Science.gov

Sample records for plant clock system

  1. BUGS system clock distributor

    NASA Astrophysics Data System (ADS)

    Dietrich, Thomas M.

    1991-11-01

    A printed circuit board which will provide external clocks and precisely measure the time at which events take place was designed for the Bristol University Gas Spectrometer (BUGS). The board, which was designed to interface both mechanically and electrically to the Computer Automated Measurement and Control (CAMAC) system, has been named the BUGS system clock control. The board's design and use are described.

  2. Tutorial: Clock and Clock Systems Performance Measures

    NASA Technical Reports Server (NTRS)

    Allan, David W.

    1996-01-01

    This tutorial contains basic material - familiar to many. This will be used as a foundation upon which we will build - bringing forth some new material and equations that have been developed especially for this tutorial. These will provide increased understanding toward parameter estimation of clock and clock system's performance. There is a very important International Telecommunications Union (ITU) handbook being prepared at this time which goes much further than this tutorial has time to do. I highly recommend it as an excellent resource document. The final draft is just now being completed, and it should be ready late in 1996. It is an outstanding handbook; Dr. Sydnor proposed to the ITU-R several years ago, and is the editor with my assistance. We have some of the best contributors in the community from around the world who have written the ten chapters in this handbook. The title of the handbook is 'Selection and use of Precise Frequency and Time Systems'. It will be available from the ITU secretariat in Geneva, Switzerland, but NAVTEC Seminars also plans to be a distributor.

  3. Organ specificity in the plant circadian system is explained by different light inputs to the shoot and root clocks.

    PubMed

    Bordage, Simon; Sullivan, Stuart; Laird, Janet; Millar, Andrew J; Nimmo, Hugh G

    2016-10-01

    Circadian clocks allow the temporal compartmentalization of biological processes. In Arabidopsis, circadian rhythms display organ specificity but the underlying molecular causes have not been identified. We investigated the mechanisms responsible for the similarities and differences between the clocks of mature shoots and roots in constant conditions and in light : dark cycles. We developed an imaging system to monitor clock gene expression in shoots and light- or dark-grown roots, modified a recent mathematical model of the Arabidopsis clock and used this to simulate our new data. We showed that the shoot and root circadian clocks have different rhythmic properties (period and amplitude) and respond differently to light quality. The root clock was entrained by direct exposure to low-intensity light, even in antiphase to the illumination of shoots. Differences between the clocks were more pronounced in conditions where light was present than in constant darkness, and persisted in the presence of sucrose. We simulated the data successfully by modifying those parameters of a clock model that are related to light inputs. We conclude that differences and similarities between the shoot and root clocks can largely be explained by organ-specific light inputs. This provides mechanistic insight into the developing field of organ-specific clocks. PMID:27240972

  4. Primary Atomic Clock Reference System

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An artist's concept of the Primary Atomic Clock Reference System (PARCS) plarned to fly on the International Space Station (ISS). PARCS will make even more accurate atomic time available to everyone, from physicists testing Einstein's Theory of Relativity, to hikers using the Global Positioning System to find their way. In ground-based atomic clocks, lasers are used to cool and nearly stop atoms of cesium whose vibrations are used as the time base. The microgravity of space will allow the atoms to be suspended in the clock rather than circulated in an atomic fountain, as required on Earth. PARCS is being developed by the Jet Propulsion Laboratory with principal investigators at the National Institutes of Standards and Technology and the University of Colorado, Boulder. See also No. 0103191

  5. Primary Atomic Clock Reference System

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An artist's concept of the Primary Atomic Clock Reference System (PARCS) plarned to fly on the International Space Station (ISS). PARCS will make even more accurate atomic time available to everyone, from physicists testing Einstein's Theory of Relativity, to hikers using the Global Positioning System to find their way. In ground-based atomic clocks, lasers are used to cool and nearly stop atoms of cesium whose vibrations are used as the time base. The microgravity of space will allow the atoms to be suspended in the clock rather than circulated in an atomic fountain, as required on Earth. PARCS is being developed by the Jet Propulsion Laboratory with principal investigators at the National Institutes of Standards and Technology and the University of Colorado, Boulder. See also No. 0100120.

  6. The plant circadian clock looks like a traditional Japanese clock rather than a modern Western clock

    PubMed Central

    Mizuno, Takeshi; Yamashino, Takafumi

    2015-01-01

    Life cycle adaptation to seasonal changes in photoperiod and ambient temperature is a major determinant of the ecological success behind the widespread domestication of flowering plants. The circadian clock plays a role in the underlying mechanism for adaptation through generating endogenous rhythms that allow plants to adapt and adjust to both the 24 h diurnal rotation and 365 d seasonal revolution. Nevertheless, the mechanism by which the circadian clock tracks seasonal changes in photoperiod and temperature is a longstanding subject in the field. Recently, we have begun to understand the question of how the light and ambient temperature signals feed into the circadian clock transcriptional circuitry in day-night cycles in order to track seasonal changes in photoperiod and ambient temperature.1-4 Our results collectively indicate that the evening complex (EC) nighttime repressor consisting of LUX-ELF3-ELF4 plays a crucial role in this respect. Here, we discuss about these recent studies to add further implications. PMID:26382718

  7. Similarities in the circadian clock and photoperiodism in plants

    PubMed Central

    Song, Young Hun; Ito, Shogo; Imaizumi, Takato

    2010-01-01

    Summary of recent advances Plants utilize circadian clocks to synchronize their physiological and developmental events with daily and yearly changes in the environment. Recent advances in Arabidopsis research have provided a better understanding of the molecular mechanisms of the circadian clock and photoperiodism. One of the most important questions is whether the mechanisms studied in Arabidopsis are conserved in other plants. Homologs of many Arabidopsis clock genes have been identified in various plants and some gene functions have been characterized. It seems that the circadian clocks in plants are similar. Recent success in molecular genetics has also revealed the mechanisms of photoperiodic flowering in cereals. The day-length sensing mechanisms appear to have diverged more between long-day plants and short-day plants than the circadian clock. PMID:20620097

  8. Eliminating Tracking-System Clock Errors

    NASA Technical Reports Server (NTRS)

    Wu, Jiun-Tsong; Bertiger, William I.

    1989-01-01

    Problems of redundancy and correlation avoided. ORTHO computer program eliminates effect of clock errors in differential solutions for positions of users of Global Positioning System (GPS). Main application, elimination of clock errors in tracking system based on GPS. Written in FORTRAN 77.

  9. Clock Laser System for a Strontium Lattice Clock

    NASA Astrophysics Data System (ADS)

    Legero, T.; Lisdat, Ch.; Vellore Winfred, J. S. R.; Schnatz, H.; Grosche, G.; Riehle, F.; Sterr, U.

    2009-04-01

    We describe the setup and the characterization of a 698 nm master-slave diode laser system to probe the 1S0-3P0 clock transition of strontium atoms confined in a 1D optical lattice. The frequency noise and the linewidth of the laser system have been measured with respect to an ultrastable 657 nm diode laser with 1 Hz linewidth. The large frequency difference of more than 25 THz was bridged using a femtosecond fiber comb as transfer oscillator. In a second step the virtual beat was used to establish a phase lock between the narrow line 657 nm laser and the strontium clock laser. This technique allowed to transfer the stability from the 657 nm to the 698 nm laser.

  10. A Compact Model for the Complex Plant Circadian Clock

    PubMed Central

    De Caluwé, Joëlle; Xiao, Qiying; Hermans, Christian; Verbruggen, Nathalie; Leloup, Jean-Christophe; Gonze, Didier

    2016-01-01

    The circadian clock is an endogenous timekeeper that allows organisms to anticipate and adapt to the daily variations of their environment. The plant clock is an intricate network of interlocked feedback loops, in which transcription factors regulate each other to generate oscillations with expression peaks at specific times of the day. Over the last decade, mathematical modeling approaches have been used to understand the inner workings of the clock in the model plant Arabidopsis thaliana. Those efforts have produced a number of models of ever increasing complexity. Here, we present an alternative model that combines a low number of equations and parameters, similar to the very earliest models, with the complex network structure found in more recent ones. This simple model describes the temporal evolution of the abundance of eight clock gene mRNA/protein and captures key features of the clock on a qualitative level, namely the entrained and free-running behaviors of the wild type clock, as well as the defects found in knockout mutants (such as altered free-running periods, lack of entrainment, or changes in the expression of other clock genes). Additionally, our model produces complex responses to various light cues, such as extreme photoperiods and non-24 h environmental cycles, and can describe the control of hypocotyl growth by the clock. Our model constitutes a useful tool to probe dynamical properties of the core clock as well as clock-dependent processes. PMID:26904049

  11. Phase measurement system using a dithered clock

    DOEpatents

    Fairley, C.R.; Patterson, S.R.

    1991-05-28

    A phase measurement system is disclosed which measures the phase shift between two signals by dithering a clock signal and averaging a plurality of measurements of the phase differences between the two signals. 8 figures.

  12. Method and system for downhole clock synchronization

    DOEpatents

    Hall, David R.; Bartholomew, David B.; Johnson, Monte; Moon, Justin; Koehler, Roger O.

    2006-11-28

    A method and system for use in synchronizing at least two clocks in a downhole network are disclosed. The method comprises determining a total signal latency between a controlling processing element and at least one downhole processing element in a downhole network and sending a synchronizing time over the downhole network to the at least one downhole processing element adjusted for the signal latency. Electronic time stamps may be used to measure latency between processing elements. A system for electrically synchronizing at least two clocks connected to a downhole network comprises a controlling processing element connected to a synchronizing clock in communication over a downhole network with at least one downhole processing element comprising at least one downhole clock. Preferably, the downhole network is integrated into a downhole tool string.

  13. Navstar Global Positioning System (GPS) clock program: Present and future

    NASA Technical Reports Server (NTRS)

    Tennant, D. M.

    1981-01-01

    Global Positioning System (GPS) program status are discussed and plans for ensuring the long term continuation of the program are presented. Performance of GPS clocks is presented in terms of on orbit data as portrayed by GPS master control station kalman filter processing. The GPS Clock reliability program is reviewed in depth and future plans fo the overall clock program are published.

  14. Field operations with cesium clocks in HF navigation systems

    NASA Technical Reports Server (NTRS)

    Christy, E. H.; Clayton, D. A.

    1982-01-01

    Networks of HF phase comparison marine navigation stations employing cesium clocks are discussed. The largest permanent network is in the Gulf of Mexico where some fourteen base stations are continuously active and others are activated as needed. These HF phase comparison systems, which operate on a single transmission path, require a clock on the mobile unit as well. Inventory consists of upwards of 70 clocks from two different manufacturers. The maintenance of this network as an operating system requires a coordinated effort involving clock preparation, clock environment control, station performance monitoring and field service.

  15. Clock distribution system for digital computers

    DOEpatents

    Wyman, Robert H.; Loomis, Jr., Herschel H.

    1981-01-01

    Apparatus for eliminating, in each clock distribution amplifier of a clock distribution system, sequential pulse catch-up error due to one pulse "overtaking" a prior clock pulse. The apparatus includes timing means to produce a periodic electromagnetic signal with a fundamental frequency having a fundamental frequency component V'.sub.01 (t); an array of N signal characteristic detector means, with detector means No. 1 receiving the timing means signal and producing a change-of-state signal V.sub.1 (t) in response to receipt of a signal above a predetermined threshold; N substantially identical filter means, one filter means being operatively associated with each detector means, for receiving the change-of-state signal V.sub.n (t) and producing a modified change-of-state signal V'.sub.n (t) (n=1, . . . , N) having a fundamental frequency component that is substantially proportional to V'.sub.01 (t-.theta..sub.n (t) with a cumulative phase shift .theta..sub.n (t) having a time derivative that may be made uniformly and arbitrarily small; and with the detector means n+1 (1.ltoreq.n

  16. ORTHO- ELIMINATION OF TRACKING SYSTEM CLOCK ERRORS

    NASA Technical Reports Server (NTRS)

    Wu, J. T.

    1994-01-01

    ORTHO is part of the Global Positioning System (GPS) being developed by the U.S. Air Force, a navigational system that will use 18 NAVSTAR satellites to broadcast navigation messages and achieve worldwide coverage. The normal positioning technique uses one receiver which receives signals from at least four GPS satellites. For higher accuracy work it is often necessary to use a differential technique in which more than one receiver is used. The geodetic measurement has all receivers on the ground and allows the determination of the relative locations of the ground sites. The main application of the ORTHO program is in the elimination of clock errors in a GPS based tracking system. The measured distance (pseudo-range) from a GPS receiver contains errors due to differences in the receiver and satellite clocks. The conventional way of eliminating clock errors is to difference pseudo-ranges between different GPS satellites and receivers. The Householder transformation used in this program performs a function similar to the conventional single differencing or double differencing. This method avoids the problem of redundancy and correlation encountered in a differencing scheme. It is able to keep all information contained in the measurements within the scope of a least square estimation. For multiple transmitter and receiver GPS tracking network, this method is in general more accurate than the differencing technique. This program assumes that the non-clock measurement partial derivatives for the particular application are computed earlier by another program. With the partial derivatives and information to identify the transmitters and receivers as the input, the program performs the Householder transformation on the partial derivatives. The transformed partials are output by the program and may be used as an input to the filter program in the subsequent estimation process. Clock partial derivatives are generated internally and are not part of the input to the program

  17. System-wide power management control via clock distribution network

    DOEpatents

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  18. Clocking and synchronization circuits in multiprocessor systems

    SciTech Connect

    Jeong, Deog-Kyoon.

    1989-01-01

    Microprocessors based on RISC (Reduced Instruction Set Computer) concepts have demonstrated an ability to provide more computing power at a given level of integration than conventional microprocessors. The next step is multiprocessors composed of RISC processing elements. Communication bandwidth among such microprocessors is critical in achieving efficient hardware utilization. This thesis focuses on the communication capability of VLSI circuits and presents new circuit techniques as a guide to build an interconnection network of VLSI microprocessors. Two of the most prominent problems in a synchronous system, which most of the current computer systems are based on, have been clock skew and synchronization failure. A new concept called self-timed systems solves such problems but has not been accepted in microprocessor implementations yet because of its complex design procedure and increased overhead. With this in mind, this thesis concentrates on a system in which individual synchronous subsystems are connected asynchronously. Synchronous subsystems operate with a better control over clock skew using a phase locked loop (PLL) technique. Communication among subsystems is done asynchronously with a controlled synchronization failure rate. One advantage is that conventional VLSI design methodologies which are more efficient can still be applied. Circuit techniques for PLL-based clock generation are described along with stability criteria. The main objective of the circuit is to realize a zero delay buffer. Experimental results show the feasibility of such circuits in VLSI. Synchronizer circuit configurations in both bipolar and MOS technology that best utilize each device, or overcome the technology limit using a bandwidth doubling technique are shown. Interface techniques including handshake mechanisms in such a system are also described.

  19. Heterogeneity of cellular circadian clocks in intact plants and its correction under light-dark cycles

    PubMed Central

    Muranaka, Tomoaki; Oyama, Tokitaka

    2016-01-01

    Recent advances in single-cell analysis have revealed the stochasticity and nongenetic heterogeneity inherent to cellular processes. However, our knowledge of the actual cellular behaviors in a living multicellular organism is still limited. By using a single-cell bioluminescence imaging technique on duckweed, Lemna gibba, we demonstrate that, under constant conditions, cells in the intact plant work as individual circadian clocks that oscillate with their own frequencies and respond independently to external stimuli. Quantitative analysis uncovered the heterogeneity and instability of cellular clocks and partial synchronization between neighboring cells. Furthermore, we found that cellular clocks in the plant body under light-dark cycles showed a centrifugal phase pattern in which the effect of cell-to-cell heterogeneity in period lengths was almost masked. The inherent heterogeneity in the properties of cellular clocks observed under constant conditions is corrected under light-dark cycles to coordinate the daily rhythms of the plant body. These findings provide a novel perspective of spatiotemporal architectures in the plant circadian system. PMID:27453946

  20. Heterogeneity of cellular circadian clocks in intact plants and its correction under light-dark cycles.

    PubMed

    Muranaka, Tomoaki; Oyama, Tokitaka

    2016-07-01

    Recent advances in single-cell analysis have revealed the stochasticity and nongenetic heterogeneity inherent to cellular processes. However, our knowledge of the actual cellular behaviors in a living multicellular organism is still limited. By using a single-cell bioluminescence imaging technique on duckweed, Lemna gibba, we demonstrate that, under constant conditions, cells in the intact plant work as individual circadian clocks that oscillate with their own frequencies and respond independently to external stimuli. Quantitative analysis uncovered the heterogeneity and instability of cellular clocks and partial synchronization between neighboring cells. Furthermore, we found that cellular clocks in the plant body under light-dark cycles showed a centrifugal phase pattern in which the effect of cell-to-cell heterogeneity in period lengths was almost masked. The inherent heterogeneity in the properties of cellular clocks observed under constant conditions is corrected under light-dark cycles to coordinate the daily rhythms of the plant body. These findings provide a novel perspective of spatiotemporal architectures in the plant circadian system. PMID:27453946

  1. Clocking and synchronization circuits in multiprocessor systems

    SciTech Connect

    Jeong, D.K.

    1989-01-01

    Microprocessors based on RISC (Reduced Instruction Set Computer) concepts have demonstrated an ability to provide more computing power at a given level of integration than conventional microprocessors. The next step is multiprocessors composed of RISC processing elements. Communication bandwidth among such microprocessors is critical in achieving efficient hardware utilization. This thesis focuses on the communication capability of VLSI circuits and presents new circuit techniques as a guide to build an interconnection network of VLSI microprocessors. Circuit techniques for PLL-based clock generation are described along with stability criteria. The main objective of the circuit is to realize a zero delay buffer. Experimental results show the feasibility of such circuits in VLSI. Synchronizer circuit configurations in both bipolar and MOS technology that best utilize each device, or overcome the technology limit using a bandwidth doubling technique are shown. Interface techniques including handshake mechanisms in such a system are also described.

  2. A Novel Method of Clock Synchronization in Distributed System

    NASA Astrophysics Data System (ADS)

    Li, G.; Niu, M. J.; Cai, Y. S.; Chen, X.; Ren, Y. Q.

    2016-03-01

    Time synchronization plays an important role in application of aircraft flying formation and constellation autonomous navigation, etc. In application of clock synchronization in the network system, it is not always true that each observed node may be interconnected, therefore, it is difficult to achieve time synchronization of network system with high precision in the condition that a certain node can only obtain the measurement information of clock from one of its corresponding neighbors, and cannot obtain from other nodes. According to this special problem, a novel method of high precision time synchronization of network system has been proposed. In this paper, we regard each clock as a node in the network system, and based on different distributed topology definition, the following three control algorithms of time synchronization under three circumstances have been designed: without a master clock (reference clock), with a master clock (reference clock), and with a fixed communication delay in the network system. The validity of the designed clock synchronization protocol has been proved both theoretically and through numerical simulation.

  3. Circadian clock system in the pineal gland.

    PubMed

    Fukada, Yoshitaka; Okano, Toshiyuki

    2002-02-01

    The pineal gland is a neuroendocrine organ that functions as a central circadian oscillator in a variety of nonmammalian vertebrates. In many cases, the pineal gland retains photic input and endocrinal-output pathways both linked tightly to the oscillator. This contrasts well with the mammalian pineal gland equipped only with the output of melatonin production that is subject to neuronal regulation by central circadian oscillator located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Molecular studies on animal clock genes were performed first in Drosophila and later developed in rodents. More recently, clock genes such as Per, Cry, Clock, and Bmal have been found in a variety of vertebrate clock structures including the avian pineal gland. The profiles of the temporal change of the clock gene expression in the avian pineal gland are more similar to those in the mammalian SCN rather than to those in the mammalian pineal gland. Avian pineal gland and mammalian SCN seem to share a fundamental molecular framework of the clock oscillator composed of a transcription/translation-based autoregulatory feedback loop. The circadian time-keeping mechanism also requires several post-translational events, such as protein translocation and degradation processes, in which protein phosphorylation plays a very important role for the stable 24-h cycling of the oscillator and/or the photic-input pathway for entrainment of the clock. PMID:11890455

  4. Master Clock and Time-Signal-Distribution System

    NASA Technical Reports Server (NTRS)

    Tjoelker, Robert; Calhoun, Malcolm; Kuhnle, Paul; Sydnor, Richard; Lauf, John

    2007-01-01

    A timing system comprising an electronic master clock and a subsystem for distributing time signals from the master clock to end users is undergoing development to satisfy anticipated timing requirements of NASA s Deep Space Network (DSN) for the next 20 to 30 years. This system has a modular, flexible, expandable architecture that is easier to operate and maintain than the present frequency and timing subsystem (FTS).

  5. Fault-tolerant clock synchronization validation methodology. [in computer systems

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Palumbo, Daniel L.; Johnson, Sally C.

    1987-01-01

    A validation method for the synchronization subsystem of a fault-tolerant computer system is presented. The high reliability requirement of flight-crucial systems precludes the use of most traditional validation methods. The method presented utilizes formal design proof to uncover design and coding errors and experimentation to validate the assumptions of the design proof. The experimental method is described and illustrated by validating the clock synchronization system of the Software Implemented Fault Tolerance computer. The design proof of the algorithm includes a theorem that defines the maximum skew between any two nonfaulty clocks in the system in terms of specific system parameters. Most of these parameters are deterministic. One crucial parameter is the upper bound on the clock read error, which is stochastic. The probability that this upper bound is exceeded is calculated from data obtained by the measurement of system parameters. This probability is then included in a detailed reliability analysis of the system.

  6. Atomic clock augmentation for receivers using the Global Positioning System

    NASA Astrophysics Data System (ADS)

    Kline, Paul Andrew

    For receivers using the Global Positioning System (GPS), it is standard procedure to treat the receiver clock bias from GPS time as an unknown. This requires four range measurements to the satellites in order to solve for three dimensional position and clock offset. If the receiver clock could be synchronized with GPS time, the extra range measurement would not be necessary. To achieve this synchronization, a stable frequency reference must be incorporated into the GPS user set. This concept is known as clock aiding or clock augmentation of GPS receivers. Clock augmentation increases the availability of the navigation function because only three GPS satellites are required. Also, it is shown that clock augmentation improves vertical accuracy by reducing the vertical dilution of precision (VDOP), which is a unitless multiplier that translates range measurement error into vertical position error. This improvement in vertical accuracy is particularly beneficial for applications involving final approach and landing of aircraft using GPS, because GPS typically provides better horizontal accuracy than vertical accuracy. The benefits of atomic clock augmentation are limited by factors that cause a loss of synchronization either between the receiver and GPS time, or between ground station and airborne receivers processing GPS data in differential mode (DGPS). Among the error sources that cause a clock offset are antenna rotation, hardware drifts due to temperature variations, and relativistic effects for GPS receivers on moving platforms. Antenna rotation and temperature effects are addressed and supported by experimental data. It is shown that two particular relativity terms thought to be missing from GPS receiver algorithms are not evident in data collected during a flight test experiment. Upon addressing the error sources, the dissertation concludes with analysis of DGPS data collected during a flight test at the Federal Aviation Administration (FAA) Tech Center in

  7. Reference clock parameters for digital communications systems applications

    NASA Technical Reports Server (NTRS)

    Kartaschoff, P.

    1981-01-01

    The basic parameters relevant to the design of network timing systems describe the random and systematic time departures of the system elements, i.e., master (or reference) clocks, transmission links, and other clocks controlled over the links. The quantitative relations between these parameters were established and illustrated by means of numerical examples based on available measured data. The examples were limited to a simple PLL control system but the analysis can eventually be applied to more sophisticated systems at the cost of increased computational effort.

  8. General flat four-dimensional world pictures and clock systems

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.; Underwood, J. A.

    1978-01-01

    We explore the mathematical structure and the physical implications of a general four-dimensional symmetry framework which is consistent with the Poincare-Einstein principle of relativity for physical laws and with experiments. In particular, we discuss a four-dimensional framework in which all observers in different frames use one and the same grid of clocks. The general framework includes special relativity and a recently proposed new four-dimensional symmetry with a nonuniversal light speed as two special simple cases. The connection between the properties of light propagation and the convention concerning clock systems is also discussed, and is seen to be nonunique within the four-dimensional framework.

  9. Elimination of clock errors in a GPD based tracking system

    NASA Technical Reports Server (NTRS)

    Wu, J.-T.

    1984-01-01

    This paper discusses the estimation problem for a GPS based tracking system which is used for low earth satellite orbit determination and for geodynamic research. The clock errors involved in the measurements are eliminated in order to obtain a solution. Two methods used to eliminate the clock errors, the double differencing method and the linear combination method are discussed and compared. The accuracy of the solution, the redundancy and the correlation of the differenced or the combined data are investigated. Numerical results of the two methods are presented.

  10. Validation of a fault-tolerant clock synchronization system

    NASA Technical Reports Server (NTRS)

    Butler, R. W.; Johnson, S. C.

    1984-01-01

    A validation method for the synchronization subsystem of a fault tolerant computer system is investigated. The method combines formal design verification with experimental testing. The design proof reduces the correctness of the clock synchronization system to the correctness of a set of axioms which are experimentally validated. Since the reliability requirements are often extreme, requiring the estimation of extremely large quantiles, an asymptotic approach to estimation in the tail of a distribution is employed.

  11. Digital clocks: simple Boolean models can quantitatively describe circadian systems

    PubMed Central

    Akman, Ozgur E.; Watterson, Steven; Parton, Andrew; Binns, Nigel; Millar, Andrew J.; Ghazal, Peter

    2012-01-01

    The gene networks that comprise the circadian clock modulate biological function across a range of scales, from gene expression to performance and adaptive behaviour. The clock functions by generating endogenous rhythms that can be entrained to the external 24-h day–night cycle, enabling organisms to optimally time biochemical processes relative to dawn and dusk. In recent years, computational models based on differential equations have become useful tools for dissecting and quantifying the complex regulatory relationships underlying the clock's oscillatory dynamics. However, optimizing the large parameter sets characteristic of these models places intense demands on both computational and experimental resources, limiting the scope of in silico studies. Here, we develop an approach based on Boolean logic that dramatically reduces the parametrization, making the state and parameter spaces finite and tractable. We introduce efficient methods for fitting Boolean models to molecular data, successfully demonstrating their application to synthetic time courses generated by a number of established clock models, as well as experimental expression levels measured using luciferase imaging. Our results indicate that despite their relative simplicity, logic models can (i) simulate circadian oscillations with the correct, experimentally observed phase relationships among genes and (ii) flexibly entrain to light stimuli, reproducing the complex responses to variations in daylength generated by more detailed differential equation formulations. Our work also demonstrates that logic models have sufficient predictive power to identify optimal regulatory structures from experimental data. By presenting the first Boolean models of circadian circuits together with general techniques for their optimization, we hope to establish a new framework for the systematic modelling of more complex clocks, as well as other circuits with different qualitative dynamics. In particular, we

  12. Clock synchronization of a large multiprocessor system in the presence of malicious faults

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Ramanathan, P.

    1987-01-01

    An interconnection algorithm is presented for achieving clock synchronization in a multiprocessor system. The system is assumed to be maliciously faulty, i.e., some processors are out of synchronization and lie about their clock state to other intragroup or intergroup processors. A phase-locked clock network design is proposed which groups the clocks in the system into diverse clusters. The clusters are then treated as single clock units from the perspective of the network. The algorithm minimizes the number of interconnections while permitting synchronization of large multiprocessor systems controlling time-critical applications such as aircraft, nuclear reactors and industrial processes.

  13. System and method for clock synchronization and position determination using entangled photon pairs

    NASA Technical Reports Server (NTRS)

    Shih, Yanhua (Inventor)

    2010-01-01

    A system and method for clock synchronization and position determination using entangled photon pairs is provided. The present invention relies on the measurement of the second order correlation function of entangled states. Photons from an entangled photon source travel one-way to the clocks to be synchronized. By analyzing photon registration time histories generated at each clock location, the entangled states allow for high accuracy clock synchronization as well as high accuracy position determination.

  14. Clocks for airborne systems. [performance of rubidium oscillators

    NASA Technical Reports Server (NTRS)

    Houlding, N.

    1982-01-01

    The potential performance of compact oscillators, needed for the development of accurate clocks for future airborne systems (such as Identification Friend or Foe schemes), is addressed. In particular, extensive testing of rubidium oscillators manufactured by Efratom is discussed. The results indicate that an accuracy of better than 10 microseconds should be achievable in tactical aircraft provided that appropriate measures are adopted to counter the many environmental factors. In a favorable environment a stability of better than 5 x 10 to the -13th power for one day is achievable with present commercial units, but improvements are required to suit operation in an aircraft. With further development of rubidium controlled clocks the ultimate limitation on time accuracy in aircraft will probably be associated with time dissemination, maintenance difficulties and doctrinal hurdles.

  15. Byzantine-fault tolerant self-stabilizing protocol for distributed clock synchronization systems

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R. (Inventor)

    2010-01-01

    A rapid Byzantine self-stabilizing clock synchronization protocol that self-stabilizes from any state, tolerates bursts of transient failures, and deterministically converges within a linear convergence time with respect to the self-stabilization period. Upon self-stabilization, all good clocks proceed synchronously. The Byzantine self-stabilizing clock synchronization protocol does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period.

  16. The climate system as a ticking clock

    SciTech Connect

    Kerr, R.A.

    1990-09-14

    Climate researchers are picking up a more or less regular 2-year beat to the global climate system - one that seems to be heard from every quarter. The most recently discovered example of this climatic ticking - and perhaps the most intriguing - comes from the very core of El Nino. Researchers have found that some aspects of this cycle of alternating warm and relatively cold waters along the equatorial Pacific have a tendency to repeat every 2 years. The overlying winds pulsate at the same pace, as do the globe-girdling effects of the El Nino cycle, from winter warmth in Alaska to heavy rains in Peru and drought in Australia. The climatic ticking in the tropical Pacific is hardly as reliable as the changing of the seasons. Sometimes it is muted, and occasionally it skips a beat. But some researchers nevertheless see hope of using it in the prediction of El Nino and its global effects. In any case, climate researchers are eager to determine what makes El Nino tick. The answer could be an underlying pacemaker of this crucial atmospheric cycle.

  17. An Adaptive Method for Reducing Clock Skew in an Accumulative Z-Axis Interconnect System

    NASA Technical Reports Server (NTRS)

    Bolotin, Gary; Boyce, Lee

    1997-01-01

    This paper will present several methods for adjusting clock skew variations that occur in a n accumulative z-axis interconnect system. In such a system, delay between modules in a function of their distance from one another. Clock distribution in a high-speed system, where clock skew must be kept to a minimum, becomes more challenging when module order is variable before design.

  18. Clock Controller For Ac Self-Timing Analysis Of Logic System

    DOEpatents

    Lo, Tinchee; Flanagan, John D.

    2004-05-18

    A clock controller and clock generating method are provided for AC self-test timing analysis of a logic system. The controller includes latch circuitry which receives a DC input signal at a data input, and a pair of continuous out-of-phase clock signals at capture and launch clock inputs thereof. The latch circuitry outputs two overlapping pulses responsive to the DC input signal going high. The two overlapping pulses are provided to waveform shaper circuitry which produces therefrom two non-overlapping pulses at clock speed of the logic system to be tested. The two non-overlapping pulses are a single pair of clock pulses which facilitate AC self-test timing analysis of the logic system.

  19. Time maintenance of user clocks via the tracking and data relay satellite system

    NASA Technical Reports Server (NTRS)

    Whitworth, G.; Mcintyre, J. W.; Downs, R. E.

    1983-01-01

    A system is described which uses the Tracking and Data Relay Satellite System (TDRSS) itself to compare the user satellite clock with a clock at the White Sands station that is referenced to Universal Time Coordinated (UTC). No command of the spacecraft by the system is required, and actual on-board clock corrections are made by the spacecraft control center at its discretion. Computer models were constructed using basic orbital parameters for user and TDRS satellites. With only first-order corrections and simple averaging techniques for constant clock rates, error measurement precision of better than one microsecond was obtained. More sophisticated computations should allow considerable improvement over this.

  20. BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system

    PubMed Central

    Kondratov, Roman V.; Chernov, Mikhail V.; Kondratova, Anna A.; Gorbacheva, Victoria Y.; Gudkov, Andrei V.; Antoch, Marina P.

    2003-01-01

    Mammalian CLOCK and BMAL1 are two members of bHLH-PAS-containing family of transcription factors that represent the positive elements of circadian autoregulatory feedback loop. In the form of a heterodimer, they drive transcription from E-box enhancer elements in the promoters of responsive genes. We have examined abundance, posttranslational modifications, cellular localization of endogenous and ectopically expressed CLOCK and BMAL1 proteins. Nuclear/cytoplasm distribution of CLOCK was found to be under circadian regulation. Analysis of subcellular localization of CLOCK in embryo fibroblasts of mice carrying different germ-line circadian mutations showed that circadian regulation of nuclear accumulation of CLOCK is BMAL1-dependent. Formation of CLOCK/BMAL1 complex following ectopic coexpression of both proteins is followed by their codependent phosphorylation, which is tightly coupled to CLOCK nuclear translocation and degradation. This binding-dependent coregulation is specific for CLOCK/BMAL1 interaction, as no other PAS domain protein that can form a complex with either CLOCK or BMAL1 was able to induce similar effects. Importantly, all posttranslational events described in our study are coupled with active transactivation complex formation, which argues for their significant functional role. Altogether, these results provide evidence for an additional level of circadian system control, which is based on regulation of transcriptional activity or/and availability of CLOCK/BMAL1 complex. PMID:12897057

  1. System and method for adaptively deskewing parallel data signals relative to a clock

    DOEpatents

    Jenkins, Philip Nord; Cornett, Frank N.

    2008-10-07

    A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in detected skew.

  2. System and method for adaptively deskewing parallel data signals relative to a clock

    DOEpatents

    Jenkins, Philip Nord; Cornett, Frank N.

    2011-10-04

    A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in detected skew.

  3. Rhythms of Life: The Plant Circadian Clock - (By Katherine Hubbard and Antony Dodd).

    PubMed

    2016-04-01

    Summaryplantcell;28/4/tpc.116.tt0416/FIG1F1fig1This teaching tool explores circadian rhythms in plants. The topic is presented as a series of concepts illustrated by examples, including the architecture of circadian clocks and the connections between the oscillator and circadian-regulated processes such as metabolism and flowering. The Teaching Tool introduces some of the techniques used to investigate circadian biology and explores how understanding circadian rhythms could lead to crop improvement. PMID:27169989

  4. Ground control system for the midcourse space experiment UTC clock

    NASA Technical Reports Server (NTRS)

    Dragonette, Richard

    1994-01-01

    One goal of the Midcourse Space Experiment (MSX) spacecraft Operations Planning Center is to maintain the onboard satellite UTC clock (UTC(MSX)) to within 1 millisecond of UTC(APL) (the program requirement is 10 msec). The UTC(MSX) clock employs as its time base an APL built 5 MHz quartz oscillator, which is expected to have frequency instabilities (aging rate + drift rate + frequency offset) that will cause the clock to drift approximately two to ten milliseconds per day. The UTC(MSX) clock can be advanced or retarded by the APL MSX satellite ground control center by integer multiples of 1 millisecond. The MSX Operations Planning Center is developing software which records the drift of UTC(MSX) relative to UTC(APL) and which schedules the time of day and magnitude of UTC(MSX) clock updates up to 48 hours in advance. Because of the manner in which MSX spacecraft activities are scheduled, MSX clock updates are planned 24 to 48 hours in advance, and stored in the satellite's computer controller for later execution. Data will be collected on the drift of UTC(MSX) relative to UTC(APL) over a three to five day period. Approximately six times per day, the time offset between UTC(MSX) and UTC(APL) will be measured by APL with a resolution of less than 100 microseconds. From this data a second order analytical model of the clock's drift will be derived. This model will be used to extrapolate the offset of the MSX clock in time from the present to 48 hours in the future. MSX clock updates will be placed on the spacecraft's daily schedule whenever the predicted clock offset exceeds 0.5 milliseconds. The paper includes a discussion of how the empirical model of the MSX clock is derived from satellite telemetry data, as well as the algorithm used to schedule MSX clock updates based on the model.

  5. Verge and Foliot Clock Escapement: A Simple Dynamical System

    ERIC Educational Resources Information Center

    Denny, Mark

    2010-01-01

    The earliest mechanical clocks appeared in Europe in the 13th century. From about 1250 CE to 1670 CE, these simple clocks consisted of a weight suspended from a rope or chain that was wrapped around a horizontal axle. To tell time, the weight must fall with a slow uniform speed, but, under the action of gravity alone, such a suspended weight would…

  6. Test of an orbiting hydrogen maser clock system using laser time transfer

    NASA Astrophysics Data System (ADS)

    Vessot, Robert F. C.; Mattison, Edward M.; Nystrom, G. U.; Decher, Rudolph

    1992-07-01

    We describe a joint Smithsonian Astrophysical Laboratory/National Aeronautics and Space Administration (SAO/NASA) program for flight testing a atomic hydrogen maser clock system designed for long-term operation in space. The clock system will be carried by a shuttle-launched EURECA spacecraft. Comparisons with earth clocks to measure the clock's long-term frequency stability (tau = 10(exp 4) seconds) will be made using laser time transfer from existing NASA laser tracking stations. We describe the design of the maser clock and its control systems, and the laser timing technique. We describe the precision of station time synchronization and the limitations in the comparison between the earth and space time scales owing to gravitational and relativistic effects. We will explore the implications of determining the spacecraft's location by an on-board Global Position System (GPS) receiver, and of using microwave techniques for time and frequency transfer.

  7. Test of an orbiting hydrogen maser clock system using laser time transfer

    NASA Technical Reports Server (NTRS)

    Vessot, Robert F. C.; Mattison, Edward M.; Nystrom, G. U.; Decher, Rudolph

    1992-01-01

    We describe a joint Smithsonian Astrophysical Laboratory/National Aeronautics and Space Administration (SAO/NASA) program for flight testing a atomic hydrogen maser clock system designed for long-term operation in space. The clock system will be carried by a shuttle-launched EURECA spacecraft. Comparisons with earth clocks to measure the clock's long-term frequency stability (tau = 10(exp 4) seconds) will be made using laser time transfer from existing NASA laser tracking stations. We describe the design of the maser clock and its control systems, and the laser timing technique. We describe the precision of station time synchronization and the limitations in the comparison between the earth and space time scales owing to gravitational and relativistic effects. We will explore the implications of determining the spacecraft's location by an on-board Global Position System (GPS) receiver, and of using microwave techniques for time and frequency transfer.

  8. Clock signal requirement for high-frequency, high dynamic range acquisition systems

    SciTech Connect

    Viscor, Ivo; Halamek, Josef; Villa, Marco

    2005-11-15

    Analog-to-digital converters (ADC's) are increasingly replacing mixers in frequency conversion schemes. To achieve superior performances, in terms of bandwidth and dynamic range, a nearly ideal ADC clock is needed, with a spectral purity higher than the reference signal of the classical mixing scheme. These requirements of spectral purity for the ADC clock are discussed by analyzing in detail the nonuniform sampling process and by characterizing an actual acquisition system. The effect of clock phase imperfections on the output is proportional to the input frequency over sampling frequency ratio. Moreover, at the output we may have a multiple folding of the phase jitter spectrum. These effects are illustrated by three sets of measurements performed using our system: transfer of spurious clock components, aliasing of these components, and transfer of clock phase noise.

  9. When the circadian clock meets the melanin pigmentary system.

    PubMed

    Slominski, Andrzej T; Hardeland, Rüdiger; Reiter, Russel J

    2015-04-01

    Silencing of BMAL1 and PER1 stimulates melanogenic activity of follicular and epidermal melanocytes, indicating a novel role for peripheral circadian clock processes in the regulation of melanin pigmentation. Linking the expression levels of BMAL1/PER1 with changes in melanogenesis opens exciting opportunities to study the role of the local molecular clock in modulation of melanocyte functions in the hair follicle and the epidermis with attendant effects on epidermal barrier functions in general. PMID:25785947

  10. Systems Biology of the Clock in Neurospora crassa

    PubMed Central

    Dong, Wubei; Tang, Xiaojia; Yu, Yihai; Nilsen, Roger; Kim, Rosemary; Griffith, James; Arnold, Jonathan; Schüttler, H.-Bernd

    2008-01-01

    A model-driven discovery process, Computing Life, is used to identify an ensemble of genetic networks that describe the biological clock. A clock mechanism involving the genes white-collar-1 and white-collar-2 (wc-1 and wc-2) that encode a transcriptional activator (as well as a blue-light receptor) and an oscillator frequency (frq) that encodes a cyclin that deactivates the activator is used to guide this discovery process through three cycles of microarray experiments. Central to this discovery process is a new methodology for the rational design of a Maximally Informative Next Experiment (MINE), based on the genetic network ensemble. In each experimentation cycle, the MINE approach is used to select the most informative new experiment in order to mine for clock-controlled genes, the outputs of the clock. As much as 25% of the N. crassa transcriptome appears to be under clock-control. Clock outputs include genes with products in DNA metabolism, ribosome biogenesis in RNA metabolism, cell cycle, protein metabolism, transport, carbon metabolism, isoprenoid (including carotenoid) biosynthesis, development, and varied signaling processes. Genes under the transcription factor complex WCC ( = WC-1/WC-2) control were resolved into four classes, circadian only (612 genes), light-responsive only (396), both circadian and light-responsive (328), and neither circadian nor light-responsive (987). In each of three cycles of microarray experiments data support that wc-1 and wc-2 are auto-regulated by WCC. Among 11,000 N. crassa genes a total of 295 genes, including a large fraction of phosphatases/kinases, appear to be under the immediate control of the FRQ oscillator as validated by 4 independent microarray experiments. Ribosomal RNA processing and assembly rather than its transcription appears to be under clock control, suggesting a new mechanism for the post-transcriptional control of clock-controlled genes. PMID:18769678

  11. Synchronization of motor controller and PC system clocks

    NASA Astrophysics Data System (ADS)

    Kittmann, Frank; Bertram, Thomas; Briegel, Florian; Mohr, Lars; Berwein, Jürgen

    2010-07-01

    The power of the Large Binocular Telescope (LBT) with its two 8.4m primary mirrors sharing a common mount will unfold its full potential with the LINC-NIRVANA (LN) instrument. LINC-NIRVANA is a German-Italian beam combiner for the LBT and will interfere the light from the two 8.4m mirrors of the LBT in Fizeau mode. More than 140 motors have to be handled by custom developed Motor Controllers (MoCons). One important feature of the MoCon is the support of externally computed trajectories. Motion profiles provide information on the movement of the motor along a defined path over a certain period of time. Such profiles can be uploaded to the MoCon over Ethernet and can be started at a specific time. For field derotation it is critical that the derotation trajectories are executed with a very precise relative and absolute timing. This raises the problem of the synchronization of the MoCon internal clock with the system time of the servers that are hosting LINCNIRVANA's Instrument Control Software. The MoCon time should be known by the servers with an uncertainty of few milliseconds in order to match the start time of the motion profile and the field rotation trajectory. In this paper we will discuss how to synchronize the MoCon internal time and the PC system time.

  12. Circadian clock adjustment to plant iron status depends on chloroplast and phytochrome function

    PubMed Central

    Salomé, Patrice A; Oliva, Michele; Weigel, Detlef; Krämer, Ute

    2013-01-01

    Plant chloroplasts are not only the main cellular location for storage of elemental iron (Fe), but also the main site for Fe, which is incorporated into chlorophyll, haem and the photosynthetic machinery. How plants measure internal Fe levels is unknown. We describe here a new Fe-dependent response, a change in the period of the circadian clock. In Arabidopsis, the period lengthens when Fe becomes limiting, and gradually shortens as external Fe levels increase. Etiolated seedlings or light-grown plants treated with plastid translation inhibitors do not respond to changes in Fe supply, pointing to developed chloroplasts as central hubs for circadian Fe sensing. Phytochrome-deficient mutants maintain a short period even under Fe deficiency, stressing the role of early light signalling in coupling the clock to Fe responses. Further mutant and pharmacological analyses suggest that known players in plastid-to-nucleus signalling do not directly participate in Fe sensing. We propose that the sensor governing circadian Fe responses defines a new retrograde pathway that involves a plastid-encoded protein that depends on phytochromes and the functional state of chloroplasts. PMID:23241948

  13. Self-stabilizing byzantine-fault-tolerant clock synchronization system and method

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R. (Inventor)

    2012-01-01

    Systems and methods for rapid Byzantine-fault-tolerant self-stabilizing clock synchronization are provided. The systems and methods are based on a protocol comprising a state machine and a set of monitors that execute once every local oscillator tick. The protocol is independent of specific application specific requirements. The faults are assumed to be arbitrary and/or malicious. All timing measures of variables are based on the node's local clock and thus no central clock or externally generated pulse is used. Instances of the protocol are shown to tolerate bursts of transient failures and deterministically converge with a linear convergence time with respect to the synchronization period as predicted.

  14. Spaceborne clock system: Some alternatives for a proposed NASA experiment

    NASA Technical Reports Server (NTRS)

    Beehler, R. E.

    1971-01-01

    A spaceborne clock experiment is proposed with the objectives of improving international time and frequency comparisons, studying precise one-way Doppler tracking and one-way ranging techniques, performing relativistic studies, and developing new atomic frequency standards technology. Various alternatives are considered for accomplishing these goals, including the use of existing satellite and earth-based time dissemination systems as well as the development of a new frequency standard for this specific application. One conclusion is that several attractive alternatives already exist for meeting the goal of improved time and frequency dissemination. However, to achieve all the other 4 goals at the NASA-stated levels of accuracy, a spaceborne atomic frequency standard may be required. An analysis of achievements to date with quartz oscillators, rubidium standards, cesium beam standards, hydrogen masers, and several other possibilities leads to the conclusion that cesium and rubidium standards offer the best choices for the experiment as proposed by NASA. The greatest obstacle to a spaceborne atomic standard appears to be its electrical power requirements.

  15. Stochastic models of cellular circadian rhythms in plants help to understand the impact of noise on robustness and clock structure.

    PubMed

    Guerriero, Maria L; Akman, Ozgur E; van Ooijen, Gerben

    2014-01-01

    Rhythmic behavior is essential for plants; for example, daily (circadian) rhythms control photosynthesis and seasonal rhythms regulate their life cycle. The core of the circadian clock is a genetic network that coordinates the expression of specific clock genes in a circadian rhythm reflecting the 24-h day/night cycle. Circadian clocks exhibit stochastic noise due to the low copy numbers of clock genes and the consequent cell-to-cell variation: this intrinsic noise plays a major role in circadian clocks by inducing more robust oscillatory behavior. Another source of noise is the environment, which causes variation in temperature and light intensity: this extrinsic noise is part of the requirement for the structural complexity of clock networks. Advances in experimental techniques now permit single-cell measurements and the development of single-cell models. Here we present some modeling studies showing the importance of considering both types of noise in understanding how plants adapt to regular and irregular light variations. Stochastic models have proven useful for understanding the effect of regular variations. By contrast, the impact of irregular variations and the interaction of different noise sources are less well studied. PMID:25374576

  16. Evolution of photoperiodic time measurement is independent of the circadian clock in the pitcher-plant mosquito, Wyeomyia smithii

    PubMed Central

    Emerson, Kevin J.; Dake, Sabrina J.; Bradshaw, William E.; Holzapfel, Christina M.

    2014-01-01

    For over 70 years, researchers have debated whether the ability to use day length as a cue for the timing of seasonal events (photoperiodism) is related to the endogenous circadian clock that regulates the timing of daily events. Models of photoperiodism include two components: (1) a photoperiodic timer that measures the length of the day, and (2) a photoperiodic counter that elicits the downstream photoperiodic response after a threshold number of days has been counted. Herein, we show that there is no geographical pattern of genetic association between the expression of the circadian clock and the photoperiodic timer or counter. We conclude that the photoperiodic timer and counter have evolved independently of the circadian clock in the pitcher-plant mosquito Wyeomyia smithii and hence, the evolutionary modification of photoperiodism throughout the range of W. smithii has not been causally mediated by a corresponding evolution of the circadian clock. PMID:19190920

  17. Evolution of photoperiodic time measurement is independent of the circadian clock in the pitcher-plant mosquito, Wyeomyia smithii.

    PubMed

    Emerson, Kevin J; Dake, Sabrina J; Bradshaw, William E; Holzapfel, Christina M

    2009-04-01

    For over 70 years, researchers have debated whether the ability to use day length as a cue for the timing of seasonal events (photoperiodism) is related to the endogenous circadian clock that regulates the timing of daily events. Models of photoperiodism include two components: (1) a photoperiodic timer that measures the length of the day, and (2) a photoperiodic counter that elicits the downstream photoperiodic response after a threshold number of days has been counted. Herein, we show that there is no geographical pattern of genetic association between the expression of the circadian clock and the photoperiodic timer or counter. We conclude that the photoperiodic timer and counter have evolved independently of the circadian clock in the pitcher-plant mosquito Wyeomyia smithii and hence, the evolutionary modification of photoperiodism throughout the range of W. smithii has not been causally mediated by a corresponding evolution of the circadian clock. PMID:19190920

  18. Circadian rhythmicity and photoperiodism in the pitcher-plant mosquito: can the seasonal timer evolve independently of the circadian clock?

    PubMed

    Bradshaw, W E; Holzapfel, C M; Mathias, D

    2006-04-01

    The two major rhythms of the biosphere are daily and seasonal; the two major adaptations to these rhythms are the circadian clock, mediating daily activities, and the photoperiodic timer, mediating seasonal activities. The mechanistic connection between the circadian clock and the photoperiodic timer remains unresolved. Herein, we show that the rhythmic developmental response to exotic light:dark cycles, usually used to infer a causal connection between the circadian clock and the photoperiodic timer, has evolved independently of the photoperiodic timer in the pitcher-plant mosquito Wyeomyia smithii across the climatic gradient of eastern North America from Florida to Canada and from the coastal plain to the mountains. We conclude that the photoperiodic timing of seasonal events can evolve independently of the daily circadian clock. PMID:16671002

  19. Automatic Clock and Time Signal System of the Astronomical Agency in East Asia Area

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sam

    2009-09-01

    We analysed the old automatic clock and time signal system that was used by the national astronomical agency in East Asian Area. Jagyeongnu is a kind of water clock that was operated by the flowing water in Joseon Dynasty. Seowoongwan managed the water clock so as to keep the standard time system in the dynasty from the 16th year (1434) of King Sejong's reign. In 1438 the Okru that was invented in the period. Such kind of clock system already was used in China, which was Shui yun i hsiang t'ai (?) in 1092. During the period Joseon Dynasty, China and Japan had been kept the time system that one day is divided into 12 shin (?2?) or 100 gak (?). However detailed part of the system had a little difference among the three countries. Though the whole system of water clock in Joseon had manufactured on the basis of Chinese, it had been gradually developed by own method and idea. In this study we show the historical records of the standard time keeping system in East Asian history. And then we can inform materials on the structure and functional devises for the purpose of new restoration models about the automatic clock and time system.

  20. System and method for adaptively deskewing parallel data signals relative to a clock

    DOEpatents

    Jenkins, Philip Nord; Cornett, Frank N.

    2006-04-18

    A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. Each of the plurality of delayed signals is compared to a reference signal to detect changes in the skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in the detected skew.

  1. Running on time: the role of circadian clocks in the musculoskeletal system

    PubMed Central

    Dudek, Michal; Meng, Qing-Jun

    2014-01-01

    The night and day cycle governs the circadian (24 hourly) rhythm of activity and rest in animals and humans. This is reflected in daily changes of the global gene expression pattern and metabolism, but also in the local physiology of various tissues. A central clock in the brain co-ordinates the rhythmic locomotion behaviour, as well as synchronizing various local oscillators, such as those found in the musculoskeletal system. It has become increasingly recognized that the internal molecular clocks in cells allow a tissue to anticipate the rhythmic changes in their local environment and the specific demands of that tissue. Consequently, the majority of the rhythmic clock controlled genes and pathways are tissue specific. The concept of the tissue-specific function of circadian clocks is further supported by the diverse musculoskeletal phenotypes in mice with deletions or mutations of various core clock components, ranging from increased bone mass, dwarfism, arthropathy, reduced muscle strength and tendon calcification. The present review summarizes the current understanding of the circadian clocks in muscle, bone, cartilage and tendon tissues, with particular focus on the evidence of circadian rhythms in tissue physiology, their entrainment mechanisms and disease links, and the tissue-specific clock target genes/pathways. Research in this area holds strong potential to advance our understanding of how circadian rhythms control the health and disease of the musculoskeletal tissues, which has major implications in diseases associated with advancing age. It could also have potential implications in sports performance and sports medicine. PMID:25195734

  2. Running on time: the role of circadian clocks in the musculoskeletal system.

    PubMed

    Dudek, Michal; Meng, Qing-Jun

    2014-10-01

    The night and day cycle governs the circadian (24 hourly) rhythm of activity and rest in animals and humans. This is reflected in daily changes of the global gene expression pattern and metabolism, but also in the local physiology of various tissues. A central clock in the brain co-ordinates the rhythmic locomotion behaviour, as well as synchronizing various local oscillators, such as those found in the musculoskeletal system. It has become increasingly recognized that the internal molecular clocks in cells allow a tissue to anticipate the rhythmic changes in their local environment and the specific demands of that tissue. Consequently, the majority of the rhythmic clock controlled genes and pathways are tissue specific. The concept of the tissue-specific function of circadian clocks is further supported by the diverse musculoskeletal phenotypes in mice with deletions or mutations of various core clock components, ranging from increased bone mass, dwarfism, arthropathy, reduced muscle strength and tendon calcification. The present review summarizes the current understanding of the circadian clocks in muscle, bone, cartilage and tendon tissues, with particular focus on the evidence of circadian rhythms in tissue physiology, their entrainment mechanisms and disease links, and the tissue-specific clock target genes/pathways. Research in this area holds strong potential to advance our understanding of how circadian rhythms control the health and disease of the musculoskeletal tissues, which has major implications in diseases associated with advancing age. It could also have potential implications in sports performance and sports medicine. PMID:25195734

  3. Mammalian circadian clock system: Molecular mechanisms for pharmaceutical and medical sciences.

    PubMed

    Okamura, Hitoshi; Doi, Masao; Fustin, Jean-Michel; Yamaguchi, Yoshiaki; Matsuo, Masahiro

    2010-07-31

    An internal circadian (from the Latin "circa" meaning "about" and "dien" meaning "day") clock has been found across kingdoms of life, a testimony that circadian rhythms are a basic feature of life on earth. Physiologically relevant circadian time is generated at the level of transcription-(post)translation feedback loop of clock genes, which machinery can be found in most cells throughout the body. Lesions of the hypothalamic suprachiasmatic nucleus (SCN) abolish clock oscillations in the body, indicating thereby that rhythm generation is a hierarchial system with the SCN at the top. Disrupting this exquisitely harmonious system causes abnormal expression of cell-type specific clock-controlled genes, as revealed by the etiology of life-style related diseases such as hypertension. PMID:20620185

  4. Verge and Foliot Clock Escapement: A Simple Dynamical System

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2010-09-01

    The earliest mechanical clocks appeared in Europe in the 13th century. From about 1250 CE to 1670 CE, these simple clocks consisted of a weight suspended from a rope or chain that was wrapped around a horizontal axle. To tell time, the weight must fall with a slow uniform speed, but, under the action of gravity alone, such a suspended weight would accelerate. To prevent this acceleration, an escapement mechanism was required. The best such escapement mechanism was called the verge and foliot escapement, and it was so successful that it lasted until about 1800 CE. These simple weight-driven clocks with verge and foliot escapements were accurate enough to mark the hours but not minutes or seconds. From 1670, significant improvements were made (principally by introducing pendulums and the newly invented anchor escapement) that justified the introduction of hands to mark minutes, and then seconds. By the end of the era of mechanical clocks, in the first half of the 20th century, these much-studied and much-refined machines were accurate to a millisecond a day.

  5. A Byzantine-Fault Tolerant Self-Stabilizing Protocol for Distributed Clock Synchronization Systems

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2006-01-01

    Embedded distributed systems have become an integral part of safety-critical computing applications, necessitating system designs that incorporate fault tolerant clock synchronization in order to achieve ultra-reliable assurance levels. Many efficient clock synchronization protocols do not, however, address Byzantine failures, and most protocols that do tolerate Byzantine failures do not self-stabilize. Of the Byzantine self-stabilizing clock synchronization algorithms that exist in the literature, they are based on either unjustifiably strong assumptions about initial synchrony of the nodes or on the existence of a common pulse at the nodes. The Byzantine self-stabilizing clock synchronization protocol presented here does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The proposed protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period. Proofs of the correctness of the protocol as well as the results of formal verification efforts are reported.

  6. Diurnal oscillations of soybean circadian clock and drought responsive genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system i...

  7. Model selection reveals control of cold signalling by evening-phased components of the plant circadian clock

    PubMed Central

    Keily, Jack; MacGregor, Dana R; Smith, Robert W; Millar, Andrew J; Halliday, Karen J; Penfield, Steven

    2013-01-01

    Circadian clocks confer advantages by restricting biological processes to certain times of day through the control of specific phased outputs. Control of temperature signalling is an important function of the plant oscillator, but the architecture of the gene network controlling cold signalling by the clock is not well understood. Here we use a model ensemble fitted to time-series data and a corrected Akaike Information Criterion (AICc) analysis to extend a dynamic model to include the control of the key cold-regulated transcription factors C-REPEAT BINDING FACTORs 1–3 (CBF1, CBF2, CBF3). AICc was combined with in silico analysis of genetic perturbations in the model ensemble, and selected a model that predicted mutant phenotypes and connections between evening-phased circadian clock components and CBF3 transcriptional control, but these connections were not shared by CBF1 and CBF2. In addition, our model predicted the correct gating of CBF transcription by cold only when the cold signal originated from the clock mechanism itself, suggesting that the clock has an important role in temperature signal transduction. Our data shows that model selection could be a useful method for the expansion of gene network models. PMID:23909712

  8. Defining the robust behaviour of the plant clock gene circuit with absolute RNA timeseries and open infrastructure

    PubMed Central

    Flis, Anna; Fernández, Aurora Piñas; Zielinski, Tomasz; Mengin, Virginie; Sulpice, Ronan; Stratford, Kevin; Hume, Alastair; Pokhilko, Alexandra; Southern, Megan M.; Seaton, Daniel D.; McWatters, Harriet G.; Stitt, Mark; Halliday, Karen J.; Millar, Andrew J.

    2015-01-01

    Our understanding of the complex, transcriptional feedback loops in the circadian clock mechanism has depended upon quantitative, timeseries data from disparate sources. We measure clock gene RNA profiles in Arabidopsis thaliana seedlings, grown with or without exogenous sucrose, or in soil-grown plants and in wild-type and mutant backgrounds. The RNA profiles were strikingly robust across the experimental conditions, so current mathematical models are likely to be broadly applicable in leaf tissue. In addition to providing reference data, unexpected behaviours included co-expression of PRR9 and ELF4, and regulation of PRR5 by GI. Absolute RNA quantification revealed low levels of PRR9 transcripts (peak approx. 50 copies cell−1) compared with other clock genes, and threefold higher levels of LHY RNA (more than 1500 copies cell−1) than of its close relative CCA1. The data are disseminated from BioDare, an online repository for focused timeseries data, which is expected to benefit mechanistic modelling. One data subset successfully constrained clock gene expression in a complex model, using publicly available software on parallel computers, without expert tuning or programming. We outline the empirical and mathematical justification for data aggregation in understanding highly interconnected, dynamic networks such as the clock, and the observed design constraints on the resources required to make this approach widely accessible. PMID:26468131

  9. Defining the robust behaviour of the plant clock gene circuit with absolute RNA timeseries and open infrastructure.

    PubMed

    Flis, Anna; Fernández, Aurora Piñas; Zielinski, Tomasz; Mengin, Virginie; Sulpice, Ronan; Stratford, Kevin; Hume, Alastair; Pokhilko, Alexandra; Southern, Megan M; Seaton, Daniel D; McWatters, Harriet G; Stitt, Mark; Halliday, Karen J; Millar, Andrew J

    2015-10-01

    Our understanding of the complex, transcriptional feedback loops in the circadian clock mechanism has depended upon quantitative, timeseries data from disparate sources. We measure clock gene RNA profiles in Arabidopsis thaliana seedlings, grown with or without exogenous sucrose, or in soil-grown plants and in wild-type and mutant backgrounds. The RNA profiles were strikingly robust across the experimental conditions, so current mathematical models are likely to be broadly applicable in leaf tissue. In addition to providing reference data, unexpected behaviours included co-expression of PRR9 and ELF4, and regulation of PRR5 by GI. Absolute RNA quantification revealed low levels of PRR9 transcripts (peak approx. 50 copies cell(-1)) compared with other clock genes, and threefold higher levels of LHY RNA (more than 1500 copies cell(-1)) than of its close relative CCA1. The data are disseminated from BioDare, an online repository for focused timeseries data, which is expected to benefit mechanistic modelling. One data subset successfully constrained clock gene expression in a complex model, using publicly available software on parallel computers, without expert tuning or programming. We outline the empirical and mathematical justification for data aggregation in understanding highly interconnected, dynamic networks such as the clock, and the observed design constraints on the resources required to make this approach widely accessible. PMID:26468131

  10. RighTime: A real time clock correcting program for MS-DOS-based computer systems

    NASA Technical Reports Server (NTRS)

    Becker, G. Thomas

    1993-01-01

    A computer program is described which effectively eliminates the misgivings of the DOS system clock in PC/AT-class computers. RighTime is a small, sophisticated memory-resident program that automatically corrects both the DOS system clock and the hardware 'CMOS' real time clock (RTC) in real time. RighTime learns what corrections are required without operator interaction beyond the occasional accurate time set. Both warm (power on) and cool (power off) errors are corrected, usually yielding better than one part per million accuracy in the typical desktop computer with no additional hardware, and RighTime increases the system clock resolution from approximately 0.0549 second to 0.01 second. Program tools are also available which allow visualization of RighTime's actions, verification of its performance, display of its history log, and which provide data for graphing of the system clock behavior. The program has found application in a wide variety of industries, including astronomy, satellite tracking, communications, broadcasting, transportation, public utilities, manufacturing, medicine, and the military.

  11. System-level identification of transcriptional circuits underlying mammalian circadian clocks.

    PubMed

    Ueda, Hiroki R; Hayashi, Satoko; Chen, Wenbin; Sano, Motoaki; Machida, Masayuki; Shigeyoshi, Yasufumi; Iino, Masamitsu; Hashimoto, Seiichi

    2005-02-01

    Mammalian circadian clocks consist of complexly integrated regulatory loops, making it difficult to elucidate them without both the accurate measurement of system dynamics and the comprehensive identification of network circuits. Toward a system-level understanding of this transcriptional circuitry, we identified clock-controlled elements on 16 clock and clock-controlled genes in a comprehensive surveillance of evolutionarily conserved cis elements and measurement of their transcriptional dynamics. Here we report the roles of E/E' boxes, DBP/E4BP4 binding elements and RevErbA/ROR binding elements in nine, seven and six genes, respectively. Our results indicate that circadian transcriptional circuits are governed by two design principles: regulation of E/E' boxes and RevErbA/ROR binding elements follows a repressor-precedes-activator pattern, resulting in delayed transcriptional activity, whereas regulation of DBP/E4BP4 binding elements follows a repressor-antiphasic-to-activator mechanism, which generates high-amplitude transcriptional activity. Our analysis further suggests that regulation of E/E' boxes is a topological vulnerability in mammalian circadian clocks, a concept that has been functionally verified using in vitro phenotype assay systems. PMID:15665827

  12. Tissue-specific clocks in Arabidopsis show asymmetric coupling

    PubMed Central

    Endo, Motomu; Shimizu, Hanako; Nohales, Maria A.; Araki, Takashi; Kay, Steve A.

    2014-01-01

    Many organisms rely on a circadian clock system to adapt to daily and seasonal environmental changes. The mammalian circadian clock consists of a central clock in the suprachiasmatic nucleus that is tightly coupled and synchronizes other clocks in peripheral tissues1, 2. Plants also have a circadian clock, but plant circadian clock function has long been assumed to be uncoupled3. Only a few studies have been able to show a weak, local coupling among cells4, 5, 6, 7. Here, by implementing two novel techniques, we have performed a comprehensive tissue-specific analysis of leaf tissues, and we have discovered that the vasculature and mesophyll clocks asymmetrically regulate each other in Arabidopsis. The circadian clock in the vasculature has characteristics distinct from other tissues, cycles robustly without environmental cues, and affects circadian clock regulation in other tissues. Furthermore, we found that vasculature-enriched genes that are rhythmic are preferentially expressed in the evening, whereas rhythmic mesophyll-enriched genes tend to be expressed in the morning. Our results set the stage for a deeper understanding of how the vasculature circadian clock in plants regulates key physiological responses such as flowering time. PMID:25363766

  13. Cycling of clock genes entrained to the solar rhythm enables plants to tell time: data from arabidopsis

    PubMed Central

    Yeang, Hoong-Yeet

    2015-01-01

    Background and Aims An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm. Methods Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N–H cycles. Key Results Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle. Conclusions Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to ‘anticipate’ dawn, dusk or mid-day respectively, independently of the photoperiod. PMID:26070640

  14. Hepatic circadian-clock system altered by insulin resistance, diabetes and insulin sensitizer in mice.

    PubMed

    Tseng, Huey-Ling; Yang, Shu-Chuan; Yang, Shih-Hsien; Shieh, Kun-Ruey

    2015-01-01

    Circadian rhythms are intrinsic rhythms that are coordinated with the rotation of the Earth and are also generated by a set of circadian-clock genes at the intracellular level. Growing evidence suggests a strong link between circadian rhythms and energy metabolism; however, the fundamental mechanisms remain unclear. In the present study, neonatal streptozotocin (STZ)-treated mice were used to model the molecular and physiological progress from insulin resistance to diabetes. Two-day-old male C57BL/6 mice received a single injection of STZ and were tested for non-obese, hyperglycemic and hyperinsulinemic conditions in the early stage, insulin resistance in the middle stage, and diabetes in the late stage. Gene expression levels of the hepatic circadian-clock system were examined by real-time quantitative PCR. Most of the components of the hepatic circadian-clock gene expression system, such as the mRNAs of Bmal1 (brain and muscle Arnt-like protein-1), Per2 (period 2) and Cry1 (cryptochrome 1), were elevated, and circadian patterns were retained in the early and middle stages of insulin-resistant conditions. The insulin sensitizer, rosiglitazone, returns the physiological and molecular changes associated with the diabetic phenotype to normal levels through peroxisome proliferator-activated receptor γ (PPARγ) rather than PPARα. Early and chronic treatment with rosiglitazone has been shown to be effective to counter the diabetic condition. Over time, this effect acts to attenuate the increased gene expression levels of the hepatic circadian-clock system and delay the severity of diabetic conditions. Together, these results support an essential role for the hepatic circadian-clock system in the coordinated regulation and/or response of metabolic pathways. PMID:25799429

  15. Hepatic Circadian-Clock System Altered by Insulin Resistance, Diabetes and Insulin Sensitizer in Mice

    PubMed Central

    Yang, Shih-Hsien; Shieh, Kun-Ruey

    2015-01-01

    Circadian rhythms are intrinsic rhythms that are coordinated with the rotation of the Earth and are also generated by a set of circadian-clock genes at the intracellular level. Growing evidence suggests a strong link between circadian rhythms and energy metabolism; however, the fundamental mechanisms remain unclear. In the present study, neonatal streptozotocin (STZ)-treated mice were used to model the molecular and physiological progress from insulin resistance to diabetes. Two-day-old male C57BL/6 mice received a single injection of STZ and were tested for non-obese, hyperglycemic and hyperinsulinemic conditions in the early stage, insulin resistance in the middle stage, and diabetes in the late stage. Gene expression levels of the hepatic circadian-clock system were examined by real-time quantitative PCR. Most of the components of the hepatic circadian-clock gene expression system, such as the mRNAs of Bmal1 (brain and muscle Arnt-like protein-1), Per2 (period 2) and Cry1 (cryptochrome 1), were elevated, and circadian patterns were retained in the early and middle stages of insulin-resistant conditions. The insulin sensitizer, rosiglitazone, returns the physiological and molecular changes associated with the diabetic phenotype to normal levels through peroxisome proliferator-activated receptor γ (PPARγ) rather than PPARα. Early and chronic treatment with rosiglitazone has been shown to be effective to counter the diabetic condition. Over time, this effect acts to attenuate the increased gene expression levels of the hepatic circadian-clock system and delay the severity of diabetic conditions. Together, these results support an essential role for the hepatic circadian-clock system in the coordinated regulation and/or response of metabolic pathways. PMID:25799429

  16. Evaluating the Effect of Global Positioning System (GPS) Satellite Clock Error via GPS Simulation

    NASA Astrophysics Data System (ADS)

    Sathyamoorthy, Dinesh; Shafii, Shalini; Amin, Zainal Fitry M.; Jusoh, Asmariah; Zainun Ali, Siti

    2016-06-01

    This study is aimed at evaluating the effect of Global Positioning System (GPS) satellite clock error using GPS simulation. Two conditions of tests are used; Case 1: All the GPS satellites have clock errors within the normal range of 0 to 7 ns, corresponding to pseudorange error range of 0 to 2.1 m; Case 2: One GPS satellite suffers from critical failure, resulting in clock error in the pseudorange of up to 1 km. It is found that increase of GPS satellite clock error causes increase of average positional error due to increase of pseudorange error in the GPS satellite signals, which results in increasing error in the coordinates computed by the GPS receiver. Varying average positional error patterns are observed for the each of the readings. This is due to the GPS satellite constellation being dynamic, causing varying GPS satellite geometry over location and time, resulting in GPS accuracy being location / time dependent. For Case 1, in general, the highest average positional error values are observed for readings with the highest PDOP values, while the lowest average positional error values are observed for readings with the lowest PDOP values. For Case 2, no correlation is observed between the average positional error values and PDOP, indicating that the error generated is random.

  17. Measurement and simulation of clock errors from resource-constrained embedded systems

    NASA Astrophysics Data System (ADS)

    Collett, M. A.; Matthews, C. E.; Esward, T. J.; Whibberley, P. B.

    2010-07-01

    Resource-constrained embedded systems such as wireless sensor networks are becoming increasingly sought-after in a range of critical sensing applications. Hardware for such systems is typically developed as a general tool, intended for research and flexibility. These systems often have unexpected limitations and sources of error when being implemented for specific applications. We investigate via measurement and simulation the output of the onboard clock of a Crossbow MICAz testbed, comprising a quartz oscillator accessed via a combination of hardware and software. We show that the clock output available to the user suffers a number of instabilities and errors. Using a simple software simulation of the system based on a series of nested loops, we identify the source of each component of the error, finding that there is a 7.5 × 10-6 probability that a given oscillation from the governing crystal will be miscounted, resulting in frequency jitter over a 60 µHz range.

  18. An Empirical Clock to Measure the Dynamical Age of Stellar Systems

    NASA Astrophysics Data System (ADS)

    Dalessandro, E.

    2014-08-01

    Blue Straggler Stars (BSS) are among the brightest and more massive stars in globular clusters (GCs). For this reason they represent an ideal tool to probe the dynamical evolution of these stellar systems. Here I show, following the results by Ferraro et al. (2012), that the BSS radial distribution can be used as a powerful indicator of the cluster dynamical age. In fact on the basis of their BSS radial distribution shape, GCs can be efficiently grouped in different families corresponding to the different dynamical stages reached by the stellar systems. This allows one to define a first empirical clock, the dynamical clock, able to measure the dynamical age of a stellar system from pure observational quantities.

  19. Slot clock recovery in optical PPM communication systems with avalanche photodiode photodetectors

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1989-01-01

    Slot timing recovery in a direct-detection optical PPM communication system can be achieved by processing the photodetector output waveform with a nonlinear device whose output forms the input to a phase-locked loop. The choice of a simple transition detector as the nonlinearity is shown to give satisfactory synchronization performance. The rms phase error of the recovered slot clock and the effect of slot timing jitter on the bit error probability were directly measured. The experimental system consisted of an AlGaAs laser diode (wavelength = 834 nm) and a silicon avalanche photodiode photodetector. The system used Q = 4 PPM signaling and operated at a source data rate of 25 Mbits/s. The mathematical model developed to compute the rms phase error of the recovered clock is shown to be in good agreement with results of actual measurements of phase errors. The use of the recovered slot clock in the receiver resulted in no significant degradation in receiver sensitivity compared to a system with perfect slot timing. The system achieved a bit error probability of 10 to the -6th at a received optical signal energy of 55 detected photons per information bit.

  20. A quantum many-body spin system in an optical lattice clock.

    PubMed

    Martin, M J; Bishof, M; Swallows, M D; Zhang, X; Benko, C; von-Stecher, J; Gorshkov, A V; Rey, A M; Ye, Jun

    2013-08-01

    Strongly interacting quantum many-body systems arise in many areas of physics, but their complexity generally precludes exact solutions to their dynamics. We explored a strongly interacting two-level system formed by the clock states in (87)Sr as a laboratory for the study of quantum many-body effects. Our collective spin measurements reveal signatures of the development of many-body correlations during the dynamical evolution. We derived a many-body Hamiltonian that describes the experimental observation of atomic spin coherence decay, density-dependent frequency shifts, severely distorted lineshapes, and correlated spin noise. These investigations open the door to further explorations of quantum many-body effects and entanglement through use of highly coherent and precisely controlled optical lattice clocks. PMID:23929976

  1. A compact ultranarrow high-power laser system for experiments with 578 nm ytterbium clock transition

    SciTech Connect

    Cappellini, G.; Lombardi, P.; Mancini, M.; Pagano, G.; Pizzocaro, M.; Fallani, L.; Catani, J.

    2015-07-15

    In this paper, we present the realization of a compact, high-power laser system able to excite the ytterbium clock transition at 578 nm. Starting from an external-cavity laser based on a quantum dot chip at 1156 nm with an intra-cavity electro-optic modulator, we were able to obtain up to 60 mW of visible light at 578 nm via frequency doubling. The laser is locked with a 500 kHz bandwidth to an ultra-low-expansion glass cavity stabilized at its zero coefficient of thermal expansion temperature through an original thermal insulation and correction system. This laser allowed the observation of the clock transition in fermionic {sup 173}Y b with a <50 Hz linewidth over 5 min, limited only by a residual frequency drift of some 0.1 Hz/s.

  2. A compact ultranarrow high-power laser system for experiments with 578 nm ytterbium clock transition

    NASA Astrophysics Data System (ADS)

    Cappellini, G.; Lombardi, P.; Mancini, M.; Pagano, G.; Pizzocaro, M.; Fallani, L.; Catani, J.

    2015-07-01

    In this paper, we present the realization of a compact, high-power laser system able to excite the ytterbium clock transition at 578 nm. Starting from an external-cavity laser based on a quantum dot chip at 1156 nm with an intra-cavity electro-optic modulator, we were able to obtain up to 60 mW of visible light at 578 nm via frequency doubling. The laser is locked with a 500 kHz bandwidth to an ultra-low-expansion glass cavity stabilized at its zero coefficient of thermal expansion temperature through an original thermal insulation and correction system. This laser allowed the observation of the clock transition in fermionic 173Y b with a <50 Hz linewidth over 5 min, limited only by a residual frequency drift of some 0.1 Hz/s.

  3. Resetting Biological Clocks

    ERIC Educational Resources Information Center

    Winfree, Arthur T.

    1975-01-01

    Reports on experiments conducted on two biological clocks, in organisms in the plant and animal kingdoms, which indicate that biological oscillation can be arrested by a single stimulus of a definite strength delivered at the proper time. (GS)

  4. Clock performance as a critical parameter in navigation satellite systems

    NASA Technical Reports Server (NTRS)

    Anderle, R. J.

    1978-01-01

    The high performance of available oscillators has permitted the development of invaluable navigation and geodetic satellite systems. However, still higher performance oscillators would further improve the accuracy or flexibility of the systems.

  5. THE mPER2 CLOCK GENE MODULATES COCAINE ACTIONS IN THE MOUSE CIRCADIAN SYSTEM

    PubMed Central

    Brager, Allison J.; Stowie, Adam C.; Prosser, Rebecca A.; Glass, J. David

    2014-01-01

    Cocaine is a potent disruptor of photic and non-photic pathways for circadian entrainment of the master circadian clock of the suprachiasmatic nucleus (SCN). These actions of cocaine likely involve its modulation of molecular (clock gene) components for SCN clock timekeeping. At present, however, the physiological basis of such an interaction is unclear. To address this question, we compared photic and non-photic phase-resetting responses between wild-type (WT) and Per2 mutant mice expressing nonfunctional PER2 protein to systemic and intra-SCN cocaine administrations. In the systemic trials, cocaine was administered i.p. (20 mg/kg) either at midday or prior to a light pulse in the early night to assess its non-photic and photic behavioral phase-resetting actions, respectively. In the intra-SCN trial, cocaine was administered by reverse microdialysis at midday to determine if the SCN is a direct target for its non-photic phase-resetting action. Non-photic phase-advancing responses to i.p. cocaine at midday were significantly (~3.5-fold) greater in Per2 mutants than WTs. However, the phase-advancing action of intra-SCN cocaine perfusion at midday did not differ between genotypes. In the light pulse trial, Per2 mutants exhibited larger photic phase-delays than did WTs, and the attenuating action of cocaine on this response was proportionately larger than in WTs. These data indicate that the Per2 clock gene is a potent modulator of cocaine’s actions in the circadian system. With regard to non-photic phase-resetting, the SCN is confirmed as a direct target of cocaine action; however, Per2 modulation of this effect likely occurs outside of the SCN. PMID:23333842

  6. Verification of fault-tolerant clock synchronization systems. M.S. Thesis - College of William and Mary, 1992

    NASA Technical Reports Server (NTRS)

    Miner, Paul S.

    1993-01-01

    A critical function in a fault-tolerant computer architecture is the synchronization of the redundant computing elements. The synchronization algorithm must include safeguards to ensure that failed components do not corrupt the behavior of good clocks. Reasoning about fault-tolerant clock synchronization is difficult because of the possibility of subtle interactions involving failed components. Therefore, mechanical proof systems are used to ensure that the verification of the synchronization system is correct. In 1987, Schneider presented a general proof of correctness for several fault-tolerant clock synchronization algorithms. Subsequently, Shankar verified Schneider's proof by using the mechanical proof system EHDM. This proof ensures that any system satisfying its underlying assumptions will provide Byzantine fault-tolerant clock synchronization. The utility of Shankar's mechanization of Schneider's theory for the verification of clock synchronization systems is explored. Some limitations of Shankar's mechanically verified theory were encountered. With minor modifications to the theory, a mechanically checked proof is provided that removes these limitations. The revised theory also allows for proven recovery from transient faults. Use of the revised theory is illustrated with the verification of an abstract design of a clock synchronization system.

  7. A meeting of two chronobiological systems: circadian proteins Period1 and BMAL1 modulate the human hair cycle clock.

    PubMed

    Al-Nuaimi, Yusur; Hardman, Jonathan A; Bíró, Tamás; Haslam, Iain S; Philpott, Michael P; Tóth, Balázs I; Farjo, Nilofer; Farjo, Bessam; Baier, Gerold; Watson, Rachel E B; Grimaldi, Benedetto; Kloepper, Jennifer E; Paus, Ralf

    2014-03-01

    The hair follicle (HF) is a continuously remodeled mini organ that cycles between growth (anagen), regression (catagen), and relative quiescence (telogen). As the anagen-to-catagen transformation of microdissected human scalp HFs can be observed in organ culture, it permits the study of the unknown controls of autonomous, rhythmic tissue remodeling of the HF, which intersects developmental, chronobiological, and growth-regulatory mechanisms. The hypothesis that the peripheral clock system is involved in hair cycle control, i.e., the anagen-to-catagen transformation, was tested. Here we show that in the absence of central clock influences, isolated, organ-cultured human HFs show circadian changes in the gene and protein expression of core clock genes (CLOCK, BMAL1, and Period1) and clock-controlled genes (c-Myc, NR1D1, and CDKN1A), with Period1 expression being hair cycle dependent. Knockdown of either BMAL1 or Period1 in human anagen HFs significantly prolonged anagen. This provides evidence that peripheral core clock genes modulate human HF cycling and are an integral component of the human hair cycle clock. Specifically, our study identifies BMAL1 and Period1 as potential therapeutic targets for modulating human hair growth. PMID:24005054

  8. Molecular clocks and the early evolution of metazoan nervous systems.

    PubMed

    Wray, Gregory A

    2015-12-19

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation. PMID:26554040

  9. Circadian Stress Regimes Affect the Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in Cytokinin-Deficient Arabidopsis Plants.

    PubMed

    Nitschke, Silvia; Cortleven, Anne; Iven, Tim; Feussner, Ivo; Havaux, Michel; Riefler, Michael; Schmülling, Thomas

    2016-07-01

    The circadian clock helps plants measure daylength and adapt to changes in the day-night rhythm. We found that changes in the light-dark regime triggered stress responses, eventually leading to cell death, in leaves of Arabidopsis thaliana plants with reduced cytokinin levels or defective cytokinin signaling. Prolonged light treatment followed by a dark period induced stress and cell death marker genes while reducing photosynthetic efficiency. This response, called circadian stress, is also characterized by altered expression of clock and clock output genes. In particular, this treatment strongly reduced the expression of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Intriguingly, similar changes in gene expression and cell death were observed in clock mutants lacking proper CCA1 and LHY function. Circadian stress caused strong changes in reactive oxygen species- and jasmonic acid (JA)-related gene expression. The activation of the JA pathway, involving the accumulation of JA metabolites, was crucial for the induction of cell death, since the cell death phenotype was strongly reduced in the jasmonate resistant1 mutant background. We propose that adaptation to circadian stress regimes requires a normal cytokinin status which, acting primarily through the AHK3 receptor, supports circadian clock function to guard against the detrimental effects of circadian stress. PMID:27354555

  10. Circadian Stress Regimes Affect the Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in Cytokinin-Deficient Arabidopsis Plants[OPEN

    PubMed Central

    Nitschke, Silvia; Cortleven, Anne; Iven, Tim; Havaux, Michel; Schmülling, Thomas

    2016-01-01

    The circadian clock helps plants measure daylength and adapt to changes in the day-night rhythm. We found that changes in the light-dark regime triggered stress responses, eventually leading to cell death, in leaves of Arabidopsis thaliana plants with reduced cytokinin levels or defective cytokinin signaling. Prolonged light treatment followed by a dark period induced stress and cell death marker genes while reducing photosynthetic efficiency. This response, called circadian stress, is also characterized by altered expression of clock and clock output genes. In particular, this treatment strongly reduced the expression of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Intriguingly, similar changes in gene expression and cell death were observed in clock mutants lacking proper CCA1 and LHY function. Circadian stress caused strong changes in reactive oxygen species- and jasmonic acid (JA)-related gene expression. The activation of the JA pathway, involving the accumulation of JA metabolites, was crucial for the induction of cell death, since the cell death phenotype was strongly reduced in the jasmonate resistant1 mutant background. We propose that adaptation to circadian stress regimes requires a normal cytokinin status which, acting primarily through the AHK3 receptor, supports circadian clock function to guard against the detrimental effects of circadian stress. PMID:27354555

  11. The development of the hardware for studying biological clock systems under microgravity conditions, using scorpions as animal models

    NASA Astrophysics Data System (ADS)

    Serafini, L.; Viganò, W.; Donati, A.; Porciani, M.; Zolesi, V.; Schulze-Varnholt, D.; Manieri, P.; El-Din Sallam, A.; Schmäh, M.; Horn, E. R.

    2007-02-01

    The study of internal clock systems of scorpions in weightless conditions is the goal of the SCORPI experiment. SCORPI was selected for flight on the International Space Station (ISS) and will be mounted in the European facility BIOLAB, the European Space Agency (ESA) laboratory designed to support biological experiments on micro-organisms, cells, tissue, cultures, small plants and small invertebrates. This paper outlines the main features of a breadboard designed and developed in order to allow the analysis of critical aspects of the experiment. It is a complete tool to simulate the experiment mission on ground and it can be customised, adapted and tuned to the scientific requirements. The paper introduces the SCORPI-T experiment which represents an important precursor for the success of the SCORPI on BIOLAB. The capabilities of the hardware developed show its potential use for future similar experiments in space.

  12. MIMO equalization optimized for baud rate clock recovery in coherent 112 Gbit/sec DP-QPSK metro systems

    NASA Astrophysics Data System (ADS)

    Gorshtein, Albert; Sadot, Dan; Dorman, Guy

    2015-03-01

    A novel MIMO equalization architecture optimized for baud rate clock recovery (BCR-MIMO) in coherent 112 Gbit/sec dual polarization quadrature phase shift keying (DP-QPSK) metro systems is proposed. This architecture is designed to decouple between multiple-input-multiple-output (MIMO) equalization and clock recovery (CR) loops, avoiding the interaction between them. The decoupling between the two loops is achieved, while maintaining similar MIMO equalizer performance, as compared to the butterfly-structured equalizer.

  13. GCFR plant control system

    SciTech Connect

    Estrine, E.A.; Greiner, H.G.

    1980-05-01

    A plant control system is being designed for a gas-cooled fast breeder reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. The load control portion of the plant control system provides stable automatic (closed-loop) control of the plant over the 25% to 100% load range. Simulation results are presented to demonstrate load control system performance. The results show that the plant is controllable at full load with the control system structure selected, but gain scheduling is required to achieve desired performance over the load range.

  14. Plant uptake-assisted round-the-clock photocatalysis for complete purification of aquaculture wastewater using sunlight.

    PubMed

    Bian, Zhenfeng; Cao, Fenglei; Zhu, Jian; Li, Hexing

    2015-02-17

    A novel reactor equipped with solar batteries, Bi2O3/TiO2 film photocatalyst, and celery plant was designed and used for purification of aquaculture wastewater. The Bi2O3/TiO2 film photocatalyst started photocatalytic degradation of organonitrogen compounds under irradiation of sunlight. Meanwhile, the solar batteries absorbed and converted excess sunlight into electric energy and then started UV lamps at night, leading to round-the-clock photocatalysis. Subsequently, the inorganic nitrogen species including NH4(+), NO2(-), and NO3(-) resulting from photocatalytic degradation of the organonitrogen compounds could subsequently be uptaken by the celery plant as the fertilizer to reduce the secondary pollution. It was found that, after 24 h circulation, both organonitrogen compounds and NO2(-) species were completely removed, while NH4(+) and NO3(-) contents also decreased by 30% and 50%, respectively. The reactor could be used repetitively, showing a good potential in practical application. PMID:25625860

  15. Early results from a prototype VLBI clock monitoring system. [Deep Space Network

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Madrid, G. A.

    1979-01-01

    Four sets of experiments were conducted to measure the relative epoch offsets between atomic clocks in California, Australia, and Spain by means of very long baseline interferometry (VLBI). The experiments were conducted using an incomplete R & D VLBI system with a number of inherent limitations. The results indicate that the measurement objective of epoch offset to 10 nanoseconds will be met. Tables show the measured offset, the residual to fit, and the square root Allan variance. Graphs show the rate change and the rate reset.

  16. Stop and restart of granular clock in a vibrated compartmentalized bidisperse granular system

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Yi; Hu, Mao-Bin; Jiang, Rui; Wu, Yong-Hong

    2013-01-01

    This paper studies a bidisperse granular mixture consisting of two species of stainless steel spheres in a vertically vibrated compartmentalized container. The experiments show that with proper vibration acceleration, the granular clock stops when horizontal segregation of the large spheres residing in the far end from the barrier wall occurs. When the segregation is broken, the granular clock restarts. We present the phase diagrams of vibration acceleration versus container width and small particle number, which exhibits three different regions, namely, clustering state, stop-restart of the granular clock, and the granular clock. A generalized flux model is proposed to reproduce the phenomenon of stop and restart of the granular clock.

  17. Plant Phenotype Characterization System

    SciTech Connect

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  18. Circadian Clocks and Metabolism

    PubMed Central

    Marcheva, Biliana; Ramsey, Kathryn M.; Peek, Clara B.; Affinati, Alison; Maury, Eleonore; Bass, Joseph

    2014-01-01

    Circadian clocks maintain periodicity in internal cycles of behavior, physiology, and metabolism, enabling organisms to anticipate the 24-h rotation of the Earth. In mammals, circadian integration of metabolic systems optimizes energy harvesting and utilization across the light/dark cycle. Disruption of clock genes has recently been linked to sleep disorders and to the development of cardiometabolic disease. Conversely, aberrant nutrient signaling affects circadian rhythms of behavior. This chapter reviews the emerging relationship between the molecular clock and metabolic systems and examines evidence that circadian disruption exerts deleterious consequences on human health. PMID:23604478

  19. Highly reliable optical system for a rubidium space cold atom clock.

    PubMed

    Ren, Wei; Sun, Yanguang; Wang, Bin; Xia, Wenbing; Qu, Qiuzhi; Xiang, Jingfeng; Dong, Zuoren; Lü, Desheng; Liu, Liang

    2016-05-01

    We describe a highly reliable optical system designed for a rubidium space cold atom clock (SCAC), presenting its design, key technologies, and optical components. All of the optical and electronic components are integrated onto an optimized two-sided 300  mm×290  mm×30  mm optical bench. The compact optical structure and special thermal design ensure that the optical system can pass all of the space environmental qualification tests including both thermal vacuum and mechanical tests. To verify its performance, the optical system is carefully checked before and after each test. The results indicate that this optical system is suitably robust for the space applications for which the rubidium SCAC was built. PMID:27140378

  20. Power Plant Systems Analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Yang, Y. Y.

    1973-01-01

    Three basic thermodynamic cycles of advanced nuclear MHD power plant systems are studied. The effect of reactor exit temperature and space radiator temperature on the overall thermal efficiency of a regenerative turbine compressor power plant system is shown. The effect of MHD pressure ratio on plant efficiency is also described, along with the dependence of MHD power output, compressor power requirement, turbine power output, mass flow rate of H2, and overall plant efficiency on the reactor exit temperature for a specific configuration.

  1. The JPL near-real-time VLBI system and its application to clock synchronization and earth orientation measurements

    NASA Technical Reports Server (NTRS)

    Callahan, P. S.; Eubanks, T. M.; Roth, M. G.; Steppe, J. A.; Esposito, P. B.

    1983-01-01

    The JPL near-real-time VLBI system called Block I is discussed. The hardware and software of the system are described, and the Time and Earth Motion Precision Observations (TEMPO) which utilize Block I are discussed. These observations are designed to provide interstation clock synchronization to 10 nsec and to determine earth orientation (UT1 and polar motion - UTPM) to 30 cm or better in each component. TEMPO results for clock synchronization and UTPM are presented with data from the July 1980-August 1981 analyzed using the most recent JPL solution software and source catalog. Future plans for TEMPO and Block I are discussed.

  2. Osmotic stress at the barley root affects expression of circadian clock genes in the shoot.

    PubMed

    Habte, Ermias; Müller, Lukas M; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2014-06-01

    The circadian clock is an important timing system that controls physiological responses to abiotic stresses in plants. However, there is little information on the effects of the clock on stress adaptation in important crops, like barley. In addition, we do not know how osmotic stress perceived at the roots affect the shoot circadian clock. Barley genotypes, carrying natural variation at the photoperiod response and clock genes Ppd-H1 and HvELF3, were grown under control and osmotic stress conditions to record changes in the diurnal expression of clock and stress-response genes and in physiological traits. Variation at HvELF3 affected the expression phase and shape of clock and stress-response genes, while variation at Ppd-H1 only affected the expression levels of stress genes. Osmotic stress up-regulated expression of clock and stress-response genes and advanced their expression peaks. Clock genes controlled the expression of stress-response genes, but had minor effects on gas exchange and leaf transpiration. This study demonstrated that osmotic stress at the barley root altered clock gene expression in the shoot and acted as a spatial input signal into the clock. Unlike in Arabidopsis, barley primary assimilation was less controlled by the clock and more responsive to environmental perturbations, such as osmotic stress. PMID:24895755

  3. Circadian Clocks in Fuel Harvesting and Energy Homeostasis

    PubMed Central

    RAMSEY, K.M.; BASS, J.

    2014-01-01

    Circadian systems have evolved in plants, eubacteria, neurospora, and the metazoa as a mechanism to optimize energy acquisition and storage in synchrony with the rotation of the Earth on its axis. In plants, circadian clocks drive the expression of genes involved in oxygenic photosynthesis during the light and nitrogen fixation during the dark, repeating this cycle each day. In mammals, the core clock in the suprachiasmatic nucleus (SCN) functions to entrain extra-SCN and peripheral clocks to the light cycle, including regions central to energy homeostasis and sleep, as well as peripheral tissues involved in glucose and lipid metabolism. Tissue-specific gene targeting has shown a primary role of clock genes in endocrine pancreas insulin secretion, indicating that local clocks play a cell-autonomous role in organismal homeostasis. A present focus is to dissect the consequences of clock disruption on modulation of nuclear hormone receptor signaling and on posttranscriptional regulation of intermediary metabolism. Experimental genetic studies have pointed toward extensive interplay between circadian and metabolic systems and offer a means to dissect the impact of local tissue molecular clocks on fuel utilization across the sleep–wake cycle. PMID:21890641

  4. Plant Systems Biology (editorial)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  5. Autonomous Rubidium Clock Weak Frequency Jump Detector for Onboard Navigation Satellite System.

    PubMed

    Khare, Akshay; Arora, Rajat; Banik, Alak; Mehta, Sanjay D

    2016-02-01

    Frequency jumps are common in rubidium frequency sources. They affect the estimation of user position in navigational satellite systems. These jumps must be detected and corrected immediately as they have direct impact on the navigation system integrity. A novel weak frequency jump detector is proposed based on a Kalman filter with a multi-interval approach. This detector can be applied for both "sudden" and "slow" frequency transitions. In this detection method, noises of clock data are reduced by Kalman filtering, for accurate estimation of jump size with less latency. Analysis on in-orbit rubidium atomic frequency standard (RAFS) phase telemetry data shows that the detector can be used for fast detection and correction of weak frequency jumps. Furthermore, performance comparison of different existing frequency jump detection techniques with the proposed detector is discussed. A multialgorithm-based strategy is proposed depending on the jump size and latency for onboard navigation satellites having RAFS as the primary frequency source. PMID:26685233

  6. Flies, clocks and evolution.

    PubMed Central

    Rosato, E; Kyriacou, C P

    2001-01-01

    The negative feedback model for gene regulation of the circadian mechanism is described for the fruitfly, Drosophila melanogaster. The conservation of function of clock molecules is illustrated by comparison with the mammalian circadian system, and the apparent swapping of roles between various canonical clock gene components is highlighted. The role of clock gene duplications and divergence of function is introduced via the timeless gene. The impressive similarities in clock gene regulation between flies and mammals could suggest that variation between more closely related species within insects might be minimal. However, this is not borne out because the expression of clock molecules in the brain of the giant silk moth, Antheraea pernyi, is not easy to reconcile with the negative feedback roles of the period and timeless genes. Variation in clock gene sequences between and within fly species is examined and the role of co-evolution between and within clock molecules is described, particularly with reference to adaptive functions of the circadian phenotype. PMID:11710984

  7. Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health

    PubMed Central

    Ribas-Latre, Aleix; Eckel-Mahan, Kristin

    2016-01-01

    Background While additional research is needed, a number of large epidemiological studies show an association between circadian disruption and metabolic disorders. Specifically, obesity, insulin resistance, cardiovascular disease, and other signs of metabolic syndrome all have been linked to circadian disruption in humans. Studies in other species support this association and generally reveal that feeding that is not in phase with the external light/dark cycle, as often occurs with night or rotating shift workers, is disadvantageous in terms of energy balance. As food is a strong driver of circadian rhythms in the periphery, understanding how nutrient metabolism drives clocks across the body is important for dissecting out why circadian misalignment may produce such metabolic effects. A number of circadian clock proteins as well as their accessory proteins (such as nuclear receptors) are highly sensitive to nutrient metabolism. Macronutrients and micronutrients can function as zeitgebers for the clock in a tissue-specific way and can thus impair synchrony between clocks across the body, or potentially restore synchrony in the case of circadian misalignment. Circadian nuclear receptors are particularly sensitive to nutrient metabolism and can alter tissue-specific rhythms in response to changes in the diet. Finally, SNPs in human clock genes appear to be correlated with diet-specific responses and along with chronotype eventually may provide valuable information from a clinical perspective on how to use diet and nutrition to treat metabolic disorders. Scope of review This article presents a background of the circadian clock components and their interrelated metabolic and transcriptional feedback loops, followed by a review of some recent studies in humans and rodents that address the effects of nutrient metabolism on the circadian clock and vice versa. We focus on studies in which results suggest that nutrients provide an opportunity to restore or, alternatively

  8. Atomic and gravitational clocks

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Goldman, I.

    1982-01-01

    Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity, respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous - whose rates are related by a non-constant function beta sub a - is demonstrated. The cosmological character of beta sub a is also discussed.

  9. Circadian Clock, Cancer, and Chemotherapy

    PubMed Central

    2015-01-01

    The circadian clock is a global regulatory system that interfaces with most other regulatory systems and pathways in mammalian organisms. Investigations of the circadian clock–DNA damage response connections have revealed that nucleotide excision repair, DNA damage checkpoints, and apoptosis are appreciably influenced by the clock. Although several epidemiological studies in humans and a limited number of genetic studies in mouse model systems have indicated that clock disruption may predispose mammals to cancer, well-controlled genetic studies in mice have not supported the commonly held view that circadian clock disruption is a cancer risk factor. In fact, in the appropriate genetic background, clock disruption may instead aid in cancer regression by promoting intrinsic and extrinsic apoptosis. Finally, the clock may affect the efficacy of cancer treatment (chronochemotherapy) by modulating the pharmacokinetics and pharmacodynamics of chemotherapeutic drugs as well as the activity of the DNA repair enzymes that repair the DNA damage caused by anticancer drugs. PMID:25302769

  10. Constitutive, light-responsive and circadian clock-responsive factors compete for the different l box elements in plant light-regulated promoters.

    PubMed

    Borello, U; Ceccarelli, E; Giuliano, G

    1993-10-01

    The l box is a conserved regulatory motif which is found upstream of plant genes (rbcS, cab and nia) whose transcription is regulated by light and the circadian clock. Gel retardation and UV cross-linking assays were used to resolve two different groups of I box binding factors (IBFs) in tomato nuclear extracts. Active components of the first group (IBF-1) recognize the l box of the light-responsive rbcS promoter; one factor within this group, IBF-1a, also recognizes the adjacent G box, which has been shown previously to bind a different class of plant transcription factors, the G box binding factors (GBFs). To the limit of experimental resolution, IBF-1a and GBF compete for the same nucleotides on the G box. Nevertheless, these two activities are biochemically and immunologically distinct. The relative abundance of IBF-1a shows a vast decrease in dark-adapted plants. Factors in the second group (IBF-2), recognize the l box of the nia promoter, which is regulated both by light and the circadian clock; one factor within this group, IBF-2a, also binds the l box of a second promoter showing similar regulation, the cab promoter. The IBF-2a binding sites on the cab and nia promoters show extensive homology to a circadian clock-responsive promoter element from wheat. The abundance of IBF-2a is diurnally regulated and shows a dramatic induction around the onset of the light period. Transfer of the plants in continuous darkness demonstrates that this induction is under the control of a circadian clock.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8252065

  11. Model Checking a Byzantine-Fault-Tolerant Self-Stabilizing Protocol for Distributed Clock Synchronization Systems

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2007-01-01

    This report presents the mechanical verification of a simplified model of a rapid Byzantine-fault-tolerant self-stabilizing protocol for distributed clock synchronization systems. This protocol does not rely on any assumptions about the initial state of the system. This protocol tolerates bursts of transient failures, and deterministically converges within a time bound that is a linear function of the self-stabilization period. A simplified model of the protocol is verified using the Symbolic Model Verifier (SMV) [SMV]. The system under study consists of 4 nodes, where at most one of the nodes is assumed to be Byzantine faulty. The model checking effort is focused on verifying correctness of the simplified model of the protocol in the presence of a permanent Byzantine fault as well as confirmation of claims of determinism and linear convergence with respect to the self-stabilization period. Although model checking results of the simplified model of the protocol confirm the theoretical predictions, these results do not necessarily confirm that the protocol solves the general case of this problem. Modeling challenges of the protocol and the system are addressed. A number of abstractions are utilized in order to reduce the state space. Also, additional innovative state space reduction techniques are introduced that can be used in future verification efforts applied to this and other protocols.

  12. Time-related dynamics of variation in core clock gene expression levels in tissues relevant to the immune system.

    PubMed

    Mazzoccoli, G; Sothern, R B; Greco, A; Pazienza, V; Vinciguerra, M; Liu, S; Cai, Y

    2011-01-01

    Immune parameters show rhythmic changes with a 24-h periodicity driven by an internal circadian timing system that relies on clock genes (CGs). CGs form interlocked transcription-translation feedback loops to generate and maintain 24-h mRNA and protein oscillations. In this study we evaluate and compare the profiles and the dynamics of variation of CG expression in peripheral blood, and two lymphoid tissues of mice. Expression levels of seven recognized key CGs (mBmal1, mClock, mPer1, mPer2, mCry1, mCry2, and Rev-erbalpha) were evaluated by quantitative RT- PCR in spleen, thymus and peripheral blood of C57BL/6 male mice housed on a 12-h light (L)-dark (D) cycle and sacrificed every 4 h for 24 h (3-4 mice/time point). We found a statistically significant time-effect in spleen (S), thymus (T) and blood (B) for the original values of expression level of mBmal1 (S), mClock (T, B), mPer1 (S, B), mPer2 (S), mCry1 (S), mCry2 (B) and mRev-Erbalpha (S, T, B) and for the fractional variation calculated between single time-point expression value of mBmal1 (B), mPer2 (T), mCry2 (B) and mRev-Erbalpha (S). A significant 24-h rhythm was validated for five CGs in blood (mClock, mPer1, mPer2, mCry2, mRev-Erbalpha), for four CGs in the spleen (mBmal1, mPer1, mPer2, mRev-Erbalpha), and for three CGs in the thymus (mClock, mPer2, mRev-Erbalpha). The original values of acrophases for mBmal1, mClock, mPer1, mPer2, mCry1 and mCry2 were very similar for spleen and thymus and advanced by several hours for peripheral blood compared to the lymphoid tissues, whereas the phases of mRev-Erbalpha were coincident for all three tissues. In conclusion, central and peripheral lymphoid tissues in the mouse show different sequences of activation of clock gene expression compared to peripheral blood. These differences may underlie the compartmental pattern of web functioning in the immune system. PMID:22230394

  13. A circadian clock in Antarctic krill: an endogenous timing system governs metabolic output rhythms in the euphausid species Euphausia superba.

    PubMed

    Teschke, Mathias; Wendt, Sabrina; Kawaguchi, So; Kramer, Achim; Meyer, Bettina

    2011-01-01

    Antarctic krill, Euphausia superba, shapes the structure of the Southern Ocean ecosystem. Its central position in the food web, the ongoing environmental changes due to climatic warming, and increasing commercial interest on this species emphasize the urgency of understanding the adaptability of krill to its environment. Krill has evolved rhythmic physiological and behavioral functions which are synchronized with the daily and seasonal cycles of the complex Southern Ocean ecosystem. The mechanisms, however, leading to these rhythms are essentially unknown. Here, we show that krill possesses an endogenous circadian clock that governs metabolic and physiological output rhythms. We found that expression of the canonical clock gene cry2 was highly rhythmic both in a light-dark cycle and in constant darkness. We detected a remarkable short circadian period, which we interpret as a special feature of the krill's circadian clock that helps to entrain the circadian system to the extreme range of photoperiods krill is exposed to throughout the year. Furthermore, we found that important key metabolic enzymes of krill showed bimodal circadian oscillations (∼9-12 h period) in transcript abundance and enzymatic activity. Oxygen consumption of krill showed ∼9-12 h oscillations that correlated with the temporal activity profile of key enzymes of aerobic energy metabolism. Our results demonstrate the first report of an endogenous circadian timing system in Antarctic krill and its likely link to metabolic key processes. Krill's circadian clock may not only be critical for synchronization to the solar day but also for the control of seasonal events. This study provides a powerful basis for the investigation into the mechanisms of temporal synchronization in this marine key species and will also lead to the first comprehensive analyses of the circadian clock of a polar marine organism through the entire photoperiodic cycle. PMID:22022521

  14. Endogenous circannual clock and HP complex in a hibernation control system.

    PubMed

    Kondo, N

    2007-01-01

    Hibernation in mammals is a mysterious biological phenomenon that appears on a seasonal basis for surviving a potentially lethal low body temperature (Tb) near 0 degrees C and protecting organisms from various diseases and harmful events during hibernation. The exact mechanism by which such a unique ability is seasonally developed is still unknown. On the basis of our previous finding that the source of calcium ions for excitation-contraction coupling in myocardium of chipmunks, a rodent hibernator, is seasonally modulated for hibernation, the liver-derived hibernation-specific protein (HP) complex was discovered. Recently, the HP complex was identified as a promising candidate hormone that carries a hibernation signal to the brain independently of Tb and environmental changes for developing a capacity for tolerating low Tb. This finding will promote new approaches to understanding biological hibernation systems, including a circannual clock and its signaling pathway between the brain and the periphery. A new definition of hibernation and a possible model of a hibernation control system are proposed. PMID:18419320

  15. An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants

    PubMed Central

    Smith, Stephen A.; Beaulieu, Jeremy M.; Donoghue, Michael J.

    2010-01-01

    We present molecular dating analyses for land plants that incorporate 33 fossil calibrations, permit rates of molecular evolution to be uncorrelated across the tree, and take into account uncertainties in phylogenetic relationships and the fossil record. We attached a prior probability to each fossil-based minimum age, and explored the effects of relying on the first appearance of tricolpate pollen grains as a lower bound for the age of eudicots. Many of our divergence-time estimates for major clades coincide well with both the known fossil record and with previous estimates. However, our estimates for the origin of crown-clade angiosperms, which center on the Late Triassic, are considerably older than the unequivocal fossil record of flowering plants or than the molecular dates presented in recent studies. Nevertheless, we argue that our older estimates should be taken into account in studying the causes and consequences of the angiosperm radiation in relation to other major events, including the diversification of holometabolous insects. Although the methods used here do help to correct for lineage-specific heterogeneity in rates of molecular evolution (associated, for example, with evolutionary shifts in life history), we remain concerned that some such effects (e.g., the early radiation of herbaceous clades within angiosperms) may still be biasing our inferences. PMID:20304790

  16. Can an 18-point clock-drawing scoring system predict dementia in elderly individuals with mild cognitive impairment?

    PubMed

    Babins, Lennie; Slater, Marie-Eve; Whitehead, Victor; Chertkow, Howard

    2008-02-01

    The purpose of this study was to develop a clock-drawing scoring system better suited to detecting possible early markers of dementia in individuals with mild cognitive impairment (MCI). We modified the scoring system of Freedman et al. (1994), in which the major components are integrity of the circle, placement and size of the hands, and placement and sequence of the numbers. We rescored the clock-drawing test using a novel 18-point scoring system, which emphasizes hand elements-number of hands, direction indicated, and size differences. We retrospectively assessed 123 individuals (ages 58-88 years) selected from the Memory Clinic at the Jewish General Hospital in Montreal. These consisted of 21 normal elderly individuals (NORM group), 41 participants with mild cognitive impairment who did not develop dementia on follow-up visits (MCI-NP), 41 participants with mild cognitive impairment who became demented after a 48-month follow-up (MCI-D), and 20 participants diagnosed with Alzheimer's disease (AD). On the 18-point system, the MCI-NP and the MCI-D did not show any difference on overall total score (p = .166), However, using Pearson chi-squares to examine the within-categories effects comparing the mildly cognitively impaired groups (MCI-NP and MCI-D), there were three significant hand items that appear to be possible early markers of progression to dementia. The clock has two hands (p = .043), hour hand is towards correct number (p = .023), and size difference of the hands is respected (p = .004), all showed significant differences between progressors and nonprogressors. The 18-point clock-drawing scoring system may have advantages in better indicating MCI individuals more likely to progress to dementia. PMID:18938669

  17. A gallium-arsenide digital phase shifter for clock and control signal distribution in high-speed digital systems

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.

    1992-01-01

    The design, implementation, testing, and applications of a gallium-arsenide digital phase shifter and fan-out buffer are described. The integrated circuit provides a method for adjusting the phase of high-speed clock and control signals in digital systems, without the need for pruning cables, multiplexing between cables of different lengths, delay lines, or similar techniques. The phase of signals distributed with the described chip can be dynamically adjusted in eight different steps of approximately 60 ps per step. The IC also serves as a fan-out buffer and provides 12 in-phase outputs. The chip is useful for distributing high-speed clock and control signals in synchronous digital systems, especially if components are distributed over a large physical area or if there is a large number of components.

  18. Biochemical Frequency Control by Synchronisation of Coupled Repressilators: An In Silico Study of Modules for Circadian Clock Systems

    PubMed Central

    Hinze, Thomas; Schumann, Mathias; Bodenstein, Christian; Heiland, Ines; Schuster, Stefan

    2011-01-01

    Exploration of chronobiological systems emerges as a growing research field within bioinformatics focusing on various applications in medicine, agriculture, and material sciences. From a systems biological perspective, the question arises whether biological control systems for regulation of oscillatory signals and their technical counterparts utilise similar mechanisms. If so, modelling approaches and parameterisation adopted from building blocks can help to identify general components for frequency control in circadian clocks along with gaining insight into mechanisms of clock synchronisation to external stimuli like the daily rhythm of sunlight and darkness. Phase-locked loops could be an interesting candidate in this context. Both, biology and engineering, can benefit from a unified view resulting from systems modularisation. In a first experimental study, we analyse a model of coupled repressilators. We demonstrate its ability to synchronise clock signals in a monofrequential manner. Several oscillators initially deviate in phase difference and frequency with respect to explicit reaction and diffusion rates. Accordingly, the duration of the synchronisation process depends on dedicated reaction and diffusion parameters whose settings still lack to be sufficiently captured analytically. PMID:22046179

  19. Clock drift-tolerant optical bit pattern monitoring technique in asynchronous undersampling system

    NASA Astrophysics Data System (ADS)

    Zhang, Huixing; Zhao, Wei

    2011-10-01

    Based on an asynchronously undersampling system, we present a novel bit pattern monitoring technique in terms of its performance analysis and the implementation aspects. Relying upon an finite impulse response (FIR) filter assisted fine synchronization of the acquired samples, the technique can significantly reduce the random walk clock drift between data signal and sampling source compared to a conventional fine synchronization using a fixed time step. For the performance analysis of this technique, we first present an intuitive understanding of the principle of the FIR filter method under consideration of the filter frequency response. We find that the frequency response of the FIR filter simply serves to extract the spectral component at the aliasing frequency found in the periodogram and diminish all other frequency components. Then we test the tracking limit and discuss the optimized filter length choice of the new bit pattern monitoring technique through numerical examples. It turns out that the optimal filter length is chosen as the one which minimized the measured jitter and can be found iteratively. Finally, we present an experimental verification of this FIR bit pattern synchronization method by measuring and reconstructing bit patterns of 40 Gb/s nonreturn-to-zero and 160 Gb/s return-to-zero data signals, respectively.

  20. Long-term effect of systemic RNA interference on circadian clock genes in hemimetabolous insects.

    PubMed

    Uryu, Outa; Kamae, Yuichi; Tomioka, Kenji; Yoshii, Taishi

    2013-04-01

    RNA interference (RNAi) strategy, which enables gene-specific knock-down of transcripts, has been spread across a wide area of insect studies for investigating gene function without regard to model and non-model insects. This technique is of particular benefit to promote molecular studies on non-model insects. However, the optimal conditions for RNAi are still not well understood because of its variable efficiency depending on the species, target genes, and experimental conditions. To apply RNAi technique to long-running experiments such as chronobiological studies, the effects of RNAi have to persist throughout the experiment. In this study, we attempted to determine the optimal concentration of double-stranded RNA (dsRNA) for systemic RNAi and its effective period in two different insect species, the cricket Gryllus bimaculatus and the firebrat Thermobia domestica. In both species, higher concentrations of dsRNA principally yielded a more efficient knock-down of mRNA levels of tested clock genes, although the effect depended on the gene and the species. Surprisingly, the effect of the RNAi reached its maximum effect 1-2 weeks and 1 month after the injection of dsRNA in the crickets and the firebrats, respectively, suggesting a slow but long-term effect of RNAi. Our study provides fundamental information for utilizing RNAi technique in any long-running experiment. PMID:23458340

  1. Global synchronization of parallel processors using clock pulse width modulation

    SciTech Connect

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  2. Design and implementation of fast bipolar clock drivers for CCD imaging systems in space applications

    NASA Astrophysics Data System (ADS)

    Jayarajan, Jayesh; Kumar, Nishant; Verma, Amarnath; Thaker, Ramkrishna

    2016-05-01

    Drive electronics for generating fast, bipolar clocks, which can drive capacitive loads of the order of 5-10nF are indispensable for present day Charge Coupled Devices (CCDs). Design of these high speed bipolar clocks is challenging because of the capacitive loads that have to be driven and a strict constraint on the rise and fall times. Designing drive electronics circuits for space applications becomes even more challenging due to limited number of available discrete devices, which can survive in the harsh radiation prone space environment. This paper presents the design, simulations and test results of a set of such high speed, bipolar clock drivers. The design has been tested under a thermal cycle of -15 deg C to +55 deg C under vacuum conditions and has been designed using radiation hardened components. The test results show that the design meets the stringent rise/fall time requirements of 50+/-10ns for Multiple Vertical CCD (VCCD) clocks and 20+/-5ns for Horizontal CCD (HCCD) clocks with sufficient design margins across full temperature range, with a pixel readout rate of 6.6MHz. The full design has been realized in flexi-rigid PCB with package volume of 140x160x50 mm3.

  3. Formulation of geopotential difference determination using optical-atomic clocks onboard satellites and on ground based on Doppler cancellation system

    NASA Astrophysics Data System (ADS)

    Shen, Ziyu; Shen, Wen-Bin; Zhang, Shuangxi

    2016-06-01

    In this study we propose an approach for determining the geopotential difference using high-frequency-stability microwave links between satellite and ground station based on Doppler cancelation system. Suppose a satellite and a ground station are equipped with precise optical-atomic clocks and oscillators. The ground oscillator emits a signal with frequency fa towards the satellite and the satellite receiver (connected with the satellite oscillator) receives this signal with frequency fb which contains the gravitational frequency shift effect and other signals and noises. After receiving this signal, the satellite oscillator transmits and emits respectively two signals with frequencies fb and fc towards the ground station. Via Doppler cancellation technique, the geopotential difference between the satellite and the ground station can be determined based on gravitational frequency shift equation by a combination of these three frequencies. For arbitrary two stations on ground, based on similar procedures as described above, we may determine the geopotential difference between these two stations via a satellite. Our analysis shows that the accuracy can reach 1 {m^2/s^2} based on the clocks' inaccuracy of about 10-17 (s/s) level. Since optical-atomic clocks with instability around 10-18 in several hours and inaccuracy around 10-18 level have been generated in laboratory, the proposed approach may have prospective applications in geoscience, and especially, based on this approach a unified world height system could be realized with one-centimeter level accuracy in the near future.

  4. Quasars as very-accurate clock synchronizers

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Goldstein, R. M.

    1975-01-01

    Quasars can be employed to synchronize global data communications, geophysical measurements, and atomic clocks. It is potentially two to three orders of magnitude better than presently-used Moon-bounce system. Comparisons between quasar and clock pulses are used to develop correction or synchronization factors for station clocks.

  5. Clock and clock-controlled genes are differently expressed in the retina, lamina and in selected cells of the visual system of Drosophila melanogaster.

    PubMed

    Damulewicz, Milena; Loboda, Agnieszka; Bukowska-Strakova, Karolina; Jozkowicz, Alicja; Dulak, Jozef; Pyza, Elzbieta

    2015-01-01

    The retina and the first optic neuropil (lamina) of Drosophila show circadian rhythms in various processes. To learn about the regulation of circadian rhythms in the retina and lamina and in two cell types, glial and the lamina L2 interneurons, we examined expression of the following clock genes; per, tim, clk, and cry and clock-controlled genes (ccgs); Atpα, nrv2, brp, Pdfr. We found that the expression of gene studied is specific for the retina and lamina. The rhythms of per and tim expression in the retina and glial cells are similar to that observed in the whole head and in clock neurons, while they differ in the lamina and L2 cells. In both the retina and lamina, CRY seems to be a repressor of clk expression. In L2 interneurons per expression is not cyclic indicating the other function of PER in those cells than in the circadian molecular clock. In contrast to per and tim, the pattern of clk and cry expression is similar in both the retina and lamina. The retina holds the autonomous oscillators but the expression of cry and ccgs, Atpα and nrv2, is also regulated by inputs from the pacemaker transmitted by PDF and ITP neuropeptides. PMID:26441524

  6. Initial results of precise orbit and clock determination for COMPASS navigation satellite system

    NASA Astrophysics Data System (ADS)

    Zhao, Qile; Guo, Jing; Li, Min; Qu, Lizhong; Hu, Zhigang; Shi, Chuang; Liu, Jingnan

    2013-05-01

    The development of the COMPASS satellite system is introduced, and the regional tracking network and data availability are described. The precise orbit determination strategy of COMPASS satellites is presented. Data of June 2012 are processed. The obtained orbits are evaluated by analysis of post-fit residuals, orbit overlap comparison and SLR (satellite laser ranging) validation. The RMS (root mean square) values of post-fit residuals for one month's data are smaller than 2.0 cm for ionosphere-free phase measurements and 2.6 m for ionosphere-free code observations. The 48-h orbit overlap comparison shows that the RMS values of differences in the radial component are much smaller than 10 cm and those of the cross-track component are smaller than 20 cm. The SLR validation shows that the overall RMS of observed minus computed residuals is 68.5 cm for G01 and 10.8 cm for I03. The static and kinematic PPP solutions are produced to further evaluate the accuracy of COMPASS orbit and clock products. The static daily COMPASS PPP solutions achieve an accuracy of better than 1 cm in horizontal and 3 cm in vertical. The accuracy of the COMPASS kinematic PPP solutions is within 1-2 cm in the horizontal and 4-7 cm in the vertical. In addition, we find that the COMPASS kinematic solutions are generally better than the GPS ones for the selected location. Furthermore, the COMPASS/GPS combinations significantly improve the accuracy of GPS only PPP solutions. The RMS values are basically smaller than 1 cm in the horizontal components and 3-4 cm in the vertical component.

  7. Hypothesis: Role for the circadian Clock system and sleep in the pathogenesis of adhesions and chronic pelvic pain?

    PubMed

    Sadek, Khaled; Macklon, Nick; Bruce, Kim; Cagampang, Felino; Cheong, Ying

    2011-03-01

    Intra-peritoneal adhesions ensuing from surgery or infection may lead to chronic pelvic pain, bowel obstruction, infertility and additional invasive surgery to resolve adhesion-related complications. As a result adhesions are a major clinical, social and economic concern. The cumulative year-on-year direct costs of adhesion-related readmissions for a 10-year period are more than £ 569 million. The degree of intra-abdominal adhesion formation in an individual patient after a surgical or infective insult remains difficult to predict. This reflects a lack of understanding as to the underlying aetiologies. Several different mechanisms leading to adhesion formation and re-formation have been proposed. These include abnormal modulations in inflammatory status, fibrinolytic pathways and matrix remodelling. A number of preventative strategies have been designed accordingly. However, although each individual model offers specific insights into the aetiology of adhesion formation, none have been shown to provide the basis for a highly effective clinical intervention. A unifying fundamental mechanism remains elusive. In this article we propose that such a mechanism can be found within the molecular control of circadian rhythms and "Clock" gene biology. A number of physiological processes demonstrating circadian variation have been shown to involve 'Clock genes' in the suprachiasmatic nucleus (SCN), which then entrains a similar set of Clock genes in peripheral tissues such as the heart, brain, spleen, lung, liver, skeletal muscle and kidney. The intrinsic time-keeping system influences activity, such as sleep, temperature regulation, rates of metabolism, immune responses, blood pressure and hormone secretion. The function and availability of mediators involved in the inflammatory response, fibrinolytic and anti-coagulation pathways are all under the tight control of the molecular Clock system. These include IL-6, PAI-1, fibrinogen, fibroblasts and TNF-α. We hypothesise that

  8. Circadian clocks: lessons from fish.

    PubMed

    Idda, M Laura; Bertolucci, Cristiano; Vallone, Daniela; Gothilf, Yoav; Sánchez-Vázquez, Francisco Javier; Foulkes, Nicholas S

    2012-01-01

    Our understanding of the molecular and cellular organization of the circadian timing system in vertebrates has increased enormously over the past decade. In large part, progress has been based on genetic studies in the mouse as well as on fundamental similarities between vertebrate and Drosophila clocks. The zebrafish was initially considered as a potentially attractive genetic model for identifying vertebrate clock genes. However, instead, fish have ultimately proven to be valuable complementary models for studying various aspects of clock biology. For example, many fish can shift from diurnal to nocturnal activity implying specific flexibility in their clock function. We have learned much about the function of light input pathways, and the ontogeny and function of the pineal organ, the fish central pacemaker. Finally, blind cavefish have also provided new insight into the evolution of the circadian clock under extreme environmental conditions. PMID:22877658

  9. Circadian Tick-Talking Across the Neuroendocrine System and Suprachiasmatic Nuclei Circuits: The Enigmatic Communication Between the Molecular and Electrical Membrane Clocks.

    PubMed

    Belle, M D C

    2015-07-01

    As with many processes in nature, appropriate timing in biological systems is of paramount importance. In the neuroendocrine system, the efficacy of hormonal influence on major bodily functions, such as reproduction, metabolism and growth, relies on timely communication within and across many of the brain's homeostatic systems. The activity of these circuits is tightly orchestrated with the animal's internal physiological demands and external solar cycle by a master circadian clock. In mammals, this master clock is located in the hypothalamic suprachiasmatic nucleus (SCN), where the ensemble activity of thousands of clock neurones generates and communicates circadian time cues to the rest of the brain and body. Many regions of the brain, including areas with neuroendocrine function, also contain local daily clocks that can provide feedback signals to the SCN. Although much is known about the molecular processes underpinning endogenous circadian rhythm generation in SCN neurones and, to a lesser extent, extra-SCN cells, the electrical membrane clock that acts in partnership with the molecular clockwork to communicate circadian timing across the brain is poorly understood. The present review focuses on some circadian aspects of reproductive neuroendocrinology and processes involved in circadian rhythm communication in the SCN, aiming to identify key gaps in our knowledge of cross-talk between our daily master clock and neuroendocrine function. The intention is to highlight our surprisingly limited understanding of their interaction in the hope that this will stimulate future work in these areas. PMID:25845396

  10. A Hertz-Linewidth Ultrastable Diode Laser System for Clock Transition Detection of Strontium Atoms

    NASA Astrophysics Data System (ADS)

    Li, Ye; Lin, Yi-Ge; Wang, Qiang; Wang, Shao-Kai; Zhao, Yang; Meng, Fei; Lin, Bai-Ke; Cao, Jian-Ping; Li, Tian-Chu; Fang, Zhan-Jun; Zang, Er-Jun

    2014-02-01

    The frequencies of two 698 nm external cavity diode lasers (ECDLs) are locked separately to two independently located ultrahigh finesse optical resonant cavities with the Pound—Drever—Hall technique. The linewidth of each ECDL is measured to be ~4.6 Hz by their beating and the fractional frequency stability below 5 × 10-15 between 1 s to 10 s averaging time. Another 698 nm laser diode is injection locked to one of the cavity-stabilized ECDLs with a fixed frequency offset for power amplification while maintaining its linewidth and frequency characteristics. The frequency drift is ~1 Hz/s measured by a femtosecond optical frequency comb based on erbium fiber. The output of the injection slave laser is delivered to the magneto-optical trap of a Sr optical clock through a 10-m-long single mode polarization maintaining fiber with an active fiber noise cancelation technique to detect the clock transition of Sr atoms.

  11. Special Relativistic Clock Comparisons

    NASA Astrophysics Data System (ADS)

    Morton, Tom

    2007-03-01

    Time mappings of a stationary clock's time points onto a moving clock's time line heuristically resolve certain temporal asymmetries in time dilation. Time mapping postulates are identified and transforms are derived. `Clock Re-phasing' vs. `Time Leap' is discussed.

  12. Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Wynands, Robert

    Time is a strange thing. On the one hand it is arguably the most inaccessible physical phenomenon of all: both in that it is impossible to manipulate or modify—for all we know—and in that even after thousands of years mankind's philosophers still have not found a fully satisfying way to understand it. On the other hand, no other quantity can be measured with greater precision. Today's atomic clocks allow us to reproduce the length of the second as the SI unit of time with an uncertainty of a few parts in 1016—orders of magnitude better than any other quantity. In a sense, one can say [1

  13. Molecular clocks.

    PubMed

    Lee, Michael S Y; Ho, Simon Y W

    2016-05-23

    In the 1960s, several groups of scientists, including Emile Zuckerkandl and Linus Pauling, had noted that proteins experience amino acid replacements at a surprisingly consistent rate across very different species. This presumed single, uniform rate of genetic evolution was subsequently described using the term 'molecular clock'. Biologists quickly realised that such a universal pacemaker could be used as a yardstick for measuring the timescale of evolutionary divergences: estimating the rate of amino acid exchanges per unit of time and applying it to protein differences across a range of organisms would allow deduction of the divergence times of their respective lineages (Figure 1). PMID:27218841

  14. RNA around the clock – regulation at the RNA level in biological timing

    PubMed Central

    Nolte, Christine; Staiger, Dorothee

    2015-01-01

    The circadian timing system in plants synchronizes their physiological functions with the environment. This is achieved by a global control of gene expression programs with a considerable part of the transcriptome undergoing 24-h oscillations in steady-state abundance. These circadian oscillations are driven by a set of core clock proteins that generate their own 24-h rhythm through periodic feedback on their own transcription. Additionally, post-transcriptional events are instrumental for oscillations of core clock genes and genes in clock output. Here we provide an update on molecular events at the RNA level that contribute to the 24-h rhythm of the core clock proteins and shape the circadian transcriptome. We focus on the circadian system of the model plant Arabidopsis thaliana but also discuss selected regulatory principles in other organisms. PMID:25999975

  15. Circadian Clocks, Stress, and Immunity

    PubMed Central

    Dumbell, Rebecca; Matveeva, Olga; Oster, Henrik

    2016-01-01

    In mammals, molecular circadian clocks are present in most cells of the body, and this circadian network plays an important role in synchronizing physiological processes and behaviors to the appropriate time of day. The hypothalamic–pituitary–adrenal endocrine axis regulates the response to acute and chronic stress, acting through its final effectors – glucocorticoids – released from the adrenal cortex. Glucocorticoid secretion, characterized by its circadian rhythm, has an important role in synchronizing peripheral clocks and rhythms downstream of the master circadian pacemaker in the suprachiasmatic nucleus. Finally, glucocorticoids are powerfully anti-inflammatory, and recent work has implicated the circadian clock in various aspects and cells of the immune system, suggesting a tight interplay of stress and circadian systems in the regulation of immunity. This mini-review summarizes our current understanding of the role of the circadian clock network in both the HPA axis and the immune system, and discusses their interactions. PMID:27199894

  16. Simulating Future GPS Clock Scenarios with Two Composite Clock Algorithms

    NASA Technical Reports Server (NTRS)

    Suess, Matthias; Matsakis, Demetrios; Greenhall, Charles A.

    2010-01-01

    Using the GPS Toolkit, the GPS constellation is simulated using 31 satellites (SV) and a ground network of 17 monitor stations (MS). At every 15-minutes measurement epoch, the monitor stations measure the time signals of all satellites above a parameterized elevation angle. Once a day, the satellite clock estimates the station and satellite clocks. The first composite clock (B) is based on the Brown algorithm, and is now used by GPS. The second one (G) is based on the Greenhall algorithm. The composite clock of G and B performance are investigated using three ground-clock models. Model C simulates the current GPS configuration, in which all stations are equipped with cesium clocks, except for masers at USNO and Alternate Master Clock (AMC) sites. Model M is an improved situation in which every station is equipped with active hydrogen masers. Finally, Models F and O are future scenarios in which the USNO and AMC stations are equipped with fountain clocks instead of masers. Model F is a rubidium fountain, while Model O is more precise but futuristic Optical Fountain. Each model is evaluated using three performance metrics. The timing-related user range error having all satellites available is the first performance index (PI1). The second performance index (PI2) relates to the stability of the broadcast GPS system time itself. The third performance index (PI3) evaluates the stability of the time scales computed by the two composite clocks. A distinction is made between the "Signal-in-Space" accuracy and that available through a GNSS receiver.

  17. A transportable optical lattice clock

    NASA Astrophysics Data System (ADS)

    Vogt, Stefan; Häfner, Sebastian; Grotti, Jacopo; Koller, Silvio; Al-Masoudi, Ali; Sterr, Uwe; Lisdat, Christian

    2016-06-01

    We present the experimental setup and first results of PTB's transportable 87Sr clock. It consists of a physics package, several compact laser breadboards, and a transportable high finesse cavity for the clock laser. A comparison of the transportable system with our stationary optical lattice clock yields an instability of 2.2 x 10-15 √s/τ for the transportable clock. The current fractional uncertainty of 1 × 10-15 is still limited by the not yet fully evaluated light shift from the free running optical lattice laser operated near the magic wavelength. We are currently improving our transportable system to reach an uncertainty at or below the 10-17 level, which will finaly be limited by the uncertainty in blackbody radiation shift correction.

  18. Formulation of geopotential difference determination using optical-atomic clocks onboard satellites and on ground based on Doppler cancellation system

    NASA Astrophysics Data System (ADS)

    Shen, Ziyu; Shen, Wen-Bin; Zhang, Shuangxi

    2016-08-01

    In this study, we propose an approach for determining the geopotential difference using high-frequency-stability microwave links between satellite and ground station based on Doppler cancellation system. Suppose a satellite and a ground station are equipped with precise optical-atomic clocks (OACs) and oscillators. The ground oscillator emits a signal with frequency fa towards the satellite and the satellite receiver (connected with the satellite oscillator) receives this signal with frequency fb which contains the gravitational frequency shift effect and other signals and noises. After receiving this signal, the satellite oscillator transmits and emits, respectively, two signals with frequencies fb and fc towards the ground station. Via Doppler cancellation technique, the geopotential difference between the satellite and the ground station can be determined based on gravitational frequency shift equation by a combination of these three frequencies. For arbitrary two stations on ground, based on similar procedures as described above, we may determine the geopotential difference between these two stations via a satellite. Our analysis shows that the accuracy can reach 1 m2 s- 2 based on the clocks' inaccuracy of about 10-17 (s s-1) level. Since OACs with instability around 10-18 in several hours and inaccuracy around 10-18 level have been generated in laboratory, the proposed approach may have prospective applications in geoscience, and especially, based on this approach a unified world height system could be realized with one-centimetre level accuracy in the near future.

  19. Coordination of the maize transcriptome by a conserved circadian clock

    PubMed Central

    2010-01-01

    Background The plant circadian clock orchestrates 24-hour rhythms in internal physiological processes to coordinate these activities with daily and seasonal changes in the environment. The circadian clock has a profound impact on many aspects of plant growth and development, including biomass accumulation and flowering time. Despite recent advances in understanding the circadian system of the model plant Arabidopsis thaliana, the contribution of the circadian oscillator to important agronomic traits in Zea mays and other cereals remains poorly defined. To address this deficit, this study investigated the transcriptional landscape of the maize circadian system. Results Since transcriptional regulation is a fundamental aspect of circadian systems, genes exhibiting circadian expression were identified in the sequenced maize inbred B73. Of the over 13,000 transcripts examined, approximately 10 percent displayed circadian expression patterns. The majority of cycling genes had peak expression at subjective dawn and dusk, similar to other plant circadian systems. The maize circadian clock organized co-regulation of genes participating in fundamental physiological processes, including photosynthesis, carbohydrate metabolism, cell wall biogenesis, and phytohormone biosynthesis pathways. Conclusions Circadian regulation of the maize genome was widespread and key genes in several major metabolic pathways had circadian expression waveforms. The maize circadian clock coordinated transcription to be coincident with oncoming day or night, which was consistent with the circadian oscillator acting to prepare the plant for these major recurring environmental changes. These findings highlighted the multiple processes in maize plants under circadian regulation and, as a result, provided insight into the important contribution this regulatory system makes to agronomic traits in maize and potentially other C4 plant species. PMID:20576144

  20. 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel.

    PubMed

    Wang, Chao; Huang, Duan; Huang, Peng; Lin, Dakai; Peng, Jinye; Zeng, Guihua

    2015-01-01

    In this paper, a practical continuous-variable quantum key distribution system is developed and it runs in the real-world conditions with 25 MHz clock rate. To reach high-rate, we have employed a homodyne detector with maximal bandwidth to 300 MHz and an optimal high-efficiency error reconciliation algorithm with processing speed up to 25 Mbps. To optimize the stability of the system, several key techniques are developed, which include a novel phase compensation algorithm, a polarization feedback algorithm, and related stability method on the modulators. Practically, our system is tested for more than 12 hours with a final secret key rate of 52 kbps over 50 km transmission distance, which is the highest rate so far in such distance. Our system may pave the road for practical broadband secure quantum communication with continuous variables in the commercial conditions. PMID:26419413

  1. 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel

    PubMed Central

    Wang, Chao; Huang, Duan; Huang, Peng; Lin, Dakai; Peng, Jinye; Zeng, Guihua

    2015-01-01

    In this paper, a practical continuous-variable quantum key distribution system is developed and it runs in the real-world conditions with 25 MHz clock rate. To reach high-rate, we have employed a homodyne detector with maximal bandwidth to 300 MHz and an optimal high-efficiency error reconciliation algorithm with processing speed up to 25 Mbps. To optimize the stability of the system, several key techniques are developed, which include a novel phase compensation algorithm, a polarization feedback algorithm, and related stability method on the modulators. Practically, our system is tested for more than 12 hours with a final secret key rate of 52 kbps over 50 km transmission distance, which is the highest rate so far in such distance. Our system may pave the road for practical broadband secure quantum communication with continuous variables in the commercial conditions. PMID:26419413

  2. Expression of clock genes period and timeless in the central nervous system of the Mediterranean flour moth, Ephestia kuehniella.

    PubMed

    Kobelková, Alena; Závodská, Radka; Sauman, Ivo; Bazalová, Olga; Dolezel, David

    2015-04-01

    Homologous circadian genes are found in all insect clocks, but their contribution to species-specific circadian timing systems differs. The aim of this study was to extend research within Lepidoptera to gain a better understanding of the molecular mechanism underlying circadian clock plasticity and evolution. The Mediterranean flour moth, Ephestia kuehniella (Pyralidae), represents a phylogenetically ancestral lepidopteran species. We have identified circadian rhythms in egg hatching, adult emergence, and adult locomotor activity. Cloning full-length complementary DNAs and further characterization confirmed one copy of period and timeless genes in both sexes. Both per and tim transcripts oscillate in their abundance in E. kuehniella heads under light-dark conditions. PER-like immunoreactivity (PER-lir) was observed in nuclei and cytoplasm of most neurons in the central brain, the ventral part of subesophageal complex, the neurohemal organs, the optic lobes, and eyes. PER-lir in photoreceptor nuclei oscillated during the day with maximal intensity in the light phase of the photoperiodic regime and lack of a signal in the middle of the dark phase. Expression patterns of per and tim messenger RNAs (mRNAs) were revealed in the identical location as the PER-lir was detected. In the photoreceptors, a daily rhythm in the intensity of expression of both per mRNA and tim mRNA was found. These findings suggest E. kuehniella as a potential lepidopteran model for circadian studies. PMID:25637625

  3. The Cyanobacterial Clock and Metabolism

    PubMed Central

    Pattanayak, Gopal; Rust, Michael J.

    2014-01-01

    Cyanobacteria possess the simplest known circadian clock, which presents a unique opportunity to study how rhythms are generated and how input signals from the environment reset the clock time. The kaiABC locus forms the core of the oscillator, and the remarkable ability to reconstitute oscillations using purified KaiABC proteins has allowed researchers to study mechanism using the tools of quantitative biochemistry. Autotrophic cyanobacteria experience major shifts in metabolism following a light-dark transition, and recent work suggests that input mechanisms that couple the day-night cycle to the clock involve energy and redox metabolites acting directly on clock proteins. We offer a summary of the current state of knowledge in this system and present a perspective for future lines of investigation. PMID:24667330

  4. Mechanism of the circadian clock in physiology

    PubMed Central

    Richards, Jacob

    2013-01-01

    It has been well established that the circadian clock plays a crucial role in the regulation of almost every physiological process. It also plays a critical role in pathophysiological states including those of obesity and diabetes. Recent evidence has highlighted the potential for targeting the circadian clock as a potential drug target. New studies have also demonstrated the existence of “clock-independent effects” of the circadian proteins, leading to exciting new avenues of research in the circadian clock field in physiology. The goal of this review is to provide an introduction to and overview of the circadian clock in physiology, including mechanisms, targets, and role in disease states. The role of the circadian clocks in the regulation of the cardiovascular system, renal function, metabolism, the endocrine system, immune, and reproductive systems will be discussed. PMID:23576606

  5. Precise time dissemination via portable atomic clocks

    NASA Technical Reports Server (NTRS)

    Putkovich, K.

    1982-01-01

    The most precise operational method of time dissemination over long distances presently available to the Precise Time and Time Interval (PTTI) community of users is by means of portable atomic clocks. The Global Positioning System (GPS), the latest system showing promise of replacing portable clocks for global PTTI dissemination, was evaluated. Although GPS has the technical capability of providing superior world-wide dissemination, the question of present cost and future accessibility may require a continued reliance on portable clocks for a number of years. For these reasons a study of portable clock operations as they are carried out today was made. The portable clock system that was utilized by the U.S. Naval Observatory (NAVOBSY) in the global synchronization of clocks over the past 17 years is described and the concepts on which it is based are explained. Some of its capabilities and limitations are also discussed.

  6. Clocks in algae.

    PubMed

    Noordally, Zeenat B; Millar, Andrew J

    2015-01-20

    As major contributors to global oxygen levels and producers of fatty acids, carotenoids, sterols, and phycocolloids, algae have significant ecological and commercial roles. Early algal models have contributed much to our understanding of circadian clocks at physiological and biochemical levels. The genetic and molecular approaches that identified clock components in other taxa have not been as widely applied to algae. We review results from seven species: the chlorophytes Chlamydomonas reinhardtii, Ostreococcus tauri, and Acetabularia spp.; the dinoflagellates Lingulodinium polyedrum and Symbiodinium spp.; the euglenozoa Euglena gracilis; and the red alga Cyanidioschyzon merolae. The relative simplicity, experimental tractability, and ecological and evolutionary diversity of algal systems may now make them particularly useful in integrating quantitative data from "omic" technologies (e.g., genomics, transcriptomics, metabolomics, and proteomics) with computational and mathematical methods. PMID:25379817

  7. An ultra-stable referenced interrogation system in the deep ultraviolet for a mercury optical lattice clock

    NASA Astrophysics Data System (ADS)

    Dawkins, S. T.; Chicireanu, R.; Petersen, M.; Millo, J.; Magalhães, D. V.; Mandache, C.; Le Coq, Y.; Bize, S.

    2010-04-01

    We have developed an ultra-stable source in the deep ultraviolet, suitable to fulfil the interrogation requirements of a future fully-operational lattice clock based on neutral mercury. At the core of the system is a Fabry-Pérot cavity which is highly impervious to temperature and vibrational perturbations. The mirror substrate is made of fused silica in order to exploit the comparatively low thermal noise limits associated with this material. By stabilizing the frequency of a 1062.6 nm Yb-doped fiber laser to the cavity, and including an additional link to LNE-SYRTE’s fountain primary frequency standards via an optical frequency comb, we produce a signal which is both stable at the 10-15 level in fractional terms and referenced to primary frequency standards. The signal is subsequently amplified and frequency-doubled twice to produce several milliwatts of interrogation signal at 265.6 nm in the deep ultraviolet.

  8. Synchronization of Biological Clock Neurons by Light and Peripheral Feedback Systems Promotes Circadian Rhythms and Health

    PubMed Central

    Ramkisoensing, Ashna; Meijer, Johanna H.

    2015-01-01

    In mammals, the suprachiasmatic nucleus (SCN) functions as a circadian clock that drives 24-h rhythms in both physiology and behavior. The SCN is a multicellular oscillator in which individual neurons function as cell-autonomous oscillators. The production of a coherent output rhythm is dependent upon mutual synchronization among single cells and requires both synaptic communication and gap junctions. Changes in phase-synchronization between individual cells have consequences on the amplitude of the SCN’s electrical activity rhythm, and these changes play a major role in the ability to adapt to seasonal changes. Both aging and sleep deprivation negatively affect the circadian amplitude of the SCN, whereas behavioral activity (i.e., exercise) has a positive effect on amplitude. Given that the amplitude of the SCN’s electrical activity rhythm is essential for achieving robust rhythmicity in physiology and behavior, the mechanisms that underlie neuronal synchronization warrant further study. A growing body of evidence suggests that the functional integrity of the SCN contributes to health, well-being, cognitive performance, and alertness; in contrast, deterioration of the 24-h rhythm is a risk factor for neurodegenerative disease, cancer, depression, and sleep disorders. PMID:26097465

  9. Synchronization of Biological Clock Neurons by Light and Peripheral Feedback Systems Promotes Circadian Rhythms and Health.

    PubMed

    Ramkisoensing, Ashna; Meijer, Johanna H

    2015-01-01

    In mammals, the suprachiasmatic nucleus (SCN) functions as a circadian clock that drives 24-h rhythms in both physiology and behavior. The SCN is a multicellular oscillator in which individual neurons function as cell-autonomous oscillators. The production of a coherent output rhythm is dependent upon mutual synchronization among single cells and requires both synaptic communication and gap junctions. Changes in phase-synchronization between individual cells have consequences on the amplitude of the SCN's electrical activity rhythm, and these changes play a major role in the ability to adapt to seasonal changes. Both aging and sleep deprivation negatively affect the circadian amplitude of the SCN, whereas behavioral activity (i.e., exercise) has a positive effect on amplitude. Given that the amplitude of the SCN's electrical activity rhythm is essential for achieving robust rhythmicity in physiology and behavior, the mechanisms that underlie neuronal synchronization warrant further study. A growing body of evidence suggests that the functional integrity of the SCN contributes to health, well-being, cognitive performance, and alertness; in contrast, deterioration of the 24-h rhythm is a risk factor for neurodegenerative disease, cancer, depression, and sleep disorders. PMID:26097465

  10. A high-speed photonic clock and carrier regenerator

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Lutes, G.

    1995-01-01

    As data communications rates climb toward 10 Gbits/s, clock recovery and synchronization become more difficult, if not impossible, using conventional electronic circuits. The high-speed photonic clock regenerator described in this article may be more suitable for such use. This photonic regenerator is based on a previously reported photonic oscillator capable of fast acquisition and synchronization. With both electrical and optical clock inputs and outputs, the device is easily interfaced with fiber-optic systems. The recovered electrical clock can be used locally and the optical clock can be used anywhere within a several kilometer radius of the clock/carrier regenerator.

  11. VLBI clock synchronization. [for atomic clock rate

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Shapiro, I. I.; Rogers, A. E. E.; Hinteregger, H. F.; Knight, C. A.; Whitney, A. R.; Clark, T. A.

    1977-01-01

    The potential accuracy of VLBI (very long baseline interferometry) for clock epoch and rate comparisons was demonstrated by results from long- and short-baseline experiments. It was found that atomic clocks at widely separated sites (several thousand kilometers apart) can be synchronized to within several nanoseconds from a few minutes of VLBI observations and to within one nanosecond from several hours of observations.

  12. [Signal systems of plant immunity].

    PubMed

    Dmitriev, A P

    2002-01-01

    Plants can recognise the penetrating pathogen and respond to the attack with an array of defense reactions. Signal transduction from receptor in plasma membrane to genome is necessary to activate these reactions. Plant cell signaling systems which take part in signal transduction were discovered and identified recently. The obtained results suggest that plant cells have complex and well coordinated signal network which regulates their immune potential. PMID:12187855

  13. Peripheral circadian clocks--a conserved phenotype?

    PubMed

    Weigl, Yuval; Harbour, Valerie L; Robinson, Barry; Dufresne, Line; Amir, Shimon

    2013-05-01

    The circadian system of mammals regulates the timing of occurrence of behavioral and physiological events, thereby optimizing adaptation to their surroundings. This system is composed of a single master pacemaker located in the suprachiasmatic nucleus (SCN) and a population of peripheral clocks. The SCN integrates time information from exogenous sources and, in turn, synchronizes the downstream peripheral clocks. It is assumed that under normal conditions, the circadian phenotype of different peripheral clocks would be conserved with respect to its period and robustness. To study this idea, we measured the daily wheel-running activity (WRA; a marker of the SCN output) in 84 male inbred LEW/Crl rats housed under a 12 h:12 h light-dark cycle. In addition, we assessed the mRNA expression of two clock genes, rPer2 and rBmal1, and one clock-controlled gene, rDbp, in four tissues that have the access to time cues other than those emanating from the SCN: olfactory bulbs (OBs), liver, tail skin, and white blood cells (WBCs). In contrast with the assumption stated above, we found that circadian clocks in peripheral tissues differ in the temporal pattern of the expression of circadian clock genes, in the robustness of the rhythms, and possibly in the number of functional ~24-h-clock cells. Based on the tissue diversity in the robustness of the clock output, the hepatic clock is likely to house the highest number of functional ~24-h-clock cells, and the OBs, the fewest number. Thus, the phenotype of the circadian clock in the periphery is tissue specific and may depend not only on the SCN but also on the sensitivity of the tissue to non-SCN-derived time cues. In the OBs and liver, the circadian clock phenotypes seem to be dominantly shaped by the SCN output. However, in the tail skin and WBC, other time cues participate in the phenotype design. Finally, our study suggests that the basic phenotype of the circadian clock is constructed at the transcript level of the core clock

  14. The Glyoxal Clock Reaction

    ERIC Educational Resources Information Center

    Ealy, Julie B.; Negron, Alexandra Rodriguez; Stephens, Jessica; Stauffer, Rebecca; Furrow, Stanley D.

    2007-01-01

    Research on the glyoxal clock reaction has led to adaptation of the clock reaction to a general chemistry experiment. This particular reaction is just one of many that used formaldehyde in the past. The kinetics of the glyoxal clock makes the reaction suitable as a general chemistry lab using a Calculator Based Laboratory (CBL) or a LabPro. The…

  15. Song I-Yeong's Armillary Clock

    NASA Astrophysics Data System (ADS)

    Kim, Sang Hyuk; Lee, Yong Sam

    In 1669 (the 10th year of the reign of King Hyeonjong), Song I-Yeong (宋以穎, 1619-1692), who was a professor of astronomy at Gwansanggam (Bureau of Astronomy), developed the armillary clock which uses the weight power system of an alarm clock. The armillary clock is a unique astronomical clock that combines the traditional armillary sphere of Joseon and the principle of a Western alarm clock. Song I-Yeong's armillary clock was repaired in 1687-1688 according to the records, and since then not much is known about the history of the armillary clock. After many years, in the early 1930s which was the Japanese colonial era, Inchon (仁村) Kim Seong-Su (金性洙, 1891-1955) purchased the armillary clock at the Insa-dong antique street and donated to the Korea University Museum of the present time (designated as National Treasure No. 230 in 1985). Currently, the armillary clock is not in operation because some of the parts are damaged or lost.

  16. Experimental validation of clock synchronization algorithms

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Graham, R. Lynn

    1992-01-01

    The objective of this work is to validate mathematically derived clock synchronization theories and their associated algorithms through experiment. Two theories are considered, the Interactive Convergence Clock Synchronization Algorithm and the Midpoint Algorithm. Special clock circuitry was designed and built so that several operating conditions and failure modes (including malicious failures) could be tested. Both theories are shown to predict conservative upper bounds (i.e., measured values of clock skew were always less than the theory prediction). Insight gained during experimentation led to alternative derivations of the theories. These new theories accurately predict the behavior of the clock system. It is found that a 100 percent penalty is paid to tolerate worst-case failures. It is also shown that under optimal conditions (with minimum error and no failures) the clock skew can be as much as three clock ticks. Clock skew grows to six clock ticks when failures are present. Finally, it is concluded that one cannot rely solely on test procedures or theoretical analysis to predict worst-case conditions.

  17. Methodologies for steering clocks

    NASA Technical Reports Server (NTRS)

    Chadsey, Harold

    1995-01-01

    One of the concerns of the PTTI community is the coordination of one time scale with another. This is accomplished through steering one clock system to another, with a goal of a zero or constant offset in time and frequency. In order to attain this goal, rate differences are calculated and allowed for by the steering algorithm. This paper will present several of these different methods of determining rate differences. Ideally, any change in rate should not cause the offset to change sign (overshoot) by any amount, but certainly not by as much as its previous absolute value. The advantages and disadvantages of each depend on the user's situation.

  18. Circadian clocks and cell division

    PubMed Central

    2010-01-01

    Evolution has selected a system of two intertwined cell cycles: the cell division cycle (CDC) and the daily (circadian) biological clock. The circadian clock keeps track of solar time and programs biological processes to occur at environmentally appropriate times. One of these processes is the CDC, which is often gated by the circadian clock. The intermeshing of these two cell cycles is probably responsible for the observation that disruption of the circadian system enhances susceptibility to some kinds of cancer. The core mechanism underlying the circadian clockwork has been thought to be a transcription and translation feedback loop (TTFL), but recent evidence from studies with cyanobacteria, synthetic oscillators and immortalized cell lines suggests that the core circadian pacemaking mechanism that gates cell division in mammalian cells could be a post-translational oscillator (PTO). PMID:20890114

  19. Gigabit Ethernet Asynchronous Clock Compensation FIFO

    NASA Technical Reports Server (NTRS)

    Duhachek, Jeff

    2012-01-01

    Clock compensation for Gigabit Ethernet is necessary because the clock recovered from the 1.25 Gb/s serial data stream has the potential to be 200 ppm slower or faster than the system clock. The serial data is converted to 10-bit parallel data at a 125 MHz rate on a clock recovered from the serial data stream. This recovered data needs to be processed by a system clock that is also running at a nominal rate of 125 MHz, but not synchronous to the recovered clock. To cross clock domains, an asynchronous FIFO (first-in-first-out) is used, with the write pointer (wprt) in the recovered clock domain and the read pointer (rptr) in the system clock domain. Because the clocks are generated from separate sources, there is potential for FIFO overflow or underflow. Clock compensation in Gigabit Ethernet is possible by taking advantage of the protocol data stream features. There are two distinct data streams that occur in Gigabit Ethernet where identical data is transmitted for a period of time. The first is configuration, which happens during auto-negotiation. The second is idle, which occurs at the end of auto-negotiation and between every packet. The identical data in the FIFO can be repeated by decrementing the read pointer, thus compensating for a FIFO that is draining too fast. The identical data in the FIFO can also be skipped by incrementing the read pointer, which compensates for a FIFO draining too slowly. The unique and novel features of this FIFO are that it works in both the idle stream and the configuration streams. The increment or decrement of the read pointer is different in the idle and compensation streams to preserve disparity. Another unique feature is that the read pointer to write pointer difference range changes between compensation and idle to minimize FIFO latency during packet transmission.

  20. A colorful model of the circadian clock.

    PubMed

    Reppert, Steven M

    2006-01-27

    The migration of the colorful monarch butterfly provides biologists with a unique model system with which to study the cellular and molecular mechanisms underlying a sophisticated circadian clock. The monarch circadian clock is involved in the induction of the migratory state and navigation over long distances, using the sun as a compass. PMID:16439193

  1. Priming in Systemic Plant Immunity

    SciTech Connect

    Jung, Ho Won; Tschaplinski, Timothy J; Wang, Lin; Glazebrook, Jane; Greenberg, Jean T.

    2009-01-01

    Upon local infection, plants possess inducible systemic defense responses against their natural enemies. Bacterial infection results in the accumulation to high levels of the mobile metabolite C9-dicarboxylic acid azelaic acid in the vascular sap of Arabidopsis. Azelaic acid confers local and systemic resistance against Pseudomonas syringae. The compound primes plants to strongly accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of a gene induced by azelaic acid (AZI1) results in the specific loss in plants of systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction. AZI1, a predicted secreted protein, is also important for generating vascular sap that confers disease resistance. Thus, azelaic acid and AZI1 comprise novel components of plant systemic immunity involved in priming defenses.

  2. Clocks in the Green Lineage: Comparative Functional Analysis of the Circadian Architecture of the Picoeukaryote Ostreococcus[W

    PubMed Central

    Corellou, Florence; Schwartz, Christian; Motta, Jean-Paul; Djouani-Tahri, El Batoul; Sanchez, Frédéric; Bouget, François-Yves

    2009-01-01

    Biological rhythms that allow organisms to adapt to the solar cycle are generated by endogenous circadian clocks. In higher plants, many clock components have been identified and cellular rhythmicity is thought to be driven by a complex transcriptional feedback circuitry. In the small genome of the green unicellular alga Ostreococcus tauri, two of the master clock genes Timing of Cab expression1 (TOC1) and Circadian Clock-Associated1 (CCA1) appear to be conserved, but others like Gigantea or Early-Flowering4 are lacking. Stably transformed luciferase reporter lines and tools for gene functional analysis were therefore developed to characterize clock gene function in this simple eukaryotic system. This approach revealed several features that are comparable to those in higher plants, including the circadian regulation of TOC1, CCA1, and the output gene Chlorophyll a/b Binding under constant light, the relative phases of TOC1/CCA1 expression under light/dark cycles, arrhythmic overexpression phenotypes under constant light, the binding of CCA1 to a conserved evening element in the TOC1 promoter, as well as the requirement of the evening element for circadian regulation of TOC1 promoter activity. Functional analysis supports TOC1 playing a central role in the clock, but repression of CCA1 had no effect on clock function in constant light, arguing against a simple TOC1 /CCA1 one-loop clock in Ostreococcus. The emergence of functional genomics in a simple green cell with a small genome may facilitate increased understanding of how complex cellular processes such as the circadian clock have evolved in plants. PMID:19948792

  3. Fossil power plant systems description

    SciTech Connect

    Not Available

    1984-01-01

    This single-volume, looseleaf text presents the functions and relationships between each major component and its auxiliaries within a system. The text also describes the relationships between systems. All major components are addressed, and system boundaries are defined for a generic fossil power plant.

  4. Nutrient Sensing and the Circadian Clock

    PubMed Central

    Peek, Clara B.; Ramsey, Kathryn M.; Marcheva, Biliana; Bass, Joseph

    2012-01-01

    The circadian system synchronizes behavioral and physiologic processes with daily changes in the external light-dark cycle, optimizing energetic cycles with the rising and setting of the sun. Molecular clocks are organized hierarchically, with neural clocks orchestrating the daily switch between periods of feeding and fasting, and peripheral clocks generating 24hr oscillations of energy storage and utilization. Recent studies indicate that clocks respond to nutrient signals, and that high-fat diet influences the period of locomotor activity under free-running conditions, a core property of the clock. A major goal is to identify the molecular basis for the reciprocal relationship between metabolic and circadian pathways. Here, we highlight the role of peptidergic hormones and macromolecules as nutrient signals integrating circadian and metabolic systems. PMID:22424658

  5. The Ozone-Iodine-Chlorate Clock Reaction

    PubMed Central

    Sant'Anna, Rafaela T. P.; Monteiro, Emily V.; Pereira, Juliano R. T.; Faria, Roberto B.

    2013-01-01

    This work presents a new clock reaction based on ozone, iodine, and chlorate that differs from the known chlorate-iodine clock reaction because it does not require UV light. The induction period for this new clock reaction depends inversely on the initial concentrations of ozone, chlorate, and perchloric acid but is independent of the initial iodine concentration. The proposed mechanism considers the reaction of ozone and iodide to form HOI, which is a key species for producing non-linear autocatalytic behavior. The novelty of this system lies in the presence of ozone, whose participation has never been observed in complex systems such as clock or oscillating reactions. Thus, the autocatalysis demonstrated in this new clock reaction should open the possibility for a new family of oscillating reactions. PMID:24386257

  6. Rigorously modeling self-stabilizing fault-tolerant circuits: An ultra-robust clocking scheme for systems-on-chip☆

    PubMed Central

    Dolev, Danny; Függer, Matthias; Posch, Markus; Schmid, Ulrich; Steininger, Andreas; Lenzen, Christoph

    2014-01-01

    We present the first implementation of a distributed clock generation scheme for Systems-on-Chip that recovers from an unbounded number of arbitrary transient faults despite a large number of arbitrary permanent faults. We devise self-stabilizing hardware building blocks and a hybrid synchronous/asynchronous state machine enabling metastability-free transitions of the algorithm's states. We provide a comprehensive modeling approach that permits to prove, given correctness of the constructed low-level building blocks, the high-level properties of the synchronization algorithm (which have been established in a more abstract model). We believe this approach to be of interest in its own right, since this is the first technique permitting to mathematically verify, at manageable complexity, high-level properties of a fault-prone system in terms of its very basic components. We evaluate a prototype implementation, which has been designed in VHDL, using the Petrify tool in conjunction with some extensions, and synthesized for an Altera Cyclone FPGA. PMID:26516290

  7. Circadian clock genes universally control key agricultural traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian clocks are endogenous timers that enable plants to synchronize biological processes with daily and seasonal environmental conditions in order to allocate resources during the most beneficial times of day and year. The circadian clock regulates a number of central plant activities, includin...

  8. The Circadian Clock-Controlled Transcriptome of Developing Soybean Seeds.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of metabolic and physiological processes in plants are controlled by the circadian clock, which enables the plant to anticipate daily changes in the environment. Microarray expression profiling was used to identify circadian clock controlled genes expressed in developing soybean seeds. 1.8...

  9. Deciphering the Duality of Clock and Growth Metabolism in a Cell Autonomous System Using NMR Profiling of the Secretome.

    PubMed

    Sengupta, Arjun; Krishnaiah, Saikumari Y; Rhoades, Seth; Growe, Jacqueline; Slaff, Barry; Venkataraman, Anand; Olarerin-George, Anthony O; Van Dang, Chi; Hogenesch, John B; Weljie, Aalim M

    2016-01-01

    Oscillations in circadian metabolism are crucial to the well being of organism. Our understanding of metabolic rhythms has been greatly enhanced by recent advances in high-throughput systems biology experimental techniques and data analysis. In an in vitro setting, metabolite rhythms can be measured by time-dependent sampling over an experimental period spanning one or more days at sufficent resolution to elucidate rhythms. We hypothesized that cellular metabolic effects over such a time course would be influenced by both oscillatory and circadian-independent cell metabolic effects. Here we use nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling of mammalian cell culture media of synchronized U2 OS cells containing an intact transcriptional clock. The experiment was conducted over 48 h, typical for circadian biology studies, and samples collected at 2 h resolution to unravel such non-oscillatory effects. Our data suggest specific metabolic activities exist that change continuously over time in this settting and we demonstrate that the non-oscillatory effects are generally monotonic and possible to model with multivariate regression. Deconvolution of such non-circadian persistent changes are of paramount importance to consider while studying circadian metabolic oscillations. PMID:27472375

  10. Double-modulation CPT cesium compact clock

    NASA Astrophysics Data System (ADS)

    Yun, Peter; Mejri, Sinda; Tricot, Francois; Abdel Hafiz, Moustafa; Boudot, Rodolphe; de Clercq, Emeric; Guérandel, Stéphane

    2016-06-01

    Double-modulation coherent population trapping (CPT) is based on a synchronous modulation of Raman phase and laser polarization, which allows the atomic population to accumulate in a common dark state. The high contrast signal obtained on the clock transition with a relative compact and robust laser system is interesting as basis of a high performance microwave clock. Here we study the parameters of a double-modulation CPT Cs clock working in cw mode. The optimal polarization modulation frequency and cell temperature for maximum contrast of clock transition are investigated. The parameters of the detection are also studied. With the optimal parameters, we observe a CPT signal with contrast of 10% and linewidth of 492 Hz, which is well suited for implementing a cw atomic clock.

  11. Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System - Oral Presentation

    SciTech Connect

    Araya, Million

    2015-08-25

    SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hz 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervalswhere the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.

  12. Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System - Final Paper

    SciTech Connect

    Araya, Million

    2015-08-21

    SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hz 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervals-where the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.

  13. The performance of primary Cs beam clocks using quadrupole and hexapole deflection systems. Consequences for time keeping

    NASA Technical Reports Server (NTRS)

    Becker, G.

    1979-01-01

    Since 1978 the time-and-frequency standard CS1 of the Physikalisch-Technische Bundesanstalt (PTB) has operated continuously as a 'primary clock'. Its uncertainty (7.1 to the negative 15th power) is considerably smaller than that of the other existing primary standards. The CS1 is equipped with a combination of quadrupole and hexapole magnets and uses a longitudinal C-field. Consequences of utilizing primary clocks of this quality for the generation of the International Atomic Time Scale TAI are discussed.

  14. Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination

    PubMed Central

    Fukushima, Atsushi; Kusano, Miyako; Nakamichi, Norihito; Kobayashi, Makoto; Hayashi, Naomi; Sakakibara, Hitoshi; Mizuno, Takeshi; Saito, Kazuki

    2009-01-01

    In higher plants, the circadian clock controls a wide range of cellular processes such as photosynthesis and stress responses. Understanding metabolic changes in arrhythmic plants and determining output-related function of clock genes would help in elucidating circadian-clock mechanisms underlying plant growth and development. In this work, we investigated physiological relevance of PSEUDO-RESPONSE REGULATORS (PRR 9, 7, and 5) in Arabidopsis thaliana by transcriptomic and metabolomic analyses. Metabolite profiling using gas chromatography–time-of-flight mass spectrometry demonstrated well-differentiated metabolite phenotypes of seven mutants, including two arrhythmic plants with similar morphology, a PRR 9, 7, and 5 triple mutant and a CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1)-overexpressor line. Despite different light and time conditions, the triple mutant exhibited a dramatic increase in intermediates in the tricarboxylic acid cycle. This suggests that proteins PRR 9, 7, and 5 are involved in maintaining mitochondrial homeostasis. Integrated analysis of transcriptomics and metabolomics revealed that PRR 9, 7, and 5 negatively regulate the biosynthetic pathways of chlorophyll, carotenoid and abscisic acid, and α-tocopherol, highlighting them as additional outputs of pseudo-response regulators. These findings indicated that mitochondrial functions are coupled with the circadian system in plants. PMID:19359492

  15. Short-scale atomic clock based on the quantum magnetometers system

    NASA Astrophysics Data System (ADS)

    Ermak, S. V.; Sagitov, E. A.; Smolin, R. V.; Semenov, V. V.

    2016-03-01

    The experimental results of dependence of Allan variance as averaging time for system of two quantum magnetometers with laser pumping of the alkaline atoms are presented. Also the role of different components of luminous frequency shift of a radio optical resonance in case of an optimum operation mode of quantum magnetometers in such system is noted. It is shown that the effect of compensation of luminous shift components allows to reduce Allan variance in times of averaging more, than hundreds of seconds in comparison with the quantum standard of frequency on 0-0 transition.

  16. A quantum network of clocks

    NASA Astrophysics Data System (ADS)

    Komar, Peter; Kessler, Eric; Bishof, Michael; Jiang, Liang; Sorensen, Anders; Ye, Jun; Lukin, Mikhail

    2014-05-01

    Shared timing information constitutes a key resource for positioning and navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System (GPS). By combining precision metrology and quantum networks, we propose here a quantum, cooperative protocol for the operation of a network consisting of geographically remote optical atomic clocks. Using non-local entangled states, we demonstrate an optimal utilization of the global network resources, and show that such a network can be operated near the fundamental limit set by quantum theory yielding an ultra-precise clock signal. Furthermore, the internal structure of the network, combined with basic techniques from quantum communication, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy. See also: Komar et al. arXiv:1310.6045 (2013) and Kessler et al. arXiv:1310.6043 (2013).

  17. Parasites, proteomes and systems: has Descartes’ clock run out of time?

    PubMed Central

    WASTLING, J. M.; ARMSTRONG, S. D.; KRISHNA, R.; XIA, D.

    2012-01-01

    SUMMARY Systems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types. PMID:22828391

  18. Egyptian "Star Clocks"

    NASA Astrophysics Data System (ADS)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  19. Biological Clocks & Circadian Rhythms

    ERIC Educational Resources Information Center

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  20. First nuclear clock?

    NASA Astrophysics Data System (ADS)

    2016-06-01

    A nuclear clock that is more precise than any atomic clock available today could soon be a reality after physicists in Germany detected a crucial low-energy transition in the thorium-229 nucleus, which could be used to create a new frequency standard.

  1. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system

    PubMed Central

    Metcalf, Jessica L; Wegener Parfrey, Laura; Gonzalez, Antonio; Lauber, Christian L; Knights, Dan; Ackermann, Gail; Humphrey, Gregory C; Gebert, Matthew J; Van Treuren, Will; Berg-Lyons, Donna; Keepers, Kyle; Guo, Yan; Bullard, James; Fierer, Noah; Carter, David O; Knight, Rob

    2013-01-01

    Establishing the time since death is critical in every death investigation, yet existing techniques are susceptible to a range of errors and biases. For example, forensic entomology is widely used to assess the postmortem interval (PMI), but errors can range from days to months. Microbes may provide a novel method for estimating PMI that avoids many of these limitations. Here we show that postmortem microbial community changes are dramatic, measurable, and repeatable in a mouse model system, allowing PMI to be estimated within approximately 3 days over 48 days. Our results provide a detailed understanding of bacterial and microbial eukaryotic ecology within a decomposing corpse system and suggest that microbial community data can be developed into a forensic tool for estimating PMI. DOI: http://dx.doi.org/10.7554/eLife.01104.001 PMID:24137541

  2. Robustness of Circadian Clocks to Daylight Fluctuations: Hints from the Picoeucaryote Ostreococcus tauri

    PubMed Central

    Thommen, Quentin; Pfeuty, Benjamin; Morant, Pierre-Emmanuel; Corellou, Florence; Bouget, François-Yves; Lefranc, Marc

    2010-01-01

    The development of systemic approaches in biology has put emphasis on identifying genetic modules whose behavior can be modeled accurately so as to gain insight into their structure and function. However, most gene circuits in a cell are under control of external signals and thus, quantitative agreement between experimental data and a mathematical model is difficult. Circadian biology has been one notable exception: quantitative models of the internal clock that orchestrates biological processes over the 24-hour diurnal cycle have been constructed for a few organisms, from cyanobacteria to plants and mammals. In most cases, a complex architecture with interlocked feedback loops has been evidenced. Here we present the first modeling results for the circadian clock of the green unicellular alga Ostreococcus tauri. Two plant-like clock genes have been shown to play a central role in the Ostreococcus clock. We find that their expression time profiles can be accurately reproduced by a minimal model of a two-gene transcriptional feedback loop. Remarkably, best adjustment of data recorded under light/dark alternation is obtained when assuming that the oscillator is not coupled to the diurnal cycle. This suggests that coupling to light is confined to specific time intervals and has no dynamical effect when the oscillator is entrained by the diurnal cycle. This intringuing property may reflect a strategy to minimize the impact of fluctuations in daylight intensity on the core circadian oscillator, a type of perturbation that has been rarely considered when assessing the robustness of circadian clocks. PMID:21085637

  3. Cesium clocks keep the world on time

    SciTech Connect

    Hellwig, H.

    1985-09-01

    The development of timekeeping systems based on the natural resonance of cesium atoms is reviewed. The design of a typical cesium clock using a frequency lock servo is described. Some common applications of cesium beam frequency and time reference systems are discussed, including Navstar GPS navigation referencing; military satellite communications; and measurements of relative gravitational effects. The possibility of increasing timekeeping accuracies using improved cesium clock designs is evaluated.

  4. Biological clocks and the practice of psychiatry

    PubMed Central

    Schulz, Pierre

    2007-01-01

    Endogenous biological clocks enable living species to acquire some independence in relation to time. They improve the efficiency of biological systems, by allowing them to anticipate future constraints on major physyological systems and cell energy metabolism. The temporal organization of a giwen biological function can be impaired in its coordination with astronomical time or with other biological function. There are also external conditions that influence biological clocks. This temporal organization is complex, and it is possible that a series of psychiatric disorders and syndromes involve primary or secondary changes in biological clocks: seasonal and other mood disorders, premenstrual syndromes, social jet lag, free-running rhythms, and several sleep disorders are among them. In this review, we describe the main concepts relevant to chronobiology and explore the relevance of knowledge about biological clocks to the clinical practice of psychiatry PMID:17969862

  5. LED Systems Target Plant Growth

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To help develop technologies for growing edible biomass (food crops) in space, Kennedy Space Center partnered with Orbital Technologies Corporation (ORBITEC), of Madison, Wisconsin, through the Small Business Innovation Research (SBIR) program. One result of this research was the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system, components of which have been incorporated into a variety of agricultural greenhouse and consumer aquarium lighting features. The new lighting systems can be adapted to a specific plant species during a specific growth stage, allowing maximum efficiency in light absorption by all available photosynthetic tissues.

  6. Optical clocks and relativity.

    PubMed

    Chou, C W; Hume, D B; Rosenband, T; Wineland, D J

    2010-09-24

    Observers in relative motion or at different gravitational potentials measure disparate clock rates. These predictions of relativity have previously been observed with atomic clocks at high velocities and with large changes in elevation. We observed time dilation from relative speeds of less than 10 meters per second by comparing two optical atomic clocks connected by a 75-meter length of optical fiber. We can now also detect time dilation due to a change in height near Earth's surface of less than 1 meter. This technique may be extended to the field of geodesy, with applications in geophysics and hydrology as well as in space-based tests of fundamental physics. PMID:20929843

  7. Circadian clocks and the regulation of virulence in fungi: Getting up to speed.

    PubMed

    Hevia, Montserrat A; Canessa, Paulo; Larrondo, Luis F

    2016-09-01

    You cannot escape time. Therefore, it seems wise to learn how to keep track of it and use it to your advantage. Circadian clocks are molecular circuits that allow organisms to temporally coordinate a plethora of processes, including gene expression, with a close to 24h rhythm, optimizing cellular function in synchrony with daily environmental cycles. The molecular bases of these clocks have been extensively studied in the fungus Neurospora crassa, providing a detailed molecular description. Surprisingly, there is scarce molecular information of clocks in fungi other than Neurospora, despite the existence of rhythmic phenomena in many fungal species, including pathogenic ones. This review will comment on the overall importance of clocks, what is known in Neurospora and what has been described in other fungi including new insights on the evolution of fungal clock components. The molecular description of the circadian system of the phytopathogenic fungus Botrytis cinerea will be revisited, as well as time-of-the-day variation in host-pathogen interaction dynamics, utilizing an Arabidopsis-Botrytis system, including also what is known regarding circadian regulation of defense mechanisms in the Arabidopsis thaliana plant model. Finally, this review will mention how little is known about circadian regulation of human pathogenic fungi, commenting on potential future directions and the overall perspective of fungal circadian studies. PMID:27039027

  8. A low cost concept for data acquisition systems applied to decentralized renewable energy plants.

    PubMed

    Jucá, Sandro C S; Carvalho, Paulo C M; Brito, Fábio T

    2011-01-01

    The present paper describes experiences of the use of monitoring and data acquisition systems (DAS) and proposes a new concept of a low cost DAS applied to decentralized renewable energy (RE) plants with an USB interface. The use of such systems contributes to disseminate these plants, recognizing in real time local energy resources, monitoring energy conversion efficiency and sending information concerning failures. These aspects are important, mainly for developing countries, where decentralized power plants based on renewable sources are in some cases the best option for supplying electricity to rural areas. Nevertheless, the cost of commercial DAS is still a barrier for a greater dissemination of such systems in developing countries. The proposed USB based DAS presents a new dual clock operation philosophy, in which the acquisition system contains two clock sources for parallel information processing from different communication protocols. To ensure the low cost of the DAS and to promote the dissemination of this technology in developing countries, the proposed data acquisition firmware and the software for USB microcontrollers programming is a free and open source software, executable in the Linux and Windows® operating systems. PMID:22346600

  9. A Low Cost Concept for Data Acquisition Systems Applied to Decentralized Renewable Energy Plants

    PubMed Central

    Jucá, Sandro C. S.; Carvalho, Paulo C. M.; Brito, Fábio T.

    2011-01-01

    The present paper describes experiences of the use of monitoring and data acquisition systems (DAS) and proposes a new concept of a low cost DAS applied to decentralized renewable energy (RE) plants with an USB interface. The use of such systems contributes to disseminate these plants, recognizing in real time local energy resources, monitoring energy conversion efficiency and sending information concerning failures. These aspects are important, mainly for developing countries, where decentralized power plants based on renewable sources are in some cases the best option for supplying electricity to rural areas. Nevertheless, the cost of commercial DAS is still a barrier for a greater dissemination of such systems in developing countries. The proposed USB based DAS presents a new dual clock operation philosophy, in which the acquisition system contains two clock sources for parallel information processing from different communication protocols. To ensure the low cost of the DAS and to promote the dissemination of this technology in developing countries, the proposed data acquisition firmware and the software for USB microcontrollers programming is a free and open source software, executable in the Linux and Windows® operating systems. PMID:22346600

  10. A tunable artificial circadian clock in clock-defective mice

    PubMed Central

    D'Alessandro, Matthew; Beesley, Stephen; Kim, Jae Kyoung; Chen, Rongmin; Abich, Estela; Cheng, Wayne; Yi, Paul; Takahashi, Joseph S.; Lee, Choogon

    2015-01-01

    Self-sustaining oscillations are essential for diverse physiological functions such as the cell cycle, insulin secretion and circadian rhythms. Synthetic oscillators using biochemical feedback circuits have been generated in cell culture. These synthetic systems provide important insight into design principles for biological oscillators, but have limited similarity to physiological pathways. Here we report the generation of an artificial, mammalian circadian clock in vivo, capable of generating robust, tunable circadian rhythms. In mice deficient in Per1 and Per2 genes (thus lacking circadian rhythms), we artificially generate PER2 rhythms and restore circadian sleep/wake cycles with an inducible Per2 transgene. Our artificial clock is tunable as the period and phase of the rhythms can be modulated predictably. This feature, and other design principles of our work, might enhance the study and treatment of circadian dysfunction and broader aspects of physiology involving biological oscillators. PMID:26617050

  11. Chitosan Effects on Plant Systems.

    PubMed

    Malerba, Massimo; Cerana, Raffaella

    2016-01-01

    Chitosan (CHT) is a natural, safe, and cheap product of chitin deacetylation, widely used by several industries because of its interesting features. The availability of industrial quantities of CHT in the late 1980s enabled it to be tested in agriculture. CHT has been proven to stimulate plant growth, to protect the safety of edible products, and to induce abiotic and biotic stress tolerance in various horticultural commodities. The stimulating effect of different enzyme activities to detoxify reactive oxygen species suggests the involvement of hydrogen peroxide and nitric oxide in CHT signaling. CHT could also interact with chromatin and directly affect gene expression. Recent innovative uses of CHT include synthesis of CHT nanoparticles as a valuable delivery system for fertilizers, herbicides, pesticides, and micronutrients for crop growth promotion by a balanced and sustained nutrition. In addition, CHT nanoparticles can safely deliver genetic material for plant transformation. This review presents an overview on the status of the use of CHT in plant systems. Attention was given to the research that suggested the use of CHT for sustainable crop productivity. PMID:27347928

  12. Chitosan Effects on Plant Systems

    PubMed Central

    Malerba, Massimo; Cerana, Raffaella

    2016-01-01

    Chitosan (CHT) is a natural, safe, and cheap product of chitin deacetylation, widely used by several industries because of its interesting features. The availability of industrial quantities of CHT in the late 1980s enabled it to be tested in agriculture. CHT has been proven to stimulate plant growth, to protect the safety of edible products, and to induce abiotic and biotic stress tolerance in various horticultural commodities. The stimulating effect of different enzyme activities to detoxify reactive oxygen species suggests the involvement of hydrogen peroxide and nitric oxide in CHT signaling. CHT could also interact with chromatin and directly affect gene expression. Recent innovative uses of CHT include synthesis of CHT nanoparticles as a valuable delivery system for fertilizers, herbicides, pesticides, and micronutrients for crop growth promotion by a balanced and sustained nutrition. In addition, CHT nanoparticles can safely deliver genetic material for plant transformation. This review presents an overview on the status of the use of CHT in plant systems. Attention was given to the research that suggested the use of CHT for sustainable crop productivity. PMID:27347928

  13. Frequency Metrology with Optical Lattice Clocks

    NASA Astrophysics Data System (ADS)

    Hong, Feng-Lei; Katori, Hidetoshi

    2010-08-01

    The precision measurement of time and frequency is of great interest for a wide range of applications, including fundamental science and technologies that support broadband communication networks and the navigation with global positioning systems (GPSs). The development of optical frequency measurement based on frequency combs has revolutionized the field of frequency metrology, especially research on optical frequency standards. The proposal and realization of the optical lattice clock have further stimulated studies in the field of optical frequency metrology. Optical carrier transfer using optical fibers has been used to disseminate optical frequencies or compare two optical clocks without degrading their stability and accuracy. In this paper, we review the state-of-the-art development of optical frequency combs, standards, and transfer techniques with emphasis on optical lattice clocks. We address recent results achieved at the University of Tokyo and the National Metrology Institute of Japan in respect of frequency metrology with Sr and Yb optical lattice clocks.

  14. Iodine Clock Reaction.

    ERIC Educational Resources Information Center

    Mitchell, Richard S.

    1996-01-01

    Describes a combination of solutions that can be used in the study of kinetics using the iodine clock reaction. The combination slows down degradation of the prepared solutions and can be used successfully for several weeks. (JRH)

  15. Quantum time-of-flight measurements: Kicked clock versus continuous clock

    SciTech Connect

    Alonso, Daniel; Sala Mayato, R.; Muga, J.G.

    2003-03-01

    The measurement of time durations or instants of occurrence of events has been frequently modeled 'operationally' by coupling the system of interest to a ''clock.'' According to several of these models, the operational approach is limited at low energies because the perturbation of the clock does not allow to reproduce accurately the corresponding ideal time quantity, defined for the system in isolation. We show that, for a time-of-flight measurement model that can be set to measure dwell or arrival times, these limitations may be overcome by extending the range of energies where the clock works properly using pulsed couplings rather than continuous ones.

  16. Atomic clocks for astrophysical measurements

    NASA Technical Reports Server (NTRS)

    Vessot, R. F. C.; Mattison, E. M.

    1982-01-01

    It is noted that recently developed atomic hydrogen masers have achieved stability well into the 10 to the -16th domain for averaging time intervals beyond 1000 sec and that further improvements are in prospect. These devices are highly adaptable for space use in very high precision measurements of angle through Very Long Baseline Interferometry (VLBI) and of range and range-rate through Doppler techniques. Space missions that will use these clocks for measuring the sun's gravity field distribution and for testing gravitation and relativity (a project that will include a search for pulsed low-frequency gravitational waves) are discussed. Estimates are made of system performance capability, and the accuracy capability of relativistic measurements is evaluated in terms of the results from the 1976 NASA/SAO spaceborne clock test of the Einstein Equivalence Principle.

  17. Short-term GNSS satellite clock stability

    NASA Astrophysics Data System (ADS)

    Griggs, E.; Kursinski, E. R.; Akos, D.

    2015-08-01

    Global Navigation Satellite System (GNSS) clock stability is characterized via the modified Allan deviation using active hydrogen masers as the receiver frequency reference. The high stability of the maser reference allows the GNSS clock contribution to the GNSS carrier phase variance to be determined quite accurately. Satellite clock stability for four different GNSS constellations are presented, highlighting the similarities and differences between the constellations as well as satellite blocks and clock types. Impact on high-rate applications, such as GNSS radio occultation (RO), is assessed through the calculation of the maximum carrier phase error due to clock instability. White phase noise appears to dominate at subsecond time scales. However, while we derived the theoretical contribution of white phase modulation to the modified Allan deviation, our analysis of the GNSS satellite clocks was limited to 1-200 s time scales because of inconsistencies between the subsecond results from the commercial and software-defined receivers. The rubidium frequency standards on board the Global Positioning System (GPS) Block IIF, BeiDou, and Galileo satellites show improved stability results in comparison to previous GPS blocks for time scales relevant to RO. The Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) satellites are the least stable of the GNSS constellations in the short term and will need high-rate corrections to produce RO results comparable to those from the other GNSS constellations.

  18. Coupling governs entrainment range of circadian clocks

    PubMed Central

    Abraham, Ute; Granada, Adrián E; Westermark, Pål O; Heine, Markus; Kramer, Achim; Herzel, Hanspeter

    2010-01-01

    Circadian clocks are endogenous oscillators driving daily rhythms in physiology and behavior. Synchronization of these timers to environmental light–dark cycles (‘entrainment') is crucial for an organism's fitness. Little is known about which oscillator qualities determine entrainment, i.e., entrainment range, phase and amplitude. In a systematic theoretical and experimental study, we uncovered these qualities for circadian oscillators in the suprachiasmatic nucleus (SCN—the master clock in mammals) and the lung (a peripheral clock): (i) the ratio between stimulus (zeitgeber) strength and oscillator amplitude and (ii) the rigidity of the oscillatory system (relaxation rate upon perturbation) determine entrainment properties. Coupling among oscillators affects both qualities resulting in increased amplitude and rigidity. These principles explain our experimental findings that lung clocks entrain to extreme zeitgeber cycles, whereas SCN clocks do not. We confirmed our theoretical predictions by showing that pharmacological inhibition of coupling in the SCN leads to larger ranges of entrainment. These differences between master and the peripheral clocks suggest that coupling-induced rigidity in the SCN filters environmental noise to create a robust circadian system. PMID:21119632

  19. Collecting in Central Asia: National Plant Germplasm System Plant Explorations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS National Plant Germplasm System is charged with the preservation of economically important crop plants and their wild relatives. Curators in the System strive to develop collections capturing the genetic diversity of each species. One mechanism for filling gaps in collections is through...

  20. Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures

    PubMed Central

    Gould, Peter D; Ugarte, Nicolas; Domijan, Mirela; Costa, Maria; Foreman, Julia; MacGregor, Dana; Rose, Ken; Griffiths, Jayne; Millar, Andrew J; Finkenstädt, Bärbel; Penfield, Steven; Rand, David A; Halliday, Karen J; Hall, Anthony J W

    2013-01-01

    Circadian clocks exhibit ‘temperature compensation', meaning that they show only small changes in period over a broad temperature range. Several clock genes have been implicated in the temperature-dependent control of period in Arabidopsis. We show that blue light is essential for this, suggesting that the effects of light and temperature interact or converge upon common targets in the circadian clock. Our data demonstrate that two cryptochrome photoreceptors differentially control circadian period and sustain rhythmicity across the physiological temperature range. In order to test the hypothesis that the targets of light regulation are sufficient to mediate temperature compensation, we constructed a temperature-compensated clock model by adding passive temperature effects into only the light-sensitive processes in the model. Remarkably, this model was not only capable of full temperature compensation and consistent with mRNA profiles across a temperature range, but also predicted the temperature-dependent change in the level of LATE ELONGATED HYPOCOTYL, a key clock protein. Our analysis provides a systems-level understanding of period control in the plant circadian oscillator. PMID:23511208

  1. The regulation of central and peripheral circadian clocks in humans.

    PubMed

    Cermakian, N; Boivin, D B

    2009-11-01

    Many circadian rhythms are controlled by the central clock of the suprachiasmatic nucleus of the hypothalamus, as well as clocks located in other brain regions and most peripheral tissues. These central and peripheral clocks are based on clock genes and their protein products. In recent years, the expression of clock genes has started to be investigated in human samples, primarily white blood cells, but also skin, oral mucosa, colon cells, adipose tissue as well as post-mortem brain tissue. The expression of clock genes in those peripheral tissues offers a way to monitor human peripheral clocks and to compare their function and regulation with those of the central clock, which is followed by markers such as melatonin, cortisol and core body temperature. We have recently used such an approach to compare central and peripheral rhythms in subjects under different lighting conditions. In particular, we have monitored the entrainment of the clock of blood cells in subjects undergoing a simulated night shift protocol with bright light treatment, known to efficiently reset the central clock. This line of research will be helpful for learning more about the human circadian system and to find ways to alleviate health problems of shift workers, and other populations experiencing altered circadian rhythms. PMID:19849799

  2. Towards Self-Clocked Gated OCDMA Receiver

    NASA Astrophysics Data System (ADS)

    Idris, S.; Osadola, T.; Glesk, I.

    2013-02-01

    A novel incoherent OCDMA receiver with incorporated all-optical clock recovery for self-synchronization of a time gate for the multi access interferences (MAI) suppression and minimizing the effect of data time jitter in incoherent OCDMA system was successfully developed and demonstrated. The solution was implemented and tested in a multiuser environment in an out of the laboratory OCDMA testbed with two-dimensional wavelength-hopping time-spreading coding scheme and OC-48 (2.5 Gbp/s) data rate. The self-clocked all-optical time gate uses SOA-based fibre ring laser optical clock, recovered all-optically from the received OCDMA traffic to control its switching window for cleaning the autocorrelation peak from the surrounding MAI. A wider eye opening was achieved when the all-optically recovered clock from received data was used for synchronization if compared to a static approach with the RF clock being generated by a RF synthesizer. Clean eye diagram was also achieved when recovered clock is used to drive time gating.

  3. Skeletal muscle functions around the clock.

    PubMed

    Mayeuf-Louchart, A; Staels, B; Duez, H

    2015-09-01

    In mammals, the central clock localized in the central nervous system imposes a circadian rhythmicity to all organs. This is achieved thanks to a well-conserved molecular clockwork, involving interactions between several transcription factors, whose pace is conveyed to peripheral tissues through neuronal and humoral signals. The molecular clock plays a key role in the control of numerous physiological processes and takes part in the regulation of metabolism and energy balance. Skeletal muscle is one of the peripheral organs whose function is under the control of the molecular clock. However, although skeletal muscle metabolism and performances display circadian rhythmicity, the role of the molecular clock in the skeletal muscle has remained unappreciated for years. Peripheral organs such as skeletal muscle, and the liver, among others, can be desynchronized from the central clock by external stimuli, such as feeding or exercise, which impose a new rhythm at the organism level. In this review, we discuss our current understanding of the clock in skeletal muscle circadian physiology, focusing on the control of myogenesis and skeletal muscle metabolism. PMID:26332967

  4. Deterministic and Stochastic Receiver Clock Modeling in Precise Point Positioning

    NASA Astrophysics Data System (ADS)

    Orliac, E.; Dach, R.; Wang, K.; Rothacher, M.; Voithenleitner, D.; Hugentobler, U.; Heinze, M.; Svehla, D.

    2012-04-01

    The traditional GNSS (Global Navigation Satellite System) data analysis assumes an independent set of clock corrections for each epoch. This introduces a huge number of parameters that are highly correlated with station height and troposphere parameters. If the number of clock parameters can be reduced, the GNSS processing procedure may be stabilized. Experiments with kinematic solutions for stations equipped with H-Maser clocks have confirmed this. On the other hand, static coordinates do not significantly benefit from changing the strategy in handling the clock parameter. In the current GNSS constellation only GIOVE-B and the GPS Block IIF satellite clocks seem to be good enough to be modeled instead of freely estimated for each epoch without losing accuracy at the level of phase measurements. With the Galileo constellation this will change in future. In this context, ESA (European Space Agency) funded a project on "Satellite and Station Clock Modelling for GNSS". In the frame of this project, various deterministic and stochastic clock models have been evaluated, implemented and assessed for both, station and satellite clocks. In this paper we focus on the impact of modeling the receiver clock in the processing of GNSS data in static and kinematic precise point positioning (PPP) modes. Initial results show that for stations connected to an H-Maser clock the stability of the vertical position for kinematic PPP could be improved by up to 60%. The impact of clock modeling on the estimation of troposphere parameters is also investigated, along with the role of the tropospheric modeling itself, by testing various sampling rates and relative constraints for the troposphere parameters. Finally, we investigate the convergence time of PPP when deterministic or stochastic clock modeling is applied to the receiver clock.

  5. Body weight, metabolism and clock genes

    PubMed Central

    2010-01-01

    Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity. PMID:20712885

  6. Body weight, metabolism and clock genes.

    PubMed

    Zanquetta, Melissa M; Corrêa-Giannella, Maria Lúcia; Monteiro, Maria Beatriz; Villares, Sandra Mf

    2010-01-01

    Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity. PMID:20712885

  7. VCSELs for atomic clocks

    NASA Astrophysics Data System (ADS)

    Serkland, Darwin K.; Peake, Gregory M.; Geib, Kent M.; Lutwak, Robert; Garvey, R. Michael; Varghese, Mathew; Mescher, Mark

    2006-02-01

    The spectroscopic technique of coherent population trapping (CPT) enables an all-optical interrogation of the groundstate hyperfine splitting of cesium (or rubidium), compared to the optical-microwave double resonance technique conventionally employed in atomic frequency standards. All-optical interrogation enables the reduction of the size and power consumption of an atomic clock by two orders of magnitude, and vertical-cavity surface-emitting lasers (VCSELs) are preferred optical sources due to their low power consumption and circular output beam. Several research teams are currently using VCSELs for DARPA's chip-scale atomic clock (CSAC) program with the goal of producing an atomic clock having a volume < 1 cm^3, a power consumption < 30 mW, and an instability (Allan deviation) < 1x10^-11 during a 1-hour averaging interval. This paper describes the VCSEL requirements for CPT-based atomic clocks, which include single mode operation, single polarization operation, modulation bandwidth > 4 GHz, low power consumption (for the CSAC), narrow linewidth, and low relative intensity noise (RIN). A significant manufacturing challenge is to reproducibly obtain the required wavelength at the specified VCSEL operating temperature and drive current. Data are presented that show the advantage of operating at the D1 (rather than D2) resonance of the alkali atoms. Measurements of VCSEL linewidth will be discussed in particular, since atomic clock performance is especially sensitive to this parameter.

  8. Synthetic Spin-Orbit Coupling in an Optical Lattice Clock.

    PubMed

    Wall, Michael L; Koller, Andrew P; Li, Shuming; Zhang, Xibo; Cooper, Nigel R; Ye, Jun; Rey, Ana Maria

    2016-01-22

    We propose the use of optical lattice clocks operated with fermionic alkaline-earth atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation, when atoms are allowed to tunnel and accumulate a phase set by the ratio of the "magic" lattice wavelength to the clock transition wavelength. We demonstrate how standard protocols such as Rabi and Ramsey spectroscopy that take advantage of the sub-Hertz resolution of state-of-the-art clock lasers can perform momentum-resolved band tomography and determine SOC-induced s-wave collisions in nuclear-spin-polarized fermions. With the use of a second counterpropagating clock beam, we propose a method for engineering controlled atomic transport and study how it is modified by p- and s-wave interactions. The proposed spectroscopic probes provide clean and well-resolved signatures at current clock operating temperatures. PMID:26849600

  9. Synthetic Spin-Orbit Coupling in an Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Wall, Michael L.; Koller, Andrew P.; Li, Shuming; Zhang, Xibo; Cooper, Nigel R.; Ye, Jun; Rey, Ana Maria

    2016-01-01

    We propose the use of optical lattice clocks operated with fermionic alkaline-earth atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation, when atoms are allowed to tunnel and accumulate a phase set by the ratio of the "magic" lattice wavelength to the clock transition wavelength. We demonstrate how standard protocols such as Rabi and Ramsey spectroscopy that take advantage of the sub-Hertz resolution of state-of-the-art clock lasers can perform momentum-resolved band tomography and determine SOC-induced s -wave collisions in nuclear-spin-polarized fermions. With the use of a second counterpropagating clock beam, we propose a method for engineering controlled atomic transport and study how it is modified by p - and s -wave interactions. The proposed spectroscopic probes provide clean and well-resolved signatures at current clock operating temperatures.

  10. Room 103, transom woodwork and original clock. All clocks are ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Room 103, transom woodwork and original clock. All clocks are driven by a common signal. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  11. The circadian clock-associated gene zea mays gigantea1 affects maize developmental transitions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The circadian clock is the internal timing mechanism that allows plants to make developmental decisions in accordance with environmental conditions. The genes of the maize circadian clock are not well defined. Gigantea (gi) genes are conserved across flowering plants, including maize. In model plant...

  12. Optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Poli, N.; Oates, C. W.; Gill, P.; Tino, G. M.

    2013-12-01

    In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femtosecond optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in 1018. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.

  13. Plant health sensing system for determining nitrogen status in plants

    NASA Astrophysics Data System (ADS)

    Thomasson, J. A.; Sui, Ruixiu; Read, John J.; Reddy, K. R.

    2004-03-01

    A plant health sensing system was developed for determining nitrogen status in plants. The system consists of a multi-spectral optical sensor and a data-acquisition and processing unit. The optical sensor"s light source provides modulated panchromatic illumination of a plant canopy with light-emitting diodes, and the sensor measures spectral reflectance through optical filters that partition the energy into blue, green, red, and near-infrared wavebands. Spectral reflectance of plants is detected in situ, at the four wavebands, in real time. The data-acquisition and processing unit is based on a single board computer that collects data from the multi-spectral sensor and spatial information from a global positioning system receiver. Spectral reflectance at the selected wavebands is analyzed, with algorithms developed during preliminary work, to determine nitrogen status in plants. The plant health sensing system has been tested primarily in the laboratory and field so far, and promising results have been obtained. This article describes the development, theory of operation, and test results of the plant health sensing system.

  14. Orbit and clock determination of BDS regional navigation satellite system based on IGS M-GEX and WHU BETS tracking network

    NASA Astrophysics Data System (ADS)

    GENG, T.; Zhao, Q.; Shi, C.; Shum, C.; Guo, J.; Su, X.

    2013-12-01

    BeiDou Navigation Satellite System (BDS) began to provide the regional open service on December 27th 2012 and will provide the global open service by the end of 2020. Compared to GPS, the space segment of BDS Regional System consists of 5 Geostationary Earth Orbit satellites (GEO), 5 Inclined Geosynchronous Orbit satellites (IGSO) and 4 Medium Earth orbit (MEO) satellites. Since 2011, IGS Multiple-GNSS Experiment (M-GEX) focuses on tracking the newly available GNSS signals. This includes all signals from the modernized satellites of the GPS and GLONASS systems, as well as signals of the BDS, Galileo and QZSS systems. Up to now, BDS satellites are tracked by around 25 stations with a variety of different antennas and receivers from different GNSS manufacture communities in M-GEX network. Meanwhile, there are 17 stations with Unicore Communications Incorporation's GPS/BDS receivers in BeiDou Experimental Tracking Stations (BETS) network by Wuhan University. In addition, 5 BDS satellites have been tracking by the International Laser Ranging Service (ILRS). BDS performance is expected to be further studied by the GNSS communities. Following an introduction of the BDS system and above different tracking network, this paper discusses the achieved BDS characterization and performance assessment. Firstly, the BDS signal and measurement quality are analyzed with different antennas and receivers in detail compared to GPS. This includes depth of coverage for satellite observation, carrier-to-noise-density ratios, code noise and multipath, carrier phase errors. Secondly, BDS Precise Orbit Determination (POD) is processed. Different arc lengths and sets of orbit parameters are tested using Position And Navigation Data Analysis software (PANDA) which is developed at the Wuhan University. GEO, IGSO and MEO satellites orbit quality will be assessed using overlap comparison, 2-day orbit fit and external validations with Satellite Laser Range (SLR). Then BDS satellites are equipped

  15. A fault-tolerant clock

    NASA Technical Reports Server (NTRS)

    Daley, W. P.; Mckenna, J. F., Jr.

    1973-01-01

    Computers must operate correctly even though one or more of components have failed. Electronic clock has been designed to be insensitive to occurrence of faults; it is substantial advance over any known clock.

  16. Central and peripheral circadian clocks in mammals.

    PubMed

    Mohawk, Jennifer A; Green, Carla B; Takahashi, Joseph S

    2012-01-01

    The circadian system of mammals is composed of a hierarchy of oscillators that function at the cellular, tissue, and systems levels. A common molecular mechanism underlies the cell-autonomous circadian oscillator throughout the body, yet this clock system is adapted to different functional contexts. In the central suprachiasmatic nucleus (SCN) of the hypothalamus, a coupled population of neuronal circadian oscillators acts as a master pacemaker for the organism to drive rhythms in activity and rest, feeding, body temperature, and hormones. Coupling within the SCN network confers robustness to the SCN pacemaker, which in turn provides stability to the overall temporal architecture of the organism. Throughout the majority of the cells in the body, cell-autonomous circadian clocks are intimately enmeshed within metabolic pathways. Thus, an emerging view for the adaptive significance of circadian clocks is their fundamental role in orchestrating metabolism. PMID:22483041

  17. Estimating the instability of a composite clock

    NASA Technical Reports Server (NTRS)

    Greenhall, Charles A.

    2004-01-01

    A composite clock created from a local clock ensemble is known by its time offsets from the ensemble clocks. By a geometrical argument, estimate for the instability of the composite clock are calculated from the instabilities of the ensemble clocks, individually and against the composite clock. The method is illustrated by examples using simulated and real ensembles.

  18. A Novel Photonic Clock and Carrier Recovery Device

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve; Lutes, George; Maleki, Lute

    1996-01-01

    As data communication rates climb toward ten Gb/s, clock recovery and synchronization become more difficult, if not impossible, using conventional electronic circuits. We present in this article experimental results of a high speed clock and carrier recovery using a novel device called a photonic oscillator that we recently developed in our laboratory. This device is capable of recovering clock signals up to 70 GHz. To recover the clock, the incoming data is injected into the photonic oscillator either through the optical injection port or the electrical injection port. The free running photonic oscillator is tuned to oscillate at a nominal frequency equal to the clock frequency of the incoming data. With the injection of the data, the photonic oscillator will be quickly locked to clock frequency of the data stream while rejecting other frequency components associated with the data. Consequently, the output of the locked photonic oscillator is a continuous periodical wave synchronized with the incoming data or simply the recovered clock. We have demonstrated a clock to spur ratio of more than 60 dB of the recovered clock using this technique. Similar to the clock recovery, the photonic oscillator can be used to recover a high frequency carrier degraded by noise and an improvement of about 50 dB in signal-to-noise ratio was demonstrated. The photonic oscillator has both electrical and optical inputs and outputs and can be directly interfaced with a photonic system without signal conversion. In addition to clock and carrier recovery, the photonic oscillator can also be used for (1) stable high frequency clock signal generation, (2) frequency multiplication, (3) square wave and comb frequency generation, and (4) photonic phase locked loop.

  19. Derivation and experimental verification of clock synchronization theory

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.

    1994-01-01

    The objective of this work is to validate mathematically derived clock synchronization theories and their associated algorithms through experiment. Two theories are considered, the Interactive Convergence Clock Synchronization Algorithm and the Mid-Point Algorithm. Special clock circuitry was designed and built so that several operating conditions and failure modes (including malicious failures) could be tested. Both theories are shown to predict conservative upper bounds (i.e., measured values of clock skew were always less than the theory prediction). Insight gained during experimentation led to alternative derivations of the theories. These new theories accurately predict the clock system's behavior. It is found that a 100% penalty is paid to tolerate worst case failures. It is also shown that under optimal conditions (with minimum error and no failures) the clock skew can be as much as 3 clock ticks. Clock skew grows to 6 clock ticks when failures are present. Finally, it is concluded that one cannot rely solely on test procedures or theoretical analysis to predict worst case conditions. conditions.

  20. Derivation and experimental verification of clock synchronization theory

    NASA Astrophysics Data System (ADS)

    Palumbo, Daniel L.

    1994-06-01

    The objective of this work is to validate mathematically derived clock synchronization theories and their associated algorithms through experiment. Two theories are considered, the Interactive Convergence Clock Synchronization Algorithm and the Mid-Point Algorithm. Special clock circuitry was designed and built so that several operating conditions and failure modes (including malicious failures) could be tested. Both theories are shown to predict conservative upper bounds (i.e., measured values of clock skew were always less than the theory prediction). Insight gained during experimentation led to alternative derivations of the theories. These new theories accurately predict the clock system's behavior. It is found that a 100% penalty is paid to tolerate worst case failures. It is also shown that under optimal conditions (with minimum error and no failures) the clock skew can be as much as 3 clock ticks. Clock skew grows to 6 clock ticks when failures are present. Finally, it is concluded that one cannot rely solely on test procedures or theoretical analysis to predict worst case conditions. conditions.

  1. Clock Reaction: Outreach Attraction

    ERIC Educational Resources Information Center

    Carpenter, Yuen-ying; Phillips, Heather A.; Jakubinek, Michael B.

    2010-01-01

    Chemistry students are often introduced to the concept of reaction rates through demonstrations or laboratory activities involving the well-known iodine clock reaction. For example, a laboratory experiment involving thiosulfate as an iodine scavenger is part of the first-year general chemistry laboratory curriculum at Dalhousie University. With…

  2. Narrative Clock Sculptures

    ERIC Educational Resources Information Center

    Popp, Linda

    2005-01-01

    Art teacher Linda Popp and artist H. Ed Smith team up to teach about creating sculptural clocks. This lesson shows how a portrait can be created using various media. Students based projects on someone in their lives they have known for a long time. This sculptural problem was part of a series of portrait and self-portrait lessons with a high…

  3. Quantum Clock Synchronization with a Single Qudit

    PubMed Central

    Tavakoli, Armin; Cabello, Adán; Żukowski, Marek; Bourennane, Mohamed

    2015-01-01

    Clock synchronization for nonfaulty processes in multiprocess networks is indispensable for a variety of technologies. A reliable system must be able to resynchronize the nonfaulty processes upon some components failing causing the distribution of incorrect or conflicting information in the network. The task of synchronizing such networks is related to Byzantine agreement (BA), which can classically be solved using recursive algorithms if and only if less than one-third of the processes are faulty. Here we introduce a nonrecursive quantum algorithm, based on a quantum solution of the detectable BA, which achieves clock synchronization in the presence of arbitrary many faulty processes by using only a single quantum system. PMID:25613754

  4. Reciprocal interactions between circadian clocks and aging.

    PubMed

    Banks, Gareth; Nolan, Patrick M; Peirson, Stuart N

    2016-08-01

    Virtually, all biological processes in the body are modulated by an internal circadian clock which optimizes physiological and behavioral performance according to the changing demands of the external 24-h world. This circadian clock undergoes a number of age-related changes, at both the physiological and molecular levels. While these changes have been considered to be part of the normal aging process, there is increasing evidence that disruptions to the circadian system can substantially impact upon aging and these impacts will have clear health implications. Here we review the current data of how both the physiological and core molecular clocks change with age and how feedback from external cues may modulate the aging of the circadian system. PMID:27137838

  5. Clock shifts in the Unitary Bose Gas

    NASA Astrophysics Data System (ADS)

    Fletcher, Richard; Man, Jay; Lopes, Raphael; Navon, Nir; Smith, Robert; Hadzibabic, Zoran

    2016-05-01

    Clock shifts are interaction-induced changes in the transition frequency between atomic spin states. So-called because of their importance as systematic errors in atomic clocks, they reveal details of both the interaction energy within a gas and the particle correlations. In this work, we employ a RF-injection technique to rapidly project a thermal Bose gas into the unitary regime on a timescale much shorter than three-body losses. Working with a two-state system, one of which exhibits strong intrastate interactions, we carry out Ramsey spectroscopy to extract the variation in the clock shift across a Feshbach resonance. Thanks to the relationship between these shifts and particle correlations, we use our measurements to infer the contact as a function of both interaction strength and degeneracy. This quantity plays a central role in the many-body physics of strongly correlated systems, offering a link between few-body and thermodynamic behaviour.

  6. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    PubMed

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  7. Nuclear magnetic resonance implementation of a quantum clock synchronization algorithm

    SciTech Connect

    Zhang Jingfu; Long, G.C; Liu Wenzhang; Deng Zhiwei; Lu Zhiheng

    2004-12-01

    The quantum clock synchronization (QCS) algorithm proposed by Chuang [Phys. Rev. Lett. 85, 2006 (2000)] has been implemented in a three qubit nuclear magnetic resonance quantum system. The time difference between two separated clocks can be determined by measuring the output states. The experimental realization of the QCS algorithm also demonstrates an application of the quantum phase estimation.

  8. Pulsed Optically Pumped Rb clock

    NASA Astrophysics Data System (ADS)

    Micalizio, S.; Levi, F.; Godone, A.; Calosso, C. E.; François, B.; Boudot, R.; Affolderbach, C.; Kang, S.; Gharavipour, M.; Gruet, F.; Mileti, G.

    2016-06-01

    INRIM demonstrated a Rb vapour cell clock based on pulsed optical pumping (POP) with unprecedented frequency stability performances, both in the short and in the medium-long term period. In the frame of a EMRP project, we are developing a new clock based on the same POP principle but adopting solutions aimed at reducing the noise sources affecting the INRIM clock. At the same time, concerning possible technological applications, particular care are devoted in the project to reduce the size and the weight of the clock, still keeping the excellent stability of the INRIM clock. The paper resumes the main results of this activity.

  9. Circadian Clock Control of Liver Metabolic Functions.

    PubMed

    Reinke, Hans; Asher, Gad

    2016-03-01

    The circadian clock is an endogenous biological timekeeping system that synchronizes physiology and behavior to day/night cycles. A wide variety of processes throughout the entire gastrointestinal tract and notably the liver appear to be under circadian control. These include various metabolic functions such as nutrient uptake, processing, and detoxification, which align organ function to cycle with nutrient supply and demand. Remarkably, genetic or environmental disruption of the circadian clock can cause metabolic diseases or exacerbate pathological states. In addition, modern lifestyles force more and more people worldwide into asynchrony between the external time and their circadian clock, resulting in a constant state of social jetlag. Recent evidence indicates that interactions between altered energy metabolism and disruptions in the circadian clock create a downward spiral that can lead to diabetes and other metabolic diseases. In this review, we provide an overview of rhythmic processes in the liver and highlight the functions of circadian clock genes under physiological and pathological conditions; we focus on their roles in regulation of hepatic glucose as well as lipid and bile acid metabolism and detoxification and their potential effects on the development of fatty liver and nonalcoholic steatohepatitis. PMID:26657326

  10. A precise clock distribution network for MRPC-based experiments

    NASA Astrophysics Data System (ADS)

    Wang, S.; Cao, P.; Shang, L.; An, Q.

    2016-06-01

    In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.

  11. In vitro and in vivo Phase Changes of the Mouse Circadian Clock by Oxidative Stress

    PubMed Central

    Tahara, Yu; Yokota, Aya; Shiraishi, Takuya; Yamada, Shunya; Haraguchi, Atsushi; Shinozaki, Ayako

    2016-01-01

    Mammalian circadian rhythms are governed by an endogenous circadian clock system, including the molecular clock works in each cell and tissue. Adaptation of the circadian clock to different environmental stimuli such as light, food, and stress is essential for homeostasis maintenance. However, the influence of oxidative stress on the circadian clock phase is not fully understood in vitro and in vivo. Here, we examined the effects of hydrogen peroxide (H2O2)-induced oxidative stress on the PERIOD2::LUCIFERASE bioluminescence rhythm in mouse embryonic fibroblasts in vitro and in mouse peripheral tissues in vivo. The circadian clock phase changed with the dose of H2O2 and time of day in vitro; similar phase changes were observed in vivo in the circadian clocks of the peripheral tissues. In addition, mice treated with hemin-induced oxidative stress also showed phase changes of peripheral clocks, similarly as H2O2 treatment. Thus, oxidative stress can entrain circadian clock systems.

  12. Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model

    PubMed Central

    Maltsev, Victor A.; Lakatta, Edward G.

    2009-01-01

    Recent experimental studies have demonstrated that sinoatrial node cells (SANC) generate spontaneous, rhythmic, local subsarcolemmal Ca2+ releases (Ca2+ clock), which occur during late diastolic depolarization (DD) and interact with the classic sarcolemmal voltage oscillator (membrane clock) by activating Na+-Ca2+ exchanger current (INCX). This and other interactions between clocks, however, are not captured by existing essentially membrane-delimited cardiac pacemaker cell numerical models. Using wide-scale parametric analysis of classic formulations of membrane clock and Ca2+ cycling, we have constructed and initially explored a prototype rabbit SANC model featuring both clocks. Our coupled oscillator system exhibits greater robustness and flexibility than membrane clock operating alone. Rhythmic spontaneous Ca2+ releases of sarcoplasmic reticulum (SR)-based Ca2+ clock ignite rhythmic action potentials via late DD INCX over much broader ranges of membrane clock parameters [e.g., L-type Ca2+ current (ICaL) and/or hyperpolarization-activated (“funny”) current (If) conductances]. The system Ca2+ clock includes SR and sarcolemmal Ca2+ fluxes, which optimize cell Ca2+ balance to increase amplitudes of both SR Ca2+ release and late DD INCX as SR Ca2+ pumping rate increases, resulting in a broad pacemaker rate modulation (1.8–4.6 Hz). In contrast, the rate modulation range via membrane clock parameters is substantially smaller when Ca2+ clock is unchanged or lacking. When Ca2+ clock is disabled, the system parametric space for fail-safe SANC operation considerably shrinks: without rhythmic late DD INCX ignition signals membrane clock substantially slows, becomes dysrhythmic, or halts. In conclusion, the Ca2+ clock is a new critical dimension in SANC function. A synergism of the coupled function of Ca2+ and membrane clocks confers fail-safe SANC operation at greatly varying rates. PMID:19136600

  13. Parcs:. a Laser-Cooled Atomic Clock in Space

    NASA Astrophysics Data System (ADS)

    Heavner, T. P.; Hollberg, L. W.; Jefferts, S. R.; Robinson, H. G.; Sullivan, D. B.; Walls, F. L.; Ashby, N.; Klipstein, W. M.; Maleki, L.; Seidel, D. J.; Thompson, R. J.; Wu, S.; Young, L.; Mattison, E. M.; Vessot, R. F. C.; Demarchi, A.

    2002-04-01

    This paper describes progress toward the development of a Primary Atomic Reference Clock in Space (PARCS) and reviews the scientific and technical objectives of the PARCS mission. PARCS is a collaborative effort involving the National Institute of Standards and Technology (NIST), the University of Colorado, the Jet Propulsion Laboratory (JPL), the Harvard Smithsonian Center for Astrophysics (SAO) and the Politecnico di Torino. Space systems for this experiment include a laser-cooled cesium atomic clock and a GPS frequency-comparison and orbit determination system, along with a hydrogen maser that serves as both a local oscillator for the cesium clock and a reference against which certain tests of gravitational theory can be made. In the microgravity environment of the International Space Station (ISS), cesium atoms can be launched more slowly through the clock's microwave cavity, thus significantly reducing a number of troubling effects (including several critical systematic effects), so clock performance can be substantially improved beyond that achieved on earth.

  14. Real clocks and the Zeno effect

    SciTech Connect

    Egusquiza, Inigo L.; Garay, Luis J.

    2003-08-01

    Real clocks are not perfect. This must have an effect in our predictions for the behavior of a quantum system, an effect for which we present a unified description, encompassing several previous proposals. We study the relevance of clock errors in the Zeno effect and find that generically no Zeno effect can be present (in such a way that there is no contradiction with currently available experimental data). We further observe that, within the class of stochasticities in time addressed here, there is no modification in emission line shapes.

  15. A relativistic analysis of clock synchronization

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1974-01-01

    The relativistic conversion between coordinate time and atomic time is reformulated to allow simpler time calculations relating analysis in solar-system barycentric coordinates (using coordinate time) with earth-fixed observations (measuring earth-bound proper time or atomic time.) After an interpretation of terms, this simplified formulation, which has a rate accuracy of about 10 to the minus 15th power, is used to explain the conventions required in the synchronization of a world wide clock network and to analyze two synchronization techniques-portable clocks and radio interferometry. Finally, pertinent experiment tests of relativity are briefly discussed in terms of the reformulated time conversion.

  16. Biochemical basis for the biological clock

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Chueh, Pin-Ju; Pletcher, Jake; Tang, Xiaoyu; Wu, Lian-Ying; Morre, Dorothy M.

    2002-01-01

    NADH oxidases at the external surface of plant and animal cells (ECTO-NOX proteins) exhibit stable and recurring patterns of oscillations with potentially clock-related, entrainable, and temperature-compensated period lengths of 24 min. To determine if ECTO-NOX proteins might represent the ultradian time keepers (pacemakers) of the biological clock, COS cells were transfected with cDNAs encoding tNOX proteins having a period length of 22 min or with C575A or C558A cysteine to alanine replacements having period lengths of 36 or 42 min. Here we demonstrate that such transfectants exhibited 22, 36, or 40 to 42 h circadian patterns in the activity of glyceraldehyde-3-phosphate dehydrogenase, a common clock-regulated protein, in addition to the endogenous 24 h circadian period length. The fact that the expression of a single oscillatory ECTO-NOX protein determines the period length of a circadian biochemical marker (60 X the ECTO-NOX period length) provides compelling evidence that ECTO-NOX proteins are the biochemical ultradian drivers of the cellular biological clock.

  17. Sample-Clock Phase-Control Feedback

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    To demodulate a communication signal, a receiver must recover and synchronize to the symbol timing of a received waveform. In a system that utilizes digital sampling, the fidelity of synchronization is limited by the time between the symbol boundary and closest sample time location. To reduce this error, one typically uses a sample clock in excess of the symbol rate in order to provide multiple samples per symbol, thereby lowering the error limit to a fraction of a symbol time. For systems with a large modulation bandwidth, the required sample clock rate is prohibitive due to current technological barriers and processing complexity. With precise control of the phase of the sample clock, one can sample the received signal at times arbitrarily close to the symbol boundary, thus obviating the need, from a synchronization perspective, for multiple samples per symbol. Sample-clock phase-control feedback was developed for use in the demodulation of an optical communication signal, where multi-GHz modulation bandwidths would require prohibitively large sample clock frequencies for rates in excess of the symbol rate. A custom mixedsignal (RF/digital) offset phase-locked loop circuit was developed to control the phase of the 6.4-GHz clock that samples the photon-counting detector output. The offset phase-locked loop is driven by a feedback mechanism that continuously corrects for variation in the symbol time due to motion between the transmitter and receiver as well as oscillator instability. This innovation will allow significant improvements in receiver throughput; for example, the throughput of a pulse-position modulation (PPM) with 16 slots can increase from 188 Mb/s to 1.5 Gb/s.

  18. Rockets, clocks, and gravity

    NASA Astrophysics Data System (ADS)

    Vessot, R. F. C.

    Uses of atomic clocks, telemetry, and spacecraft to test predictions of the General Theory of Relativity are described. The number of cycles of a signal being generated by an atomic clock on board a satellite and directed toward earth stations allows precise determination of movements away or toward the receiving station, with an accuracy of 1/9,192,631,770 when using the outer shell electron to nucleus magnetic interaction of a cesium 133 isotope. Doppler radar serves the same purpose when reflected off the surface of a spacecraft, and radio transmitters landed on Mars have provided a source of signals which are deflected by the sun when orbital positions of earth and Mars are in favorable positions. Goals of the NASA Starprobe mission to measure the gravitational flattening and time/space warping occurring around the sun are outlined.

  19. Generating clock signals for a cycle accurate, cycle reproducible FPGA based hardware accelerator

    DOEpatents

    Asaad, Sameth W.; Kapur, Mohit

    2016-01-05

    A method, system and computer program product are disclosed for generating clock signals for a cycle accurate FPGA based hardware accelerator used to simulate operations of a device-under-test (DUT). In one embodiment, the DUT includes multiple device clocks generating multiple device clock signals at multiple frequencies and at a defined frequency ratio; and the FPG hardware accelerator includes multiple accelerator clocks generating multiple accelerator clock signals to operate the FPGA hardware accelerator to simulate the operations of the DUT. In one embodiment, operations of the DUT are mapped to the FPGA hardware accelerator, and the accelerator clock signals are generated at multiple frequencies and at the defined frequency ratio of the frequencies of the multiple device clocks, to maintain cycle accuracy between the DUT and the FPGA hardware accelerator. In an embodiment, the FPGA hardware accelerator may be used to control the frequencies of the multiple device clocks.

  20. Seismic monitoring system replacement at Temelin plant

    SciTech Connect

    Baltus, R.; Palusamy, S.S.

    1996-12-01

    The VVER-1000 plants under construction at Temelin (Czech Republic) were designed with an automatic reactor trip system triggered on seismic peak accelerations. Within the plant I and C upgrade, Westinghouse designed a digital Seismic Monitoring System to be integrated in an Artificial Intelligence based Diagnostic and Monitoring System. The system meets the requirements of the emerging standards prepared by the US NRC on the basis of EPRI studies, which recommend a detailed data evaluation and a pre-shutdown plant inspection before orderly shutdown, if required, rather than immediate emergency shutdown. The paper presents the arguments about automatic trip, as discussed in an IAEA meeting attended by expert consultants from Japan, Russia, US and Eastern and Western Europe. It describes the system installed at Temelin, including the plant specific criteria for OBE exceedance. Finally it presents the capabilities and limitations of the integration into an overall Diagnostic and Monitoring System.

  1. Clock Synchronization for Multihop Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  2. Lattice-induced nonadiabatic frequency shifts in optical lattice clocks

    SciTech Connect

    Beloy, K.

    2010-09-15

    We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10{sup -18} and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.

  3. The circadian clock and cell cycle: Interconnected biological circuits

    PubMed Central

    Masri, Selma; Cervantes, Marlene; Sassone-Corsi, Paolo

    2014-01-01

    The circadian clock governs biological timekeeping on a systemic level, helping to regulate and maintain physiological processes, including endocrine and metabolic pathways with a periodicity of 24-hours. Disruption within the circadian clock machinery has been linked to numerous pathological conditions, including cancer, suggesting that clock-dependent regulation of the cell cycle is an essential control mechanism. This review will highlight recent advances on the ‘gating’ controls of the circadian clock at various checkpoints of the cell cycle and also how the cell cycle can influence biological rhythms. The reciprocal influence that the circadian clock and cell cycle exert on each other suggests that these intertwined biological circuits are essential and multiple regulatory/control steps have been instated to ensure proper timekeeping. PMID:23969329

  4. Clock Synchronization in Wireless Sensor Networks: An Overview

    PubMed Central

    Rhee, Ill-Keun; Lee, Jaehan; Kim, Jangsub; Serpedin, Erchin; Wu, Yik-Chung

    2009-01-01

    The development of tiny, low-cost, low-power and multifunctional sensor nodes equipped with sensing, data processing, and communicating components, have been made possible by the recent advances in micro-electro-mechanical systems (MEMS) technology. Wireless sensor networks (WSNs) assume a collection of such tiny sensing devices connected wirelessly and which are used to observe and monitor a variety of phenomena in the real physical world. Many applications based on these WSNs assume local clocks at each sensor node that need to be synchronized to a common notion of time. This paper reviews the existing clock synchronization protocols for WSNs and the methods of estimating clock offset and clock skew in the most representative clock synchronization protocols for WSNs. PMID:22389588

  5. Hunting for topological dark matter with atomic clocks

    NASA Astrophysics Data System (ADS)

    Derevianko, A.; Pospelov, M.

    2014-12-01

    The cosmological applications of atomic clocks so far have been limited to searches for the uniform-in-time drift of fundamental constants. We point out that a transient-in-time change of fundamental constants can be induced by dark-matter objects that have large spatial extent, such as stable topological defects built from light non-Standard Model fields. Networks of correlated atomic clocks, some of them already in existence, such as the Global Positioning System, can be used as a powerful tool to search for topological defect dark matter, thus providing another important fundamental physics application for the ever-improving accuracy of atomic clocks. During the encounter with an extended dark-matter object, as it sweeps through the network, initially synchronized clocks will become desynchronized. Time discrepancies between spatially separated clocks are expected to exhibit a distinct signature, encoding the defect's space structure and its interaction strength with atoms.

  6. Clocking in the face of unpredictability beyond quantum uncertainty

    NASA Astrophysics Data System (ADS)

    Madjid, F. Hadi; Myers, John M.

    2015-05-01

    In earlier papers we showed unpredictability beyond quantum uncertainty in atomic clocks, ensuing from a proven gap between given evidence and explanations of that evidence. Here we reconceive a clock, not as an isolated entity, but as enmeshed in a self-adjusting communications network adapted to one or another particular investigation, in contact with an unpredictable environment. From the practical uses of clocks, we abstract a clock enlivened with the computational capacity of a Turing machine, modified to transmit and to receive numerical communications. Such "live clocks" phase the steps of their computations to mesh with the arrival of transmitted numbers. We lift this phasing, known in digital communications, to a principle of logical synchronization, distinct from the synchronization defined by Einstein in special relativity. Logical synchronization elevates digital communication to a topic in physics, including applications to biology. One explores how feedback loops in clocking affect numerical signaling among entities functioning in the face of unpredictable influences, making the influences themselves into subjects of investigation. The formulation of communications networks in terms of live clocks extends information theory by expressing the need to actively maintain communications channels, and potentially, to create or drop them. We show how networks of live clocks are presupposed by the concept of coordinates in a spacetime. A network serves as an organizing principle, even when the concept of the rigid body that anchors a special-relativistic coordinate system is inapplicable, as is the case, for example, in a generic curved spacetime.

  7. Velocity response curves demonstrate the complexity of modeling entrainable clocks.

    PubMed

    Taylor, Stephanie R; Cheever, Allyson; Harmon, Sarah M

    2014-12-21

    Circadian clocks are biological oscillators that regulate daily behaviors in organisms across the kingdoms of life. Their rhythms are generated by complex systems, generally involving interlocked regulatory feedback loops. These rhythms are entrained by the daily light/dark cycle, ensuring that the internal clock time is coordinated with the environment. Mathematical models play an important role in understanding how the components work together to function as a clock which can be entrained by light. For a clock to entrain, it must be possible for it to be sped up or slowed down at appropriate times. To understand how biophysical processes affect the speed of the clock, one can compute velocity response curves (VRCs). Here, in a case study involving the fruit fly clock, we demonstrate that VRC analysis provides insight into a clock׳s response to light. We also show that biochemical mechanisms and parameters together determine a model׳s ability to respond realistically to light. The implication is that, if one is developing a model and its current form has an unrealistic response to light, then one must reexamine one׳s model structure, because searching for better parameter values is unlikely to lead to a realistic response to light. PMID:25193284

  8. Redox rhythm reinforces the circadian clock to gate immune response

    PubMed Central

    Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E.; Dong, Xinnian

    2015-01-01

    Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism’s metabolic activities1–3. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated4–7. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant’s redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid (SA) does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism. PMID:26098366

  9. Circadian Clocks as Modulators of Metabolic Comorbidity in Psychiatric Disorders.

    PubMed

    Barandas, Rita; Landgraf, Dominic; McCarthy, Michael J; Welsh, David K

    2015-12-01

    Psychiatric disorders such as schizophrenia, bipolar disorder, and major depressive disorder are often accompanied by metabolic dysfunction symptoms, including obesity and diabetes. Since the circadian system controls important brain systems that regulate affective, cognitive, and metabolic functions, and neuropsychiatric and metabolic diseases are often correlated with disturbances of circadian rhythms, we hypothesize that dysregulation of circadian clocks plays a central role in metabolic comorbidity in psychiatric disorders. In this review paper, we highlight the role of circadian clocks in glucocorticoid, dopamine, and orexin/melanin-concentrating hormone systems and describe how a dysfunction of these clocks may contribute to the simultaneous development of psychiatric and metabolic symptoms. PMID:26483181

  10. Disruption of the circadian clock due to the Clock mutation has discrete effects on aging and carcinogenesis

    PubMed Central

    Antoch, Marina P.; Gorbacheva, Victoria Y.; Vykhovanets, Olena; Toshkov, Illia A.; Kondratov, Roman V.; Kondratova, Anna A.; Lee, Choogon; Nikitin, Alexander Yu.

    2009-01-01

    The mammalian circadian system has been implicated in the regulation of various biological processes including those involved in genotoxic stress responses and tumor suppression. Here we report that mice with the functional deficiency in circadian transcription factor CLOCK (Clock/Clock mutant mice) do not display predisposition to tumor formation both during their normal lifespan or when challenged by γ-radiation. This phenotype is consistent with high apoptotic and low proliferation rate in lymphoid tissues of Clock mutant mice and is supported by the gene expression profiling of a number of apoptosis and cell cycle-related genes, as well as by growth inhibition of cells with CLOCK downregulation. At the same time, Clock mutant mice respond to low-dose irradiation by accelerating their aging program, and develop phenotypes that are reminiscent of those in Bmal1-deficient mice. Taken together, our results demonstrate the dichotomy in biological consequences of the disruption of the circadian clock with respect to ageing and cancer. They also highlight the existence of a complex interconnection between ageing, carcinogenesis and individual components of the circadian clock machinery. PMID:18418054

  11. Huygens synchronization of two clocks

    PubMed Central

    Oliveira, Henrique M.; Melo, Luís V.

    2015-01-01

    The synchronization of two pendulum clocks hanging from a wall was first observed by Huygens during the XVII century. This type of synchronization is observed in other areas, and is fundamentally different from the problem of two clocks hanging from a moveable base. We present a model explaining the phase opposition synchronization of two pendulum clocks in those conditions. The predicted behaviour is observed experimentally, validating the model. PMID:26204557

  12. A mixed relaxed clock model.

    PubMed

    Lartillot, Nicolas; Phillips, Matthew J; Ronquist, Fredrik

    2016-07-19

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325829

  13. The Vitamin C Clock Reaction

    NASA Astrophysics Data System (ADS)

    Wright, Stephen W.

    2002-01-01

    An iodine clock reaction that gives a colorless to black result similar to that of the familiar Landolt iodate-bisulfite clock reaction is described. The vitamin C clock reaction uses chemicals that are readily available on the retail market: vitamin C, tincture of iodine, 3% hydrogen peroxide, and laundry starch. Orange juice may be used as the vitamin C source to give an orange to black reaction.

  14. Huygens synchronization of two clocks.

    PubMed

    Oliveira, Henrique M; Melo, Luís V

    2015-01-01

    The synchronization of two pendulum clocks hanging from a wall was first observed by Huygens during the XVII century. This type of synchronization is observed in other areas, and is fundamentally different from the problem of two clocks hanging from a moveable base. We present a model explaining the phase opposition synchronization of two pendulum clocks in those conditions. The predicted behaviour is observed experimentally, validating the model. PMID:26204557

  15. Circadian clock and the onset of cardiovascular events.

    PubMed

    Takeda, Norihiko; Maemura, Koji

    2016-06-01

    The onset of cardiovascular diseases often shows time-of-day variation. Acute myocardial infarction or ventricular arrhythmia such as ventricular tachycardia occurs mainly in the early morning. Multiple biochemical and physiological parameters show circadian rhythm, which may account for the diurnal variation of cardiovascular events. These include the variations in blood pressure, activity of the autonomic nervous system and renin-angiotensin axis, coagulation cascade, vascular tone and the intracellular metabolism of cardiomyocytes. Importantly, the molecular clock system seems to underlie the circadian variation of these parameters. The center of the biological clock, also known as the central clock, exists in the suprachiasmatic nucleus. In contrast, the molecular clock system is also activated in each cell of the peripheral organs and constitute the peripheral clock. The biological clock system is currently considered to have a beneficial role in maintaining the homeostasis of each organ. Discoordination, however, between the peripheral clock and external environment could potentially underlie the development of cardiovascular events. Therefore, understanding the molecular and cellular pathways by which cardiovascular events occur in a diurnal oscillatory pattern will help the establishment of a novel therapeutic approach to the management of cardiovascular disorders. PMID:26888119

  16. The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana.

    PubMed

    Voß, Ute; Wilson, Michael H; Kenobi, Kim; Gould, Peter D; Robertson, Fiona C; Peer, Wendy A; Lucas, Mikaël; Swarup, Kamal; Casimiro, Ilda; Holman, Tara J; Wells, Darren M; Péret, Benjamin; Goh, Tatsuaki; Fukaki, Hidehiro; Hodgman, T Charlie; Laplaze, Laurent; Halliday, Karen J; Ljung, Karin; Murphy, Angus S; Hall, Anthony J; Webb, Alex A R; Bennett, Malcolm J

    2015-01-01

    The endogenous circadian clock enables organisms to adapt their growth and development to environmental changes. Here we describe how the circadian clock is employed to coordinate responses to the key signal auxin during lateral root (LR) emergence. In the model plant, Arabidopsis thaliana, LRs originate from a group of stem cells deep within the root, necessitating that new organs emerge through overlying root tissues. We report that the circadian clock is rephased during LR development. Metabolite and transcript profiling revealed that the circadian clock controls the levels of auxin and auxin-related genes including the auxin response repressor IAA14 and auxin oxidase AtDAO2. Plants lacking or overexpressing core clock components exhibit LR emergence defects. We conclude that the circadian clock acts to gate auxin signalling during LR development to facilitate organ emergence. PMID:26144255

  17. The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana

    PubMed Central

    Voß, Ute; Wilson, Michael H.; Kenobi, Kim; Gould, Peter D.; Robertson, Fiona C.; Peer, Wendy A.; Lucas, Mikaël; Swarup, Kamal; Casimiro, Ilda; Holman, Tara J.; Wells, Darren M.; Péret, Benjamin; Goh, Tatsuaki; Fukaki, Hidehiro; Hodgman, T. Charlie; Laplaze, Laurent; Halliday, Karen J.; Ljung, Karin; Murphy, Angus S.; Hall, Anthony J.; Webb, Alex A. R.; Bennett, Malcolm J.

    2015-01-01

    The endogenous circadian clock enables organisms to adapt their growth and development to environmental changes. Here we describe how the circadian clock is employed to coordinate responses to the key signal auxin during lateral root (LR) emergence. In the model plant, Arabidopsis thaliana, LRs originate from a group of stem cells deep within the root, necessitating that new organs emerge through overlying root tissues. We report that the circadian clock is rephased during LR development. Metabolite and transcript profiling revealed that the circadian clock controls the levels of auxin and auxin-related genes including the auxin response repressor IAA14 and auxin oxidase AtDAO2. Plants lacking or overexpressing core clock components exhibit LR emergence defects. We conclude that the circadian clock acts to gate auxin signalling during LR development to facilitate organ emergence. PMID:26144255

  18. Optical atomic clocks and metrology

    NASA Astrophysics Data System (ADS)

    Ludlow, Andrew

    2014-05-01

    The atomic clock has long demonstrated the capability to measure time or frequency with very high precision. Consequently, these clocks are used extensively in technological applications such as advanced synchronization or communication and navigation networks. Optical atomic clocks are next- generation timekeepers which reference narrowband optical transitions between suitable atomic states. Many optical time/frequency standards utilize state-of-the-art quantum control and precision measurement. Combined with the ultrahigh quality factors of the atomic resonances at their heart, optical atomic clocks have promised new levels of timekeeping precision, orders of magnitude higher than conventional atomic clocks based on microwave transitions. Such measurement capability enables and/or enhances many of the most exciting applications of these clocks, including the study of fundamental laws of physics through the measurement of time evolution. Here, I will highlight optical atomic clocks and their utility, as well as review recent advances in their development and performance. In particular, I will describe in detail the optical lattice clock and the realization of frequency measurement at the level of one part in 1018. To push the performance of these atomic timekeepers to such a level and beyond, several key advances are being explored worldwide. These will be discussed generally, with particular emphasis on our recent efforts at NIST in developing the optical lattice clock based on atomic ytterbium.

  19. Improving pumping system efficiency at coal plants

    SciTech Connect

    Livoti, W.C.; McCandless, S.; Poltorak, R.

    2009-03-15

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  20. Stochastic modeling of high-stability ground clocks in GPS analysis

    NASA Astrophysics Data System (ADS)

    Wang, Kan; Rothacher, Markus

    2013-05-01

    In current global positioning system (GPS) applications, receiver clocks are typically estimated epoch-wise in the data analyses even for clocks with high performance like Hydrogen-masers (H-maser). Applying an appropriate clock model for high-stability receiver clocks should, in view of the strong correlation between the station height and the clock parameters, significantly improve the positioning results. Recent experiments have shown that modeling the deterministic behavior of high-quality receiver clocks can improve the kinematic precise point positioning considerably. In this paper, well-behaving ground clocks are studied in detail applying constraints between subsequent and near-subsequent clock parameters. The influence of different weights for these relative clock constraints on the positioning quality, especially on the height, is investigated. For excellent clocks, an improvement of up to a factor of 3 can be obtained for the repeatability of the kinematic height estimates. This may be essential to detect small but sudden changes in the vertical component (e.g., caused by earthquakes). Troposphere zenith path delays (ZPD) are also heavily correlated with the receiver clock estimates and station heights. All these parameters are usually estimated simultaneously. We show that the use of relative clock constraints allows for a higher time resolution of the ZPD estimates (smaller than 2 h) without compromising the quality of the kinematic height estimates.

  1. All-optical frame clock recovery from even-multiplexed OTDM signals

    NASA Astrophysics Data System (ADS)

    Yin, Lina; Liu, Guoming; Wu, Jian; Lin, Jintong

    2005-02-01

    Frame clock is useful for packet processing such as header detection and payload demultiplexing. A novel all-optical frame clock recovery scheme based on "intensity reshaper" and mode-locked semiconductor fiber ring laser is demonstrated. The "intensity reshaper" including a polarization controller and a polarizer is the key element to realize frame clock recovery from equal-amplitude even-multiplexed OTDM signals. In theory, a mathematical expression is given to analyze the intensity of harmonic of clock-frequency component. The relative intensity of each clock-frequency component will change with the alterative angle caused by adjusting the PC in the "intensity reshaper", so the desirable clock-frequency component can be enhanced, which is helpful for clock recovery. Moreover, the intensity of harmonic of clock-frequency component is also related to the pulse amplitude, width and period in the multiplexed data. In experiment, 2.5GHz frame clock is extracted from even-multiplexed 4x2.5GHz and 8x2.5GHz OTDM signals respectively. At the same time, bit clock is also recovered by using this scheme. The extracted clock pulses have several desirable features such as low timing jitter, broad wavelength tuning range and polarization independence. This scheme simplifies signal generation and propagation in OTDM systems, which can be applied to clock recovery in high-speed OTDM network.

  2. EGR1 regulates hepatic clock gene amplitude by activating Per1 transcription

    PubMed Central

    Tao, Weiwei; Wu, Jing; Zhang, Qian; Lai, Shan-Shan; Jiang, Shan; Jiang, Chen; Xu, Ying; Xue, Bin; Du, Jie; Li, Chao-Jun

    2015-01-01

    The mammalian clock system is composed of a master clock and peripheral clocks. At the molecular level, the rhythm-generating mechanism is controlled by a molecular clock composed of positive and negative feedback loops. However, the underlying mechanisms for molecular clock regulation that affect circadian clock function remain unclear. Here, we show that Egr1 (early growth response 1), an early growth response gene, is expressed in mouse liver in a circadian manner. Consistently, Egr1 is transactivated by the CLOCK/BMAL1 heterodimer through a conserved E-box response element. In hepatocytes, EGR1 regulates the transcription of several core clock genes, including Bmal1, Per1, Per2, Rev-erbα and Rev-erbβ, and the rhythm amplitude of their expression is dependent on EGR1’s transcriptional function. Further mechanistic studies indicated that EGR1 binds to the proximal region of the Per1 promoter to activate its transcription directly. When the peripheral clock is altered by light or feeding behavior transposition in Egr1-deficient mice, the expression phase of hepatic clock genes shifts normally, but the amplitude is also altered. Our data reveal a critical role for EGR1 in the regulation of hepatic clock circuitry, which may contribute to the rhythm stability of peripheral clock oscillators. PMID:26471974

  3. Metabolism control by the circadian clock and vice versa

    PubMed Central

    Eckel-Mahan, Kristin; Sassone-Corsi, Paolo

    2014-01-01

    Circadian rhythms govern a wide variety of physiological and metabolic functions in most organisms. At the heart of these regulatory pathways in mammals is the clock machinery, a remarkably coordinated transcription-translation system that relies on dynamic changes in chromatin states. Recent findings indicate that regulation also goes the other way, as specific elements of the clock can sense changes in the cellular metabolism. Understanding in full detail the intimate links between cellular metabolism and the circadian clock machinery will provide not only crucial insights into system physiology but also new avenues toward pharmacological intervention of metabolic disorders. PMID:19421159

  4. The Retina and Other Light-sensitive Ocular Clocks.

    PubMed

    Besharse, Joseph C; McMahon, Douglas G

    2016-06-01

    Ocular clocks, first identified in the retina, are also found in the retinal pigment epithelium (RPE), cornea, and ciliary body. The retina is a complex tissue of many cell types and considerable effort has gone into determining which cell types exhibit clock properties. Current data suggest that photoreceptors as well as inner retinal neurons exhibit clock properties with photoreceptors dominating in nonmammalian vertebrates and inner retinal neurons dominating in mice. However, these differences may in part reflect the choice of circadian output, and it is likely that clock properties are widely dispersed among many retinal cell types. The phase of the retinal clock can be set directly by light. In nonmammalian vertebrates, direct light sensitivity is commonplace among body clocks, but in mice only the retina and cornea retain direct light-dependent phase regulation. This distinguishes the retina and possibly other ocular clocks from peripheral oscillators whose phase depends on the pace-making properties of the hypothalamic central brain clock, the suprachiasmatic nuclei (SCN). However, in mice, retinal circadian oscillations dampen quickly in isolation due to weak coupling of its individual cell-autonomous oscillators, and there is no evidence that retinal clocks are directly controlled through input from other oscillators. Retinal circadian regulation in both mammals and nonmammalian vertebrates uses melatonin and dopamine as dark- and light-adaptive neuromodulators, respectively, and light can regulate circadian phase indirectly through dopamine signaling. The melatonin/dopamine system appears to have evolved among nonmammalian vertebrates and retained with modification in mammals. Circadian clocks in the eye are critical for optimum visual function where they play a role fine tuning visual sensitivity, and their disruption can affect diseases such as glaucoma or retinal degeneration syndromes. PMID:27095816

  5. Master/slave clock arrangement for providing reliable clock signal

    NASA Technical Reports Server (NTRS)

    Abbey, Duane L. (Inventor)

    1977-01-01

    The outputs of two like frequency oscillators are combined to form a single reliable clock signal, with one oscillator functioning as a slave under the control of the other to achieve phase coincidence when the master is operative and in a free-running mode when the master is inoperative so that failure of either oscillator produces no effect on the clock signal.

  6. A Light Clock Satisfying the Clock Hypothesis of Special Relativity

    ERIC Educational Resources Information Center

    West, Joseph

    2007-01-01

    The design of the FMEL, a floor-mirrored Einstein-Langevin "light clock", is introduced. The clock provides a physically intuitive manner to calculate and visualize the time dilation effects for a spatially extended set of observers (an accelerated "frame") undergoing unidirectional acceleration or observers on a rotating cylinder of constant…

  7. The Mechanism of the Formaldehyde Clock Reaction.

    ERIC Educational Resources Information Center

    Burnett, M. G.

    1982-01-01

    Provides background information and problems with the formaldehyde clock reaction, including comparisons of experimental clock times reported in the literature and conditions for the reliable use of the formaldehyde clock based on a method discussed. (JN)

  8. Digital processing clock

    NASA Technical Reports Server (NTRS)

    Phillips, D. H.

    1982-01-01

    Tthe digital processing clock SG 1157/U is described. It is compatible with the PTTI world where it can be driven by an external cesium source. Built-in test equipment shows synchronization with cesium through 1 pulse per second. It is built to be expandable to accommodate future time-keeping needs of the Navy as well as any other time ordered functions. Examples of this expandibility are the inclusion of an unmodulated XR3 time code and the 2137 modulate time code (XR3 with 1 kHz carrier).

  9. Einstein’s Clocks

    SciTech Connect

    Lincoln, Don

    2015-09-09

    One of the most non-intuitive physics theories ever devised is Einstein’s Theory of Special Relativity, which claim such crazy-sounding things as two people disagreeing on such familiar concepts as length and time. In this video, Fermilab’s Dr. Don Lincoln shows that every single day particle physicists prove that moving clocks tick more slowly than stationary ones. He uses an easy to understand example of particles that move for far longer distances than you would expect from combining their velocity and stationary lifetime.

  10. Biological switches and clocks

    PubMed Central

    Tyson, John J.; Albert, Reka; Goldbeter, Albert; Ruoff, Peter; Sible, Jill

    2008-01-01

    To introduce this special issue on biological switches and clocks, we review the historical development of mathematical models of bistability and oscillations in chemical reaction networks. In the 1960s and 1970s, these models were limited to well-studied biochemical examples, such as glycolytic oscillations and cyclic AMP signalling. After the molecular genetics revolution of the 1980s, the field of molecular cell biology was thrown wide open to mathematical modellers. We review recent advances in modelling the gene–protein interaction networks that control circadian rhythms, cell cycle progression, signal processing and the design of synthetic gene networks. PMID:18522926

  11. A mixed relaxed clock model

    PubMed Central

    2016-01-01

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829

  12. Relativistic effects of the rotation of the earth on remote clock synchronization

    NASA Technical Reports Server (NTRS)

    Reinhardt, V.

    1974-01-01

    A treatment is given of relativistic clock synchronization effects due to the rotation of the earth. Unlike other approaches, the point of view of an earth fixed coordinate system is used which offers insight to many problems. An attempt is made to give the reader an intuitive grasp of the subject as well as to provide formulae for his use. Specific applications to global timekeeping, navigation, VLBI, relativistic clock experiments, and satellite clock synchronization are discussed. The question of whether atomic clocks are ideal clocks is also treated.

  13. European plans for new clocks in space

    NASA Technical Reports Server (NTRS)

    Leschiutta, Sigfrido M.; Tavella, Patrizia

    1995-01-01

    An outline of the future European space research program where precise clocks are necessary is presented, pointing out how space applications are posing impressive requirements as regards clock mass, power, ruggedness, long life, accuracy and, in some cases, spectral purity. The material presented was gathered in some laboratories; useful information was obtained from the Space Agencies of France (CNES), Germany (DARA) and Italy (ASI), but the bulk is coming from a recent exercise promoted inside ESA (the European Space Agency) and aimed to prefigure space research activities at the beginning of the next millennium. This exercise was called Horizon 2000 plus; the outcomings were summarized in two reports, presented by ESA in may 1994. Precise clocks and time measurements are needed not only for deep-space or out-ward space missions, but are essential tools also for Earth oriented activities. In this latter field, the European views and needs were discussed in October 1994, in a meeting organized by ESA and devoted to Earth Observation problems. By a scrutiny of these reports, an analysis was performed on the missions requiring a precise clock on board and the driving requirements were pointed out, leading to a survey of the necessary PTTI developments that, to some extent, are in the realm of possibility but that pose serious challenges. In this report the use of frequency standards in the satellite navigation systems is not considered.

  14. Operational development of small plant growth systems

    NASA Technical Reports Server (NTRS)

    Scheld, H. W.; Magnuson, J. W.; Sauer, R. L.

    1986-01-01

    The results of a study undertaken on the first phase of an empricial effort in the development of small plant growth chambers for production of salad type vegetables on space shuttle or space station are discussed. The overall effort is visualized as providing the underpinning of practical experience in handling of plant systems in space which will provide major support for future efforts in planning, design, and construction of plant-based (phytomechanical) systems for support of human habitation in space. The assumptions underlying the effort hold that large scale phytomechanical habitability support systems for future space stations must evolve from the simple to the complex. The highly complex final systems will be developed from the accumulated experience and data gathered from repetitive tests and trials of fragments or subsystems of the whole in an operational mode. These developing system components will, meanwhile, serve a useful operational function in providing psychological support and diversion for the crews.

  15. Use of Very Stable Clocks in Satellite Geodesy

    NASA Astrophysics Data System (ADS)

    Hugentobler, Urs; Romanyuk, Tetyana

    2016-07-01

    Time and frequency play an essential role in satellite geodesy and navigation. Global Navigation Satellite Systems (GNSS) rely on precise measurements of signal travel times. The satellite and receiver clocks involved in measuring this time interval need to be synchronized at the picosecond level. The concept of GNSS allows for an epoch-wise synchronization of space and ground clocks, a feature which is consequently used in satellite geodesy by estimating epoch-wise clock corrections for all clocks in the system, either explicitly or implicitly by forming double differences. Ultra-stable clocks allow to estimate only few parameters for each clock, e.g., offset and drift. The much reduced number of parameters should stabilize GNSS solutions, e.g., tracking network station coordinates. On the other hand systematic errors, e.g., from troposphere or orbit modeling deficiencies or temperature induced hardware delay variations may systematically affect the solutions. The presentation shows trade-offs of modelling higly stable clocks and negative impact of error sources based on simulations.

  16. Using a transportable optical clock for chronometric levelling

    NASA Astrophysics Data System (ADS)

    Lisdat, Christian; Sterr, Uwe; Koller, Silvio; Grotti, Jacopo; Vogt, Stefan; Häfner, Sebastian; Herbers, Sofia; Al-Masoudi, Ali

    2016-07-01

    With their supreme accuracy and precision, optical clocks in combination with new methods of long-distance frequency transfer can be used to determine height differences by measuring the gravitational red shift between two clocks without accumulation of measurement errors, as in classical levelling. We are developing transportable optical clocks for this purpose that will also serve for the technology development regarding optical clocks in Space and for international comparisons between optical clocks that cannot be linked with sufficient accuracy otherwise. In this talk we will focus on the transportable strontium lattice clock that we are developing and its first evaluation. Presently, we achieve a fractional frequency instability of 3 × 10^{-17} after 1000 s averaging time, which is equivalent to a height resolution of 30 cm. The first uncertainty evaluation of the system yielded 7 × 10^{-17}. We expect rapid improvements to an uncertainty of a few parts in 10^{17}. The clock is now located within a car trailer, which requires compact and rugged lasers systems and physics package. Special care has been taken in the design of the ultra-frequency stable interrogation laser that has to achieve fractional frequency instabilities of considerably below 10^{-15}. Typical laboratory constructions of the reference resonator system used to pre-stabilize the laser frequency are not compatible with the requirement of transportability. In an actual levelling campaign, this clock will be connected via a stabilized optical fibre link with another, stationary frequency standard. The measured gravitational red shift will be compared with the ones calculated from potential differences derived with state of the art geodetic data and models. We will discuss the status of measurements of geodetic relevance with optical clocks and give an outlook on our next steps. This work is supported by QUEST, DFG (RTG 1729, CRC 1128), EU-FP7 (FACT) and EMRP (ITOC). The EMRP is jointly funded

  17. The Vitamin C Clock Reaction.

    ERIC Educational Resources Information Center

    Wright, Stephen W.

    2002-01-01

    Describes an iodine clock reaction that produces an effect similar to the Landolt clock reaction. This reaction uses supermarket chemicals and avoids iodate, bisulfite, and mercury compounds. Ascorbic acid and tincture of iodine are the main reactants with alternate procedures provided for vitamin C tablets and orange juice. (DDR)

  18. Plants and the central nervous system.

    PubMed

    Carlini, E A

    2003-06-01

    This review article draws the attention to the many species of plants possessing activity on the central nervous system (CNS). In fact, they cover the whole spectrum of central activity such as psychoanaleptic, psycholeptic and psychodysleptic effects, and several of these plants are currently used in therapeutics to treat human ailments. Among the psychoanaleptic (stimulant) plants, those utilized by human beings to reduce body weight [Ephedra spp. (Ma Huang), Paullinia spp. (guaraná), Catha edulis Forssk. (khat)] and plants used to improve general health conditions (plant adaptogens) were scrutinized. Many species of hallucinogenic (psychodysleptic) plants are used by humans throughout the world to achieve states of mind distortions; among those, a few have been used for therapeutic purposes, such as Cannabis sativa L., Tabernanthe iboga Baill. and the mixture of Psychotria viridis Ruiz and Pav. and Banisteriopsis caapi (Spruce ex Griseb.) C.V. Morton. Plants showing central psycholeptic activities, such as analgesic or anxiolytic actions (Passiflora incarnata L., Valeriana spp. and Piper methysticum G. Forst.), were also analysed.Finally, the use of crude or semipurified extracts of such plants instead of the active substances seemingly responsible for their therapeutic effect is discussed. PMID:12895668

  19. Detection of weak frequency jumps for GNSS onboard clocks.

    PubMed

    Huang, Xinming; Gong, Hang; Ou, Gang

    2014-05-01

    In this paper, a weak frequency jump detection method is developed for onboard clocks in global navigation satellite systems (GNSS). A Kalman filter is employed to facilitate the onboard real-time processing of atomic clock measurements, whose N-step prediction residuals are used to construct the weak frequency jump detector. Numerical simulations show that the method can successfully detect weak frequency jumps. The detection method proposed in this paper is helpful for autonomous integrity monitoring of GNSS satellite clocks, and can also be applied to other frequency anomalies with an appropriately modified detector. PMID:24802723

  20. An atomic clock with 10(-18) instability.

    PubMed

    Hinkley, N; Sherman, J A; Phillips, N B; Schioppo, M; Lemke, N D; Beloy, K; Pizzocaro, M; Oates, C W; Ludlow, A D

    2013-09-13

    Atomic clocks have been instrumental in science and technology, leading to innovations such as global positioning, advanced communications, and tests of fundamental constant variation. Timekeeping precision at 1 part in 10(18) enables new timing applications in relativistic geodesy, enhanced Earth- and space-based navigation and telescopy, and new tests of physics beyond the standard model. Here, we describe the development and operation of two optical lattice clocks, both using spin-polarized, ultracold atomic ytterbium. A measurement comparing these systems demonstrates an unprecedented atomic clock instability of 1.6 × 10(-18) after only 7 hours of averaging. PMID:23970562

  1. The renewable electric plant information system

    SciTech Connect

    Sinclair, K.

    1995-12-01

    This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

  2. Automatic minimisation of micromotion in a 88Sr+ optical clock

    NASA Astrophysics Data System (ADS)

    Barwood, G. P.; Huang, G.; Klein, H. A.; Gill, P.

    2015-07-01

    Optical clocks based on narrow linewidth transitions in single cold ions confined in RF traps are being developed at a number of laboratories worldwide. For these ion clock systems, excess micromotion can cause both Stark and Doppler frequency shifts and also a degradation of frequency stability as a result of a reduced excitation rate to the clock transition. At NPL, we detect micromotion in our 88Sr+ optical clocks by observing the correlation between photon arrival times and the zero crossing of the RF trap drive signal. Recently, two nominally identical 88Sr+ optical clocks have been operated over several days and their frequencies compared against one another. During this time the dc voltages on the endcap and compensation voltage electrodes required to minimise the micromotion can change significantly, particularly following the loading of an ion. This paper describes an automatic method to monitor and minimise micromotion applicable to single ion clocks and which we demonstrate using our two NPL 88Sr+ ion clocks.

  3. The Circadian Clock in Cancer Development and Therapy

    PubMed Central

    Fu, Loning; Kettner, Nicole M.

    2014-01-01

    Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The central and peripheral clocks coordinately generate rhythmic gene expression in a tissue-specific manner in vivo to couple diverse physiological and behavioral processes to periodic changes in the environment. However, as the world industrialized, activities that disrupt endogenous homeostasis with external circadian cues have increased. This change in lifestyle has been linked to increased risk of diseases in all aspects of human health, including cancer. Studies in humans and animal models have revealed that cancer development in vivo is closely associated with the loss of circadian homeostasis in energy balance, immune function and aging that are supported by cellular functions important for tumor suppression including cell proliferation, senescence, metabolism and DNA damage response. The clock controls these cellular functions both locally in cells of peripheral tissues and at the organismal level via extracellular signaling. Thus, the hierarchical mammalian circadian clock provides a unique system to study carcinogenesis as a deregulated physiological process in vivo. The asynchrony between host and malignant tissues in cell proliferation and metabolism also provides new and exciting options for novel anti-cancer therapies. PMID:23899600

  4. Mania-like behavior induced by disruption of CLOCK

    PubMed Central

    Roybal, Kole; Theobold, David; Graham, Ami; DiNieri, Jennifer A.; Russo, Scott J.; Krishnan, Vaishnav; Chakravarty, Sumana; Peevey, Joseph; Oehrlein, Nathan; Birnbaum, Shari; Vitaterna, Martha H.; Orsulak, Paul; Takahashi, Joseph S.; Nestler, Eric J.; Carlezon, William A.; McClung, Colleen A.

    2007-01-01

    Circadian rhythms and the genes that make up the molecular clock have long been implicated in bipolar disorder. Genetic evidence in bipolar patients suggests that the central transcriptional activator of molecular rhythms, CLOCK, may be particularly important. However, the exact role of this gene in the development of this disorder remains unclear. Here we show that mice carrying a mutation in the Clock gene display an overall behavioral profile that is strikingly similar to human mania, including hyperactivity, decreased sleep, lowered depression-like behavior, lower anxiety, and an increase in the reward value for cocaine, sucrose, and medial forebrain bundle stimulation. Chronic administration of the mood stabilizer lithium returns many of these behavioral responses to wild-type levels. In addition, the Clock mutant mice have an increase in dopaminergic activity in the ventral tegmental area, and their behavioral abnormalities are rescued by expressing a functional CLOCK protein via viral-mediated gene transfer specifically in the ventral tegmental area. These findings establish the Clock mutant mice as a previously unrecognized model of human mania and reveal an important role for CLOCK in the dopaminergic system in regulating behavior and mood. PMID:17379666

  5. Using a transportable optical clock for chronometric levelling

    NASA Astrophysics Data System (ADS)

    Vogt, Stefan; Grotti, Jacopo; Koller, Silvio; Häfner, Sebastian; Herbers, Sofia; Al-Masoudi, Ali; Grosche, Gesine; Denker, Heiner; Sterr, Uwe; Lisdat, Christian

    2016-04-01

    With their supreme accuracy and precision, optical clocks and new methods of long distance frequency transfer can be used to determine height differences by measuring the gravitational red shift between two clocks. We are developing transportable optical clocks and optical fibre-based means for clock comparisons that can bridge distances of hundredths of kilometres without accumulation of measurement errors. In this talk, we will focus on the transportable strontium lattice clock we are developing and its first evaluation. Presently, we achieve a fractional frequency instability of 3 × 10‑17 after 1000 s averaging time, which is equivalent to a height resolution of 30 cm. The first uncertainty evaluation of the system yielded 9 × 10‑17. We expect rapid improvements to an uncertainty of few parts in 10‑17. This clock will be connected via stabilized optical fibre links with other, stationary frequency standards. The measured red shifts will be compared with the ones calculated from potential differences derived with state of the art geodetic data and models. We will discuss the status of measurements of geodetic relevance with optical clocks and give an outlook on our next steps. This work is supported by QUEST, DFG (RTG 1729, CRC 1128), EU-FP7 (FACT) and EMRP (ITOC). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

  6. Measurement and analysis of the frequency stability of GPS Navstar clocks

    SciTech Connect

    McCaskill, T.B.; Largay, M.M.; Oaks, O.J.

    1994-12-31

    Analysis of the frequency stability of Global Positioning System (GPS) on-orbit Navstar clocks Z`s performed by the Naval Research Laboratory (NRL). Clock offsets for each Navstar clock are derived from smoothed pseudorange measurements collected as the Navstar space vehicle passes over the tracking station. The clock offsets are further smoothed and estimated at the time of closest approach (TCA) of the space vehicle over the tracking station. Analysis of more than 50 Navstar clocks by NRL shows that the majority of these clocks provide performance that exceeds the GPS frequency stability specification. This precision measurement technique is capable of determining one-day frequency stabilities of the Navstar GPS clocks to an accuracy of better than 1 x 10-13.

  7. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    PubMed Central

    Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A.

    2015-01-01

    Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1−/− and ClockΔ19 mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle. PMID:21621073

  8. Synthesizing genetic sequential logic circuit with clock pulse generator

    PubMed Central

    2014-01-01

    Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665

  9. A Superfluid Clock

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin

    2004-01-01

    The performance of clocks is limited by the characteristics of the underlying oscillator. Both the quality factor of the oscillator and the signal-to-noise ratio for the resonator state measurement are important. A superfluid helium Helmholtz resonator operating at approx.100mK temperatures has the potential of maintaining frequency stability of 5x10(exp -15)/t(exp 1/2) on the time scale of a few months. The high dynamic range of lossless SQUID position displacement measurement, and low losses associated with the superfluid flow, combined with high mechanical stability of cryogenic assemblies, contribute to the projected stability. Low overall mass of the assembly allows for multiple stages of vibration isolation.

  10. Circadian clock and pathology of the ageing brain

    PubMed Central

    Kondratova, A.A.; Kondratov, R.V.

    2013-01-01

    Ageing leads to functional deterioration of many brain systems, including the circadian clock - an internal time-keeping system that generates 24 hr rhythms in physiology and behaviour. Numerous clinical studies have established a direct correlation between the severity of neurodegenerative disorders, sleep disturbances and weakening of circadian clock functions. The latest data from model organisms, gene expression studies and clinical trials imply that the dysfunction of the circadian clock may contribute to the progression of ageing and age-associated pathologies, suggesting a functional link between the circadian clock, and age-associated decline of brain functions. Potential molecular mechanisms underlying this link include the circadian control of brain metabolism, reactive oxygen species homeostasis, hormone secretion, autophagy and stem cell proliferation. PMID:22395806

  11. Synthesis of Genetic Clock with Combinational Biologic Circuits.

    PubMed

    Chen, Po-Kuei; Lin, Chun-Liang

    2015-01-01

    The potential of genetic clock lies in its role to triggering logic reaction for sequential biological circuits. In general, biochemical reaction of the biological system is extremely slow. However, a square wave generator used as a genetic clock the transient response should be fast enough to catch the reaction change between two logic levels. Therefore, the requirement for instantaneous changes in logic status is not likely to exist in biological systems. This paper presents a method of synthesizing a genetic clock generator based on the combination of a toggle switch with two biological logic gates. A dual repressor is used to connect the two fundamental biologic circuits. Analysis of the characteristic responses of this genetic clock with its relation to the key parameters is provided. PMID:26451832

  12. Diffuse-Illumination Systems for Growing Plants

    NASA Technical Reports Server (NTRS)

    May, George; Ryan, Robert

    2010-01-01

    Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation

  13. Catabolic cytokines disrupt the circadian clock and the expression of clock-controlled genes in cartilage via an NFкB-dependent pathway

    PubMed Central

    Guo, B.; Yang, N.; Borysiewicz, E.; Dudek, M.; Williams, J.L.; Li, J.; Maywood, E.S.; Adamson, A.; Hastings, M.H.; Bateman, J.F.; White, M.R.H.; Boot-Handford, R.P.; Meng, Q.J.

    2015-01-01

    Summary Objective To define how the catabolic cytokines (Interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFα)) affect the circadian clock mechanism and the expression of clock-controlled catabolic genes within cartilage, and to identify the downstream pathways linking the cytokines to the molecular clock within chondrocytes. Methods Ex vivo cartilage explants were isolated from the Cry1-luc or PER2::LUC clock reporter mice. Clock gene dynamics were monitored in real-time by bioluminescence photon counting. Gene expression changes were studied by qRT-PCR. Functional luc assays were used to study the function of the core Clock/BMAL1 complex in SW-1353 cells. NFкB pathway inhibitor and fluorescence live-imaging of cartilage were performed to study the underlying mechanisms. Results Exposure to IL-1β severely disrupted circadian gene expression rhythms in cartilage. This effect was reversed by an anti-inflammatory drug dexamethasone, but not by other clock synchronizing agents. Circadian disruption mediated by IL-1β was accompanied by disregulated expression of endogenous clock genes and clock-controlled catabolic pathways. Mechanistically, NFкB signalling was involved in the effect of IL-1β on the cartilage clock in part through functional interference with the core Clock/BMAL1 complex. In contrast, TNFα had little impact on the circadian rhythm and clock gene expression in cartilage. Conclusion In our experimental system (young healthy mouse cartilage), we demonstrate that IL-1β (but not TNFα) abolishes circadian rhythms in Cry1-luc and PER2::LUC gene expression. These data implicate disruption of the chondrocyte clock as a novel aspect of the catabolic responses of cartilage to pro-inflammatory cytokines, and provide an additional mechanism for how chronic joint inflammation may contribute to osteoarthritis (OA). PMID:26521744

  14. Air Storage System Energy Transfer (ASSET) plants

    NASA Astrophysics Data System (ADS)

    Stys, Z. S.

    1983-09-01

    The design features and performance capabilities of Air Storage System Energy Transfer (ASSET) plants for transferring off-peak utility electricity to on-peak hours are described. The plant operations involve compressing ambient air with an axial flow compressor and depositing it in an underground reservoir at 70 bar pressure. Released during a peaking cycle, the pressure is reduced to 43 bar, the air is heated to 550 C, passed through an expander after a turbine, and passed through a low pressure combustion chamber to be heated to 850 C. A West German plant built in 1978 to supply over 300 MW continuous power for up to two hours is detailed, noting its availability factor of nearly 98 percent and power delivery cost of $230/kW installed. A plant being constructed in Illinois will use limestone caverns as the air storage tank.

  15. IGS Clock Products for Accurate Geodetic and Timing Applications

    NASA Astrophysics Data System (ADS)

    Senior, K. L.; Ray, J. R.

    2007-12-01

    The performance of any GNSS is intimately related to the characteristics of the satellite clocks, so an understanding of the clock behavior is vital. The accurate products of the IGS enable daily point positions to the sub-cm level and continuous global clock comparisons to the sub-ns level. Time transfers are less accurate than associated positioning because of: 1) difficult-to-measure hardware delays; 2) the limiting pseudorange measurement errors. Both factors arise from characteristics of the pseudorange signals, which are easily degraded by multipath and other effects. The behavior of the satellite clocks are also be important. Over sub-daily intervals, IGS products show that approximate power-law stochastic processes govern all GPS clocks. The Block IIA Rb and Cs clocks obey random walk noise, with the Rb clocks up to nearly an order of magnitude more stable. Due to the high-frequency noise of the onboard Time Keeping system in the newer Block IIR and IIR-M satellites, their Rb clocks are dominantly white noise up to a few 1000 s with standard deviations of 90 to 180 ps. Superposed on this random background, periodic signals are present at four harmonic frequencies, n × (2.0029 ± 0.0005) cycles per day for n = 1, 2, 3, and 4. The equivalent fundamental period is 11.9826 hours, which surprisingly differs from the reported mean GPS orbital period of 11.9659 hours by 60 ± 11 s. We cannot account for this apparent discrepancy but note that a clear relationship between the periodic signals and the orbital dynamics is evidenced for some satellites by modulations of the spectral amplitudes with eclipse season. The Cs clocks are more strongly affected than the Rb clocks. All four harmonics are much smaller for the IIR/IIR-M satellites than for the older blocks. The strong 12- and 6-hour periodics in most GPS clocks dictate that these variations should be modeled in all high-accuracy applications, such as for timescale formation, interpolation of IGS clock products

  16. RNA trafficking in parasitic plant systems.

    PubMed

    Leblanc, Megan; Kim, Gunjune; Westwood, James H

    2012-01-01

    RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs, and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host-parasite connections and the potential significance of host RNAs for the parasite. Additional research on host-parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking. PMID:22936942

  17. A mercury optical lattice clock at LNE-SYRTE

    NASA Astrophysics Data System (ADS)

    De Sarlo, L.; Favier, M.; Tyumenev, R.; Bize, S.

    2016-06-01

    We describe the development of an optical lattice clock based on mercury and the results obtained since the 7 th SFSM. We briefly present a new solution for the cooling laser system and an improved lattice trap that allows us to interrogate a few thousand atoms in parallel. This translates into a fractional short term stability of 1.2 x 10-15 at the clock frequency of 1.129 PHz.

  18. A transportable optical lattice clock using 171Yb

    NASA Astrophysics Data System (ADS)

    Mura, Gregor; SOC2 Team

    2013-07-01

    We present first results on the spectroscopy of the 1S0 - 3P0 transition at 578nm in a transportable 171Yb optical lattice clock. With the Yb atoms confined in a one-dimensional optical lattice, we have observed linewidths below 200 Hz, limited by saturation broadening. Currently the system is being upgraded towards full clock operation and use of more compact and robust subsystems.

  19. Circadian clocks and breast cancer.

    PubMed

    Blakeman, Victoria; Williams, Jack L; Meng, Qing-Jun; Streuli, Charles H

    2016-01-01

    Circadian clocks respond to environmental time cues to coordinate 24-hour oscillations in almost every tissue of the body. In the breast, circadian clocks regulate the rhythmic expression of numerous genes. Disrupted expression of circadian genes can alter breast biology and may promote cancer. Here we overview circadian mechanisms, and the connection between the molecular clock and breast biology. We describe how disruption of circadian genes contributes to cancer via multiple mechanisms, and link this to increased tumour risk in women who work irregular shift patterns. Understanding the influence of circadian rhythms on breast cancer could lead to more efficacious therapies, reformed public health policy and improved patient outcome. PMID:27590298

  20. Optimal Prediction of Clocks from Finite Data

    NASA Technical Reports Server (NTRS)

    Greenhall, Charles A.

    2005-01-01

    This talk is about optimal linear prediction of processes with stationary dth increments, which serve as a class of models for random clock disturbances. The predictor is obtained by orthogonal projection on the affine space of estimators whose errors are invariant to additive polynomials of degree < d. The projection conditions give a system of linear equations thatcan be solved straightforwardly for the regression coefficients. If the data are equally spaced, then the predictor can be obtained by an extension of Levinson's algorithm.

  1. End-resonance clock and all-photonic clock

    NASA Astrophysics Data System (ADS)

    Jau, Yuan-Yu; Happer, William; Gong, Fei; Braun, Alan; Kwakernaak, Martin

    2008-02-01

    The end-resonance clock uses strong hyperfine end transition to stabilize the frequency of the local oscillator. Comparing to the conventional 0-0 atomic clock, end resonance has very small spin-exchange broadening effect. The spin-exchange rate is proportional to the number density of the alkali-metal atoms. By using the end resonance, we are able to use very high dense vapor to obtain a much better signal to noise ratio. On the other hand, the end resonance suffers from the first-order magnetic field dependence. This problem, however, can be solved by simultaneously using a Zeeman end resonance to stabilize the magnetic field. Here, we report the most recent result of the end-resonance clock. In addition, we report a whole new technique, push-pull laser-atomic oscillator, which can be thought as all-photonic clock. This new clock requires no local oscillator. It acts like a photonic version of maser, which spontaneously generates modulated laser light and modulated voltage signals. The modulation serves as the clock signal, which is automatically locked to the ground-state hyperfine frequency of alkali-metal atoms.

  2. Clock auto-synchronization method for BESIII ETOF upgrade

    NASA Astrophysics Data System (ADS)

    Wang, Si-Yu; Cao, Ping; Liu, Shu-Bin; An, Qi

    2015-12-01

    An automatic clock synchronization method implemented in a field programmable gate array (FPGA) is proposed in this paper. It is developed for the clock system which will be applied in the end-cap time of flight (ETOF) upgrade of the Beijing Spectrometer (BESIII). In this design, an FPGA is used to automatically monitor the synchronization circuit and deal with signals coming from the external clock synchronization circuit. By testing different delay time of the detection signal and analyzing the signal state returned, the synchronization windows can be found automatically by the FPGA. The new clock system not only retains low clock jitter which is less than 20ps root mean square (RMS), but also demonstrates automatic synchronization to the beam bunches. So far, the clock auto-synchronizing function has been working successfully under a series of tests. It will greatly simplify the system initialization and maintenance in the future. Supported by National Natural Science Foundation of China (10979003, 11005107), CAS Center for Excellence in Particle Physics (CCEPP)

  3. Applications of Clocks to Space Navigation & "Planetary GPS"

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    2004-01-01

    The ability to fly atomic clocks on GPS satellites has profoundly defined the capabilities and limitations of GPS in near-Earth applications. It is likely that future infrastructure for Lunar and Mars applications will be constrained by financial factors. The development of a low cost, small, high performance space clock -- or ultrahigh performance space clocks -- could revolutionize and drive the entire approach to GPS-like systems at the Moon (or Mars), and possibly even change the future of GPS at Earth. Many system trade studies are required. The performance of future GPS-like tracking systems at the Moon or Mars will depend critically on clock performance, availability of inertial sensors, and constellation coverage. Example: present-day GPS carry 10(exp -13) clocks and require several updates per day. With 10(exp -15) clocks, a constellation at Mars could operate autonomously with updates just once per month. Use of GPS tracking at the Moon should be evaluated in a technical study.

  4. An Automated and Continuous Plant Weight Measurement System for Plant Factory.

    PubMed

    Chen, Wei-Tai; Yeh, Yu-Hui F; Liu, Ting-Yu; Lin, Ta-Te

    2016-01-01

    In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analog electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications. PMID:27066040

  5. An Automated and Continuous Plant Weight Measurement System for Plant Factory

    PubMed Central

    Chen, Wei-Tai; Yeh, Yu-Hui F.; Liu, Ting-Yu; Lin, Ta-Te

    2016-01-01

    In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analog electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications. PMID:27066040

  6. Gas Centrifuge Enrichment Plant Safeguards System Modeling

    SciTech Connect

    Elayat, H A; O'Connell, W J; Boyer, B D

    2006-06-05

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for potential U.S. use in designing and evaluating safeguards systems used in enrichment facilities. This research focuses on analyzing the effectiveness of the safeguards in protecting against the range of safeguards concerns for enrichment plants, including diversion of attractive material and unauthorized modes of use. We developed an Extend simulation model for a generic medium-sized centrifuge enrichment plant. We modeled the material flow in normal operation, plant operational upset modes, and selected diversion scenarios, for selected safeguards systems. Simulation modeling is used to analyze both authorized and unauthorized use of a plant and the flow of safeguards information. Simulation tracks the movement of materials and isotopes, identifies the signatures of unauthorized use, tracks the flow and compilation of safeguards data, and evaluates the effectiveness of the safeguards system in detecting misuse signatures. The simulation model developed could be of use to the International Atomic Energy Agency IAEA, enabling the IAEA to observe and draw conclusions that uranium enrichment facilities are being used only within authorized limits for peaceful uses of nuclear energy. It will evaluate improved approaches to nonproliferation concerns, facilitating deployment of enhanced and cost-effective safeguards systems for an important part of the nuclear power fuel cycle.

  7. Recent progress of neutral mercury lattice clock in SIOM

    NASA Astrophysics Data System (ADS)

    Zhao, R. C.; Fu, X. H.; Liu, K. K.; Gou, W.; Sun, J. F.; Xu, Z.; Wang, Y. Z.

    2016-06-01

    Neutral mercury atom is one of good candidates of optical lattice clock. Due to its large atomic number, mercury atom is insensitive to black body radiation, which is the severe limitation for the development of optical clocks. However, the challenge of neutral mercury lattice clock is the requirement of high power deep-UV lasers, especially for both the cooling laser and the lattice laser. Here, we report the recent progress of neutral mercury lattice clock in SIOM, including the development for laser cooling of mercury atom and the cooling laser system with fiber laser amplifier. We have realized the magneto-optical trap of mercury atoms and measured the parameters of cold mercury atoms. A home-made external cavity diode laser works as a seed laser for a room temperature 1014.8 nm fiber laser amplifier. A new efficient frequency-doubling cavity from 1015 nm to 507 nm has been developed.

  8. NAVEX: A space shuttle experiment with atomic clocks

    NASA Technical Reports Server (NTRS)

    Starker, S.; Nau, H.; Hamesfahr, J.; Tschiesche, H.

    1983-01-01

    A navigation and time transfer experiment (NAVEX) to be flown within the payload of the first German Spacelab mission D-1 is discussed. The objectives of the experiment are to synchronize distant ground stations with an accuracy of better than 10 nsec and to demonstrate one way ranging with an accuracy of better than 30 m. Spread spectrum signals are used and the related technique is tested. On board a Cs and a Rb clock is used. The relativistic effect of these clocks is about -25 microsec per day. On the ground at least two receiving stations and one transmitting-receiving station will be installed. The synchronization of the ground clocks by shuttle signals is compared to those achieved with clock transportations and with GPS measurements. A system description of this experiment is given containing details on the technical concept, the hardware and the planned data evaluation. The present state of the preparatory work is briefly reviewed.

  9. Physical Time and Thermal Clocks

    NASA Astrophysics Data System (ADS)

    Borghi, Claudio

    2016-07-01

    In this paper I discuss the concept of time in physics. I consider the thermal time hypothesis and I claim that thermal clocks and atomic clocks measure different physical times, whereby thermal time and relativistic time are not compatible with each other. This hypothesis opens the possibility of a new foundation of the theory of physical time, and new perspectives in theoretical and philosophical researches.

  10. Stochastic models for atomic clocks

    NASA Technical Reports Server (NTRS)

    Barnes, J. A.; Jones, R. H.; Tryon, P. V.; Allan, D. W.

    1983-01-01

    For the atomic clocks used in the National Bureau of Standards Time Scales, an adequate model is the superposition of white FM, random walk FM, and linear frequency drift for times longer than about one minute. The model was tested on several clocks using maximum likelihood techniques for parameter estimation and the residuals were acceptably random. Conventional diagnostics indicate that additional model elements contribute no significant improvement to the model even at the expense of the added model complexity.

  11. Circadian clocks, feeding time, and metabolic homeostasis

    PubMed Central

    Paschos, Georgios K.

    2015-01-01

    Metabolic processes exhibit diurnal variation from cyanobacteria to humans. The circadian clock is thought to have evolved as a time keeping system for the cell to optimize the timing of metabolic events according to physiological needs and environmental conditions. Circadian rhythms temporally separate incompatible cellular processes and optimize cellular and organismal fitness. A modern 24 h lifestyle can run at odds with the circadian rhythm dictated by our molecular clocks and create desynchrony between internal and external timing. It has been suggested that this desynchrony compromises metabolic homeostasis and may promote the development of obesity (Morris et al., 2012). Here we review the evidence supporting the association between circadian misalignment and metabolic homeostasis and discuss the role of feeding time. PMID:26082718

  12. Circadian rhythms, the molecular clock, and skeletal muscle.

    PubMed

    Harfmann, Brianna D; Schroder, Elizabeth A; Esser, Karyn A

    2015-04-01

    Circadian rhythms are the approximate 24-h biological cycles that function to prepare an organism for daily environmental changes. They are driven by the molecular clock, a transcriptional:translational feedback mechanism that in mammals involves the core clock genes Bmal1, Clock, Per1/2, and Cry1/2. The molecular clock is present in virtually all cells of an organism. The central clock in the suprachiasmatic nucleus (SCN) has been well studied, but the clocks in the peripheral tissues, such as heart and skeletal muscle, have just begun to be investigated. Skeletal muscle is one of the largest organs in the body, comprising approximately 45% of total body mass. More than 2300 genes in skeletal muscle are expressed in a circadian pattern, and these genes participate in a wide range of functions, including myogenesis, transcription, and metabolism. The circadian rhythms of skeletal muscle can be entrained both indirectly through light input to the SCN and directly through time of feeding and activity. It is critical for the skeletal muscle molecular clock not only to be entrained to the environment but also to be in synchrony with rhythms of other tissues. When circadian rhythms are disrupted, the observed effects on skeletal muscle include fiber-type shifts, altered sarcomeric structure, reduced mitochondrial respiration, and impaired muscle function. Furthermore, there are detrimental effects on metabolic health, including impaired glucose tolerance and insulin sensitivity, which skeletal muscle likely contributes to considering it is a key metabolic tissue. These data indicate a critical role for skeletal muscle circadian rhythms for both muscle and systems health. Future research is needed to determine the mechanisms of molecular clock function in skeletal muscle, identify the means by which skeletal muscle entrainment occurs, and provide a stringent comparison of circadian gene expression across the diverse tissue system of skeletal muscle. PMID:25512305

  13. Common features in diverse insect clocks.

    PubMed

    Numata, Hideharu; Miyazaki, Yosuke; Ikeno, Tomoko

    2015-01-01

    This review describes common features among diverse biological clocks in insects, including circadian, circatidal, circalunar/circasemilunar, and circannual clocks. These clocks control various behaviors, physiological functions, and developmental events, enabling adaptation to periodic environmental changes. Circadian clocks also function in time-compensation for celestial navigation and in the measurement of day or night length for photoperiodism. Phase response curves for such clocks reported thus far exhibit close similarities; specifically, the circannual clock in Anthrenus verbasci shows striking similarity to circadian clocks in its phase response. It is suggested that diverse biological clocks share physiological properties in their phase responses irrespective of period length. Molecular and physiological mechanisms are best understood for the optic-lobe and mid-brain circadian clocks, although there is no direct evidence that these clocks are involved in rhythmic phenomena other than circadian rhythms in daily events. Circadian clocks have also been localized in peripheral tissues, and research on their role in various rhythmic phenomena has been started. Although clock genes have been identified as controllers of circadian rhythms in daily events, some of these genes have also been shown to be involved in photoperiodism and possibly in time-compensated celestial navigation. In contrast, there is no experimental evidence indicating that any known clock gene is involved in biological clocks other than circadian clocks. PMID:26605055

  14. 22. TIME CLOCK AREA, WITH LUNCH ROOM IN DISTANCE. RAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. TIME CLOCK AREA, WITH LUNCH ROOM IN DISTANCE. RAIL SPUR FOLDING DOORS ARE HIDDEN BEHIND OFFICE AT PHOTO CENTER. VIEW TO EAST-NORTHEAST. - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  15. Design and simulation of a plant control system for a GCFR demonstration plant

    SciTech Connect

    Estrine, E.A.; Greiner, H.G.

    1980-02-01

    A plant control system is being designed for a 300 MW(e) Gas Cooled Fast Breeder Reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. Plant models and simulations are being developed to generate information necessary to further define control system requirements for subsequent plant design iterations.

  16. Clock drawing performance in cognitively normal elderly.

    PubMed

    Hubbard, Emily J; Santini, Veronica; Blankevoort, Christiaan G; Volkers, Karin M; Barrup, Melissa S; Byerly, Laura; Chaisson, Christine; Jefferson, Angela L; Kaplan, Edith; Green, Robert C; Stern, Robert A

    2008-05-01

    The Clock Drawing Test (CDT) is a common neuropsychological measure sensitive to cognitive changes and functional skills (e.g., driving test performance) among older adults. However, normative data have not been adequately developed. We report the distribution of CDT scores using three common scoring systems [Mendez, M. F., Ala, T., & Underwood, K. L. (1992). Development of scoring criteria for the Clock Drawing Task in Alzheimer's Disease. Journal of the American Geriatrics Society, 40, 1095-1099; Cahn, D. A., Salmon, D. P., Monsch, A. U., Butters, N., Wiederholt, W. C., & Corey-Bloom, J. (1996). Screening for dementia of the Alzheimer type in the community: The utility of the Clock Drawing Test. Archives of Clinical Neuropsychology, 11(6), 529-539], among 207 cognitively normal elderly. The systems were well correlated, took little time to use, and had high inter-rater reliability. We found statistically significant differences in CDT scores based on age and WRAT-3 Reading score, a marker of education quality. We present means, standard deviations, and t- and z-scores based on these subgroups. We found that "normal" CDT performance includes a wider distribution of scores than previously reported. Our results may serve as useful comparisons for clinicians wishing to know whether their patients perform in the general range of cognitively normal elderly. PMID:18243644

  17. Tuning Genetic Clocks Employing DNA Binding Sites

    PubMed Central

    Jayanthi, Shridhar; Del Vecchio, Domitilla

    2012-01-01

    Periodic oscillations play a key role in cell physiology from the cell cycle to circadian clocks. The interplay of positive and negative feedback loops among genes and proteins is ubiquitous in these networks. Often, delays in a negative feedback loop and/or degradation rates are a crucial mechanism to obtain sustained oscillations. How does nature control delays and kinetic rates in feedback networks? Known mechanisms include proper selection of the number of steps composing a feedback loop and alteration of protease activity, respectively. Here, we show that a remarkably simple means to control both delays and effective kinetic rates is the employment of DNA binding sites. We illustrate this design principle on a widely studied activator-repressor clock motif, which is ubiquitous in natural systems. By suitably employing DNA target sites for the activator and/or the repressor, one can switch the clock “on” and “off” and precisely tune its period to a desired value. Our study reveals a design principle to engineer dynamic behavior in biomolecular networks, which may be largely exploited by natural systems and employed for the rational design of synthetic circuits. PMID:22859962

  18. Beyond Cannabis: Plants and the Endocannabinoid System.

    PubMed

    Russo, Ethan B

    2016-07-01

    Plants have been the predominant source of medicines throughout the vast majority of human history, and remain so today outside of industrialized societies. One of the most versatile in terms of its phytochemistry is cannabis, whose investigation has led directly to the discovery of a unique and widespread homeostatic physiological regulator, the endocannabinoid system. While it had been the conventional wisdom until recently that only cannabis harbored active agents affecting the endocannabinoid system, in recent decades the search has widened and identified numerous additional plants whose components stimulate, antagonize, or modulate different aspects of this system. These include common foodstuffs, herbs, spices, and more exotic ingredients: kava, chocolate, black pepper, and many others that are examined in this review. PMID:27179600

  19. Diagnostic system monitors gearboxes at hydro plant

    SciTech Connect

    1995-06-01

    This article describes how, by applying real-time, tooth-by-tooth vibration ``imaging,`` this system detects gear-tooth defects -- such as pitting and cracking. To keep Swan Falls hydroelectric generating station in service, Idaho Power Co constructed a new two-unit, open-pit-turbine powerhouse. Swan Falls, Kuna, Idaho, the oldest on the Snake River, services southern Idaho and parts of Oregon -- one of 17 hydroelectric plants maintained by the utility. The hydro units use speed increasers (gearboxes) so higher-speed generators are possible. To monitor these gearboxes, engineers at Swan Falls required a continuous on-line predictive maintenance system. The system monitors the planetary step-up gearboxes in the two main 12.5-MW pit turbine/generators. In some Idaho Power plants with a similar hydro turbine/generator design, the gearboxes have experienced major failures, leading to hundreds of thousands of dollars in collateral damage.

  20. Spectroscopy of the 199Hg Optical Clock Transition at 265.5 nm

    NASA Astrophysics Data System (ADS)

    Lytle, Christian; Paul, Justin; Jones, R.

    2013-05-01

    Neutral Hg is an excellent candidate for a stable and accurate atomic clock. The doubly-forbidden clock transition at 265.5 nm can provide an extremely high-quality resonance factor (Q) when confined in an optical lattice at the Stark-shift free ``magic'' wavelength. A key feature of the Hg system is the expected reduced uncertainty of black-body radiation induced Stark shifts compared to other optically-based neutral atom clocks. We demonstrate precision spectroscopy of the 1S0 - 3P0 clock transition in 199Hg in a MOT. The MOT population of 106 atoms was depleted by over 70% using 3 mW from a cavity-stabilized probe laser tuned to the clock transition. We present our characterization of the transition and efforts to implement a stable Hg clock system.

  1. Human skeletal myotubes display a cell-autonomous circadian clock implicated in basal myokine secretion

    PubMed Central

    Perrin, Laurent; Loizides-Mangold, Ursula; Skarupelova, Svetlana; Pulimeno, Pamela; Chanon, Stephanie; Robert, Maud; Bouzakri, Karim; Modoux, Christine; Roux-Lombard, Pascale; Vidal, Hubert; Lefai, Etienne; Dibner, Charna

    2015-01-01

    Objective Circadian clocks are functional in all light-sensitive organisms, allowing an adaptation to the external world in anticipation of daily environmental changes. In view of the potential role of the skeletal muscle clock in the regulation of glucose metabolism, we aimed to characterize circadian rhythms in primary human skeletal myotubes and investigate their roles in myokine secretion. Methods We established a system for long-term bioluminescence recording in differentiated human myotubes, employing lentivector gene delivery of the Bmal1-luciferase and Per2-luciferase core clock reporters. Furthermore, we disrupted the circadian clock in skeletal muscle cells by transfecting siRNA targeting CLOCK. Next, we assessed the basal secretion of a large panel of myokines in a circadian manner in the presence or absence of a functional clock. Results Bioluminescence reporter assays revealed that human skeletal myotubes, synchronized in vitro, exhibit a self-sustained circadian rhythm, which was further confirmed by endogenous core clock transcript expression. Moreover, we demonstrate that the basal secretion of IL-6, IL-8 and MCP-1 by synchronized skeletal myotubes has a circadian profile. Importantly, the secretion of IL-6 and several additional myokines was strongly downregulated upon siClock-mediated clock disruption. Conclusions Our study provides for the first time evidence that primary human skeletal myotubes possess a high-amplitude cell-autonomous circadian clock, which could be attenuated. Furthermore, this oscillator plays an important role in the regulation of basal myokine secretion by skeletal myotubes. PMID:26629407

  2. Quantum arrival and dwell times via idealized clocks

    SciTech Connect

    Yearsley, J. M.; Downs, D. A.; Halliwell, J. J.; Hashagen, A. K.

    2011-08-15

    A number of approaches to the problem of defining arrival- and dwell-time probabilities in quantum theory makes use of idealized models of clocks. An interesting question is the extent to which the probabilities obtained in this way are related to standard semiclassical results. In this paper, we explore this question using a reasonably general clock model, solved using path-integral methods. We find that, in the weak-coupling regime, where the energy of the clock is much less than the energy of the particle it is measuring, the probability for the clock pointer can be expressed in terms of the probability current in the case of arrival times, and the dwell-time operator in the case of dwell times, the expected semiclassical results. In the regime of strong system-clock coupling, we find that the arrival-time probability is proportional to the kinetic-energy density, consistent with an earlier model involving a complex potential. We argue that, properly normalized, this may be the generically expected result in this regime. We show that these conclusions are largely independent of the form of the clock Hamiltonian.

  3. Influence of relativistic effects on satellite-based clock synchronization

    NASA Astrophysics Data System (ADS)

    Wang, Jieci; Tian, Zehua; Jing, Jiliang; Fan, Heng

    2016-03-01

    Clock synchronization between the ground and satellites is a fundamental issue in future quantum telecommunication, navigation, and global positioning systems. Here, we propose a scheme of near-Earth orbit satellite-based quantum clock synchronization with atmospheric dispersion cancellation by taking into account the spacetime background of the Earth. Two frequency entangled pulses are employed to synchronize two clocks, one at a ground station and the other at a satellite. The time discrepancy of the two clocks is introduced into the pulses by moving mirrors and is extracted by measuring the coincidence rate of the pulses in the interferometer. We find that the pulses are distorted due to effects of gravity when they propagate between the Earth and the satellite, resulting in remarkably affected coincidence rates. We also find that the precision of the clock synchronization is sensitive to the source parameters and the altitude of the satellite. The scheme provides a solution for satellite-based quantum clock synchronization with high precision, which can be realized, in principle, with current technology.

  4. The Molecular Circadian Clock and Alcohol-Induced Liver Injury

    PubMed Central

    Udoh, Uduak S.; Valcin, Jennifer A.; Gamble, Karen L.; Bailey, Shannon M.

    2015-01-01

    Emerging evidence from both experimental animal studies and clinical human investigations demonstrates strong connections among circadian processes, alcohol use, and alcohol-induced tissue injury. Components of the circadian clock have been shown to influence the pathophysiological effects of alcohol. Conversely, alcohol may alter the expression of circadian clock genes and the rhythmic behavioral and metabolic processes they regulate. Therefore, we propose that alcohol-mediated disruption in circadian rhythms likely underpins many adverse health effects of alcohol that cut across multiple organ systems. In this review, we provide an overview of the circadian clock mechanism and showcase results from new studies in the alcohol field implicating the circadian clock as a key target of alcohol action and toxicity in the liver. We discuss various molecular events through which alcohol may work to negatively impact circadian clock-mediated processes in the liver, and contribute to tissue pathology. Illuminating the mechanistic connections between the circadian clock and alcohol will be critical to the development of new preventative and pharmacological treatments for alcohol use disorders and alcohol-mediated organ diseases. PMID:26473939

  5. A model for plant lighting system selection

    NASA Technical Reports Server (NTRS)

    Ciolkosz, D. E.; Albright, L. D.; Sager, J. C.; Langhans, R. W.

    2002-01-01

    A decision model is presented that compares lighting systems for a plant growth scenario and chooses the most appropriate system from a given set of possible choices. The model utilizes a Multiple Attribute Utility Theory approach, and incorporates expert input and performance simulations to calculate a utility value for each lighting system being considered. The system with the highest utility is deemed the most appropriate system. The model was applied to a greenhouse scenario, and analyses were conducted to test the model's output for validity. Parameter variation indicates that the model performed as expected. Analysis of model output indicates that differences in utility among the candidate lighting systems were sufficiently large to give confidence that the model's order of selection was valid.

  6. Applications of clocks and frequency standards: from the routine to tests of fundamental models

    NASA Astrophysics Data System (ADS)

    Maleki, Lute; Prestage, John

    2005-06-01

    The traditional applications of clocks and oscillators in navigation and scientific research continue to grow as new and more widespread applications emerge. Today, clocks and oscillators regulate the speed and efficiency of virtually every human endeavour ranging from the mundane to the exotic. In this paper we discuss some of the applications that require the service of high performance clocks and oscillators. In particular, we discuss space applications of clocks for navigation and scientific experiments. We also present a discussion of satellite navigation systems, especially the Global Positioning System, and comment on time dissemination over the Internet.

  7. A Two-Photon E1-M1 Optical Clock

    NASA Astrophysics Data System (ADS)

    Alden, Emily A.

    Innovations in precision frequency measurement advance popular technologies such as global positioning systems (GPS), permit the testing of fundamental physics constants, and have the potential to measure local variations in gravity. Driving optical transitions for frequency measurement using an E1-M1 excitation scheme in a hot mercury (Hg) vapor cell is viable and could be the basis of a portable optical frequency standard with comparable accuracy to the most precise atomic clocks in the world. This dissertation explores the fundamental physics of the new E1-M1 method of high-precision frequency measurement in an optical, atomic clock and describes the construction of a high-power E1-M1 clock laser. The value of this new scheme compared to existing optical frequency standards is the simplicity and portability of the experimental setup. Such an optical frequency standard would permit frequency measurement in far-flung locations on earth and in space. Analysis of both the E1-M1 optical transition and thermal properties of the candidate clock atoms are presented. These models allow a stability estimate of an E1-M1 optical clock and recommend experimental settings to optimize the standard. The experimental work that has been performed in pursuit of observing the E1-M1 clock transition in Hg is also discussed. An optical clock operates by making a precision frequency measurement of a laser that has been brought into resonance with a clock atom's oscillator: a high quality atomic level transition. Group II type atoms, such as Hg, have the 1S0-3P0 transition that is an ideal basis for a clock. The E1-M1 excitation is performed by driving the two-photon allowed transition 1S0-3P1-3P0. This is in contrast to the single-photon E1 transition used in other systems. Single-photon schemes must use ultracold atoms to reduce atomic motion to attain high levels of accuracy. Driving the clock transition with a pair of degenerate counter-propagating photons in an E1-M1 scheme

  8. Pitfalls of Insulin Pump Clocks

    PubMed Central

    Reed, Amy J.

    2014-01-01

    The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients’ visits, and should remind their patients to always verify these settings. PMID:25355713

  9. Waste receiving and processing plant control system; system design description

    SciTech Connect

    LANE, M.P.

    1999-02-24

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed as separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.

  10. Hydrogen Maser Clock (HMC) Experiment

    NASA Technical Reports Server (NTRS)

    Vessot, Robert F. C.; Mattison, Edward M.

    1997-01-01

    The Hydrogen Maser Clock (HMC) project was originally conceived to fly on a reflight of the European Space Agency (ESA) free flying platform, the European Recoverable Carrier (EURECA) that had been launched into space and recovered by NASA's Space Transportation System (STS). A Phase B study for operation of HMC as one of the twelve EURECA payload components was begun in July 1991, and completed a year later. Phase C/D of HMC began in August 1992 and continued into early 1995. At that time ESA decided not to refly EURECA, leaving HMC without access to space. Approximately 80% of the flight support electronics are presently operating the HMC's physics package in a vacuum tank at the Smithsonian Astrophysical Observatory, and are now considered to be well-tested flight electronics. The package will continue to be operated until the end of 1997 or until a flight opportunity becomes avaiable. Appendices: letters and trip report; proceedings of the symposium on frequency standards and metrology; milli-celsius-stability thermal control for an orbiting frequency standard.

  11. Electrical system for a large cogeneration plant

    SciTech Connect

    Arvay, G.J. ); Smith, R.T. )

    1992-01-01

    The electrical system, interface, commissioning, and operations requirements of a major multiunit cogeneration plant interconnected with a large utility system through a 230-kV sulfur hexafluoride (SF{sub 6}) gas-insulated substation (GIS) are complex and demanding. This paper describes the electrical requirements, including utility interfaces, engineering, and on-site testing, as applied to the execution of a large, multiunit turnkey cogeneration project in California. The benefits of careful engineering efforts are shown to result in timely and cost effective completion of engineering, manufacturing, installation, testing, and commercial operation.

  12. Feedback system design with an uncertain plant

    NASA Technical Reports Server (NTRS)

    Milich, D.; Valavani, L.; Athans, M.

    1986-01-01

    A method is developed to design a fixed-parameter compensator for a linear, time-invariant, SISO (single-input single-output) plant model characterized by significant structured, as well as unstructured, uncertainty. The controller minimizes the H(infinity) norm of the worst-case sensitivity function over the operating band and the resulting feedback system exhibits robust stability and robust performance. It is conjectured that such a robust nonadaptive control design technique can be used on-line in an adaptive control system.

  13. Entrainment of the mouse circadian clock by sub-acute physical and psychological stress.

    PubMed

    Tahara, Yu; Shiraishi, Takuya; Kikuchi, Yosuke; Haraguchi, Atsushi; Kuriki, Daisuke; Sasaki, Hiroyuki; Motohashi, Hiroaki; Sakai, Tomoko; Shibata, Shigenobu

    2015-01-01

    The effects of acute stress on the peripheral circadian system are not well understood in vivo. Here, we show that sub-acute stress caused by restraint or social defeat potently altered clock gene expression in the peripheral tissues of mice. In these peripheral tissues, as well as the hippocampus and cortex, stressful stimuli induced time-of-day-dependent phase-advances or -delays in rhythmic clock gene expression patterns; however, such changes were not observed in the suprachiasmatic nucleus, i.e. the central circadian clock. Moreover, several days of stress exposure at the beginning of the light period abolished circadian oscillations and caused internal desynchronisation of peripheral clocks. Stress-induced changes in circadian rhythmicity showed habituation and disappeared with long-term exposure to repeated stress. These findings suggest that sub-acute physical/psychological stress potently entrains peripheral clocks and causes transient dysregulation of circadian clocks in vivo. PMID:26073568

  14. System identification of the Arabidopsis plant circadian system

    NASA Astrophysics Data System (ADS)

    Foo, Mathias; Somers, David E.; Kim, Pan-Jun

    2015-02-01

    The circadian system generates an endogenous oscillatory rhythm that governs the daily activities of organisms in nature. It offers adaptive advantages to organisms through a coordination of their biological functions with the optimal time of day. In this paper, a model of the circadian system in the plant Arabidopsis (species thaliana) is built by using system identification techniques. Prior knowledge about the physical interactions of the genes and the proteins in the plant circadian system is incorporated in the model building exercise. The model is built by using primarily experimentally-verified direct interactions between the genes and the proteins with the available data on mRNA and protein abundances from the circadian system. Our analysis reveals a great performance of the model in predicting the dynamics of the plant circadian system through the effect of diverse internal and external perturbations (gene knockouts and day-length changes). Furthermore, we found that the circadian oscillatory rhythm is robust and does not vary much with the biochemical parameters except those of a light-sensitive protein P and a transcription factor TOC1. In other words, the circadian rhythmic profile is largely a consequence of the network's architecture rather than its particular parameters. Our work suggests that the current experimental knowledge of the gene-to-protein interactions in the plant Arabidopsis, without considering any additional hypothetical interactions, seems to suffice for system-level modeling of the circadian system of this plant and to present an exemplary platform for the control of network dynamics in complex living organisms.

  15. A hydroponic system for microgravity plant experiments.

    PubMed

    Wright, B D; Bausch, W C; Knott, W M

    1988-01-01

    The construction of a permanently manned space station will provide the opportunity to grow plants for weeks or months in orbit for experiments or food production. With this opportunity comes the need for a method to provide plants with a continuous supply of water and nutrients in microgravity. The Capillary Effect Root Environment System (CERES) uses capillary forces to maintain control of circulating plant nutrient solution in the weightless environment of an orbiting spacecraft. The nutrient solution is maintained at a pressure slightly less than the ambient air pressure while it flows on one side of a porous membrane. The root, on the other side of the membrane, is surrounded by a thin film of nutrient solution where it contacts the moist surface of the membrane. The root is provided with water, nutrients and air simultaneously. Air bubbles in the nutrient solution are removed using a hydrophobic/hydrophilic membrane system. A model scaled to the size necessary for flight hardware to test CERES in the space shuttle was constructed. PMID:11539001

  16. A hydroponic system for microgravity plant experiments

    NASA Technical Reports Server (NTRS)

    Wright, B. D.; Bausch, W. C.; Knott, W. M.

    1988-01-01

    The construction of a permanently manned space station will provide the opportunity to grow plants for weeks or months in orbit for experiments or food production. With this opportunity comes the need for a method to provide plants with a continuous supply of water and nutrients in microgravity. The Capillary Effect Root Environment System (CERES) uses capillary forces to maintain control of circulating plant nutrient solution in the weightless environment of an orbiting spacecraft. The nutrient solution is maintained at a pressure slightly less than the ambient air pressure while it flows on one side of a porous membrane. The root, on the other side of the membrane, is surrounded by a thin film of nutrient solution where it contacts the moist surface of the membrane. The root is provided with water, nutrients and air simultaneously. Air bubbles in the nutrient solution are removed using a hydrophobic/hydrophilic membrane system. A model scaled to the size necessary for flight hardware to test CERES in the space shuttle was constructed.

  17. Remote atomic clock synchronization via satellites and optical fibers

    NASA Astrophysics Data System (ADS)

    Piester, D.; Rost, M.; Fujieda, M.; Feldmann, T.; Bauch, A.

    2011-07-01

    In the global network of institutions engaged with the realization of International Atomic Time (TAI), atomic clocks and time scales are compared by means of the Global Positioning System (GPS) and by employing telecommunication satellites for two-way satellite time and frequency transfer (TWSTFT). The frequencies of the state-of-the-art primary caesium fountain clocks can be compared at the level of 10-15 (relative, 1 day averaging) and time scales can be synchronized with an uncertainty of one nanosecond. Future improvements of worldwide clock comparisons will require also an improvement of the local signal distribution systems. For example, the future ACES (atomic clock ensemble in space) mission shall demonstrate remote time scale comparisons at the uncertainty level of 100 ps. To ensure that the ACES ground instrument will be synchronized to the local time scale at the Physikalisch-Technische Bundesanstalt (PTB) without a significant uncertainty contribution, we have developed a means for calibrated clock comparisons through optical fibers. An uncertainty below 40 ps over a distance of 2 km has been demonstrated on the campus of PTB. This technology is thus in general a promising candidate for synchronization of enhanced time transfer equipment with the local realizations of Coordinated Universal Time UTC. Based on these experiments we estimate the uncertainty level for calibrated time transfer through optical fibers over longer distances. These findings are compared with the current status and developments of satellite based time transfer systems, with a focus on the calibration techniques for operational systems.

  18. Comparison of tree and straight-line clocking for long systolic arrays

    SciTech Connect

    Dikaiakos, M.D.; Steiglitz, K.

    1990-01-01

    This report presents the critical problem in building long systolic arrays that lies in efficient and reliable synchronization. The authors address this problem in the context of synchronous systems by introducing probabilistic models for two alternative clock distribution schemes: tree and straight-line clocking. They present analytic bounds for the probability of failure and the mean time to failure, and examine the trade-offs between reliability and throughput in both schemes. Their basic conclusion is that as the one-dimensional systolic array gets very long, tree clocking becomes more advantageous over straight-line clocking.

  19. Low-power, miniature {sup 171}Yb ion clock using an ultra-small vacuum package

    SciTech Connect

    Jau, Y.-Y.; Schwindt, P. D. D.; Partner, H.; Prestage, J. D.; Kellogg, J. R.; Yu, N.

    2012-12-17

    We report a demonstration of a very small microwave atomic clock using the 12.6 GHz hyperfine transition of the trapped {sup 171}Yb ions inside a miniature, completely sealed-off 3 cm{sup 3} ion-trap vacuum package. In the ion clock system, all of the components are highly miniaturized with low power consumption except the 369 nm optical pumping laser still under development for miniaturization. The entire clock, including the control electronics, consumes <300 mW. The fractional frequency instability of the miniature Yb{sup +} clock reaches the 10{sup -14} range after a few days of integration.

  20. Potential Conservation of Circadian Clock Proteins in the phylum Nematoda as Revealed by Bioinformatic Searches

    PubMed Central

    Romanowski, Andrés; Garavaglia, Matías Javier; Goya, María Eugenia; Ghiringhelli, Pablo Daniel; Golombek, Diego Andrés

    2014-01-01

    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system. PMID:25396739

  1. Design of the Fully Digitalized SOE System in Nuclear Power Plants

    SciTech Connect

    Jong Yong, Keum; Geun Ok, Park; Heui Youn, Park; Gui Sook, Jang

    2006-07-01

    With the spread of the digital technologies, the Instrumentation and Control (I and C) systems including the Sequence of Events (SOE) system in the nuclear power plants gradually follow these general trends. This paper discusses the methods for calculating SOE events' occurrence time in each of the non-safety systems and the safety systems. This paper presents the structure of a fully digitalized SOE system in the I and C systems and takes the important design elements of the SOE systems into consideration, including the time resolution, time protocol, and the properties of the data communication networks in the non-safety systems and the safety systems. The feature of the SOE system is that the processing of the SOE events' occurrence time is distributed in their individual systems except for the safety systems processed in a gateway. The commercial data communication networks adopting TCP/IP are used in the non-safety systems and the safety systems use the deterministic data communication networks in order to produce their output within restricted time. Under the two different data communications networks, the methods for establishing the SOE events' occurrence time which are classified into a safety grade and a non-safety grade are applied here. The Network Time Protocol (NTP) is used to synchronize the time keeping among the time servers and the clients in the non-safety systems. When the SOE events occur, the clients record the time information from their own local clocks. The safety systems are designed to precisely calculate the SOE events' occurrence time. The equation defined as a function of a transmission time, a transmission waiting time and an arrival time to a gateway is presented here. This paper analyzed the time errors of the SOE events in non-safety systems by using NTP through an experimental environment. In the case of the safety systems, the principle for the calculation of the SOE events' occurrence time is explained by an example. (authors)

  2. Synchronous clock stopper for microprocessor

    NASA Technical Reports Server (NTRS)

    Kitchin, David A. (Inventor)

    1985-01-01

    A synchronous clock stopper circuit for inhibiting clock pulses to a microprocessor in response to a stop request signal, and for reinstating the clock pulses in response to a start request signal thereby to conserve power consumption of the microprocessor when used in an environment of limited power. The stopping and starting of the microprocessor is synchronized, by a phase tracker, with the occurrences of a predetermined phase in the instruction cycle of the microprocessor in which the I/O data and address lines of the microprocessor are of high impedance so that a shared memory connected to the I/O lines may be accessed by other peripheral devices. The starting and stopping occur when the microprocessor initiates and completes, respectively, an instruction, as well as before and after transferring data with a memory. Also, the phase tracker transmits phase information signals over a bus to other peripheral devices which signals identify the current operational phase of the microprocessor.

  3. Clocks, Metabolism, and the Epigenome

    PubMed Central

    Feng, Dan; Lazar, Mitchell A.

    2012-01-01

    Many behaviors and physiological activities in living organisms display circadian rhythms, allowing them to anticipate and prepare for the diurnal changes in the living environment. In this way, metabolic processes are aligned with the periodic environmental changes and behavioral cycles, such as the sleep/wake and fasting/feeding cycles. Disturbances of this alignment significantly increase the risk of metabolic diseases. Meanwhile, the circadian clock receives signals from the environment and feedback from metabolic pathways, and adjusts its activity and function. Growing evidence connects the circadian clock with epigenomic regulators. Here we review the recent advances in understanding the crosstalk between the circadian clock and energy metabolism through epigenomic programming and transcriptional regulation. PMID:22841001

  4. Sr+ single-ion clock

    NASA Astrophysics Data System (ADS)

    Dubé, P.; Madej, A. A.; Jian, B.

    2016-06-01

    The evaluated uncertainty of the 88Sr+ ion optical clock has decreased by several orders of magnitude during the last 15 years, currently reaching a level of 1.2 x 10-17. In this paper, we review the methods developed to control very effectively the largest frequency shifts that once were the main sources of uncertainty for the 88Sr+ single-ion clock. These shifts are the micromotion shifts, the electric quadrupole shift and the blackbody radiation shift. With further improvements to the evaluation of the systematic shifts, especially the blackbody radiation shift, it is expected that the total uncertainty of the single-ion clock transition frequency will reach the low 10-18 level in the near future.

  5. Titan's methane clock

    NASA Astrophysics Data System (ADS)

    Nixon, C. A.; Jennings, D. E.; Romani, P. N.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2010-04-01

    Measurements of the 12C/13C and D/H isotopic ratios in Titan's methane show intriguing differences from the values recorded in the giant planets. This implies that either (1) the atmosphere was differently endowed with material at the time of formation, or (2) evolutionary processes are at work in the moon's atmosphere - or some combination of the two. The Huygens Gas Chromatograph Mass Spectrometer Instrument (GCMS) found 12CH4/13CH4 = 82 +/- 1 (Niemann et al. 2005), some 7% lower than the giant planets' value of 88 +/- 7 (Sada et al. 1996), which closely matches the terrestrial inorganic standard of 89. The Cassini Composite Infrared Spectrometer (CIRS) has previously reported 12CH4/13CH4 of 77 +/-3 based on nadir sounding, which we now revise upwards to 80 +/- 4 based on more accurate limb sounding. The CIRS and GCMS results are therefore in agreement about an overall enrichment in 13CH4 of ~10%. The value of D/H in Titan's CH4 has long been controversial: historical measurements have ranged from about 8-15 x 10-5 (e.g. Coustenis et al. 1989, Coustenis et al. 2003). A recent measurement based on CIRS limb data by Bezard et al. (2007) puts the D/H in CH4 at (13 +/- 1) x 10-5, very much greater than in Jupiter and Saturn, ~2 x 10-5 (Mahaffy et al. 1998, Fletcher et al. 2009). To add complexity, the 12C/13C and D/H vary among molecules in Titan atmosphere, typically showing enhancement in D but depletion in 13C in the daughter species (H2, C2H2, C2H6), relative to the photochemical progenitor, methane. Jennings et al. (2009) have sought to interpret the variance in carbon isotopes as a Kinetic Isotope Effect (KIE), whilst an explanation for the D/H in all molecules remains elusive (Cordier et al. 2008). In this presentation we argue that evolution of isotopic ratios in Titan's methane over time forms a ticking 'clock', somewhat analogous to isotopic ratios in geochronology. Under plausible assumptions about the initial values and subsequent replenishment, various

  6. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    PubMed Central

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-01-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality. PMID:27258266

  7. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science.

    PubMed

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-01-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality. PMID:27258266

  8. Relativistic theory for syntonization of clocks in the vicinity of the Earth

    NASA Technical Reports Server (NTRS)

    Wolf, Peter; Petit, G.

    1995-01-01

    A well known prediction of Einstein's general theory of relativity states that two ideal clocks that move with a relative velocity, and are submitted to different gravitational fields will, in general, be observed to run at different rates. Similarly the rate of a clock with respect to the coordinate time of some spacetime reference system is dependent on the velocity of the clock in that reference system and on the gravitational fields it is submitted to. For the syntonization of clocks and the realization of coordinate times (like TAI) this rate shift has to be taken into account at an accuracy level which should be below the frequency stability of the clocks in question, i.e. all terms that are larger than the instability of the clocks should be corrected for. We present a theory for the calculation of the relativistic rate shift for clocks in the vicinity of the Earth, including all terms larger than one part in 10(exp 18). This, together with previous work on clock synchronization (Petit & Wolf 1993, 1994), amounts to a complete relativistic theory for the realization of coordinate time scales at picosecond synchronization and 10(exp -18) syntonization accuracy, which should be sufficient to accommodate future developments in time transfer and clock technology.

  9. Colloquium: Physics of optical lattice clocks

    SciTech Connect

    Derevianko, Andrei; Katori, Hidetoshi

    2011-04-01

    Recently invented and demonstrated optical lattice clocks hold great promise for improving the precision of modern time keeping. These clocks aim at the 10{sup -18} fractional accuracy, which translates into a clock that would neither lose nor gain a fraction of a second over an estimated age of the Universe. In these clocks, millions of atoms are trapped and interrogated simultaneously, dramatically improving clock stability. Here the principles of operation of these clocks are discussed and, in particular, a novel concept of magic trapping of atoms in optical lattices. Recently proposed microwave lattice clocks are also highlights and several applications that employ the optical lattice clocks as a platform for precision measurements and quantum information processing.

  10. Optimized multiparty quantum clock synchronization

    SciTech Connect

    Ben-Av, Radel; Exman, Iaakov

    2011-07-15

    A multiparty protocol for distributed quantum clock synchronization has been claimed to provide universal limits on the clock accuracy, viz., that accuracy monotonically decreases with the number n of party members. But this is only true for synchronization when one limits oneself to W states. This work shows that the usage of Z (Symmetric Dicke) states, a generalization of W states, results in improved accuracy, having a maximum when Left-Floor n/2 Right-Floor of its members have their qubits with a |1> eigenstate.

  11. Acting with the Clock: Clocking Practices in Early Childhood

    ERIC Educational Resources Information Center

    Pacini-Ketchabaw, Veronica

    2012-01-01

    In this article, the author addresses intra-actions that take place among humans and non-human others--the physical world, the materials--in early childhood education's everyday practices. Her object of study is the clock. Specifically, she provides an example of what it might mean to account for the intra-activity of the material-discursive…

  12. Naming Analog Clocks Conceptually Facilitates Naming Digital Clocks

    ERIC Educational Resources Information Center

    Meeuwissen, Marjolein; Roelofs, Ardi; Levelt, Willem J. M.

    2004-01-01

    This study investigates how speakers of Dutch compute and produce relative time expressions. Naming digital clocks (e.g., 2:45, say ''quarter to three'') requires conceptual operations on the minute and hour information for the correct relative time expression. The interplay of these conceptual operations was investigated using a repetition…

  13. Gravitational Wave Search with the Clock Mission

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1997-01-01

    Doppler tracking of distant spacecraft is the only method currently available to search for gravitational waves in the low-frequency (approx. 0.0001-0.1 Hz) band. In this technique the Doppler system measures the relative dimensionless velocity 2(delta)v/c = (delta)f/f(sub o) between the earth and the spacecraft as a function of time, where (delta)f is the frequency perturbation and f(sub o) is the nominal frequency of the radio link. A gravitational wave of amplitude h incident on this system causes small frequency perturbations, of order h in (delta)f/f(sub o), replicated three times in the observed record (Estabrook and Wahlquist 1975). All experiments to date and those planned for the near future involve only 'two-way' Doppler-i.e., uplink signal coherently transponded by the spacecraft with Doppler measured using a frequency standard common to the transmit and receive chains of the ground station. If, as on the proposed Clock Mission, there is an additional frequency standard on the spacecraft and a suitable earth-spacecraft radio system, some noise sources can be isolated and removed from the data (Vessot and Levine 1978). Supposing that the Clock Mission spacecraft is transferred into a suitable interplanetary orbit, I discuss here how the on-board frequency standard could be employed with an all-Ka-band radio system using the very high stability Deep Space Network station DSS 25 being instrumented for Cassini. With this configuration, the Clock Mission could search for gravitational waves at a sensitivity limited by the frequency standards, rather than plasma or tropospheric scintillation effects, whenever the sun-earth-spacecraft angle is greater than 90 degrees.

  14. Single-transistor-clocked flip-flop

    DOEpatents

    Zhao, Peiyi; Darwish, Tarek; Bayoumi, Magdy

    2005-08-30

    The invention provides a low power, high performance flip-flop. The flip-flop uses only one clocked transistor. The single clocked transistor is shared by the first and second branches of the device. A pulse generator produces a clock pulse to trigger the flip-flop. In one preferred embodiment the device can be made as a static explicit pulsed flip-flop which employs only two clocked transistors.

  15. Spin squeezing in a Rydberg lattice clock.

    PubMed

    Gil, L I R; Mukherjee, R; Bridge, E M; Jones, M P A; Pohl, T

    2014-03-14

    We theoretically demonstrate a viable approach to spin squeezing in optical lattice clocks via optical dressing of one clock state to a highly excited Rydberg state, generating switchable atomic interactions. For realistic experimental parameters, these interactions are shown to generate over 10 dB of squeezing in large ensembles within a few microseconds and without degrading the subsequent clock interrogation. PMID:24679291

  16. Microwave Cavity Clocks On Space Station

    NASA Technical Reports Server (NTRS)

    Lipa, J. a.; Nissen, J. A.; Wang, S.; Stricker, D. A.; Avaloff, D.

    2003-01-01

    We describe the status of a microwave cavity clock experiment to perform improved tests of Local Position Invariance and Lorentz Invariance on the International Space Station in conjunction with atomic clocks. Significant improvements over present bounds are expected in both cases. The oscillators can also be used to enhance the performance of atomic clocks at short time scales for other experiments.

  17. 47 CFR 80.935 - Station clock.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station clock. 80.935 Section 80.935... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.935 Station clock. Each station subject to this subpart must have a working clock or timepiece readily available to...

  18. CODE's multi-GNSS orbit and clock solution - status 2016

    NASA Astrophysics Data System (ADS)

    Prange, Lars; Orliac, Etienne; Dach, Rolf; Arnold, Daniel; Beutler, Gerhard; Schaer, Stefan; Jäggi, Adrian

    2016-04-01

    The Center for Orbit Determination in Europe (CODE) is contributing as a global analysis center to the International GNSS Service (IGS). Since 2012 CODE also contributes to the Multi-GNSS-EXperiment (MGEX) of the IGS. The list of satellite systems included in the CODE MGEX (COM) orbit and clock solution has been extended step-by-step in recent years. Today, it includes five satellite systems, namely GPS, GLONASS, Galileo, BeiDou, and QZSS. The COM orbit and clock products are regularly updated at the IGS MGEX products directory of the CDDIS data center and at the ftp server of the AIUB. CODE's experimental MGEX solution is subject to frequent updates and improvements. The introduction of an improved solar radiation pressure (SRP) model in early 2015 significantly improved the orbits and clock corrections of satellites with elongated bodies (in particular GLONASS, Galileo, and QZSS) as long as the satellite's attitude is maintained by yaw-steering. Currently we focus on improving the orbits of QZSS and BeiDou satellites, while moving in the orbit normal mode. The COM orbits are validated by computing orbit misclosures at the day boundaries and by SLR residuals. The COM clocks are validated using the Allan deviations and linear fits through the time series of epoch-wise clock corrections. We present the current status of the COM products and the validation results.

  19. Dynamic Localization of the Cyanobacterial Circadian Clock Proteins

    PubMed Central

    Cohen, Susan E.; Erb, Marcella L.; Selimkhanov, Jangir; Dong, Guogang; Hasty, Jeff; Pogliano, Joe; Golden, Susan S.

    2014-01-01

    SUMMARY Background The cyanobacterial circadian clock system has been extensively studied and the structures, interactions and biochemical activities of the central oscillator proteins (KaiA, KaiB and KaiC) have been well elucidated. Despite this rich repository of information, little is known about the distribution of these proteins within the cell. Results Here we report that KaiA and KaiC localize as discrete foci near a single pole of cells in a clock-dependent fashion, with enhanced polar localization observed at night. KaiA localization is dependent on KaiC; consistent with this notion, KaiA and KaiC co-localize with each other as well as with CikA, a key input/output factor previously reported to display unipolar localization. The molecular mechanism that localizes KaiC to the poles is conserved in Escherichia coli, another Gram-negative rod shaped bacterium, suggesting that KaiC localization is not dependent on other clock- or cyanobacterial-specific factors. Moreover, expression of CikA mutant variants that distribute diffusely results in the striking de-localization of KaiC. Conclusions This work shows that the cyanobacterial circadian system undergoes a circadian orchestration of subcellular organization. We propose that the observed spatiotemporal localization pattern represents a novel layer of regulation that contributes to the robustness of the clock by facilitating protein complex formation and synchronizing the clock with environmental stimuli. PMID:25127213

  20. Buffer Gas Experiments in Mercury (Hg+) Ion Clock

    NASA Technical Reports Server (NTRS)

    Chung, Sang K.; Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2004-01-01

    We describe the results of the frequency shifts measured from various buffer gases that might be used as a buffer gas to increase the loading efficiency and cooling of ions trapped in a small mercury ion clock. The small mass, volume and power requirement of space clock precludes the use of turbo pumps. Hence, a hermetically sealed vacuum system, incorporating a suitable getter material with a fixed amount of inert buffer gas may be a practical alternative to the groundbased system. The collision shifts of 40,507,347.996xx Hz clock transition for helium, neon and argon buffer gases were measured in the ambient earth magnetic field. In addition to the above non-getterable inert gases we also measured the frequency shifts due to getterable, molecular hydrogen and nitrogen gases which may be used as buffer gases when incorporated with a miniature ion pump. We also examined the frequency shift due to the low methane gas partial pressure in a fixed higher pressure neon buffer gas environment. Methane gas interacted with mercury ions in a peculiar way as to preserve the ion number but to relax the population difference in the two hyperfine clock states and thereby reducing the clock resonance signal. The same population relaxation was also observed for other molecular buffer gases (N H,) but at much reduced rate.

  1. Biomass Production System (BPS) plant growth unit.

    PubMed

    Morrow, R C; Crabb, T M

    2000-01-01

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses its own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive. PMID:11543164

  2. MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell cycle and proliferation.

    PubMed

    Shostak, Anton; Ruppert, Bianca; Ha, Nati; Bruns, Philipp; Toprak, Umut H; Eils, Roland; Schlesner, Matthias; Diernfellner, Axel; Brunner, Michael

    2016-01-01

    The circadian clock and the cell cycle are major cellular systems that organize global physiology in temporal fashion. It seems conceivable that the potentially conflicting programs are coordinated. We show here that overexpression of MYC in U2OS cells attenuates the clock and conversely promotes cell proliferation while downregulation of MYC strengthens the clock and reduces proliferation. Inhibition of the circadian clock is crucially dependent on the formation of repressive complexes of MYC with MIZ1 and subsequent downregulation of the core clock genes BMAL1 (ARNTL), CLOCK and NPAS2. We show furthermore that BMAL1 expression levels correlate inversely with MYC levels in 102 human lymphomas. Our data suggest that MYC acts as a master coordinator that inversely modulates the impact of cell cycle and circadian clock on gene expression. PMID:27339797

  3. MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell cycle and proliferation

    PubMed Central

    Shostak, Anton; Ruppert, Bianca; Ha, Nati; Bruns, Philipp; Toprak, Umut H.; Lawerenz, Chris; Lichter, Peter; Radlwimmer, Bernhard; Eils, Jürgen; Brors, Benedikt; Radomski, Sylwester; Scholz, Ingrid; Richter, Gesine; Siebert, Reiner; Wagner, Susanne; Haake, Andrea; Richter, Julia; Aukema, Sietse; Ammerpohl, Ole; Lopez, Christina; Nagel, Inga; Vater, Inga; Wagner, Rabea; Borst, Christoph; Haas, Siegfried; Rohde, Marius; Burkhardt, Birgit; Lisfeld, Jasmin; Claviez, Alexander; Dreyling, Martin; Eberth, Sonja; Trümper, Lorenz; Kube, Dieter; Stadler, Christina; Einsele, Hermann; Frickhofen, Norbert; Hansmann, Martin-Leo; Karsch, Dennis; Kneba, Michael; Mantovani-Löffler, Luisa; Staib, Peter; Stilgenbauer, Stephan; Ott, German; Küppers, Ralf; Weniger, Marc; Hummel, Michael; Lenze, Dido; Szczepanowski, Monika; Klapper, Wolfram; Kostezka, Ulrike; Möller, Peter; Rosenwald, Andreas; Leich, Ellen; Pischimariov, Jordan; Binder, Vera; Borkhardt, Arndt; Hezaveh, Kebria; Hoell, Jessica; Rosenstiel, Philip; Schilhabel, Markus; Schreiber, Stefan; Bernhart, Stephan H.; Doose, Gero; Hoffmann, Steve; Kretzmer, Helene; Langenberger, David; Binder, Hans; Hopp, Lydia; Kreuz, Markus; Loeffler, Markus; Rosolowski, Maciej; Korbel, Jan; Sungalee, Stefanie; Stadler, Peter F.; Zenz, Thorsten; Eils, Roland; Schlesner, Matthias; Diernfellner, Axel; Brunner, Michael

    2016-01-01

    The circadian clock and the cell cycle are major cellular systems that organize global physiology in temporal fashion. It seems conceivable that the potentially conflicting programs are coordinated. We show here that overexpression of MYC in U2OS cells attenuates the clock and conversely promotes cell proliferation while downregulation of MYC strengthens the clock and reduces proliferation. Inhibition of the circadian clock is crucially dependent on the formation of repressive complexes of MYC with MIZ1 and subsequent downregulation of the core clock genes BMAL1 (ARNTL), CLOCK and NPAS2. We show furthermore that BMAL1 expression levels correlate inversely with MYC levels in 102 human lymphomas. Our data suggest that MYC acts as a master coordinator that inversely modulates the impact of cell cycle and circadian clock on gene expression. PMID:27339797

  4. Clock Drawing in Developmental Dyslexia.

    ERIC Educational Resources Information Center

    Eden, Guinevere F.; Wood, Frank B.; Stein, John F.

    2003-01-01

    A study involving 93 children (ages 10-12), 295 with poor reading skills, found many children with dyslexia and some garden-variety poor readers showed significant left neglect on the Clock Drawing Test. In poor readers with dyslexia, spatial construction deficits were observed like those of parents with acquired right-hemisphere lesions.…

  5. Multi-GNSS Orbit and Clock Combination: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Fritsche, Mathias

    2016-04-01

    In the framework of the Multi-GNSS Experiment (MGEX) a number of Analysis Centers (ACs) extended their software capabilities to process signals from the BeiDou, Galileo, and QZSS systems in addition to the well established systems GPS and GLONASS. Currently, the MGEX product portfolio covers precise satellite orbits and clocks, receiver clocks, signal biases, and Earth rotation parameters generated by the individual ACs. This presentation will provide an overview on the available AC-specific MGEX products. In addition, an introduction to a multi-GNSS orbit and clock combination procedure will be given. Finally, preliminary results from that multi-GNSS combination including a comparison with corresponding operational IGS products will be reported along with a discussion of the results.

  6. Time and clock synchronization with AFCK for CBM

    NASA Astrophysics Data System (ADS)

    Gumiński, M.; Zabołotny, W.; Kasprowicz, G.; Poźniak, K.; Romaniuk, R.

    2015-09-01

    The AMC FMC Carrier Kintex (AFCK) board is a prototype of Data Processing Board (DPB) for CBM experiment. AFCK is open hardware and was designed to be a versatile solution, applicable in multiple systems. In CBM experiment AFCK will serve as a data hub and communication interconnection. One of DPB's functions is synchronization of Front End Electronics (FEE). To provide this functionality, it is necessary to receive the reference clock and timing signals from the Timing and Flow Control system. The received clock after the jitter cleaning will be used as a reference clock for GBT-FPGA based 4.8 Gbps links used for communication with front end electronics. This article will briefly describe AFCK board function in CBM experiment. Afterwards it will focus on jitter cleaning technique based on White Rabbit solution that can be used on AFCK board.

  7. Genetic variants in human CLOCK associate with total energy intake and cytokine sleep factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the importance of total energy intake in circadian system regulation, no study has related human CLOCK gene polymorphisms and food intake measures. The aim of this study was to investigate associations of five CLOCK single-nucleotide-polymorphisms (SNPs) with food-intake and to explore the p...

  8. Rapid attenuation of circadian clock gene oscillations in the rat heart following ischemia-reperfusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The intracellular circadian clock consists of a series of transcriptional modulators that together allow the cell to perceive the time of day. Circadian clocks have been identified within various components of the cardiovascular system (e.g., cardiomyocytes, vascular smooth muscle cells) and possess...

  9. On the Stable Limit Cycle of a Weight-Driven Pendulum Clock

    ERIC Educational Resources Information Center

    Llibre, J; Teixeira, M. A.

    2010-01-01

    In a recent paper (Denny 2002 Eur. J. Phys. 23 449-58), entitled "The pendulum clock: a venerable dynamical system", Denny showed that in a first approximation the steady-state motion of a weight-driven pendulum clock is shown to be a stable limit cycle. He placed the problem in a historical context and obtained an approximate solution using the…

  10. Water-Conserving Plant-Growth System

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.; Brown, Christopher S.

    1993-01-01

    Report presents further information about plant-growth apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375). Apparatus provides nutrient solution to roots of seedlings without flooding. Conserves water by helping to prevent evaporation from plant bed. Solution supplied only as utilized by seedlings. Device developed for supporting plant growth in space, also has applications for growing plants with minimum of water, such as in arid environments.

  11. Punctual transcriptional regulation by the rice circadian clock under fluctuating field conditions.

    PubMed

    Matsuzaki, Jun; Kawahara, Yoshihiro; Izawa, Takeshi

    2015-03-01

    Plant circadian clocks that oscillate autonomously with a roughly 24-h period are entrained by fluctuating light and temperature and globally regulate downstream genes in the field. However, it remains unknown how punctual internal time produced by the circadian clock in the field is and how it is affected by environmental fluctuations due to weather or daylength. Using hundreds of samples of field-grown rice (Oryza sativa) leaves, we developed a statistical model for the expression of circadian clock-related genes integrating diurnally entrained circadian clock with phase setting by light, both responses to light and temperature gated by the circadian clock. We show that expression of individual genes was strongly affected by temperature. However, internal time estimated from expression of multiple genes, which may reflect transcriptional regulation of downstream genes, is punctual to 22 min and not affected by weather, daylength, or plant developmental age in the field. We also revealed perturbed progression of internal time under controlled environment or in a mutant of the circadian clock gene GIGANTEA. Thus, we demonstrated that the circadian clock is a regulatory network of multiple genes that retains accurate physical time of day by integrating the perturbations on individual genes under fluctuating environments in the field. PMID:25757473

  12. Punctual Transcriptional Regulation by the Rice Circadian Clock under Fluctuating Field Conditions[OPEN

    PubMed Central

    Matsuzaki, Jun; Kawahara, Yoshihiro; Izawa, Takeshi

    2015-01-01

    Plant circadian clocks that oscillate autonomously with a roughly 24-h period are entrained by fluctuating light and temperature and globally regulate downstream genes in the field. However, it remains unknown how punctual internal time produced by the circadian clock in the field is and how it is affected by environmental fluctuations due to weather or daylength. Using hundreds of samples of field-grown rice (Oryza sativa) leaves, we developed a statistical model for the expression of circadian clock-related genes integrating diurnally entrained circadian clock with phase setting by light, both responses to light and temperature gated by the circadian clock. We show that expression of individual genes was strongly affected by temperature. However, internal time estimated from expression of multiple genes, which may reflect transcriptional regulation of downstream genes, is punctual to 22 min and not affected by weather, daylength, or plant developmental age in the field. We also revealed perturbed progression of internal time under controlled environment or in a mutant of the circadian clock gene GIGANTEA. Thus, we demonstrated that the circadian clock is a regulatory network of multiple genes that retains accurate physical time of day by integrating the perturbations on individual genes under fluctuating environments in the field. PMID:25757473

  13. The Airspace Concepts Evaluation System Architecture and System Plant

    NASA Technical Reports Server (NTRS)

    Windhorst, Robert; Meyn, Larry; Manikonda, Vikram; Carlos, Patrick; Capozzi, Brian

    2006-01-01

    The Airspace Concepts Evaluation System is a simulation of the National Airspace System. It includes models of flights, airports, airspaces, air traffic controls, traffic flow managements, and airline operation centers operating throughout the United States. It is used to predict system delays in response to future capacity and demand scenarios and perform benefits assessments of current and future airspace technologies and operational concepts. Facilitation of these studies requires that the simulation architecture supports plug and play of different air traffic control, traffic flow management, and airline operation center models and multi-fidelity modeling of flights, airports, and airspaces. The simulation is divided into two parts that are named, borrowing from classical control theory terminology, control and plant. The control consists of air traffic control, traffic flow management, and airline operation center models, and the plant consists of flight, airport, and airspace models. The plant can run open loop, in the absence of the control. However, undesired affects, such as conflicts and over congestions in the airspaces and airports, can occur. Different controls are applied, "plug and played", to the plant. A particular control is evaluated by analyzing how well it managed conflicts and congestions. Furthermore, the terminal area plants consist of models of airports and terminal airspaces. Each model consists of a set of nodes and links which are connected by the user to form a network. Nodes model runways, fixes, taxi intersections, gates, and/or other points of interest, and links model taxiways, departure paths, and arrival paths. Metering, flow distribution, and sequencing functions can be applied at nodes. Different fidelity model of how a flight transits are can be used by links. The fidelity of the model can be adjusted by the user by either changing the complexity of the node/link network-or the way that the link models how the flights transit

  14. Analysis of a magnetically trapped atom clock

    SciTech Connect

    Kadio, D.; Band, Y. B.

    2006-11-15

    We consider optimization of a rubidium atom clock that uses magnetically trapped Bose condensed atoms in a highly elongated trap, and determine the optimal conditions for minimum Allan variance of the clock using microwave Ramsey fringe spectroscopy. Elimination of magnetic field shifts and collisional shifts are considered. The effects of spin-dipolar relaxation are addressed in the optimization of the clock. We find that for the interstate interaction strength equal to or larger than the intrastate interaction strengths, a modulational instability results in phase separation and symmetry breaking of the two-component condensate composed of the ground and excited hyperfine clock levels, and this mechanism limits the clock accuracy.

  15. Pepper banker plant systems and predatory mitespepper banker plant systems and predatory mites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While developing the ornamental pepper banker plant system for greenhouse grown vegetables and ornamental crops we discovered that the predatory mites we were using could survive and reproduce on ornamental pepper without their prey especially if they were provided supplemental pollen or if the bank...

  16. Plant MetGenMAP: an integrative analysis system for plant systems biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed a web-based system, Plant MetGenMAP, which can identify significantly altered biochemical pathways and highly affected biological processes, predict functional roles of pathway genes, and potential pathway-related regulatory motifs from transcript and metabolite profile datasets. P...

  17. Compact, Continuous Beam Cold Atom Clock for Space Applications

    NASA Astrophysics Data System (ADS)

    Buell, Walter

    2000-06-01

    Highly stable atomic frequency standards are of increasing importance for a variety of space applications, ranging from communication to navigation and time transfer to tests of fundamental science. The requirements for an atomic clock vary significantly depending on the application, and for many space systems compactness and robust design are at a premium and stability dominates over absolute accuracy. We report on progress with our design for a compact Cs beam atomic clock suitable for space applications and featuring a cold atomic beam source based on a single beam, conical mirror MOT with a hole at the apex to produce a low velocity high flux atomic beam. This cold atomic beam is then used in a laser-pumped Ramsey clock, with the clock signal derived from either a microwave C-field or alternatively by Raman resonance between the Ramsey fields. The cold atom source produces a continuous beam, which relaxes requirements on the local oscillator as compared with pulsed sources. In order to reduce light shifts from the MOT light and improve signal-to-noise, the atomic beam is optically deflected and transversely cooled upon exiting the MOT's conical reflector. We estimate that the shot-noise-limited stability achievable with this physics package can be two to three orders of magnitude better than current cesium beam atomic clocks used in space applications. We present our latest experimental progress towards a working frequency standard.

  18. Daily Rhythmicity of Clock Gene Transcripts in Atlantic Cod Fast Skeletal Muscle

    PubMed Central

    Lazado, Carlo C.; Kumaratunga, Hiruni P. S.; Nagasawa, Kazue; Babiak, Igor; Giannetto, Alessia; Fernandes, Jorge M. O.

    2014-01-01

    The classical notion of a centralized clock that governs circadian rhythmicity has been challenged with the discovery of peripheral oscillators that enable organisms to cope with daily changes in their environment. The present study aimed to identify the molecular clock components in Atlantic cod (Gadus morhua) and to investigate their daily gene expression in fast skeletal muscle. Atlantic cod clock genes were closely related to their orthologs in teleosts and tetrapods. Synteny was conserved to varying degrees in the majority of the 18 clock genes examined. In particular, aryl hydrocarbon receptor nuclear translocator-like 2 (arntl2), RAR-related orphan receptor A (rora) and timeless (tim) displayed high degrees of conservation. Expression profiling during the early ontogenesis revealed that some transcripts were maternally transferred, namely arntl2, cryptochrome 1b and 2 (cry1b and cry2), and period 2a and 2b (per2a and per2b). Most clock genes were ubiquitously expressed in various tissues, suggesting the possible existence of multiple peripheral clock systems in Atlantic cod. In particular, they were all detected in fast skeletal muscle, with the exception of neuronal PAS (Per-Arnt-Single-minded) domain-containing protein (npas1) and rora. Rhythmicity analysis revealed 8 clock genes with daily rhythmic expression, namely arntl2, circadian locomotor output cycles kaput (clock), npas2, cry2, cry3 per2a, nuclear receptor subfamily 1, group D, member 1 (nr1d1), and nr1d2a. Transcript levels of the myogenic genes myogenic factor 5 (myf5) and muscleblind-like 1 (mbnl1) strongly correlated with clock gene expression. This is the first study to unravel the molecular components of peripheral clocks in Atlantic cod. Taken together, our data suggest that the putative clock system in fast skeletal muscle of Atlantic cod has regulatory implications on muscle physiology, particularly in the expression of genes related to myogenesis. PMID:24921252

  19. Automatic control of clock duty cycle

    NASA Technical Reports Server (NTRS)

    Feng, Xiaoxin (Inventor); Roper, Weston (Inventor); Seefeldt, James D. (Inventor)

    2010-01-01

    In general, this disclosure is directed to a duty cycle correction (DCC) circuit that adjusts a falling edge of a clock signal to achieve a desired duty cycle. In some examples, the DCC circuit may generate a pulse in response to a falling edge of an input clock signal, delay the pulse based on a control voltage, adjust the falling edge of the input clock signal based on the delayed pulse to produce an output clock signal, and adjust the control voltage based on the difference between a duty cycle of the output clock signal and a desired duty cycle. Since the DCC circuit adjusts the falling edge of the clock cycle to achieve a desired duty cycle, the DCC may be incorporated into existing PLL control loops that adjust the rising edge of a clock signal without interfering with the operation of such PLL control loops.

  20. The Intracellular Dynamics of Circadian Clocks Reach for the Light of Ecology and Evolution.

    PubMed

    Millar, Andrew J

    2016-04-29

    A major challenge for biology is to extend our understanding of molecular regulation from the simplified conditions of the laboratory to ecologically relevant environments. Tractable examples are essential to make these connections for complex, pleiotropic regulators and, to go further, to link relevant genome sequences to field traits. Here, I review the case for the biological clock in higher plants. The gene network of the circadian clock drives pervasive, 24-hour rhythms in metabolism, behavior, and physiology across the eukaryotes and in some prokaryotes. In plants, the scope of chronobiology is now extending from the most tractable, intracellular readouts to the clock's many effects at the whole-organism level and across the life cycle, including biomass and flowering. I discuss five research areas where recent progress might be integrated in the future, to understand not only circadian functions in natural conditions but also the evolution of the clock's molecular mechanisms. PMID:26653934

  1. MEDICINAL PLANTS OF RAJASTHAN IN INDIAN SYSTEM OF MEDICINE

    PubMed Central

    Tripathi, Y.C.; Prabhu, V.V.; Pal, R.S.; Mishra, R.N.

    1996-01-01

    Medicinal plants used in Indian system of medicine from Rajasthan state have been surveyed and catagorised systematically. The paper deals with 205 medicinal plants, thoroughly indexed along with their important traditional application for the cure of various ailments. PMID:22556743

  2. Ras-Mediated Deregulation of the Circadian Clock in Cancer

    PubMed Central

    Relógio, Angela; Thomas, Philippe; Medina-Pérez, Paula; Reischl, Silke; Bervoets, Sander; Gloc, Ewa; Riemer, Pamela; Mang-Fatehi, Shila; Maier, Bert; Schäfer, Reinhold; Leser, Ulf; Herzel, Hanspeter; Kramer, Achim; Sers, Christine

    2014-01-01

    Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock. PMID:24875049

  3. Ras-mediated deregulation of the circadian clock in cancer.

    PubMed

    Relógio, Angela; Thomas, Philippe; Medina-Pérez, Paula; Reischl, Silke; Bervoets, Sander; Gloc, Ewa; Riemer, Pamela; Mang-Fatehi, Shila; Maier, Bert; Schäfer, Reinhold; Leser, Ulf; Herzel, Hanspeter; Kramer, Achim; Sers, Christine

    2014-01-01

    Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock. PMID:24875049

  4. Compressed Air System Redesign Results in Increased Production at a Fuel System Plant (Caterpillar Fuel Systems Pontiac Plant)

    SciTech Connect

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the Caterpillar's Pontiac Plant project.

  5. Using the USCCS for sub microsecond spacecraft clock calibration

    NASA Technical Reports Server (NTRS)

    Sank, Victor J.

    1993-01-01

    The Return Data Delay technique which requires knowledge of spacecraft range is commonly used for correlating a spacecraft clock against a ground time standard when millisecond accuracy is required. An analysis is presented that allows using the user spacecraft clock calibration system (USCCS) to correlate a spacecraft clock to better than one microsecond accuracy. The basic USCCS algorithm has been simplified and it is shown to result in about one microsecond accuracy without requiring orbital information. By considering the relative motion of the user satellite, the TDRS and the earth station about the center of the earth, a correction of almost two orders of magnitude can be made. Such accuracy is required for scientific investigations that require correlating coincident radiation or particle detection with a remote laboratory.

  6. Quantum theory of an electron waiting time clock

    NASA Astrophysics Data System (ADS)

    Dasenbrook, David; Flindt, Christian

    2016-06-01

    The electron waiting time is the time that passes between two subsequent charge transfers in an electronic conductor. Recently, theories of electron waiting times have been devised for quantum transport in Coulomb-blockade structures and for mesoscopic conductors; however, so far a proper description of a detector has been missing. Here we develop a quantum theory of a waiting time clock capable of measuring the distribution of waiting times between electrons above the Fermi sea in a mesoscopic conductor. The detector consists of a mesoscopic capacitor coupled to a quantum two-level system whose coherent precession we monitor. Under ideal operating conditions our waiting time clock recovers the results of earlier theories without a detector. We investigate possible deviations due to an imperfect waiting time clock. As specific applications we consider a quantum point contact with a constant voltage and Lorentzian voltage pulses applied to an electrode.

  7. A role for circadian clock in metabolic disease.

    PubMed

    Shimizu, Ippei; Yoshida, Yohko; Minamino, Tohru

    2016-07-01

    Many human behaviors and physiological activities show circadian rhythms. Circadian rhythms generated by central and peripheral clocks maintain homeostasis, including the regulation of metabolic processes. Biological rhythmicity is important for metabolic health, but circadian rhythms are affected and impaired by nocturnal activities and irregular food intake in modern society. Disruption of sleep is an established risk factor for diabetes and is known to promote systemic metabolic dysfunction in both humans and rodents. Metabolic stress promotes circadian clock disorders and modulation of clock gene expression has a causal role in the development of metabolic dysfunction. Maintenance of a physiological circadian rhythm is crucial for metabolic health and is an important strategy for combating obesity. PMID:26888117

  8. Spin-orbit coupling in a strontium optical lattice clock

    NASA Astrophysics Data System (ADS)

    Bothwell, Tobias; Bromley, Sarah; Kolkowitz, Shimon; Zhang, Xibo; Wall, Michael; Rey, Ana Maria; Ye, Jun

    2016-05-01

    Synthetic gauge fields are a promising tool for creating complex Hamiltonians with ultracold neutral atoms that may mimic the fractional Quantum Hall effect and other topological states. A promising approach is to use spin-orbit coupling to treat an internal degree of freedom as an effective `synthetic' spatial dimension. Here, this synthetic dimension is comprised by the internal ground and excited states used for high-precision clock spectroscopy in a fermionic strontium optical lattice clock. We report on our progress towards this goal in a system where atoms tunnel through a 1D optical lattice during clock interrogation. We present measurements of the lattice band structure under varying Lamb-Dicke parameters and in a regime where s-wave collisions are expected to contribute density dependent frequency shifts.

  9. Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock.

    PubMed

    Kamioka, Mari; Takao, Saori; Suzuki, Takamasa; Taki, Kyomi; Higashiyama, Tetsuya; Kinoshita, Toshinori; Nakamichi, Norihito

    2016-03-01

    The circadian clock is a biological timekeeping system that provides organisms with the ability to adapt to day-night cycles. Timing of the expression of four members of theArabidopsis thaliana PSEUDO-RESPONSE REGULATOR(PRR) family is crucial for proper clock function, and transcriptional control ofPRRsremains incompletely defined. Here, we demonstrate that direct regulation ofPRR5by CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) determines the repression state ofPRR5in the morning. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analyses indicated that CCA1 associates with three separate regions upstream ofPRR5 CCA1 and its homolog LATE ELONGATED HYPOCOTYL (LHY) suppressedPRR5promoter activity in a transient assay. The regions bound by CCA1 in thePRR5promoter gave rhythmic patterns with troughs in the morning, when CCA1 and LHY are at high levels. Furthermore,ChIP-seqrevealed that CCA1 associates with at least 449 loci with 863 adjacent genes. Importantly, this gene set contains genes that are repressed but upregulated incca1 lhydouble mutants in the morning. This study shows that direct binding by CCA1 in the morning provides strong repression ofPRR5, and repression by CCA1 also temporally regulates an evening-expressed gene set that includesPRR5. PMID:26941090

  10. Atomic clock based on transient coherent population trapping

    SciTech Connect

    Guo Tao; Deng Ke; Chen Xuzong; Wang Zhong

    2009-04-13

    We proposed a scheme to implement coherent population trapping (CPT) atomic clock based on the transient CPT phenomenon. We proved that the transient transmitted laser power in a typical {lambda} system near CPT resonance features as a damping oscillation. Also, the oscillating frequency is exactly equal to the frequency detuning from the atomic hyperfine splitting. Therefore, we can directly measure the frequency detuning and then compensated to the output frequency of microwave oscillator to get the standard frequency. By this method, we can further simplify the structure of CPT atomic clock, and make it easier to be digitized and miniaturized.

  11. Differential control of pre-invasive and post-invasive antibacterial defense by the Arabidopsis circadian clock.

    PubMed

    Korneli, Christin; Danisman, Selahattin; Staiger, Dorothee

    2014-09-01

    Plants show a suite of inducible defense responses against bacterial pathogens. Here we investigate in detail the effect of the circadian clock on these reactions in Arabidopsis thaliana. The magnitude of immune responses elicited by flg22, by virulent and by avirulent Pseudomonas syringae strains depends on the time of day of inoculation. The oxidative burst is stronger when flg22 is infiltrated in the morning in wild-type plants but not in the arrhythmic clock mutant lux arrhythmo/phytoclock1 (pcl1), and thus is controlled by the endogenous clock. Similarly, when bacteria are syringe-infiltrated into the leaf, defense gene induction is higher and bacterial growth is suppressed more strongly after morning inoculation in wild-type but not in pcl1 plants. Furthermore, cell death associated with the hypersensitive response was found to be under clock control. Notably, the clock effect depends on the mode of infection: upon spray inoculation onto the leaf surface, defense gene induction is higher and bacterial growth is suppressed more strongly upon evening inoculation. This different phasing of pre-invasive and post-invasive defense relates to clock-regulated stomatal movement. In particular, TIME FOR COFFEE may impact pathogen defense via clock-regulated stomata movement apart from its known role in time-of-day-dependent jasmonate responses. Taken together, these data highlight the importance of the circadian clock for the control of different immune responses at distinct times of the day. PMID:24974385

  12. The Circadian Clock and Human Health.

    PubMed

    Roenneberg, Till; Merrow, Martha

    2016-05-23

    Epidemiological studies provided the first evidence suggesting a connection between the circadian clock and human health. Mutant mice convincingly demonstrate the principle that dysregulation of the circadian system leads to a multitude of pathologies. Chrono-medicine is one of the most important upcoming themes in the field of circadian biology. Although treatments counteracting circadian dysregulation are already being applied (e.g., prescribing strong and regular zeitgebers), we need to comprehend entrainment throughout the body's entire circadian network before understanding the mechanisms that tie circadian dysregulation to pathology. Here, we attempt to provide a systematic approach to understanding the connection between the circadian clock and health. This taxonomy of (mis)alignments on one hand exposes how little we know about entrainment within any organism and which 'eigen-zeitgeber' signals are used for entrainment by the different cells and tissues. On the other hand, it provides focus for experimental approaches and tools that will logically map out how circadian systems contribute to disease as well as how we can treat and prevent them. PMID:27218855

  13. Animal clocks: when science meets nature.

    PubMed

    Kronfeld-Schor, Noga; Bloch, Guy; Schwartz, William J

    2013-08-22

    Daily rhythms of physiology and behaviour are governed by an endogenous timekeeping mechanism (a circadian 'clock'), with the alternation of environmental light and darkness synchronizing (entraining) these rhythms to the natural day-night cycle. Our knowledge of the circadian system of animals at the molecular, cellular, tissue and organismal levels is remarkable, and we are beginning to understand how each of these levels contributes to the emergent properties and increased complexity of the system as a whole. For the most part, these analyses have been carried out using model organisms in standard laboratory housing, but to begin to understand the adaptive significance of the clock, we must expand our scope to study diverse animal species from different taxonomic groups, showing diverse activity patterns, in their natural environments. The seven papers in this Special Feature of Proceedings of the Royal Society B take on this challenge, reviewing the influences of moonlight, latitudinal clines, evolutionary history, social interactions, specialized temporal niches, annual variation and recently appreciated post-transcriptional molecular mechanisms. The papers emphasize that the complexity and diversity of the natural world represent a powerful experimental resource. PMID:23825215

  14. How to fix a broken clock

    PubMed Central

    Schroeder, Analyne M.; Colwell, Christopher S.

    2013-01-01

    Fortunate are those who rise out of bed to greet the morning light well rested with the energy and enthusiasm to drive a productive day. Others however, depend on hypnotics for sleep and require stimulants to awaken lethargic bodies. Sleep/wake disruption is a common occurrence in healthy individuals throughout their lifespan and is also a comorbid condition to many diseases (neurodegenerative) and psychiatric disorders (depression and bipolar). There is growing concern that chronic disruption of the sleep/wake cycle contributes to more serious conditions including diabetes (type 2), cardiovascular disease and cancer. A poorly functioning circadian system resulting in misalignments in the timing of clocks throughout the body may be at the root of the problem for many people. In this article, we discuss environmental (light therapy) and lifestyle changes (scheduled meals, exercise and sleep) as interventions to help fix a broken clock. We also discuss the challenges and potential for future development of pharmacological treatments to manipulate this key biological system. PMID:24120229

  15. The U. S. National Plant Germplasm System: preserving plant genetic resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Being one of the world’s largest national genebank networks, the U.S. National Plant Germplasm System (NPGS) focuses on preserving the genetic diversity of crop plants and their wild relatives. The documented history of official plant introduction can be traced back to 1898 when USDA created its Se...

  16. Genomic clocks and evolutionary timescales

    NASA Technical Reports Server (NTRS)

    Blair Hedges, S.; Kumar, Sudhir

    2003-01-01

    For decades, molecular clocks have helped to illuminate the evolutionary timescale of life, but now genomic data pose a challenge for time estimation methods. It is unclear how to integrate data from many genes, each potentially evolving under a different model of substitution and at a different rate. Current methods can be grouped by the way the data are handled (genes considered separately or combined into a 'supergene') and the way gene-specific rate models are applied (global versus local clock). There are advantages and disadvantages to each of these approaches, and the optimal method has not yet emerged. Fortunately, time estimates inferred using many genes or proteins have greater precision and appear to be robust to different approaches.

  17. Mitigating aliasing in atomic clocks

    NASA Astrophysics Data System (ADS)

    Uys, Hermann; Akhalwaya, Ismail; Sastrawan, Jarrah; Biercuk, Michael

    2015-05-01

    Passive atomic clocks periodically calibrate a classical local oscillator against an atomic quantum reference through feedback. The periodic nature of this correction leads to undesirable aliasing noise. The Dick Effect, is a special case of aliasing noise consisting of the down-conversion of clock noise at harmonics of the correction frequency to a frequency of zero. To combat the Dick effect and aliasing noise in general, we suggest an extension to the usual feedback protocol, in which we incorporate information from multiple past measurements into the correction after the most recent measurement, approximating a crude low pass anti-aliasing filter of the noise. An analytical frequency domain analysis of the approach is presented and supported by numerical time domain simulations.

  18. Plant Flavoprotein Photoreceptors

    PubMed Central

    Christie, John M.; Blackwood, Lisa; Petersen, Jan; Sullivan, Stuart

    2015-01-01

    Plants depend on the surrounding light environment to direct their growth. Blue light (300–500 nm) in particular acts to promote a wide variety of photomorphogenic responses including seedling establishment, phototropism and circadian clock regulation. Several different classes of flavin-based photoreceptors have been identified that mediate the effects of blue light in the dicotyledonous genetic model Arabidopsis thaliana. These include the cryptochromes, the phototropins and members of the Zeitlupe family. In this review, we discuss recent advances, which contribute to our understanding of how these photosensory systems are activated by blue light and how they initiate signaling to regulate diverse aspects of plant development. PMID:25516569

  19. A Systemic Small RNA Signaling System in Plants

    PubMed Central

    Yoo, Byung-Chun; Kragler, Friedrich; Varkonyi-Gasic, Erika; Haywood, Valerie; Archer-Evans, Sarah; Lee, Young Moo; Lough, Tony J.; Lucas, William J.

    2004-01-01

    Systemic translocation of RNA exerts non-cell-autonomous control over plant development and defense. Long-distance delivery of mRNA has been proven, but transport of small interfering RNA and microRNA remains to be demonstrated. Analyses performed on phloem sap collected from a range of plants identified populations of small RNA species. The dynamic nature of this population was reflected in its response to growth conditions and viral infection. The authenticity of these phloem small RNA molecules was confirmed by bioinformatic analysis; potential targets for a set of phloem small RNA species were identified. Heterografting studies, using spontaneously silencing coat protein (CP) plant lines, also established that transgene-derived siRNA move in the long-distance phloem and initiate CP gene silencing in the scion. Biochemical analysis of pumpkin (Cucurbita maxima) phloem sap led to the characterization of C. maxima Phloem SMALL RNA BINDING PROTEIN1 (CmPSRP1), a unique component of the protein machinery probably involved in small RNA trafficking. Equivalently sized small RNA binding proteins were detected in phloem sap from cucumber (Cucumis sativus) and lupin (Lupinus albus). PSRP1 binds selectively to 25-nucleotide single-stranded RNA species. Microinjection studies provided direct evidence that PSRP1 could mediate the cell-to-cell trafficking of 25-nucleotide single-stranded, but not double-stranded, RNA molecules. The potential role played by PSRP1 in long-distance transmission of silencing signals is discussed with respect to the pathways and mechanisms used by plants to exert systemic control over developmental and physiological processes. PMID:15258266

  20. Hanle detection for optical clocks.

    PubMed

    Zhang, Xiaogang; Zhang, Shengnan; Pan, Duo; Chen, Peipei; Xue, Xiaobo; Zhuang, Wei; Chen, Jingbiao

    2015-01-01

    Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard. PMID:25734183

  1. An epigenetic clock controls aging.

    PubMed

    Mitteldorf, Josh

    2016-02-01

    We are accustomed to treating aging as a set of things that go wrong with the body. But for more than twenty years, there has been accumulating evidence that much of the process takes place under genetic control. We have seen that signaling chemistry can make dramatic differences in life span, and that single molecules can significantly affect longevity. We are frequently confronted with puzzling choices the body makes which benefit neither present health nor fertility nor long-term survival. If we permit ourselves a shift of reference frame and regard aging as a programmed biological function like growth and development, then these observations fall into place and make sense. This perspective suggests that aging proceeds under control of a master clock, or several redundant clocks. If this is so, we may learn to reset the clocks with biochemical interventions and make an old body behave like a young body, including repair of many of the modes of damage that we are accustomed to regard as independent symptoms of the senescent phenotype, and for which we have assumed that the body has no remedy. PMID:26608516

  2. Hanle Detection for Optical Clocks

    PubMed Central

    Zhang, Xiaogang; Zhang, Shengnan; Pan, Duo; Chen, Peipei; Xue, Xiaobo; Zhuang, Wei; Chen, Jingbiao

    2015-01-01

    Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard. PMID:25734183

  3. Tectonic blocks and molecular clocks.

    PubMed

    De Baets, Kenneth; Antonelli, Alexandre; Donoghue, Philip C J

    2016-07-19

    Evolutionary timescales have mainly used fossils for calibrating molecular clocks, though fossils only really provide minimum clade age constraints. In their place, phylogenetic trees can be calibrated by precisely dated geological events that have shaped biogeography. However, tectonic episodes are protracted, their role in vicariance is rarely justified, the biogeography of living clades and their antecedents may differ, and the impact of such events is contingent on ecology. Biogeographic calibrations are no panacea for the shortcomings of fossil calibrations, but their associated uncertainties can be accommodated. We provide examples of how biogeographic calibrations based on geological data can be established for the fragmentation of the Pangaean supercontinent: (i) for the uplift of the Isthmus of Panama, (ii) the separation of New Zealand from Gondwana, and (iii) for the opening of the Atlantic Ocean. Biogeographic and fossil calibrations are complementary, not competing, approaches to constraining molecular clock analyses, providing alternative constraints on the age of clades that are vital to avoiding circularity in investigating the role of biogeographic mechanisms in shaping modern biodiversity.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325840

  4. Design principles underlying circadian clocks.

    PubMed Central

    Rand, D. A.; Shulgin, B. V.; Salazar, D.; Millar, A. J.

    2004-01-01

    A fundamental problem for regulatory networks is to understand the relation between form and function: to uncover the underlying design principles of the network. Circadian clocks present a particularly interesting instance, as recent work has shown that they have complex structures involving multiple interconnected feedback loops with both positive and negative feedback. While several authors have speculated on the reasons for this, a convincing explanation is still lacking.We analyse both the flexibility of clock networks and the relationships between various desirable properties such as robust entrainment, temperature compensation, and stability to environmental variations and parameter fluctuations. We use this to argue that the complexity provides the flexibility necessary to simultaneously attain multiple key properties of circadian clocks. As part of our analysis we show how to quantify the key evolutionary aims using infinitesimal response curves, a tool that we believe will be of general utility in the analysis of regulatory networks. Our results suggest that regulatory and signalling networks might be much less flexible and of lower dimension than their apparent complexity would suggest. PMID:16849158

  5. A thin film hydroponic system for plant studies

    NASA Technical Reports Server (NTRS)

    Hines, Robert; Prince, Ralph; Muller, Eldon; Schuerger, Andrew

    1990-01-01

    The Land Pavillion, EPCOT Center, houses a hydroponic, thin film growing system identical to that residing in NASA's Biomass Production Chamber at Kennedy Space Center. The system is targeted for plant disease and nutrition studies. The system is described.

  6. Educational Technology Classics: The Computer versus the Clock

    ERIC Educational Resources Information Center

    Slack, Charles W.

    2010-01-01

    It is no accident that the first use of computers in school systems was to arrange schedules for students and teachers. The proper use of the computer in the classroom is as a replacement for the clock and its strict temporal schedule. By conveying information through self-instructional content, the computer can schedule work for pupils in…

  7. Photons, clocks, and consciousness

    NASA Technical Reports Server (NTRS)

    Brainard, George C.; Hanifin, John P.

    2005-01-01

    Light profoundly impacts human consciousness through the stimulation of the visual system and powerfully regulates the human circadian system, which, in turn, has a broad regulatory impact on virtually all tissues in the body. For more than 25 years, the techniques of action spectroscopy have yielded insights into the wavelength sensitivity of circadian input in humans and other mammalian species. The seminal discovery of melanopsin, the photopigment in intrinsically photosensitive retinal ganglion cells, has provided a significant turning point for understanding human circadian phototransduction. Action spectra in humans show that the peak wavelength sensitivity for this newly discovered sensory system is within the blue portion of the spectrum. This is fundamentally different from the three-cone photopic visual system, as well as the individual rod and cone photoreceptor peaks. Studies on rodents, nonhuman primates, and humans indicate that despite having a different wavelength fingerprint, these classic visual photoreceptors still provide an element of input to the circadian system. These findings open the door to innovations in light therapy for circadian and affective disorders, as well as possible architectural light applications.

  8. The Sr optical lattice clock at JILA: A new record in atomic clock performance

    NASA Astrophysics Data System (ADS)

    Nicholson, Travis; Bloom, Benjamin; Williams, Jason; Campbell, Sara; Bishof, Michael; Zhang, Xibo; Zhang, Wei; Bromley, Sarah; Hutson, Ross; McNally, Rees; Ye, Jun

    2014-05-01

    The exquisite control exhibited over quantum states of individual particles has revolutionized the field of precision measurement, as exemplified by highly accurate atomic clocks. Optical clocks have been the most accurate frequency standards for the better part of a decade, surpassing even the cesium microwave fountains upon which the SI second is based. Two classes of optical clocks have outperformed cesium: single-ion clocks and optical lattice clocks. Historically ion clocks have always been more accurate, and the precision of ion clocks and lattice clocks has been comparable. For years it has been unclear if lattice clocks can overcome key systematics and become more accurate than ion clocks. In this presentation I report the first lattice clock that has surpassed ion clocks in both precision and accuracy. These measurements represent a tenfold improvement in precision and a factor of 20 improvement in accuracy over the previous best lattice clock results. This work paves the way for a better realization of SI units, the development of more sophisticated quantum sensors, and precision tests of the fundamental laws of nature.

  9. National Plant Germplasm System: Critical Role of Customer Service

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Plant Germplasm System (NPGS) conserves plant genetic resources, not only for use by future generations, but for immediate use by scientists and educators around the world. With a great deal of interaction between genebank curators and users of plant genetic resources, customer service...

  10. Formal development of a clock synchronization circuit

    NASA Technical Reports Server (NTRS)

    Miner, Paul S.

    1995-01-01

    This talk presents the latest stage in formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system. An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International. Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques. DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation. DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.

  11. CLOCK modulates survival and acute lung injury in mice with polymicrobial sepsis.

    PubMed

    Wang, Chao-Yung; Hsieh, Ming-Jer; Hsieh, I-Chang; Shie, Shian-Sen; Ho, Ming-Yun; Yeh, Jih-Kai; Tsai, Ming-Lung; Yang, Chia-Hung; Hung, Kuo-Chun; Wang, Chun-Chieh; Wen, Ming-Shien

    2016-09-16

    Polymicrobial sepsis is a potentially fatal condition and a significant burden on health care systems. Acute lung injury is the most common complication of sepsis and results in high mortality. However, there has been no recent significant progress in the treatment of sepsis or acute lung injury induced by sepsis. Here we show that mice deficient in the circadian protein CLOCK had better survival than wild-type mice after induction of polymicrobial sepsis by cecal ligation and puncture. Inflammatory cytokine production was attenuated and bacterial clearance was improved in CLOCK-deficient mice. Moreover, acute lung injury after induction of sepsis was significantly decreased in CLOCK-deficient mice. Genome-wide profiling analysis showed that inhibin signaling was reduced in CLOCK-deficient mice. These data establish the importance of circadian CLOCK-inhibin signaling in sepsis, which may have potential therapeutic implications. PMID:27520377

  12. Circadian Gene Clock Regulates Psoriasis-Like Skin Inflammation in Mice

    PubMed Central

    Ando, Noriko; Nakamura, Yuki; Aoki, Rui; Ishimaru, Kayoko; Ogawa, Hideoki; Okumura, Ko; Shibata, Shigenobu; Shimada, Shinji; Nakao, Atsuhito

    2015-01-01

    There are several reports suggesting that the pathophysiology of psoriasis may be associated with aberrant circadian rhythms. However, the mechanistic link between psoriasis and the circadian time-keeping system, “the circadian clock,” remains unclear. This study determined whether the core circadian gene, Clock, had a regulatory role in the development of psoriasis. For this purpose, we compared the development of psoriasis-like skin inflammation induced by the Toll-like receptor 7 ligand imiquimod (IMQ) between wild-type mice and mice with a loss-of-function mutation of Clock. We also compared the development of IMQ-induced dermatitis between wild-type mice and mice with a loss-of-function mutation of Period2 (Per2), another key circadian gene that inhibits CLOCK activity. We found that Clock mutation ameliorated IMQ-induced dermatitis, whereas the Per2 mutation exaggerated IMQ-induced dermatitis, when compared with wild-type mice associated with decreased or increased IL-23 receptor (IL-23R) expression in γ/δ+ T cells, respectively. In addition, CLOCK directly bound to the promoter of IL-23R in γ/δ+ T cells, and IL-23R expression in the mouse skin was under circadian control. These findings suggest that Clock is a novel regulator of psoriasis-like skin inflammation in mice via direct modulation of IL-23R expression in γ/δ+ T cells, establishing a mechanistic link between psoriasis and the circadian clock. PMID:26291684

  13. Systematic Study of the ^87Sr Clock Transition in an Optical Lattice

    NASA Astrophysics Data System (ADS)

    Boyd, Martin; Ludlow, Andrew; Zelevinsky, Tanya; Foreman, Seth; Blatt, Sebastian; Notcutt, Mark; Ido, Tetsuya; Ye, Jun

    2006-05-01

    The ^1S0-^3P0 transition in ^87Sr is studied for the realization of an optical atomic clock, using μK atoms in a magic wavelength optical lattice [1]. The probe laser frequency is measured with an octave-spanning fs comb, which is referenced to a hydrogen maser (directly calibrated by the NIST primary Cs fountain clock) allowing high precision evaluation of potential systematic frequency shifts . By varying the lattice wavelength and trapping depth we find that the magic wavelength for the clock transition is 813.418(10) with a clock sensitivity to lattice deviations of ˜2 mHz/MHz for lattice intensities of 10 kW/cm^2. To explore the effect of atomic collisions on the clock frequency we varied the atomic density by a factor of 50 and did not find any shifts at the 3 x10-14 level. Dependence of the clock transition on magnetic fields has been examined as the hyperfine interaction (I = 9/2), which provides the small transition moment for the doubly forbidden clock transition, also results in a differential g factor of the ^3P0 and ^1S0 levels. We will report the latest results of this optical clock system. [1] A.D. Ludlow et al., Phys Rev Lett 96, 033003 (2006).

  14. Epidemiology of the human circadian clock.

    PubMed

    Roenneberg, Till; Kuehnle, Tim; Juda, Myriam; Kantermann, Thomas; Allebrandt, Karla; Gordijn, Marijke; Merrow, Martha

    2007-12-01

    Humans show large inter-individual differences in organising their behaviour within the 24-h day-this is most obvious in their preferred timing of sleep and wakefulness. Sleep and wake times show a near-Gaussian distribution in a given population, with extreme early types waking up when extreme late types fall asleep. This distribution is predominantly based on differences in an individuals' circadian clock. The relationship between the circadian system and different "chronotypes" is formally and genetically well established in experimental studies in organisms ranging from unicells to mammals. To investigate the epidemiology of the human circadian clock, we developed a simple questionnaire (Munich ChronoType Questionnaire, MCTQ) to assess chronotype. So far, more than 55,000 people have completed the MCTQ, which has been validated with respect to the Horne-Østberg morningness-eveningness questionnaire (MEQ), objective measures of activity and rest (sleep-logs and actimetry), and physiological parameters. As a result of this large survey, we established an algorithm which optimises chronotype assessment by incorporating the information on timing of sleep and wakefulness for both work and free days. The timing and duration of sleep are generally independent. However, when the two are analysed separately for work and free days, sleep duration strongly depends on chronotype. In addition, chronotype is both age- and sex-dependent. PMID:17936039

  15. Representing plant hydraulics in a global Earth system model.

    NASA Astrophysics Data System (ADS)

    Kennedy, D.; Gentine, P.

    2015-12-01

    Earth system models need improvement to reproduce observed seasonal and diurnal cycles of photosynthesis and respiration. Model water stress parameterizations lag behind the plant physiology literature. A plant hydraulics model is developed and deployed in a global Earth system model (NCAR CESM 1.2.2 with CLM 4.5). Assimilation and transpiration are attenuated according to literature cavitation curves. Water stress is evaluated based on plant functional type hydraulic parameters forced by soil moisture and atmospheric conditions. Resolving the plant water status allows for modelling divergent strategies for water stress. The case of isohydric versus anisohydric species is presented, showing that including plant hydraulic traits alter modelled photosynthesis and transpiration.

  16. Developing Higher Plant Systems in Space

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1983-01-01

    The effects of hypogravity and microgravity environments on plant cells are discussed. Experiments on embryos of carrots are discussed. Simulation and spacecraft environments were used in experiments.

  17. Controlled Ecological Life Support System: Use of Higher Plants

    NASA Technical Reports Server (NTRS)

    Tibbits, T. W.; Alford, D. K.

    1982-01-01

    Results of two workshops concerning the use of higher plants in Controlled Ecological Life Support Systems (CELSS) are summarized. Criteria for plant selection were identified from these categories: food production, nutrition, oxygen production and carbon dioxide utilization, water recycling, waste recycling, and other morphological and physiological considerations. Types of plant species suitable for use in CELSS, growing procedures, and research priorities were recommended. Also included are productivity values for selected plant species.

  18. Diversity of Human Clock Genotypes and Consequences

    PubMed Central

    Zhang, Luoying; Ptáček, Louis J.; Fu, Ying-Hui

    2014-01-01

    The molecular clock consists of a number of genes that form transcriptional and post-transcriptional feedback loops, which function together to generate circadian oscillations that give rise to circadian rhythms of our behavioral and physiological processes. Genetic variations in these clock genes have been shown to be associated with phenotypic effects in a repertoire of biological processes, such as diurnal preference, sleep, metabolism, mood regulation, addiction, and fertility. Consistently, rodent models carrying mutations in clock genes also demonstrate similar phenotypes. Taken together, these studies suggest that human clock-gene variants contribute to the phenotypic differences observed in various behavioral and physiological processes, although to validate this requires further characterization of the molecular consequences of these polymorphisms. Investigating the diversity of human genotypes and the phenotypic effects of these genetic variations shall advance our understanding of the function of the circadian clock and how we can employ the clock to improve our overall health. PMID:23899594

  19. The NIM Sr Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Wang, Q.; Li, Y.; Meng, F.; Lin, B.; Zang, E.; Sun, Z.; Fang, F.; Li, T.; Fang, Z.

    2016-06-01

    A 87Sr optical lattice clock is built at the National Institute of Metrology (NIM) of China. The atoms undergo two stages of laser cooling before being loaded into a horizontal optical lattice at the magic wavelength of 813 nm. After being interrogated by a narrow linewidth 698 nm clock laser pulse, the normalized excitation rate is measured to get the frequency error, which is then used to lock the clock laser to the ultra-narrow 1S0-3P0 clock transition. The total systematic uncertainty of the clock is evaluated to be 2.3 × 10-16, and the absolute frequency of the clock is measured to be 429 228 004 229 873.7(1.4) Hz with reference to the NIM5 cesium fountain.

  20. Future Laser-Cooled Microwave Clock Performance

    NASA Technical Reports Server (NTRS)

    Gibble, Kurt

    1997-01-01

    Limitations to the performance of laser-cooled earth and space-based Cs clocks will be critically discussed. The most significant limitation to the stability and accuracy of laser-cooled atomic clocks is the frequency shift due to cold collisions. Because of it, laser-cooled Cs clocks must be operated at low density and this implies that space based Cs clock performance will not be significantly better than earth based. To regain some of the high accuracy and stability lost to the low density, clocks can be designed to multiply launch (or juggle) atoms. Clocks based on other atoms, in particular Rb-87 or possibly Rb-85, may have much smaller cold collision frequency shifts and therefore be capable of higher stability and accuracy, especially in a space environment.

  1. Circadian Clock Dysfunction and Psychiatric Disease: Could Fruit Flies have a Say?

    PubMed Central

    Zordan, Mauro Agostino; Sandrelli, Federica

    2015-01-01

    There is evidence of a link between the circadian system and psychiatric diseases. Studies in humans and mammals suggest that environmental and/or genetic disruption of the circadian system leads to an increased liability to psychiatric disease. Disruption of clock genes and/or the clock network might be related to the etiology of these pathologies; also, some genes, known for their circadian clock functions, might be associated to mental illnesses through clock-independent pleiotropy. Here, we examine the features which we believe make Drosophila melanogaster a model apt to study the role of the circadian clock in psychiatric disease. Despite differences in the organization of the clock system, the molecular architecture of the Drosophila and mammalian circadian oscillators are comparable and many components are evolutionarily related. In addition, Drosophila has a rather complex nervous system, which shares much at the cell and neurobiological level with humans, i.e., a tripartite brain, the main neurotransmitter systems, and behavioral traits: circadian behavior, learning and memory, motivation, addiction, social behavior. There is evidence that the Drosophila brain shares some homologies with the vertebrate cerebellum, basal ganglia, and hypothalamus-pituitary-adrenal axis, the dysfunctions of which have been tied to mental illness. We discuss Drosophila in comparison to mammals with reference to the: organization of the brain and neurotransmitter systems; architecture of the circadian clock; clock-controlled behaviors. We sum up current knowledge on behavioral endophenotypes, which are amenable to modeling in flies, such as defects involving sleep, cognition, or social interactions, and discuss the relationship of the circadian system to these traits. Finally, we consider if Drosophila could be a valuable asset to understand the relationship between circadian clock malfunction and psychiatric disease. PMID:25941512

  2. 29 CFR 785.48 - Use of time clocks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Use of time clocks. 785.48 Section 785.48 Labor Regulations... clocks. (a) Differences between clock records and actual hours worked. Time clocks are not required. In those cases where time clocks are used, employees who voluntarily come in before their regular...

  3. Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock

    NASA Astrophysics Data System (ADS)

    Lodewyck, Jérôme; Bilicki, Sławomir; Bookjans, Eva; Robyr, Jean-Luc; Shi, Chunyan; Vallet, Grégoire; Le Targat, Rodolphe; Nicolodi, Daniele; Le Coq, Yann; Guéna, Jocelyne; Abgrall, Michel; Rosenbusch, Peter; Bize, Sébastien

    2016-08-01

    Optical lattice clocks are at the forefront of frequency metrology. Both the instability and systematic uncertainty of these clocks have been reported to be two orders of magnitude smaller than the best microwave clocks. For this reason, a redefinition of the SI second based on optical clocks seems possible in the near future. However, the operation of optical lattice clocks has not yet reached the reliability that microwave clocks have achieved so far. In this paper, we report on the operation of a strontium optical lattice clock that spans several weeks, with more than 80% uptime. We make use of this long integration time to demonstrate a reproducible measurement of frequency ratios between the strontium clock transition and microwave Cs primary and Rb secondary frequency standards.

  4. Plant-uptake of uranium: Hydroponic and soil system studies

    USGS Publications Warehouse

    Ramaswami, A.; Carr, P.; Burkhardt, M.

    2001-01-01

    Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.

  5. Clock gene expression in adult primate suprachiasmatic nuclei and adrenal: is the adrenal a peripheral clock responsive to melatonin?

    PubMed

    Valenzuela, F J; Torres-Farfan, C; Richter, H G; Mendez, N; Campino, C; Torrealba, F; Valenzuela, G J; Serón-Ferré, M

    2008-04-01

    The circadian production of glucocorticoids involves the concerted action of several factors that eventually allow an adequate adaptation to the environment. Circadian rhythms are controlled by the circadian timing system that comprises peripheral oscillators and a central rhythm generator located in the suprachiasmatic nucleus (SCN) of the hypothalamus, driven by the self-regulatory interaction of a set of proteins encoded by genes named clock genes. Here we describe the phase relationship between the SCN and adrenal gland for the expression of selected core clock transcripts (Per-2, Bmal-1) in the adult capuchin monkey, a New World, diurnal nonhuman primate. In the SCN we found a higher expression of Bmal-1 during the h of darkness (2000-0200 h) and Per-2 during daytime h (1400 h). The adrenal gland expressed clock genes in oscillatory fashion, with higher values for Bmal-1 during the day (1400-2000 h), whereas Per-2 was higher at nighttime (about 0200 h), resulting in a 9- to 12-h antiphase pattern. In the adrenal gland, the oscillation of clock genes was accompanied by rhythmic expression of a functional output, the steroidogenic enzyme 3beta-hydroxysteroid dehydrogenase. Furthermore, we show that adrenal explants maintained oscillatory expression of Per-2 and Bmal-1 for at least 36 h in culture. The acrophase of both transcripts, but not its overall expression along the incubation, was blunted by 100 nm melatonin. Altogether, these results demonstrate oscillation of clock genes in the SCN and adrenal gland of a diurnal primate and support an oscillation of clock genes in the adrenal gland that may be modulated by the neurohormone melatonin. PMID:18187542

  6. Green pathways: Metabolic network analysis of plant systems.

    PubMed

    Dersch, Lisa Maria; Beckers, Veronique; Wittmann, Christoph

    2016-03-01

    Metabolic engineering of plants with enhanced crop yield and value-added compositional traits is particularly challenging as they probably exhibit the highest metabolic network complexity of all living organisms. Therefore, approaches of plant metabolic network analysis, which can provide systems-level understanding of plant physiology, appear valuable as guidance for plant metabolic engineers. Strongly supported by the sequencing of plant genomes, a number of different experimental and computational methods have emerged in recent years to study plant systems at various levels: from heterotrophic cell cultures to autotrophic entire plants. The present review presents a state-of-the-art toolbox for plant metabolic network analysis. Among the described approaches are different in silico modeling techniques, including flux balance analysis, elementary flux mode analysis and kinetic flux profiling, as well as different variants of experiments with plant systems which use radioactive and stable isotopes to determine in vivo plant metabolic fluxes. The fundamental principles of these techniques, the required data input and the obtained flux information are enriched by technical advices, specific to plants. In addition, pioneering and high-impacting findings of plant metabolic network analysis highlight the potential of the field. PMID:26704307

  7. Salmonella enterica induces and subverts the plant immune system

    PubMed Central

    García, Ana V.; Hirt, Heribert

    2014-01-01

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity. PMID:24772109

  8. Nuclear thiol redox systems in plants.

    PubMed

    Delorme-Hinoux, Valérie; Bangash, Sajid A K; Meyer, Andreas J; Reichheld, Jean-Philippe

    2016-02-01

    Thiol-disulfide redox regulation is essential for many cellular functions in plants. It has major roles in defense mechanisms, maintains the redox status of the cell and plays structural, with regulatory roles for many proteins. Although thiol-based redox regulation has been extensively studied in subcellular organelles such as chloroplasts, it has been much less studied in the nucleus. Thiol-disulfide redox regulation is dependent on the conserved redox proteins, glutathione/glutaredoxin (GRX) and thioredoxin (TRX) systems. We first focus on the functions of glutathione in the nucleus and discuss recent data concerning accumulation of glutathione in the nucleus. We also provide evidence that glutathione reduction is potentially active in the nucleus. Recent data suggests that the nucleus is enriched in specific GRX and TRX isoforms. We discuss the biochemical and molecular characteristics of these isoforms and focus on genetic evidences for their potential nuclear functions. Finally, we make an overview of the different thiol-based redox regulated proteins in the nucleus. These proteins are involved in various pathways including transcriptional regulation, metabolism and signaling. PMID:26795153

  9. The Square Light Clock and Special Relativity

    ERIC Educational Resources Information Center

    Galli, J. Ronald; Amiri, Farhang

    2012-01-01

    A thought experiment that includes a square light clock is similar to the traditional vertical light beam and mirror clock, except it is made up of four mirrors placed at a 45[degree] angle at each corner of a square of length L[subscript 0], shown in Fig. 1. Here we have shown the events as measured in the rest frame of the square light clock. By…

  10. Collisionally induced atomic clock shifts and correlations

    SciTech Connect

    Band, Y. B.; Osherov, I.

    2011-07-15

    We develop a formalism to incorporate exchange symmetry considerations into the calculation of collisional frequency shifts for atomic clocks using a density-matrix formalism. The formalism is developed for both fermionic and bosonic atomic clocks. Numerical results for a finite-temperature {sup 87}Sr {sup 1}S{sub 0} (F=9/2) atomic clock in a magic wavelength optical lattice are presented.

  11. Collecting in Central Asia and the Caucasus: US National Plant Germplasm System Plant Explorations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS National Plant Germplasm System (NPGS) is charged with the preservation of economically important crop plants and their wild relatives. Curators in the System strive to develop collections capturing the genetic diversity of each species. One mechanism for filling gaps in collections...

  12. Plant Risk Status Information Management System.

    Energy Science and Technology Software Center (ESTSC)

    1990-12-12

    Version 00 PRISIM allows inspectors to quickly access probabilistic risk assessment (PRA) information and use it to update risk analysis results, reflecting a nuclear plant's status at any time. PRISIM also allows regulators to access PRA information and modify the information to assess the impact the changes may have on plant safety.

  13. The Arabidopsis Circadian System

    PubMed Central

    McClung, C. Robertson; Salomé, Patrice A.; Michael, Todd P.

    2002-01-01

    Rhythms with periods of approximately 24 hr are widespread in nature. Those that persist in constant conditions are termed circadian rhythms and reflect the activity of an endogenous biological clock. Plants, including Arabidopsis, are richly rhythmic. Expression analysis, most recently on a genomic scale, indicates that the Arabidopsis circadian clock regulates a number of key metabolic pathways and stress responses. A number of sensitive and high-throughput assays have been developed to monitor the Arabidopsis clock. These assays have facilitated the identification of components of plant circadian systems through genetic and molecular biological studies. Although much remains to be learned, the framework of the Arabidopsis circadian system is coming into focus. Dedication This review is dedicated to the memory of DeLill Nasser, a wonderful mentor and an unwavering advocate of both Arabidopsis and circadian rhythms research. PMID:22303209

  14. Early Chronotype and Tissue-Specific Alterations of Circadian Clock Function in Spontaneously Hypertensive Rats

    PubMed Central

    Sládek, Martin; Polidarová, Lenka; Nováková, Marta; Parkanová, Daniela; Sumová, Alena

    2012-01-01

    Malfunction of the circadian timing system may result in cardiovascular and metabolic diseases, and conversely, these diseases can impair the circadian system. The aim of this study was to reveal whether the functional state of the circadian system of spontaneously hypertensive rats (SHR) differs from that of control Wistar rat. This study is the first to analyze the function of the circadian system of SHR in its complexity, i.e., of the central clock in the suprachiasmatic nuclei (SCN) as well as of the peripheral clocks. The functional properties of the SCN clock were estimated by behavioral output rhythm in locomotor activity and daily profiles of clock gene expression in the SCN determined by in situ hybridization. The function of the peripheral clocks was assessed by daily profiles of clock gene expression in the liver and colon by RT-PCR and in vitro using real time recording of Bmal1-dLuc reporter. The potential impact of the SHR phenotype on circadian control of the metabolic pathways was estimated by daily profiles of metabolism-relevant gene expression in the liver and colon. The results revealed that SHR exhibited an early chronotype, because the central SCN clock was phase advanced relative to light/dark cycle and the SCN driven output rhythm ran faster compared to Wistar rats. Moreover, the output rhythm was dampened. The SHR peripheral clock reacted to the dampened SCN output with tissue-specific consequences. In the colon of SHR the clock function was severely altered, whereas the differences are only marginal in the liver. These changes may likely result in a mutual desynchrony of circadian oscillators within the circadian system of SHR, thereby potentially contributing to metabolic pathology of the strain. The SHR may thus serve as a valuable model of human circadian disorders originating in poor synchrony of the circadian system with external light/dark regime. PMID:23056539

  15. Spin-1/2 Optical Lattice Clock

    SciTech Connect

    Lemke, N. D.; Ludlow, A. D.; Barber, Z. W.; Fortier, T. M.; Diddams, S. A.; Jiang, Y.; Jefferts, S. R.; Heavner, T. P.; Parker, T. E.; Oates, C. W.

    2009-08-07

    We experimentally investigate an optical clock based on {sup 171}Yb (I=1/2) atoms confined in an optical lattice. We have evaluated all known frequency shifts to the clock transition, including a density-dependent collision shift, with a fractional uncertainty of 3.4x10{sup -16}, limited principally by uncertainty in the blackbody radiation Stark shift. We measured the absolute clock transition frequency relative to the NIST-F1 Cs fountain clock and find the frequency to be 518 295 836 590 865.2(0.7) Hz.

  16. PIFs: Systems Integrators in Plant Development[W

    PubMed Central

    Leivar, Pablo; Monte, Elena

    2014-01-01

    Phytochrome-interacting factors (PIFs) are members of the Arabidopsis thaliana basic helix-loop-helix family of transcriptional regulators that interact specifically with the active Pfr conformer of phytochrome (phy) photoreceptors. PIFs are central regulators of photomorphogenic development that act to promote stem growth, and this activity is reversed upon interaction with phy in response to light. Recently, significant progress has been made in defining the transcriptional networks directly regulated by PIFs, as well as the convergence of other signaling pathways on the PIFs to modulate growth. Here, we summarize and highlight these findings in the context of PIFs acting as integrators of light and other signals. We discuss progress in our understanding of the transcriptional and posttranslational regulation of PIFs that illustrates the integration of light with hormonal pathways and the circadian clock, and we review seedling hypocotyl growth as a paradigm of PIFs acting at the interface of these signals. Based on these advances, PIFs are emerging as required factors for growth, acting as central components of a regulatory node that integrates multiple internal and external signals to optimize plant development. PMID:24481072

  17. A robust two-gene oscillator at the core of Ostreococcus tauri circadian clock

    NASA Astrophysics Data System (ADS)

    Morant, Pierre-Emmanuel; Thommen, Quentin; Pfeuty, Benjamin; Vandermoere, Constant; Corellou, Florence; Bouget, François-Yves; Lefranc, Marc

    2010-12-01

    The microscopic green alga Ostreococcus tauri is rapidly emerging as a promising model organism in the green lineage. In particular, recent results by Corellou et al. [Plant Cell 21, 3436 (2009)] and Thommen et al. [PLOS Comput. Biol. 6, e1000990 (2010)] strongly suggest that its circadian clock is a simplified version of Arabidopsis thaliana clock, and that it is architectured so as to be robust to natural daylight fluctuations. In this work, we analyze the time series data from luminescent reporters for the two central clock genes TOC1 and CCA1 and correlate them with microarray data previously analyzed. Our mathematical analysis strongly supports both the existence of a simple two-gene oscillator at the core of Ostreococcus tauri clock and the fact that its dynamics is not affected by light in normal entrainment conditions, a signature of its robustness.

  18. Revised Morning Loops of the Arabidopsis Circadian Clock Based on Analyses of Direct Regulatory Interactions.

    PubMed

    Adams, Sally; Manfield, Ian; Stockley, Peter; Carré, Isabelle A

    2015-01-01

    The network structure of the plant circadian clock is complex and direct regulatory interactions between individual components have proven particularly difficult to predict from genetic analyses. Here, we systematically investigate in vivo binding interactions between the morning-specific transcription factor, LATE ELONGATED HYPOCOTYL (LHY) and the promoters of other components of the network. We then demonstrate the functionality of these interactions by testing the responsiveness of the target gene to an ethanol-induced change in expression level of the LHY protein. We uncover novel, negative autoregulatory feedback loops from LHY and the closely related CIRCADIAN CLOCK ASSOCIATED-1 (CCA1) onto their own and each other's expression. Furthermore we show that LHY acts as a repressor of all other clock components, including PSEUDO-RESPONSE REGULATORs (PRRs) 9 and 7, which were previously thought to be positive regulatory targets. These experimental results lead to a substantial revision of the morning loops of the clock. PMID:26625126

  19. Revised Morning Loops of the Arabidopsis Circadian Clock Based on Analyses of Direct Regulatory Interactions

    PubMed Central

    Adams, Sally; Manfield, Ian; Stockley, Peter; Carré, Isabelle A.

    2015-01-01

    The network structure of the plant circadian clock is complex and direct regulatory interactions between individual components have proven particularly difficult to predict from genetic analyses. Here, we systematically investigate in vivo binding interactions between the morning-specific transcription factor, LATE ELONGATED HYPOCOTYL (LHY) and the promoters of other components of the network. We then demonstrate the functionality of these interactions by testing the responsiveness of the target gene to an ethanol-induced change in expression level of the LHY protein. We uncover novel, negative autoregulatory feedback loops from LHY and the closely related CIRCADIAN CLOCK ASSOCIATED-1 (CCA1) onto their own and each other’s expression. Furthermore we show that LHY acts as a repressor of all other clock components, including PSEUDO-RESPONSE REGULATORs (PRRs) 9 and 7, which were previously thought to be positive regulatory targets. These experimental results lead to a substantial revision of the morning loops of the clock. PMID:26625126

  20. Methods and systems for seed planting management and control

    DOEpatents

    Svoboda, John M.; Hess, J. Richard; Hoskinson, Reed L.; Harker, David J.

    2002-01-01

    A seed planting system providing optimal seed spacing in an agricultural field. The seed planting system includes a mobile seed planter having one or more planting shoes, or members being adapted for towing by a farm vehicle or being self-propelled. Sensors, disposed proximate to respective planting shoes, detect seed planting events and send corresponding signals to a computer. Contemporaneously, a geospatial locator acquires, and transmits to the computer, the geospatial location of each planted seed. The computer correlates the geospatial location data with the seed deposition data and generates a seed distribution profile indicating the location of each seed planted in a zone of interest to enable the control of speed spacing.

  1. An optical lattice clock with accuracy and stability at the 10(-18) level.

    PubMed

    Bloom, B J; Nicholson, T L; Williams, J R; Campbell, S L; Bishof, M; Zhang, X; Zhang, W; Bromley, S L; Ye, J

    2014-02-01

    Progress in atomic, optical and quantum science has led to rapid improvements in atomic clocks. At the same time, atomic clock research has helped to advance the frontiers of science, affecting both fundamental and applied research. The ability to control quantum states of individual atoms and photons is central to quantum information science and precision measurement, and optical clocks based on single ions have achieved the lowest systematic uncertainty of any frequency standard. Although many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks, their accuracy has remained 16 times worse. Here we demonstrate a many-atom system that achieves an accuracy of 6.4 × 10(-18), which is not only better than a single-ion-based clock, but also reduces the required measurement time by two orders of magnitude. By systematically evaluating all known sources of uncertainty, including in situ monitoring of the blackbody radiation environment, we improve the accuracy of optical lattice clocks by a factor of 22. This single clock has simultaneously achieved the best known performance in the key characteristics necessary for consideration as a primary standard-stability and accuracy. More stable and accurate atomic clocks will benefit a wide range of fields, such as the realization and distribution of SI units, the search for time variation of fundamental constants, clock-based geodesy and other precision tests of the fundamental laws of nature. This work also connects to the development of quantum sensors and many-body quantum state engineering (such as spin squeezing) to advance measurement precision beyond the standard quantum limit. PMID:24463513

  2. PACKAGE PLANTS FOR SMALL SYSTEMS: A FIELD STUDY

    EPA Science Inventory

    A joint field study was conducted by AWWA and the Drinking Water Research Division of USEPA to evaluate existing small community systems that use package plant technology. Forty-eight package plant systems representing a geographic and technological cross section were evaluated t...

  3. Noise-Induced Synchronization among Sub-RF CMOS Analog Oscillators for Skew-Free Clock Distribution

    NASA Astrophysics Data System (ADS)

    Utagawa, Akira; Asai, Tetsuya; Hirose, Tetsuya; Amemiya, Yoshihito

    We present on-chip oscillator arrays synchronized by random noises, aiming at skew-free clock distribution on synchronous digital systems. Nakao et al. recently reported that independent neural oscillators can be synchronized by applying temporal random impulses to the oscillators [1], [2]. We regard neural oscillators as independent clock sources on LSIs; i. e., clock sources are distributed on LSIs, and they are forced to synchronize through the use of random noises. We designed neuron-based clock generators operating at sub-RF region (<1GHz) by modifying the original neuron model to a new model that is suitable for CMOS implementation with 0.25-μm CMOS parameters. Through circuit simulations, we demonstrate that i) the clock generators are certainly synchronized by pseudo-random noises and ii) clock generators exhibited phase-locked oscillations even if they had small device mismatches.

  4. Development of an Integrity Evaluation System for Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Kim, Young-Jin; Choi, Jae-Boong; Lee, Joon-Seong; Jun, Hyun-Kyu; Park, Youn-Won

    This paper describes the structure and development strategy for integrity evaluation system for nuclear power plants called NPP-KINS/SAFE. NPP-KINS/SAFE consists of three different programs covering the integrity assessment of reactor pressure vessel, pipings, and pressure tubes, respectively. The system has been developed based on currently available codes and standards, and includes a number of databases, expert systems, and numerical analysis schemes. NPP-KINS/SAFE is applicable for various types of nuclear power plants constructed in Korea with the aid of attached database systems including plant specific data. Case studies for the developed system are also provided.

  5. The plant as a biomechatronic system.

    PubMed

    Mazzolai, Barbara; Laschi, Cecilia; Dario, Paolo; Mugnai, Sergio; Mancuso, Stefano

    2010-02-01

    Our vision of plants is changing dramatically: from insensitive and static objects to complex living beings able to sense the environment and to use the information collected to adapt their behaviour. At all times humans imitate ideas and concepts from nature to resolve technological problems. Solutions coming from plants have the potential to face challenges and difficulties of modern engineering design. Characteristic concepts of the plant world such as reiteration, modularity and swarm behaviour could be of great help resolving technological problems. On the other hand a biorobotic approach would facilitate the resolution of many biological problems. In this paper, the concept of a plant-inspired robot is proposed for the investigation of both biological and technological issues. PMID:20023403

  6. Identification and characterization of circadian clock genes in a native tobacco, Nicotiana attenuata

    PubMed Central

    2012-01-01

    Background A plant’s endogenous clock (circadian clock) entrains physiological processes to light/dark and temperature cycles. Forward and reverse genetic approaches in Arabidopsis have revealed the mechanisms of the circadian clock and its components in the genome. Similar approaches have been used to characterize conserved clock elements in several plant species. A wild tobacco, Nicotiana attenuata has been studied extensively to understand responses to biotic or abiotic stress in the glasshouse and also in their native habitat. During two decades of field experiment, we observed several diurnal rhythmic traits of N. attenuata in nature. To expand our knowledge of circadian clock function into the entrainment of traits important for ecological processes, we here report three core clock components in N. attenuata. Results Protein similarity and transcript accumulation allowed us to isolate orthologous genes of the core circadian clock components, LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION 1/PSEUDO-RESPONSE REGULATOR 1 (TOC1/PRR1), and ZEITLUPE (ZTL). Transcript accumulation of NaLHY peaked at dawn and NaTOC1 peaked at dusk in plants grown under long day conditions. Ectopic expression of NaLHY and NaZTL in Arabidopsis resulted in elongated hypocotyl and late-flowering phenotypes. Protein interactions between NaTOC1 and NaZTL were confirmed by yeast two-hybrid assays. Finally, when NaTOC1 was silenced in N. attenuata, late-flowering phenotypes under long day conditions were clearly observed. Conclusions We identified three core circadian clock genes in N. attenuata and demonstrated the functional and biochemical conservation of NaLHY, NaTOC1, and NaZTL. PMID:23006446

  7. Circadian molecular clock in lung pathophysiology.

    PubMed

    Sundar, Isaac K; Yao, Hongwei; Sellix, Michael T; Rahman, Irfan

    2015-11-15

    Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology. PMID:26361874

  8. Deregulation of the circadian clock constitutes a significant factor in tumorigenesis: a clockwork cancer. Part I: clocks and clocking machinery

    PubMed Central

    Uth, Kristin; Sleigh, Roger

    2014-01-01

    Many physiological processes occur in a rhythmic fashion, consistent with a 24-h cycle. The central timing of the day/night rhythm is set by a master clock, located in the suprachiasmatic nucleus (a tiny region in the hypothalamus), but peripheral clocks exist in different tissues, adjustable by cues other than light (temperature, food, hormone stimulation, etc.), functioning autonomously to the master clock. Presence of unrepaired DNA damage may adjust the circadian clock so that the phase in which checking for damage and DNA repair normally occurs is advanced or extended. The expression of many of the genes coding for proteins functioning in DNA damage-associated response pathways and DNA repair is directly or indirectly regulated by the core clock proteins. Setting up the normal rhythm of the circadian cycle also involves oscillating changes in the chromatin structure, allowing differential activation of various chromatin domains within the 24-h cycle. PMID:26019503

  9. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action

    PubMed Central

    Gibbs, Julie; Ince, Louise; Matthews, Laura; Mei, Junjie; Bell, Thomas; Yang, Nan; Saer, Ben; Begley, Nicola; Poolman, Toryn; Pariollaud, Marie; Farrow, Stuart; Demayo, Francesco; Hussell, Tracy; Worthen, G Scott; Ray, David; Loudon, Andrew

    2014-01-01

    The circadian system is as an important regulator of immune function. Human inflammatory lung diseases frequently show time-of-day variation in symptom severity and lung function, but the mechanisms and cell types that are underlying these effects remain unclear. We show that pulmonary antibacterial responses are modulated by a circadian clock within epithelial club (Clara) cells. These drive circadian neutrophil recruitment to the lung via the chemokine CXCL5. Genetic ablation of the clock gene Bmal1 (also called Arntl or MOP3) in bronchiolar cells disrupts rhythmic Cxcl5 expression, resulting in exaggerated inflammatory responses to lipopolysaccharide and bacterial infection. Adrenalectomy blocks rhythmic inflammatory responses and the circadian regulation of CXCL5, suggesting a key role for the adrenal axis in driving CXCL5 expression and pulmonary neutrophil recruitment. Glucocorticoid receptor occupancy at the Cxcl5 locus shows circadian oscillations, but this is disrupted in mice with bronchiole-specific ablation of Bmal1, leading to enhanced CXCL5 expression despite normal corticosteroid secretion. In clock-gene disrupted mice the synthetic glucocorticoid dexamethasone loses anti-inflammatory efficacy. We now define a regulatory mechanism that links the circadian clock and glucocorticoid hormones to control both time-of-day variation and also the magnitude of pulmonary inflammation and responses to bacterial infection. PMID:25064128

  10. Compact atomic clocks and stabilised laser for space applications

    NASA Astrophysics Data System (ADS)

    Mileti, Gaetano; Affolderbach, Christoph; Matthey-de-l'Endroit, Renaud

    2016-07-01

    We present our developments towards next generation compact vapour-cell based atomic frequency standards using a tunable laser diode instead of a traditional discharge lamp. The realisation of two types of Rubidium clocks addressing specific applications is in progress: high performance frequency standards for demanding applications such as satellite navigation, and chip-scale atomic clocks, allowing further miniaturisation of the system. The stabilised laser source constitutes the main technological novelty of these new standards, allowing a more efficient preparation and interrogation of the atoms and hence an improvement of the clock performances. However, before this key component may be employed in a commercial and ultimately in a space-qualified instrument, further studies are necessary to demonstrate their suitability, in particular concerning their reliability and long-term operation. The talk will present our preliminary investigations on this subject. The stabilised laser diode technology developed for our atomic clocks has several other applications on ground and in space. We will conclude our talk by illustrating this for the example of a recently completed ESA project on a 1.6 microns wavelength reference for a future space-borne Lidar. This source is based on a Rubidium vapour cell providing the necessary stability and accuracy, while a second harmonic generator and a compact optical comb generated from an electro-optic modulator allow to transfer these properties from the Rubidium wavelength (780nm) to the desired spectral range.

  11. BTime A Clock Synchronization Tool For Linux Clusters

    SciTech Connect

    Loncaric, Josip

    2004-10-22

    BTime software synchronizes the system clocks on Linux computers that can communicate on a network. Primarily intended for Linux computers that form a cluster, BTime ensures that all computers in the cluster have approximately the same time (usually within microseconds). In operation, a BTime server broadcasts target times every second. All BTime clients filter timing data and apply local time corrections synchronously at multiples of 64 seconds. Bayesian estimation of target time errors feeds a Kalman filter which estimates local errors in time, clock drift, and wander rates. Server dock adjustments are detected and compensated, thus reducing filter convergence time. Low probability events (e.g. significant time changes) are handled through heuristics also designed to reduce filter convergence time. Normal BTime corrects dock differences, while another version of BTime that only tracks clock differences can be used for measurements. In authors test lasting four days, BTime delivered estimated dock synchronization within 10 microseconds with 99.75% confidence. Standard deviation of the estimated clock offset is typically 2-3 microseconds, even over busy multi-hop networks. These results are about 100 times better than published results for Network Time Protocol (NTP).

  12. microRNA modulation of circadian clock period and entrainment

    PubMed Central

    Cheng, Hai-Ying M.; Papp, Joseph W.; Varlamova, Olga; Dziema, Heather; Russell, Brandon; Curfman, John P.; Nakazawa, Takanobu; Shimizu, Kimiko; Okamura, Hitoshi; Impey, Soren; Obrietan, Karl

    2007-01-01

    microRNAs (miRNAs) are a class of small, non-coding, RNAs that regulate the stability or translation of mRNA transcripts. Although recent work has implicated miRNAs in development and in disease, the expression and function of miRNAs in the adult mammalian nervous system has not been extensively characterized. Here, we examine the role of two brain-specific miRNAs, miR-219 and miR-132, in modulating the circadian clock located in the suprachiasmatic nucleus. miR-219 is a target of the CLOCK/BMAL1 complex, exhibits robust circadian rhythms of expression and the in vivo knockdown of miR-219 lengthens the circadian period. miR-132 is induced by photic entrainment cues via a MAPK/CREB-dependent mechanism, modulates clock gene expression, and attenuates the entraining effects of light. Collectively, these data reveal miRNAs as clock- and light-regulated genes and provide a mechanistic examination of their roles as effectors of pacemaker activity and entrainment. PMID:17553428

  13. The in-orbit performances of GIOVE clocks.

    PubMed

    Waller, Pierre; Gonzalez, Francisco; Binda, Stefano; Sesia, Ilaria; Hidalgo, Irene; Tobias, Guillermo; Tavella, Patrizia

    2010-03-01

    The Galileo In-Orbit Validation Element (GIOVE) is an experiment led by the European Space Agency (ESA) aimed at supporting the on-going implementation of Galileo, the European global navigation satellite system (GNSS). Among the objectives of the GIOVE Mission are the validation and characterization of the on-board clock technologies. The current baseline technologies for on-board clocks are the rubidium atomic frequency standard (RAFS) and the passive hydrogen maser (PHM). Both technologies have been validated and qualified on ground and are now being further validated in a representative in-orbit environment aboard 2 spacecrafts, GIOVE-A and GIOVE-B. This paper presents the results obtained in the frame of the GIOVE experimentation. The behavior and performances of the clock technologies on board both spacecrafts has been investigated and analyzed in terms of operation, frequency stability, and clock prediction error after more than 3 years of operation for GIOVE-A and almost one year for GIOVE-B. In addition, relativistic frequency shifts of GIOVE spacecrafts have been investigated. PMID:20211795

  14. BTime A Clock Synchronization Tool For Linux Clusters

    Energy Science and Technology Software Center (ESTSC)

    2004-10-22

    BTime software synchronizes the system clocks on Linux computers that can communicate on a network. Primarily intended for Linux computers that form a cluster, BTime ensures that all computers in the cluster have approximately the same time (usually within microseconds). In operation, a BTime server broadcasts target times every second. All BTime clients filter timing data and apply local time corrections synchronously at multiples of 64 seconds. Bayesian estimation of target time errors feeds amore » Kalman filter which estimates local errors in time, clock drift, and wander rates. Server dock adjustments are detected and compensated, thus reducing filter convergence time. Low probability events (e.g. significant time changes) are handled through heuristics also designed to reduce filter convergence time. Normal BTime corrects dock differences, while another version of BTime that only tracks clock differences can be used for measurements. In authors test lasting four days, BTime delivered estimated dock synchronization within 10 microseconds with 99.75% confidence. Standard deviation of the estimated clock offset is typically 2-3 microseconds, even over busy multi-hop networks. These results are about 100 times better than published results for Network Time Protocol (NTP).« less

  15. Association between Circadian Clock Genes and Diapause Incidence in Drosophila triauraria

    PubMed Central

    Yamada, Hirokazu; Yamamoto, Masa-Toshi

    2011-01-01

    Diapause is an adaptive response triggered by seasonal photoperiodicity to overcome unfavorable seasons. The photoperiodic clock is a system that controls seasonal physiological processes, but our knowledge about its physiological mechanisms and genetic architecture remains incomplete. The circadian clock is another system that controls daily rhythmic physiological phenomena. It has been argued that there is a connection between the two clocks. To examine the genetic connection between them, we analyzed the associations of five circadian clock genes (period, timeless, Clock, cycle and cryptochrome) with the occurrence of diapause in Drosophila triauraria, which shows a robust reproductive diapause with clear photoperiodicity. Non-diapause strains found in low latitudes were compared in genetic crosses with the diapause strain, in which the diapause trait is clearly dominant. Single nucleotide polymorphism and deletion analyses of the five circadian clock genes in backcross progeny revealed that allelic differences in timeless and cryptochrome between the strains were additively associated with the differences in the incidence of diapause. This suggests that there is a molecular link between certain circadian clock genes and the occurrence of diapause. PMID:22164210

  16. Clock Agreement Among Parallel Supercomputer Nodes

    DOE Data Explorer

    Jones, Terry R.; Koenig, Gregory A.

    2014-04-30

    This dataset presents measurements that quantify the clock synchronization time-agreement characteristics among several high performance computers including the current world's most powerful machine for open science, the U.S. Department of Energy's Titan machine sited at Oak Ridge National Laboratory. These ultra-fast machines derive much of their computational capability from extreme node counts (over 18000 nodes in the case of the Titan machine). Time-agreement is commonly utilized by parallel programming applications and tools, distributed programming application and tools, and system software. Our time-agreement measurements detail the degree of time variance between nodes and how that variance changes over time. The dataset includes empirical measurements and the accompanying spreadsheets.

  17. Lactation Biology Symposium: circadian clocks as mediators of the homeorhetic response to lactation.

    PubMed

    Casey, T M; Plaut, K

    2012-03-01

    The transition from pregnancy to lactation is the most stressful period in the life of a cow. During this transition, homeorhetic adaptations are coordinated across almost every organ and are marked by changes in hormones and metabolism to accommodate the increased energetic demands of lactation. Recent data from our laboratory showed that changes in circadian clocks occur in multiple tissues during the transition period in rats and indicate that the circadian system coordinates changes in the physiology of the dam needed to support lactation. Circadian rhythms coordinate the timing of physiological processes and synchronize these processes with the environment of the animal. Circadian rhythms are generated by molecular circadian clocks located in the hypothalamus (the master clock) and peripherally in every organ of the body. The master clock receives environmental and physiological cues and, in turn, synchronizes internal physiology by coordinating endocrine rhythms and metabolism through peripheral clocks. The effect of the circadian clock on lactation may be inferred by the photoperiod effect on milk production, which is accompanied by coordinated changes in the endocrine system and metabolic capacity of the dam to respond to changes in day length. We have shown that bovine mammary epithelial cells possess a functional clock that can be synchronized by external stimuli, and the expression of the aryl hydrocarbon receptor nuclear translocator-like gene, a positive limb of the core clock, is responsive to prolactin in bovine mammary explants. Others showed that 7% of genes expressed in breasts of lactating women had circadian patterns of expression, and we report that the diurnal variation of composition of bovine milk is associated with changes in expression of mammary core clock genes. Together these studies indicate that the circadian system coordinates the metabolic and hormonal changes needed to initiate and sustain lactation, and we believe that the

  18. Systematic Effects in Atomic Fountain Clocks

    NASA Astrophysics Data System (ADS)

    Gibble, Kurt

    2016-06-01

    We describe recent advances in the accuracies of atomic fountain clocks. New rigorous treatments of the previously large systematic uncertainties, distributed cavity phase, microwave lensing, and background gas collisions, enabled these advances. We also discuss background gas collisions of optical lattice and ion clocks and derive the smooth transition of the microwave lensing frequency shift to photon recoil shifts for large atomic wave packets.

  19. Temperature influences in receiver clock modelling

    NASA Astrophysics Data System (ADS)

    Wang, Kan; Meindl, Michael; Rothacher, Markus; Schoenemann, Erik; Enderle, Werner

    2016-04-01

    In Precise Point Positioning (PPP), hardware delays at the receiver site (receiver, cables, antenna, …) are always difficult to be separated from the estimated receiver clock parameters. As a result, they are partially or fully contained in the estimated "apparent" clocks and will influence the deterministic and stochastic modelling of the receiver clock behaviour. In this contribution, using three years of data, the receiver clock corrections of a set of high-precision Hydrogen Masers (H-Masers) connected to stations of the ESA/ESOC network and the International GNSS Service (IGS) are firstly characterized concerning clock offsets, drifts, modified Allan deviations and stochastic parameters. In a second step, the apparent behaviour of the clocks is modelled with the help of a low-order polynomial and a known temperature coefficient (Weinbach, 2013). The correlations between the temperature and the hardware delays generated by different types of antennae are then analysed looking at daily, 3-day and weekly time intervals. The outcome of these analyses is crucial, if we intend to model the receiver clocks in the ground station network to improve the estimation of station-related parameters like coordinates, troposphere zenith delays and ambiguities. References: Weinbach, U. (2013) Feasibility and impact of receiver clock modeling in precise GPS data analysis. Dissertation, Leibniz Universität Hannover, Germany.

  20. "Molecular Clock" Analogs: A Relative Rates Exercise

    ERIC Educational Resources Information Center

    Wares, John P.

    2008-01-01

    Although molecular clock theory is a commonly discussed facet of evolutionary biology, undergraduates are rarely presented with the underlying information of how this theory is examined relative to empirical data. Here a simple contextual exercise is presented that not only provides insight into molecular clocks, but is also a useful exercise for…

  1. Fast Clock Recovery for Digital Communications

    NASA Technical Reports Server (NTRS)

    Tell, R. G.

    1985-01-01

    Circuit extracts clock signal from random non-return-to-zero data stream, locking onto clock within one bit period at 1-gigabitper-second data rate. Circuit used for synchronization in opticalfiber communications. Derives speed from very short response time of gallium arsenide metal/semiconductor field-effect transistors (MESFET's).

  2. THE INTRINSIC CIRCADIAN CLOCK WITHIN THE CARDIOMYOCYTE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian clocks are intracellular molecular mechanisms that allow the cell to anticipate the time of day. We have previously reported that the intact rat heart expresses the major components of the circadian clock, of which its rhythmic expression in vivo is consistent with the operation of a fully...

  3. Tectonic blocks and molecular clocks

    PubMed Central

    2016-01-01

    Evolutionary timescales have mainly used fossils for calibrating molecular clocks, though fossils only really provide minimum clade age constraints. In their place, phylogenetic trees can be calibrated by precisely dated geological events that have shaped biogeography. However, tectonic episodes are protracted, their role in vicariance is rarely justified, the biogeography of living clades and their antecedents may differ, and the impact of such events is contingent on ecology. Biogeographic calibrations are no panacea for the shortcomings of fossil calibrations, but their associated uncertainties can be accommodated. We provide examples of how biogeographic calibrations based on geological data can be established for the fragmentation of the Pangaean supercontinent: (i) for the uplift of the Isthmus of Panama, (ii) the separation of New Zealand from Gondwana, and (iii) for the opening of the Atlantic Ocean. Biogeographic and fossil calibrations are complementary, not competing, approaches to constraining molecular clock analyses, providing alternative constraints on the age of clades that are vital to avoiding circularity in investigating the role of biogeographic mechanisms in shaping modern biodiversity. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325840

  4. A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception.

    PubMed

    Cavallari, Nicola; Frigato, Elena; Vallone, Daniela; Fröhlich, Nadine; Lopez-Olmeda, Jose Fernando; Foà, Augusto; Berti, Roberto; Sánchez-Vázquez, Francisco Javier; Bertolucci, Cristiano; Foulkes, Nicholas S

    2011-09-01

    The circadian clock is synchronized with the day-night cycle primarily by light. Fish represent fascinating models for deciphering the light input pathway to the vertebrate clock since fish cell clocks are regulated by direct light exposure. Here we have performed a comparative, functional analysis of the circadian clock involving the zebrafish that is normally exposed to the day-night cycle and a cavefish species that has evolved in perpetual darkness. Our results reveal that the cavefish retains a food-entrainable clock that oscillates with an infradian period. Importantly, however, this clock is not regulated by light. This comparative study pinpoints the two extra-retinal photoreceptors Melanopsin (Opn4m2) and TMT-opsin as essential upstream elements of the peripheral clock light input pathway. PMID:21909239

  5. Carbon and fullerene nanomaterials in plant system

    PubMed Central

    2014-01-01

    Both the functionalized and non functionalized carbon nanomaterials influence fruit and crop production in edible plants and vegetables. The fullerene, C60 and carbon nanotubes have been shown to increase the water retaining capacity, biomass and fruit yield in plants up to ~118% which is a remarkable achievement of nanotechnology in recent years. The fullerene treated bitter melon seeds also increase the phytomedicine contents such as cucurbitacin-B (74%), lycopene (82%), charantin (20%) and insulin (91%). Since as little as 50 μg mL−1 of carbon nanotubes increase the tomato production by about 200%, they may be exploited to enhance the agriculture production in future. It has been observed that, in certain cases, non functionalized multi-wall carbon nanotubes are toxic to both plants and animals but the toxicity can be drastically reduced if they are functionalized. PMID:24766786

  6. Ornamental Plants and the US National Plant Germplasm System: Conserving, Evaluating, Seeking, and Sharing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report presents an overview of the US National Plant Germplasm System (NPGS) for an audience of plant propagators from the nursery industry, academia, and public gardens. It describes the active sites that conserve germplasm of interest to propagators and how those sites conserve their germpla...

  7. Compressed Air System Optimization Project Improves Production at a Metal Forging Plant (Modern Forge, TN, Plant)

    SciTech Connect

    2000-12-01

    In 1995, Modern Forge of Tennessee implemented a compressed air system improvement project at its Piney Flats, Tennessee, forging plant. Due to the project’s implementation, the plant was able to operate with fewer compressors and improve its product quality, thus allowing it to increase productivity. The project also resulted in considerable energy and maintenance savings.

  8. A low maintenance Sr optical lattice clock

    NASA Astrophysics Data System (ADS)

    Hill, I. R.; Hobson, R.; Bowden, W.; Bridge, E. M.; Donnellan, S.; Curtis, E. A.; Gill, P.

    2016-06-01

    We describe the Sr optical lattice clock apparatus at NPL with particular emphasis on techniques used to increase reliability and minimise the human requirement in its operation. Central to this is a clock-referenced transfer cavity scheme for the stabilisation of cooling and trapping lasers. We highlight several measures to increase the reliability of the clock with a view towards the realisation of an optical time-scale. The clock contributed 502 hours of data over a 25 day period (84% uptime) in a recent measurement campaign with several uninterrupted periods of more than 48 hours. An instability of 2 x 10-17 was reached after 105 s of averaging in an interleaved self-comparison of the clock.

  9. Systems Modeling for Z-IFE Power Plants

    SciTech Connect

    Meier, W R

    2006-11-08

    A preliminary systems model has been developed for Z-IFE power plants. The model includes cost and performance scaling for the target physics, z-pinch driver, chamber, power conversion system and target/RTL manufacturing plant. As the base case we consider the dynamic hohlraum target and a thick liquid wall chamber with flibe as the working fluid. Driver cost and efficiency are evaluated parametrically since various options are still being considered. The model allows for power plants made up of multiple chambers and power conversion units supplied by a central target/RTL manufacturing plant. Initial results indicate that plants with few chambers operating at high yield are economically more attractive than the 10-unit plant previously proposed. Various parametric and sensitivity studies have been completed and are discussed.

  10. Engineering system co-design with limited plant redesign

    NASA Astrophysics Data System (ADS)

    Allison, James T.

    2014-02-01

    Rather than designing engineering systems from the ground up, engineers often redesign strategic portions of existing systems to accommodate emerging needs. In the redesign of mechatronic systems, engineers typically seek to meet the requirements of a new application via control redesign only, but this is often insufficient and physical system (plant) design changes must be explored. Here, an integrated approach is presented for the redesign of mechatronic systems involving partial plant redesign that avoids costly complete redesign. Candidate plant modifications are identified using sensitivity analysis, and then an optimization problem is solved that minimizes redesign cost while satisfying system requirements. This formal methodology for Plant-Limited Co-Design (PLCD) is demonstrated using a robotic manipulator design problem. The PLCD result costs significantly less than the full redesign, and parametric studies illustrate the tradeoff between redesign cost and performance. It is shown that the proposed sensitivity analysis results in the lowest cost limited redesign.

  11. Is the time right for a redefinition of the second by optical atomic clocks?

    NASA Astrophysics Data System (ADS)

    Gill, Patrick

    2016-06-01

    Given the dramatic rate of progress in optical atomic clocks over the last decade, this paper presents the current state of play, and considers the possibilities, implications and timescales for a potential redefinition of the SI second in terms of an optical reference transition. In particular, the question of choice of a future standard is addressed, together with the requirements to accurately compare realisations of such standards, both for clocks local to, and remote from each other. Current performances of various optical clock systems are examined and possibilities for moving beyond potential limitations by alternative strategies are outlined.

  12. On the stable limit cycle of a weight-driven pendulum clock

    NASA Astrophysics Data System (ADS)

    Llibre, J.; Teixeira, M. A.

    2010-09-01

    In a recent paper (Denny 2002 Eur. J. Phys. 23 449-58), entitled 'The pendulum clock: a venerable dynamical system', Denny showed that in a first approximation the steady-state motion of a weight-driven pendulum clock is shown to be a stable limit cycle. He placed the problem in a historical context and obtained an approximate solution using the Green function. In this paper we obtain the same result with an alternative proof via known issues of classical averaging theory. This theory provides a useful means to study a planar differential equation derived from the pendulum clock, accessible to Master and PhD students.

  13. The perennial clock is an essential timer for seasonal growth events and cold hardiness.

    PubMed

    Johansson, Mikael; Ibáñez, Cristian; Takata, Naoki; Eriksson, Maria E

    2014-01-01

    Over the last several decades, changes in global temperatures have led to changes in local environments affecting the growth conditions for many species. This is a trend that makes it even more important to understand how plants respond to local variations and seasonal changes in climate. To detect daily and seasonal changes as well as acute stress factors such as cold and drought, plants rely on a circadian clock. This chapter introduces the current knowledge and literature about the setup and function of the circadian clock in various tree and perennial species, with a focus on the Populus genus. PMID:24792060

  14. Analysis of plant harvest indices for bioregenerative life support systems

    NASA Technical Reports Server (NTRS)

    Velayudhan, A.; Kohlmann, K. L.; Westgate, P. J.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    Harvest indices, which are measures of the ratio of edible to total plant weight, are redefined to include edible sugars derived from enzymatic hydrolysis of the cellulose content of inedible plant components. Compositional analysis and carbohydrate contents of rapeseed, rice, soybeans, cowpea, wheat, sweet potato, white potato, and lettuce were analyzed to develop such generalized harvest indices. Cellulose conversion is shown to extend considerably the food available from plants otherwise grown for their oil and protein content in a bioregenerative life support system.

  15. Controlled ecological life support system higher plant flight experiments

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Wheeler, R. M.

    1984-01-01

    Requirements for spaceflight experments which involve higher plants were determined. The plants are studied for use in controlled ecological life support systems (CELSS). Two categories of research requirements are discussed: (1) the physical needs which include nutrient, water and gas exchange requirements; (2) the biological and physiological functions which affect plants in zero gravity environments. Physical problems studies are given the priority since they affect all biological experiments.

  16. ANATOMY AND PHYSIOLOGY OF PLANT CONDUCTIVE SYSTEMS

    EPA Science Inventory

    Mathematical models considered in this book are representations of the physical features and chemical reactions that define interactions between plants and their environment. y Centering attention on equations, it is easy to lose sight of the intricate and complex nature of the p...

  17. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    NASA Technical Reports Server (NTRS)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  18. A Study on the Steering Strategy for the Master Clock

    NASA Astrophysics Data System (ADS)

    Zhao, S. H.; Wang, Z. M.; Yin, D. S.

    2014-07-01

    A physical realization of UTC (Coordinated Universal Time) produced by the master clock system in a time laboratory is named UTC(k). In order to make the deviation of UTC(k) from UTC as small as possible, and keep high short-term and long-term frequency stabilities as well, a new steering algorithm is proposed, and the detailed algorithm is as follows: Firstly, a stable reference time scale (TA) for real-time monitoring UTC(NTSC) is introduced. The time scale algorithm generating TA, which is computed as a weighted average of about 22 free-running atomic clocks at National Time Service Center (NTSC), is based on the ALGOS algorithm. And the weighting procedure has been designed to optimize the short-term frequency stability of the scale. Secondly, the frequency offset is calculated. (1) The frequency of the master clock in the next time interval is calculated; (2) The phase difference between TA and UTC(NTSC) is deducted; (3) The final frequency offset is generated on the basis of above steps. A software is compiled according to this algorithm. The results calculated with the software are sent to the microphase stepper automatically, so that the time signal derived from the steered master clock can be accurate, meanwhile its stability is not influenced. Finally, the test results show that the new master clock steering strategy can control the phase offset within ±{15 ns}, meanwhile it can also improve its short-term stability on the condition that its long-term one is not influenced.

  19. A Study on the Steering Strategy for the Master Clock

    NASA Astrophysics Data System (ADS)

    Zhao, Shu-Hong; Wang, Zheng-Ming; Yin, Dong-Shan

    2015-01-01

    A physical realization of UTC (Coordinated Universal Time) by the master clock system in a time laboratory is named UTC(k). In order to make the deviation of UTC(k) from UTC as small as possible, and keep high short-term and long-term frequency stabilities as well, a new steering algorithm is proposed, and the detailed algorithm is as follows: Firstly, a stable reference time scale (TA) for real-time monitoring UTC(NTSC) is introduced. The time scale algorithm for generating TA, which is computed as a weighted average of about 22 free-running atomic clocks at the National Time Service Center (NTSC), is based on the ALGOS algorithm. And the weighting procedure is designed to optimize the short-term frequency stability of the scale. Secondly, the frequency offset is calculated. (1) The frequency of the master clock in the next time interval is calculated; (2) The phase difference between TA and UTC(NTSC) is deducted; (3) The final frequency offset is generated on the basis of above steps. A software is compiled according to this algorithm. The results calculated with the software are sent to the microphase stepper automatically, so that the time signal derived from the steered master clock can be accurate, meanwhile its stability is not influenced. Finally, the experimental result shows that the new master clock steering strategy can control the phase offset within ±15 ns, meanwhile it can also improve its short-term stability on the condition that its long-term one is not influenced.

  20. The Clock gene clone and its circadian rhythms in Pelteobagrus vachelli

    NASA Astrophysics Data System (ADS)

    Qin, Chuanjie; Shao, Ting

    2015-05-01

    The Clock gene, a key molecule in circadian systems, is widely distributed in the animal kingdom. We isolated a 936-bp partial cDNA sequence of the Clock gene ( Pva-clock) from the darkbarbel catfish Pelteobagrus vachelli that exhibited high identity with Clock genes of other species of fish and animals (65%-88%). The putative domains included a basic helix-loop-helix (bHLH) domain and two period-ARNT-single-minded (PAS) domains, which were also similar to those in other species of fish and animals. Pva-Clock was primarily expressed in the brain, and was detected in all of the peripheral tissues sampled. Additionally, the pattern of Pva-Clock expression over a 24-h period exhibited a circadian rhythm in the brain, liver and intestine, with the acrophase at zeitgeber time 21:35, 23:00, and 23:23, respectively. Our results provide insight into the function of the molecular Clock of P. vachelli.

  1. Noninertial coordinate time: A new concept affecting time standards, time transfers, and clock synchronization

    NASA Technical Reports Server (NTRS)

    Deines, Steven D.

    1992-01-01

    Relativity compensations must be made in precise and accurate measurements whenever an observer is accelerated. Although many believe the Earth-centered frame is sufficiently inertial, accelerations of the Earth, as evidenced by the tides, prove that it is technically a noninertial system for even an Earth-based observer. Using the constant speed of light, a set of fixed remote clocks in an inertial frame can be synchronized to a fixed master clock transmitting its time in that frame. The time on the remote clock defines the coordinate time at that coordinate position. However, the synchronization procedure for an accelerated frame is affected, because the distance between the master and remote clocks is altered due to the acceleration of the remote clock toward or away from the master clock during the transmission interval. An exact metric that converts observations from noninertial frames to inertial frames was recently derived. Using this metric with other physical relationships, a new concept of noninertial coordinate time is defined. This noninertial coordinate time includes all relativity compensations. This new issue raises several timekeeping issues, such as proper time standards, time transfer process, and clock synchronization, all in a noninertial frame such as Earth.

  2. Discrete gene replication events drive coupling between the cell cycle and circadian clocks

    PubMed Central

    Paijmans, Joris; Bosman, Mark; ten Wolde, Pieter Rein; Lubensky, David K.

    2016-01-01

    Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push–pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene. PMID:27035936

  3. Performance Analysis of Satellite Clock Bias Based on Wavelet Analysis and Neural Network

    NASA Astrophysics Data System (ADS)

    Guo, C. J.; Teng, Y. L.

    2010-10-01

    In the field of the real-time GPS precise point positioning (PPP), the real-time and reliable prediction of satellite clock bias (SCB) is one key to realize the real-time GPS PPP with high accuracy. The satellite borne GPS atomic clock has high frequency, is very sensitive and extremely easy to be influenced by the outside world and its own factors. So it is very difficult to master its complicated and detailed law of change. With the above characters, a novel four-stage method for SCB prediction based on wavelet analysis and neural network is proposed. The basic ideas, prediction models and steps of clock bias prediction based on wavelet analysis and radial basis function (RBF) network are discussed, respectively. This model adopts "sliding window" to compartmentalize data and utilizes neural network to prognosticate coefficients of clock bias sequence at each layer after wavelet analysis and wiping off noise. As a result, the intricate and meticulous diversification rule of clock bias sequence is obtained more accurately and the clock bias sequence is better approached. Compared with the grey system model and neural network model, a careful precision analysis of SCB prediction is made to verify the feasibility and validity of this proposed method by using the performance parameters of GPS satellite clocks. The simulation results show that the prediction precision of this novel model is much better. This model can afford the SCB prediction with relatively high precision for real-time GPS PPP.

  4. A novel mechanism controlling resetting speed of the circadian clock to environmental stimuli.

    PubMed

    Pilorz, Violetta; Cunningham, Peter S; Jackson, Anthony; West, Alexander C; Wager, Travis T; Loudon, Andrew S I; Bechtold, David A

    2014-03-31

    Many aspects of mammalian physiology are driven through the coordinated action of internal circadian clocks. Clock speed (period) and phase (temporal alignment) are fundamental to an organism's ability to synchronize with its environment. In humans, lifestyles that disturb these clocks, such as shift work, increase the incidence of diseases such as cancer and diabetes. Casein kinases 1δ and ε are closely related clock components implicated in period determination. However, CK1δ is so dominant in this regard that it remains unclear what function CK1ε normally serves. Here, we reveal that CK1ε dictates how rapidly the clock is reset by environmental stimuli. Genetic disruption of CK1ε in mice enhances phase resetting of behavioral rhythms to acute light pulses and shifts in light cycle. This impact of CK1ε targeting is recapitulated in isolated brain suprachiasmatic nucleus and peripheral (lung) clocks during NMDA- or temperature-induced phase shift in association with altered PERIOD (PER) protein dynamics. Importantly, accelerated re-entrainment of the circadian system in vivo and in vitro can be achieved in wild-type animals through pharmacological inhibition of CK1ε. These studies therefore reveal a role for CK1ε in stabilizing the circadian clock against phase shift and highlight it as a novel target for minimizing physiological disturbance in shift workers. PMID:24656826

  5. Variation characteristics of chlorpyrifos in nonsterile wetland plant hydroponic system.

    PubMed

    Wang, Chuan; Zhou, Qiaohong; Zhang, Liping; Zhang, Yan; Xiao, Enrong; Wu, Zhenbin

    2013-01-01

    Six wetland plants were investigated for their effect on the degradation characteristics of chlorpyrifos in nonsterile hydroponic system at constant temperature of 28 degrees C. The results showed that the removal rates of chlorpyrifos in the water of plant systems were 1.26-5.56% higher than that in the control without plants. Scirpus validus and Typha angustifolia were better than other hygrophytes in elimination of chlorpyrifos. The removal rates of the two systems were up to 88%. Plants of acaulescent group had an advantage over caulescent group in removing chlorpyrifos. Phytoaccumulation of chlorpyrifos was observed, and the order of chlorpyrifos concentration in different plant tissues was root > stem > leaf. It was also found that chlorpyrifos and its metabolite TCP decreased rapidly at the initial step of the experiment. PMID:23819296

  6. Developing a synthetic signal transduction system in plants.

    PubMed

    Morey, Kevin J; Antunes, Mauricio S; Albrecht, Kirk D; Bowen, Tessa A; Troupe, Jared F; Havens, Keira L; Medford, June I

    2011-01-01

    One area of focus in the emerging field of plant synthetic biology is the manipulation of systems involved in sensing and response to environmental signals. Sensing and responding to signals, including ligands, typically involves biological signal transduction. Plants use a wide variety of signaling systems to sense and respond to their environment. One of these systems, a histidine kinase (HK) based signaling system, lends itself to manipulation using the tools of synthetic biology. Both plants and bacteria use HKs to relay signals, which in bacteria can involve as few as two proteins (two-component systems or TCS). HK proteins are evolutionarily conserved between plants and bacteria and plant HK components have been shown to be functional in bacteria. We found that this conservation also applies to bacterial HK components which can function in plants. This conservation of function led us to hypothesize that synthetic HK signaling components can be designed and rapidly tested in bacteria. These novel HK signaling components form the foundation for a synthetic signaling system in plants, but typically require modifications such as codon optimization and proper targeting to allow optimal function. We describe the process and methodology of producing a synthetic signal transduction system in plants. We discovered that the bacterial response regulator (RR) PhoB shows HK-dependent nuclear translocation in planta. Using this discovery, we engineered a partial synthetic pathway in which a synthetic promoter (PlantPho) is activated using a plant-adapted PhoB (PhoB-VP64) and the endogenous HK-based cytokinin signaling pathway. Building on this work, we adapted an input or sensing system based on bacterial chemotactic binding proteins and HKs, resulting in a complete eukaryotic signal transduction system. Input to our eukaryotic signal transduction system is provided by a periplasmic binding protein (PBP), ribose-binding protein (RBP). RBP interacts with the membrane

  7. Nuclear plant-aging research on reactor protection systems

    SciTech Connect

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

  8. Nuclear power plant alarm systems: Problems and issues

    SciTech Connect

    O'Hara, J.M.; Brown, W.S.

    1991-01-01

    Despite the incorporation of advanced technology into nuclear power plant alarm systems, human factors problems remain. This paper identifies to be addressed in order to allow advanced technology to be used effectively in the design of nuclear power plant alarm systems. The operator's use and processing of alarm system information will be considered. Based upon a review of alarm system research, issues related to general system design, alarm processing, display and control are discussed. It is concluded that the design of effective alarm systems depends on an understanding of the information processing capabilities and limitations of the operator. 39 refs.

  9. Dynamics of a plant-herbivore-predator system with plant-toxicity

    USGS Publications Warehouse

    Feng, Zhilan; Qiu, Zhipeng; Liu, Rongsong; DeAngelis, Donald L.

    2011-01-01

    A system of ordinary differential equations is considered that models the interactions of two plant species populations, an herbivore population, and a predator population. We use a toxin-determined functional response to describe the interactions between plant species and herbivores and use a Holling Type II functional response to model the interactions between herbivores and predators. In order to study how the predators impact the succession of vegetation, we derive invasion conditions under which a plant species can invade into an environment in which another plant species is co-existing with a herbivore population with or without a predator population. These conditions provide threshold quantities for several parameters that may play a key role in the dynamics of the system. Numerical simulations are conducted to reinforce the analytical results. This model can be applied to a boreal ecosystem trophic chain to examine the possible cascading effects of predator-control actions when plant species differ in their levels of toxic defense.

  10. Potential of plant genetic systems for monitoring and screening mutagens

    PubMed Central

    Nilan, R. A.

    1978-01-01

    Plants have too long been ignored as useful screening and monitoring systems of environmental mutagens. However, there are about a dozen reliable, some even unique, plant genetic systems that can increase the scope and effectiveness of chemical and physical mutagen screening and monitoring procedures. Some of these should be included in the Tier II tests. Moreover, plants are the only systems now in use as monitors of genetic effects caused by polluted atmosphere and water and by pesticides. There are several major advantages of the plant test systems which relate to their reproductive nature, easy culture and growth habits that should be considered in mutagen screening and monitoring. In addition to these advantages, the major plant test systems exhibit numerous genetic and chromosome changes for determining the effects of mutagens. Some of these have not yet been detected in other nonmammalian and mammalian test systems, but probably occur in the human organism. Plants have played major roles in various aspects of mutagenesis research, primarily in mutagen screening (detection and verification of mutagenic activity), mutagen monitoring, and determining mutagen effects and mechanisms of mutagen action. They have played lesser roles in quantification of mutagenic activity and understanding the nature of induced mutations. Mutagen monitoring with plants, especially in situ on land or in water, will help determine potential genetic hazards of air and water pollutants and protect the genetic purity of crop plants and the purity of the food supply. The Tradescantia stamen-hair system is used in a mobile laboratory for determining the genetic effects of industrial and automobile pollution in a number of sites in the U.S.A. The fern is employed for monitoring genetic effects of water pollution in the Eastern states. The maize pollen system and certain weeds have monitored genetic effects of pesticides. Several other systems that have considerable value and should be

  11. CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses

    PubMed Central

    Lai, Alvina Grace; Doherty, Colleen J.; Mueller-Roeber, Bernd; Kay, Steve A.; Schippers, Jos H. M.; Dijkwel, Paul P.

    2012-01-01

    Organisms have evolved endogenous biological clocks as internal timekeepers to coordinate metabolic processes with the external environment. Here, we seek to understand the mechanism of synchrony between the oscillator and products of metabolism known as Reactive Oxygen Species (ROS) in Arabidopsis thaliana. ROS-responsive genes exhibit a time-of-day–specific phase of expression under diurnal and circadian conditions, implying a role of the circadian clock in transcriptional regulation of these genes. Hydrogen peroxide production and scavenging also display time-of-day phases. Mutations in the core-clock regulator, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), affect the transcriptional regulation of ROS-responsive genes, ROS homeostasis, and tolerance to oxidative stress. Mis-expression of EARLY FLOWERING 3, LUX ARRHYTHMO, and TIMING OF CAB EXPRESSION 1 affect ROS production and transcription, indicating a global effect of the clock on the ROS network. We propose CCA1 as a master regulator of ROS homeostasis through association with the Evening Element in promoters of ROS genes in vivo to coordinate time-dependent responses to oxidative stress. We also find that ROS functions as an input signal that affects the transcriptional output of the clock, revealing an important link between ROS signaling and circadian output. Temporal coordination of ROS signaling by CCA1 and the reciprocal control of circadian output by ROS reveal a mechanistic link that allows plants to master oxidative stress responses. PMID:23027948

  12. Screening the National Plant Germplasm System's Garlic Collection for Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS Western Regional Plant Introduction Station (WRPIS) collects, maintains, and distributes garlic (Allium sativum) accessions as part of the National Plant Germplasm System. In the regeneration process, accessions are grown under field conditions at the WRPIS farm in Pullman, Washington....

  13. Comment on 'Carbon and fullerene nanomaterials in plant system'.

    PubMed

    Dasgupta-Schubert, N; Tiwari, D K; Villaseñor Cendejas, L M

    2016-01-01

    A recent review article entitled "Carbon and fullerene nanomaterials in plant system" published in this journal, misinterprets a component of our (published) work on the interactions of carbon nanotubes with plants. In this comment, we provide the rationale to counter this misconstruction. PMID:27066901

  14. RNAi control of aflatoxins in peanut plants, a multifactorial system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA-interference (RNAi)-mediated control of aflatoxin contamination in peanut plants is a multifactorial and hyper variable system. The use of RNAi biotechnology to silence single genes in plants has inherently high-variability among transgenic events. Also the level of expression of small interfe...

  15. The plant vascular system: Evolution, development and functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of ...

  16. Bolted Flanged Connection for Critical Plant/Piping Systems

    SciTech Connect

    Efremov, Anatoly

    2006-07-01

    A novel type of Bolted Flanged Connection with bolts and gasket manufactured on a basis of advanced Shape Memory Alloys is examined. Presented approach combined with inverse flexion flange design of plant/piping joint reveals a significant increase of internal pressure under conditions of a variety of operating temperatures relating to critical plant/piping systems. (author)

  17. Plutonium finishing plant safety systems and equipment list

    SciTech Connect

    Bergquist, G.G.

    1995-01-06

    The Safety Equipment List (SEL) supports Analysis Report (FSAR), WHC-SD-CP-SAR-021 and the Plutonium Finishing Plant Operational Safety Requirements (OSRs), WHC-SD-CP-OSR-010. The SEL is a breakdown and classification of all Safety Class 1, 2, and 3 equipment, components, or system at the Plutonium Finishing Plant complex.

  18. Simulated coal gas MCFC power plant system verification

    SciTech Connect

    1998-02-01

    The following tasks are included in this project: Commercialization; Power plant development; Manufacturing facilities development; Test facility development; Stack research; and Advanced research and technology development. This report briefly describes the subtasks still to be completed: Power plant system test with reformed natural gas; Upgrading of existing, US government-owned, test facilities; and Advanced MCFC component research.

  19. Phytozome System for Comparative Plant Genomics

    SciTech Connect

    2011-09-27

    Phytozome is a joint project of the Department of Energy's Joint Genome Institute and the UC Berkeley Center for Integrative Genomics to facilitate comparative genomic studies amongst green plants. Families of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These families allow easy access to clade specific orthology/paralogy relationships as well as clade specific genes and gene expansions. As of release 7.0, Phytozome provides access to twenty-five sequenced and annotated green plant genomes which have been clustered into gene families at eleven evolutionarily significant nodes., Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, TAIR, JGI are lyper-linked and searchable.

  20. Phytozome System for Comparative Plant Genomics

    Energy Science and Technology Software Center (ESTSC)

    2011-09-27

    Phytozome is a joint project of the Department of Energy's Joint Genome Institute and the UC Berkeley Center for Integrative Genomics to facilitate comparative genomic studies amongst green plants. Families of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These families allow easy access to clade specific orthology/paralogy relationships as well as clade specific genes and gene expansions. As of release 7.0, Phytozome providesmore » access to twenty-five sequenced and annotated green plant genomes which have been clustered into gene families at eleven evolutionarily significant nodes., Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, TAIR, JGI are lyper-linked and searchable.« less