to regulate immune signaling, cytokine production and immune cell migration to control the VL infection in human. This observation warrants further investigation for the development of miRNA based therapy controlling T cell differentiation in human VL. PMID:26941729

  9. Serotonin augments smooth muscle differentiation of bone marrow stromal cells.

    PubMed

    Hirota, Nobuaki; McCuaig, Sarah; O'Sullivan, Michael J; Martin, James G

    2014-05-01

    Bone marrow stromal cells (BMSCs) contain a subset of multipotent stem cells. Here, we demonstrate that serotonin, a biogenic amine released by platelets and mast cells, can induce the smooth muscle differentiation of BMSCs. Brown Norway rat BMSCs stimulated with serotonin had increased expression of the smooth muscle markers smooth muscle myosin heavy chain (MHC) and α actin (α-SMA) by qPCR and Western blot, indicating smooth muscle differentiation. This was accompanied by a concomitant down-regulation of the microRNA miR-25-5p, which was found to negatively regulate smooth muscle differentiation. Serotonin upregulated serum response factor (SRF) and myocardin, transcription factors known to induce contractile protein expression in smooth muscle cells, while it down-regulated Elk1 and Kruppel-like factor 4 (KLF4), known to induce proliferation. Serotonin increased SRF binding to promoter regions of the MHC and α-SMA genes, assessed by chromatin immunoprecipitation assay. Induction of smooth muscle differentiation by serotonin was blocked by the knock-down of SRF and myocardin. Transforming growth factor (TGF)-β1 was constitutively expressed by BMSCs and serotonin triggered its release. Inhibition of miR-25-5p augmented TGF-β1 expression, however the differentiation of BMSCs was not mediated by TGF-β1. These findings demonstrate that serotonin promotes a smooth muscle-like phenotype in BMSCs by altering the balance of SRF, myocardin, Elk1 and KLF4 and miR-25-5p is involved in modulating this balance. Therefore, serotonin potentially contributes to the pathogenesis of diseases characterized by tissue remodeling with increased smooth muscle mass. PMID:24595007

  10. Differentiation of early germ cells from human skin-derived stem cells without exogenous gene integration.

    PubMed

    Ge, Wei; Ma, Hua-Gang; Cheng, Shun-Feng; Sun, Yuan-Chao; Sun, Li-Lan; Sun, Xiao-Feng; Li, Lan; Dyce, Paul; Li, Julang; Shi, Qing-Hua; Shen, Wei

    2015-01-01

    Infertility has long been a difficult issue for many couples. The successful differentiation of germ cells and live progeny from pluripotent stem cells brings new hope to the couples suffering with infertility. Here we successfully isolated human fetus skin-derived stem cells (hfSDSCs) from fetus skin tissue and demonstrated that hfSDSCs can be differentiated into early human germ cell-like cells (hGCLCs). These cells express human germ cell markers DAZL and VASA. Moreover, these pluripotent stem cell-derived hGCLCs are free of exogenous gene integration. When hfSDSCs were differentiated in porcine follicle fluid (PFF) conditioned media, which has been shown to promote the differentiation of mouse and porcine SDSCs into oocyte-like cells (OLCs), we observed some vesicular structures formed from hfSDSCs. Moreover, when hfSDSCs were cultured with specific conditioned media, we observed punctate and elongated SCP3 staining foci, indicating the initiation of meiosis. Ploidy analysis and fluorescent in situ hybridization (FISH) analysis indicated that a small percentage of putative 1N populations formed from hfSDSCs when compared with positive controls. In conclusion, our data here, for the first time, demonstrated that hfSDSCs possess the differentiation potential into germ lines, and they may differentiate both male and female hGCLCs in vitro under appropriate conditions. PMID:26347377

  11. Hypericum caprifoliatum and Hypericum connatum affect human trophoblast-like cells differentiation and Ca2+ influx

    PubMed Central

    da Conceição, Aline O.; von Poser, Gilsane Lino; Barbeau, Benoit; Lafond, Julie

    2014-01-01

    Objective To study the effect of crude methanol and n-hexane extracts of Hypericum connatum (H. connatum) and Hypericum caprifoliatum on trophoblast-like cells. Methods BeWo and JEG-3 trophoblast-like cells were submitted to different extract concentrations (1, 5, 10 and 15 µg/mL) and evaluated in relation to cell viability and in vitro trophoblast differentiation and function. Cell viability was evaluated using WST-1 reagent. Differentiation was measured by luciferase production, hCG production/release, and mitogen-activated protein kinase signaling pathway activation. The function of the trophoblast-like cells was measured by 45Ca2+ influx evaluation. Results The results showed a decrease in cell viability/proliferation. Both plants and different extracts induced a significant decrease in hCG production/release and luciferase production. H. connatum did not cause mitogen-activated protein kinase signaling pathway disturbance; however, Hypericum caprifoliatum n-hexane extract at 15 µg/mL inhibited extracellular signal-regulated kinase 1/2 activation. The significant increase in Ca2+ influx by JEG-3 cells was seen after short and long incubation times with H. connatum methanolic extract at 15 µg/mL. Conclusions The results indicated that these two Hypericum species extracts can interfere on trophoblast differentiation and Ca2+ influx, according to their molecular diversity. Although in vivo experiments are necessary to establish their action on placental formation and function, this study suggests that attention must be paid to the potential toxic effect of these plants. PMID:25182721

  12. Identifying States along the Hematopoietic Stem Cell Differentiation Hierarchy with Single Cell Specificity via Raman Spectroscopy.

    PubMed

    Ilin, Yelena; Choi, Ji Sun; Harley, Brendan A C; Kraft, Mary L

    2015-11-17

    A major challenge for expanding specific types of hematopoietic cells ex vivo for the treatment of blood cell pathologies is identifying the combinations of cellular and matrix cues that direct hematopoietic stem cells (HSC) to self-renew or differentiate into cell populations ex vivo. Microscale screening platforms enable minimizing the number of rare HSCs required to screen the effects of numerous cues on HSC fate decisions. These platforms create a strong demand for label-free methods that accurately identify the fate decisions of individual hematopoietic cells at specific locations on the platform. We demonstrate the capacity to identify discrete cells along the HSC differentiation hierarchy via multivariate analysis of Raman spectra. Notably, cell state identification is accurate for individual cells and independent of the biophysical properties of the functionalized polyacrylamide gels upon which these cells are cultured. We report partial least-squares discriminant analysis (PLS-DA) models of single cell Raman spectra enable identifying four dissimilar hematopoietic cell populations across the HSC lineage specification. Successful discrimination was obtained for a population enriched for long-term repopulating HSCs (LT-HSCs) versus their more differentiated progeny, including closely related short-term repopulating HSCs (ST-HSCs) and fully differentiated lymphoid (B cells) and myeloid (granulocytes) cells. The lineage-specific differentiation states of cells from these four subpopulations were accurately identified independent of the stiffness of the underlying biomaterial substrate, indicating subtle spectral variations that discriminated these populations were not masked by features from the culture substrate. This approach enables identifying the lineage-specific differentiation stages of hematopoietic cells on biomaterial substrates of differing composition and may facilitate correlating hematopoietic cell fate decisions with the extrinsic cues that

  13. Lectins stain cells differentially in the coral, Montipora capitata.

    PubMed

    Work, Thierry M; Farah, Yael

    2014-03-01

    A limitation in our understanding of coral disease pathology and cellular pathogenesis is a lack of reagents to characterize coral cells. We evaluated the utility of plant lectins to stain tissues of a dominant coral, Montipora capitata, from Hawaii. Of 22 lectins evaluated, nine of these stained structures in the upper or basal body wall of corals. Specific structures revealed by lectins that were not considered distinct or evident on routine hematoxylin and eosin sections of coral tissues included apical and basal granules in gastrodermis and epidermis, cnidoglandular tract and actinopharynx cell surface membranes, capsules of mature holotrichous isorhizas, and perivitelline and periseminal cells. Plant lectins could prove useful to further our understanding of coral physiology, anatomy, cell biology, and disease pathogenesis. PMID:24518620

  14. Lectins stain cells differentially in the coral, Montipora capitata

    USGS Publications Warehouse

    Work, Thierry M.; Farah, Yael

    2014-01-01

    A limitation in our understanding of coral disease pathology and cellular pathogenesis is a lack of reagents to characterize coral cells. We evaluated the utility of plant lectins to stain tissues of a dominant coral, Montipora capitata, from Hawaii. Of 22 lectins evaluated, nine of these stained structures in the upper or basal body wall of corals. Specific structures revealed by lectins that were not considered distinct or evident on routine hematoxylin and eosin sections of coral tissues included apical and basal granules in gastrodermis and epidermis, cnidoglandular tract and actinopharynx cell surface membranes, capsules of mature holotrichous isorhizas, and perivitelline and periseminal cells. Plant lectins could prove useful to further our understanding of coral physiology, anatomy, cell biology, and disease pathogenesis.

  15. In vitro apoptotic cell death during erythroid differentiation.

    PubMed

    Zamai, L; Burattini, S; Luchetti, F; Canonico, B; Ferri, P; Melloni, E; Gonelli, A; Guidotti, L; Papa, S; Falcieri, E

    2004-03-01

    Erythropoiesis occurs in bone marrow and it has been shown that during in vivo erythroid differentiation some immature erythroblasts undergo apoptosis. In this regard, it is known that immature erythroblasts are FasL- and TRAIL-sensitive and can be killed by cells expressing these ligand molecules. In the present study, we have investigated the cell death phenomenon that occurs during a common unilineage model of erythroid development. Purified CD34+ human haemopoietic progenitors were cultured in vitro in the presence of SCF, IL-3 and erythropoietin. Their differentiation stages and apoptosis were followed by multiple technical approaches. Flow cytometric evaluation of surface and intracellular molecules revealed that glycophorin A appeared at day 3-4 of incubation and about 75% of viable cells co-expressed high density glycophorin A (Gly(bright)) and adult haemoglobin at day 14 of culture, indicating that this system reasonably recapitulates in vivo normal erythropoiesis. Interestingly, when mature (Gly(bright)) erythroid cells reached their higher percentages (day 14) almost half of cultured cells were apoptotic. Morphological studies indicated that the majority of dead cells contained cytoplasmic granular material typical of basophilic stage, and DNA analysis by flow cytometry and TUNEL reaction revealed nuclear fragmentation. These observations indicate that in vitro unilineage erythroid differentiation, as in vivo, is associated with apoptotic cell death of cells with characteristics of basophilic erythroblasts. We suggest that the interactions between different death receptors on immature basophilic erythroblasts with their ligands on more mature erythroblasts may contribute to induce apoptosis in vitro. PMID:15004520

  16. TCDD alters medial epithelial cell differentiation during palatogenesis

    SciTech Connect

    Abbott, B.D.; Birnbaum, L.S. )

    1989-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widely distributed, persistent environmental contaminant that is teratogenic in mice, where it induces hydronephrosis and cleft palate. The incidence of clefting has been shown to be dose dependent after exposure on either gestation Day (GD) 10 or 12, although the embryo is more susceptible on GD 12. TCDD-exposed palatal shelves meet but do not fuse, and programmed cell death of the medial epithelial cells is inhibited. The mechanism of action through which TCDD alters the program of medial cell development has not been examined in earlier studies, and it is not known whether the mechanism is the same regardless of the dose or developmental stage of exposure. In this study, C57BL/6N mice, a strain sensitive to TCDD, were dosed orally on GD 10 or 12 with 0, 6, 12, 24, or 30 micrograms/kg body wt, in 10 ml corn oil/kg. Embryonic palatal shelves were examined on GD 14, 15, or 16. The degree of palatal closure, epithelial surface morphology, and cellular ultrastructure, the incorporation of (3H)TdR, the expression of EGF receptors, and the binding of 125I-EGF were assessed. After exposure on GD 10 or 12, TCDD altered the differentiation pathway of the medial epithelial cells. The palatal shelves were of normal size and overall morphology, but fusion of the medial epithelia of the opposing shelves did not occur. TCDD prevented programmed cell death of the medial peridermal cells. The expression of EGF receptors by medial cells continued through Day 16 and the receptors were able to bind ligand. The medial cells differentiated into a stratified, squamous, keratinizing epithelium. The shift in phenotype to an oral-like epithelium occurred after exposure on either GD 10 or 12. At the lower dose (6 micrograms/kg), fewer cleft palates were produced, but those shelves which did respond had a fully expressed shift in differentiation.

  17. BTK Signaling in B Cell Differentiation and Autoimmunity.

    PubMed

    Corneth, Odilia B J; Klein Wolterink, Roel G J; Hendriks, Rudi W

    2016-01-01

    Since the original identification of Bruton's tyrosine kinase (BTK) as the gene defective in the primary immunodeficiency X-linked agammaglobulinemia (XLA) in 1993, our knowledge on the physiological function of BTK has expanded impressively. In this review, we focus on the role of BTK during B cell differentiation in vivo, both in the regulation of expansion and in the developmental progression of pre-B cells in the bone marrow and as a crucial signal transducer of signals downstream of the IgM or IgG B cell antigen receptor (BCR) in mature B cells governing proliferation, survival, and differentiation. In particular, we highlight BTK function in B cells in the context of host defense and autoimmunity. Small-molecule inhibitors of BTK have very recently shown impressive anti-tumor activity in clinical studies in patients with various B cell malignancies. Since promising effects of BTK inhibition were also seen in experimental animal models for lupus and rheumatoid arthritis, BTK may be a good target for controlling autoreactive B cells in patients with systemic autoimmune disease. PMID:26341110

  18. Understanding stem cell differentiation through self-organization theory.

    PubMed

    Qu, K; Ortoleva, P

    2008-02-21

    The mechanism underling stem cells' key property, the ability to either divide into two replicate cells or a replicate and a differentiated daughter, still is not understood. We tested a hypothesis that stem cell asymmetric division/differentiation is spontaneously created by the coupling of processes within each daughter and the resulting biochemical feedbacks via the exchange of molecules between them during mitotic division. We developed a mathematical/biochemical model that accounts for dynamic processes accompanying division, including signaling initiation and transcriptional, translational and post-translational (TTP) reactions. Analysis of this model shows that it could explain how stem cells make the decision to divide symmetrically or asymmetrically under different microenvironmental conditions. The analysis also reveals that a stem cell can be induced externally to transition to an alternative state that does not have the potentiality to have the option to divide symmetrically or asymmetrically. With this model, we initiated a search of large databases of transcriptional regulatory network (TRN), protein-protein interaction, and cell signaling pathways. We found 12 subnetworks (motifs) that could support human stem cell asymmetric division. A prime example of the discoveries made possible by this tool, two groups of the genes in the genetic model are revealed to be strongly over-represented in a database of cancer-related genes. PMID:18076908

  19. Stem cell differentiation increases membrane-actin adhesion regulating cell blebability, migration and mechanics

    PubMed Central

    Sliogeryte, Kristina; Thorpe, Stephen D.; Lee, David A.; Botto, Lorenzo; Knight, Martin M.

    2014-01-01

    This study examines how differentiation of human mesenchymal stem cells regulates the interaction between the cell membrane and the actin cortex controlling cell behavior. Micropipette aspiration was used to measure the pressure required for membrane-cortex detachment which increased from 0.15 kPa in stem cells to 0.71 kPa following chondrogenic differentiation. This effect was associated with reduced susceptibility to mechanical and osmotic bleb formation, reduced migration and an increase in cell modulus. Theoretical modelling of bleb formation demonstrated that the increased stiffness of differentiated cells was due to the increased membrane-cortex adhesion. Differentiated cells exhibited greater F-actin density and slower actin remodelling. Differentiated cells also expressed greater levels of the membrane-cortex ezrin, radixin, moeisin (ERM) linker proteins which was responsible for the reduced blebability, as confirmed by transfection of stem cells with dominant active ezrin-T567D-GFP. This study demonstrates that stem cells have an inherently weak membrane-cortex adhesion which increases blebability thereby regulating cell migration and stiffness. PMID:25471686

  20. Isolation, Characterization, and Differentiation of Stem Cells for Cartilage Regeneration

    PubMed Central

    Beane, Olivia S.; Darling, Eric M.

    2012-01-01

    The goal of tissue engineering is to create a functional replacement for tissues damaged by injury or disease. In many cases, impaired tissues cannot provide viable cells, leading to the investigation of stem cells as a possible alternative. Cartilage, in particular, may benefit from the use of stem cells since the tissue has low cellularity and cannot effectively repair itself. To address this need, researchers are investigating the chondrogenic capabilities of several multipotent stem cell sources, including adult and extra-embryonic mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Comparative studies indicate that each cell type has advantages and disadvantages, and while direct comparisons are difficult to make, published data suggest some sources may be more promising for cartilage regeneration than others. In this review, we identify current approaches for isolating and chondrogenically differentiating MSCs from bone marrow, fat, synovium, muscle, and peripheral blood, as well as cells from extra-embyronic tissues, ESCs, and iPSCs. Additionally, we assess chondrogenic induction with growth factors, identifying standard cocktails used for each stem cell type. Cell-only (pellet) and scaffold-based studies are also included, as is a discussion of in vivo results. PMID:22907257

  1. Differential requirement for Nfil3 during NK cell development.

    PubMed

    Seillet, Cyril; Huntington, Nicholas D; Gangatirkar, Pradnya; Axelsson, Elin; Minnich, Martina; Brady, Hugh J M; Busslinger, Meinrad; Smyth, Mark J; Belz, Gabrielle T; Carotta, Sebastian

    2014-03-15

    NK cells can be grouped into distinct subsets that are localized to different organs and exhibit a different capacity to secrete cytokines and mediate cytotoxicity. Despite these hallmarks that reflect tissue-specific specialization in NK cells, little is known about the factors that control the development of these distinct subsets. The basic leucine zipper transcription factor Nfil3 (E4bp4) is essential for bone marrow-derived NK cell development, but it is not clear whether Nfil3 is equally important for all NK cell subsets or how it induces NK lineage commitment. In this article, we show that Nfil3 is required for the formation of Eomes-expressing NK cells, including conventional medullary and thymic NK cells, whereas TRAIL(+) Eomes(-) NK cells develop independently of Nfil3. Loss of Nfil3 during the development of bone marrow-derived NK cells resulted in reduced expression of Eomes and, conversely, restoration of Eomes expression in Nfil3(-/-) progenitors rescued NK cell development and maturation. Collectively, these findings demonstrate that Nfil3 drives the formation of mature NK cells by inducing Eomes expression and reveal the differential requirements of NK cell subsets for Nfil3. PMID:24532575

  2. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    PubMed

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. PMID:27194709

  3. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    PubMed Central

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response. PMID:27127520

  4. Small Buccal Fat Pad Cells Have High Osteogenic Differentiation Potential.

    PubMed

    Tsurumachi, Niina; Akita, Daisuke; Kano, Koichiro; Matsumoto, Taro; Toriumi, Taku; Kazama, Tomohiko; Oki, Yoshinao; Tamura, Yoko; Tonogi, Morio; Isokawa, Keitaro; Shimizu, Noriyoshi; Honda, Masaki

    2016-03-01

    Dedifferentiated fat (DFAT) cells derived from mature adipocytes have mesenchymal stem cells' (MSCs) characteristics. Generally, mature adipocytes are 60-110 μm in diameter; however, association between adipocyte size and dedifferentiation efficiency is still unknown. This study, therefore, investigated the dedifferentiation efficiency of adipocytes based on cell diameter. Buccal fat pad was harvested from five human donors and dissociated by collagenase digestion. After exclusion of unwanted stromal cells by centrifugation, floating adipocytes were collected and their size distribution was analyzed. The floating adipocytes were then separated into two groups depending on cell size using 40- and 100-μm nylon mesh filters: cell diameters less than 40 μm (small adipocytes: S-adipocytes) and cell diameters of 40-100 μm (large adipocytes: L-adipocytes). Finally, we evaluated the efficiency of adipocyte dedifferentiation and then characterized the resultant DFAT cells. The S-adipocytes showed a higher capacity to dedifferentiate into DFAT cells (S-DFAT cells) compared to the L-adipocytes (L-DFAT cells). The S-DFAT cells also showed a relatively higher proportion of CD146-positive cells than L-DFAT cells, and exhibited more osteogenic differentiation ability based on the alkaline phosphatase activity and amount of calcium deposition. These results suggested that the S- and L-DFAT cells had distinct characteristics, and that the higher dedifferentiation potential of S-adipocytes compared to L-adipocytes gives the former group an advantage in yielding DFAT cells. PMID:26651216

  5. Polar/apolar compounds induce leukemia cell differentiation by modulating cell-surface potential.

    PubMed Central

    Arcangeli, A; Carlà, M; Del Bene, M R; Becchetti, A; Wanke, E; Olivotto, M

    1993-01-01

    The mechanism of action of polar/apolar inducers of cell differentiation, such as dimethyl sulfoxide and hexamethylene-bisacetamide, is still obscure. In this paper evidence is provided that their effects on murine erythroleukemia cells are modulated by various extracellular cations as a precise function of the cation effects on membrane surface potential. The interfacial effects of the inducers were directly measured on the charged electrode, showing that both dimethyl sulfoxide and hexamethylene-bisacetamide, at the effective concentrations for cell differentiation and within the physiological range of charge density, adsorb at the charged surface and produce a potential shift. A linear correlation was found between this shift and the inducer effects on cell differentiation. Besides offering a different interpretation of the mechanism of action of the inducers, these findings indicate that surface potential has a signaling function. They may also be relevant to cancer treatments based on tumor-cell commitment to terminal differentiation. Images Fig. 1 PMID:8516337

  6. The potential of single-cell profiling in plants.

    PubMed

    Efroni, Idan; Birnbaum, Kenneth D

    2016-01-01

    Single-cell transcriptomics has been employed in a growing number of animal studies, but the technique has yet to be widely used in plants. Nonetheless, early studies indicate that single-cell RNA-seq protocols developed for animal cells produce informative datasets in plants. We argue that single-cell transcriptomics has the potential to provide a new perspective on plant problems, such as the nature of the stem cells or initials, the plasticity of plant cells, and the extent of localized cellular responses to environmental inputs. Single-cell experimental outputs require different analytical approaches compared with pooled cell profiles and new tools tailored to single-cell assays are being developed. Here, we highlight promising new single-cell profiling approaches, their limitations as applied to plants, and their potential to address fundamental questions in plant biology. PMID:27048384

  7. Capillary Isoelectric Focusing Immunoassay for Fat Cell Differentiation Proteomics

    PubMed Central

    Johlfs, Mary G.; Gorjala, Priyatham; Urasaki, Yasuyo; Le, Thuc T.; Fiscus, Ronald R.

    2015-01-01

    Profiling cellular proteome is critical to understanding signal integration during cell fate determination. In this study, the capability of capillary isoelectric focusing (cIEF) immunoassays to detect post-translational modifications (PTM) of protein isoforms is demonstrated. cIEF immunoassays exhibit protein detection sensitivity at up to 5 orders of magnitude higher than traditional methods. This detection ultra-sensitivity permits proteomic profiling of several nanograms of tissue samples. cIEF immunoassays are employed to simultaneously profile three protein kinases during fat cell differentiation: cGMP-dependent protein kinase type I (PKG-I) of the nitric oxide (NO) signaling pathway, protein kinase B (Akt) of the insulin signaling pathway, and extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase (MAPK) signaling pathway. Interestingly, a switch in the expression level of PKG- isoforms is observed during fat cell differentiation. While both PKG-Iα and PKG-Iβ isoforms are present in preadipocytes, only PKG-Iβ isoform is expressed in adipocytes. On the other hand, the phosphorylation level increases for Akt while decreases for ERK1 and ERK2 following the maturation of preadipocytes into adipocytes. Taken together, cIEF immunoassay provides a highly sensitive means to study fat cell differentiation proteomics. cIEF immunoassay should be a powerful proteomics tool to study complex protein signal integration in biological systems. PMID:26132171

  8. IL-4 Induces Cholinergic Differentiation of Retinal Cells In Vitro.

    PubMed

    Granja, Marcelo Gomes; Braga, Luis Eduardo Gomes; Carpi-Santos, Raul; de Araujo-Martins, Leandro; Nunes-Tavares, Nilson; Calaza, Karin C; Dos Santos, Aline Araujo; Giestal-de-Araujo, Elizabeth

    2015-07-01

    Interleukin-4 (IL-4) is a pleiotropic cytokine that regulates several phenomena, among them survival and differentiation of neuronal and glial cells. The aim of this work was to investigate the effect of IL-4 on the cholinergic differentiation of neonatal rat retinal cells in vitro, evaluating its effect on the levels of cholinergic markers (CHT1-high-affinity choline transporter; VAChT-vesicular acetylcholine transporter, ChAT-choline acetyltransferase, AChE-acetylcholinesterase), muscarinic receptors, and on the signaling pathways involved. Lister Hooded rat pups were used in postnatal days 0-2 (P0-P2). Our results show that IL-4 treatment (50 U/mL) for 48 h increases the levels of the cholinergic transporters VAChT and CHT1, the acetylcholinesterase activity, and the number of ChAT-positive cells. It also induces changes in muscarinic receptor levels, leading to a small decrease in M1 levels and a significant increase in M3 and M5 levels after 48 h of treatment. We also showed that IL-4 effect on M3 receptors is dependent on type I IL-4 receptor and on an increase in NFκB phosphorylation. These results indicate that IL-4 stimulates cholinergic differentiation of retinal cells. PMID:25682112

  9. Plant cell wall lignification and monolignol metabolism

    PubMed Central

    Wang, Yin; Chantreau, Maxime; Sibout, Richard; Hawkins, Simon

    2013-01-01

    Plants are built of various specialized cell types that differ in their cell wall composition and structure. The cell walls of certain tissues (xylem, sclerenchyma) are characterized by the presence of the heterogeneous lignin polymer that plays an essential role in their physiology. This phenolic polymer is composed of different monomeric units – the monolignols – that are linked together by several covalent bonds. Numerous studies have shown that monolignol biosynthesis and polymerization to form lignin are tightly controlled in different cell types and tissues. However, our understanding of the genetic control of monolignol transport and polymerization remains incomplete, despite some recent promising results. This situation is made more complex since we know that monolignols or related compounds are sometimes produced in non-lignified tissues. In this review, we focus on some key steps of monolignol metabolism including polymerization, transport, and compartmentation. As well as being of fundamental interest, the quantity of lignin and its nature are also known to have a negative effect on the industrial processing of plant lignocellulose biomass. A more complete view of monolignol metabolism and the relationship that exists between lignin and other monolignol-derived compounds thereby appears essential if we wish to improve biomass quality. PMID:23847630

  10. IL-33 in T Cell Differentiation, Function, and Immune Homeostasis.

    PubMed

    Peine, Michael; Marek, Roman M; Löhning, Max

    2016-05-01

    Recent studies have highlighted a role for the alarmin interleukin (IL)-33 in CD4(+) and CD8(+) T cell activation and function, and have also revealed important distinctions. The IL-33 receptor ST2 is constitutively and abundantly expressed on T-helper-2 (Th2) and GATA-3(+) regulatory T cells in a GATA-3- and STAT5-dependent manner. Upon activation, Th1 and cytotoxic T cells express ST2 transiently, driven by T-bet and/or STAT4. We review these findings here, and critically examine evidence indicating that IL-33 enhances the differentiation and functionality of various T cell subsets through positive feedback loops involving lineage-specifying transcription factors. In this context, we discuss how quantitative and qualitative differences in ST2 expression between effector and GATA-3(+) regulatory T cells may contribute to immune homeostasis, and outline important areas of future inquiry. PMID:27055914

  11. The proliferation and differentiation of stem cell journals.

    PubMed

    Sanberg, Paul R; Borlongan, Cesar V

    2010-12-01

    As scientists position themselves in translating the therapeutic potential of stem cells from laboratory to clinical applications, publishing companies have taken this rapidly evolving field as a unique opportunity to launch new journals for dissemination of stem cell research. Over the last decade, the significant increase in the number of stem cell-based journals has created a conundrum. At stake is the pressure for these new journals to build their reputation by maintaining publication standards, while at the same time attracting a cadre of stem cell researchers to consider their journals as the publication of choice. We discuss here a prophetic path of survival for these journals which likely will closely mimic the core scientific and translational value of stem cells, namely their capacity to proliferate and differentiate into something meaningful! PMID:20694581

  12. Aneuploidy causes premature differentiation of neural and intestinal stem cells

    PubMed Central

    Gogendeau, Delphine; Siudeja, Katarzyna; Gambarotto, Davide; Pennetier, Carole; Bardin, Allison J.; Basto, Renata

    2015-01-01

    Aneuploidy is associated with a variety of diseases such as cancer and microcephaly. Although many studies have addressed the consequences of a non-euploid genome in cells, little is known about their overall consequences in tissue and organism development. Here we use two different mutant conditions to address the consequences of aneuploidy during tissue development and homeostasis in Drosophila. We show that aneuploidy causes brain size reduction due to a decrease in the number of proliferative neural stem cells (NSCs), but not through apoptosis. Instead, aneuploid NSCs present an extended G1 phase, which leads to cell cycle exit and premature differentiation. Moreover, we show that this response to aneuploidy is also present in adult intestinal stem cells but not in the wing disc. Our work highlights a neural and intestine stem cell-specific response to aneuploidy, which prevents their proliferation and expansion. PMID:26573328

  13. Proteomic analysis reveals the differential histone programs between male germline cells and vegetative cells in Lilium davidii.

    PubMed

    Yang, Hao; Yang, Ning; Wang, Tai

    2016-03-01

    In flowering plants, male germline fate is determined after asymmetric division of the haploid microspore. Daughter cells have distinct fates: the generative cell (GC) undergoes further mitosis to generate sperm cells (SCs), and the vegetative cell (VC) terminally differentiates. However, our understanding of the mechanisms underlying germline development remains limited. Histone variants and modifications define chromatin states, and contribute to establishing and maintaining cell identities by affecting gene expression. Here, we constructed a lily protein database, then extracted and detailed histone entries into a comprehensive lily histone database. We isolated large amounts of nuclei from VCs, GCs and SCs from lily, and profiled histone variants of all five histone families in all three cell types using proteomics approaches. We revealed 92 identities representing 32 histone variants: six for H1, 11 for H2A, eight for H2B, five for H3 and two for H4. Nine variants, including five H1, two H2B, one H3 and one H4 variant, specifically accumulated in GCs and SCs. We also detected H3 modification patterns in the three cell types. GCs and SCs had almost identical histone profiles and similar H3 modification patterns, which were significantly different from those of VCs. Our study also revealed the presence of multiple isoforms, and differential expression patterns between isoforms of a variant. The results suggest that differential histone programs between the germline and companion VCs may be established following the asymmetric division, and are important for identity establishment and differentiation of the male germline as well as the VC. PMID:26846354

  14. Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer.

    PubMed

    Hsu, Yi-Chao; Wu, Yu-Ting; Yu, Ting-Hsien; Wei, Yau-Huei

    2016-04-01

    Mesenchymal stem cells (MSCs) are characterized to have the capacity of self-renewal and the potential to differentiate into mesoderm, ectoderm-like and endoderm-like cells. MSCs hold great promise for cell therapies due to their multipotency in vitro and therapeutic advantage of hypo-immunogenicity and lower tumorigenicity. Moreover, it has been shown that MSCs can serve as a vehicle to transfer mitochondria into cells after cell transplantation. Mitochondria produce most of the energy through oxidative phosphorylation in differentiated cells. It has been increasingly clear that the switch of energy supply from glycolysis to aerobic metabolism is essential for successful differentiation of MSCs. Post-translational modifications of proteins have been established to regulate mitochondrial function and metabolic shift during MSCs differentiation. In this article, we review and provide an integrated view on the roles of different protein kinases and sirtuins in the maintenance and differentiation of MSCs. Importantly, we provide evidence to suggest that alteration in the expression of Sirt3 and Sirt5 and relative changes in the acylation levels of mitochondrial proteins might be involved in the activation of mitochondrial function and adipogenic differentiation of adipose-derived MSCs. We summarize their roles in the regulation of mitochondrial biogenesis and metabolism, oxidative responses and differentiation of MSCs. On the other hand, we discuss recent advances in the study of mitochondrial dynamics and mitochondrial transfer as well as their roles in the differentiation and therapeutic application of MSCs to improve cell function in vitro and in animal models. Accumulating evidence has substantiated that the therapeutic potential of MSCs is conferred not only by cell replacement and paracrine effects but also by transferring mitochondria into injured tissues or cells to modulate the cellular metabolism in situ. Therefore, elucidation of the underlying mechanisms

  15. Equine Induced Pluripotent Stem Cells have a Reduced Tendon Differentiation Capacity Compared to Embryonic Stem Cells

    PubMed Central

    Bavin, Emma P.; Smith, Olivia; Baird, Arabella E. G.; Smith, Lawrence C.; Guest, Deborah J.

    2015-01-01

    Tendon injuries occur commonly in horses and their repair through scar tissue formation predisposes horses to a high rate of re-injury. Pluripotent stem cells may provide a cell replacement therapy to improve tendon tissue regeneration and lower the frequency of re-injury. We have previously demonstrated that equine embryonic stem cells (ESCs) differentiate into the tendon cell lineage upon injection into the damaged horse tendon and can differentiate into functional tendon cells in vitro to generate artificial tendons. Induced pluripotent stem cells (iPSCs) have now been derived from horses but, to date, there are no reports on their ability to differentiate into tendon cells. As iPSCs can be produced from adult cell types, they provide a more accessible source of cells than ESCs, which require the use of horse embryos. The aim of this study was to compare tendon differentiation by ESCs and iPSCs produced through two independent methods. In two-dimensional differentiation assays, the iPSCs expressed tendon-associated genes and proteins, which were enhanced by the presence of transforming growth factor-β3. However, in three-dimensional (3D) differentiation assays, the iPSCs failed to differentiate into functional tendon cells and generate artificial tendons. These results demonstrate the utility of the 3D in vitro tendon assay for measuring tendon differentiation and the need for more detailed studies to be performed on equine iPSCs to identify and understand their epigenetic differences from pluripotent ESCs prior to their clinical application. PMID:26664982

  16. SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to arabidopsis stomatal differentiation.

    PubMed

    Kanaoka, Masahiro M; Pillitteri, Lynn Jo; Fujii, Hiroaki; Yoshida, Yuki; Bogenschutz, Naomi L; Takabayashi, Junji; Zhu, Jian-Kang; Torii, Keiko U

    2008-07-01

    Differentiation of specialized cell types in multicellular organisms requires orchestrated actions of cell fate determinants. Stomata, valves on the plant epidermis, are formed through a series of differentiation events mediated by three closely related basic-helix-loop-helix proteins: SPEECHLESS (SPCH), MUTE, and FAMA. However, it is not known what mechanism coordinates their actions. Here, we identify two paralogous proteins, SCREAM (SCRM) and SCRM2, which directly interact with and specify the sequential actions of SPCH, MUTE, and FAMA. The gain-of-function mutation in SCRM exhibited constitutive stomatal differentiation in the epidermis. Conversely, successive loss of SCRM and SCRM2 recapitulated the phenotypes of fama, mute, and spch, indicating that SCRM and SCRM2 together determined successive initiation, proliferation, and terminal differentiation of stomatal cell lineages. Our findings identify the core regulatory units of stomatal differentiation and suggest a model strikingly similar to cell-type differentiation in animals. Surprisingly, map-based cloning revealed that SCRM is INDUCER OF CBF EXPRESSION1, a master regulator of freezing tolerance, thus implicating a potential link between the transcriptional regulation of environmental adaptation and development in plants. PMID:18641265

  17. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells

    PubMed Central

    Kretlow, James D; Jin, Yu-Qing; Liu, Wei; Zhang, Wen Jie; Hong, Tan-Hui; Zhou, Guangdong; Baggett, L Scott; Mikos, Antonios G; Cao, Yilin

    2008-01-01

    Background Bone marrow-derived mesenchymal stem cells (BMSCs) are a widely researched adult stem cell population capable of differentiation into various lineages. Because many promising applications of tissue engineering require cell expansion following harvest and involve the treatment of diseases and conditions found in an aging population, the effect of donor age and ex vivo handling must be understood in order to develop clinical techniques and therapeutics based on these cells. Furthermore, there currently exists little understanding as to how these two factors may be influenced by one another. Results Differences in the adipogenic, chondrogenic, and osteogenic differentiation capacity of murine MSCs harvested from donor animals of different age and number of passages of these cells were observed. Cells from younger donors adhered to tissue culture polystyrene better and proliferated in greater number than those from older animals. Chondrogenic and osteogenic potential decreased with age for each group, and adipogenic differentiation decreased only in cells from the oldest donors. Significant decreases in differentiation potentials due to passage were observed as well for osteogenesis of BMSCs from the youngest donors and chondrogenesis of the cells from the oldest donors. Conclusion Both increasing age and the number of passages have lineage dependent effects on BMSC differentiation potential. Furthermore, there is an obvious interplay between donor age and cell passage that in the future must be accounted for when developing cell-based therapies for clinical use. PMID:18957087

  18. The memory of a killer T cell: models of CD8(+) T cell differentiation.

    PubMed

    Gerritsen, Bram; Pandit, Aridaman

    2016-03-01

    CD8(+) T cells have an important role in protection against infections and reinfections of intra-cellular pathogens like viruses. Naive CD8(+) T cells circulating in blood or lymphoid tissues can get activated upon stimulation by cognate antigen. The activated T cells undergo rapid proliferation and can expand more than 10(4)-folds comprising largely of effector T cells. Upon antigen clearance, the CD8(+) T-cell population contracts due to apoptosis, leaving behind a small population of memory T cells. The timing and mechanisms underlying the differentiation of naive cells into effector cells and memory cells is not yet clear. In this article, we review the recent quantitative studies that support different hypotheses of CD8(+) T-cell differentiation. PMID:26700072

  19. Differentiation of embryonic and adult stem cells into insulin producing cells.

    PubMed

    Zulewski, H

    2008-03-01

    Replacement of insulin producing cells represents an almost ideal treatment for patients with diabetes mellitus type 1. Transplantation of pancreatic islets of Langerhans is successful in experienced centers. The wider application of this therapy, however, is limited by the lack of donor organs. Insulin producing cells generated from stem cells represent an attractive alternative. Stem cells with the potential to differentiate into insulin producing cells include embryonic stem cells (ESC) as well as adult stem cells from various tissues including the pancreas, liver, bone marrow and adipose tissue. The use of human ESC is hampered by ethical concerns but research with human ESC may help us to decipher important steps in the differentiation process in vitro since almost all information available on pancreas development are based on animal studies. The present review summarizes the current knowledge on the development of insulin producing cells from embryonic and adult stem cells with special emphasis on pancreatic, hepatic and human mesenchymal stem cells. PMID:18427390

  20. TCDD exposure disrupts mammary epithelial cell differentiation and function

    PubMed Central

    Collins, Loretta L.; Lew, Betina J.; Lawrence, B. Paige

    2011-01-01

    Mammary gland growth and differentiation during pregnancy is a developmental process that is sensitive to the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD is a widespread environmental contaminant and a potent ligand for the aryl hydrocarbon receptor (AhR). We demonstrate reduced β-casein protein induction in mouse mammary glands and in cultured SCp2 mammary epithelial cells following exposure to TCDD. SCp2 cells exposed to TCDD also show reduced cell clustering and less alveolar-like structure formation. SCp2 cells express transcriptionally active AhR, and exposure to TCDD induces expression of the AhR target gene CYP1B1. Exposure to TCDD during pregnancy reduced expression of the cell adhesion molecule E-cadherin in the mammary gland and decreased phosphorylation of STAT5, a known regulator of β-casein gene expression. These data provide morphological and molecular evidence that TCDD-mediated AhR activation disrupts structural and functional differentiation of the mammary gland, and present an in vitro model for studying the effects of TCDD on mammary epithelial cell function. PMID:19490989

  1. Stalk cell differentiation without polyketides in the cellular slime mold.

    PubMed

    Sato, Yukie G; Suarez, Teresa; Saito, Tamao

    2016-07-01

    Polyketides induce prestalk cell differentiation in Dictyostelium. In the double-knockout mutant of the SteelyA and B polyketide synthases, most of the pstA cells-the major part of the prestalk cells-are lost, and we show by whole mount in situ hybridization that expression of prestalk genes is also reduced. Treatment of the double-knockout mutant with the PKS inhibitor cerulenin gave a further reduction, but some pstA cells still remained in the tip region, suggesting the existence of a polyketide-independent subtype of pstA cells. The double-knockout mutant and cerulenin-treated parental Ax2 cells form fruiting bodies with fragile, single-cell layered stalks after cerulenin treatment. Our results indicate that most pstA cells are induced by polyketides, but the pstA cells at the very tip of the slug are induced in some other way. In addition, a fruiting body with a single-cell layered, vacuolated stalk can form without polyketides. PMID:27305283

  2. 2003 Plant Cell Walls Gordon Conference

    SciTech Connect

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  3. Histone Deacetylase Inhibition–Mediated Differentiation of RGC-5 Cells and Interaction with Survival

    PubMed Central

    Schwechter, Brandon R.; Millet, Lucia E.; Levin, Leonard A.

    2008-01-01

    PURPOSE The acetylation state of histones is modulated by histone deacetylase (HDAC) and histone acetyltransferase and is an important component in regulating gene transcription, including neuronal differentiation. The authors studied the relationship between histone acetylation and the differentiation and survival of the RGC-5 cell line and compared it with nontranscriptional-dependent differentiation with staurosporine. METHODS The retinal ganglion cell line RGC-5 was treated with trichostatin A (TSA), other HDAC inhibitors, and staurosporine; differentiation, neuritogenesis, neurotrophic factor dependence, and dependence on RNA transcription were assessed. RESULTS TSA caused significant differentiation and neuritogenesis. Differences between HDAC inhibition and staurosporine differentiation included the proportion of differentiated cells, cell viability, cell morphology, and transcriptional dependence. HDAC inhibition, but not staurosporine differentiation, resulted in RGC-5 cells that were neurotrophic factor dependent. CONCLUSIONS These results implicate two different mechanisms for RGC-5 differentiation, with a common downstream effect on neurite outgrowth but a differential effect on neurotrophic factor dependence. PMID:17525221

  4. Controlling Osteogenic Stem Cell Differentiation via Soft Bioinspired Hydrogels

    PubMed Central

    Jha, Amit K.; Jackson, Wesley M.; Healy, Kevin E.

    2014-01-01

    Osteogenic differentiation of human mesenchymal stem cells (hMSCs) is guided by various physical and biochemical factors. Among these factors, modulus (i.e., rigidiy) of the ECM has gained significant attention as a physical osteoinductive signal that can contribute to endochondral ossification of a cartilaginous skeletal template. However, MSCs also participate in intramembranous bone formation, which occurs de novo from within or on a more compliant tissue environment. To further understand the role of the matrix interactions in this process, we evaluated osteogenic differentiation of hMSCs cultured on low moduli (102, 390 or 970 Pa) poly(N-isopropylacrylamide) (p(NIPAAm)) based semi-interpenetrating networks (sIPN) modified with the integrin engaging peptide bsp-RGD(15) (0, 105 or 210 µM). Cell adhesion, proliferation, and osteogenic differentiation of hMSCs, as measured by alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), bone sialoprotein-2 (iBSP), and osteocalcien (OCN) protein expression, was highest on substrates with the highest modulus and peptide concentrations. However, within this range of substrate stiffness, many osteogenic cellular functions were enhanced by increasing either the modulus or the peptide density. These findings suggest that within a compliant and low modulus substrate, a high affinity adhesive ligand serves as a substitute for a rigid matrix to foster osteogenic differentiation. PMID:24937602

  5. Current Methods of Adipogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Scott, Michelle A.; Nguyen, Virginia T.; Levi, Benjamin

    2011-01-01

    There has been a recent increase in our understanding in the isolation, culture, and differentiation of mesenchymal stem cells (MSCs). Concomitantly, the availability of MSCs has increased, with cells now commercially available, including human MSCs from adipose tissue and bone marrow. Despite an increased understanding of MSC biology and an increase in their availability, standardization of techniques for adipogenic differentiation of MSCs is lacking. The following review will explore the variability in adipogenic differentiation in vitro, specifically in 3T3-L1 and primary MSCs derived from both adipose tissue and bone marrow. A review of alternative methods of adipogenic induction is also presented, including the use of specific peroxisome proliferator-activated receptor-gamma agonists as well as bone morphogenetic proteins. Finally, we define a standard, commonly used adipogenic differentiation medium in the hopes that this will be adopted for the future standardization of laboratory techniques—however, we also highlight the essentially arbitrary nature of this decision. With the current, rapid pace of electronic publications, it becomes imperative for standardization of such basic techniques so that interlaboratory results may be easily compared and interpreted. PMID:21526925

  6. IL-17 Inhibits Chondrogenic Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Kondo, Masahiro; Yamaoka, Kunihiro; Sonomoto, Koshiro; Fukuyo, Shunsuke; Oshita, Koichi; Okada, Yosuke; Tanaka, Yoshiya

    2013-01-01

    Objective Mesenchymal stem cells (MSCs) can differentiate into cells of mesenchymal lineages, such as osteoblasts and chondrocytes. Here we investigated the effects of IL-17, a key cytokine in chronic inflammation, on chondrogenic differentiation of human MSCs. Methods Human bone marrow MSCs were pellet cultured in chondrogenic induction medium containing TGF-β3. Chondrogenic differentiation was detected by cartilage matrix accumulation and chondrogenic marker gene expression. Results Over-expression of cartilage matrix and chondrogenic marker genes was noted in chondrogenic cultures, but was inhibited by IL-17 in a dose-dependent manner. Expression and phosphorylation of SOX9, the master transcription factor for chondrogenesis, were induced within 2 days and phosphorylated SOX9 was stably maintained until day 21. IL-17 did not alter total SOX9 expression, but significantly suppressed SOX9 phosphorylation in a dose-dependent manner. At day 7, IL-17 also suppressed the activity of cAMP-dependent protein kinase A (PKA), which is known to phosphorylate SOX9. H89, a selective PKA inhibitor, also suppressed SOX9 phosphorylation, expression of chondrogenic markers and cartilage matrix, and also decreased chondrogenesis. Conclusions IL-17 inhibited chondrogenesis of human MSCs through the suppression of PKA activity and SOX9 phosphorylation. These results suggest that chondrogenic differentiation of MSCs can be inhibited by a mechanism triggered by IL-17 under chronic inflammation. PMID:24260226

  7. Co-culture with endometrial stromal cells enhances the differentiation of human embryonic stem cells into endometrium-like cells

    PubMed Central

    YU, WENZHU; NIU, WENBIN; WANG, SHUNA; CHEN, XUEMEI; SUN, BO; WANG, FANG; SUN, YINGPU

    2015-01-01

    In vitro differentiation of human embryonic stem cells (hESCs) into endometrium-like cells may provide a useful tool for clinical treatment. The aim of the present study was to investigate the differentiation potential of hESCs into endometrium-like cells using three methods, which included induction by feeder cells, co-culture with endometrial stromal cells and induction with embryoid bodies. Following differentiation, the majority of cells positively expressed cytokeratin and epithelial cell adhesion molecule (EPCAM). Factors associated with endometrium cell function, namely the estrogen and progesterone receptors (ER and PR), were also detected. At day 21 following the induction of differentiation, the expression levels of cytokeratin, EPCAM, ER and PR were significantly increased in the co-culture method group, as compared with the other two methods. Furthermore, these cells became decidualized in response to progesterone and prolactin. In addition, the number of cytokeratin-positive or EPCAM-positive cells significantly increased following the induction of differentiation using the co-culture method, as compared with the other two methods. The mRNA expression levels of Wnt members that are associated with endometrial development were subsequently examined, and Wnt5a was found to be significantly upregulated in the differentiated cells induced by feeder cells and co-culture with endometrial stromal cells; however, Wnt4 and Wnt7a expression levels were unaffected. Additionally, the mRNA expression levels of Wnt5a in the differentiated cells co-cultured with endometrial stromal cells were higher when compared with those induced by feeder cells. In conclusion, the present findings indicated that the co-culture system is the optimal protocol for the induction of hESC differentiation into endometrium-like cells, and Wnt5a signaling may be involved in this process. PMID:26170910

  8. The Significance of Microspore Division and Division Symmetry for Vegetative Cell-Specific Transcription and Generative Cell Differentiation.

    PubMed Central

    Eady, C.; Lindsey, K.; Twell, D.

    1995-01-01

    The significance of the onset and symmetry of pollen mitosis I (PMI) for the subsequent differentiation of the vegetative and generative cells was investigated by the in vitro maturation of isolated microspores of transgenic tobacco. Free uninucleate microspores of transgenic plants harboring the vegetative cell (VC)-specific late anther tomato lat52 promoter fused to the [beta]-glucuronidase (gus) gene showed normal asymmetric cell division at PMI and activated the lat52 promoter specifically in the nascent VC during in vitro maturation. In vitro maturation in the presence of high levels of colchicine effectively blocked PMI, resulting in the formation of uninucleate pollen grains in which the lat52 promoter was activated. Furthermore, matured uninucleate pollen grains were capable of germination and pollen tube growth despite the absence of a functional generative cell (GC). Lower levels of colchicine induced symmetric division at PMI, producing two similar daughter cells in which typical GC chromatin condensation was prevented. Similar cultures of transgenic microspores harboring the lat52 promoter driving the expression of a nuclear-targeted GUS fusion protein showed that lat52 promoter activation occurred in both symmetric daughter cells. These results directly demonstrate that division asymmetry at PMI is essential for correct GC differentiation and that activation of VC-specific transcription and functional VC maturation may be uncoupled from cytokinesis at PMI. These results are discussed in relation to models proposed to account for the role and distribution of factors controlling the differing fates of the vegetative and generative cells. PMID:12242352

  9. Differentiation of LA-N-5 neuroblastoma cells into cholinergic neurons: methods for differentiation, immunohistochemistry and reporter gene introduction.

    PubMed

    Hill, D P; Robertson, K A

    1998-03-01

    The use of model systems derived from cell lines has been a valuable tool in understanding the molecules and cellular processes that govern differentiation processes (T.R. Breitman, S.E. Selonick, S.J. Collins, Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid, Proc. Natl. Acad. Sci. USA 77 (1980) 2936-2940 [2]; N. Gomez, S. Traverse, P. Cohen, Identification of a MAP kinase in phaeochromocytoma (PC12) cells, FEBS Lett. 314 (1992) 461-465 [4]). The use of such systems provides an inexpensive, quick and simple way to identify and test molecules that can be further studied in more complex in vivo experiments. Some cell lines such as embryonic stem cells can be induced to differentiate in vitro, however, the differentiation is difficult to control and most often leads to the generation of a wide variety of cell types. Cell lines derived from sources committed to a restricted cell fate provide an opportunity to examine cell growth and differentiation within a specific cell type (G.M. Keller, In vitro differentiation of embryonic stem cells, Curr. Opin. Cell Biol. 7 (1995) 862-869 [10]). In this article we describe a simple system for the differentiation of the human neuroblastoma cell line LA-N-5 into cholinergic neurons using all-trans retinoic acid (G. Han, B. Chang, M.J. Connor, N. Sidell, Enhanced potency of 9-cis versus all-trans retinoic acid to induce the differentiation of human neuroblastoma cells, Differentiation, 59 (1995) 61-69 [5]; D.P. Hill, K.R. Robertson, Characterization of the cholinergic neuronal differentiation of the human neuroblastoma cell line LA-N-5 after treatment with retinoic acid, Dev. Brain Res. 102 (1997) 53-67 [6]; J.A. Robson, N. Sidell, Ultrastructural features of a human neuroblastoma cell line treated with retinoic acid, Neuroscience 14 (1985) 1149-1162 [12]; N. Sidell, C.A. Lucas, G.W. Kreutzberg, Regulation of acetylcholinesterase activity by retinoic acid in a human neuroblastoma

  10. [Feedback control mechanisms of plant cell expansion

    SciTech Connect

    Cosgrove, D.J.

    1992-01-01

    We have generated considerable evidence for the significance of wall stress relaxation in the control of plant growth and found that several agents (gibberellin, light, genetic loci for dwarf stature) influence growth rate via alteration of wall relaxation. We have refined our methods for measuring wall relaxation and, moreover, have found that wall relaxation properties bear only a distance relationship to wall mechanical properties. We have garnered novel insights into the nature of cell expansion mechanisms by analyzing spontaneous fluctuations of plant growth rate in seedlings. These experiments involved the application of mathematical techniques for analyzing growth rate fluctuations and the development of new instrumentation for measuring and forcing plant growth in a controlled fashion. These studies conclude that growth rate fluctuations generated by the plant as consequence of a feedback control system. This conclusion has important implications for the nature of wall loosening processes and demands a different framework for thinking about growth control. It also implies the existence of a growth rate sensor.

  11. Higher Levels of Organization in the Interphase Nucleus of Cycling and Differentiated Cells

    PubMed Central

    Leitch, Andrew R.

    2000-01-01

    The review examines the structured organization of interphase nuclei using a range of examples from the plants, animals, and fungi. Nuclear organization is shown to be an important phenomenon in cell differentiation and development. The review commences by examining nuclei in dividing cells and shows that the organization patterns can be dynamic within the time frame of the cell cycle. When cells stop dividing, derived differentiated cells often show quite different nuclear organizations. The developmental fate of nuclei is divided into three categories. (i) The first includes nuclei that undergo one of several forms of polyploidy and can themselves change in structure during the course of development. Possible function roles of polyploidy is given. (ii) The second is nuclear reorganization without polyploidy, where nuclei reorganize their structure to form novel arrangements of proteins and chromosomes. (iii) The third is nuclear disintegration linked to programmed cell death. The role of the nucleus in this process is described. The review demonstrates that recent methods to probe nuclei for nucleic acids and proteins, as well as to examine their intranuclear distribution in vivo, has revealed much about nuclear structure. It is clear that nuclear organization can influence or be influenced by cell activity and development. However, the full functional role of many of the observed phenomena has still to be fully realized. PMID:10704477

  12. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay

    EPA Science Inventory

    The Embryonic Stem Cell Test (EST) is an assay which evaluates xenobiotic-induced effects using three endpoints: mouse embryonic stem cell (mESC) differentiation, mESC viability, and 3T3-cell viability. Our research goal was to develop an improved high-throughput assay by establi...

  13. Skewed B cell differentiation affects lymphoid organogenesis but not T cell-mediated autoimmunity.

    PubMed

    Colombo, E; Tentorio, P; Musio, S; Rajewsky, K; Pedotti, R; Casola, S; Farina, C

    2014-04-01

    B cell receptor (BCR) signalling determines B cell differentiation and may potentially alter T cell-mediated immune responses. In this study we used two transgenic strains of BCR-deficient mice expressing Epstein-Barr virus latent membrane protein (LMP)2A in B cells, where either follicular and marginal zone differentiation (D(H)LMP2A mice) or B-1 cell development (V(H)LMP2A mice) were supported, and evaluated the effects of skewed B lymphocyte differentiation on lymphoid organogenesis and T cell responses in vivo. Compared to wild-type animals, both transgenic strains displayed alterations in the composition of lymphoid organs and in the dynamics of distinct immune cell subsets following immunization with the self-antigen PLP₁₈₅₋₂₀₆. However, ex-vivo T cell proliferation to PLP₁₈₅₋₂₀₆ peptide measured in immunized D(H)LMP2A and V(H)LMP2A mice was similar to that detected in immunized control mice. Further, clinical expression of experimental autoimmune encephalitis in both LMP2A strains was identical to that of wild-type mice. In conclusion, mice with skewed B cell differentiation driven by LMP2A expression in BCR-negative B cells do not show changes in the development of a T cell mediated disease model of autoimmunity, suggesting that compensatory mechanisms support the generation of T cell responses. PMID:24325711

  14. The regulatory role of cell mechanics for migration of differentiating myeloid cells.

    PubMed

    Lautenschläger, Franziska; Paschke, Stephan; Schinkinger, Stefan; Bruel, Arlette; Beil, Michael; Guck, Jochen

    2009-09-15

    Migration of cells is important for tissue maintenance, immune response, and often altered in disease. While biochemical aspects, including cell adhesion, have been studied in detail, much less is known about the role of the mechanical properties of cells. Previous measurement methods rely on contact with artificial surfaces, which can convolute the results. Here, we used a non-contact, microfluidic optical stretcher to study cell mechanics, isolated from other parameters, in the context of tissue infiltration by acute promyelocytic leukemia (APL) cells, which occurs during differentiation therapy with retinoic acid. Compliance measurements of APL cells reveal a significant softening during differentiation, with the mechanical properties of differentiated cells resembling those of normal neutrophils. To interfere with the migratory ability acquired with the softening, differentiated APL cells were exposed to paclitaxel, which stabilizes microtubules. This treatment does not alter compliance but reduces cell relaxation after cessation of mechanical stress six-fold, congruent with a significant reduction of motility. Our observations imply that the dynamical remodeling of cell shape required for tissue infiltration can be frustrated by stiffening the microtubular system. This link between the cytoskeleton, cell mechanics, and motility suggests treatment options for pathologies relying on migration of cells, notably cancer metastasis. PMID:19717452

  15. Is Melanoma a stem cell tumor? Identification of neurogenic proteins in trans-differentiated cells

    PubMed Central

    Rasheed, Suraiya; Mao, Zisu; Chan, Jane MC; Chan, Linda S

    2005-01-01

    Background Although several genes and proteins have been implicated in the development of melanomas, the molecular mechanisms involved in the development of these tumors are not well understood. To gain a better understanding of the relationship between the cell growth, tumorigenesis and differentiation, we have studied a highly malignant cat melanoma cell line that trans-differentiates into neuronal cells after exposure to a feline endogenous retrovirus RD114. Methods To define the repertoire of proteins responsible for the phenotypic differences between melanoma and its counterpart trans-differentiated neuronal cells we have applied proteomics technology and compared protein profiles of the two cell types and identified differentially expressed proteins by 2D-gel electrophoresis, image analyses and mass spectrometry. Results The melanoma and trans-differentiated neuronal cells could be distinguished by the presence of distinct sets of proteins in each. Although approximately 60–70% of the expressed proteins were shared between the two cell types, twelve proteins were induced de novo after infection of melanoma cells with RD114 virus in vitro. Expression of these proteins in trans-differentiated cells was significantly associated with concomitant down regulation of growth promoting proteins and up-regulation of neurogenic proteins (p = < 0.001). Based on their physiologic properties, >95% proteins expressed in trans-differentiated cells could be associated with the development, differentiation and regulation of nervous system cells. Conclusion Our results indicate that the cat melanoma cells have the ability to differentiate into distinct neuronal cell types and they express proteins that are essential for self-renewal. Since melanocytes arise from the neural crest of the embryo, we conclude that this melanoma arose from embryonic precursor stem cells. This model system provides a unique opportunity to identify domains of interactions between the expressed

  16. High glucose suppresses embryonic stem cell differentiation into neural lineage cells.

    PubMed

    Yang, Penghua; Shen, Wei-bin; Reece, E Albert; Chen, Xi; Yang, Peixin

    2016-04-01

    Abnormal neurogenesis occurs during embryonic development in human diabetic pregnancies and in animal models of diabetic embryopathy. Our previous studies in a mouse model of diabetic embryopathy have implicated that high glucose of maternal diabetes delays neurogenesis in the developing neuroepithelium leading to neural tube defects. However, the underlying process in high glucose-impaired neurogenesis is uncharacterized. Neurogenesis from embryonic stem (ES) cells provides a valuable model for understanding the abnormal neural lineage development under high glucose conditions. ES cells are commonly generated and maintained in high glucose (approximately 25 mM glucose). Here, the mouse ES cell line, E14, was gradually adapted to and maintained in low glucose (5 mM), and became a glucose responsive E14 (GR-E14) line. High glucose induced the endoplasmic reticulum stress marker, CHOP, in GR-E14 cells. Under low glucose conditions, the GR-E14 cells retained their pluripotency and capability to differentiate into neural lineage cells. GR-E14 cell differentiation into neural stem cells (Sox1 and nestin positive cells) was inhibited by high glucose. Neuron (Tuj1 positive cells) and glia (GFAP positive cells) differentiation from GR-E14 cells was also suppressed by high glucose. In addition, high glucose delayed GR-E14 differentiation into neural crest cells by decreasing neural crest markers, paired box 3 (Pax3) and paired box 7 (Pax7). Thus, high glucose impairs ES cell differentiation into neural lineage cells. The low glucose adapted and high glucose responsive GR-E14 cell line is a useful in vitro model for assessing the adverse effect of high glucose on the development of the central nervous system. PMID:26940741

  17. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells.

    PubMed

    Re, Angela; Workman, Christopher T; Waldron, Levi; Quattrone, Alessandro; Brunak, Søren

    2014-09-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two programs. Functional analysis gathered insights in fate-specific candidates of interface functionalities. The non-transcriptionally regulated interface proteins were found to be highly regulated by post-translational ubiquitylation modification, which may synchronize the transition between cell proliferation and differentiation in ESCs. PMID:25173649

  18. E-cadherin is important for cell differentiation during osteoclastogenesis.

    PubMed

    Fiorino, Cara; Harrison, Rene E

    2016-05-01

    E-cadherin, a protein responsible for intercellular adhesion between epithelial cells, is also expressed in the monocyte/macrophage lineage. In this study we have explored the involvement of E-cadherin during receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclast differentiation. Osteoclastogenesis involves a period of precursor expansion followed by multiple fusion events to generate a multinuclear osteoclast that is capable of bone resorption. We asked whether E-cadherin participated in early precursor interactions and recognition or was a component of the osteoclast fusion machinery. Here, we show that endogenous E-cadherin expression is the highest during early stages of osteoclast differentiation, with surface expression visible on small precursor cells (fewer than four nuclei per cell) in both RAW 264.7 cells and primary macrophages. Blocking E-cadherin function with neutralizing antibodies prior to the onset of fusion delayed the expression of TRAP, Cathepsin K, DC-STAMP and NFATc1 and significantly diminished multinucleated osteoclast formation. Conversely, E-cadherin-GFP overexpressing macrophages displayed earlier NFATc1 nuclear translocation along with faster formation of multinucleated osteoclasts compared to control macrophages. Through live imaging we identified that disrupting E-cadherin function prolonged the proliferative phase of the precursor population while concomitantly decreasing the proportion of migrating precursors. The lamellipodium and polarized membrane extensions appeared to be the principal sites of fusion, indicating precursor migration was a critical factor contributing to osteoclast fusion. These findings demonstrate that E-cadherin-mediated cell-cell contacts can modulate osteoclast-specific gene expression and prompt differentiating osteoclast precursors toward migratory and fusion activities. PMID:26959175

  19. Transition of differential histone H3 methylation in photoreceptors and other retinal cells during retinal differentiation

    PubMed Central

    Ueno, Kazuko; Iwagawa, Toshiro; Kuribayashi, Hiroshi; Baba, Yukihiro; Nakauchi, Hiromitsu; Murakami, Akira; Nagasaki, Masao; Suzuki, Yutaka; Watanabe, Sumiko

    2016-01-01

    To analyze cell lineage-specific transitions in global transcriptional and epigenetic changes during retinogenesis, we purified retinal cells from normal mice during postnatal development into two fractions, namely, photoreceptors and other retinal cells, based on Cd73 expression, and performed RNA sequencing and ChIP sequencing of H3K27me3 and H3K4me3. Genes expressed in the photoreceptor lineage were marked with H3K4me3 in the Cd73-positive cell fraction; however, the level of H3K27me3 was very low in both Cd73-positive and -negative populations. H3K27me3 may be involved in spatio-temporal onset of a subset of bipolar-related genes. Subsets of genes expressed in amacrine and retinal ganglion cells, which are early-born retinal cell types, were suggested to be maintained in a silent state by H3K27me3 during late-stage retinogenesis. In the outer nuclear layer, upregulation of Rho and rod-related genes were observed in Ezh2-ablated retina, suggesting a role for H3K27me3 in the maintenance of proper expression levels. Taken together, our data on the transition of lineage-specific molecular signatures during development suggest that histone methylation is involved in retinal differentiation and maintenance through cell lineage-specific mechanisms. PMID:27377164

  20. Transition of differential histone H3 methylation in photoreceptors and other retinal cells during retinal differentiation.

    PubMed

    Ueno, Kazuko; Iwagawa, Toshiro; Kuribayashi, Hiroshi; Baba, Yukihiro; Nakauchi, Hiromitsu; Murakami, Akira; Nagasaki, Masao; Suzuki, Yutaka; Watanabe, Sumiko

    2016-01-01

    To analyze cell lineage-specific transitions in global transcriptional and epigenetic changes during retinogenesis, we purified retinal cells from normal mice during postnatal development into two fractions, namely, photoreceptors and other retinal cells, based on Cd73 expression, and performed RNA sequencing and ChIP sequencing of H3K27me3 and H3K4me3. Genes expressed in the photoreceptor lineage were marked with H3K4me3 in the Cd73-positive cell fraction; however, the level of H3K27me3 was very low in both Cd73-positive and -negative populations. H3K27me3 may be involved in spatio-temporal onset of a subset of bipolar-related genes. Subsets of genes expressed in amacrine and retinal ganglion cells, which are early-born retinal cell types, were suggested to be maintained in a silent state by H3K27me3 during late-stage retinogenesis. In the outer nuclear layer, upregulation of Rho and rod-related genes were observed in Ezh2-ablated retina, suggesting a role for H3K27me3 in the maintenance of proper expression levels. Taken together, our data on the transition of lineage-specific molecular signatures during development suggest that histone methylation is involved in retinal differentiation and maintenance through cell lineage-specific mechanisms. PMID:27377164

  1. Cell-based assays for Parkinson's disease using differentiated human LUHMES cells

    PubMed Central

    Zhang, Xiao-min; Yin, Ming; Zhang, Min-hua

    2014-01-01

    Aim: Lund human mesencephalic (LUHMES) cells can be differentiated to post-mitotic cells with biochemical, morphological and functional features of dopaminergic (DAergic) neurons. Given the limited scale of primary DAergic neuron culture, we developed differentiated LUHMES cell-based cytotoxicity assays for identifying neuroprotective agents for Parkinson's disease (PD). Methods: LUHMES cells were incubated in a differentiation medium containing cAMP and GDNF for 6 d, and then differentiated cells were treated with MPP+ or infected with baculovirus containing α-synuclein. Cytotoxicity was determined by measuring intracellular ATP levels and caspase 3/7 activity in the cells. DAergic neuron-specific marker protein and mRNA levels in the cells were analyzed using Western blotting and RT-PCR, respectively. Results: LUHMES cells grew extensive neurites and became post-mitotic neuron-like cells during differentiation period, and three DAergic neuron markers TH, DAT and Nurr1 exhibited different expression profiles. MPP+ dose-dependently reduced ATP levels in the cells with an IC50 value of 65 μmol/L. MPP+ (80 μmol/L) significantly increased caspase 3/7 activity in the cells. Both the CDK inhibitor GW8510 and the GSK3β inhibitor SB216763 effectively rescued MPP+-induced reduction of ATP levels with EC50 values of 12 and 205 nmol/L, respectively. Overexpression of α-synuclein also significantly decreased intracellular ATP levels and increased caspase 3/7 activity in the cells. GW8510 and SB216763 effectively rescued α-synuclein overexpression-induced reduction of ATP levels, whereas GW8510, but not SB216763, ameliorated α-synuclein overexpression-induced increase of caspase 3/7 activity. Conclusion: MPP+- and α-synuclein overexpression-induced cytotoxicity of differentiated LUHMES cells may serve as good alternative systems for identifying neuroprotective compounds for PD. PMID:24989254

  2. Derivation, characterization and retinal differentiation of induced pluripotent stem cells.

    PubMed

    Mekala, Subba Rao; Vauhini, Vasundhara; Nagarajan, Usha; Maddileti, Savitri; Gaddipati, Subhash; Mariappan, Indumathi

    2013-03-01

    Millions of people world over suffer visual disability due to retinal dystrophies which can be age-related or a genetic disorder resulting in gradual degeneration of the retinal pigmented epithelial (RPE) cells and photoreceptors. Therefore, cell replacement therapy offers a great promise in treating such diseases. Since the adult retina does not harbour any stem cells, alternative stem cell sources like the embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer a great promise for generating different cell types of the retina. Here, we report the derivation of four iPSC lines from mouse embryonic fibroblasts (MEFs) using a cocktail of recombinant retroviruses carrying the genes for Oct4, Sox2, Klf4 and cMyc. The iPS clone MEF-4F3 was further characterized for stemness marker expression and stable reprogramming by immunocytochemistry, FACS and RT-PCR analysis. Methylation analysis of the nanog promoter confirmed the reprogrammed epigenetic state. Pluripotency was confirmed by embryoid body (EB) formation and lineage-specific marker expression. Also, upon retinal differentiation, patches of pigmented cells with typical cobble-stone phenotype similar to RPE cells are generated within 6 weeks and they expressed ZO-1 (tight junction protein), RPE65 and bestrophin (mature RPE markers) and showed phagocytic activity by the uptake of fluorescent latex beads. PMID:23385820

  3. Nucleosome positioning changes during human embryonic stem cell differentiation.

    PubMed

    Zhang, Wenjuan; Li, Yaping; Kulik, Michael; Tiedemann, Rochelle L; Robertson, Keith D; Dalton, Stephen; Zhao, Shaying

    2016-06-01

    Nucleosomes are the basic unit of chromatin. Nucleosome positioning (NP) plays a key role in transcriptional regulation and other biological processes. To better understand NP we used MNase-seq to investigate changes that occur as human embryonic stem cells (hESCs) transition to nascent mesoderm and then to smooth muscle cells (SMCs). Compared to differentiated cell derivatives, nucleosome occupancy at promoters and other notable genic sites, such as exon/intron junctions and adjacent regions, in hESCs shows a stronger correlation with transcript abundance and is less influenced by sequence content. Upon hESC differentiation, genes being silenced, but not genes being activated, display a substantial change in nucleosome occupancy at their promoters. Genome-wide, we detected a shift of NP to regions of higher G+C content as hESCs differentiate to SMCs. Notably, genomic regions with higher nucleosome occupancy harbor twice as many G↔C changes but fewer than half A↔T changes, compared to regions with lower nucleosome occupancy. Finally, our analysis indicates that the hESC genome is not rearranged and has a sequence mutation rate resembling normal human genomes. Our study reveals another unique feature of hESC chromatin, and sheds light on the relationship between nucleosome occupancy and sequence G+C content. PMID:27088311

  4. Notch Signaling in Meibomian Gland Epithelial Cell Differentiation

    PubMed Central

    Gidfar, Sanaz; Afsharkhamseh, Neda; Sanjari, Sara; Djalilian, Ali R.

    2016-01-01

    Purpose Notch1 was previously shown to play a critical role in murine meibomian gland function and maintenance. In this study, we have examined the expression and activation of Notch pathway in human meibomian gland epithelial cells in vitro. Methods An immortalized human meibomian gland epithelial cell (HMGEC) line was cultured under proliferative and differentiative conditions. Expression of Notch receptors and ligands were evaluated by quantitative PCR and Western blot. The effect of Notch inhibition and induction on oil production was also assessed. Results Human meibomian gland epithelial cell expressed Notch1, Notch2, Notch3, Jagged1, Jagged2, Delta-like 1, and Delta-like 3. The level of cleaved (activated) Notch1 strongly increased with differentiation. The expression of Notch3 was inversely correlated with proliferation. Induction and inhibition of Notch1 led to an increase and decrease in the amount of oil production, respectively. Conclusions Notch signaling appears to play an important role in human meibomian gland epithelial differentiation and oil production. This may provide a potential therapeutic pathway for treating meibomian gland dysfunction. PMID:26943148

  5. Human Fucci Pancreatic Beta Cell Lines: New Tools to Study Beta Cell Cycle and Terminal Differentiation

    PubMed Central

    Carlier, Géraldine; Maugein, Alicia; Cordier, Corinne; Pechberty, Séverine; Garfa-Traoré, Meriem; Martin, Patrick; Scharfmann, Raphaël; Albagli, Olivier

    2014-01-01

    Regulation of cell cycle in beta cells is poorly understood, especially in humans. We exploited here the recently described human pancreatic beta cell line EndoC-βH2 to set up experimental systems for cell cycle studies. We derived 2 populations from EndoC-βH2 cells that stably harbor the 2 genes encoding the Fucci fluorescent indicators of cell cycle, either from two vectors, or from a unique bicistronic vector. In proliferating non-synchronized cells, the 2 Fucci indicators revealed cells in the expected phases of cell cycle, with orange and green cells being in G1 and S/G2/M cells, respectively, and allowed the sorting of cells in different substeps of G1. The Fucci indicators also faithfully red out alterations in human beta cell proliferative activity since a mitogen-rich medium decreased the proportion of orange cells and inflated the green population, while reciprocal changes were observed when cells were induced to cease proliferation and increased expression of some beta cell genes. In the last situation, acquisition of a more differentiated beta cell phenotype correlates with an increased intensity in orange fluorescence. Hence Fucci beta cell lines provide new tools to address important questions regarding human beta cell cycle and differentiation. PMID:25259951

  6. Standardized Generation and Differentiation of Neural Precursor Cells from Human Pluripotent Stem Cells

    PubMed Central

    Kozhich, O; Hamilton, RS; Mallon, BS

    2012-01-01

    Precise, robust and scalable directed differentiation of pluripotent stem cells is an important goal with respect to disease modeling or future therapies. Using the AggreWell™400 system we have standardized the differentiation of human embryonic and induced pluripotent stem cells to a neuronal fate using defined conditions. This allows reproducibility in replicate experiments and facilitates the direct comparison of cell lines. Since the starting point for EB formation is a single cell suspension, this protocol is suitable for standard and novel methods of pluripotent stem cell culture. Moreover, an intermediate population of neural precursor cells, which are routinely >95% NCAMpos and Tra-1–60neg by FACS analysis, may be expanded and frozen prior to differentiation allowing a convenient starting point for downstream experiments. PMID:22388559

  7. Cell-Penetrating Peptide as a Means of Directing the Differentiation of Induced Pluripotent Stem Cells

    PubMed Central

    Kaitsuka, Taku; Tomizawa, Kazuhito

    2015-01-01

    Protein transduction using cell-penetrating peptides (CPPs) is useful for the delivery of large protein molecules, including some transcription factors. This method is safer than gene transfection methods with a viral vector because there is no risk of genomic integration of the exogenous DNA. Recently, this method was reported as a means for the induction of induced pluripotent stem (iPS) cells, directing the differentiation into specific cell types and supporting gene editing/correction. Furthermore, we developed a direct differentiation method to obtain a pancreatic lineage from mouse and human pluripotent stem cells via the protein transduction of three transcription factors, Pdx1, NeuroD, and MafA. Here, we discuss the possibility of using CPPs as a means of directing the differentiation of iPS cells and other stem cell technologies. PMID:26561805

  8. Molecular regulation of plant cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  9. Intracellular GTP level determines cell's fate toward differentiation and apoptosis

    SciTech Connect

    Meshkini, Azadeh; Yazdanparast, Razieh Nouri, Kazem

    2011-06-15

    Since the adequate supply of guanine nucleotides is vital for cellular activities, limitation of their syntheses would certainly result in modulation of cellular fate toward differentiation and apoptosis. The aim of this study was to set a correlation between the intracellular level of GTP and the induction of relevant signaling pathways involved in the cell's fate toward life or death. In that regard, we measured the GTP level among human leukemia K562 cells exposed to mycophenolic acid (MPA) or 3-hydrogenkwadaphnin (3-HK) as two potent inosine monophosphate dehydrogenase inhibitors. Our results supported the maturation of the cells when the intracellular GTP level was reduced by almost 30-40%. Under these conditions, 3-HK and/or MPA caused up-regulation of PKC{alpha} and PI3K/AKT pathways. Furthermore, co-treatment of cells with hypoxanthine plus 3-HK or MPA, which caused a reduction of about 60% in the intracellular GTP levels, led to apoptosis and activation of mitochondrial pathways through inverse regulation of Bcl-2/Bax expression and activation of caspase-3. Moreover, our results demonstrated that attenuation of GTP by almost 60% augmented the intracellular ROS and nuclear localization of p21 and subsequently led to cell death. These results suggest that two different threshold levels of GTP are needed for induction of differentiation and/or ROS-associated apoptosis. - Graphical abstract: Display Omitted

  10. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    SciTech Connect

    Ecker, Joseph R.

    2005-09-15

    We have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, we have developed a molecular model that has facilitated our understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5, EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 (and three HLL genes) and ETO1 (and ETOL genes) in my laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the previous period, we have identified and characterized a gene that genetically acts upstream of the ethylene receptors. ETO1 encodes negative regulators of ethylene biosynthesis.

  11. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    SciTech Connect

    Ecker, Joseph R.

    2002-12-03

    The authors have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, they developed a molecular model that has facilitated the understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5 EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 and three HLS1-LIKE genes in the laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the award period, they have identified and begun preliminary characterization of two genes that genetically act upstream of the ethylene receptors. ETO1 and RAN1 encode negative regulators of ethylene biosynthesis and signaling respectively. Progress on the analysis of these genes along with HOOKLESS1 is described.

  12. In Vitro Differentiation Potential of Human Placenta Derived Cells into Skin Cells

    PubMed Central

    Mahmood, Ruhma; Choudhery, Mahmood S.; Mehmood, Azra; Khan, Shaheen N.; Riazuddin, Sheikh

    2015-01-01

    Skin autografting is the most viable and aesthetic technique for treatment of extensive burns; however, this practice has potential limitations. Harvesting cells from neonatal sources (such as placental tissue) is a simple, inexpensive, and noninvasive procedure. In the current study authors sought to evaluate in vitro potential of human placenta derived stem cells to develop into skin-like cells. After extensive washing, amniotic membrane and umbilical cord tissue were separated to harvest amniotic epithelial cells (AECs) and umbilical cord mesenchymal stem cells (UC-MSCs), respectively. Both types of cells were characterized for the expression of embryonic lineage markers and their growth characteristics were determined. AECs and UC-MSCs were induced to differentiate into keratinocytes-like and dermal fibroblasts-like cells, respectively. After induction, morphological changes were detected by microscopy. The differentiation potential was further assessed using immunostaining and RT-PCR analyses. AECs were positive for cytokeratins and E-Cadherin while UC-MSCs were positive for fibroblast specific makers. AECs differentiated into keratinocytes-like cells showed positive expression of keratinocyte specific cytokeratins, involucrin, and loricrin. UC-MSCs differentiated into dermal fibroblast-like cells indicated expression of collagen type 3, desmin, FGF-7, fibroblast activation protein alpha, procollagen-1, and vimentin. In conclusion, placenta is a potential source of cells to develop into skin-like cells. PMID:26229539

  13. Spindle cell rhabdomyosarcoma: a brief diagnostic review and differential diagnosis.

    PubMed

    Carroll, Sarah Jayne; Nodit, Laurentia

    2013-08-01

    Spindle cell rhabdomyosarcoma is a rare variant of embryonal rhabdomyosarcoma that has a predilection for young males and most commonly involves the paratesticular region followed by head and neck. Histopathology demonstrates elongated spindle cells with fusiform to cigar-shaped nuclei and indistinct eosinophilic cytoplasm arranged in fascicles or whorls. Although the tumor demonstrates increased cellularity and moderate atypia, the microscopic and architectural patterns can allow this tumor to be confused with multiple entities, such as leiomyosarcoma, spindle cell carcinoma, desmoplastic melanoma, or fibrosarcoma, with important therapeutic implications. Immunohistochemical workup demonstrates sarcomeric differentiation with reactivity for desmin, myogenin, and MyoD1 markers. Compared with other subtypes, the spindle cell variant in children is associated with a favorable outcome; however, in the adult population there does not appear to be any prognostic advantage. PMID:23899074

  14. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    SciTech Connect

    Puente, Pilar de la

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  15. Laser-induced fluorescence of green plants. I - A technique for the remote detection of plant stress and species differentiation

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Wood, F. M., Jr.; Mcmurtrey, J. E., III; Newcomb, W. W.

    1984-01-01

    The laser-induced fluorescence (LIF) of green plants was evaluated as a means of remotely detecting plant stress and determining plant type. Corn and soybeans were used as representatives of monocots and dicots, respectively, in these studies. The fluorescence spectra of several plant pigments was excited with a nitrogen laser emitting at 337 nm. Intact leaves from corn and soybeans also fluoresced using the nitrogen laser. The two plant species exhibited fluorescence spectra which had three maxima in common at 440, 690, and 740 nm. However, the relative intensities of these maxima were distinctly different for the two species. Soybeans had an additional slight maxima at 525 nm. Potassium deficiency in corn caused an increase in fluorescence at 690 and 740 nm. Simulated water stress in soybeans resulted in increased fluorescence at 440, 525, 690, and 740 nm. The inhibition of photosynthesis in soybeans by 3-(3-4-dichlorophenyl)-1-1-dimethyl urea (DCMU) gave incresed fluorescence primarily at 690 and 740 nm. Chlorosis as occurring in senescent soybean leaves caused a decrease in fluorescence at 690 and 740 nm. These studies indicate that LIF measurements of plants offer the potential for remotely detecting certain types of stress condition and also for differentiating plant species.

  16. Operational Optimization of Large-Scale Parallel-Unit SWRO Desalination Plant Using Differential Evolution Algorithm

    PubMed Central

    Wang, Xiaolong; Jiang, Aipeng; Jiangzhou, Shu; Li, Ping

    2014-01-01

    A large-scale parallel-unit seawater reverse osmosis desalination plant contains many reverse osmosis (RO) units. If the operating conditions change, these RO units will not work at the optimal design points which are computed before the plant is built. The operational optimization problem (OOP) of the plant is to find out a scheduling of operation to minimize the total running cost when the change happens. In this paper, the OOP is modelled as a mixed-integer nonlinear programming problem. A two-stage differential evolution algorithm is proposed to solve this OOP. Experimental results show that the proposed method is satisfactory in solution quality. PMID:24701180

  17. Operational optimization of large-scale parallel-unit SWRO desalination plant using differential evolution algorithm.

    PubMed

    Wang, Jian; Wang, Xiaolong; Jiang, Aipeng; Jiangzhou, Shu; Li, Ping

    2014-01-01

    A large-scale parallel-unit seawater reverse osmosis desalination plant contains many reverse osmosis (RO) units. If the operating conditions change, these RO units will not work at the optimal design points which are computed before the plant is built. The operational optimization problem (OOP) of the plant is to find out a scheduling of operation to minimize the total running cost when the change happens. In this paper, the OOP is modelled as a mixed-integer nonlinear programming problem. A two-stage differential evolution algorithm is proposed to solve this OOP. Experimental results show that the proposed method is satisfactory in solution quality. PMID:24701180

  18. Measuring the elasticity of plant cells with atomic force microscopy.

    PubMed

    Braybrook, Siobhan A

    2015-01-01

    The physical properties of biological materials impact their functions. This is most evident in plants where the cell wall contains each cell's contents and connects each cell to its neighbors irreversibly. Examining the physical properties of the plant cell wall is key to understanding how plant cells, tissues, and organs grow and gain the shapes important for their respective functions. Here, we present an atomic force microscopy-based nanoindentation method for examining the elasticity of plant cells at the subcellular, cellular, and tissue level. We describe the important areas of experimental design to be considered when planning and executing these types of experiments and provide example data as illustration. PMID:25640432

  19. CELLPEDIA: a repository for human cell information for cell studies and differentiation analyses.

    PubMed

    Hatano, Akiko; Chiba, Hirokazu; Moesa, Harry Amri; Taniguchi, Takeaki; Nagaie, Satoshi; Yamanegi, Koji; Takai-Igarashi, Takako; Tanaka, Hiroshi; Fujibuchi, Wataru

    2011-01-01

    CELLPEDIA is a repository database for current knowledge about human cells. It contains various types of information, such as cell morphologies, gene expression and literature references. The major role of CELLPEDIA is to provide a digital dictionary of human cells for the biomedical field, including support for the characterization of artificially generated cells in regenerative medicine. CELLPEDIA features (i) its own cell classification scheme, in which whole human cells are classified by their physical locations in addition to conventional taxonomy; and (ii) cell differentiation pathways compiled from biomedical textbooks and journal papers. Currently, human differentiated cells and stem cells are classified into 2260 and 66 cell taxonomy keys, respectively, from which 934 parent-child relationships reported in cell differentiation or transdifferentiation pathways are retrievable. As far as we know, this is the first attempt to develop a digital cell bank to function as a public resource for the accumulation of current knowledge about human cells. The CELLPEDIA homepage is freely accessible except for the data submission pages that require authentication (please send a password request to cell-info@cbrc.jp). Database URL: http://cellpedia.cbrc.jp/ PMID:22039163

  20. Delayed BMP4 exposure increases germ cell differentiation in mouse embryonic stem cells.

    PubMed

    Talaei-Khozani, Tahereh; Zarei Fard, Nehleh; Bahmanpour, Soghra; Jaberipour, Mansoureh; Hosseini, Ahmah; Esmaeilpour, Tahereh

    2014-01-01

    Fate mapping studies have revealed that bone morphogenetic protein 4 (BMP4) signaling has a key role in segregation of primordial germ cells from proximal epiblast. Adding BMP4 to the culture media of embryonic stem (ES) cells could induce expression of germ cell markers; however, to provide a desired number of germ cells has remained a challenge. In the current study, we intended to establish an in vitro system to obtain reliable germ cells derived from ES cells. Differentiation was induced in ES cells via embryoid body (EB) and monolayer culture system. Cells were cultured with BMP4 from the beginning (++BMP4) or after 48 hours (+BMP4) of culturing for five days. The cultures were assessed for alkaline phosphatase (ALP) activity, expression of Oct4, Mvh and c-kit. In EB culture protocol, the expression of Mvh, Oct4 and ALP activity significantly increased in +BMP4 culture condition, but a significant down-regulation in the expression of germ cell markers was shown in ++BMP4 condition compared with the control group. Parallel differentiation experiments using monolayer culture system indicated the number of putative germ cells did not change. In the current study, we compared two differentiation methods (EB and monolayer) to achieve an optimal germ cell production. The EBs with a short exposure time period to BMP4, showing typical characteristics of germ cells. Therefore, our approach provides a strategy for the production of germline cells from ES cells. PMID:24969978

  1. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.

    PubMed

    Chun, So Young; Soker, Shay; Jang, Yu-Jin; Kwon, Tae Gyun; Yoo, Eun Sang

    2016-02-01

    We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease. PMID:26839468

  2. Immunomodulation of endothelial differentiated mesenchymal stromal cells: impact on T and NK cells.

    PubMed

    El Omar, Reine; Xiong, Yu; Dostert, Gabriel; Louis, Huguette; Gentils, Monique; Menu, Patrick; Stoltz, Jean-François; Velot, Émilie; Decot, Véronique

    2016-04-01

    Wharton's jelly mesenchymal stromal cells (WJ-MSCs) are promising candidates for tissue engineering, as their immunomodulatory activity allows them to escape immune recognition and to suppress several immune cell functions. To date, however, few studies have investigated the effect of differentiation of the MSCs on this immunomodulation. To address this question, we sought to determine the impact of differentiation toward endothelial cells on immunoregulation by WJ-MSCs. Following differentiation, the endothelial-like cells (ELCs) were positive for CD31, vascular endothelial cadherin and vascular endothelial growth factor receptor 2, and able to take up acetylated low-density lipoproteins. The expression of HLA-DR and CD86, which contribute to MSCs immunoprivilege, was still weak after differentiation. We then co-cultured un- and differentiated MSCs with immune cells, under conditions of both direct and indirect contact. The proliferation and phenotype of the immune cells were analyzed and the mediators secreted by both ELCs and WJ-MSCs quantified. Interleukin (IL)-6, IL-1β, prostaglandin E2 and in particular indoleamine-2,3-dioxygenase expression were upregulated in ELCs on stimulation by T and NK cells, suggesting the possible involvement of these factors in allosuppression. ELCs co-cultured with T cells were able to generate CD25(+) T cells, which were shown to be of the CD4(+)CD25(+)FoxP3(+) regulatory subset. Direct contact between NK cells and ELCs or WJ-MSCs decreased the level of NK-activating receptor natural-killer group 2, member D. Moreover, direct co-culturing with ELCs stimulates CD73 acquisition on NK cells, a mechanism which may induce adenosine secretion by the cells and lead to an immunosuppressive function. Taken together, our results show that ELCs obtained following differentiation of WJ-MSCs remain largely immunosuppressive. PMID:26510892

  3. Simvastatin induces osteogenic differentiation of murine embryonic stem cells.

    PubMed

    Pagkalos, Joseph; Cha, Jae Min; Kang, Yunyi; Heliotis, Manolis; Tsiridis, Eleftherios; Mantalaris, Athanasios

    2010-11-01

    Statins are potent inhibitors of cholesterol synthesis. Several statins are available with different molecular and pharmacokinetic properties. Simvastatin is more lipophilic than pravastatin and has a higher affinity to phospholipid membranes than atorvastatin, allowing its passive diffusion through the cell membrane. In vitro studies on bone marrow stromal cells, osteoblast-like cells, and embryonic stem cells have shown statins to have cholesterol-independent anabolic effects on bone metabolism; alas, statins were supplemented in osteogenic medium, which does not facilitate elucidation of their potential osteoinductive properties. Embryonic stem cells (ESCs), derived from the inner cell mass of the blastocyst, are unique in that they enjoy perpetual self-proliferation, are pluripotent, and are able to differentiate toward all the cellular lineages composing the body, including the osteogenic lineage. Consequently, ESCs represent a potentially potent cell source for future clinical cellular therapies of various bone diseases, even though there are several hurdles that still need to be overcome. Herein we demonstrate, for the first time to our knowledge, that simvastatin induces murine ESC (mESC) differentiation toward the osteogenic lineage in the absence of osteoinductive supplements. Specifically, we found that a simvastatin concentration in the micromolar range and higher was toxic to the cells and that an effective concentration for osteoinduction is 0.1 nM, as shown by increased alizarin red staining as well as increased osteocalcin and osetrix gene expression. These re