Sample records for plant gene family

  1. Evolutionary analyses of non-family genes in plants

    SciTech Connect

    Ye, Chuyu [ORNL; Li, Ting [ORNL; Yin, Hengfu [ORNL; Weston, David [ORNL; Tuskan, Gerald A [ORNL; Tschaplinski, Timothy J [ORNL; Yang, Xiaohan [ORNL

    2013-03-01

    There are a large number of non-family (NF) genes that do not cluster into families with three or more members per genome. While gene families have been extensively studied, a systematic analysis of NF genes has not been reported. We performed comparative studies on NF genes in 14 plant species. Based on the clustering of protein sequences, we identified ~94,000 NF genes across these species that were divided into five evolutionary groups: Viridiplantae-wide, angiosperm-specific, monocot-specific, dicot-specific, and those that were species-specific. Our analysis revealed that the NF genes resulted largely from less frequent gene duplications and/or a higher rate of gene loss after segmental duplication relative to genes in both low-copy-number families (LF; 3 10 copies per genome) and high-copy-number families (HF; >10 copies). Furthermore, we identified functions enriched in the NF gene set as compared with the HF genes. We found that NF genes were involved in essential biological processes shared by all plant lineages (e.g., photosynthesis and translation), as well as gene regulation and stress responses associated with phylogenetic diversification. In particular, our analysis of an Arabidopsis protein-protein interaction network revealed that hub proteins with the top 10% most connections were over-represented in the NF set relative to the HF set. This research highlights the roles that NF genes may play in evolutionary and functional genomics research.

  2. Evolutionary analyses of non-family genes in plants

    SciTech Connect

    Ye, Chuyu [ORNL; Li, Ting [ORNL; Yin, Hengfu [ORNL; Weston, David [ORNL; Tuskan, Gerald A [ORNL; Tschaplinski, Timothy J [ORNL; Yang, Xiaohan [ORNL

    2013-01-01

    There are a large number of non-family (NF) genes that do not cluster into families with three or more members per genome. While gene families have been extensively studied, a systematic analysis of NF genes has not been reported. We performed comparative studies on NF genes in 14 plant species. Based on the clustering of protein sequences, we identified ~94 000 NF genes across these species that were divided into five evolutionary groups: Viridiplantae wide, angiosperm specific, monocot specific, dicot specific, and those that were species specific. Our analysis revealed that the NF genes resulted largely from less frequent gene duplications and/or a higher rate of gene loss after segmental duplication relative to genes in both lowcopy- number families (LF; 3 10 copies per genome) and high-copy-number families (HF; >10 copies). Furthermore, we identified functions enriched in the NF gene set as compared with the HF genes. We found that NF genes were involved in essential biological processes shared by all plant lineages (e.g. photosynthesis and translation), as well as gene regulation and stress responses associated with phylogenetic diversification. In particular, our analysis of an Arabidopsis protein protein interaction network revealed that hub proteins with the top 10% most connections were over-represented in the NF set relative to the HF set. This research highlights the roles that NF genes may play in evolutionary and functional genomics research.

  3. The sieve element occlusion gene family in dicotyledonous plants

    PubMed Central

    Jekat, Stephan B; Nordzieke, Steffen; Reineke, Anna R; Müller, Boje; Bornberg-Bauer, Erich; Noll, Gundula A

    2011-01-01

    Sieve element occlusion (SEO) genes encoding forisome subunits have been identified in Medicago truncatula and other legumes. Forisomes are structural phloem proteins uniquely found in Fabaceae sieve elements. They undergo a reversible conformational change after wounding, from a condensed to a dispersed state, thereby blocking sieve tube translocation and preventing the loss of photoassimilates. Recently, we identified SEO genes in several non-Fabaceae plants (lacking forisomes) and concluded that they most probably encode conventional non-forisome P-proteins. Molecular and phylogenetic analysis of the SEO gene family has identified domains that are characteristic for SEO proteins. Here, we extended our phylogenetic analysis by including additional SEO genes from several diverse species based on recently published genomic data. Our results strengthen the original assumption that SEO genes seem to be widespread in dicotyledonous angiosperms, and further underline the divergent evolution of SEO genes within the Fabaceae. PMID:21422825

  4. Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid

    E-print Network

    dePamphilis, Claude

    Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth Hongzhi Kong1,* , Lena L. Landherr2 , Michael W. Frohlich3 , Jim Leebens-Mack2.edu). Present address: Department of Plant Biology, University of Georgia, Athens, GA 30602, USA Summary Gene

  5. Antiquity and Evolution of the MADS-Box Gene Family Controlling Flower Development in Plants

    E-print Network

    dePamphilis, Claude

    Antiquity and Evolution of the MADS-Box Gene Family Controlling Flower Development in Plants Genetics and Department of Biology, Pennsylvania State University MADS-box genes in plants control various of floral MADS-box genes by conducting molecular evolutionary genetics analyses. Our results suggest

  6. Different evolutionary histories of two cation/proton exchanger gene families in plants

    PubMed Central

    2013-01-01

    Background Gene duplication events have been proposed to be involved in the adaptation of plants to stress conditions; precisely how is unclear. To address this question, we studied the evolution of two families of antiporters. Cation/proton exchangers are important for normal cell function and in plants, Na+,K+/H+ antiporters have also been implicated in salt tolerance. Two well-known plant cation/proton antiporters are NHX1 and SOS1, which perform Na+ and K+ compartmentalization into the vacuole and Na+ efflux from the cell, respectively. However, our knowledge about the evolution of NHX and SOS1 stress responsive gene families is still limited. Results In this study we performed a comprehensive molecular evolutionary analysis of the NHX and SOS1 families. Using available sequences from a total of 33 plant species, we estimated gene family phylogenies and gene duplication histories, as well as examined heterogeneous selection pressure on amino acid sites. Our results show that, while the NHX family expanded and specialized, the SOS1 family remained a low copy gene family that appears to have undergone neofunctionalization during its evolutionary history. Additionally, we found that both families are under purifying selection although SOS1 is less constrained. Conclusions We propose that the different evolution histories are related with the proteins’ function and localization, and that the NHX and SOS1 families are examples of two different evolutionary paths through which duplication events may result in adaptive evolution of stress tolerance. PMID:23822194

  7. Conservation and diversity of gene families explored using the CODEHOP strategy in higher plants

    PubMed Central

    Morant, Marc; Hehn, Alain; Werck-Reichhart, Danièle

    2002-01-01

    Background Availability of genomewide information on an increasing but still limited number of plants offers the possibility of identifying orthologues, or related genes, in species with major economical impact and complex genomes. In this paper we exploit the recently described CODEHOP primer design and PCR strategy for targeted isolation of homologues in large gene families. Results The method was tested with two different objectives. The first was to analyze the evolution of the CYP98 family of cytochrome P450 genes involved in 3-hydroxylation of phenolic compounds and lignification in a broad range of plant species. The second was to isolate an orthologue of the sorghum glucosyl transferase UGT85B1 and to determine the complexity of the UGT85 family in wheat. P450s of the CYP98 family or closely related sequences were found in all vascular plants. No related sequence was found in moss. Neither extensive duplication of the CYP98 genes nor an orthologue of UGT85B1 were found in wheat. The UGT85A subfamily was however found to be highly variable in wheat. Conclusions Our data are in agreement with the implication of CYP98s in lignification and the evolution of 3-hydroxylation of lignin precursors with vascular plants. High conservation of the CYP98 family strongly argues in favour of an essential function in plant development. Conversely, high duplication and diversification of the UGT85A gene family in wheat suggests its involvement in adaptative response and provides a valuable pool of genes for biotechnological applications. This work demonstrates the high potential of the CODEHOP strategy for the exploration of large gene families in plants. PMID:12153706

  8. Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom

    PubMed Central

    2009-01-01

    Background As a major component of plant cell wall, lignin plays important roles in mechanical support, water transport, and stress responses. As the main cause for the recalcitrance of plant cell wall, lignin modification has been a major task for bioenergy feedstock improvement. The study of the evolution and function of lignin biosynthesis genes thus has two-fold implications. First, the lignin biosynthesis pathway provides an excellent model to study the coordinative evolution of a biochemical pathway in plants. Second, understanding the function and evolution of lignin biosynthesis genes will guide us to develop better strategies for bioenergy feedstock improvement. Results We analyzed lignin biosynthesis genes from fourteen plant species and one symbiotic fungal species. Comprehensive comparative genome analysis was carried out to study the distribution, relatedness, and family expansion of the lignin biosynthesis genes across the plant kingdom. In addition, we also analyzed the comparative synteny map between rice and sorghum to study the evolution of lignin biosynthesis genes within the Poaceae family and the chromosome evolution between the two species. Comprehensive lignin biosynthesis gene expression analysis was performed in rice, poplar and Arabidopsis. The representative data from rice indicates that different fates of gene duplications exist for lignin biosynthesis genes. In addition, we also carried out the biomass composition analysis of nine Arabidopsis mutants with both MBMS analysis and traditional wet chemistry methods. The results were analyzed together with the genomics analysis. Conclusion The research revealed that, among the species analyzed, the complete lignin biosynthesis pathway first appeared in moss; the pathway is absent in green algae. The expansion of lignin biosynthesis gene families correlates with substrate diversity. In addition, we found that the expansion of the gene families mostly occurred after the divergence of monocots and dicots, with the exception of the C4H gene family. Gene expression analysis revealed different fates of gene duplications, largely confirming plants are tolerant to gene dosage effects. The rapid expansion of lignin biosynthesis genes indicated that the translation of transgenic lignin modification strategies from model species to bioenergy feedstock might only be successful between the closely relevant species within the same family. PMID:19811687

  9. The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion

    PubMed Central

    2012-01-01

    Background Plant polyphenol oxidases (PPOs) are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals. Results Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss) and Glycine max (soybean) each had 11 genes. Populus trichocarpa (poplar) contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae) genomes or Arabidopsis (A. lyrata and A. thaliana). We found that many PPOs contained one or two introns often near the 3’ terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes. Conclusion Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic relationships based on primary sequence data. The dynamic nature of this gene family differentiates PPO from other oxidative enzymes, and is consistent with a protein important for a diversity of functions relating to environmental adaptation. PMID:22897796

  10. Analysis of phylogenetic and functional diverge in plant nine-cis epoxycarotenoid dioxygenase gene family.

    PubMed

    Priya, R; Siva, Ramamoorthy

    2015-07-01

    During different environmental stress conditions, plant growth is regulated by the hormone abscisic acid (an apocarotenoid). In the biosynthesis of abscisic acid, the oxidative cleavage of cis-epoxycarotenoid catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED) is the crucial step. The NCED genes were isolated in numerous plant species and those genes were phylogenetically investigated to understand the evolution of NCED genes in various plant lineages comprising lycophyte, gymnosperm, dicot and monocot. A total of 93 genes were obtained from 48 plant species to statistically estimate their sequence conservation and functional divergence. Selaginella moellendorffii appeared to be evolutionarily distinct from those of the angiosperms, insisting the substantial influence of natural selection pressure on NCED genes. Further, using exon-intron structure analysis, the gene structures of NCED were found to be conserved across some species. In addition, the substitution rate ratio of non-synonymous (Ka) versus synonymous (Ks) mutations using the Bayesian inference approach, depicted the critical amino acid residues for functional divergence. A significant functional divergence was found between some subgroups through the co-efficient of type-I functional divergence. Our results suggest that the evolution of NCED genes occurred by duplication, diversification and exon intron loss events. The site-specific profile and functional diverge analysis revealed NCED genes might facilitate the tissue-specific functional divergence in NCED sub-families, that could combat different environmental stress conditions aiding plant survival. PMID:25929830

  11. Characterisation of the FAD2 gene family from Hiptage benghalensis: a ricinoleic acid accumulating plant.

    PubMed

    Zhou, Xue-Rong; Singh, Surinder P; Green, Allan G

    2013-08-01

    We have characterised the FAD2 gene family from Hiptage benghalensis, a tropical plant that accumulates high levels of ricinoleic acid in its seeds. Functional characterisation of six FAD2 gene family members showed that two of them were capable of functioning as ?12-hydroxylases while the other FAD2 members were confirmed to be ?12-desaturases. The ?12-hydroxylation function of these two genes was confirmed in yeast cells, using C16:1(?9) and C18:1(?9) monounsaturated fatty acids as substrates. These ?12-hydroxylases, like the other ?12-hydroxylases previously cloned from plants Ricinus communis (castor), Physaria fendleri and fungus Claviceps purpurea, also showed some ?12-desaturase activity. The hydroxylation activity of the two Hiptage hydroxylases was further confirmed by their expression in the Arabidopsis fad2/fae1 double mutant where they were able to produce equivalent or higher levels hydroxylated fatty acids in the seed oil when compared with the other known hydroxylases. PMID:23747094

  12. Conserved and diversified gene families of monovalent cation/h(+) antiporters from algae to flowering plants.

    PubMed

    Chanroj, Salil; Wang, Guoying; Venema, Kees; Zhang, Muren Warren; Delwiche, Charles F; Sze, Heven

    2012-01-01

    All organisms have evolved strategies to regulate ion and pH homeostasis in response to developmental and environmental cues. One strategy is mediated by monovalent cation-proton antiporters (CPA) that are classified in two superfamilies. Many CPA1 genes from bacteria, fungi, metazoa, and plants have been functionally characterized; though roles of plant CPA2 genes encoding K(+)-efflux antiporter (KEA) and cation/H(+) exchanger (CHX) families are largely unknown. Phylogenetic analysis showed that three clades of the CPA1 Na(+)-H(+) exchanger (NHX) family have been conserved from single-celled algae to Arabidopsis. These are (i) plasma membrane-bound SOS1/AtNHX7 that share ancestry with prokaryote NhaP, (ii) endosomal AtNHX5/6 that is part of the eukaryote Intracellular-NHE clade, and (iii) a vacuolar NHX clade (AtNHX1-4) specific to plants. Early diversification of KEA genes possibly from an ancestral cyanobacterium gene is suggested by three types seen in all plants. Intriguingly, CHX genes diversified from three to four members in one subclade of early land plants to 28 genes in eight subclades of Arabidopsis. Homologs from Spirogyra or Physcomitrella share high similarity with AtCHX20, suggesting that guard cell-specific AtCHX20 and its closest relatives are founders of the family, and pollen-expressed CHX genes appeared later in monocots and early eudicots. AtCHX proteins mediate K(+) transport and pH homeostasis, and have been localized to intracellular and plasma membrane. Thus KEA genes are conserved from green algae to angiosperms, and their presence in red algae and secondary endosymbionts suggest a role in plastids. In contrast, AtNHX1-4 subtype evolved in plant cells to handle ion homeostasis of vacuoles. The great diversity of CHX genes in land plants compared to metazoa, fungi, or algae would imply a significant role of ion and pH homeostasis at dynamic endomembranes in the vegetative and reproductive success of flowering plants. PMID:22639643

  13. Genome-wide identification and analysis of membrane-bound O-acyltransferase (MBOAT) gene family in plants.

    PubMed

    Wang, Peng; Wang, Zhunian; Dou, Yongchao; Zhang, Xiaoxiao; Wang, Maoyuan; Tian, Xinmin

    2013-11-01

    Membrane bound O-acyl transferase (MBOAT) family is composed of gene members encoding a variety of acyltransferase enzymes, which play important roles in plant acyl lipid metabolism. Here, we present the first genome-enabled identification and analysis of MBOAT gene models in plants. In total, we identified 136 plant MBOAT sequences from 14 plant species with complete genomes. Phylogenetic relationship analyses suggested the plant MBOAT gene models fell into four major groups, two of which likely encode enzymes of diacylglycerol acyltransferase 1 (DGAT1) and lysophospholipid acyltransferase (LPLAT), respectively, with one-three copies of paralogs present in each of the most plant species. A group of gene sequences, which are homologous to Saccharomyces cerevisiae glycerol uptake proteins (GUP), was identified in plants; copy numbers were conserved, with only one copy represented in each of the most plant species; analyses showed that residues essential for acyltransferases were more prone to be conserved than vertebrate orthologs. Among four groups, one was inferred to emerge in land plants and experience a rapid expansion in genomes of angiosperms, which suggested their important roles in adaptation of plants in lands. Sequence and phylogeny analyses indicated that genes in all four groups encode enzymes with acyltransferases. Comprehensive sequence identification of MBOAT family members and investigation into classification provide a complete picture of the MBOAT gene family in plants, and could shed light into enzymatic functions of different MBOAT genes in plants. PMID:23928653

  14. Functional Evolution in the Plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Family

    PubMed Central

    Preston, Jill C.; Hileman, Lena C.

    2013-01-01

    The SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) family of transcription factors is functionally diverse, controlling a number of fundamental aspects of plant growth and development, including vegetative phase change, flowering time, branching, and leaf initiation rate. In natural plant populations, variation in flowering time and shoot architecture have major consequences for fitness. Likewise, in crop species, variation in branching and developmental rate impact biomass and yield. Thus, studies aimed at dissecting how the various functions are partitioned among different SPL genes in diverse plant lineages are key to providing insight into the genetic basis of local adaptation and have already garnered attention by crop breeders. Here we use phylogenetic reconstruction to reveal nine major SPL gene lineages, each of which is described in terms of function and diversification. To assess evidence for ancestral and derived functions within each SPL gene lineage, we use ancestral character state reconstructions. Our analyses suggest an emerging pattern of sub-functionalization, neo-functionalization, and possible convergent evolution following both ancient and recent gene duplication. Based on these analyses we suggest future avenues of research that may prove fruitful for elucidating the importance of SPL gene evolution in plant growth and development. PMID:23577017

  15. Plant Receptor-Like Kinase Gene Family: Diversity, Function, and Signaling

    NSDL National Science Digital Library

    Shin-Han Shiu (University of Wisconsin-Madison; The Department of Botany REV)

    2001-12-18

    A basic feature of all biological systems is the ability to sense and process information from chemical signals via cell-surface receptors. One prevalent class of receptors in both plants and animals is the receptor protein kinases. These proteins contain a signal-binding region located outside the cell linked to a region inside the cell called the protein kinase domain. The protein kinase domain transmits information to other cellular components by catalyzing the transfer of a phosphate group from adenosine triphosphate (ATP) to an amino acid residue on the target proteins. In animals and humans, the well-studied family of receptor tyrosine kinases (RTKs) mediates a wide range of signaling events at the cell surface. The importance of receptor protein kinases in plant biology was revealed by the discovery of a family of more than 400 genes coding for receptor-like kinases (RLKs) present in the recently sequenced genome of the model plant Arabidopsis. Unlike most animal RTKs, the plant RLKs use serine and threonine residues in proteins as targets for phosphorylation. Detailed studies of a handful of plant RLK genes have implicated them in the control of plant growth and development and in responses to pathogens. Multiple signals can be sensed by different RLKs, including peptides produced by neighboring cells, steroid hormones, and pathogen cell-wall proteins and carbohydrates. Major challenges for the future will include understanding the wide range of specific signaling functions performed by this large family of receptors and discovering how the information from this multitude of signal initiation points is integrated by the plant's cells.

  16. Analysis of Arabidopsis genome sequence reveals a large new gene family in plants.

    PubMed

    Ride, J P; Davies, E M; Franklin, F C; Marshall, D F

    1999-03-01

    A detailed analysis of the currently available Arabidopsis thaliana genomic sequence has revealed the presence of a large number of open reading frames with homology to the stigmatic self-incompatibility (S) genes of Papaver rhoeas. The products of these potential genes are all predicted to be relatively small, basic, secreted proteins with similar predicted secondary structures. We have named these potential genes SPH (S-protein homologues). Their presence appears to have been largely missed by the prediction methods currently used on the genomic sequence. Equivalent homologues could not be detected in the human, microbial, Drosophila or C. elegans genomic databases, suggesting a function specific to plants. Preliminary RT-PCR analysis indicates that at least two members of the family (SPH1, SPH8) are expressed, with expression being greatest in floral tissues. The gene family may total more than 100 members, and its discovery not only illustrates the importance of the genome sequencing efforts, but also indicates the extent of information which remains hidden after the initial trawl for potential genes. PMID:10344198

  17. The LATERAL ORGAN BOUNDARIES Gene Defines a Novel, Plant-Specific Gene Family1

    Microsoft Academic Search

    Bin Shuai; Cristina G. Reynaga-Pena; Patricia S. Springer

    2002-01-01

    The LATERAL ORGAN BOUNDARIES (LOB) gene in Arabidopsis defines a new conserved protein domain. LOB is expressed in a band of cells at the adaxial base of all lateral organs formed from the shoot apical meristem and at the base of lateral roots. LOB encodes a predicted protein that does not have recognizable functional motifs, but that contains a conserved

  18. Gene families as soft cliques with backbones: Amborella contrasted with other flowering plants

    PubMed Central

    2014-01-01

    Background Chaining is a major problem in constructing gene families. Results We define a new kind of cluster on graphs with strong and weak edges: soft cliques with backbones (SCWiB). This differs from other definitions in how it controls the "chaining effect", by ensuring clusters satisfy a tolerant edge density criterion that takes into account cluster size. We implement algorithms for decomposing a graph of similarities into SCWiBs. We compare examples of output from SCWiB and the Markov Cluster Algorithm (MCL), and also compare some curated Arabidopsis thaliana gene families with the results of automatic clustering. We apply our method to 44 published angiosperm genomes with annotation, and discover that Amborella trichopoda is distinct from all the others in having substantially and systematically smaller proportions of moderate- and large-size gene families. Conclusions We offer several possible evolutionary explanations for this result. PMID:25572777

  19. Species-Specific Expansion and Molecular Evolution of the 3-hydroxy-3-methylglutaryl Coenzyme A Reductase (HMGR) Gene Family in Plants

    PubMed Central

    Li, Wei; Liu, Wei; Wei, Hengling; He, Qiuling; Chen, Jinhong; Zhang, Baohong; Zhu, Shuijin

    2014-01-01

    The terpene compounds represent the largest and most diverse class of plant secondary metabolites which are important in plant growth and development. The 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR; EC 1.1.1.34) is one of the key enzymes contributed to terpene biosynthesis. To better understand the basic characteristics and evolutionary history of the HMGR gene family in plants, a genome-wide analysis of HMGR genes from 20 representative species was carried out. A total of 56 HMGR genes in the 14 land plant genomes were identified, but no genes were found in all 6 algal genomes. The gene structure and protein architecture of all plant HMGR genes were highly conserved. The phylogenetic analysis revealed that the plant HMGRs were derived from one ancestor gene and finally developed into four distinct groups, two in the monocot plants and two in dicot plants. Species-specific gene duplications, caused mainly by segmental duplication, led to the limited expansion of HMGR genes in Zea mays, Gossypium raimondii, Populus trichocarpa and Glycine max after the species diverged. The analysis of Ka/Ks ratios and expression profiles indicated that functional divergence after the gene duplications was restricted. The results suggested that the function and evolution of HMGR gene family were dramatically conserved throughout the plant kingdom. PMID:24722776

  20. Identification of genes of the plant-specific transcription-factor families cooperatively regulated by ethylene and jasmonate in Arabidopsis thaliana

    Microsoft Academic Search

    Toshitsugu Nakano; Kaoru Suzuki; Namie Ohtsuki; Yayoi Tsujimoto; Tatsuhito Fujimura; Hideaki Shinshi

    2006-01-01

    The analysis of expression patterns of transcription-factor genes will be the basis for a better understanding of their biological functions in plants. In this study, we designed and developed an oligo-DNA macroarray consisting of gene-specific probes of 60–65 nucleotides for 288 transcription-factor genes, which cover COL, DOF, ERF, and NAC family genes. To investigate transcription-factor genes that are cooperatively regulated

  1. Torn at the Genes One Family's Debate Over Genetically Altered Plants

    NSDL National Science Digital Library

    Jennifer Nelson

    2000-01-01

    The setting for this case is the family dinner table, where a heated discussion about genetically altered foods is taking place. Marsha Cumberland’s brother-in-law has joined the family for dinner. Ed is an industry official whose job it is to decide whether or not new products need pre-market approval by the FDA. He has just returned from a conference on transgenic foods.  When it turns out that some of the food on the dinner table is genetically modified, a debate ensues with different members of the family at different ends of the spectrum. Written for an introductory biology course, the case considers the scientific and ethical issues of genetically altered plants.

  2. Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls

    PubMed Central

    2014-01-01

    Background Pectins are acidic sugar-containing polysaccharides that are universally conserved components of the primary cell walls of plants and modulate both tip and diffuse cell growth. However, many of their specific functions and the evolution of the genes responsible for producing and modifying them are incompletely understood. The moss Physcomitrella patens is emerging as a powerful model system for the study of plant cell walls. To identify deeply conserved pectin-related genes in Physcomitrella, we generated phylogenetic trees for 16 pectin-related gene families using sequences from ten plant genomes and analyzed the evolutionary relationships within these families. Results Contrary to our initial hypothesis that a single ancestral gene was present for each pectin-related gene family in the common ancestor of land plants, five of the 16 gene families, including homogalacturonan galacturonosyltransferases, polygalacturonases, pectin methylesterases, homogalacturonan methyltransferases, and pectate lyase-like proteins, show evidence of multiple members in the early land plant that gave rise to the mosses and vascular plants. Seven of the gene families, the UDP-rhamnose synthases, UDP-glucuronic acid epimerases, homogalacturonan galacturonosyltransferase-like proteins, ?-1,4-galactan ?-1,4-galactosyltransferases, rhamnogalacturonan II xylosyltransferases, and pectin acetylesterases appear to have had a single member in the common ancestor of land plants. We detected no Physcomitrella members in the xylogalacturonan xylosyltransferase, rhamnogalacturonan I arabinosyltransferase, pectin methylesterase inhibitor, or polygalacturonase inhibitor protein families. Conclusions Several gene families related to the production and modification of pectins in plants appear to have multiple members that are conserved as far back as the common ancestor of mosses and vascular plants. The presence of multiple members of these families even before the divergence of other important cell wall-related genes, such as cellulose synthases, suggests a more complex role than previously suspected for pectins in the evolution of land plants. The presence of relatively small pectin-related gene families in Physcomitrella as compared to Arabidopsis makes it an attractive target for analysis of the functions of pectins in cell walls. In contrast, the absence of genes in Physcomitrella for some families suggests that certain pectin modifications, such as homogalacturonan xylosylation, arose later during land plant evolution. PMID:24666997

  3. Four transthyretin-like genes of the migratory plant-parasitic nematode Radopholus similis: Members of an extensive nematode-specific family

    Microsoft Academic Search

    Joachim Jacob; Bartel Vanholme; Annelies Haegeman; Godelieve Gheysen

    2007-01-01

    Screening 1154 ESTs from the plant-parasitic nematode Radopholus similis resulted in seven tags coding for proteins holding a transthyretin-like domain (PF01060). The seven ESTs corresponded to four different genes which were cloned from a cDNA library (accession numbers AM691117, AM691118, AM691119, AM691120). Transthyretin-like genes belong to a large family, different from the transthyretin and the transthyretin-related genes with whom they

  4. Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses

    Microsoft Academic Search

    Ann Moons

    2008-01-01

    The role of plant pleiotropic drug resistance (PDR) type ATP-binding cassette (ABC) transporters remains poorly understood.\\u000a We characterized the expression of the rice pleiotropic drug resistance (PDR) gene family in roots, where PDR transporters\\u000a are believed to have major functions. A prototypical oligonucleotide array was developed containing 70-mers chosen in the\\u000a gene-specific 3? untranslated regions of the rice PDR genes,

  5. Plant ALDH10 Family

    PubMed Central

    Kope?ný, David; Kon?itíková, Radka; Tylichová, Martina; Vigouroux, Armelle; Moskalíková, Hana; Soural, Miroslav; Šebela, Marek; Moréra, Solange

    2013-01-01

    Plant ALDH10 family members are aminoaldehyde dehydrogenases (AMADHs), which oxidize ?-aminoaldehydes to the corresponding acids. They have been linked to polyamine catabolism, osmoprotection, secondary metabolism (fragrance), and carnitine biosynthesis. Plants commonly contain two AMADH isoenzymes. We previously studied the substrate specificity of two AMADH isoforms from peas (PsAMADHs). Here, two isoenzymes from tomato (Solanum lycopersicum), SlAMADHs, and three AMADHs from maize (Zea mays), ZmAMADHs, were kinetically investigated to obtain further clues to the catalytic mechanism and the substrate specificity. We also solved the high resolution crystal structures of SlAMADH1 and ZmAMADH1a because these enzymes stand out from the others regarding their activity. From the structural and kinetic analysis, we can state that five residues at positions 163, 288, 289, 444, and 454 (PsAMADHs numbering) can, directly or not, significantly modulate AMADH substrate specificity. In the SlAMADH1 structure, a PEG aldehyde derived from the precipitant forms a thiohemiacetal intermediate, never observed so far. Its absence in the SlAMADH1-E260A structure suggests that Glu-260 can activate the catalytic cysteine as a nucleophile. We show that the five AMADHs studied here are capable of oxidizing 3-dimethylsulfoniopropionaldehyde to the cryo- and osmoprotectant 3-dimethylsulfoniopropionate. For the first time, we also show that 3-acetamidopropionaldehyde, the third aminoaldehyde besides 3-aminopropionaldehyde and 4-aminobutyraldehyde, is generally oxidized by AMADHs, meaning that these enzymes are unique in metabolizing and detoxifying aldehyde products of polyamine degradation to nontoxic amino acids. Finally, gene expression profiles in maize indicate that AMADHs might be important for controlling ?-aminoaldehyde levels during early stages of the seed development. PMID:23408433

  6. Comparative and phylogenomic analyses of cinnamoyl-CoA reductase and cinnamoyl-CoA-reductase-like gene family in land plants.

    PubMed

    Barakat, Abdelali; Yassin, Norzawani Buang M; Park, Joseph S; Choi, Alex; Herr, Josh; Carlson, John E

    2011-09-01

    The biosynthesis of monolignols, the main components of lignin, involves many intermediates and enzymes. The cinnamoyl-CoA reductase (CCR) enzyme catalyzes the conversion of cinnamoyl-CoAs to cinnamaldehydes, i.e. the first specific step in lignin synthesis. The CCR and CCR-like gene family was studied partially in several plant species. This is a comprehensive study of the CCR and CCR-like gene family including genome organization, gene structure, phylogeny across land plant species, and, expression profiling in Populus. Analysis of amino acid motifs enabled the identification of sequence variations in the CCR catalytic site and annotates CCR and CCR-like genes. CCR and CCR-like genes were distributed in three major phylogenetic classes of which one includes the bona fide CCR genes. The other two classes include CCR and CCR-like, of which several genes present a high similarity to cinnamyl alcohol dehydrogenase, or dihydroflavonol reductase (DFR) genes. All CCR, CCR-like, and DFR classes were deeply rooted in the phylogeny of land plants suggesting that their evolution preceded the evolution of lycophytes. Over two thirds of CCR and CCR-like Populus genes were physically distributed on duplicated regions. This suggests that these duplication/retention processes contributed significantly to the size of the CCR and CCR-like gene family. The Populus CCR and CCR-like genes showed six expression patterns in the tissues studied with a preferential expression of PoptrCCR12 in xylem. The other genes present divergent expression profiles with some preferentially expressed in leaves, bark, or both. Several CCR and CCR-like genes were induced or repressed under various abiotic stresses suggesting that their duplication was followed by the evolution of divergent expression profiles and divergence of functions. PMID:21763535

  7. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes.

    PubMed

    Ori, N; Eshed, Y; Paran, I; Presting, G; Aviv, D; Tanksley, S; Zamir, D; Fluhr, R

    1997-04-01

    Characterization of plant resistance genes is an important step in understanding plant defense mechanisms. Fusarium oxysporum f sp lycopersici is the causal agent of a vascular wilt disease in tomato. Genes conferring resistance to plant vascular diseases have yet to be described molecularly. Members of a new multigene family, complex I2C, were isolated by map-based cloning from the I2 F. o. lycopersici race 2 resistance locus. The genes show structural similarity to the group of recently isolated resistance genes that contain a nucleotide binding motif and leucine-rich repeats. Importantly, the presence of I2C antisense transgenes abrogated race 2 but not race 1 resistance in otherwise normal plants. Expression of the complete sense I2C-1 transgene conferred significant but partial resistance to F. o. lycopersici race 2. All members of the I2C gene family have been mapped genetically and are dispersed on three different chromosomes. Some of the I2C members cosegregate with other tomato resistance loci. Comparison within the leucine-rich repeat region of I2C gene family members shows that they differ from each other mainly by insertions or deletions. PMID:9144960

  8. ASYMMETRIC LEAVES2LIKE38 gene, a Member of AS2\\/LOB family of Arabidopsis , causes leaf dorsoventral alternation in transgenic cockscomb plants

    Microsoft Academic Search

    Lai-Sheng Meng; Hai-Liang Liu; Xianghuan Cui; Xu-Dong Sun; Jian Zhu

    2009-01-01

    ASYMMETRIC LEAVES2-LIKE38\\/LBD41 gene of Arabidopsis is a member of the ASYMMETRIC LEAVES2 (AS2)\\/LATERAL ORGAN BOUNDARIES (LOB) domain gene family. To explore\\u000a ASL38 function, we transformed 35S:ASL38 constructs into cockscomb (Celosia plumosus) plants via Agrobacterium tumefaciens and obtained T1 35S:ASL38 plants. The extremely folded or crinkly leaves were seen in these T1 cockscomb plants. The anatomical analysis of these malformed\\u000a leaf blades indicated

  9. Identification of multi-gene families encoding isopentenyl diphosphate isomerase in plants by heterologous complementation in Escherichia coli.

    PubMed

    Cunningham, F X; Gantt, E

    2000-01-01

    Two cDNAs encoding isopentenyl diphosphate isomerase (IPI) in Adonis aestivalis, Arabidopsis thaliana, and Lactuca sativa, and single examples from Oryza sativa and Tagetes erecta were identified. An analysis of these and other ipi leads us to suggest a separate origin for green algal and plant genes and propose that a single gene encodes plastid and cytosolic IPI in plants. PMID:10750717

  10. Analysis of Arabidopsis genome sequence reveals a large new gene family in plants

    Microsoft Academic Search

    J. P. Ride; E. M. Davies; F. C. H. Franklin; D. F. Marshall

    1999-01-01

    A detailed analysis of the currently available Arabidopsis thaliana genomic sequence has revealed the presence of a large number of open reading frames with homology to the stigmatic self-incompatibility (S) genes of Papaver rhoeas. The products of these potential genes are all predicted to be relatively small, basic, secreted proteins with similar predicted secondary structures. We have named these potential

  11. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants.

    PubMed

    Tavares, Sílvia; Wirtz, Markus; Beier, Marcel P; Bogs, Jochen; Hell, Rüdiger; Amâncio, Sara

    2015-01-01

    In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family of the crop plant Vitis vinifera. The identified four members of the VvSERAT protein family are assigned to three distinct groups upon their sequence similarities to Arabidopsis SERATs. Expression of fluorescently labeled VvSERAT proteins uncover that the sub-cellular localization of VvSERAT1;1 and VvSERAT3;1 is the cytosol and that VvSERAT2;1 and VvSERAT2;2 localize in addition in plastids and mitochondria, respectively. The purified VvSERATs of group 1 and 2 have higher enzymatic activity than VvSERAT3;1, which display a characteristic C-terminal extension also present in AtSERAT3;1. VvSERAT1;1 and VvSERAT2;2 are evidenced to form the CSC. CSC formation activates VvSERAT2;2, by releasing CSC-associated VvSERAT2;2 from cysteine inhibition. Thus, subcellular distribution of SERAT isoforms and CSC formation in cytosol and mitochondria is conserved between Arabidopsis and grapevine. Surprisingly, VvSERAT2;1 lack the canonical C-terminal tail of plant SERATs, does not form the CSC and is almost insensitive to cysteine inhibition (IC50 = 1.9 mM cysteine). Upon sulfate depletion VvSERAT2;1 is strongly induced at the transcriptional level, while transcription of other VvSERATs is almost unaffected in sulfate deprived grapevine cell suspension cultures. Application of abiotic stresses to soil grown grapevine plants revealed isoform-specific induction of VvSERAT2;1 in leaves upon drought, whereas high light- or temperature- stress hardly trigger VvSERAT2;1 transcription. PMID:25741355

  12. Characterization of Homeodomain-Leucine Zipper Genes in the Fern Ceratopteris richardii and the Evolution of the Homeodomain-Leucine Zipper Gene Family in Vascular Plants

    Microsoft Academic Search

    Kumi Aso; Masahiro Kato; Jo Ann Banks; Mitsuyasu Hasebe

    The homeodomain-leucine zipper (HD-Zip) genes encode transcription factors that are characterized by the presence of both a homeodomain and a leucine zipper motif. They belong to the homeobox gene superfamily and have been reported only from flowering plants. This article is the first report on the fern HD-Zip genes (named Crhb1-Crhb11) isolated from the homosporous fern Ceratopteris richardii. Phylogenetic analyses

  13. Genome-wide identification, molecular cloning, expression profiling and posttranscriptional regulation analysis of the Argonaute gene family in Salvia miltiorrhiza, an emerging model medicinal plant

    PubMed Central

    2013-01-01

    Background Argonaute (AGO) is the core component of RNA-induced silencing complex. The AGO gene family has been analyzed in various plant species; however, there is no report about AGOs in the well-known Traditional Chinese Medicine (TCM) plant, Salvia miltiorrhiza. Results Through a genome-wide analysis, we identified ten SmAGO genes in S. miltiorrhiza. Full-length cDNAs of all SmAGOs were subsequently cloned and sequenced. These SmAGOs were characterized using a comprehensive approach. Sequence features, gene structures and conserved domains were analyzed by the comparison of SmAGOs and AtAGOs. Phylogenetic relationships among AGO proteins from S. miltiorrhiza, Arabidopsis and rice were revealed. The expression levels of SmAGO genes in various tissues of S. miltiorrhiza were investigated. The results implied that some SmAGOs, such as SmAGO1, SmAGO2, SmAGO3, SmAGO7 and SmAGO10, probably played similar roles as their counterparts in Arabidopsis; whereas the others could be more species-specialized. It suggests the conservation and diversity of AGOs in plants. Additionally, we identified a total of 24 hairpin structures, representing six miRNA gene families, to be miRNA precursors. Using the modified 5?-RACE method, we confirmed that SmAGO1 and SmAGO2 were targeted by S. miltiorrhiza miR168a/b and miR403, respectively. It suggests the conservation of AGO1-miR168 and AGO2-miR403 regulatory modules in S. miltiorrhiza and Arabidopsis. Conclusions This is the first attempt to explore SmAGOs and miRNAs in S. miltiorrhiza. The results provide useful information for further elucidation of gene silencing pathways in S. miltiorrhiza. PMID:23889895

  14. Identification and characterization of plant-specific NAC gene family in canola (Brassica napus L.) reveal novel members involved in cell death.

    PubMed

    Wang, Boya; Guo, Xiaohua; Wang, Chen; Ma, Jieyu; Niu, Fangfang; Zhang, Hanfeng; Yang, Bo; Liang, Wanwan; Han, Feng; Jiang, Yuan-Qing

    2015-03-01

    NAC transcription factors are plant-specific and play important roles in plant development processes, response to biotic and abiotic cues and hormone signaling. However, to date, little is known about the NAC genes in canola (or oilseed rape, Brassica napus L.). In this study, a total of 60 NAC genes were identified from canola through a systematical analysis and mining of expressed sequence tags. Among these, the cDNA sequences of 41 NAC genes were successfully cloned. The translated protein sequences of canola NAC genes with the NAC genes from representative species were phylogenetically clustered into three major groups and multiple subgroups. The transcriptional activities of these BnaNAC proteins were assayed in yeast. In addition, by quantitative real-time RT-PCR, we further observed that some of these BnaNACs were regulated by different hormone stimuli or abiotic stresses. Interestingly, we successfully identified two novel BnaNACs, BnaNAC19 and BnaNAC82, which could elicit hypersensitive response-like cell death when expressed in Nicotiana benthamiana leaves, which was mediated by accumulation of reactive oxygen species. Overall, our work has laid a solid foundation for further characterization of this important NAC gene family in canola. PMID:25616736

  15. GSDM family genes meet autophagy.

    PubMed

    Tamura, Masaru; Shiroishi, Toshihiko

    2015-07-15

    In the previous issue of Biochemical Journal, Shi et al. [(2015) 468, 325-336] report that Gasdermin (Gsdm) family proteins regulate autophagy activity, which is counter-balanced by the opposite functions of well-conserved N- and C-terminal domains of the proteins. The Gsdm family was originally identified as the causative gene of dominant skin mutations exhibiting alopecia. Each member of the Gsdm gene family shows characteristic expression patterns in the epithelium, which is tissue and differentiation stage-specific. Previous phenotype analyses of mutant mice, biochemical analyses of proteins and genome-wide association studies showed that the Gsdm gene family might be involved in epithelial cell development, apoptosis, inflammation, carcinogenesis and immune-related diseases. To date, however, their molecular function(s) remain unclear. Shi et al. found that mutations in the C-terminal domain of Gsdma3, a member of the Gsdm family, induce autophagy. Further studies revealed that the wild-type N-terminal domain has pro-autophagic activity and that the C-terminal domain conversely inhibits this N-terminal function. These opposite functions of the two domains were also observed in other Gsdm family members. Thus, their study provides a new insight into the function of Gsdm genes in epithelial cell lineage, causality of cancers and immune-related diseases including childhood-onset asthma. PMID:26171832

  16. The glutamine synthetase gene family in Populus

    PubMed Central

    2011-01-01

    Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming) is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists of 8 different genes exhibiting all structural and regulatory elements consistent with their roles as functional genes. Our results indicate that the family members are organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1) and 1 which codes for the choroplastic GS isoform (GS2). Our analysis shows that Populus trichocarpa is the first plant species in which it was observed the complete GS family duplicated. Detailed expression analyses have revealed specific spatial and seasonal patterns of GS expression in poplar. These data provide insights into the metabolic function of GS isoforms in poplar and pave the way for future functional studies. Conclusions Our data suggest that GS duplicates could have been retained in order to increase the amount of enzyme in a particular cell type. This possibility could contribute to the homeostasis of nitrogen metabolism in functions associated to changes in glutamine-derived metabolic products. The presence of duplicated GS genes in poplar could also contribute to diversification of the enzymatic properties for a particular GS isoform through the assembly of GS polypeptides into homo oligomeric and/or hetero oligomeric holoenzymes in specific cell types. PMID:21867507

  17. Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax.

    PubMed

    Walder, Florian; Brulé, Daphnée; Koegel, Sally; Wiemken, Andres; Boller, Thomas; Courty, Pierre-Emmanuel

    2015-03-01

    In a preceding microcosm study, we found huge differences in phosphorus (P) acquisition in sorghum (Sorghum bicolor) and flax (Linum usitatissimum) sharing a common mycorrhizal network (CMN). Is the transcriptional regulation of arbuscular mycorrhizal (AM)-induced inorganic orthophosphate (Pi) transporters responsible for these differences? We characterized and analyzed the expression of Pi transporters of the Pht1 family in both plant species, and identified two new AM-inducible Pi transporters in flax. Mycorrhizal Pi acquisition was strongly affected by the combination of plant and AM fungal species. A corresponding change in the expression of two AM-inducible Pht1 transporters was noticed in both plants (SbPT9, SbPT10, LuPT5 and LuPT8), but the effect was very weak. Overall, the expression level of these genes did not explain why flax took up more Pi from the CMN than did sorghum. The post-transcriptional regulation of the transporters and their biochemical properties may be more important for their function than the fine-tuning of their gene expression. PMID:25615409

  18. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function

    Microsoft Academic Search

    Chao Di; Wenying Xu; Zhen Su; Joshua S Yuan

    2010-01-01

    BACKGROUND: PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence,

  19. Molecular characterization of the Arginine decarboxylase gene family in rice

    Microsoft Academic Search

    Ariadna Peremarti; Ludovic Bassie; Changfu Zhu; Paul Christou; Teresa Capell

    2010-01-01

    Arginine decarboxylase (ADC) is a key enzyme in plants that converts arginine into putrescine, an important mediator of abiotic\\u000a stress tolerance. Adc genes have been isolated from a number of dicotyledonous plants but the oat and rice Adc genes are the only representatives of monocotyledonous species described thus far. Rice has a small family of Adc genes, and OsAdc1 expression

  20. The Families of Flowering Plants

    NSDL National Science Digital Library

    Australian authors L. Watson and M. J. Dallwitz have updated this magnificent resource of detailed character descriptions, taxonomic information, references, and line illustrations of "all the Angiosperm families" from Acanthaceae to Zygophyllaceae. Users will find extensive data on plant and flower morphology, "seedling germination type, embryology, anther ontogeny, pollen cytology and morphology, stigma type, sieve-tube plastids, leaf, stem, nodal and wood anatomy, and phytochemistry (phenolics, alkaloids, cyanogenesis, etc.)." Watson and Dallwitz also include detailed taxonomic information on family synonyms, "numbers of species and genera in each family, and complete lists or (in the case of the largest families only) examples of the genera in each." A character list and an 'implicit attributes' section accompany the resource; information for downloading is available at the site. For teachers and graduate students alike, this online resource will be hard to beat.

  1. The insect SNMP gene family.

    PubMed

    Vogt, Richard G; Miller, Natalie E; Litvack, Rachel; Fandino, Richard A; Sparks, Jackson; Staples, Jon; Friedman, Robert; Dickens, Joseph C

    2009-07-01

    SNMPs are membrane proteins observed to associate with chemosensory neurons in insects; in Drosophila melanogaster, SNMP1 has been shown to be essential for the detection of the pheromone cis-vaccenyl acetate (CVA). SNMPs are one of three insect gene clades related to the human fatty acid transporter CD36. We previously characterized the CD36 gene family in 4 insect Orders that effectively cover the Holometabola, or some 80% of known insect species and the 300 million years of evolution since this lineage emerged: Lepidoptera (e.g. Bombyx mori, Antheraea polyphemus, Manduca sexta, Heliothis virescens, Helicoverpa assulta, Helicoverpa armigera, Mamestra brassicae); Diptera (D. melanogaster, Drosophila pseudoobscura, Aedes aegypti, Anopheles gambiae, Culex pipiens quinquefasciatus); Hymenoptera (Apis mellifera); and Coleoptera (Tribolium castaneum). This previous study suggested a complex topography within the SNMP clade including a strongly supported SNMP1 sub-clade plus additional SNMP genes. To further resolve the SNMP clade here, we used cDNA sequences of SNMP1 and SNMP2 from various Lepidoptera species, D. melanogaster and Ae. aegypti, as well as BAC derived genomic sequences from Ae. aegypti as models for proposing corrected sequences of orthologues in the D. pseudoobscura and An. gambiae genomes, and for identifying orthologues in the B. mori and C. pipiens q. genomes. We then used these sequences to analyze the SNMP clade of the insect CD36 gene family, supporting the existence of two well supported sub-clades, SNMP1 and SNMP2, throughout the dipteran and lepidopteran lineages, and plausibly throughout the Holometabola and across a broad evolutionary time scale. We present indirect evidence based on evolutionary selection (dN/dS) that the dipteran SNMPs are expressed as functional proteins. We observed expansions of the SNMP1 sub-clade in C. pipiens q. and T. castaneum suggesting that the SNMP1s may have an expanded functional role in these species. PMID:19364529

  2. Out of the Water: Origin and Diversification of the LBD Gene Family.

    PubMed

    Chanderbali, Andre S; He, Fengmei; Soltis, Pamela S; Soltis, Douglas E

    2015-08-01

    LBD (LATERAL ORGAN BOUNDARIES DOMAIN) genes are essential to the developmental programs of many fundamental plant organs and function in some of the basic metabolic pathways of plants. However, our historical perspective on the roles of LBD genes during plant evolution has, heretofore, been fragmentary. Here, we show that the LBD gene family underwent an initial radiation that established five gene lineages in the ancestral genome of most charophyte algae and land plants. By inference, the LBD gene family originated after the emergence of the green plants (Viridiplantae), but prior to the diversification of most extant streptophytes. After this initial radiation, we find limited instances of gene family diversification in land plants until successive rounds of expansion in the ancestors of seed plants and flowering plants. The most dynamic phases of LBD gene evolution, therefore, trace to the aquatic ancestors of embryophytes followed by relatively recent lineage-specific expansions on land. PMID:25839188

  3. Gene family matters: expanding the HGNC resource.

    PubMed

    Daugherty, Louise C; Seal, Ruth L; Wright, Mathew W; Bruford, Elspeth A

    2012-01-01

    The HUGO Gene Nomenclature Committee (HGNC) assigns approved gene symbols to human loci. There are currently over 33,000 approved gene symbols, the majority of which represent protein-coding genes, but we also name other locus types such as non-coding RNAs, pseudogenes and phenotypic loci. Where relevant, the HGNC organise these genes into gene families and groups. The HGNC website http://www.genenames.org/ is an online repository of HGNC-approved gene nomenclature and associated resources for human genes, and includes links to genomic, proteomic and phenotypic information. In addition to this, we also have dedicated gene family web pages and are currently expanding and generating more of these pages using data curated by the HGNC and from information derived from external resources that focus on particular gene families. Here, we review our current online resources with a particular focus on our gene family data, using it to highlight our new Gene Symbol Report and gene family data downloads. PMID:23245209

  4. A Likelihood Model of Gene Family Evolution

    E-print Network

    Borenstein, Elhanan

    A Likelihood Model of Gene Family Evolution Lindsey Dubb A dissertation submitted in partial This is to certify that I have examined this copy of a doctoral dissertation by Lindsey Dubb and have found Abstract A Likelihood Model of Gene Family Evolution Lindsey Dubb Chair of the Supervisory Committee

  5. Gene regulation: Ancient microRNA target sequences in plants

    Microsoft Academic Search

    Sandra K. Floyd; John L. Bowman

    2004-01-01

    MicroRNAs are an abundant class of small RNAs that are thought to regulate the expression of protein-coding genes in plants and animals. Here we show that the target sequence of two microRNAs, known to regulate genes in the class-III homeodomain-leucine zipper (HD-Zip) gene family of the flowering plant Arabidopsis, is conserved in homologous sequences from all lineages of land plants,

  6. Gene Family Evolution across 12 Drosophila Genomes

    Microsoft Academic Search

    Matthew W Hahn; Mira V Han; Sang-Gook Han

    2007-01-01

    Comparison of whole genomes has revealed large and frequent changes in the size of gene families. These changes occur because of high rates of both gene gain (via duplication) and loss (via deletion or pseudogenization), as well as the evolution of entirely new genes. Here we use the genomes of 12 fully sequenced Drosophila species to study the gain and

  7. Comprehensive Analysis of NAC Family Genes in Oryza sativa and Arabidopsis thaliana

    Microsoft Academic Search

    Hisako Ooka; Kouji Satoh; Koji Doi; Toshifumi Nagata; Yasuhiro Otomo; Kazuo Murakami; Kenichi Matsubara; Naoki Osato; Jun Kawai; Piero Carninci; Yoshihide Hayashizaki; Koji Suzuki; Keiichi Kojima; Yoshinori Takahara; Koji Yamamoto; Shoshi Kikuchi

    2003-01-01

    The NAC domain was originally characterized from consensus sequences from petunia NAM and from Arabidopsis ATAF1, ATAF2, and CUC2. Genes containing the NAC domain (NAC family genes) are plant- specific transcriptional regulators and are expressed in various developmental stages and tissues. We per- formed a comprehensive analysis of NAC family genes in Oryza sativa (a monocot) and Arabidopsis thaliana (a

  8. Genome Analysis Characterization of a Family of Arabidopsis Genes

    E-print Network

    Faik, Ahmed

    carbohydrates. A targeted analysis of isolated cell wall matrix components from plants altered in expressionGenome Analysis Characterization of a Family of Arabidopsis Genes Related to Xyloglucan Carbohydrate Research Center, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602 (M

  9. Comparison of Cytochrome P450 Genes from Six Plant Genomes

    Microsoft Academic Search

    David R. Nelson; Ray Ming; Maqsudul Alam; Mary A. Schuler

    2008-01-01

    Plants depend on cytochrome P450 (CYP) enzymes for nearly every aspect of their biology. In several sequenced angiosperms,\\u000a CYP genes constitute up to 1% of the protein coding genes. The angiosperm sequence diversity is encapsulated by 59 CYP families,\\u000a of which 52 families form a widely distributed core set. In the 20 years since the first plant P450 was sequenced, 3,387

  10. Characterization of the glycinin gene family in soybean.

    PubMed Central

    Nielsen, N C; Dickinson, C D; Cho, T J; Thanh, V H; Scallon, B J; Fischer, R L; Sims, T L; Drews, G N; Goldberg, R B

    1989-01-01

    We characterized the structure, organization, and expression of genes that encode the soybean glycinins, a family of storage proteins synthesized exclusively in seeds during embryogenesis. Five genes encode the predominant glycinin subunits found in soybeans, and they have each been cloned, sequenced, and compared. The five genes have diverged into two subfamilies that are designated as Group-I and Group-II glycinin genes. Each glycinin gene contains four exons and three introns like genes that encode related proteins in other legumes. Two other genes have been identified and designated as "glycinin-related" because they hybridize weakly with the five glycinin genes. Although not yet characterized, glycinin-related genes could encode other glycinin subunit families whose members accumulate in minor amounts in seeds. The three Group-I glycinin genes are organized into two chromosomal domains, each about 45 kilobase pairs in length. The two domains have a high degree of homology, and contain at least five genes each that are expressed either in embryos or in mature plant leaves. Gel blot studies with embryo mRNA, as well as transcription studies with 32P-RNA synthesized in vitro from purified embryo nuclei, indicate that glycinin and glycinin-related genes become transcriptionally activated in a coordinated fashion early in embryogenesis, and are repressed coordinately late in seed development. In addition to transcriptional control processes, posttranscriptional events also are involved in regulating glycinin and glycinin-related mRNA levels during embryogenesis. PMID:2485233

  11. Tomato ABSCISIC ACID STRESS RIPENING (ASR) Gene Family Revisited

    PubMed Central

    Golan, Ido; Dominguez, Pia Guadalupe; Konrad, Zvia; Shkolnik-Inbar, Doron; Carrari, Fernando; Bar-Zvi, Dudy

    2014-01-01

    Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding. PMID:25310287

  12. Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited.

    PubMed

    Golan, Ido; Dominguez, Pia Guadalupe; Konrad, Zvia; Shkolnik-Inbar, Doron; Carrari, Fernando; Bar-Zvi, Dudy

    2014-01-01

    Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding. PMID:25310287

  13. Characterization of the Bovine Cathelicidin Gene Family 

    E-print Network

    Flores, Erin Gillenwaters

    2012-10-19

    the placement of the CATHL cluster at the distal end of bovine chromosome 22 (BTA22), identify any single nucleotide polymorphisms (SNPs) and insertion-deletion (indel) polymorphisms within the gene family, explore copy number variation, and investigate...

  14. Regulated Genes in Transgenic Plants

    Microsoft Academic Search

    Philip N. Benfey; Nam-Hai Chua

    1989-01-01

    Transgenic plants are an effective system for the study of regulated gene expression. Developmental control of expression can be monitored by assaying different tissues or by assaying a plant at different developmental stages. Analysis of the petunia 5-enolpyruvylshikimate-3-phosphate synthase gene, which is highly expressed in flowers, allowed identification of an upstream region that confers tissue-specific and developmentally regulated expression. The

  15. PLANT SCIENCES: Plant Genes on Steroids

    NSDL National Science Digital Library

    Robert Sablowski (John Innes Centre; Department of Cell and Developmental Biology)

    2005-03-11

    Access to the article is free, however registration and sign-in are required. Plants, like animals, use steroid hormones to regulate their development. However, in plants, the steroid hormone is bound by a receptor at the cell surface instead of a nuclear receptor. In a Perspective, Sablowski and Harberd discuss studies published here (He et al.) and elsewhere that provide the missing link between binding of the steroid by its receptor and changes in the expression of target genes.

  16. Evolution of the Vertebrate Resistin Gene Family.

    PubMed

    Hu, Qingda; Tan, Huanran; Irwin, David M

    2015-01-01

    Resistin (encoded by Retn) was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a member of a small gene family that includes the resistin-like peptides (encoded by Retnl genes) in mammals. Genomic searches of available genome sequences of diverse vertebrates and phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Amphibia, and Actinistia (coelacanth, a lobe-finned fish), but not in Aves or fish from Actinopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition from Retn on the early mammalian lineage after divergence of the platypus, but before the placental and marsupial mammal divergence. The resistin-like gene family illustrates an instance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but are much more variable in their numbers of Retnl genes, ranging from 0 to 9. Since Retn is located at the locus of origin, thus likely retained the ancestral expression pattern, largely maintained its copy number, and did not display accelerated evolution, we suggest that it is more likely to have maintained an ancestral function, while Retnl, which transposed to a new location, displays accelerated evolution, and shows greater variability in gene number, including gene loss, likely evolved new, but potentially lineage-specific, functions. PMID:26076481

  17. Evolution of the Vertebrate Resistin Gene Family

    PubMed Central

    Hu, Qingda; Tan, Huanran; Irwin, David M.

    2015-01-01

    Resistin (encoded by Retn) was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a member of a small gene family that includes the resistin-like peptides (encoded by Retnl genes) in mammals. Genomic searches of available genome sequences of diverse vertebrates and phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Amphibia, and Actinistia (coelacanth, a lobe-finned fish), but not in Aves or fish from Actinopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition from Retn on the early mammalian lineage after divergence of the platypus, but before the placental and marsupial mammal divergence. The resistin-like gene family illustrates an instance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but are much more variable in their numbers of Retnl genes, ranging from 0 to 9. Since Retn is located at the locus of origin, thus likely retained the ancestral expression pattern, largely maintained its copy number, and did not display accelerated evolution, we suggest that it is more likely to have maintained an ancestral function, while Retnl, which transposed to a new location, displays accelerated evolution, and shows greater variability in gene number, including gene loss, likely evolved new, but potentially lineage-specific, functions. PMID:26076481

  18. Comprehensive Analysis of NAC Domain Transcription Factor Gene Family in Populus trichocarpa

    Microsoft Academic Search

    Ruibo Hu; Guang Qi; Yingzhen Kong; Dejing Kong; Qian Gao; Gongke Zhou

    2010-01-01

    BACKGROUND: NAC (NAM, ATAF1\\/2 and CUC2) domain proteins are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. NAC transcription factors comprise of a large gene family represented by more than 100 members in Arabidopsis, rice and soybean etc. Recently, a preliminary phylogenetic analysis was reported for NAC gene family from 11 plant species. However, no

  19. Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana

    Microsoft Academic Search

    Bonnie C. McCaig; Richard B. Meagher; Jeffrey F. D. Dean

    2005-01-01

    Completed genome sequences have made it clear that multicopper oxidases related to laccase are widely distributed as multigene families in higher plants. Laccase-like multicopper oxidase (LMCO) sequences culled from GenBank and the Arabidopsis thaliana genome, as well as those from several newly cloned genes, were used to construct a gene phylogeny that clearly divided plant LMCOs into six distinct classes,

  20. Metazoan Gene Families from Metazome

    DOE Data Explorer

    Metazome is a joint project of the Department of Energy's Joint Genome Institute and the Center for Integrative Genomics to facilitate comparative genomic studies amongst metazoans. Clusters of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These clusters allow easy access to clade specific orthology/paralogy relationships as well as clade specific genes and gene expansions. As of version 2.0.4, Metazome provides access to twenty-four sequenced and annotated metazoan genomes, clustered at nine evolutionarily significant nodes. Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, Ensembl, and JGI are hyper-linked and searchable. The included organisms (by common name) are: Human, Mouse, Rat, Dog, Opossum, Chicken, Frog, Stickleback, Medaka, Fugu pufferfish; Zebrafish, Seasquirt - savignyi, Seasquirt - intestinalis, Amphioxus, Sea Urchin, Fruitfly, Mosquite, Yellow Fever Mosquito, Silkworm, Red Flour Beetle, Worm, Briggsae Worm, Owl limpet (snail), and Sea anemone. [Copied from Metazome Overview at http://www.metazome.net/Metazome_info.php

  1. The Arabidopsis SHAGGY-related protein kinase ( ASK) gene family: structure, organization and evolution

    Microsoft Academic Search

    Marcelo Carnier Dornelas; Bernard Lejeune; Michel Dron; Martin Kreis

    1998-01-01

    Higher plants contain a multigene family encoding proteins that share a highly conserved catalytic protein kinase domain about 70% identical to SHAGGY protein kinase (SGG) and glycogen synthase kinase-3 (GSK-3), respectively, from Drosophila and mammals. In this study we have characterized the structure and evolution of the Arabidopsis SHAGGY-related protein kinase (ASK) gene family. At least ten ASK genes are

  2. From plant genomes to protein families: computational tools

    PubMed Central

    Martinez, Manuel

    2013-01-01

    The development of new high-throughput sequencing technologies has increased dramatically the number of successful genomic projects. Thus, draft genomic sequences of more than 60 plant species are currently available. Suitable bioinformatics tools are being developed to assemble, annotate and analyze the enormous number of sequences produced. In this context, specific plant comparative genomic databases are become powerful tools for gene family annotation in plant clades. In this mini-review, the current state-of-art of genomic projects is glossed. Besides, the computational tools developed to compare genomic data are compiled. PMID:24688740

  3. Chalcone isomerase family and fold: No longer unique to plants

    PubMed Central

    Gensheimer, Michael; Mushegian, Arcady

    2004-01-01

    Chalcone isomerase, an enzyme in the isoflavonoid pathway in plants, catalyzes the cyclization of chalcone into (2S)-naringenin. Chalcone isomerase sequence family and three-dimensional fold appeared to be unique to plants and has been proposed as a plant-specific gene marker. Using sensitive methods of sequence comparison and fold recognition, we have identified genes homologous to chalcone isomerase in all completely sequenced fungi, in slime molds, and in many gammaproteobacteria. The residues directly involved in the enzyme’s catalytic function are among the best conserved across species, indicating that the newly discovered homologs are enzymatically active. At the same time, fungal and bacterial species that have chalcone isomerase-like genes tend to lack the orthologs of the upstream enzyme chalcone synthase, suggesting a novel variation of the pathway in these species. PMID:14718655

  4. The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family

    E-print Network

    Higgins, Darren

    The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family gene product Porcupine (Porc) was first identified as being necessary for processing Wingless (Wg; Porcupine; Wnt family. The development of multicellular organisms (embryogenesis and organogenesis

  5. Analysis of Brassica rapa ESTs: gene discovery and expression patterns of AP2\\/ERF family genes

    Microsoft Academic Search

    Jing Zhuang; Ai-Sheng Xiong; Ri-He Peng; Feng Gao; Bo Zhu; Jian Zhang; Xiao-Yan Fu; Xiao-Feng Jin; Jian-Min Chen; Zhen Zhang; Yu-Shan Qiao; Quan-Hong Yao

    2010-01-01

    Chinese cabbage (Brassica rapa subsp. pekinensis) is among the most important vegetables and is widely cultivated in world. Genes in the AP2\\/ERF family encode transcriptional\\u000a regulators that serve a variety of functions in the plants. Expressed sequence tags (ESTs) are created by partially sequencing\\u000a randomly isolated gene transcripts and have proved valuable in molecular biology. Starting from the database with

  6. PIECE: A database for plant gene structure comparison and evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene families often show degrees of differences in terms of exon-intron structures depending on their distinct evolutionary histories. Comparative analysis of gene structures is important for understanding their evolutionary and functional relationships within plant species. Here, we present a com...

  7. PIECE: a database for plant gene structure comparison and evolution

    PubMed Central

    Wang, Yi; You, Frank M.; Lazo, Gerard R.; Luo, Ming-Cheng; Thilmony, Roger; Gordon, Sean; Kianian, Shahryar F.; Gu, Yong Q.

    2013-01-01

    Gene families often show degrees of differences in terms of exon–intron structures depending on their distinct evolutionary histories. Comparative analysis of gene structures is important for understanding their evolutionary and functional relationships within plant species. Here, we present a comparative genomics database named PIECE (http://wheat.pw.usda.gov/piece) for Plant Intron and Exon Comparison and Evolution studies. The database contains all the annotated genes extracted from 25 sequenced plant genomes. These genes were classified based on Pfam motifs. Phylogenetic trees were pre-constructed for each gene category. PIECE provides a user-friendly interface for different types of searches and a graphical viewer for displaying a gene structure pattern diagram linked to the resulting bootstrapped dendrogram for each gene family. The gene structure evolution of orthologous gene groups was determined using the GLOOME, Exalign and GECA software programs that can be accessed within the database. PIECE also provides a web server version of the software, GSDraw, for drawing schematic diagrams of gene structures. PIECE is a powerful tool for comparing gene sequences and provides valuable insights into the evolution of gene structure in plant genomes. PMID:23180792

  8. Genome-Wide Analysis Reveals Diverged Patterns of Codon Bias, Gene Expression, and Rates of Sequence Evolution in Picea Gene Families

    PubMed Central

    De La Torre, Amanda R.; Lin, Yao-Cheng; Van de Peer, Yves; Ingvarsson, Pär K.

    2015-01-01

    The recent sequencing of several gymnosperm genomes has greatly facilitated studying the evolution of their genes and gene families. In this study, we examine the evidence for expression-mediated selection in the first two fully sequenced representatives of the gymnosperm plant clade (Picea abies and Picea glauca). We use genome-wide estimates of gene expression (>50,000 expressed genes) to study the relationship between gene expression, codon bias, rates of sequence divergence, protein length, and gene duplication. We found that gene expression is correlated with rates of sequence divergence and codon bias, suggesting that natural selection is acting on Picea protein-coding genes for translational efficiency. Gene expression, rates of sequence divergence, and codon bias are correlated with the size of gene families, with large multicopy gene families having, on average, a lower expression level and breadth, lower codon bias, and higher rates of sequence divergence than single-copy gene families. Tissue-specific patterns of gene expression were more common in large gene families with large gene expression divergence than in single-copy families. Recent family expansions combined with large gene expression variation in paralogs and increased rates of sequence evolution suggest that some Picea gene families are rapidly evolving to cope with biotic and abiotic stress. Our study highlights the importance of gene expression and natural selection in shaping the evolution of protein-coding genes in Picea species, and sets the ground for further studies investigating the evolution of individual gene families in gymnosperms. PMID:25747252

  9. GeneSeqer@PlantGDB: gene structure prediction in plant genomes

    E-print Network

    Brendel, Volker

    GeneSeqer@PlantGDB: gene structure prediction in plant genomes Shannon D. Schlueter1 , Qunfeng Dong, 2003 ABSTRACT The GeneSeqer@PlantGDB Web server (http:// www.plantgdb.org/cgi-bin/GeneSeqer.cgi) provides a gene structure prediction tool tailored for applica- tions to plant genomic sequences

  10. Functions of rol genes in plant secondary metabolism

    Microsoft Academic Search

    Victor P. Bulgakov

    2008-01-01

    For a long time, the Agrobacterium rhizogenes rolA, rolB and rolC oncogenes have been considered to be modulators of plant growth and cell differentiation. A new function of the rol genes in plant–Agrobacterium interaction became apparent with the discovery that these genes are potential activators of secondary metabolism in transformed cells from the Solanaceae, Araliaceae, Rubiaceae, Vitaceae and Rosaceae families.

  11. Evolution of the TCP Gene Family in Asteridae: Cladistic and Network Approaches to Understanding Regulatory Gene Family Diversification

    E-print Network

    Olmstead, Richard

    Evolution of the TCP Gene Family in Asteridae: Cladistic and Network Approaches to Understanding Regulatory Gene Family Diversification and Its Impact on Morphological Evolution Patrick A. Reeves1 (dich) genes in Antirrhinum, a member of the Lamiales. cyc and dich belong to the TCP gene family

  12. Genome-wide identification of BURP domain-containing genes in rice reveals a gene family with diverse structures and responses to abiotic stresses

    Microsoft Academic Search

    Xipeng Ding; Xin Hou; Kabin Xie; Lizhong Xiong

    2009-01-01

    Increasing evidence suggests that a gene family encoding proteins containing BURP domains have diverse functions in plants,\\u000a but systematic characterization of this gene family have not been reported. In this study, 17 BURP family genes (OsBURP01–17) were identified and analyzed in rice (Oryza sativa L.). These genes have diverse exon–intron structures and distinct organization of putative motifs. Based on the

  13. Genome-wide identification and analysis of the SBP-box family genes in apple (Malus x domestica Borkh)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SQUAMOSA promoter binding protein (SBP)-box genes encode a family of plant-specific transcription factors and play many crucial roles in plant development. In this study, 27 SBP-box gene family members were identified in the apple (Malus × domestica Borkh.) genome, 15 of which were suggested to be ...

  14. The Maize PIN Gene Family of Auxin Transporters

    PubMed Central

    Forestan, Cristian; Farinati, Silvia; Varotto, Serena

    2012-01-01

    Auxin is a key regulator of plant development and its differential distribution in plant tissues, established by a polar cell to cell transport, can trigger a wide range of developmental processes. A few members of the two families of auxin efflux transport proteins, PIN-formed (PIN) and P-glycoprotein (ABCB/PGP), have so far been characterized in maize. Nine new Zea mays auxin efflux carriers PIN family members and two maize PIN-like genes have now been identified. Four members of PIN1 (named ZmPIN1a–d) cluster, one gene homologous to AtPIN2 (ZmPIN2), three orthologs of PIN5 (ZmPIN5a–c), one gene paired with AtPIN8 (ZmPIN8), and three monocot-specific PINs (ZmPIN9, ZmPIN10a, and ZmPIN10b) were cloned and the phylogenetic relationships between early-land plants, monocots, and eudicots PIN proteins investigated, including the new maize PIN proteins. Tissue-specific expression patterns of the 12 maize PIN genes, 2 PIN-like genes and ZmABCB1, an ABCB auxin efflux carrier, were analyzed together with protein localization and auxin accumulation patterns in normal conditions and in response to drug applications. ZmPIN gene transcripts have overlapping expression domains in the root apex, during male and female inflorescence differentiation and kernel development. However, some PIN family members have specific tissue localization: ZmPIN1d transcript marks the L1 layer of the shoot apical meristem and inflorescence meristem during the flowering transition and the monocot-specific ZmPIN9 is expressed in the root endodermis and pericycle. The phylogenetic and gene structure analyses together with the expression pattern of the ZmPIN gene family indicate that subfunctionalization of some maize PINs can be associated to the differentiation and development of monocot-specific organs and tissues and might have occurred after the divergence between dicots and monocots. PMID:22639639

  15. Gene sequence phylogenies of the family microbacteriaceae.

    PubMed

    Stackebrandt, Erko; Brambilla, Evelyne; Richert, Kathrin

    2007-07-01

    The type strains of 32 species of 13 genera of the family Microbacteriaceae were analysed with respect to gene-coding phylogeny for DNA gyrase subunit B (gyrB), RNA-polymerase subunit B (rpoB), recombinase A (recA), and polyphosphate kinase (ppk). The resulting gene trees were compared with the 16S rRNA gene phylogeny of the same strains. The topology of neighbour-joining and maximum parsimony phylogenetic trees, based on nucleic-acid sequences and protein sequences of housekeeping genes, differed from one another, and no gene tree was identical to that of the 16S rRNA gene tree. Most genera analysed containing >1 strain formed phylogenetically coherent taxa. The three pathovars of Curtobacterium flaccumfaciens clustered together to the exclusion of the type strains of other Curtobacterium species in all DNA - and protein-based analyses. In no tree did the distribution of a major taxonomic marker, i.e., diaminobutyric acid versus lysine and/or ornithine in the peptidoglycan, or acyl type of peptidoglycan, correlate with the phylogenetic position of the organisms. The changing phylogenetic position of Agrococcus jenensis was unexpected: This strain defined individual lineages in the trees based on 16S rRNA and gyrB and showed identity with Microbacterium saperdae in the other three gene trees. PMID:17551787

  16. Phylogenetic analyses provide the first insights into the evolution of OVATE family proteins in land plants

    PubMed Central

    Liu, Di; Sun, Wei; Yuan, Yaowu; Zhang, Ning; Hayward, Alice; Liu, Yongliang; Wang, Ying

    2014-01-01

    Background and Aims The OVATE gene encodes a nuclear-localized regulatory protein belonging to a distinct family of plant-specific proteins known as the OVATE family proteins (OFPs). OVATE was first identified as a key regulator of fruit shape in tomato, with nonsense mutants displaying pear-shaped fruits. However, the role of OFPs in plant development has been poorly characterized. Methods Public databases were searched and a total of 265 putative OVATE protein sequences were identified from 13 sequenced plant genomes that represent the major evolutionary lineages of land plants. A phylogenetic analysis was conducted based on the alignment of the conserved OVATE domain from these 13 selected plant genomes. The expression patterns of tomato SlOFP genes were analysed via quantitative real-time PCR. The pattern of OVATE gene duplication resulting in the expansion of the gene family was determined in arabidopsis, rice and tomato. Key Results Genes for OFPs were found to be present in all the sampled land plant genomes, including the early-diverged lineages, mosses and lycophytes. Phylogenetic analysis based on the amino acid sequences of the conserved OVATE domain defined 11 sub-groups of OFPs in angiosperms. Different evolutionary mechanisms are proposed for OVATE family evolution, namely conserved evolution and divergent expansion. Characterization of the AtOFP family in arabidopsis, the OsOFP family in rice and the SlOFP family in tomato provided further details regarding the evolutionary framework and revealed a major contribution of tandem and segmental duplications towards expansion of the OVATE gene family. Conclusions This first genome-wide survey on OFPs provides new insights into the evolution of the OVATE protein family and establishes a solid base for future functional genomics studies on this important but poorly characterized regulatory protein family in plants. PMID:24812252

  17. MicroSyn: a user friendly tool for detection of microsynteny in a gene family

    SciTech Connect

    Cai, Bin [Nanjing Agricultural University; Yang, Xiaohan [ORNL; Tuskan, Gerald A [ORNL; Cheng, Zong-Ming [ORNL

    2011-01-01

    Background: The traditional phylogeny analysis within gene family is mainly based on DNA or amino acid sequence homologies. However, these phylogenetic tree analyses are not suitable for those non-traditional gene families like microRNA with very short sequences. For the normal protein-coding gene families, low bootstrap values are frequently encountered in some nodes, suggesting low confidence or likely inappropriateness of placement of those members in those nodes. Results: We introduce MicroSyn software as a means of detecting microsynteny in adjacent genomic regions surrounding genes in gene families. MicroSyn searches for conserved, flanking colinear homologous gene pairs between two genomic fragments to determine the relationship between two members in a gene family. The colinearity of homologous pairs is controlled by a statistical distance function. As a result, gene duplication history can be inferred from the output independent of gene sequences. MicroSyn was designed for both experienced and non-expert users with a user-friendly graphical-user interface. MicroSyn is available from: http://fcsb.njau.edu. cn/microsyn/. Conclusions: Case studies of the microRNA167 genes in plants and Xyloglucan ndotransglycosylase/Hydrolase family in Populus trichocarpa were presented to show the utility of the software. The easy using of MicroSyn in these examples suggests that the software is an additional valuable means to address the problem intrinsic in the computational methods and sequence qualities themselves in gene family analysis.

  18. A novel family of small proteins that affect plant development

    SciTech Connect

    John Charles Walker

    2011-04-29

    The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.

  19. INVITED REVIEW Speciation genes in plants

    E-print Network

    Rieseberg, Loren

    ), chimeric mitochondrial genes (cytoplasmic male sterility), and pentatricopeptide repeat family genes (cytoplasmic male sterility). Conclusions The most surprising conclusion from this review is that identities incompatibility, hybrid necrosis, hybrid sterility, hybrid inviability, hybrid breakdown, cytoplasmic male

  20. Carcinoembryonic antigen gene family: Molecular biology and clinical perspectives

    Microsoft Academic Search

    John A. Thompson; Fritz Grunert; Wolfgang Zimmermann

    1991-01-01

    The carcinoembryonic antigen (CEA) gene family belongs to the immunoglobulin super- gene family and can be divided into two main subgroups based on sequence comparisons. In humans it is clustered on the long arm of chromosome 19 and consists of approxi- mately 20 genes. The CEA subgroup genes code for CEA and its classical crossreacting antigens, which are mainly membrane-bound,

  1. Distinct evolutionary strategies in the GGPPS family from plants

    PubMed Central

    Coman, Diana; Altenhoff, Adrian; Zoller, Stefan; Gruissem, Wilhelm; Vranová, Eva

    2014-01-01

    Multiple geranylgeranyl diphosphate synthases (GGPPS) for biosynthesis of geranylgeranyl diphosphate (GGPP) exist in plants. GGPP is produced in the isoprenoid pathway and is a central precursor for various primary and specialized plant metabolites. Therefore, its biosynthesis is an essential regulatory point in the isoprenoid pathway. We selected 119 GGPPSs from 48 species representing all major plant lineages, based on stringent homology criteria. After the diversification of land plants, the number of GGPPS paralogs per species increases. Already in the moss Physcomitrella patens, GGPPS appears to be encoded by multiple paralogous genes. In gymnosperms, neofunctionalization of GGPPS may have enabled optimized biosynthesis of primary and specialized metabolites. Notably, lineage-specific expansion of GGPPS occurred in land plants. As a representative species we focused here on Arabidopsis thaliana, which retained the highest number of GGPPS paralogs (twelve) among the 48 species we considered in this study. Our results show that the A. thaliana GGPPS gene family is an example of evolution involving neo- and subfunctionalization as well as pseudogenization. We propose subfunctionalization as one of the main mechanisms allowing the maintenance of multiple GGPPS paralogs in A. thaliana genome. Accordingly, the changes in the expression patterns of the GGPPS paralogs occurring after gene duplication led to developmental and/or condition specific functional evolution. PMID:24904625

  2. Plant nitrogen regulatory P-PII genes

    DOEpatents

    Coruzzi, Gloria M. (New York, NY); Lam, Hon-Ming (Hong Kong, HK); Hsieh, Ming-Hsiun (Woodside, NY)

    2001-01-01

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the

  3. Genomic analysis of the terpenoid synthase ( AtTPS ) gene family of Arabidopsis thaliana

    Microsoft Academic Search

    S. Aubourg; A. Lecharny; J. Bohlmann

    2002-01-01

    A family of 40 terpenoid synthase genes (AtTPS) was discovered by genome sequence analysis in Arabidopsis thaliana. This is the largest and most diverse group of TPS genes currently known for any species. AtTPS genes cluster into five phylogenetic subfamilies of the plant TPS superfamily. Surprisingly, thirty AtTPS closely resemble, in all aspects of gene architecture, sequence relatedness and phylogenetic

  4. Phylogeny and Biogeography of the Carnivorous Plant Family Sarraceniaceae

    E-print Network

    Orleans, Louisiana, United States of America Abstract The carnivorous plant family Sarraceniaceae comprises three genera of wetland-inhabiting pitcher plants: Darlingtonia in the northwestern United States

  5. Comparative and evolutionary analysis of major peanut allergen gene families.

    PubMed

    Ratnaparkhe, Milind B; Lee, Tae-Ho; Tan, Xu; Wang, Xiyin; Li, Jingping; Kim, Changsoo; Rainville, Lisa K; Lemke, Cornelia; Compton, Rosana O; Robertson, Jon; Gallo, Maria; Bertioli, David J; Paterson, Andrew H

    2014-09-01

    Peanut (Arachis hypogaea L.) causes one of the most serious food allergies. Peanut seed proteins, Arah1, Arah2, and Arah3, are considered to be among the most important peanut allergens. To gain insights into genome organization and evolution of allergen-encoding genes, approximately 617 kb from the genome of cultivated peanut and 215 kb from a wild relative were sequenced including three Arah1, one Arah2, eight Arah3, and two Arah6 gene family members. To assign polarity to differences between homoeologous regions in peanut, we used as outgroups the single orthologous regions in Medicago, Lotus, common bean, chickpea, and pigeonpea, which diverged from peanut about 50 Ma and have not undergone subsequent polyploidy. These regions were also compared with orthologs in many additional dicot plant species to help clarify the timing of evolutionary events. The lack of conservation of allergenic epitopes between species, and the fact that many different proteins can be allergenic, makes the identification of allergens across species by comparative studies difficult. The peanut allergen genes are interspersed with low-copy genes and transposable elements. Phylogenetic analyses revealed lineage-specific expansion and loss of low-copy genes between species and homoeologs. Arah1 syntenic regions are conserved in soybean, pigeonpea, tomato, grape, Lotus, and Arabidopsis, whereas Arah3 syntenic regions show genome rearrangements. We infer that tandem and segmental duplications led to the establishment of the Arah3 gene family. Our analysis indicates differences in conserved motifs in allergen proteins and in the promoter regions of the allergen-encoding genes. Phylogenetic analysis and genomic organization studies provide new insights into the evolution of the major peanut allergen-encoding genes. PMID:25193311

  6. Gene duplication and inactivation in the HPRT gene family

    Microsoft Academic Search

    Alaine C. Keebaugh; Robert T. Sullivan; James W. Thomas

    2007-01-01

    Hypoxanthine phosphoribosyltransferase (HPRT1) is a key enzyme in the purine salvage pathway, and mutations in HPRT1 cause Lesch–Nyhan disease. The studies described here utilized targeted comparative mapping and sequencing, in conjunction with database searches, to assemble a collection of 53 HPRT1 homologs from 28 vertebrates. Phylogenetic analysis of these homologs revealed that the HPRT gene family expanded as the result

  7. Duplication, divergence and persistence in the Phytochrome photoreceptor gene family of cottons (Gossypium spp.)

    Microsoft Academic Search

    Ibrokhim Y Abdurakhmonov; Zabardast T Buriev; Carla Jo Logan-Young; Abdusattor Abdukarimov; Alan E Pepper

    2010-01-01

    BACKGROUND: Phytochromes are a family of red\\/far-red photoreceptors that regulate a number of important developmental traits in cotton (Gossypium spp.), including plant architecture, fiber development, and photoperiodic flowering. Little is known about the composition and evolution of the phytochrome gene family in diploid (G. herbaceum, G. raimondii) or allotetraploid (G. hirsutum, G. barbadense) cotton species. The objective of this study

  8. Bacterial plant oncogenes: The rol genes' saga

    Microsoft Academic Search

    P. Costantino; I. Capone; M. Cardarelli; A. De Paolis; M. L. Mauro; M. Trovato

    1994-01-01

    Therol genes are part of the T-DNA which is transferred byAgrobacterium rhizogenes in plant cells, causing neoplastic growth and differentiation. Each of these bacterial oncogenes deeply influences plant development and is finely regulated once transferred into the plant host. Both from the study of the effects and biochemical function of therol genes and from the analysis of their regulation, important

  9. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice

    Microsoft Academic Search

    Haiyan Ye; Hao Du; Ning Tang; Xianghua Li; Lizhong Xiong

    2009-01-01

    The TIFY family is a novel plant-specific gene family involved in the regulation of diverse plant-specific biologic processes,\\u000a such as development and responses to phytohormones, in Arabidopsis. However, there is limited information about this family in monocot species. This report identifies 20 TIFY genes in rice, the model monocot species. Sequence analysis indicated that rice TIFY proteins have conserved motifs

  10. ERECTA family genes regulate development of cotyledons during embryogenesis.

    PubMed

    Chen, Ming-Kun; Shpak, Elena D

    2014-11-01

    Receptor-like kinases are important regulators of plant growth. Often a single receptor is involved in regulation of multiple developmental processes in a variety of tissues. ERECTA family (ERf) receptors have previously been linked with stomata development, above-ground organ elongation, shoot apical meristem function, flower differentiation and biotic/abiotic stresses. Here we explore the role of these genes during embryogenesis. ERfs are expressed in the developing embryo, where their expression is progressively limited to the upper half of the embryo. During embryogenesis ERfs redundantly stimulate the growth of cotyledons by promoting cell proliferation and inhibiting premature stomata differentiation. PMID:25240196

  11. The potential of the WRKY gene family for phylogenetic reconstruction: an example from the Malvaceae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The WRKY gene family of transcription factors is involved in several diverse pathways and includes components of plant-specific, ancient regulatory networks. WRKY genes contain one or two highly conserved DNA binding domains interrupted by an intron. We used partial sequences of five independent WRK...

  12. Genome-wide identification and analysis of the MADS-box gene family in apple.

    PubMed

    Tian, Yi; Dong, Qinglong; Ji, Zhirui; Chi, Fumei; Cong, Peihua; Zhou, Zongshan

    2015-01-25

    The MADS-box gene family is one of the most widely studied families in plants and has diverse developmental roles in flower pattern formation, gametophyte cell division and fruit differentiation. Although the genome-wide analysis of this family has been performed in some species, little is known regarding MADS-box genes in apple (Malus domestica). In this study, 146 MADS-box genes were identified in the apple genome and were phylogenetically clustered into six subgroups (MIKC(c), MIKC*, M?, M?, M? and M?) with the MADS-box genes from Arabidopsis and rice. The predicted apple MADS-box genes were distributed across all 17 chromosomes at different densities. Additionally, the MADS-box domain, exon length, gene structure and motif compositions of the apple MADS-box genes were analysed. Moreover, the expression of all of the apple MADS-box genes was analysed in the root, stem, leaf, flower tissues and five stages of fruit development. All of the apple MADS-box genes, with the exception of some genes in each group, were expressed in at least one of the tissues tested, which indicates that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the apple. To the best of our knowledge, this report describes the first genome-wide analysis of the apple MADS-box gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family. PMID:25447908

  13. The Jonah genes: a new multigene family in Drosophila melanogaster.

    PubMed

    Carlson, J R; Hogness, D S

    1985-04-01

    The Jonah gene family consists of approximately 20 genes, distributed in small clusters at eight or more widely dispersed chromosomal sites. Gene clusters differ in the number of genes per cluster, ranging up to four, and in the arrangement of genes within clusters, which include direct repeats, inverted repeats, and combinations of direct and inverted repeats. In the third-instar larva the Jonah genes are abundantly expressed as transcripts of a single size class, located exclusively in the midgut. The Jonah genes were initially defined by homology to a reference cDNA clone. However, the structural heterogeneity within this gene family is so large that Jonah genes that fail to hybridize to the reference cDNA, yet hybridize to other members of the family that do hybridize to that cDNA have been subsequently identified. These findings raise questions regarding the sharpness of gene family boundaries. PMID:2416610

  14. Genome-wide analysis of the AP2\\/ERF gene family in Populus trichocarpa

    Microsoft Academic Search

    Jing Zhuang; Bin Cai; Ri-He Peng; Bo Zhu; Xiao-Feng Jin; Yong Xue; Feng Gao; Xiao-Yan Fu; Yong-Sheng Tian; Wei Zhao; Yu-Shan Qiao; Zhen Zhang; Ai-Sheng Xiong; Quan-Hong Yao

    2008-01-01

    Populus is a model system for investigating the wood development, crown formation, and disease resistance in perennial plants. AR2\\/ERF is a large family of transcription factors in plant, encoding transcriptional regulators with a variety of functions involved in the developmental and physiological processes. Here, starting from database of Populus genome, we identified 200 AP2\\/ERF genes by in silico cloning method

  15. Plant breeding (review) Transformation of Poaceae and gene expression

    E-print Network

    Paris-Sud XI, Université de

    Plant breeding (review) Transformation of Poaceae and gene expression in transgenic plants J used for transformation and for achieving controlled gene expression in transgenic plants and discusses. transformation / monocot / gene expression / transgenic plant Summary — Transformation des Poaceae et

  16. Inferring Gene Family Histories in Yeast Identifies Lineage Specific Expansions

    PubMed Central

    Ames, Ryan M.; Money, Daniel; Lovell, Simon C.

    2014-01-01

    The complement of genes found in the genome is a balance between gene gain and gene loss. Knowledge of the specific genes that are gained and lost over evolutionary time allows an understanding of the evolution of biological functions. Here we use new evolutionary models to infer gene family histories across complete yeast genomes; these models allow us to estimate the relative genome-wide rates of gene birth, death, innovation and extinction (loss of an entire family) for the first time. We show that the rates of gene family evolution vary both between gene families and between species. We are also able to identify those families that have experienced rapid lineage specific expansion/contraction and show that these families are enriched for specific functions. Moreover, we find that families with specific functions are repeatedly expanded in multiple species, suggesting the presence of common adaptations and that these family expansions/contractions are not random. Additionally, we identify potential specialisations, unique to specific species, in the functions of lineage specific expanded families. These results suggest that an important mechanism in the evolution of genome content is the presence of lineage-specific gene family changes. PMID:24921666

  17. Genome-wide analysis of the auxin response factors (ARF) gene family in rice ( Oryza sativa)

    Microsoft Academic Search

    Dekai Wang; Kemei Pei; Yaping Fu; Zongxiu Sun; Sujuan Li; Heqin Liu; Kan Tang; Bin Han; Yuezhi Tao

    2007-01-01

    Auxin response factors (ARFs) are transcription factors that bind with specificity to TGTCTC-containing auxin response elements (AuxREs) found in promoters of primary\\/early auxin response genes and mediate responses to the plant hormone auxin. The ARF genes are represented by a large multigene family in plants. A comprehensive genome-wide analysis was carried out in this study to find all ARFs in

  18. Genome-wide identification and expression profiling of auxin response factor ( ARF ) gene family in maize

    Microsoft Academic Search

    Hongyan Xing; Ramesh N Pudake; Ganggang Guo; Guofang Xing; Zhaorong Hu; Yirong Zhang; Qixin Sun; Zhongfu Ni

    2011-01-01

    Background  Auxin signaling is vital for plant growth and development, and plays important role in apical dominance, tropic response,\\u000a lateral root formation, vascular differentiation, embryo patterning and shoot elongation. Auxin Response Factors (ARFs) are\\u000a the transcription factors that regulate the expression of auxin responsive genes. The ARF genes are represented by a large multigene family in plants. The first draft of

  19. Genes encoding pentatricopeptide repeat (PPR) proteins are not conserved in location in plant genomes and may be subject to diversifying selection

    Microsoft Academic Search

    Rachel Geddy; Gregory G Brown

    2007-01-01

    BACKGROUND: The pentatricopeptide repeat (PPR) is a degenerate 35 amino acid motif that occurs in multiple tandem copies in members of a recently recognized eukaryotic gene family. Most analyzed eukaryotic genomes contain only a small number of PPR genes, but in plants the family is greatly expanded. The factors that underlie the expansion of this gene family in plants are

  20. Identification, phylogeny, and transcript of chitinase family genes in sugarcane.

    PubMed

    Su, Yachun; Xu, Liping; Wang, Shanshan; Wang, Zhuqing; Yang, Yuting; Chen, Yun; Que, Youxiong

    2015-01-01

    Chitinases are pathogensis-related proteins, which play an important role in plant defense mechanisms. The role of the sugarcane chitinase family genes remains unclear due to the highly heterozygous and aneuploidy chromosome genetic background of sugarcane. Ten differentially expressed chitinase genes (belonging to class I~VII) were obtained from RNA-seq analysis of both incompatible and compatible sugarcane genotypes during Sporisorium scitamineum challenge. Their structural properties and expression patterns were analyzed. Seven chitinases (ScChiI1, ScChiI2, ScChiI3, ScChiIII1, ScChiIII2, ScChiIV1 and ScChiVI1) showed more positive with early response and maintained increased transcripts in the incompatible interaction than those in the compatible one. Three (ScChiII1, ScChiV1 and ScChiVII1) seemed to have no significant difference in expression patterns between incompatible and compatible interactions. The ten chitinases were expressed differentially in response to hormone treatment as well as having distinct tissue specificity. ScChiI1, ScChiIV1 and ScChiVII1 were induced by various abiotic stresses (NaCl, CuCl2, PEG and 4?°C) and their involvement in plant immunity was demonstrated by over-expression in Nicotiana benthamiana. The results suggest that sugarcane chitinase family exhibit differential responses to biotic and abiotic stress, providing new insights into their function. PMID:26035173

  1. Identification, Phylogeny, and Transcript of Chitinase Family Genes in Sugarcane

    PubMed Central

    Su, Yachun; Xu, Liping; Wang, Shanshan; Wang, Zhuqing; Yang, Yuting; Chen, Yun; Que, Youxiong

    2015-01-01

    Chitinases are pathogensis-related proteins, which play an important role in plant defense mechanisms. The role of the sugarcane chitinase family genes remains unclear due to the highly heterozygous and aneuploidy chromosome genetic background of sugarcane. Ten differentially expressed chitinase genes (belonging to class I~VII) were obtained from RNA-seq analysis of both incompatible and compatible sugarcane genotypes during Sporisorium scitamineum challenge. Their structural properties and expression patterns were analyzed. Seven chitinases (ScChiI1, ScChiI2, ScChiI3, ScChiIII1, ScChiIII2, ScChiIV1 and ScChiVI1) showed more positive with early response and maintained increased transcripts in the incompatible interaction than those in the compatible one. Three (ScChiII1, ScChiV1 and ScChiVII1) seemed to have no significant difference in expression patterns between incompatible and compatible interactions. The ten chitinases were expressed differentially in response to hormone treatment as well as having distinct tissue specificity. ScChiI1, ScChiIV1 and ScChiVII1 were induced by various abiotic stresses (NaCl, CuCl2, PEG and 4?°C) and their involvement in plant immunity was demonstrated by over-expression in Nicotiana benthamiana. The results suggest that sugarcane chitinase family exhibit differential responses to biotic and abiotic stress, providing new insights into their function. PMID:26035173

  2. The tomato cis-prenyltransferase gene family.

    PubMed

    Akhtar, Tariq A; Matsuba, Yuki; Schauvinhold, Ines; Yu, Geng; Lees, Hazel A; Klein, Samuel E; Pichersky, Eran

    2013-02-01

    cis-prenyltransferases (CPTs) are predicted to be involved in the synthesis of long-chain polyisoprenoids, all with five or more isoprene (C5) units. Recently, we identified a short-chain CPT, neryl diphosphate synthase (NDPS1), in tomato (Solanum lycopersicum). Here, we searched the tomato genome and identified and characterized its entire CPT gene family, which comprises seven members (SlCPT1-7, with NDPS1 designated as SlCPT1). Six of the SlCPT genes encode proteins with N-terminal targeting sequences, which, when fused to GFP, mediated GFP transport to the plastids of Arabidopsis protoplasts. The SlCPT3-GFP fusion protein was localized to the cytosol. Enzymatic characterization of recombinant SlCPT proteins demonstrated that SlCPT6 produces Z,Z-FPP, and SlCPT2 catalyzes the formation of nerylneryl diphosphate while SlCPT4, SlCPT5 and SlCPT7 synthesize longer-chain products (C25-C55). Although no in vitro activity was demonstrated for SlCPT3, its expression in the Saccharomyces cerevisiae dolichol biosynthesis mutant (rer2) complemented the temperature-sensitive growth defect. Transcripts of SlCPT2, SlCPT4, SlCPT5 and SlCPT7 are present at low levels in multiple tissues, SlCPT6 is exclusively expressed in red fruit and roots, and SlCPT1, SlCPT3 and SlCPT7 are highly expressed in trichomes. RNAi-mediated suppression of NDPS1 led to a large decrease in ?-phellandrene (which is produced from neryl diphosphate), with greater reductions achieved with the general 35S promoter compared to the trichome-specific MKS1 promoter. Phylogenetic analysis revealed CPT gene families in both eudicots and monocots, and showed that all the short-chain CPT genes from tomato (SlCPT1, SlCPT2 and SlCPT6) are closely linked to terpene synthase gene clusters. PMID:23134568

  3. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Legumes and many nonleguminous plants enter symbiotic interactions with microbes, and it is poorly understood how host plants respond to promote beneficial, symbiotic microbial interactions while suppressing those that are deleterious or pathogenic. Trans-acting siRNAs (tasiRNAs) negatively regulate...

  4. A Novel Gene Family NBPF: Intricate Structure Generated by Gene Duplications During Primate Evolution

    Microsoft Academic Search

    Karl Vandepoele; Nadine Van Roy; Katrien Staes; Frank Speleman; Frans van Roy

    2005-01-01

    Partial and complete genome duplications occurred during evolution and resulted in the creation of new genes and gene families. We identified a novel and intricate human gene family located primarily in regions of segmental duplications on human chromosome 1. We named it NBPF, for neuroblastoma breakpoint family, because one of its members is disrupted by a chromosomal translocation in a

  5. Developmental Role and Auxin Responsiveness of Class III Homeodomain Leucine Zipper Gene Family Members in Rice

    Microsoft Academic Search

    Jun-Ichi Itoh; Ken-Ichiro Hibara; Yutaka Sato; Yasuo Nagato

    2008-01-01

    Members of the Class III homeodomain leucine zipper (Class III HD-Zip) gene family are central regulators of crucial aspects of plant development. To better understand the roles of five Class III HD-Zip genes in rice (Oryza sativa) development, we investigated their expression patterns, ectopic expression phenotypes, and auxin responsiveness. Four genes, OSHB1 to OSHB4, were expressed in a localized domain

  6. A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response

    Microsoft Academic Search

    MAYA MAYROSE; SOPHIA K. EKENGREN; SHIRI MELECH-BONFIL; GREGORY B. MARTIN; GUIDO SESSA

    2006-01-01

    SUMMARY Members of the GRAS family of transcriptional regulators have been implicated in the control of plant growth and development, and in the interaction of plants with symbiotic bacteria. Here we examine the complexity of the GRAS gene family in tomato ( Solanum lycopersicum ) and investigate its role in disease resistance and mechanical stress. A large number of tomato

  7. Rapid Evolution in a Conserved Gene Family. Evolution of the Actin Gene Family in the Sea Urchin Genus Heliocidaris and Related Genera

    E-print Network

    Kissinger, Jessica

    Rapid Evolution in a Conserved Gene Family. Evolution of the Actin Gene Family in the Sea Urchin of the actin gene family in two congeneric sea urchins that develop in radically different modes, Heliociduris genes to those of the the actin gene families of other closely related sea urchins and discuss

  8. Estimating Neotropical palaeotemperature and palaeoprecipitation using plant family climatic optima

    Microsoft Academic Search

    Surangi W. Punyasena

    2008-01-01

    The member species of individual plant families, particularly within the tropics, can be found in very different habitats. Despite this ecological and physiological diversity, the results of this study demonstrate that heterogeneity within families does not prevent climatic generalizations at higher taxonomic ranks. Modelled distributions that incorporate local abundance data can discriminate climatically among many plant families and can potentially

  9. Bacterial plant oncogenes: the rol genes' saga.

    PubMed

    Costantino, P; Capone, I; Cardarelli, M; De Paolis, A; Mauro, M L; Trovato, M

    1994-01-01

    The rol genes are part of the T-DNA which is transferred by Agrobacterium rhizogenes in plant cells, causing neoplastic growth and differentiation. Each of these bacterial oncogenes deeply influences plant development and is finely regulated once transferred into the plant host. Both from the study of the effects and biochemical function of the rol genes and from the analysis of their regulation, important insight in plant development can be derived. Some of the most intriguing aspects of past, current and future research on this gene system are highlighted and discussed. PMID:7896140

  10. Evolutionary Dynamics of Plant R-Genes

    NSDL National Science Digital Library

    Joy Bergelson (University of Chicago; Department of Ecology and Evolution)

    2001-06-22

    Plant R-genes involved in gene-for-gene interactions with pathogens are expected to undergo coevolutionary arms races in which plant specificity and pathogen virulence continually adapt in response to each other. Lending support to this idea, the solvent-exposed amino acid residues of leucine-rich repeats, a region of R-genes involved in recognizing pathogens, often evolve at unusually fast rates. But within-species polymorphism is also common in R-genes, implying that the adaptive substitution process is not simply one of successive selective sweeps. Here we document these features in available data and discuss them in light of the evolutionary dynamics they likely reflect.

  11. Sequence and expression analysis of the AMT gene family in poplar

    PubMed Central

    Wu, Xiangyu; Yang, Han; Qu, Chunpu; Xu, Zhiru; Li, Wei; Hao, Bingqing; Yang, Chuanping; Sun, Guangyu; Liu, Guanjun

    2015-01-01

    Ammonium transporters (AMTs) are plasma membrane proteins that exclusively transport ammonium/ammonia. These proteins are encoded by an ancient gene family with many members. The molecular characteristics and evolutionary history of AMTs in woody plants are still poorly understood. We comprehensively evaluated the AMT gene family in the latest release of the Populus trichocarpa genome (version 3.0; Phytozome 9.0), and identified 16 AMT genes. These genes formed four clusters; AMT1 (7 genes), AMT2 (2 genes), AMT3 (2 genes), and AMT4 (5 genes). Evolutionary analyses suggested that the Populus AMT gene family has expanded via whole-genome duplication events. Among the 16 AMT genes, 15 genes are located on 11 chromosomes of Populus. Expression analyses showed that 14 AMT genes were vegetative organs expressed; AMT1;1/1;3/1;6/3;2 and AMT1;1/1;2/2;2/3;1 had high transcript accumulation level in the leaves and roots, respectively and strongly changes under the nitrogen-dependent experiments. The results imply the functional roles of AMT genes in ammonium absorption in poplar.

  12. The Plant Cell, Vol. 15, 93106, January 2003, www.plantcell.org 2002 American Society of Plant Biologists Tandemly Duplicated Arabidopsis Genes That Encode

    E-print Network

    Ausubel, Frederick M.

    ," Piazzale Aldo Moro 5, 00185 Rome, Italy Polygalacturonase-inhibiting proteins (PGIPs) are plant proteins proteins, PGIPs are encoded by gene families, but the roles of individual genes in these families are poorly understood. Here, we show that in Arabidopsis, two tandemly dupli- cated PGIP genes

  13. Emerging Use of Gene Expression Microarrays in Plant Physiology

    DOE PAGESBeta

    Wullschleger, Stan D.; Difazio, Stephen P.

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology weremore »selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.« less

  14. Genome Dynamics Explain the Evolution of Flowering Time CCT Domain Gene Families in the Poaceae

    PubMed Central

    Cockram, James; Thiel, Thomas; Steuernagel, Burkhard; Stein, Nils; Taudien, Stefan; Bailey, Paul C.; O'Sullivan, Donal M.

    2012-01-01

    Numerous CCT domain genes are known to control flowering in plants. They belong to the CONSTANS-like (COL) and PREUDORESPONSE REGULATOR (PRR) gene families, which in addition to a CCT domain possess B-box or response-regulator domains, respectively. Ghd7 is the most recently identified COL gene to have a proven role in the control of flowering time in the Poaceae. However, as it lacks B-box domains, its inclusion within the COL gene family, technically, is incorrect. Here, we show Ghd7 belongs to a larger family of previously uncharacterized Poaceae genes which possess just a single CCT domain, termed here CCT MOTIF FAMILY (CMF) genes. We molecularly describe the CMF (and related COL and PRR) gene families in four sequenced Poaceae species, as well as in the draft genome assembly of barley (Hordeum vulgare). Genetic mapping of the ten barley CMF genes identified, as well as twelve previously unmapped HvCOL and HvPRR genes, finds the majority map to colinear positions relative to their Poaceae orthologues. Combined inter-/intra-species comparative and phylogenetic analysis of CMF, COL and PRR gene families indicates they evolved prior to the monocot/dicot divergence ?200 mya, with Poaceae CMF evolution described as the interplay between whole genome duplication in the ancestral cereal, and subsequent clade-specific mutation, deletion and duplication events. Given the proven role of CMF genes in the modulation of cereals flowering, the molecular, phylogenetic and comparative analysis of the Poaceae CMF, COL and PRR gene families presented here provides the foundation from which functional investigation can be undertaken. PMID:23028921

  15. 3. LOOKING EAST OVER GENE PUMP PLANT AND CAMP; PARKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. LOOKING EAST OVER GENE PUMP PLANT AND CAMP; PARKER DAM VILLAGE IN BACKGROUND. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  16. Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees

    Microsoft Academic Search

    Caroline L Côté; Francis Boileau; Vicky Roy; Mario Ouellet; Caroline Levasseur; Marie-Josée Morency; Janice EK Cooke; Armand Séguin; John J MacKay

    2010-01-01

    BACKGROUND: Class III Homeodomain Leucine Zipper (HD-Zip III) proteins have been implicated in the regulation of cambium identity, as well as primary and secondary vascular differentiation and patterning in herbaceous plants. They have been proposed to regulate wood formation but relatively little evidence is available to validate such a role. We characterised and compared HD-Zip III gene family in an

  17. GeneSeqer add PlantGDB: gene structure prediction in plant genomes

    Microsoft Academic Search

    Shannon D. Schlueter; Qunfeng Dong; Volker Brendel

    2003-01-01

    The GeneSeqer@PlantGDB Web server (http:\\/\\/ www.plantgdb.org\\/cgi-bin\\/GeneSeqer.cgi) provides a gene structure prediction tool tailored for applica- tions to plant genomic sequences. Predictions are based on spliced alignment with source-native ESTs and full-length cDNAs or non-native probes derived from putative homologous genes. The tool is illustrated with applications to refinement of current gene structure annotation and de novo annotation of draft genomic

  18. Systematic Analysis and Identification of Stress-Responsive Genes of the NAC Gene Family in Brachypodium distachyon

    PubMed Central

    You, Jun; Zhang, Lihua; Song, Bo; Qi, Xiaoquan; Chan, Zhulong

    2015-01-01

    Plant-specific NAC proteins are one of the largest families of transcription factors in plants, and members of this family have been characterized with roles in the regulation of diverse biological processes, including development and stress responses. In the present study, we identified 101 putative NAC domain-encoding genes (BdNACs) through systematic sequence analysis in Brachypodium distachyon, a new model plant of family Poaceae. BdNAC proteins were phylogenetically clustered into 13 groups, and each group possesses similar motif compositions. Phylogenetic analysis using known stress-related NACs from Arabidopsis and rice as query sequences identified 18 BdNACs as putative stress-responsive genes. In silico promoter analysis showed that almost all BdNAC genes contain putative stress-related cis-elements in their promoter regions. Expression profile of BdNAC genes in response to abiotic stresses and phytohormones was analyzed by quantitative real-time RT-PCR. Several putative stress-responsive BdNAC genes, including BdNAC003 and BdNAC044 which is ortholog of known stress-responsive rice gene SNAC1 and SNAC2, respectively, were highly regulated by multiple abiotic stresses and stress-related phytohormone treatments. Taken together, our results presented here would be helpful in laying the foundation for understanding of the complex mechanisms of NAC mediated abiotic stress signaling transduction pathways in B. distachyon. PMID:25815771

  19. Structural, Functional, and Evolutionary Analysis of the Unusually Large Stilbene Synthase Gene Family in Grapevine1[W

    PubMed Central

    Parage, Claire; Tavares, Raquel; Réty, Stéphane; Baltenweck-Guyot, Raymonde; Poutaraud, Anne; Renault, Lauriane; Heintz, Dimitri; Lugan, Raphaël; Marais, Gabriel A.B.; Aubourg, Sébastien; Hugueney, Philippe

    2012-01-01

    Stilbenes are a small family of phenylpropanoids produced in a number of unrelated plant species, including grapevine (Vitis vinifera). In addition to their participation in defense mechanisms in plants, stilbenes, such as resveratrol, display important pharmacological properties and are postulated to be involved in the health benefits associated with a moderate consumption of red wine. Stilbene synthases (STSs), which catalyze the biosynthesis of the stilbene backbone, seem to have evolved from chalcone synthases (CHSs) several times independently in stilbene-producing plants. STS genes usually form small families of two to five closely related paralogs. By contrast, the sequence of grapevine reference genome (cv PN40024) has revealed an unusually large STS gene family. Here, we combine molecular evolution and structural and functional analyses to investigate further the high number of STS genes in grapevine. Our reannotation of the STS and CHS gene families yielded 48 STS genes, including at least 32 potentially functional ones. Functional characterization of nine genes representing most of the STS gene family diversity clearly indicated that these genes do encode for proteins with STS activity. Evolutionary analysis of the STS gene family revealed that both STS and CHS evolution are dominated by purifying selection, with no evidence for strong selection for new functions among STS genes. However, we found a few sites under different selection pressures in CHS and STS sequences, whose potential functional consequences are discussed using a structural model of a typical STS from grapevine that we developed. PMID:22961129

  20. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana

    Microsoft Academic Search

    Steven B Cannon; Arvind Mitra; Andrew Baumgarten; Nevin D Young; Georgiana May

    2004-01-01

    BACKGROUND: Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses. RESULTS: Our approach

  1. Msx homeobox gene family and craniofacial development

    Microsoft Academic Search

    Sylvia ALAPPAT; Zun Yi ZHANG; Yi Ping CHEN

    2003-01-01

    Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the

  2. KT\\/HAK\\/KUP potassium transporters gene family and their whole-life cycle expression profile in rice ( Oryza sativa )

    Microsoft Academic Search

    Madhur Gupta; Xuhua Qiu; Lei Wang; Weibo Xie; Chengjun Zhang; Lizhong Xiong; Xingming Lian; Qifa Zhang

    2008-01-01

    KT\\/HAK\\/KUP potassium transporter protein-encoding genes constitute a large family in the plant kingdom. The KT\\/HAK\\/KUP family\\u000a is important for various physiological processes of plant life. In this study, we identified 27 potential KT\\/HAK\\/KUP family\\u000a genes in rice (Oryza sativa) by database searching. Analysis of these KT\\/HAK\\/KUP family members identified three conserved motifs with unknown functions,\\u000a and 11–15 trans-membrane segments, most

  3. [D4 family genes in vertebrates: genomic organization and expression].

    PubMed

    Kulikova, D A; Mertsalov, I B; Simonova, O B

    2013-01-01

    A family of closely related genes, named the d4 family, has been previously identified in mammals. It comprises three genes encoding structurally related proteins. The hallmark of the family is d4 domain--a double-paired finger motifthat consists of two tandemly arranged PHD finger domains. These genes are expressed in various tissues and at various developmental stages. Two of those, neuro-d4 and cer-d4, are strictly neurospecific and their expression is developmentally regulated. Another gene, ubi-d4/Requiem is ubiquitously expressed in all embryonic and adult tissues at the same levels. d4 family genes are evolutionary conserved. Human, mouse, rat, and chicken d4 genes have been cloned. The only d4-like gene was found in the genome of nematode C. elegans. The sole member of d4 family was identified also in the genome of D. melanogaster. However, d4 genes are not believed to be present in the genomes of prokaryotes and yeast. This review describes genomic organization and expression ofd4family genes in different organisms. PMID:23659077

  4. Includes pre-computed gene families, multiple sequence alignments &

    E-print Network

    Gent, Universiteit

    23 plants covering 11 dicots, 5 monocots, 2 (club-)mosses and 5 algae · Advanced panel of (inter to perform analyses on their genes · Includes published genomes from flowering plants, mosses and several

  5. Includes pre-computed gene families, multiple sequence

    E-print Network

    Gent, Universiteit

    genomes from flowering plants, (club-)mosses and several green algae · All data can be downloaded PLAZA release 2.5 · Includes >900,000 genes from 25 plants covering 13 dicots, 5 monocots, 2 (club-)mosses

  6. Evolution of the Class IV HD-Zip Gene Family in Streptophytes

    PubMed Central

    Zalewski, Christopher S.; Floyd, Sandra K.; Furumizu, Chihiro; Sakakibara, Keiko; Stevenson, Dennis W.; Bowman, John L.

    2013-01-01

    Class IV homeodomain leucine zipper (C4HDZ) genes are plant-specific transcription factors that, based on phenotypes in Arabidopsis thaliana, play an important role in epidermal development. In this study, we sampled all major extant lineages and their closest algal relatives for C4HDZ homologs and phylogenetic analyses result in a gene tree that mirrors land plant evolution with evidence for gene duplications in many lineages, but minimal evidence for gene losses. Our analysis suggests an ancestral C4HDZ gene originated in an algal ancestor of land plants and a single ancestral gene was present in the last common ancestor of land plants. Independent gene duplications are evident within several lineages including mosses, lycophytes, euphyllophytes, seed plants, and, most notably, angiosperms. In recently evolved angiosperm paralogs, we find evidence of pseudogenization via mutations in both coding and regulatory sequences. The increasing complexity of the C4HDZ gene family through the diversification of land plants correlates to increasing complexity in epidermal characters. PMID:23894141

  7. Evolution of the class IV HD-zip gene family in streptophytes.

    PubMed

    Zalewski, Christopher S; Floyd, Sandra K; Furumizu, Chihiro; Sakakibara, Keiko; Stevenson, Dennis W; Bowman, John L

    2013-10-01

    Class IV homeodomain leucine zipper (C4HDZ) genes are plant-specific transcription factors that, based on phenotypes in Arabidopsis thaliana, play an important role in epidermal development. In this study, we sampled all major extant lineages and their closest algal relatives for C4HDZ homologs and phylogenetic analyses result in a gene tree that mirrors land plant evolution with evidence for gene duplications in many lineages, but minimal evidence for gene losses. Our analysis suggests an ancestral C4HDZ gene originated in an algal ancestor of land plants and a single ancestral gene was present in the last common ancestor of land plants. Independent gene duplications are evident within several lineages including mosses, lycophytes, euphyllophytes, seed plants, and, most notably, angiosperms. In recently evolved angiosperm paralogs, we find evidence of pseudogenization via mutations in both coding and regulatory sequences. The increasing complexity of the C4HDZ gene family through the diversification of land plants correlates to increasing complexity in epidermal characters. PMID:23894141

  8. [Polymorphism of lectin genes in Lathyrus plants].

    PubMed

    Chubukova, O V; Ba?miev, Al Kh; Ba?miev, An Kh

    2011-07-01

    The carbohydrate-binding sequences of the lectin genes from spring vetchling Lathyrus vernus (L.) Bernh., marsh vetchling L. palustris (L.), and Gmelin's vetchling L. gmelinii (Fitsch) (Fabaceae) were determined. Computer-aided analysis revealed substantial differences between nucleotide and predicted amino acid sequences of the lectin gene regions examined in each of the three vetchling species tested. In the phylogenetic trees based on sequence similarity of carbohydrate-biding regions of legume lectins, the sequences examined formed a compact cluster with the lectin genes of the plants belonging to the tribe Fabeae. In each plant, L. vernus, L. palustris, and L. gmelinii, three different lectin-encoding genes were detected. Most of the substitutions were identified within the gene sequence responsible for coding the carbohydrate-binding protein regions. This finding may explain different affinity of these lectins to different carbohydrates, and as a consequence, can affect the plant host specificity upon development of symbiosis with rhizobium bacteria. PMID:21938955

  9. Genome-wide analysis and identification of KT/HAK/KUP potassium transporter gene family in peach (Prunus persica).

    PubMed

    Song, Z Z; Ma, R J; Yu, M L

    2015-01-01

    The KT/HAK/KUP family members encoding high-affinity potassium (K(+)) transporters mediate K(+) transport across the plasma membranes of plant cells to maintain plant normal growth and metabolic activities. In this paper, we identified 16 potassium transporter genes in the peach (Prunus persica) using the Hidden Markov model scanning strategy and searching the peach genome database. Utilizing the Arabidopsis KT/HAK/KUP family as a reference, phylogenetic analysis indicates that the KT/HAK/KUP family in the peach can be classified into 3 groups. Genomic localization indicated that 16 KT/HAK/KUP family genes were well distributed on 7 scaffolds. Gene structure analysis showed that the KT/HAK/KUP family genes have 6-9 introns. In addition, all of the KT/HAK/KUP family members were hydrophobic proteins; they exhibited similar secondary structure patterns and homologous tertiary structures. Putative cis-elements involved in abiotic stress adaption, Ca(2+) response, light and circadian rhythm regulation, and seed development were observed in the promoters of the KT/HAK/KUP family genes. Subcellular localization prediction indicated that the KT/HAK/KUP members were mainly located in the plasma membrane. Expression levels of the KT/HAK/ KUP family genes were much higher in the fruit and flower than those in the other 7 tissues examined, indicating that the KT/HAK/KUP family genes may have important roles in K(+) uptake and transport, which mainly contribute to flower formation and fruit development in the peach. PMID:25730015

  10. The Expansion of the PRAME Gene Family in Eutheria

    PubMed Central

    Chang, Ti-Cheng; Yang, Yang; Yasue, Hiroshi; Bharti, Arvind K.; Retzel, Ernest F.; Liu, Wan-Sheng

    2011-01-01

    The PRAME gene family belongs to the group of cancer/testis genes whose expression is restricted primarily to the testis and a variety of cancers. The expansion of this gene family as a result of gene duplication has been observed in primates and rodents. We analyzed the PRAME gene family in Eutheria and discovered a novel Y-linked PRAME gene family in bovine, PRAMEY, which underwent amplification after a lineage-specific, autosome-to-Y transposition. Phylogenetic analyses revealed two major evolutionary clades. Clade I containing the amplified PRAMEYs and the unamplified autosomal homologs in cattle and other eutherians is under stronger functional constraints; whereas, Clade II containing the amplified autosomal PRAMEs is under positive selection. Deep-sequencing analysis indicated that eight of the identified 16 PRAMEY loci are active transcriptionally. Compared to the bovine autosomal PRAME that is expressed predominantly in testis, the PRAMEY gene family is expressed exclusively in testis and is up-regulated during testicular maturation. Furthermore, the sense RNA of PRAMEY is expressed specifically whereas the antisense RNA is expressed predominantly in spermatids. This study revealed that the expansion of the PRAME family occurred in both autosomes and sex chromosomes in a lineage-dependent manner. Differential selection forces have shaped the evolution and function of the PRAME family. The positive selection observed on the autosomal PRAMEs (Clade II) may result in their functional diversification in immunity and reproduction. Conversely, selective constraints have operated on the expanded PRAMEYs to preserve their essential function in spermatogenesis. PMID:21347312

  11. Familial juvenile polyposis coli with APC gene mutation.

    PubMed

    Kim, J C; Roh, S A; Yu, C S; Lee, H I; Gong, G

    1997-10-01

    Familial juvenile polyposis has been known to have malignant potential, but their genetic relation to familial adenomatous polyposis has not been proven yet. Two young brothers with intermittent rectal bleeding revealed multiple juvenile polyposis. Their father had a history of rectal cancer with multiple colonic polyps. Four frequent exons of APC gene mutation were tested from these patients' white blood cells by polyacrylamide gel electrophoresis and sequencing. The 21-yr-old brother had a missense mutation (GAA-->GGA) at codon 1309, whereas the 18-yr-old brother showed a missense mutation (ATA-->GTA) at codon 1304 in exon 15 of APC gene. Three of four first-degree relatives were affected with familial juvenile polyposis, familial juvenile polyposis with adenomatous change, and rectal cancer with multiple polyps. The APC gene mutation of familial juvenile polyposis in this case suggests a genetic relationship with familial adenomatous polyposis. PMID:9382065

  12. RNase T2 genes from rice and the evolution of secretory ribonucleases in plants

    Microsoft Academic Search

    Gustavo C. MacIntosh; Melissa S. Hillwig; Alexander Meyer; Lex Flagel

    2010-01-01

    The plant RNase T2 family is divided into two different subfamilies. S-RNases are involved in rejection of self-pollen during\\u000a the establishment of self-incompatibility in three plant families. S-like RNases, on the other hand, are not involved in self-incompatibility,\\u000a and although gene expression studies point to a role in plant defense and phosphate recycling, their biological roles are\\u000a less well understood.

  13. A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members

    Microsoft Academic Search

    Adamantia Agalou; Sigit Purwantomo; Elin Övernäs; Henrik Johannesson; Xiaoyi Zhu; Amy Estiati; Rolf J. de Kam; Peter Engström; Inez H. Slamet-Loedin; Zhen Zhu; Mei Wang; Lizhong Xiong; Annemarie H. Meijer; Pieter B. F. Ouwerkerk

    2008-01-01

    The homeodomain leucine zipper (HD-Zip) genes encode transcription factors that have diverse functions in plant development\\u000a and have often been implicated in stress adaptation. The HD-Zip genes are the most abundant group of homeobox (HB) genes in\\u000a plants and do not occur in other eukaryotes. This paper describes the complete annotation of the HD-Zip families I, II and\\u000a III from

  14. Structure, Evolution, and Expression of the Two Invertase Gene Families of Rice

    Microsoft Academic Search

    Xuemei Ji; Wim Van den Ende; Andre Van Laere; Shihua Cheng; John Bennett

    2005-01-01

    Invertases catalyze the irreversible hydrolysis of sucrose to glucose and fructose. Plants contain two unrelated families of these enzymes: acid forms that derive from periplasmic invertases of eubacteria and are found in cell wall and vacuole, and neutral\\/alkaline forms evolved from the cytosolic invertases of cyanobacteria. Genomes of rice (Oryza sativa) and thale cress (Arabidopsis thaliana) contain multiple genes encoding

  15. Genome-wide analysis of the putative AP2\\/ERF family genes in Vitis vinifera

    Microsoft Academic Search

    Jing Zhuang; Ri-He Peng; Jian Zhang; Bin Cai; Zhen Zhang; Feng Gao; Bo Zhu; Xiao-Yan Fu; Xiao-Feng Jin; Jian-Min Chen; Yu-Shan Qiao; Ai-Sheng Xiong; Quan-Hong Yao

    2009-01-01

    The nucleotide sequence of the entire grapevine genome has been obtained and its draft sequence has served as the model for fruit crops. Many transcription factors involved in stress-resistance pathways have been identified, among which the AP2\\/ERF is a large, and one of the most important families of transcription factors in plants. In this study, 132 putative transcription factor genes

  16. Formin defines a large family of morphoregulatory genes and functions in establishment of the polarising region

    Microsoft Academic Search

    Rolf Zeller; Anna G. Haramis; Aimée Zuniga; Caroline McGuigan; Rosanna Dono; Gary Davidson; Sophie Chabanis; Toby Gibson

    1999-01-01

    Formin was originally isolated as the gene affected by the murine limb deformity (ld) mutations, which disrupt the epithelial-mesenchymal interactions regulating patterning of the vertebrate limb autopod. More\\u000a recently, a rapidly growing number of genes with similarity to formin have been isolated from many different species including fungi and plants. Genetic and biochemical analysis shows that formin family members function

  17. Evolution of fruit development genes in flowering plants

    PubMed Central

    Pabón-Mora, Natalia; Wong, Gane Ka-Shu; Ambrose, Barbara A.

    2014-01-01

    The genetic mechanisms regulating dry fruit development and opercular dehiscence have been identified in Arabidopsis thaliana. In the bicarpellate silique, valve elongation and differentiation is controlled by FRUITFULL (FUL) that antagonizes SHATTERPROOF1-2 (SHP1/SHP2) and INDEHISCENT (IND) at the dehiscence zone where they control normal lignification. SHP1/2 are also repressed by REPLUMLESS (RPL), responsible for replum formation. Similarly, FUL indirectly controls two other factors ALCATRAZ (ALC) and SPATULA (SPT) that function in the proper formation of the separation layer. FUL and SHP1/2 belong to the MADS-box family, IND and ALC belong to the bHLH family and RPL belongs to the homeodomain family, all of which are large transcription factor families. These families have undergone numerous duplications and losses in plants, likely accompanied by functional changes. Functional analyses of homologous genes suggest that this network is fairly conserved in Brassicaceae and less conserved in other core eudicots. Only the MADS box genes have been functionally characterized in basal eudicots and suggest partial conservation of the functions recorded for Brassicaceae. Here we do a comprehensive search of SHP, IND, ALC, SPT, and RPL homologs across core-eudicots, basal eudicots, monocots and basal angiosperms. Based on gene-tree analyses we hypothesize what parts of the network for fruit development in Brassicaceae, in particular regarding direct and indirect targets of FUL, might be conserved across angiosperms. PMID:25018763

  18. Family business: the multidrug-resistance related protein (MRP) ABC transporter genes in Arabidopsis thaliana.

    PubMed

    Kolukisaoglu, H Uner; Bovet, Lucien; Klein, Markus; Eggmann, Thomas; Geisler, Markus; Wanke, Dierk; Martinoia, Enrico; Schulz, Burkhard

    2002-11-01

    Despite the completion of the sequencing of the entire genome of Arabidopsis thaliana (L.) Heynh., the exact determination of each single gene and its function remains an open question. This is especially true for multigene families. An approach that combines analysis of genomic structure, expression data and functional genomics to ascertain the role of the members of the multidrug-resistance-related protein ( MRP) gene family, a subfamily of the ATP-binding cassette (ABC) transporters from Arabidopsis is presented. We used cDNA sequencing and alignment-based re-annotation of genomic sequences to define the exact genic structure of all known AtMRP genes. Analysis of promoter regions suggested different induction conditions even for closely related genes. Expression analysis for the entire gene family confirmed these assumptions. Phylogenetic analysis and determination of segmental duplication in the regions of AtMRP genes revealed that the evolution of the extraordinarily high number of ABC transporter genes in plants cannot solely be explained by polyploidisation during the evolution of the Arabidopsis genome. Interestingly MRP genes from Oryza sativa L. (rice; OsMRP) show very similar genomic structures to those from Arabidopsis. Screening of large populations of T-DNA-mutagenised lines of A. thaliana resulted in the isolation of AtMRP insertion mutants. This work opens the way for the defined analysis of a multigene family of important membrane transporters whose broad variety of functions expands their traditional role as cellular detoxifiers. PMID:12430019

  19. Molecular characterization of edestin gene family in Cannabis sativa L.

    PubMed

    Docimo, Teresa; Caruso, Immacolata; Ponzoni, Elena; Mattana, Monica; Galasso, Incoronata

    2014-11-01

    Globulins are the predominant class of seed storage proteins in a wide variety of plants. In many plant species globulins are present in several isoforms encoded by gene families. The major seed storage protein of Cannabis sativa L. is the globulin edestin, widely known for its nutritional potential. In this work, we report the isolation of seven cDNAs encoding for edestin from the C. sativa variety Carmagnola. Southern blot hybridization is in agreement with the number of identified edestin genes. All seven sequences showed the characteristic globulin features, but they result to be divergent members/forms of two edestin types. According to their sequence similarity four forms named CsEde1A, CsEde1B, CsEde1C, CsEde1D have been assigned to the edestin type 1 and the three forms CsEde2A, CsEde2B, CsEde2C to the edestin type 2. Analysis of the coding sequences revealed a high percentage of similarity (98-99%) among the different forms belonging to the same type, which decreased significantly to approximately 64% between the forms belonging to different types. Quantitative RT-PCR analysis revealed that both edestin types are expressed in developing hemp seeds and the amount of CsEde1 was 4.44 ± 0.10 higher than CsEde2. Both edestin types exhibited a high percentage of arginine (11-12%), but CsEde2 resulted particularly rich in methionine residues (2.36%) respect to CsEde1 (0.82%). The amino acid composition determined in CsEde1 and CsEde2 types suggests that these seed proteins can be used to improve the nutritional quality of plant food-stuffs. PMID:25280223

  20. Theoretical Population Genetics of Repeated Genes Forming a Multigene Family

    PubMed Central

    Ohta, Tomoko

    1978-01-01

    The evolution of repeated genes forming a multigene family in a finite population is studied with special reference to the probability of gene identity, i.e., the identity probability of two gene units chosen from the gene family. This quantity is called clonality and is defined as the sum of squares of the frequencies of gene lineages in the family. The multigene family is undergoing continuous unequal somatic crossing over, ordinary interchromosomal crossing over, mutation and random frequency drift. Two measures of clonality are used: clonality within one chromosome and that between two different chromosomes. The equilibrium properties of the means, the variances and the covariance of the two measures of clonality are investigated by using the diffusion equation method under the assumption of constant number of gene units in the multigene family. Some models of natural selection based on clonality are considered. The possible significance of the variance and covariance of clonality among the chromosomes on the adaptive differentiation of gene families such as those producing antibodies is discussed. PMID:17248822

  1. Considering Plants.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1991-01-01

    Examples from research that incorporate plants to illustrate biological principles are presented. Topics include dried pea shape, homeotic genes, gene transcription in plants that are touched or wounded, production of grasslands, seaweed defenses, migrating plants, camouflage, and family rivalry. (KR)

  2. A Comparative Genome Analysis of PME and PMEI Families Reveals the Evolution of Pectin Metabolism in Plant Cell Walls

    PubMed Central

    Wang, Maojun; Yuan, Daojun; Gao, Wenhui; Li, Yang; Tan, Jiafu; Zhang, Xianlong

    2013-01-01

    Pectins are fundamental polysaccharides in the plant primary cell wall. Pectins are synthesized and secreted to cell walls as highly methyl-esterified polymers and then demethyl-esterified by pectin methylesterases (PMEs), which are spatially regulated by pectin methylesterase inhibitors (PMEIs). Although PME and PMEI genes are pivotal in plant cell wall formation, few studies have focused on the evolutionary patterns of the PME and PMEI gene families. In this study, the gene origin, evolution, and expression diversity of these two families were systematically analyzed using 11 representative species, including algae, bryophytes, lycophytes and flowering land plants. The results show that 1) for the two subfamilies (PME and proPME) of PME, the origin of the PME subfamily is consistent with the appearance of pectins in early charophyte cell walls, 2) Whole genome duplication (WGD) and tandem duplication contribute to the expansion of proPME and PMEI families in land plants, 3) Evidence of selection pressure shows that the proPME and PMEI families have rapidly evolved, particularly the PMEI family in vascular plants, and 4) Comparative expression profile analysis of the two families indicates that the eudicot Arabidopsis and monocot rice have different expression patterns. In addition, the gene structure and sequence analyses show that the origin of the PMEI domain may be derived from the neofunctionalization of the pro domain after WGD. This study will advance the evolutionary understanding of the PME and PMEI families and plant cell wall development. PMID:23951288

  3. Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins.

    PubMed

    Holmes, Roger S; Wright, Matthew W; Laulederkind, Stanley J F; Cox, Laura A; Hosokawa, Masakiyo; Imai, Teruko; Ishibashi, Shun; Lehner, Richard; Miyazaki, Masao; Perkins, Everett J; Potter, Phillip M; Redinbo, Matthew R; Robert, Jacques; Satoh, Tetsuo; Yamashita, Tetsuro; Yan, Bingfan; Yokoi, Tsuyoshi; Zechner, Rudolf; Maltais, Lois J

    2010-10-01

    Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and "CES" (human) and "Ces" (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding "P" and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species. PMID:20931200

  4. Evolution of the Rice Xa21 Disease Resistance Gene Family

    Microsoft Academic Search

    Wen-Yuan Song; Guo-Liang Wang; Pamela C. R

    1997-01-01

    The rice disease resistance gene Xa21, encoding a receptor-like kinase, is a member of a multigene family. Sequence analysis of seven family members revealed two distinkt classes of genes. One member from each class encodes a receptor kinase-like open reading frame. The other five members encode truncated open reading frames of the pre- dicted receptor kinase. A highly conserved 233-bp

  5. Genome-wide analysis of the RNA helicase gene family in Gossypium raimondii.

    PubMed

    Chen, Jie; Zhang, Yujuan; Liu, Jubo; Xia, Minxuan; Wang, Wei; Shen, Fafu

    2014-01-01

    The RNA helicases, which help to unwind stable RNA duplexes, and have important roles in RNA metabolism, belong to a class of motor proteins that play important roles in plant development and responses to stress. Although this family of genes has been the subject of systematic investigation in Arabidopsis, rice, and tomato, it has not yet been characterized in cotton. In this study, we identified 161 putative RNA helicase genes in the genome of the diploid cotton species Gossypium raimondii. We classified these genes into three subfamilies, based on the presence of either a DEAD-box (51 genes), DEAH-box (52 genes), or DExD/H-box (58 genes) in their coding regions. Chromosome location analysis showed that the genes that encode RNA helicases are distributed across all 13 chromosomes of G. raimondii. Syntenic analysis revealed that 62 of the 161 G. raimondii helicase genes (38.5%) are within the identified syntenic blocks. Sixty-six (40.99%) helicase genes from G. raimondii have one or several putative orthologs in tomato. Additionally, GrDEADs have more conserved gene structures and more simple domains than GrDEAHs and GrDExD/Hs. Transcriptome sequencing data demonstrated that many of these helicases, especially GrDEADs, are highly expressed at the fiber initiation stage and in mature leaves. To our knowledge, this is the first report of a genome-wide analysis of the RNA helicase gene family in cotton. PMID:24642883

  6. Evolution and significance of the Lon gene family in Arabidopsis organelle biogenesis and energy metabolism

    PubMed Central

    Rigas, Stamatis; Daras, Gerasimos; Tsitsekian, Dikran; Alatzas, Anastasios; Hatzopoulos, Polydefkis

    2014-01-01

    Lon is the first identified ATP-dependent protease highly conserved across all kingdoms. Model plant species Arabidopsis thaliana has a small Lon gene family of four members. Although these genes share common structural features, they have distinct properties in terms of gene expression profile, subcellular targeting and substrate recognition motifs. This supports the notion that their functions under different environmental conditions are not necessarily redundant. This article intends to unravel the biological role of Lon proteases in energy metabolism and plant growth through an evolutionary perspective. Given that plants are sessile organisms exposed to diverse environmental conditions and plant organelles are semi-autonomous, it is tempting to suggest that Lon genes in Arabidopsis are paralogs. Adaptive evolution through repetitive gene duplication events of a single archaic gene led to Lon genes with complementing sets of subfunctions providing to the organism rapid adaptability for canonical development under different environmental conditions. Lon1 function is adequately characterized being involved in mitochondrial biogenesis, modulating carbon metabolism, oxidative phosphorylation and energy supply, all prerequisites for seed germination and seedling establishment. Lon is not a stand-alone proteolytic machine in plant organelles. Lon in association with other nuclear-encoded ATP-dependent proteases builds up an elegant nevertheless, tight interconnected circuit. This circuitry channels properly and accurately, proteostasis and protein quality control among the distinct subcellular compartments namely mitochondria, chloroplasts, and peroxisomes. PMID:24782883

  7. Heterelogous Expression of Plant Genes

    PubMed Central

    Yesilirmak, Filiz; Sayers, Zehra

    2009-01-01

    Heterologous expression allows the production of plant proteins in an organism which is simpler than the natural source. This technology is widely used for large-scale purification of plant proteins from microorganisms for biochemical and biophysical analyses. Additionally expression in well-defined model organisms provides insights into the functions of proteins in complex pathways. The present review gives an overview of recombinant plant protein production methods using bacteria, yeast, insect cells, and Xenopus laevis oocytes and discusses the advantages of each system for functional studies and protein characterization. PMID:19672459

  8. Genome-wide analysis of the R2R3-MYB transcription factor gene family in sweet orange (Citrus sinensis).

    PubMed

    Liu, Chaoyang; Wang, Xia; Xu, Yuantao; Deng, Xiuxin; Xu, Qiang

    2014-10-01

    MYB transcription factor represents one of the largest gene families in plant genomes. Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide, and recently the genome has been sequenced. This provides an opportunity to investigate the organization and evolutionary characteristics of sweet orange MYB genes from whole genome view. In the present study, we identified 100 R2R3-MYB genes in the sweet orange genome. A comprehensive analysis of this gene family was performed, including the phylogeny, gene structure, chromosomal localization and expression pattern analyses. The 100 genes were divided into 29 subfamilies based on the sequence similarity and phylogeny, and the classification was also well supported by the highly conserved exon/intron structures and motif composition. The phylogenomic comparison of MYB gene family among sweet orange and related plant species, Arabidopsis, cacao and papaya suggested the existence of functional divergence during evolution. Expression profiling indicated that sweet orange R2R3-MYB genes exhibited distinct temporal and spatial expression patterns. Our analysis suggested that the sweet orange MYB genes may play important roles in different plant biological processes, some of which may be potentially involved in citrus fruit quality. These results will be useful for future functional analysis of the MYB gene family in sweet orange. PMID:25008995

  9. Genomic Characterization of the LEED..PEEDs, a Gene Family Unique to the Medicago Lineage

    PubMed Central

    Trujillo, Diana I.; Silverstein, Kevin A. T.; Young, Nevin D.

    2014-01-01

    The LEED..PEED (LP) gene family in Medicago truncatula (A17) is composed of 13 genes coding small putatively secreted peptides with one to two conserved domains of negatively charged residues. This family is not present in the genomes of Glycine max, Lotus japonicus, or the IRLC species Cicer arietinum. LP genes were also not detected in a Trifolium pratense draft genome or Pisum sativum nodule transcriptome, which were sequenced de novo in this study, suggesting that the LP gene family arose within the past 25 million years. M. truncatula accession HM056 has 13 LP genes with high similarity to those in A17, whereas M. truncatula ssp. tricycla (R108) and M. sativa have 11 and 10 LP gene copies, respectively. In M. truncatula A17, 12 LP genes are located on chromosome 7 within a 93-kb window, whereas one LP gene copy is located on chromosome 4. A phylogenetic analysis of the gene family is consistent with most gene duplications occurring prior to Medicago speciation events, mainly through local tandem duplications and one distant duplication across chromosomes. Synteny comparisons between R108 and A17 confirm that gene order is conserved between the two subspecies, although a further duplication occurred solely in A17. In M. truncatula A17, all 13 LPs are exclusively transcribed in nodules and absent from other plant tissues, including roots, leaves, flowers, seeds, seed shells, and pods. The recent expansion of LP genes in Medicago spp. and their timing and location of expression suggest a novel function in nodulation, possibly as an aftermath of the evolution of bacteroid terminal differentiation or potentially associated with rhizobial–host specificity. PMID:25155275

  10. Genome-wide identification of BURP domain-containing genes in rice reveals a gene family with diverse structures and responses to abiotic stresses.

    PubMed

    Ding, Xipeng; Hou, Xin; Xie, Kabin; Xiong, Lizhong

    2009-06-01

    Increasing evidence suggests that a gene family encoding proteins containing BURP domains have diverse functions in plants, but systematic characterization of this gene family have not been reported. In this study, 17 BURP family genes (OsBURP01-17) were identified and analyzed in rice (Oryza sativa L.). These genes have diverse exon-intron structures and distinct organization of putative motifs. Based on the phylogenetic analysis of BURP protein sequences from rice and other plant species, the BURP family was classified into seven subfamilies, including two subfamilies (BURP V and BURP VI) with members from rice only and one subfamily (BURP VII) with members from monocotyledons only. Two BURP gene clusters, belonging to BURP V and BURP VI, were located in the duplicated region on chromosome 5 and 6 of rice, respectively. Transcript level analysis of BURP genes of rice in various tissues and organs revealed different tempo-spatial expression patterns, suggesting that these genes may function at different stages of plant growth and development. Interestingly, all the genes of the BURP VII subfamily were predominantly expressed in flower organs. We also investigated the expression patterns of BURP genes of rice under different stress conditions. The results suggested that, except for two genes (OsBURP01 and OsBURP13), all other members were induced by at least one of the stresses including drought, salt, cold, and abscisic acid treatment. Two genes (OsBURP05 and OsBURP16) were responsive to all the stress treatments and most of the OsBURP genes were responsive to salt stress. Promoter sequence analysis revealed an over-abundance of stress-related cis-elements in the stress-responsive genes. The data presented here provide important clues for elucidating the functions of genes of this family. PMID:19363683

  11. In-silico analysis and expression profiling implicate diverse role of EPSPS family genes in regulating developmental and metabolic processes

    PubMed Central

    2014-01-01

    Background The EPSPS, EC 2.5.1.19 (5-enolpyruvylshikimate ?3-phosphate synthase) is considered as one of the crucial enzyme in the shikimate pathway for the biosynthesis of essential aromatic amino acids and secondary metabolites in plants, fungi along with microorganisms. It is also proved as a specific target of broad spectrum herbicide glyphosate. Results On the basis of structure analysis, this EPSPS gene family comprises the presence of EPSPS I domain, which is highly conserved among different plant species. Here, we followed an in-silico approach to identify and characterize the EPSPS genes from different plant species. On the basis of their phylogeny and sequence conservation, we divided them in to two groups. Moreover, the interacting partners and co-expression data of the gene revealed the importance of this gene family in maintaining cellular and metabolic functions in the cell. The present study also highlighted the highest accumulation of EPSPS transcript in mature leaves followed by young leaves, shoot and roots of tobacco. In order to gain the more knowledge about gene family, we searched for the previously reported motifs and studied its structural importance on the basis of homology modelling. Conclusions The results presented here is a first detailed in-silico study to explore the role of EPSPS gene in forefront of different plant species. The results revealed a great deal for the diversification and conservation of EPSPS gene family across different plant species. Moreover, some of the EPSPS from different plant species may have a common evolutionary origin and may contain same conserved motifs with related and important molecular function. Most importantly, overall analysis of EPSPS gene elucidated its pivotal role in immense function within the plant, both in regulating plant growth as well its development throughout the life cycle of plant. Since EPSPS is a direct target of herbicide glyphosate, understanding its mechanism for regulating developmental and cellular processes in different plant species would be a great revolution for developing glyphosate resistant crops. PMID:24450620

  12. Evolutionary History of the Cancer Immunity Antigen MAGE Gene Family

    PubMed Central

    Katsura, Yukako; Satta, Yoko

    2011-01-01

    The evolutionary mode of a multi-gene family can change over time, depending on the functional differentiation and local genomic environment of family members. In this study, we demonstrate such a change in the melanoma antigen (MAGE) gene family on the mammalian X chromosome. The MAGE gene family is composed of ten subfamilies that can be categorized into two types. Type I genes are of relatively recent origin, and they encode epitopes for human leukocyte antigen (HLA) in cancer cells. Type II genes are relatively ancient and some of their products are known to be involved in apoptosis or cell proliferation. The evolutionary history of the MAGE gene family can be divided into four phases. In phase I, a single-copy state of an ancestral gene and the evolutionarily conserved mode had lasted until the emergence of eutherian mammals. In phase II, eight subfamily ancestors, with the exception for MAGE-C and MAGE-D subfamilies, were formed via retrotransposition independently. This would coincide with a transposition burst of LINE elements at the eutherian radiation. However, MAGE-C was generated by gene duplication of MAGE-A. Phase III is characterized by extensive gene duplication within each subfamily and in particular the formation of palindromes in the MAGE-A subfamily, which occurred in an ancestor of the Catarrhini. Phase IV is characterized by the decay of a palindrome in most Catarrhini, with the exception of humans. Although the palindrome is truncated by frequent deletions in apes and Old World monkeys, it is retained in humans. Here, we argue that this human-specific retention stems from negative selection acting on MAGE-A genes encoding epitopes of cancer cells, which preserves their ability to bind to highly divergent HLA molecules. These findings are interpreted with consideration of the biological factors shaping recent human MAGE-A genes. PMID:21695252

  13. Characterization of a novel cyclase-like gene family involved in controlling stress tolerance in rice.

    PubMed

    Qin, Yonghua; Shen, Xin; Wang, Nili; Ding, Xipeng

    2015-06-01

    A novel cyclase-like gene family (CYL) encodes proteins containing cyclase domain, but their functions are largely unknown. We report the systematic identification and characterization of CYL genes in the rice genome. Five putative CYL protein sequences (OsCYL1 to 4b) were identified. These sequences and other CYL homologs were classified into four subgroups based on phylogenetic analysis. Distinct diversification of these CYL proteins exists between plants and non-plants. The CYL family has conserved exon-intron structures, and the organizations of putative motifs in plants are specifically diverse. All OsCYL genes were expressed in a wide range of tissues or organs and were responsive to at least one of the abiotic stresses and hormone treatments applied. Protein OsCYL4a is targeted to the cell membrane. The overexpression of one stress-responsive gene OsCYL4a in rice resulted in decreased tolerance to salt, drought, cold, and oxidative stress. The expression levels of some abiotic stress-responsive factors, including H2O2-accumulating negative factors DST and OsSKIPa in OsCYL4a-overexpressing plants, were reduced compared with the wild type under normal condition and drought stress. These results suggest that rice CYL family may be functionally conserved polyketide cyclase, resulting in the rapid accumulation of reactive oxygen species to decrease tolerance to abiotic stresses. PMID:25974367

  14. BranchClust: a phylogenetic algorithm for selecting gene families

    Microsoft Academic Search

    Maria S. Poptsova; J. Peter Gogarten

    2007-01-01

    BACKGROUND: Automated methods for assembling families of orthologous genes include those based on sequence similarity scores and those based on phylogenetic approaches. The first are easy to automate but usually they do not distinguish between paralogs and orthologs or have restriction on the number of taxa. Phylogenetic methods often are based on reconciliation of a gene tree with a known

  15. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family

    Microsoft Academic Search

    Gregg Duester; Jaume Farrés; Michael R Felder; Roger S Holmes; Jan-Olov Höög; Xavier Parés; Bryce V Plapp; Shih-Jiun Yin; Hans Jörnvall

    1999-01-01

    The alcohol dehydrogenase (ADH) gene family encodes enzymes that metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. Studies on 19 vertebrate animals have identified ADH orthologs across several species, and this has now led to questions of how best to name ADH proteins and genes. Seven distinct classes of vertebrate ADH

  16. Organization of the SUC gene family in Saccharomyces.

    PubMed Central

    Carlson, M; Botstein, D

    1983-01-01

    The SUC gene family of yeast (Saccharomyces) includes six structural genes for invertase (SUC1 through SUC5 and SUC7) found at unlinked chromosomal loci. A given yeast strain does not usually carry SUC+ alleles at all six loci; the natural negative alleles are called suc0 alleles. Cloned SUC2 DNA probes were used to investigate the physical structure of the SUC gene family in laboratory strains, commercial wine strains, and different Saccharomyces species. The active SUC+ genes are homologous. The suc0 allele at the SUC2 locus (suc2(0) in some strains is a silent gene or pseudogene. Other SUC loci carrying suc0 alleles appear to lack SUC DNA sequences. These findings imply that SUC genes have transposed to different chromosomal locations in closely related Saccharomyces strains. Images PMID:6843548

  17. The FLOWERING LOCUS T/TERMINAL FLOWER 1 Gene Family: Functional Evolution and Molecular Mechanisms.

    PubMed

    Wickland, Daniel P; Hanzawa, Yoshie

    2015-07-01

    In plant development, the flowering transition and inflorescence architecture are modulated by two homologous proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). The florigen FT promotes the transition to reproductive development and flowering, while TFL1 represses this transition. Despite their importance to plant adaptation and crop improvement and their extensive study by the plant community, the molecular mechanisms controlling the opposing actions of FT and TFL1 have remained mysterious. Recent studies in multiple species have unveiled diverse roles of the FT/TFL1 gene family in developmental processes other than flowering regulation. In addition, the striking evolution of FT homologs into flowering repressors has occurred independently in several species during the evolution of flowering plants. These reports indicate that the FT/TFL1 gene family is a major target of evolution in nature. Here, we comprehensively survey the conserved and diverse functions of the FT/TFL1 gene family throughout the plant kingdom, summarize new findings regarding the unique evolution of FT in multiple species, and highlight recent work elucidating the molecular mechanisms of these proteins. PMID:25598141

  18. Identification of a family of muscarinic acetylcholine receptor genes

    SciTech Connect

    Bonner, T.I.; Buckley, N.J.; Young, A.C.; Brann, M.R.

    1987-07-31

    Complementary DNAs for three different muscarinic acetylcholine receptors were isolated from a rat cerebral cortex library, and the cloned receptors were expressed in mammalian cells. Analysis of human and rat genomic clones indicates that there are at least four functional muscarinic receptor genes and that these genes lack introns in the coding sequence. This gene family provides a new basis for evaluating the diversity of muscarinic mechanisms in the nervous system.

  19. Regulation of meiotic gene expression in plants.

    PubMed

    Zhou, Adele; Pawlowski, Wojciech P

    2014-01-01

    With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been assembled. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa), wheat (Triticum aestivum), petunia (Petunia hybrida), sunflower (Helianthus annuus), and maize (Zea mays). Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs that might be involved in the regulation of meiotic transcription patterns. PMID:25202317

  20. Regulation of meiotic gene expression in plants

    PubMed Central

    Zhou, Adele; Pawlowski, Wojciech P.

    2014-01-01

    With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been assembled. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa), wheat (Triticum aestivum), petunia (Petunia hybrida), sunflower (Helianthus annuus), and maize (Zea mays). Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs that might be involved in the regulation of meiotic transcription patterns. PMID:25202317

  1. Developmental regulation of embryonic genes in plants

    SciTech Connect

    Borkird, C.; Choi, Jung, H.; Jin, Zhenghua; Franz, G.; Hatzopoulos, P.; Chorneaus, R.; Bonas, U.; Pelegri, F.; Sung, Z.R.

    1988-09-01

    Somatic embryogenesis from cultured carrot cells progresses through successive morphogenetic stages termed globular, heart, and torpedo. To understand the molecular mechanisms underlying plant embryogenesis, the authors isolated two genes differentially expressed during embryo development. The expression of these two genes is associated with heart-stage embryogenesis. By altering the culture conditions and examining their expressions in a developmental variant cell line, they found that these genes were controlled by the developmental program of embryogenesis and were not directly regulated by 2,4-dichlorophenoxyacetic acid, the growth regulator that promotes unorganized growth of cultured cells and suppresses embryo morphogenesis. These genes are also expressed in carrot zygotic embryos but not in seedlings or mature plants.

  2. Characterizations of 9p21 candidate genes in familial melanoma

    SciTech Connect

    Walker, G.J.; Flores, J.F.; Glendening, J.M. [Univ. of California, Los Angeles, CA (United States)] [and others

    1994-09-01

    We have previously collected and characterized 16 melanoma families for the inheritance of a familial melanoma predisposition gene on 9p21. Clear evidence for genetic linkage has been detected in 8 of these families with the 9p21 markers D9S126 and 1FNA, while linkage of the remaining families to this region is less certain. A candidate for the 9p21 familial melanoma gene, the cyclin kinase inhibitor gene p16 (also known as the multiple tumor suppressor 1 (MTS1) gene), has been recently indentified. Notably, a nonsense mutation within the p16 gene has been detected in the lymphoblastoid cell line DNA from a dysplastic nevus syndrome (DNS), or familial melanoma, patient. The p16 gene is also known to be frequently deleted or mutated in a variety of tumor cell lines (including melanoma) and resides within a region that has been defined as harboring the 9p21 melanoma predisposition locus. This region is delineated on the distal side by the marker D9S736 (which resides just distal to the p16 gene) and extends in a proximal direction to the marker D9S171. Overall, the entire distance between these two loci is estimated at 3-5Mb. Preliminary analysis of our two largest 9p21-linked melanoma kindreds (by direct sequencing of PCR products) has not yet revealed mutations within the coding region of the p16 gene. Others have reported that 8/11 unrelated 9p21-linked melanoma families do not appear to carry p16 mutations; thus the possibility exists that p16 is not a melanoma susceptibility gene per se, although it appears to play some role in melanoma tumor progression. Our melanoma kindred DNAs are currently being analyzed by SSCP using primers that amplify exons of other candidate genes from the 9p21 region implicated in familial melanoma. These novel genes reside within a distinct critical region of homozygous loss in melanoma which is located >2 Mb from the p16 gene on 9p21.

  3. The multifunctional SNM1 gene family: not just nucleases

    PubMed Central

    Yan, Yiyi; Akhter, Shamima; Zhang, Xiaoshan; Legerski, Randy

    2010-01-01

    The archetypical member of the SNM1 gene family was discovered 30 years ago in the budding yeast Saccharomyces cerevisiae. This small but ubiquitous gene family is characterized by metallo-?-lactamase and ?-CASP domains, which together have been demonstrated to comprise a nuclease activity. Three mammalian members of this family, SNM1A, SNM1B/Apollo and Artemis, have been demonstrated to play surprisingly divergent roles in cellular metabolism. These pathways include variable (diversity) joining recombination, nonhomologous end-joining of double-strand breaks, DNA damage and mitotic cell cycle checkpoints, telomere maintenance and protein ubiquitination. Not all of these functions are consistent with a model in which these proteins act only as nucleases, and indicate that the SNM1 gene family encodes multifunctional products that can act in diverse biochemical pathways. In this article we discuss the various functions of SNM1A, SNM1B/Apollo and Artemis. PMID:20528238

  4. Developmentally regulated Drosophila gene family encoding the fork head domain.

    PubMed Central

    Häcker, U; Grossniklaus, U; Gehring, W J; Jäckle, H

    1992-01-01

    We have isolated seven Drosophila genes by means of low-stringency hybridization to a DNA probe containing the coding sequence for the protein domain shared by the rodent hepatocyte-enriched nuclear transcription factor HNF3A (alpha) and the product of the Drosophila region-specific homeotic gene fork head (fkh). The previously unreported genes encode a 110-amino acid conserved sequence, which we call the fork head (fkh) domain. Two of these fkh-domain-encoding genes ("FD genes") map to the sloppy paired locus (slp), which exerts segmentation gene function. The expression patterns of the other FD genes suggest that their protein products are likely to be involved in gut formation, mesoderm specification, and some specific aspects of neural development. The FD gene products presumably represent a family of transcription factors that, like the previously identified DNA-binding proteins, contribute to early developmental decisions in cell fates during embryogenesis. Images PMID:1356269

  5. PTGBase: an integrated database to study tandem duplicated genes in plants.

    PubMed

    Yu, Jingyin; Ke, Tao; Tehrim, Sadia; Sun, Fengming; Liao, Boshou; Hua, Wei

    2015-01-01

    Tandem duplication is a wide-spread phenomenon in plant genomes and plays significant roles in evolution and adaptation to changing environments. Tandem duplicated genes related to certain functions will lead to the expansion of gene families and bring increase of gene dosage in the form of gene cluster arrays. Many tandem duplication events have been studied in plant genomes; yet, there is a surprising shortage of efforts to systematically present the integration of large amounts of information about publicly deposited tandem duplicated gene data across the plant kingdom. To address this shortcoming, we developed the first plant tandem duplicated genes database, PTGBase. It delivers the most comprehensive resource available to date, spanning 39 plant genomes, including model species and newly sequenced species alike. Across these genomes, 54?130 tandem duplicated gene clusters (129?652 genes) are presented in the database. Each tandem array, as well as its member genes, is characterized in complete detail. Tandem duplicated genes in PTGBase can be explored through browsing or searching by identifiers or keywords of functional annotation and sequence similarity. Users can download tandem duplicated gene arrays easily to any scale, up to the complete annotation data set for an entire plant genome. PTGBase will be updated regularly with newly sequenced plant species as they become available. PMID:25797062

  6. Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds (121\\/180)

    Microsoft Academic Search

    Ichiro Mitsuhara; Takayoshi Iwai; Shigemi Seo; Yuki Yanagawa; Hiroyuki Kawahigasi; Sakino Hirose; Yasunobu Ohkawa; Yuko Ohashi

    2008-01-01

    Pathogenesis-related (PR) proteins have been used as markers of plant defense responses, and are classified into 17 families.\\u000a However, precise information on the majority members in specific PR families is still limited. We were interested in the individual\\u000a characteristics of rice PR1 family genes, and selected 12 putatively active genes using rice genome databases for expressed genes. All were upregulated

  7. THE PLANT GENOME: AN EVOLUTIONARY VIEW ON STRUCTURE AND FUNCTION The family of terpene synthases in plants: a mid-size

    E-print Network

    Tholl, Dorothea

    the kingdom Feng Chen1,* , Dorothea Tholl2 , Jo¨rg Bohlmann3 and Eran Pichersky4 1 Department of Plant of each species. Thousands of such terpenes have been found in the plant kingdom, but each species, or the in planta substrates they use. Keywords: gene family evolution, terpene synthase subfamily, transit peptide

  8. BOTANY: A Plant Receptor with a Big Family

    NSDL National Science Digital Library

    Erwin Grill (Technical University Munich; Department of Plant Science)

    2007-03-23

    Access to the article is free, however registration and sign-in are required. A hormone that controls plant development and survival acts through a member of a receptor family whose other members are pervasive in animal cells.

  9. The presence of GSI-like genes in higher plants: support for the paralogous evolution of GSI and GSII genes.

    PubMed

    Mathis, R; Gamas, P; Meyer, Y; Cullimore, J V

    2000-02-01

    Glutamine synthetase type I (GSI) genes have previously been described only in prokaryotes except that the fungus Emericella nidulans contains a gene (fluG) which encodes a protein with a large N-terminal domain linked to a C-terminal GSI-like domain. Eukaryotes generally contain the type II (GSII) genes which have been shown to occur also in some prokaryotes. The question of whether GSI and GSII genes are orthologues or paralogues remains a point of controversy. In this article we show that GSI-like genes are widespread in higher plants and have characterized one of the genes from the legume Medicago truncatula. This gene is part of a small gene family and is expressed in many organs of the plant. It encodes a protein similar in size and with between 36 and 46% amino acid sequence similarity to prokaryotic GS proteins used in the analyses, whereas it is larger and with less than 25% similarity to GSII proteins, including those from the same plant species. Phylogenetic analyses suggest that this protein is most similar to putative proteins encoded by expressed sequence tags of other higher plant species (including dicots and a monocot) and forms a cluster with FluG as the most divergent of the GSI sequences. The discovery of GSI-like genes in higher plants supports the paralogous evolution of GSI and GSII genes, which has implications for the use of GS in molecular studies on evolution. PMID:10684345

  10. Evolution of xyloglucan-related genes in green plants

    PubMed Central

    2010-01-01

    Background The cell shape and morphology of plant tissues are intimately related to structural modifications in the primary cell wall that are associated with key processes in the regulation of cell growth and differentiation. The primary cell wall is composed mainly of cellulose immersed in a matrix of hemicellulose, pectin, lignin and some structural proteins. Xyloglucan is a hemicellulose polysaccharide present in the cell walls of all land plants (Embryophyta) and is the main hemicellulose in non-graminaceous angiosperms. Results In this work, we used a comparative genomic approach to obtain new insights into the evolution of the xyloglucan-related enzymatic machinery in green plants. Detailed phylogenetic analyses were done for enzymes involved in xyloglucan synthesis (xyloglucan transglycosylase/hydrolase, ?-xylosidase, ?-galactosidase, ?-glucosidase and ?-fucosidase) and mobilization/degradation (?-(1?4)-glucan synthase, ?-fucosyltransferases, ?-galactosyltransferases and ?-xylosyl transferase) based on 12 fully sequenced genomes and expressed sequence tags from 29 species of green plants. Evidence from Chlorophyta and Streptophyta green algae indicated that part of the Embryophyta xyloglucan-related machinery evolved in an aquatic environment, before land colonization. Streptophyte algae have at least three enzymes of the xyloglucan machinery: xyloglucan transglycosylase/hydrolase, ?-(1?4)-glucan synthase from the celullose synthase-like C family and ?-xylosidase that is also present in chlorophytes. Interestingly, gymnosperm sequences orthologs to xyloglucan transglycosylase/hydrolases with exclusively hydrolytic activity were also detected, suggesting that such activity must have emerged within the last common ancestor of spermatophytes. There was a positive correlation between the numbers of founder genes within each gene family and the complexity of the plant cell wall. Conclusions Our data support the idea that a primordial xyloglucan-like polymer emerged in streptophyte algae as a pre-adaptation that allowed plants to subsequently colonize terrestrial habitats. Our results also provide additional evidence that charophycean algae and land plants are sister groups. PMID:21054875

  11. Identification and analysis of the germin-like gene family in soybean

    PubMed Central

    2010-01-01

    Background Germin and germin-like proteins constitute a ubiquitous family of plant proteins. A role of some family members in defense against pathogen attack had been proposed based on gene regulation studies and transgenic approaches. Soybean (G. max L. Merr.) germin genes had not been characterized at the molecular and functional levels. Results In the present study, twenty-one germin gene members in soybean cultivar 'Maple Arrow' (partial resistance to Sclerotinia stem rot of soybean) were identified by in silico identification and RACE method (GmGER 1 to GmGER 21). A genome-wide analyses of these germin-like protein genes using a bioinformatics approach showed that the genes located on chromosomes 8, 1, 15, 20, 16, 19, 7, 3 and 10, on which more disease-resistant genes were located on. Sequence comparison revealed that the genes encoded three germin-like domains. The phylogenetic relationships and functional diversity of the germin gene family of soybean were analyzed among diverse genera. The expression of the GmGER genes treated with exogenous IAA suggested that GmGER genes might be regulated by auxin. Transgenic tobacco that expressed the GmGER 9 gene exhibited high tolerance to the salt stress. In addition, the GmGER mRNA increased transiently at darkness and peaked at a time that corresponded approximately to the critical night length. The mRNA did not accumulate significantly under the constant light condition, and did not change greatly under the SD and LD treatments. Conclusions This study provides a complex overview of the GmGER genes in soybean. Phylogenetic analysis suggested that the germin and germin-like genes of the plant species that had been founded might be evolved by independent gene duplication events. The experiment indicated that germin genes exhibited diverse expression patterns during soybean development. The different time courses of the mRNAs accumulation of GmGER genes in soybean leaves appeared to have a regular photoperiodic reaction in darkness. Also the GmGER genes were proved to response to abiotic stress (such as auxin and salt), suggesting that these paralogous genes were likely involved in complex biological processes in soybean. PMID:21059215

  12. Genome-wide identification and analysis of the MADS-box gene family in sesame.

    PubMed

    Wei, Xin; Wang, Linhai; Yu, Jingyin; Zhang, Yanxin; Li, Donghua; Zhang, Xiurong

    2015-09-10

    MADS-box genes encode transcription factors that play crucial roles in plant growth and development. Sesame (Sesamum indicum L.) is an oil crop that contributes to the daily oil and protein requirements of almost half of the world's population; therefore, a genome-wide analysis of the MADS-box gene family is needed. Fifty-seven MADS-box genes were identified from 14 linkage groups of the sesame genome. Analysis of phylogenetic relationships with Arabidopsis thaliana, Utricularia gibba and Solanum lycopersicum MADS-box genes was performed. Sesame MADS-box genes were clustered into four groups: 28 MIKC(c)-type, 5 MIKC(?)-type, 14 M?-type and 10 M?-type. Gene structure analysis revealed from 1 to 22 exons of sesame MADS-box genes. The number of exons in type II MADS-box genes greatly exceeded the number in type I genes. Motif distribution analysis of sesame MADS-box genes also indicated that type II MADS-box genes contained more motifs than type I genes. These results suggested that type II sesame MADS-box genes had more complex structures. By analyzing expression profiles of MADS-box genes in seven sesame transcriptomes, we determined that MIKC(C)-type MADS-box genes played significant roles in sesame flower and seed development. Although most MADS-box genes in the same clade showed similar expression features, some gene functions were diversified from the orthologous Arabidopsis genes. This research will contribute to uncovering the role of MADS-box genes in sesame development. PMID:25967387

  13. The aquaporin gene family of cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquaporin proteins are found in most living organisms and are quite diverse in plants where they function as transport systems for water and other small molecules. Plant aquaporins have been shown to be differentially regulated under environmental stress such as drought, salt and cold treatment. The...

  14. A Comprehensive Analysis of the Cupin Gene Family in Soybean (Glycine max)

    PubMed Central

    Wang, Xiaobo; Zhang, Haowei; Gao, Yali; Sun, Genlou; Zhang, Wenming; Qiu, Lijuan

    2014-01-01

    Cupin superfamily of proteins, including germin and germin-like proteins (GLPs) from higher plants, is known to play crucial roles in plant development and defense. To date, no systematic analysis has been conducted in soybean (Glycine max) incorporating genome organization, gene structure, expression compendium. In this study, 69 putative Cupin genes were identified from the whole-genome of soybean, which were non-randomly distributed on 17 of the 20 chromosomes. These Gmcupin proteins were phylogenetically clustered into ten distinct subgroups among which the gene structures were highly conserved. Eighteen pairs (52.2%) of duplicate paralogous genes were preferentially retained in duplicated regions of the soybean genome. The distributions of GmCupin genes implied that long segmental duplications contributed significantly to the expansion of the GmCupin gene family. According to the RNA-seq data analysis, most of the Gmcupins were differentially expressed in tissue-specific expression pattern and the expression of some duplicate genes were partially redundant while others showed functional diversity, suggesting the Gmcupins have been retained by substantial subfunctionalization during soybean evolutionary processes. Selective analysis based on single nucleotide polymorphisms (SNPs) in cultivated and wild soybeans revealed sixteen Gmcupins had selected site(s), with all SNPs in Gmcupin10.3 and Gmcupin07.2 genes were selected sites, which implied these genes may have undergone strong selection effects during soybean domestication. Taken together, our results contribute to the functional characterization of Gmcupin genes in soybean. PMID:25360675

  15. The Lipoxygenase Gene Family in Poplar: Identification, Classification, and Expression in Response to MeJA Treatment

    PubMed Central

    Chen, Zhu; Chen, Xue; Yan, Hanwei; Li, Weiwei; Li, Yuan; Cai, Ronghao; Xiang, Yan

    2015-01-01

    Background Lipoxygenases (LOXs) are important dioxygenases in cellular organisms. LOXs contribute to plant developmental processes and environmental responses. However, a systematic and comprehensive analysis has not been focused on the LOX gene family in poplar. Therefore, in the present study, we performed a comprehensive analysis of the LOX gene family in poplar. Results Using bioinformatics methods, we identified a total of 20 LOX genes. These LOX genes were clustered into two subfamilies. The gene structure and motif composition of each subfamily were relatively conserved. These genes are distributed unevenly across nine chromosomes. The PtLOX gene family appears to have expanded due to high tandem and low segmental duplication events. Microarray analysis showed that a number of PtLOX genes have different expression pattern across disparate tissues and under various stress treatments. Quantitative real-time PCR (qRT-PCR) analysis was further performed to confirm the responses to MeJA treatment of the 20 poplar LOX genes. The results show that the PtLOX genes are regulated by MeJA (Methyl jasmonate) treatment. Conclusions This study provides a systematic analysis of LOX genes in poplar. The gene family analysis reported here will be useful for conducting future functional genomics studies to uncover the roles of LOX genes in poplar growth and development. PMID:25928711

  16. Gene Family Evolution by Duplication, Speciation and Loss1 Cedric Chauve2

    E-print Network

    Chauve, Cedric

    Gene Family Evolution by Duplication, Speciation and Loss1 Cedric Chauve2 Jean-Philippe Doyon3 Nadia El-Mabrouk4 Keywords: gene families evolution, gene losses, reconciliation, algorithms. Abstract We consider two algorithmic questions related to the evolution of gene families. First, given a gene

  17. Novel missense mutation in the CASR gene in a Chinese family with familial hypocalciuric hypercalcemia

    Microsoft Academic Search

    Ching-Wan Lam; Ka-Fai Lee; Angel On-Kei Chan; Priscilla Miu-Kuen Poon; Tak-Yin Law; Sui-Fan Tong

    2005-01-01

    BackgroundFamilial hypocalciuric hypercalcemia (FHH) is an autosomal dominant disorder characterized by asymptomatic and non-progressive hypercalcemia resulting from loss-of-function mutations of the CASR (calcium-sensing receptor) gene located on chromosome 3, or from mutations in two mapped but unidentified genes located on chromosome 19.

  18. SOME USEFUL PLANTS OF THE BOTANICAL FAMILY LAURACEAE

    Microsoft Academic Search

    C. A. Schroeder

    Cinnamon spice for cooking, bay leaves for flavoring, camphor for moth repellant and medicinal purposes, myrtlewood and stinkwood furniture, sassafras tea and avocado fruits to eat are all products from the botanical family Lauraceae to which the avocado belongs. The family Lauraceae, which derives its name from the prominent member, the Grecian laurel, Laurus nobilis, is characterized by plants which

  19. Horizontal gene transfer from Agrobacterium to plants.

    PubMed

    Matveeva, Tatiana V; Lutova, Ludmila A

    2014-01-01

    Most genetic engineering of plants uses Agrobacterium mediated transformation to introduce novel gene content. In nature, insertion of T-DNA in the plant genome and its subsequent transfer via sexual reproduction has been shown in several species in the genera Nicotiana and Linaria. In these natural examples of horizontal gene transfer from Agrobacterium to plants, the T-DNA donor is assumed to be a mikimopine strain of A. rhizogenes. A sequence homologous to the T-DNA of the Ri plasmid of Agrobacterium rhizogenes was found in the genome of untransformed Nicotiana glauca about 30 years ago, and was named "cellular T-DNA" (cT-DNA). It represents an imperfect inverted repeat and contains homologs of several T-DNA oncogenes (NgrolB, NgrolC, NgORF13, NgORF14) and an opine synthesis gene (Ngmis). A similar cT-DNA has also been found in other species of the genus Nicotiana. These presumably ancient homologs of T-DNA genes are still expressed, indicating that they may play a role in the evolution of these plants. Recently T-DNA has been detected and characterized in Linaria vulgaris and L. dalmatica. In Linaria vulgaris the cT-DNA is present in two copies and organized as a tandem imperfect direct repeat, containing LvORF2, LvORF3, LvORF8, LvrolA, LvrolB, LvrolC, LvORF13, LvORF14, and the Lvmis genes. All L. vulgaris and L. dalmatica plants screened contained the same T-DNA oncogenes and the mis gene. Evidence suggests that there were several independent T-DNA integration events into the genomes of these plant genera. We speculate that ancient plants transformed by A. rhizogenes might have acquired a selective advantage in competition with the parental species. Thus, the events of T-DNA insertion in the plant genome might have affected their evolution, resulting in the creation of new plant species. In this review we focus on the structure and functions of cT-DNA in Linaria and Nicotiana and discuss their possible evolutionary role. PMID:25157257

  20. GEO: the Gene Expression Omnibus A family of databases for gene expression related data

    E-print Network

    Levin, Judith G.

    GEO: the Gene Expression Omnibus A family of databases for gene expression related data http://www.ncbi.nlm.nih.gov Contact: info@ncbi.nlm.nih.gov Scope and access The Gene Expression Omnibus (GEO) is a public repository for searching and browsing high-throughput array data: www.ncbi.nlm.nih.gov/geo/. GEO accepts many categories

  1. A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land.

    PubMed

    Caputi, Lorenzo; Malnoy, Mickael; Goremykin, Vadim; Nikiforova, Svetlana; Martens, Stefan

    2012-03-01

    For almost a decade, our knowledge on the organisation of the family 1 UDP-glycosyltransferases (UGTs) has been limited to the model plant A. thaliana. The availability of other plant genomes represents an opportunity to obtain a broader view of the family in terms of evolution and organisation. Family 1 UGTs are known to glycosylate several classes of plant secondary metabolites. A phylogeny reconstruction study was performed to get an insight into the evolution of this multigene family during the adaptation of plants to life on land. The organisation of the UGTs in the different organisms was also investigated. More than 1500 putative UGTs were identified in 12 fully sequenced and assembled plant genomes based on the highly conserved PSPG motif. Analyses by maximum likelihood (ML) method were performed to reconstruct the phylogenetic relationships existing between the sequences. The results of this study clearly show that the UGT family expanded during the transition from algae to vascular plants and that in higher plants the clustering of UGTs into phylogenetic groups appears to be conserved, although gene loss and gene gain events seem to have occurred in certain lineages. Interestingly, two new phylogenetic groups, named O and P, that are not present in A. thaliana were discovered. PMID:22077743

  2. Genome-Wide Analysis of Soybean HD-Zip Gene Family and Expression Profiling under Salinity and Drought Treatments

    PubMed Central

    Chen, Xue; Chen, Zhu; Zhao, Hualin; Zhao, Yang; Cheng, Beijiu; Xiang, Yan

    2014-01-01

    Background Homeodomain-leucine zipper (HD-Zip) proteins, a group of homeobox transcription factors, participate in various aspects of normal plant growth and developmental processes as well as environmental responses. To date, no overall analysis or expression profiling of the HD-Zip gene family in soybean (Glycine max) has been reported. Methods and Findings An investigation of the soybean genome revealed 88 putative HD-Zip genes. These genes were classified into four subfamilies, I to IV, based on phylogenetic analysis. In each subfamily, the constituent parts of gene structure and motif were relatively conserved. A total of 87 out of 88 genes were distributed unequally on 20 chromosomes with 36 segmental duplication events, indicating that segmental duplication is important for the expansion of the HD-Zip family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the HD-Zip family basically underwent purifying selection with restrictive functional divergence after the duplication events. Analysis of expression profiles showed that 80 genes differentially expressed across 14 tissues, and 59 HD-Zip genes are differentially expressed under salinity and drought stress, with 20 paralogous pairs showing nearly identical expression patterns and three paralogous pairs diversifying significantly under drought stress. Quantitative real-time RT-PCR (qRT-PCR) analysis of six paralogous pairs of 12 selected soybean HD-Zip genes under both drought and salinity stress confirmed their stress-inducible expression patterns. Conclusions This study presents a thorough overview of the soybean HD-Zip gene family and provides a new perspective on the evolution of this gene family. The results indicate that HD-Zip family genes may be involved in many plant responses to stress conditions. Additionally, this study provides a solid foundation for uncovering the biological roles of HD-Zip genes in soybean growth and development. PMID:24498296

  3. Organ-Specific and Light-Induced Expression of Plant Genes

    Microsoft Academic Search

    Robert Fluhr; Cris Kuhlemeier; Ferenc Nagy; Nam-Hai Chua

    1986-01-01

    Light plays a pivotal role in the development of plants. The photoregulation of plant genes involves recognition of light quality and quantity by phytochrome and other light receptors. Two gene families, rbcS and Cab, which code for abundant proteins active in photosynthesis, the small subunit of ribulose bisphosphate carboxylase and the chlorophyll a\\/b binding protein, show a 20- to 50-fold

  4. Root parasitic plant Orobanche aegyptiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific strictosidine synthase-like genes by horizontal gene transfer

    PubMed Central

    2014-01-01

    Background Besides gene duplication and de novo gene generation, horizontal gene transfer (HGT) is another important way of acquiring new genes. HGT may endow the recipients with novel phenotypic traits that are important for species evolution and adaption to new ecological niches. Parasitic systems expectedly allow the occurrence of HGT at relatively high frequencies due to their long-term physical contact. In plants, a number of HGT events have been reported between the organelles of parasites and the hosts, but HGT between host and parasite nuclear genomes has rarely been found. Results A thorough transcriptome screening revealed that a strictosidine synthase-like (SSL) gene in the root parasitic plant Orobanche aegyptiaca and the shoot parasitic plant Cuscuta australis showed much higher sequence similarities with those in Brassicaceae than with those in their close relatives, suggesting independent gene horizontal transfer events from Brassicaceae to these parasites. These findings were strongly supported by phylogenetic analysis and their identical unique amino acid residues and deletions. Intriguingly, the nucleus-located SSL genes in Brassicaceae belonged to a new member of SSL gene family, which were originated from gene duplication. The presence of introns indicated that the transfer occurred directly by DNA integration in both parasites. Furthermore, positive selection was detected in the foreign SSL gene in O. aegyptiaca but not in C. australis. The expression of the foreign SSL genes in these two parasitic plants was detected in multiple development stages and tissues, and the foreign SSL gene was induced after wounding treatment in C. australis stems. These data imply that the foreign genes may still retain certain functions in the recipient species. Conclusions Our study strongly supports that parasitic plants can gain novel nuclear genes from distantly related host species by HGT and the foreign genes may execute certain functions in the new hosts. PMID:24411025

  5. Morphological evolution in land plants: new designs with old genes

    PubMed Central

    Pires, Nuno D.; Dolan, Liam

    2012-01-01

    The colonization and radiation of multicellular plants on land that started over 470 Ma was one of the defining events in the history of this planet. For the first time, large amounts of primary productivity occurred on the continental surface, paving the way for the evolution of complex terrestrial ecosystems and altering global biogeochemical cycles; increased weathering of continental silicates and organic carbon burial resulted in a 90 per cent reduction in atmospheric carbon dioxide levels. The evolution of plants on land was itself characterized by a series of radical transformations of their body plans that included the formation of three-dimensional tissues, de novo evolution of a multicellular diploid sporophyte generation, evolution of multicellular meristems, and the development of specialized tissues and organ systems such as vasculature, roots, leaves, seeds and flowers. In this review, we discuss the evolution of the genes and developmental mechanisms that drove the explosion of plant morphologies on land. Recent studies indicate that many of the gene families which control development in extant plants were already present in the earliest land plants. This suggests that the evolution of novel morphologies was to a large degree driven by the reassembly and reuse of pre-existing genetic mechanisms. PMID:22232763

  6. Anthocyans from Fruit of Some Plants of the Caprifoliaceae Family

    Microsoft Academic Search

    V. I. Deineka; V. N. Sorokopudov; L. A. Deineka; E. I. Shaposhnik; S. V. Kol’tsov

    2005-01-01

    The qualitative and quantitative compositions of anthocyans from fruit of plants of the Caprifoliaceae family grown under conditions of Belgorod region were investigated. The plants included elder species [Sambucus nigra L. (I), S. canadensis (II), and S. canadensis f. sceletoniana (III)], Viburnum opulus L., and Lonicera caerulea L. It has been found that the principal anthocyans of I are cyanidin-3-sambubioside

  7. Evolution of an Expanded Mannose Receptor Gene Family

    PubMed Central

    Staines, Karen; Hunt, Lawrence G.; Young, John R.; Butter, Colin

    2014-01-01

    Sequences of peptides from a protein specifically immunoprecipitated by an antibody, KUL01, that recognises chicken macrophages, identified a homologue of the mammalian mannose receptor, MRC1, which we called MRC1L-B. Inspection of the genomic environment of the chicken gene revealed an array of five paralogous genes, MRC1L-A to MRC1L-E, located between conserved flanking genes found either side of the single MRC1 gene in mammals. Transcripts of all five genes were detected in RNA from a macrophage cell line and other RNAs, whose sequences allowed the precise definition of spliced exons, confirming or correcting existing bioinformatic annotation. The confirmed gene structures were used to locate orthologues of all five genes in the genomes of two other avian species and of the painted turtle, all with intact coding sequences. The lizard genome had only three genes, one orthologue of MRC1L-A and two orthologues of the MRC1L-B antigen gene resulting from a recent duplication. The Xenopus genome, like that of most mammals, had only a single MRC1-like gene at the corresponding locus. MRC1L-A and MRC1L-B genes had similar cytoplasmic regions that may be indicative of similar subcellular migration and functions. Cytoplasmic regions of the other three genes were very divergent, possibly indicating the evolution of a new functional repertoire for this family of molecules, which might include novel interactions with pathogens. PMID:25390371

  8. Poplar and Pathogen Interactions: Insights from Populus Genome-Wide Analyses of Resistance and Defense Gene Families and Gene Expression Profiling

    Microsoft Academic Search

    Sébastien Duplessis; Ian Major; Francis Martin; Armand Séguin

    2009-01-01

    Our understanding of the molecular basis of plant-pathogen interactions is derived mostly from studies of model annual plant species, and until recently, few addressed disease resistance and defense responses in long-lived species such as trees. The release of the Populus genome sequence has permitted extensive genome-wide surveys of gene families and comparative analyses of other sequenced plant genomes. These have

  9. Evolution of the Hedgehog Gene Family

    PubMed Central

    Kumar, S.; Balczarek, K. A.; Lai, Z. C.

    1996-01-01

    Effective intercellular communication is an important feature in the development of multicellular organisms. Secreted hedgehog (hh) protein is essential for both long- and short-range cellular signaling required for body pattern formation in animals. In a molecular evolutionary study, we find that the vertebrate homologs of the Drosophila hh gene arose by two gene duplications: the first gave rise to Desert hh, whereas the second produced the Indian and Sonic hh genes. Both duplications occurred before the emergence of vertebrates and probably before the evolution of chordates. The amino-terminal fragment of the hh precursor, crucial in long- and short-range intercellular communication, evolves two to four times slower than the carboxyl-terminal fragment in both Drosophila hh and its vertebrate homologues, suggesting conservation of mechanism of hh action in animals. A majority of amino acid substitutions in the amino- and carboxyl-terminal fragments are conservative, but the carboxyl-terminal domain has undergone extensive insertion-deletion events while maintaining its autocleavage protease activity. Our results point to similarity of evolutionary constraints among sites of Drosophila and vertebrate hh homologs and suggest some future directions for understanding the role of hh genes in the evolution of developmental complexity in animals. PMID:8849902

  10. Analysis of Arabidopsis floral transcriptome: detection of new florally expressed genes and expansion of Brassicaceae-specific gene families

    PubMed Central

    Zhang, Liangsheng; Wang, Lei; Yang, Yulin; Cui, Jie; Chang, Fang; Wang, Yingxiang; Ma, Hong

    2015-01-01

    The flower is essential for sexual reproduction of flowering plants and has been extensively studied. However, it is still not clear how many genes are expressed in the flower. Here, we performed RNA-seq analysis as a highly sensitive approach to investigate the Arabidopsis floral transcriptome at three developmental stages. We provide evidence that at least 23, 961 genes are active in the Arabidopsis flower, including 8512 genes that have not been reported as florally expressed previously. We compared gene expression at different stages and found that many genes encoding transcription factors are preferentially expressed in early flower development. Other genes with expression at distinct developmental stages included DUF577 in meiotic cells and DUF220, DUF1216, and Oleosin in stage 12 flowers. DUF1216 and DUF577 are Brassicaceae specific, and together with other families experienced expansion within the Brassicaceae lineage, suggesting novel/greater roles in Brassicaceae floral development than other plants. The large dataset from this study can serve as a resource for expression analysis of genes involved in flower development in Arabidopsis and for comparison with other species. Together, this work provides clues regarding molecular networks underlying flower development. PMID:25653662

  11. The Arabidopsis acyl-CoA oxidase gene family.

    PubMed

    Eastmond, P J; Hooks, M; Graham, I A

    2000-12-01

    A family of acyl-CoA oxidase isozymes catalyse the first step in the peroxisomal fatty acid beta-oxidation spiral. Our group and others have recently characterized four genes from this family in the model oilseed Arabidopsis. These genes encode isozymes with different acyl-CoA substrate specificities, which together encompass the full range of fatty acid chain lengths that exist in vivo. Here we review the biochemical properties and physiological roles of the acyl-CoA oxidase isozymes. PMID:11171196

  12. Expression of Sox family genes in early lamprey development

    PubMed Central

    UY, BENJAMIN R.; SIMOES-COSTA, MARCOS; SAUKA-SPENGLER, TATJANA; BRONNER, MARIANNE E.

    2014-01-01

    Members of the Sox (Sry-related high mobility group box) family of transcription factors play a variety of roles during development of both vertebrates and invertebrates. A marked expansion in gene number occurred during emergence of vertebrates, apparently via gene duplication events that are thought to have facilitated new functions. By screening a macroarrayed library as well as the lamprey genome, we have isolated genes of the Sox B, D, E and F subfamilies in the basal jawless vertebrate, lamprey. The expression patterns of all identified Sox genes were examined from gastrulation through early organogenesis (embryonic day 4–14), with particular emphasis on the neural crest, a vertebrate innovation. Coupled with phylogenetic analysis of these Sox genes, the results provide insight into gene duplication and divergence in paralog deployment occurring during early vertebrate evolution. PMID:22811271

  13. Genomewide analysis of TCP transcription factor gene family in Malus domestica.

    PubMed

    Xu, Ruirui; Sun, Peng; Jia, Fengjuan; Lu, Longtao; Li, Yuanyuan; Zhang, Shizhong; Huang, Jinguang

    2014-12-01

    Teosinte branched 1/cycloidea/proliferating cell factor 1 (TCP) proteins are a large family of transcriptional regulators in angiosperms. They are involved in various biological processes, including development and plant metabolism pathways. In this study, a total of 52 TCP genes were identified in apple (Malus domestica) genome. Bioinformatic methods were employed to predicate and analyse their relevant gene classification, gene structure, chromosome location, sequence alignment and conserved domains of MdTCP proteins. Expression analysis from microarray data showed that the expression levels of 28 and 51 MdTCP genes changed during the ripening and rootstock-scion interaction processes, respectively. The expression patterns of 12 selected MdTCP genes were analysed in different tissues and in response to abiotic stresses. All of the selected genes were detected in at least one of the tissues tested, and most of them were modulated by adverse treatments indicating that the MdTCPs were involved in various developmental and physiological processes. To the best of our knowledge, this is the first study of a genomewide analysis of apple TCP gene family. These results provide valuable information for studies on functions of the TCP transcription factor genes in apple. PMID:25572232

  14. DCEG Scientists Identify New Gene Mutation Related to Familial Melanoma

    Cancer.gov

    Scientists have identified a rare inherited mutation in a gene that can increase the risk of familial melanoma, according to a study that appeared online in Nature Genetics on March 30, 2014. Although the finding does not offer immediate benefit to patients, variation in the Protection of Telomeres-1 (POT1) gene provides additional clues as to the origins of melanoma and may open new avenues in prevention and treatment research.

  15. Genomic organization of hsp90 gene family in Arabidopsis

    Microsoft Academic Search

    Dimitra Milioni; Polydefkis Hatzopoulos

    1997-01-01

    We have isolated six members of the hsp90 gene family from Arabidopsis thaliana. Three genes designated hsp81.2, 81.3 and 81.4 are clustered within a 15 kb genomic region while two of these are 1.5 kb apart in a head-to-head orientation. The deduced amino acid sequence shows that the members can be divided into two types. The hsp81.1, 81.2, 81.3 and

  16. The EGF-CFC gene family in vertebrate development

    Microsoft Academic Search

    Michael M Shen; Alexander F Schier

    2000-01-01

    EGF-CFC genes encode extracellular proteins that play key roles in intercellular signaling pathways during vertebrate embryogenesis. Mutations in zebrafish and mouse EGF-CFC genes lead to defects in germ-layer formation, anterior–posterior axis orientation and left–right axis specification. In addition, members of the EGF-CFC family have been implicated in carcinogenesis. Although formerly regarded as signaling molecules that are distant relatives of epidermal

  17. Differential Gene Expression in the Laccase Gene Family from Basidiomycete I-62 (CECT 20197)

    PubMed Central

    Mansur, Mariana; Suárez, Teresa; González, Aldo E.

    1998-01-01

    A family of genes encoding laccases has recently been described for the basidiomycete I-62 (CECT 20197). Transcript levels of genes lcc1, lcc2, and lcc3 were analyzed under four different culture conditions to study their expression patterns. Two of the laccase genes were clearly inducible by veratryl alcohol: the lcc1 gene is inducible in early stages of growth, and the lcc2 gene is also inducible but only when the organism reaches the stationary phase. Transcript levels for the third gene, lcc3, were uninduced by veratryl alcohol and repressed by glucose. PMID:16349507

  18. Comparative Expression and Phylogenetic Analysis of Maize Cytokinin Dehydrogenase\\/Oxidase (CKX) Gene Family

    Microsoft Academic Search

    Riliang GuJunjie; Junjie Fu; Song Guo; Fengying Duan; Zhangkui Wang; Guohua Mi; Lixing Yuan

    2010-01-01

    Cytokinin dehydrogenase (CKX) degrades the cytokinin hormone in plants and plays an important role in cytokinin regulatory\\u000a processes. CKX proteins are encoded by a multigene family with a varying number of members. In this study, 13 maize CKX sequences were collected in which ten transcripts were confirmed by RT-PCR. The tissue- and cytokinin-dependent expression\\u000a studies indicated that ZmCKX genes exhibit

  19. Expansive evolution of the trehalose-6-phosphate phosphatase gene family in Arabidopsis.

    PubMed

    Vandesteene, Lies; López-Galvis, Lorena; Vanneste, Kevin; Feil, Regina; Maere, Steven; Lammens, Willem; Rolland, Filip; Lunn, John E; Avonce, Nelson; Beeckman, Tom; Van Dijck, Patrick

    2012-10-01

    Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a two-step reaction in which trehalose-6-phosphate (T6P) is synthesized from UDP-glucose and glucose-6-phosphate (catalyzed by T6P synthase [TPS]), and subsequently dephosphorylated to produce the disaccharide trehalose (catalyzed by T6P phosphatase [TPP]). In Arabidopsis (Arabidopsis thaliana), 11 genes encode proteins with both TPS- and TPP-like domains but only one of these (AtTPS1) appears to be an active (TPS) enzyme. In addition, plants contain a large family of smaller proteins with a conserved TPP domain. Here, we present an in-depth analysis of the 10 TPP genes and gene products in Arabidopsis (TPPA-TPPJ). Collinearity analysis revealed that all of these genes originate from whole-genome duplication events. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that all encode active TPP enzymes with an essential role for some conserved residues in the catalytic domain. These results suggest that the TPP genes function in the regulation of T6P levels, with T6P emerging as a novel key regulator of growth and development in higher plants. Extensive gene expression analyses using a complete set of promoter-?-glucuronidase/green fluorescent protein reporter lines further uncovered cell- and tissue-specific expression patterns, conferring spatiotemporal control of trehalose metabolism. Consistently, phenotypic characterization of knockdown and overexpression lines of a single TPP, AtTPPG, points to unique properties of individual TPPs in Arabidopsis, and underlines the intimate connection between trehalose metabolism and abscisic acid signaling. PMID:22855938

  20. The d4 gene family in the human genome

    SciTech Connect

    Chestkov, A.V.; Baka, I.D.; Kost, M.V. [Engelhardt Inst. of Molecular Biology, Moscow (Russian Federation)] [and others] [Engelhardt Inst. of Molecular Biology, Moscow (Russian Federation); and others

    1996-08-15

    The d4 domain, a novel zinc finger-like structural motif, was first revealed in the rat neuro-d4 protein. Here we demonstrate that the d4 domain is conserved in evolution and that three related genes form a d4 family in the human genome. The human neuro-d4 is very similar to rat neuro-d4 at both the amino acid and the nucleotide levels. Moreover, the same splice variants have been detected among rat and human neuro-d4 transcripts. This gene has been localized on chromosome 19, and two other genes, members of the d4 family isolated by screening of the human genomic library at low stringency, have been mapped to chromosomes 11 and 14. The gene on chromosome 11 is the homolog of the ubiquitously expressed mouse gene ubi-d4/requiem, which is required for cell death after deprivation of trophic factors. A gene with a conserved d4 domain has been found in the genome of the nematode Caenorhabditis elegans. The conservation of d4 proteins from nematodes to vertebrates suggests that they have a general importance, but a diversity of d4 proteins expressed in vertebrate nervous systems suggests that some family members have special functions. 11 refs., 2 figs.

  1. Genome-Wide Identification and Expression Analysis of NBS-Encoding Genes in Malus x domestica and Expansion of NBS Genes Family in Rosaceae

    PubMed Central

    Arya, Preeti; Kumar, Gulshan; Acharya, Vishal; Singh, Anil K.

    2014-01-01

    Nucleotide binding site leucine-rich repeats (NBS-LRR) disease resistance proteins play an important role in plant defense against pathogen attack. A number of recent studies have been carried out to identify and characterize NBS-LRR gene families in many important plant species. In this study, we identified NBS-LRR gene family comprising of 1015 NBS-LRRs using highly stringent computational methods. These NBS-LRRs were characterized on the basis of conserved protein motifs, gene duplication events, chromosomal locations, phylogenetic relationships and digital gene expression analysis. Surprisingly, equal distribution of Toll/interleukin-1 receptor (TIR) and coiled coil (CC) (1?1) was detected in apple while the unequal distribution was reported in majority of all other known plant genome studies. Prediction of gene duplication events intriguingly revealed that not only tandem duplication but also segmental duplication may equally be responsible for the expansion of the apple NBS-LRR gene family. Gene expression profiling using expressed sequence tags database of apple and quantitative real-time PCR (qRT-PCR) revealed the expression of these genes in wide range of tissues and disease conditions, respectively. Taken together, this study will provide a blueprint for future efforts towards improvement of disease resistance in apple. PMID:25232838

  2. Identification and Expression Analysis of PIN-Like (PILS) Gene Family of Rice Treated with Auxin and Cytokinin.

    PubMed

    Mohanta, Tapan Kumar; Mohanta, Nibedita; Bae, Hanhong

    2015-01-01

    The phytohormone auxin is one of the most important signaling molecules that undergo accumulation or depletion in a temporal or spatial manner due to wide arrays of changes in developmental or stress programs. Proper distribution, maintenance and homeostasis of auxin molecules across the plant systems are one of the most important phenomena required for proper growth and development of plant. The distribution and homeostasis of auxin is maintained by auxin transport systems across the plant. The auxin transportation is carried out by auxin transporter family proteins, popularly known as auxin efflux carriers (PINs). In this study, a sub-family of auxin efflux carrier (OsPILS) genes was identified from Oryza sativa and relative expression profile was studied by treating them with auxin and cytokinin. Oryza sativa encodes seven putative sub-cellularly localized transmembrane OsPILS genes distributed in five chromosomes. Differential expression of OsPILS genes was found to be modulated by auxin and cytokinin treatment. In auxin treated plants, all OsPILS genes were up-regulated in leaves and down regulated in roots during the third week time period of developmental stages. In the cytokinin treated plants, the maximum of OsPILS genes were up-regulated during the third week time period in root and leaf tissue. Regulation of gene expression of OsPILS genes by auxin and cytokinin during the third week time period revealed its important role in plant growth and development. PMID:26193322

  3. Gene Expression Divergence and Evolutionary Analysis of the Drosomycin Gene Family in Drosophila melanogaster

    PubMed Central

    Deng, Xiao-Juan; Yang, Wan-Ying; Huang, Ya-Dong; Cao, Yang; Wen, Shuo-Yang; Xia, Qing-You; Xu, Peilin

    2009-01-01

    Drosomycin (Drs) encoding an inducible 44-residue antifungal peptide is clustered with six additional genes, Dro1, Dro2, Dro3, Dro4, Dro5, and Dro6, forming a multigene family on the 3L chromosome arm in Drosophila melanogaster. To get further insight into the regulation of each member of the drosomycin gene family, here we investigated gene expression patterns of this family by either microbe-free injury or microbial challenges using real time RT-PCR. The results indicated that among the seven drosomycin genes, Drs, Dro2, Dro3, Dro4, and Dro5 showed constitutive expressions. Three out of five, Dro2, Dro3, and Dro5, were able to be upregulated by simple injury. Interestingly, Drs is an only gene strongly upregulated when Drosophila was infected with microbes. In contrast to these five genes, Dro1 and Dro6 were not transcribed at all in either noninfected or infected flies. Furthermore, by 5? rapid amplification of cDNA ends, two transcription start sites were identified in Drs and Dro2, and one in Dro3, Dro4, and Dro5. In addition, NF-?B binding sites were found in promoter regions of Drs, Dro2, Dro3, and Dro5, indicating the importance of NF-?B binding sites for the inducibility of drosomycin genes. Based on the analyses of flanking sequences of each gene in D. melanogaster and phylogenetic relationship of drosomycins in D. melanogaster species-group, we concluded that gene duplications were involved in the formation of the drosomycin gene family. The possible evolutionary fates of drosomycin genes were discussed according to the combining analysis of gene expression pattern, gene structure, and functional divergence of these genes. PMID:19888430

  4. Gravity-Induced Gene Expression in Plants.

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.

    Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high sequence identity as well as a conserved pattern of transcript abundance changes after gravity stimulation between corn pulvinus tissue and Arabidopsis root apices. The functions of these genes in gravitropic responses are currently being analyzed and should give us important information about evolutionary conserved elements in plant gravity signal transduction. (This research was funded by NASA). Kimbrough, J. M., R. Salinas-Mondragon, et al. (2004). "The Fast and Transient Transcriptional Network of Gravity and Mechanical Stimulation in the Arabidopsis Root Apex." Plant Physiol. 136(1): 2790-2805. Moseyko, N., T. Zhu, et al. (2002). "Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays." Plant Physiol 130(2): 720-8. Salinas-Mondragon, R., A. Brogan, et al. (2005). "Gravity and light: integrating transcriptional regulation in roots." Gravit Space Biol Bull 18(2): 121-2.

  5. Genome-Wide Analysis of LIM Gene Family in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa

    PubMed Central

    Arnaud, Dominique; Déjardin, Annabelle; Leplé, Jean-Charles; Lesage-Descauses, Marie-Claude; Pilate, Gilles

    2007-01-01

    Abstract In Eukaryotes, LIM proteins act as developmental regulators in basic cellular processes such as regulating the transcription or organizing the cytoskeleton. The LIM domain protein family in plants has mainly been studied in sunflower and tobacco plants, where several of its members exhibit a specific pattern of expression in pollen. In this paper, we finely characterized in poplar six transcripts encoding these proteins. In Populus trichocarpa genome, the 12 LIM gene models identified all appear to be duplicated genes. In addition, we describe several new LIM domain proteins deduced from Arabidopsis and rice genomes, raising the number of LIM gene models to six for both species. Plant LIM genes have a core structure of four introns with highly conserved coding regions. We also identified new LIM domain proteins in several other species, and a phylogenetic analysis of plant LIM proteins reveals that they have undergone one or several duplication events during the evolution. We gathered several LIM protein members within new monophyletic groups. We propose to classify the plant LIM proteins into four groups: ?LIM1, ?LIM1, ?LIM2, and ?LIM2, subdivided according to their specificity to a taxonomic class and/or to their tissue-specific expression. Our investigation of the structure of the LIM domain proteins revealed that they contain many conserved motifs potentially involved in their function. PMID:17573466

  6. Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family.

    PubMed

    Devoto, Alessandra; Hartmann, H Andreas; Piffanelli, Pietro; Elliott, Candace; Simmons, Carl; Taramino, Graziana; Goh, Chern-Sing; Cohen, Fred E; Emerson, Brent C; Schulze-Lefert, Paul; Panstruga, Ralph

    2003-01-01

    Homologues of barley Mlo encode the only family of seven-transmembrane (TM) proteins in plants. Their topology, subcellular localization, and sequence diversification are reminiscent of those of G-protein coupled receptors (GPCRs) from animals and fungi. We present a computational analysis of MLO family members based on 31 full-size and 3 partial sequences, which originate from several monocot species, the dicot Arabidopsis thaliana, and the moss Ceratodon purpureus. This enabled us to date the origin of the Mlo gene family back at least to the early stages of land plant evolution. The genomic organization of the corresponding genes supports a monophyletic origin of the Mlo gene family. Phylogenetic analysis revealed five clades, of which three contain both monocot and dicot members, while two indicate class-specific diversification. Analysis of the ratio of nonsynonymous-to-synonymous changes in coding sequences provided evidence for functional constraint on the evolution of the DNA sequences and purifying selection, which appears to be reduced in the first extracellular loop of 12 closely related orthologues. The 31 full-size sequences were examined for potential domain-specific intramolecular coevolution. This revealed evidence for concerted evolution of all three cytoplasmic domains with each other and the C-terminal cytoplasmic tail, suggesting interplay of all intracellular domains for MLO function. PMID:12569425

  7. Comprehensive expression analysis of rice Armadillo gene family during abiotic stress and development.

    PubMed

    Sharma, Manisha; Singh, Amarjeet; Shankar, Alka; Pandey, Amita; Baranwal, Vinay; Kapoor, Sanjay; Tyagi, Akhilesh K; Pandey, Girdhar K

    2014-06-01

    Genes in the Armadillo (ARM)-repeat superfamily encode proteins with a range of developmental and physiological processes in unicellular and multicellular eukaryotes. These 42 amino acid, long tandem repeat-containing proteins have been abundantly recognized in many plant species. Previous studies have confirmed that Armadillo proteins constitute a multigene family in Arabidopsis. In this study, we performed a computational analysis in the rice genome (Oryza sativa L. subsp. japonica), and identified 158 genes of Armadillo superfamily. Phylogenetic study classified them into several arbitrary groups based on a varying number of non-conserved ARM repeats and accessory domain(s) associated with them. An in-depth analysis of gene expression through microarray and Q-PCR revealed a number of ARM proteins expressing differentially in abiotic stresses and developmental conditions, suggesting a potential roles of this superfamily in development and stress signalling. Comparative phylogenetic analysis between Arabidopsis and rice Armadillo genes revealed a high degree of evolutionary conservation between the orthologues in two plant species. The non-synonymous and synonymous substitutions per site ratios (Ka/Ks) of duplicated gene pairs indicate a purifying selection. This genome-wide identification and expression analysis provides a basis for further functional analysis of Armadillo genes under abiotic stress and reproductive developmental condition in the plant lineage. PMID:24398598

  8. Comprehensive genomic analysis and expression profiling of diacylglycerol kinase gene family in Malus prunifolia (Willd.) Borkh.

    PubMed

    Li, Yali; Tan, Yanxiao; Shao, Yun; Li, Mingjun; Ma, Fengwang

    2015-05-01

    Diacylglycerol kinase (DGK) is a pivotal enzyme that phosphorylates diacylglycerol (DAG) to form phosphatidic acid (PA). The production of PA from phospholipase D (PLD) and the coupled phospholipase C (PLC)/DGK route is a critical signaling process in animal and plant cells. Next to PLD, DGK is the second most important generator of PA in biotic and abiotic stress responses. We identified 8 DGK members within the apple genome and all of their putative proteins contain one DGK catalytic domain and one DGK accessory domain. Four coding sequences were confirmed by cloning from Malus prunifolia. Phylogenetic and gene structure analyses showed that the apple DGK genes could be assigned to Clusters I, II, or III. Expression analysis of 6 of them revealed that their transcript levels were highest in stems. Some apple DGK genes were also significantly up-regulated in response to salt and drought stresses. This suggested their possible roles in plant defenses against environmental challenges. As a first step toward genome-wide analyses of the DGK genes in woody plants, our results imply that apple DGK genes are involved in the signaling of stress responses. These findings will contribute to further functional dissection of this gene family. PMID:25688881

  9. Hepatoblastoma and APC gene mutation in familial adenomatous polyposis.

    PubMed Central

    Giardiello, F M; Petersen, G M; Brensinger, J D; Luce, M C; Cayouette, M C; Bacon, J; Booker, S V; Hamilton, S R

    1996-01-01

    BACKGROUND: Hepatoblastoma is a rare, rapidly progressive, usually fatal childhood malignancy, which if confined to the liver can be cured by radical surgical resection. An association between hepatoblastoma and familial adenomatous polyposis (FAP), which is due to germline mutation of the APC (adenomatous polyposis coli) gene, has been confirmed, but correlation with site of APC mutation has not been studied. AIM: To analyse the APC mutational spectrum in FAP families with hepatoblastoma as a possible basis to select kindreds for surveillance. PATIENTS: Eight patients with hepatoblastoma in seven FAP kindreds were compared with 97 families with identified APC gene mutation in a large Registry. METHODS: APC gene mutation was evaluated by RNase protection assay or in vitro synthesis protein assay. The chi 2 test and correlation were used for data analysis. RESULTS: APC gene mutation was identified in all seven FAP kindreds in which an at risk member developed hepatoblastoma. A male predominance was noted (six of eight), similar to literature cases (18 of 25, p < 0.01. Mutations were restricted to codons 141 to 1230, but no significant difference in site of mutation between pedigrees with and without hepatoblastoma was identified. CONCLUSIONS: Hepatoblastoma occurs primarily in boys in FAP kindreds and is associated with germline APC mutation in the 5' end of the gene. However, the site of APC mutation cannot be used to predict occurrence of this extracolonic cancer in FAP pedigrees. PMID:9038672

  10. Multiparental mapping of plant height and flowering time QTL in partially isogenic sorghum families.

    PubMed

    Higgins, R H; Thurber, C S; Assaranurak, I; Brown, P J

    2014-09-01

    Sorghum varieties suitable for grain production at temperate latitudes show dwarfism and photoperiod insensitivity, both of which are controlled by a small number of loci with large effects. We studied the genetic control of plant height and flowering time in five sorghum families (A-E), each derived from a cross between a tropical line and a partially isogenic line carrying introgressions derived from a common, temperate-adapted donor. A total of 724 F2:3 lines were phenotyped in temperate and tropical environments for plant height and flowering time and scored at 9139 SNPs using genotyping-by-sequencing. Biparental mapping was compared with multiparental mapping in different subsets of families (AB, ABC, ABCD, and ABCDE) using both a GWAS approach, which fit each QTL as a single effect across all families, and using a joint linkage approach, which fit QTL effects as nested within families. GWAS using all families (ABCDE) performed best at the cloned Dw3 locus, whereas joint linkage using all families performed best at the cloned Ma1 locus. Both multiparental approaches yielded apparently synthetic associations due to genetic heterogeneity and were highly dependent on the subset of families used. Comparison of all mapping approaches suggests that a GA2-oxidase underlies Dw1, and that a mir172a gene underlies a Dw1-linked flowering time QTL. PMID:25237111

  11. Systematic Analysis of Sequences and Expression Patterns of Drought-Responsive Members of the HD-Zip Gene Family in Maize

    Microsoft Academic Search

    Yang Zhao; Yuqiong Zhou; Haiyang Jiang; Xiaoyu Li; Defang Gan; Xiaojian Peng; Suwen Zhu; Beijiu Cheng

    2011-01-01

    BackgroundMembers of the homeodomain-leucine zipper (HD-Zip) gene family encode transcription factors that are unique to plants and have diverse functions in plant growth and development such as various stress responses, organ formation and vascular development. Although systematic characterization of this family has been carried out in Arabidopsis and rice, little is known about HD-Zip genes in maize (Zea mays L.).Methods

  12. An integrated database of wood-formation related genes in plants

    PubMed Central

    Xu, Ting; Ma, Tao; Hu, Quanjun; Liu, Jianquan

    2015-01-01

    Wood, which consists mainly of plant cell walls, is an extremely important resource in daily lives. Genes whose products participate in the processes of cell wall and wood formation are therefore major subjects of plant science research. The Wood-Formation Related Genes database (WFRGdb, http://me.lzu.edu.cn/woodformation/) serves as a data resource center for genes involved in wood formation. To create this database, we collected plant genome data published in other online databases and predicted all cell wall and wood formation related genes using BLAST and HMMER. To date, 47 gene families and 33 transcription factors from 57 genomes (28 herbaceous, 22 woody and 7 non-vascular plants) have been covered and more than 122,000 genes have been checked and recorded. To provide easy access to these data, we have developed several search methods, which make it easy to download targeted genes or groups of genes free of charge in FASTA format. Sequence and phylogenetic analyses are also available online. WFRGdb brings together cell wall and wood formation related genes from all available plant genomes, and provides an integrative platform for gene inquiry, downloading and analysis. This database will therefore be extremely useful for those who focuses on cell wall and wood research. PMID:26078228

  13. An integrated database of wood-formation related genes in plants.

    PubMed

    Xu, Ting; Ma, Tao; Hu, Quanjun; Liu, Jianquan

    2015-01-01

    Wood, which consists mainly of plant cell walls, is an extremely important resource in daily lives. Genes whose products participate in the processes of cell wall and wood formation are therefore major subjects of plant science research. The Wood-Formation Related Genes database (WFRGdb, http://me.lzu.edu.cn/woodformation/) serves as a data resource center for genes involved in wood formation. To create this database, we collected plant genome data published in other online databases and predicted all cell wall and wood formation related genes using BLAST and HMMER. To date, 47 gene families and 33 transcription factors from 57 genomes (28 herbaceous, 22 woody and 7 non-vascular plants) have been covered and more than 122,000 genes have been checked and recorded. To provide easy access to these data, we have developed several search methods, which make it easy to download targeted genes or groups of genes free of charge in FASTA format. Sequence and phylogenetic analyses are also available online. WFRGdb brings together cell wall and wood formation related genes from all available plant genomes, and provides an integrative platform for gene inquiry, downloading and analysis. This database will therefore be extremely useful for those who focuses on cell wall and wood research. PMID:26078228

  14. Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.)

    Microsoft Academic Search

    Gaiyun Zhang; Ming Chen; Xueping Chen; Zhaoshi Xu; Shan Guan; Lian-Cheng Li; Aili Li; Jiaming Guo; Long Mao; Youzhi Ma

    2010-01-01

    Members of the ERF transcription factor family play important roles in regulating gene expression in re- sponse to biotic and abiotic stresses. In soybean (Glycine max L.), however, only a few ERF genes have been studied so far. In this study, 98 unigenes that contained a complete AP2\\/ERF domain were identified from 63 676 unique sequences in the DFCI Soybean

  15. Expression of a cytochrome P450 gene family in maize

    Microsoft Academic Search

    Monika Frey; Ralf Kliem; Heinz Saedler; Alfons Gierl

    1995-01-01

    Maize seedlings, like seedlings of many other plants, are rich in cytochrome P450 (P450) enzyme activity. Four P450 genes (CYPzm1–4), isolated from a seedling-specific cDNA library, are characterised by a transient and seedling-specific expression pattern. The maximum steady state mRNA levels are reached at 3 days in root and at 7 days in shoot tissue, respectively. All four genes belong

  16. Genomic and expression analysis of glycosyl hydrolase family 35 genes from rice (Oryza sativa L.)

    PubMed Central

    Tanthanuch, Waraporn; Chantarangsee, Mallika; Maneesan, Janjira; Ketudat-Cairns, James

    2008-01-01

    Background Many plant ?-galactosidases (Bgals) have been well characterized and their deduced biological functions mainly involve degradation of structural pectins, xyloglucans or arabinogalactoproteins in plant cell walls. However, gene multiplicity in glycosyl hydrolase family 35 (GH35), to which these proteins belong, implies diverse functions. In this study, the gene multiplicity, apparent evolutionary relationships and transcript expression of rice Bgal genes were examined, in order to predict their biological functions. Results Fifteen rice Bgal genes were identified in the plant genome, one of which encodes a protein similar to animal Bgals (OsBgal9), and the remaining 14 fall in a nearly plant-specific subfamily of Bgals. The presence of both classes of Bgals in bryophytes, as well as vascular plants, suggests both gene lineages were present early in plant evolution. All 15 proteins were predicted to contain secretory signal sequences, suggesting they have secretory pathway or external roles. RT-PCR and database analysis found two distinct lineages to be expressed nearly exclusively in reproductive tissues and to be closely related to Arabidopsis Bgals expressed most highly in flower and pollen. On the other hand, OsBgal6 is expressed primarily in young vegetative tissues, and alternative splicing in panicle prevents its production of full-length protein in this reproductive tissue. OsBgal11 also showed alternative splicing to produce different length proteins. OsBgal13 produced by recombinant expression in Escherichia coli hydrolyzed ?-L-arabinoside in addition to ?-D-galactoside and ?-(1?3)-, ?-(1?4)- and ?-(1?6)- linked galacto-oligosaccharides. Conclusion Rice GH35 contains fifteen genes with a diversity of protein sequences, predicted locations and expression and splicing patterns that suggest that OsBgals enzymes may play a variety of roles in metabolism of cell wall polysaccharides, glycoproteins and glycolipids. PMID:18664295

  17. Rho family GTPase-dependent immunity in plants and animals

    PubMed Central

    Kawano, Yoji; Kaneko-Kawano, Takako; Shimamoto, Ko

    2014-01-01

    In plants, sophisticated forms of immune systems have developed to cope with a variety of pathogens. Accumulating evidence indicates that Rac (also known as Rop), a member of the Rho family of small GTPases, is a key regulator of immunity in plants and animals. Like other small GTPases, Rac/Rop GTPases function as a molecular switch downstream of immune receptors by cycling between GDP-bound inactive and GTP-bound active forms in cells. Rac/Rop GTPases trigger various immune responses, thereby resulting in enhanced disease resistance to pathogens. In this review, we highlight recent studies that have contributed to our current understanding of the Rac/Rop family GTPases and the upstream and downstream proteins involved in plant immunity. We also compare the features of effector-triggered immunity between plants and animals, and discuss the in vivo monitoring of Rac/Rop activation. PMID:25352853

  18. Diversity and Linkage of Genes in the Self-Incompatibility Gene Family in Arabidopsis lyrata

    Microsoft Academic Search

    Deborah Charlesworth; Barbara K. Mable; Mikkel H. Schierup; Carolina Bartolome ´; Philip Awadalla

    We report studies of seven members of the S-domain gene family in Arabidopsis lyrata, a member of the Brassicaceae that has a sporophytic self-incompatibility (SI) system. Orthologs for five loci are identifiable in the self-compatible relative A. thaliana. Like the Brassica stigmatic incompatibility protein locus (SRK), some of these genes have kinase domains. We show that several of these genes

  19. Mutation analysis of the MSMB gene in familial prostate cancer

    PubMed Central

    Kote-Jarai, Z; Leongamornlert, D; Tymrakiewicz, M; Field, H; Guy, M; Al Olama, A A; Morrison, J; O'Brien, L; Wilkinson, R; Hall, A; Sawyer, E; Muir, K; Hamdy, F; Donovan, J; Neal, D; Easton, D; Eeles, R

    2009-01-01

    Background: MSMB, a gene coding for ?-microseminoprotein, has been identified as a candidate susceptibility gene for prostate cancer (PrCa) in two genome-wide association studies (GWAS). SNP rs10993994 is 2?bp upstream of the transcription initiation site of MSMB and was identified as an associated PrCa risk variant. The MSMB protein is underexpressed in PrCa and it was previously proposed to be an independent marker for the recurrence of cancer after radical prostatectomy. Methods: In this study, the coding region of this gene and 1500?bp upstream of the 5?UTR has been sequenced in germline DNA in 192 PrCa patients with family history. To evaluate the possible effects of these variants we used in silico analysis. Results: No deleterious mutations were identified, however, nine new sequence variants were found, most of these in the promoter and 5?UTR region. In silico analysis suggests that four of these SNPs are likely to have some effect on gene expression either by affecting ubiquitous or prostate-specific transcription factor (TF)-binding sites or modifying splicing efficiency. Interpretation We conclude that MSMB is unlikely to be a familial PrCa gene and propose that the high-risk alleles of the SNPs in the 5?UTR effect PrCa risk by modifying MSMB gene expression in response to hormones in a tissue-specific manner. PMID:19997100

  20. Gene regulatory network models for plant development.

    PubMed

    Alvarez-Buylla, Elena R; Benítez, Mariana; Dávila, Enrique Balleza; Chaos, Alvaro; Espinosa-Soto, Carlos; Padilla-Longoria, Pablo

    2007-02-01

    Accumulated genetic data are stimulating the use of mathematical and computational tools for studying the concerted action of genes during cell differentiation and morphogenetic processes. At the same time, network theory has flourished, enabling analyses of complex systems that have multiple elements and interactions. Reverse engineering methods that use genomic data or detailed experiments on gene interactions have been used to propose gene network architectures. Experiments on gene interactions incorporate enough detail for relatively small developmental modules and thus allow dynamical analyses that have direct functional interpretations. Generalities are beginning to emerge. For example, biological genetic networks are robust to environmental and genetic perturbations. Such dynamical studies also enable novel predictions that can lead to further experimental tests, which might then feedback to the theoretical analyses. This interplay is proving productive for understanding plant development. Finally, both experiments on gene interactions and theoretical analyses allow the identification of frequent or fixed evolutionary solutions to developmental problems, and thus are contributing to an understanding of the genetic basis of the evolution of development and body plan. PMID:17142086

  1. Evolution of akirin family in gene and genome levels and coexpressed patterns among family members and rel gene in croaker.

    PubMed

    Liu, Tianxing; Gao, Yunhang; Xu, Tianjun

    2015-09-01

    Akirins, which are highly conserved nuclear proteins, are present throughout the metazoan and regulate innate immunity, embryogenesis, myogenesis, and carcinogenesis. This study reports all akirin genes from miiuy croaker and analyzes comprehensively the akirin gene family combined with akirin genes from other species. A second nuclear localization signal (NLS) is observed in akirin2 homologues, which is not in akirin1 homologues in all teleosts and most other vertebrates. Thus, we deduced that the loss of second NLS in akirin1 homologues in teleosts likely occurred in an ancestor to all Osteichthyes after splitting with cartilaginous fish. Significantly, the akirin2(2) gene included six exons interrupted by five introns in the miiuy croaker, which may be caused by the intron insertion event as a novel evidence for the variation of akirin gene structure in some species. In addition, comparison of the genomic neighborhood genes of akirin1, akirin2(1), and akirin2(2) demonstrates a strong level of conserved synteny across the teleost classes, which further proved the deduction of Macqueen and Johnston 2009 that the produce of akirin paralogues can be attributed to whole-genome duplications and the loss of some akirin paralogues after genome duplications. Furthermore, akirin gene family members and relish gene are ubiquitously expressed across all tissues, and their expression levels are increased in three immune tissues after infection with Vibrio anguillarum. Combined with the expression patterns of LEAP-1 and LEAP-2 from miiuy croaker, an intricate network of co-regulation among family members is established. Thus, it is further proved that akirins acted in concert with the relish protein to induce the expression of a subset of downstream pathway elements in the NF-kB dependent signaling pathway. PMID:25912355

  2. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics.

    PubMed

    Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O; Wood, Andrew J; Kirch, Hans-Hubert; Kope?ný, David; Nebert, Daniel W; Vasiliou, Vasilis

    2013-01-01

    In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD(+)- or NADP(+)-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species-including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies. PMID:23007552

  3. Functional Characterization of the Plastidic Phosphate Translocator Gene Family from the Thermo-Acidophilic Red Alga Galdieria sulphuraria Reveals Specific Adaptations of Primary Carbon Partitioning in Green Plants and Red Algae1[W][OA

    PubMed Central

    Linka, Marc; Jamai, Aziz; Weber, Andreas P.M.

    2008-01-01

    In chloroplasts of green plants and algae, CO2 is assimilated into triose-phosphates (TPs); a large part of these TPs is exported to the cytosol by a TP/phosphate translocator (TPT), whereas some is stored in the plastid as starch. Plastidial phosphate translocators have evolved from transport proteins of the host endomembrane system shortly after the origin of chloroplasts by endosymbiosis. The red microalga Galdieria sulphuraria shares three conserved putative orthologous transport proteins with the distantly related seed plants and green algae. However, red algae, in contrast to green plants, store starch in their cytosol, not inside plastids. Hence, due to the lack of a plastidic starch pool, a larger share of recently assimilated CO2 needs to be exported to the cytosol. We thus hypothesized that red algal transporters have distinct substrate specificity in comparison to their green orthologs. This hypothesis was tested by expression of the red algal genes in yeast (Saccharomyces cerevisiae) and assessment of their substrate specificities and kinetic constants. Indeed, two of the three red algal phosphate translocator candidate orthologs have clearly distinct substrate specificities when compared to their green homologs. GsTPT (for G. sulphuraria TPT) displays very narrow substrate specificity and high affinity; in contrast to green plant TPTs, 3-phosphoglyceric acid is poorly transported and thus not able to serve as a TP/3-phosphoglyceric acid redox shuttle in vivo. Apparently, the specific features of red algal primary carbon metabolism promoted the evolution of a highly efficient export system with high affinities for its substrates. The low-affinity TPT of plants maintains TP levels sufficient for starch biosynthesis inside of chloroplasts, whereas the red algal TPT is optimized for efficient export of TP from the chloroplast. PMID:18799657

  4. Population- and Family-Based Studies Associate the "MTHFR" Gene with Idiopathic Autism in Simplex Families

    ERIC Educational Resources Information Center

    Liu, Xudong; Solehdin, Fatima; Cohen, Ira L.; Gonzalez, Maripaz G.; Jenkins, Edmund C.; Lewis, M. E. Suzanne; Holden, Jeanette J. A.

    2011-01-01

    Two methylenetetrahydrofolate reductase gene ("MTHFR") functional polymorphisms were studied in 205 North American simplex (SPX) and 307 multiplex (MPX) families having one or more children with an autism spectrum disorder. Case-control comparisons revealed a significantly higher frequency of the low-activity 677T allele, higher prevalence of the…

  5. The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family

    Microsoft Academic Search

    Kimiko Tanaka; Koji Okabayashi; Makoto Asashima; Norbert Perrimon; Tatsuhiko Kadowaki

    2000-01-01

    The Drosophila segment polarity gene product Porcupine (Porc) was first identified as being necessary for processing Wingless (Wg), a Drosophila Wnt (Wnt) family member. Mouse and Xenopus homologs of porc (Mporc and Xporc) were identified and found to encode endoplasmic reticulum (ER) proteins with multiple transmembrane domains. In contrast with porc, four different types of Mporc and Xporc mRNA (A-D)

  6. Early evolution of the LIM homeobox gene family

    SciTech Connect

    Srivastava, Mansi; Larroux, Claire; Lu, Daniel R; Mohanty, Kareshma; Chapman, Jarrod; Degnan, Bernard M; Rokhsar, Daniel S

    2010-01-01

    LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural territories in larval and juvenile polyp stages. This pattern is consistent with a possible role in patterning the Nematostella nervous system. We propose a scenario in which Lhx genes play a homologous role in neural patterning across eumetazoans.

  7. Chromosomal evolution of the PKD1 gene family in primates

    PubMed Central

    2008-01-01

    Background The autosomal dominant polycystic kidney disease (ADPKD) is mostly caused by mutations in the PKD1 (polycystic kidney disease 1) gene located in 16p13.3. Moreover, there are six pseudogenes of PKD1 that are located proximal to the master gene in 16p13.1. In contrast, no pseudogene could be detected in the mouse genome, only a single copy gene on chromosome 17. The question arises how the human situation originated phylogenetically. To address this question we applied comparative FISH-mapping of a human PKD1-containing genomic BAC clone and a PKD1-cDNA clone to chromosomes of a variety of primate species and the dog as a non-primate outgroup species. Results Comparative FISH with the PKD1-cDNA clone clearly shows that in all primate species studied distinct single signals map in subtelomeric chromosomal positions orthologous to the short arm of human chromosome 16 harbouring the master PKD1 gene. Only in human and African great apes, but not in orangutan, FISH with both BAC and cDNA clones reveals additional signal clusters located proximal of and clearly separated from the PKD1 master genes indicating the chromosomal position of PKD1 pseudogenes in 16p of these species, respectively. Indeed, this is in accordance with sequencing data in human, chimpanzee and orangutan. Apart from the master PKD1 gene, six pseudogenes are identified in both, human and chimpanzee, while only a single-copy gene is present in the whole-genome sequence of orangutan. The phylogenetic reconstruction of the PKD1-tree reveals that all human pseudogenes are closely related to the human PKD1 gene, and all chimpanzee pseudogenes are closely related to the chimpanzee PKD1 gene. However, our statistical analyses provide strong indication that gene conversion events may have occurred within the PKD1 family members of human and chimpanzee, respectively. Conclusion PKD1 must have undergone amplification very recently in hominid evolution. Duplicative transposition of the PKD1 gene and further amplification and evolution of the PKD1 pseudogenes may have arisen in a common ancestor of Homo, Pan and Gorilla ~8 MYA. Reticulate evolutionary processes such as gene conversion and non-allelic homologous recombination (NAHR) may have resulted in concerted evolution of PKD1 family members in human and chimpanzee and, thus, simulate an independent evolution of the PKD1 pseudogenes from their master PKD1 genes in human and chimpanzee. PMID:18822117

  8. Retroposition in a family of carcinoma-associated antigen genes.

    PubMed Central

    Linnenbach, A J; Seng, B A; Wu, S; Robbins, S; Scollon, M; Pyrc, J J; Druck, T; Huebner, K

    1993-01-01

    The gene encoding the carcinoma-associated antigen defined by the monoclonal antibody GA733 is a member of a family of at least two type I membrane proteins. This study describes the mechanism of evolution of the GA733-1 and GA733-2 genes. A full-length cDNA clone for GA733-1 was obtained by screening a human placental library with a genomic DNA probe. Comparative analysis of the cDNA sequence with the previously determined genomic sequence confirmed that GA733-1 is an intronless gene. The GA733-2 gene encoding the monoclonal antibody-defined antigen was molecularly cloned with a cDNA probe and partially sequenced. Comparison of GA733-2 gene sequences with the previously established cDNA sequence revealed that this gene consists of nine exons. The putative promoter regions of the GA733-1 and GA733-2 genes are unrelated. These findings suggest that the GA733-1 gene was formed by the retroposition of the GA733-2 gene via an mRNA intermediate. Prior to retroposition, the GA733-2 gene had been affected by exon shuffling. Analysis of GA733-2 exons revealed that many delineate structural motifs. The GA733-1 retroposon was localized either to chromosome region 1p32-1p31 or to 1p13-1q12, and the GA733-2 founder gene was localized to chromosome 4q. Images PMID:8382772

  9. Genomewide identification and expression analysis of the ARF gene family in apple.

    PubMed

    Luo, Xiao-Cui; Sun, Mei-Hong; Xu, Rui-Rui; Shu, Huai-Rui; Wang, Jia-Wei; Zhang, Shi-Zhong

    2014-12-01

    Auxin response factors (ARF) are transcription factors that regulate auxin responses in plants. Although the genomewide analysis of this family has been performed in some species, little is known regarding ARF genes in apple (Malus domestica). In this study, 31 putative apple ARF genes have been identified and located within the apple genome. The phylogenetic analysis revealed that MdARFs could be divided into three subfamilies (groups I, II and III). The predicted MdARFs were distributed across 15 of 17 chromosomes with different densities. In addition, the analysis of exon-intron junctions and of the intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Expression profile analyses of MdARF genes were performed in different tissues (root, stem, leaf, flower and fruit), and all the selected genes were expressed in at least one of the tissues that were tested, which indicated that MdARFs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this report is the first to provide a genomewide analysis of the apple ARF gene family. This study provides valuable information for understanding the classification and putative functions of the ARF signal in apple. PMID:25572237

  10. Lineage-Specific Expansion of the Chalcone Synthase Gene Family in Rosids

    PubMed Central

    Zavala, Kattina; Opazo, Juan C.

    2015-01-01

    Rosids are a monophyletic group that includes approximately 70,000 species in 140 families, and they are found in a variety of habitats and life forms. Many important crops such as fruit trees and legumes are rosids. The evolutionary success of this group may have been influenced by their ability to produce flavonoids, secondary metabolites that are synthetized through a branch of the phenylpropanoid pathway where chalcone synthase is a key enzyme. In this work, we studied the evolution of the chalcone synthase gene family in 12 species belonging to the rosid clade. Our results show that the last common ancestor of the rosid clade possessed six chalcone synthase gene lineages that were differentially retained during the evolutionary history of the group. In fact, of the six gene lineages that were present in the last common ancestor, 7 species retained 2 of them, whereas the other 5 only retained one gene lineage. We also show that one of the gene lineages was disproportionately expanded in species that belonged to the order Fabales (soybean, barrel medic and Lotus japonicas). Based on the available literature, we suggest that this gene lineage possesses stress-related biological functions (e.g., response to UV light, pathogen defense). We propose that the observed expansion of this clade was a result of a selective pressure to increase the amount of enzymes involved in the production of phenylpropanoid pathway-derived secondary metabolites, which is consistent with the hypothesis that suggested that lineage-specific expansions fuel plant adaptation. PMID:26181912

  11. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family.

    PubMed

    Duester, G; Farrés, J; Felder, M R; Holmes, R S; Höög, J O; Parés, X; Plapp, B V; Yin, S J; Jörnvall, H

    1999-08-01

    The alcohol dehydrogenase (ADH) gene family encodes enzymes that metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. Studies on 19 vertebrate animals have identified ADH orthologs across several species, and this has now led to questions of how best to name ADH proteins and genes. Seven distinct classes of vertebrate ADH encoded by non-orthologous genes have been defined based upon sequence homology as well as unique catalytic properties or gene expression patterns. Each class of vertebrate ADH shares <70% sequence identity with other classes of ADH in the same species. Classes may be further divided into multiple closely related isoenzymes sharing >80% sequence identity such as the case for class I ADH where humans have three class I ADH genes, horses have two, and mice have only one. Presented here is a nomenclature that uses the widely accepted vertebrate ADH class system as its basis. It follows the guidelines of human and mouse gene nomenclature committees, which recommend coordinating names across species boundaries and eliminating Roman numerals and Greek symbols. We recommend that enzyme subunits be referred to by the symbol "ADH" (alcohol dehydrogenase) followed by an Arabic number denoting the class; i.e. ADH1 for class I ADH. For genes we recommend the italicized root symbol "ADH" for human and "Adh" for mouse, followed by the appropriate Arabic number for the class; i.e. ADH1 or Adh1 for class I ADH genes. For organisms where multiple species-specific isoenzymes exist within a class, we recommend adding a capital letter after the Arabic number; i.e. ADH1A, ADH1B, and ADH1C for human alpha, beta, and gamma class I ADHs, respectively. This nomenclature will accommodate newly discovered members of the vertebrate ADH family, and will facilitate functional and evolutionary studies. PMID:10424757

  12. FRAGARIA VESCA, A REFERENCE PLANT FOR THE ROSACEAE FAMILY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fresh and processed products of the Rosaceae plant family (almonds, apples, apricots, blackberries, peaches, pears, plums, sweet and tart cherries, strawberries, raspberries, and roses) in the U.S. are valued at over $7 billion. Rosaceous crops are rich sources of vitamins, minerals, dietary fi...

  13. Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants

    Microsoft Academic Search

    C. J. S. Smith; C. F. Watson; C. R. Bird; J. Ray; W. Schuch; D. Grierson

    1990-01-01

    Tomato plants were transformed with a chimaeric polygalacturonase (PG) gene, designed to produce a truncated PG transcript constitutively. In these plants expression of the endogenous PG gene was inhibited during ripening, resulting in a substantial reduction in PG mRNA and enzyme accumulation. This inhibition was comparable to that achieved previously using antisense genes. The expression of the truncated gene in

  14. Origins and evolution of the recA/RAD51 gene family: Evidence for ancient gene duplication and endosymbiotic gene transfer

    PubMed Central

    Lin, Zhenguo; Kong, Hongzhi; Nei, Masatoshi; Ma, Hong

    2006-01-01

    The bacterial recA gene and its eukaryotic homolog RAD51 are important for DNA repair, homologous recombination, and genome stability. Members of the recA/RAD51 family have functions that have differentiated during evolution. However, the evolutionary history and relationships of these members remains unclear. Homolog searches in prokaryotes and eukaryotes indicated that most eubacteria contain only one recA. However, many archaeal species have two recA/RAD51 homologs (RADA and RADB), and eukaryotes possess multiple members (RAD51, RAD51B, RAD51C, RAD51D, DMC1, XRCC2, XRCC3, and recA). Phylogenetic analyses indicated that the recA/RAD51 family can be divided into three subfamilies: (i) RAD?, with highly conserved functions; (ii) RAD?, with relatively divergent functions; and (iii) recA, functioning in eubacteria and eukaryotic organelles. The RAD? and RAD? subfamilies each contain archaeal and eukaryotic members, suggesting that a gene duplication occurred before the archaea/eukaryote split. In the RAD? subfamily, eukaryotic RAD51 and DMC1 genes formed two separate monophyletic groups when archaeal RADA genes were used as an outgroup. This result suggests that another duplication event occurred in the early stage of eukaryotic evolution, producing the DMC1 clade with meiosis-specific genes. The RAD? subfamily has a basal archaeal clade and five eukaryotic clades, suggesting that four eukaryotic duplication events occurred before animals and plants diverged. The eukaryotic recA genes were detected in plants and protists and showed strikingly high levels of sequence similarity to recA genes from proteobacteria or cyanobacteria. These results suggest that endosymbiotic transfer of recA genes occurred from mitochondria and chloroplasts to nuclear genomes of ancestral eukaryotes. PMID:16798872

  15. Organization of the human lipoprotein lipase gene and evolution of the lipase gene family

    SciTech Connect

    Kirchgessner, T.G.; Heinzmann, C.; Svenson, K.; Ameis, D.; Lusis, A.J. (Univ. of California, Los Angeles (USA)); Chuat, J.C.; Etienne, J.; Guilhot, S.; Pilon, C.; D'Auriol, L.; Galibert, F. (Laboratoire d'Hematologie Experimentale, Paris (France)); Schotz, M.C. (Univ. of California, Los Angeles (USA) Wadsworth Medical Center, Los Angeles, CA (USA))

    1989-12-01

    The human lipoprotein lipase gene was cloned and characterized. It is composed of 10 exons spanning {approx} 30 kilobase. The first exon encodes the 5{prime}-untranslated region, the signal peptide plus the first two amino acids of the mature protein. The next eight exons encode the remaining 446 amino acids, and the tenth exon encodes the long 3{prime}-untranslated region of 1948 nucleotides. The lipoprotein lipase transcription start site and the sequence of the 5{prime}-flanking region were also determined. The authors compared the organization of genes for lipoprotein lipase, hepatic lipase, pancreatic lipase, and Drosophila yolk protein 1, which are members of a family of related genes. A model for the evolution of the lipase gene family is presented that involves multiple rounds of gene duplication plus exon-shuffling and intron-loss events.

  16. [Orthologs of arabidopsis CLAVATA 1 gene in cultivated Brassicaceae plants].

    PubMed

    Martynov, V V; Tsvetkov, I L; Khavkin, E E

    2004-01-01

    In arabidopsis (Arabidopsis thaliana), the CLAVATA1 (CLV1) gene is involved in maintaining the balance between the stem cells in the central zone of the stem apical meristem and the determined cells at its periphery. However, CLV1 has not been previously characterized in other Brassicaceae. Using the direct amplification of genomic DNA, we obtained a full-length CLV1 ortholog from canola plants (Brassica napus), and also three CLV1 fragments from rape (B. rapa), canola (B. napus), and false flax (Camelina sativa), which corresponded to the transmembrane domain and a part of the kinase domain of the CLAVATA1 protein. The nucleotide and deduced amino acid sequences of the full-size CLV1 ortholog from B. napus were similar by 81 and 87% to the prototype gene from arabidopsis; in the case of shorter gene fragments, the similarity was as high as 91-93 and 98%, respectively. By their primary structure, the CLV1 genes in the Brassicaceae considerably differ from its putative structural homologs beyond this family. PMID:15027212

  17. Evolution of the tyrosinase gene family in bivalve molluscs: independent expansion of the mantle gene repertoire.

    PubMed

    Aguilera, Felipe; McDougall, Carmel; Degnan, Bernard M

    2014-09-01

    Tyrosinase is a copper-containing enzyme that mediates the hydroxylation of monophenols and oxidation of o-diphenols to o-quinones. This enzyme is involved in a variety of biological processes, including pigment production, innate immunity, wound healing, and exoskeleton fabrication and hardening (e.g. arthropod skeleton and mollusc shell). Here we show that the tyrosinase gene family has undergone large expansions in pearl oysters (Pinctada spp.) and the Pacific oyster (Crassostrea gigas). Phylogenetic analysis reveals that pearl oysters possess at least four tyrosinase genes that are not present in the Pacific oyster. Likewise, C. gigas has multiple tyrosinase genes that are not orthologous to the Pinctada genes, indicating that this gene family has expanded independently in these bivalve lineages. Many of the tyrosinase genes in these bivalves are expressed at relatively high levels in the mantle, the organ responsible for shell fabrication. Detailed comparisons of tyrosinase gene expression in different regions of the mantle in two closely related pearl oysters, P. maxima and P. margaritifera, reveals that recently evolved orthologous tyrosinase genes can have markedly different expression profiles. The expansion of tyrosinase genes in these oysters and their co-option into the mantle's gene regulatory network is consistent with mollusc shell formation being underpinned by a rapidly evolving transcriptome. PMID:24704693

  18. Large scale in silico identification of MYB family genes from wheat expressed sequence tags.

    PubMed

    Cai, Hongsheng; Tian, Shan; Dong, Hansong

    2012-10-01

    The MYB proteins constitute one of the largest transcription factor families in plants. Much research has been performed to determine their structures, functions, and evolution, especially in the model plants, Arabidopsis, and rice. However, this transcription factor family has been much less studied in wheat (Triticum aestivum), for which no genome sequence is yet available. Despite this, expressed sequence tags are an important resource that permits opportunities for large scale gene identification. In this study, a total of 218 sequences from wheat were identified and confirmed to be putative MYB proteins, including 1RMYB, R2R3-type MYB, 3RMYB, and 4RMYB types. A total of 36 R2R3-type MYB genes with complete open reading frames were obtained. The putative orthologs were assigned in rice and Arabidopsis based on the phylogenetic tree. Tissue-specific expression pattern analyses confirmed the predicted orthologs, and this meant that gene information could be inferred from the Arabidopsis genes. Moreover, the motifs flanking the MYB domain were analyzed using the MEME web server. The distribution of motifs among wheat MYB proteins was investigated and this facilitated subfamily classification. PMID:22187170

  19. Evolutionary Analysis of the B56 Gene Family of PP2A Regulatory Subunits

    PubMed Central

    Sommer, Lauren M.; Cho, Hyuk; Choudhary, Madhusudan; Seeling, Joni M.

    2015-01-01

    Protein phosphatase 2A (PP2A) is an abundant serine/threonine phosphatase that functions as a tumor suppressor in numerous cell-cell signaling pathways, including Wnt, myc, and ras. The B56 subunit of PP2A regulates its activity, and is encoded by five genes in humans. B56 proteins share a central core domain, but have divergent amino- and carboxy-termini, which are thought to provide isoform specificity. We performed phylogenetic analyses to better understand the evolution of the B56 gene family. We found that B56 was present as a single gene in eukaryotes prior to the divergence of animals, fungi, protists, and plants, and that B56 gene duplication prior to the divergence of protostomes and deuterostomes led to the origin of two B56 subfamilies, B56??? and B56??. Further duplications led to three B56??? genes and two B56?? in vertebrates. Several nonvertebrate B56 gene names are based on distinct vertebrate isoform names, and would best be renamed. B56 subfamily genes lack significant divergence within primitive chordates, but each became distinct in complex vertebrates. Two vertebrate lineages have undergone B56 gene loss, Xenopus and Aves. In Xenopus, B56? function may be compensated for by an alternatively spliced transcript, B56?/?, encoding a B56?-like amino-terminal region and a B56? core. PMID:25950761

  20. Molecular analyses of the rice glutamate dehydrogenase gene family and their response to nitrogen and phosphorous deprivation

    Microsoft Academic Search

    Xuhua Qiu; Weibo Xie; Xingming Lian; Qifa Zhang

    2009-01-01

    Glutamate dehydrogenases (GDH, EC 1.4.1.2~4) are ubiquitous enzymes encoded by GDH genes. So far, at least two GDH members have been characterized in plants, but most members of this family in rice remains to be characterized. Here, we\\u000a show that four putative GDH genes (OsGDH1-4) are present in the rice genome. The GDH sequences from rice and other species can

  1. Functional genomic analysis of the AUXIN\\/INDOLE3ACETIC ACID gene family members in Arabidopsis thaliana

    Microsoft Academic Search

    Paul J. Overvoorde; Yoko Okushima; Jose M. Alonso

    2005-01-01

    Auxin regulates various aspects of plant growth and development. The AUXIN\\/INDOLE-3-ACETIC ACID (Aux\\/IAA) genes encode short-lived transcriptional repressors that are targeted by the TRANSPORT INHIBITOR RESPONSE1\\/AUXIN RECEPTOR F-BOX proteins. The Aux\\/IAA proteins regulate auxin-mediated gene expression by interacting with members of the AUXIN RESPONSE FACTOR protein family. Aux\\/IAA function is poorly understood; herein, we report the identification and characterization of

  2. GFScan: A Gene Family Search Tool at Genomic Zhenyu Xuan, W. Richard McCombie, and Michael Q. Zhang1

    E-print Network

    GFScan: A Gene Family Search Tool at Genomic DNA Level Zhenyu Xuan, W. Richard Mc GFScan (Gene Family Scan), a tool that identifies members of a gene family by searching genomic DNA on four human gene families including the neurotransmitter-gated ion-channels (NGIC) family, the carbonic

  3. RASSF tumor suppressor gene family: biological functions and regulation.

    PubMed

    Volodko, Natalia; Gordon, Marilyn; Salla, Mohamed; Ghazaleh, Haya Abu; Baksh, Shairaz

    2014-08-19

    Genetic changes through allelic loss and nucleic acid or protein modifications are the main contributors to loss of function of tumor suppressor proteins. In particular, epigenetic silencing of genes by promoter hypermethylation is associated with increased tumor severity and poor survival. The RASSF (Ras association domain family) family of proteins consists of 10 members, many of which are tumor suppressor proteins that undergo loss of expression through promoter methylation in numerous types of cancers such as leukemia, melanoma, breast, prostate, neck, lung, brain, colorectal and kidney cancers. In addition to their tumor suppressor function, RASSF proteins act as scaffolding agents in microtubule stability, regulate mitotic cell division, modulate apoptosis, control cell migration and cell adhesion, and modulate NF?B activity and the duration of inflammation. The ubiquitous functions of these proteins highlight their importance in numerous physiological pathways. In this review, we will focus on the biological roles of the RASSF family members and their regulation. PMID:24607545

  4. Gene Turnover in the Avian Globin Gene Families and Evolutionary Changes in Hemoglobin Isoform Expression

    PubMed Central

    Opazo, Juan C.; Hoffmann, Federico G.; Natarajan, Chandrasekhar; Witt, Christopher C.; Berenbrink, Michael; Storz, Jay F.

    2015-01-01

    The apparent stasis in the evolution of avian chromosomes suggests that birds may have experienced relatively low rates of gene gain and loss in multigene families. To investigate this possibility and to explore the phenotypic consequences of variation in gene copy number, we examined evolutionary changes in the families of genes that encode the ?- and ?-type subunits of hemoglobin (Hb), the tetrameric ?2?2 protein responsible for blood-O2 transport. A comparative genomic analysis of 52 bird species revealed that the size and membership composition of the ?- and ?-globin gene families have remained remarkably constant during approximately 100 My of avian evolution. Most interspecific variation in gene content is attributable to multiple independent inactivations of the ?D-globin gene, which encodes the ?-chain subunit of a functionally distinct Hb isoform (HbD) that is expressed in both embryonic and definitive erythrocytes. Due to consistent differences in O2-binding properties between HbD and the major adult-expressed Hb isoform, HbA (which incorporates products of the ?A-globin gene), recurrent losses of ?D-globin contribute to among-species variation in blood-O2 affinity. Analysis of HbA/HbD expression levels in the red blood cells of 122 bird species revealed high variability among lineages and strong phylogenetic signal. In comparison with the homologous gene clusters in mammals, the low retention rate for lineage-specific gene duplicates in the avian globin gene clusters suggests that the developmental regulation of Hb synthesis in birds may be more highly conserved, with orthologous genes having similar stage-specific expression profiles and similar functional properties in disparate taxa. PMID:25502940

  5. Molecular study of the perforin gene in familial hematological malignancies

    PubMed Central

    2011-01-01

    Perforin gene (PRF1) mutations have been identified in some patients diagnosed with the familial form of hemophagocytic lymphohistiocytosis (HLH) and in patients with lymphoma. The aim of the present study was to determine whether patients with a familial aggregation of hematological malignancies harbor germline perforin gene mutations. For this purpose, 81 unrelated families from Tunisia and France with aggregated hematological malignancies were investigated. The variants detected in the PRF1 coding region amounted to 3.7% (3/81). Two of the three variants identified were previously described: the p.Ala91Val pathogenic mutation and the p.Asn252Ser polymorphism. A new p.Ala 211Val missense substitution was identified in two related Tunisian patients. In order to assess the pathogenicity of this new variation, bioinformatic tools were used to predict its effects on the perforin protein structure and at the mRNA level. The segregation of the mutant allele was studied in the family of interest and a control population was screened. The fact that this variant was not found to occur in 200 control chromosomes suggests that it may be pathogenic. However, overexpression of mutated PRF1 in rat basophilic leukemia cells did not affect the lytic function of perforin differently from the wild type protein. PMID:21936944

  6. CD3G gene defects in familial autoimmune thyroiditis.

    PubMed

    Gokturk, B; Keles, S; Kirac, M; Artac, H; Tokgoz, H; Guner, S N; Caliskan, U; Caliskaner, Z; van der Burg, M; van Dongen, J; Morgan, N V; Reisli, I

    2014-11-01

    The patients with CD3? deficiency can present with different clinical findings despite having the same homozygous mutation. We report three new CD3gamma-deficient siblings from a consanguineous family with a combined T-B+NK+ immunodeficiency and their variable clinical and cellular phenotypes despite the same homozygous mutation of the CD3G gene (c.80-1G>C). We also re-evaluate a previously reported non-consanguineous family with two CD3gamma-deficient siblings with the same mutation. The median age at diagnosis was 11 years (14 months-20 years). We found all five patients to display autoimmunity: autoimmune thyroiditis (n = 5), autoimmune haemolytic anaemia (n = 2), immune thrombocytopenia (n = 1), autoimmune hepatitis (n = 1), minimal change nephrotic syndrome (n = 1), vitiligo (n = 1) and positive antinuclear antibodies (n = 3) as well as high IgE (n = 2) and atopic eczema (n = 2). While CD3(+) TCR??+T cell percentages were low in all patients, only one had lymphopenia and 3 had CD3(+) T cell lymphopenia. Strikingly, we report frequent and multiple autoimmunity in tested heterozygous carriers in both families (n = 6; in 67%), and frequent autoimmunity in family members not available for testing (n = 5, in 80%). The results suggest that CD3G should be studied as a candidate gene for autoimmunity and that CD3gamma deficiency should be considered among other primary immunodeficiencies with predominantly autoimmune manifestations. PMID:24910257

  7. Evolutionary History of Chordate PAX Genes: Dynamics of Change in a Complex Gene Family

    PubMed Central

    Paixão-Côrtes, Vanessa Rodrigues; Salzano, Francisco Mauro; Bortolini, Maria Cátira

    2013-01-01

    Paired box (PAX) genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory. PMID:24023886

  8. Evolutionary conservation and diversification of Rh family genes and proteins

    PubMed Central

    Huang, Cheng-Han; Peng, Jianbin

    2005-01-01

    Rhesus (Rh) proteins were first identified in human erythroid cells and recently in other tissues. Like ammonia transporter (Amt) proteins, their only homologues, Rh proteins have the 12 transmembrane-spanning segments characteristic of transporters. Many think Rh and Amt proteins transport the same substrate, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{NH}}_{3}/{\\mathrm{NH}}_{4}^{+}\\end{equation*}\\end{document}, whereas others think that Rh proteins transport CO2 and Amt proteins NH3. In the latter view, Rh and Amt are different biological gas channels. To reconstruct the phylogeny of the Rh family and study its coexistence with and relationship to Amt in depth, we analyzed 111 Rh genes and 260 Amt genes. Although Rh and Amt are found together in organisms as diverse as unicellular eukaryotes and sea squirts, Rh genes apparently arose later, because they are rare in prokaryotes. However, Rh genes are prominent in vertebrates, in which Amt genes disappear. In organisms with both types of genes, Rh had apparently diverged away from Amt rapidly and then evolved slowly over a long period. Functionally divergent amino acid sites are clustered in transmembrane segments and around the gas-conducting lumen recently identified in Escherichia coli AmtB, in agreement with Rh proteins having new substrate specificity. Despite gene duplications and mutations, the Rh paralogous groups all have apparently been subject to strong purifying selection indicating functional conservation. Genes encoding the classical Rh proteins in mammalian red cells show higher nucleotide substitution rates at nonsynonymous codon positions than other Rh genes, a finding that suggests a possible role for these proteins in red cell morphogenetic evolution. PMID:16227429

  9. Virus-Induced gene silencing in ornamental plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus-Induced Gene Silencing (VIGS) provides an attractive tool for high throughput analysis of the functional effects of gene knock-down. Virus genomes are engineered to include fragments of target host genes, and the infected plant recognizes and silences the target genes as part of its viral defe...

  10. Evolutionary dynamism of the primate LRRC37 gene family.

    PubMed

    Giannuzzi, Giuliana; Siswara, Priscillia; Malig, Maika; Marques-Bonet, Tomas; Mullikin, James C; Ventura, Mario; Eichler, Evan E

    2013-01-01

    Core duplicons in the human genome represent ancestral duplication modules shared by the majority of intrachromosomal duplication blocks within a given chromosome. These cores are associated with the emergence of novel gene families in the hominoid lineage, but their genomic organization and gene characterization among other primates are largely unknown. Here, we investigate the genomic organization and expression of the core duplicon on chromosome 17 that led to the expansion of LRRC37 during primate evolution. A comparison of the LRRC37 gene family organization in human, orangutan, macaque, marmoset, and lemur genomes shows the presence of both orthologous and species-specific gene copies in all primate lineages. Expression profiling in mouse, macaque, and human tissues reveals that the ancestral expression of LRRC37 was restricted to the testis. In the hominid lineage, the pattern of LRRC37 became increasingly ubiquitous, with significantly higher levels of expression in the cerebellum and thymus, and showed a remarkable diversity of alternative splice forms. Transfection studies in HeLa cells indicate that the human FLAG-tagged recombinant LRRC37 protein is secreted after cleavage of a transmembrane precursor and its overexpression can induce filipodia formation. PMID:23064749

  11. Evolutionary dynamism of the primate LRRC37 gene family

    PubMed Central

    Giannuzzi, Giuliana; Siswara, Priscillia; Malig, Maika; Marques-Bonet, Tomas; Mullikin, James C.; Ventura, Mario; Eichler, Evan E.

    2013-01-01

    Core duplicons in the human genome represent ancestral duplication modules shared by the majority of intrachromosomal duplication blocks within a given chromosome. These cores are associated with the emergence of novel gene families in the hominoid lineage, but their genomic organization and gene characterization among other primates are largely unknown. Here, we investigate the genomic organization and expression of the core duplicon on chromosome 17 that led to the expansion of LRRC37 during primate evolution. A comparison of the LRRC37 gene family organization in human, orangutan, macaque, marmoset, and lemur genomes shows the presence of both orthologous and species-specific gene copies in all primate lineages. Expression profiling in mouse, macaque, and human tissues reveals that the ancestral expression of LRRC37 was restricted to the testis. In the hominid lineage, the pattern of LRRC37 became increasingly ubiquitous, with significantly higher levels of expression in the cerebellum and thymus, and showed a remarkable diversity of alternative splice forms. Transfection studies in HeLa cells indicate that the human FLAG-tagged recombinant LRRC37 protein is secreted after cleavage of a transmembrane precursor and its overexpression can induce filipodia formation. PMID:23064749

  12. Mouse Sprr2Genes: A Clustered Family of Genes Showing Differential Expression in Epithelial Tissues

    Microsoft Academic Search

    Hae-Jun Song; George Poy; Nadine Darwiche; Ulrike Lichti; Toshio Kuroki; Peter M. Steinert; Tonja Kartasova

    1999-01-01

    Small proline-rich (SPR) proteins are structural components of the cornified cell envelope of stratified squamous epithelia. They are subdivided into three families, i.e., SPR1, SPR2, and SPR3, of which the SPR2 family is the most complex. To understand the significance of this complexity, we have isolated 11 mouseSprr2genes, constructed a provisional physical map of theSprr2locus on mouse Chromosome 3, and

  13. Genome-Wide Identification of MAPKK and MAPKKK Gene Families in Tomato and Transcriptional Profiling Analysis during Development and Stress Response

    PubMed Central

    Pan, Changtian; Guan, Xiaoyan; Wang, Yan; Liu, Songyu; He, Yanjun; Chen, Jingli; Chen, Lifei; Lu, Gang

    2014-01-01

    Mitogen-activated protein kinase (MAPK) cascades have important functions in plant growth, development, and response to various stresses. The MAPKK and MAPKKK gene families in tomato have never been systematically analyzed. In this study, we performed a genome-wide analysis of the MAPKK and MAPKKK gene families in tomato and identified 5 MAPKK genes and 89 MAPKKK genes. Phylogenetic analyses of the MAPKK and MAPKKK gene families showed that all the MAPKK genes formed four groups (groups A, B, C, and D), whereas all the MAPKKK genes were classified into three subfamilies, namely, MEKK, RAF, and ZIK. Evolutionary analysis showed that whole genome or chromosomal segment duplications were the main factors responsible for the expansion of the MAPKK and MAPKKK gene families in tomato. Quantitative real-time RT-PCR analysis showed that the majority of MAPKK and MAPKKK genes were expressed in all tested organs with considerable differences in transcript levels indicating that they might be constitutively expressed. However, the expression level of most of these genes changed significantly under heat, cold, drought, salt, and Pseudomonas syringae treatment. Furthermore, their expression levels exhibited significant changes in response to salicylic acid and indole-3-acetic acid treatment, implying that these genes might have important roles in the plant hormone network. Our comparative analysis of the MAPKK and MAPKKK families would improve our understanding of the evolution and functional characterization of MAPK cascades in tomato. PMID:25036993

  14. Plant sterol biosynthesis: identification of two distinct families of sterol 4alpha-methyl oxidases.

    PubMed Central

    Darnet, Sylvain; Rahier, Alain

    2004-01-01

    In plants, the conversion of cycloartenol into functional phytosterols requires the removal of the two methyl groups at C-4 by an enzymic complex including a sterol 4alpha-methyl oxidase (SMO). We report the cloning of candidate genes for SMOs in Arabidopsis thaliana, belonging to two distinct families termed SMO1 and SMO2 and containing three and two isoforms respectively. SMO1 and SMO2 shared low sequence identity with each other and were orthologous to the ERG25 gene from Saccharomyces cerevisiae which encodes the SMO. The plant SMO amino acid sequences possess all the three histidine-rich motifs (HX3H, HX2HH and HX2HH), characteristic of the small family of membrane-bound non-haem iron oxygenases that are involved in lipid oxidation. To elucidate the precise functions of SMO1 and SMO2 gene families, we have reduced their expression by using a VIGS (virus-induced gene silencing) approach in Nicotiana benthamiana. SMO1 and SMO2 cDNA fragments were inserted into a viral vector and N. benthamiana inoculated with the viral transcripts. After silencing with SMO1, a substantial accumulation of 4,4-dimethyl-9beta,19-cyclopropylsterols (i.e. 24-methylenecycloartanol) was obtained, whereas qualitative and quantitative levels of 4alpha-methylsterols were not affected. In the case of silencing with SMO2, a large accumulation of 4alpha-methyl-Delta7-sterols (i.e. 24-ethylidenelophenol and 24-ethyllophenol) was found, with no change in the levels of 4,4-dimethylsterols. These clear and distinct biochemical phenotypes demonstrate that, in contrast with animals and fungi, in photosynthetic eukaryotes, these two novel families of cDNAs are coding two distinct types of C-4-methylsterol oxidases controlling the level of 4,4-dimethylsterol and 4alpha-methylsterol precursors respectively. PMID:14653780

  15. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance

    SciTech Connect

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)] [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Deyholos, Michael K. [Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9 (Canada)] [Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9 (Canada); Chen, Qin [Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403-1 Ave., South P.O. Box 3000, Lethbridge, AB, Canada T1J 4B1 (Canada)] [Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403-1 Ave., South P.O. Box 3000, Lethbridge, AB, Canada T1J 4B1 (Canada); Chen, Chao; Ji, Wei [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)] [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhu, Yanming, E-mail: ymzhu@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)] [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer We isolated and characterized a novel JAZ family gene, GsJAZ2, from Glycine soja. Black-Right-Pointing-Pointer Overexpression of GsJAZ2 enhanced plant tolerance to salt and alkali stress. Black-Right-Pointing-Pointer The transcriptions of stress marker genes were higher in GsJAZ2 overexpression lines. Black-Right-Pointing-Pointer GsJAZ2 was localized to nucleus. -- Abstract: Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.

  16. Higher plant mitochondrial DNA: Genomes, genes, mutants, transcription, translation

    SciTech Connect

    Not Available

    1986-01-01

    This volume contains brief summaries of 63 presentations given at the International Workshop on Higher Plant Mitochondrial DNA. The presentations are organized into topical discussions addressing plant genomes, mitochondrial genes, cytoplasmic male sterility, transcription, translation, plasmids and tissue culture. (DT)

  17. Identification of the trehalose-6-phosphate synthase gene family in winter wheat and expression analysis under conditions of freezing stress.

    PubMed

    Xie, D W; Wang, X N; Fu, L S; Sun, J; Zheng, W; Li, Z F

    2015-03-01

    Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in plants. Trehalose contents are potentially modulated by trehalose-6-phosphate synthase (TPS), which is a key enzyme in the trehalose biosynthetic pathway. Using available wheat expressed sequence tag sequence information from NCBI and two wheat genome databases, we identified 12 wheat TPS genes and performed a comprehensive study on their structural, evolutionary and functional properties. The estimated divergence time of wheat TPS gene pairs and wheat-rice orthologues suggested that wheat and rice have a common ancestor. The number of TPS genes in the wheat genome was estimated to be at least 12, which is close to the number found in rice, Arabidopsis and soybean. Moreover, it has been reported earlier in other plants that TPS genes respond to abiotic stress, however, our study mainly analysed the TPS gene family under freezing conditions in winter wheat, and determined that most of the TPS gene expression in winter wheat was induced by freezing conditions, which further suggested that wheat TPS genes were involved in winter wheat freeze-resistance signal transduction pathways. Taken together, the current study represents the first comprehensive study of TPS genes in winter wheat and provides a foundation for future functional studies of this important gene family in Triticeae. PMID:25846877

  18. Genome-wide identification and expression profile of homeodomain-leucine zipper Class I gene family in Cucumis sativus.

    PubMed

    Liu, Wei; Fu, Rao; Li, Qiang; Li, Jing; Wang, Lina; Ren, Zhonghai

    2013-12-01

    The HD-Zip proteins comprise one of the largest families of transcription factors in plants. HD-Zip genes have been grouped into four different classes: HD-Zip I to IV. In this study, we described the identification and structural characterization of Class I HD-Zip genes in cucumber. A complete set of 13 HD-Zip I genes were identified in the cucumber genome using Blast search tools and phylogeny. The cucumber HD-Zip I family contained a smaller number of identified genes compared to other higher plants such as Arabidopsis and maize due to the absence of recent gene duplication events. Chromosomal location of these genes revealed that they are distributed unevenly across 5 of 7 chromosomes. Tissue-specific expression profiles showed that 13 cucumber HD-Zip I genes were expressed in at least one of the tissues, which suggested that cucumber HD-Zip I genes took part in many cellular processes. The transcript abundance level analysis during abiotic stress conditions (NaCl, ABA and low temperature treatments) identified a group of HD-Zip I genes that responded to one or more treatments. PMID:24013079

  19. Validation of an NSP-based (negative selection pattern) gene family identification strategy

    PubMed Central

    Frank, Ronald L; Kandoth, Cyriac; Ercal, Fikret

    2008-01-01

    Background Gene family identification from ESTs can be a valuable resource for analysis of genome evolution but presents unique challenges in organisms for which the entire genome is not yet sequenced. We have developed a novel gene family identification method based on negative selection patterns (NSP) between family members to screen EST-generated contigs. This strategy was tested on five known gene families in Arabidopsis to see if individual paralogs could be identified with accuracy from EST data alone when compared to the actual gene sequences in this fully sequenced genome. Results The NSP method uniquely identified family members in all the gene families tested. Two members of the FtsH gene family, three members each of the PAL, RF1, and ribosomal L6 gene families, and four members of the CAD gene family were correctly identified. Additionally all ESTs from the representative contigs when checked against MapViewer data successfully identify the gene locus predicted. Conclusion We demonstrate the effectiveness of the NSP strategy in identifying specific gene family members in Arabidopsis using only EST data and we describe how this strategy can be used to identify many gene families in agronomically important crop species where they are as yet undiscovered. PMID:18793465

  20. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family.

    PubMed

    Guo, Chunlei; Guo, Rongrong; Xu, Xiaozhao; Gao, Min; Li, Xiaoqin; Song, Junyang; Zheng, Yi; Wang, Xiping

    2014-04-01

    WRKY proteins comprise a large family of transcription factors that play important roles in plant defence regulatory networks, including responses to various biotic and abiotic stresses. To date, no large-scale study of WRKY genes has been undertaken in grape (Vitis vinifera L.). In this study, a total of 59 putative grape WRKY genes (VvWRKY) were identified and renamed on the basis of their respective chromosome distribution. A multiple sequence alignment analysis using all predicted grape WRKY genes coding sequences, together with those from Arabidopsis thaliana and tomato (Solanum lycopersicum), indicated that the 59 VvWRKY genes can be classified into three main groups (I-III). An evaluation of the duplication events suggested that several WRKY genes arose before the divergence of the grape and Arabidopsis lineages. Moreover, expression profiles derived from semiquantitative PCR and real-time quantitative PCR analyses showed distinct expression patterns in various tissues and in response to different treatments. Four VvWRKY genes showed a significantly higher expression in roots or leaves, 55 responded to varying degrees to at least one abiotic stress treatment, and the expression of 38 were altered following powdery mildew (Erysiphe necator) infection. Most VvWRKY genes were downregulated in response to abscisic acid or salicylic acid treatments, while the expression of a subset was upregulated by methyl jasmonate or ethylene treatments. PMID:24510937

  1. The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family.

    PubMed

    Lin, Choun-Sea; Chen, Jeremy J W; Huang, Yao-Ting; Chan, Ming-Tsair; Daniell, Henry; Chang, Wan-Jung; Hsu, Chen-Tran; Liao, De-Chih; Wu, Fu-Huei; Lin, Sheng-Yi; Liao, Chen-Fu; Deyholos, Michael K; Wong, Gane Ka-Shu; Albert, Victor A; Chou, Ming-Lun; Chen, Chun-Yi; Shih, Ming-Che

    2015-01-01

    The NAD(P)H dehydrogenase complex is encoded by 11 ndh genes in plant chloroplast (cp) genomes. However, ndh genes are truncated or deleted in some autotrophic Epidendroideae orchid cp genomes. To determine the evolutionary timing of the gene deletions and the genomic locations of the various ndh genes in orchids, the cp genomes of Vanilla planifolia, Paphiopedilum armeniacum, Paphiopedilum niveum, Cypripedium formosanum, Habenaria longidenticulata, Goodyera fumata and Masdevallia picturata were sequenced; these genomes represent Vanilloideae, Cypripedioideae, Orchidoideae and Epidendroideae subfamilies. Four orchid cp genome sequences were found to contain a complete set of ndh genes. In other genomes, ndh deletions did not correlate to known taxonomic or evolutionary relationships and deletions occurred independently after the orchid family split into different subfamilies. In orchids lacking cp encoded ndh genes, non cp localized ndh sequences were identified. In Erycina pusilla, at least 10 truncated ndh gene fragments were found transferred to the mitochondrial (mt) genome. The phenomenon of orchid ndh transfer to the mt genome existed in ndh-deleted orchids and also in ndh containing species. PMID:25761566

  2. IDENTIFICATION AND CHARACTERIZATION OF THERMOBIFIDA FUSCA GENES INVOLVED IN PLANT CELL WALL DEGRADATION.

    SciTech Connect

    David B. Wilson

    2006-01-23

    Micro-array experiments identified a number of Thermobifida fusca genes which were upregulated by growth on cellulose or plant biomass. Five of these genes were cloned, overexpressed in E. coli and the expressed proteins were purified and characterized. These were a xyloglucanase,a 1-3,beta glucanase, a family 18 hydrolase and twocellulose binding proteins that contained no catalytic domains. The catalyic domain of the family 74 endoxyloglucanase with a C-terminal, cellulose binding module was crystalized and its 3-dimensional structure was determined by X-ray crystallography.

  3. Maize R2R3 Myb genes: Sequence analysis reveals amplification in the higher plants.

    PubMed Central

    Rabinowicz, P D; Braun, E L; Wolfe, A D; Bowen, B; Grotewold, E

    1999-01-01

    Transcription factors containing the Myb-homologous DNA-binding domain are widely found in eukaryotes. In plants, R2R3 Myb-domain proteins are involved in the control of form and metabolism. The Arabidopsis genome harbors >100 R2R3 Myb genes, but few have been found in monocots, animals, and fungi. Using RT-PCR from different maize organs, we cloned 480 fragments corresponding to a 42-44 residue-long sequence spanning the region between the conserved DNA-recognition helices (Myb(BRH)) of R2R3 Myb domains. We determined that maize expresses >80 different R2R3 Myb genes, and evolutionary distances among maize Myb(BRH) sequences indicate that most of the amplification of the R2R3 Myb gene family occurred after the origin of land plants but prior to the separation of monocots and dicots. In addition, evidence is provided for the very recent duplication of particular classes of R2R3 Myb genes in the grasses. Together, these findings render a novel line of evidence for the amplification of the R2R3 Myb gene family in the early history of land plants and suggest that maize provides a possible model system to examine the hypothesis that the expansion of Myb genes is associated with the regulation of novel plant cellular functions. PMID:10471724

  4. Molecular Mapping of Adult-Plant Race-Specific Leaf Rust Resistance Gene Lr12 in Bread Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum aestivum) gene Lr12 provides adult-plant race-specific resistance to leaf rust caused by Puccinia triticina. It is completely linked or identical to Lr31, which confers seedling resistance only when the complementary gene Lr27 is also present. F2 and F2-derived F3 families were devel...

  5. Genes encoding actin in higher plants: intron positions are highly conserved but the coding sequences are not.

    PubMed

    Shah, D M; Hightower, R C; Meagher, R B

    1983-01-01

    We have isolated actin genes from genomic libraries of two highly diverged plants, maize and soybean. The complete nucleotide sequences of a maize actin gene, MAc1, and a soybean actin gene, SAc1, were determined. The nucleotide sequences of these two actin genes and of a previously sequenced soybean actin gene were compared with the actin gene sequences from a wide spectrum of evolutionarily diverged eukaryotes. Some striking features pertinent to the evolution and function of the plant actin gene families have emerged. The deduced amino acid sequence of the plant actins resembles both cytoplasmic- and muscle-specific actins. DNA sequence analysis as well as genomic blotting experiments using cloned actin sequences as probes show that large sequence heterogeneity exists among members of the plant actin multigene families and between genes from two highly diverged plant species. The sequences of the first nine amino acids at the amino terminal end of the plant actins are far more conserved between distant plant actins than the corresponding sequences in distantly related animal actin genes, suggesting a unique and conserved function for the NH2 terminal sequence in higher plants. The soybean and maize actin genes examined each contain three introns in precisely the same positions, quite contrary to the divergent placement of introns observed in animal, protozoan, and fungal actins. The position of the first intron in soybean and maize actin genes corresponds precisely to the position of an intron found in a nematode actin gene. The position of the second intron coincides with one found in rat and chicken skeletal actin genes. These data suggest that the numerous introns found in all actins are of ancient origin. The degree of silent substitution and replacement substitution was compared among plant actin genes and to those of animal, protozoan, and yeast actin genes. It is clear that the silent substitution sites are saturated among all the genes compared, whereas the replacement sites have diverged in only 5-17% of their possible positions. By these criteria the most distant animal actins are only 6% diverged. The three plant actin genes examined are 8-10% diverged in replacement sites from each other and approximately 14% diverged in replacement sites from any of the animal actins examined. The data in this manuscript suggest that the families of soybean and maize actin genes may have diverged from a single common ancestral actin gene long before the divergence of monocots and dicots. PMID:6842118

  6. Differential expression within the glutamine synthetase gene family of the model legume Medicago truncatula.

    PubMed Central

    Stanford, A C; Larsen, K; Barker, D G; Cullimore, J V

    1993-01-01

    The glutamine synthetase (GS) gene family of Medicago truncatula Gaertn. contains three genes related to cytosolic GS (MtGSa, MtGSb, and MtGSc), although one of these (MtGSc) appears not to be expressed. Sequence analysis suggests that the genes are more highly conserved interspecifically rather than intraspecifically: MtGSa and MtGSb are more similar to their homologs in Medicago sativa and Pisum sativum than to each other. Studies in which gene-specific probes are used show that both MtGSa and MtGSb are induced during symbiotic root nodule development, although not coordinately. MtGSa is the most highly expressed GS gene in nodules but is also expressed to lower extents in a variety of other organs. MtGSb shows higher levels of expression in roots and the photosynthetic cotyledons of seedlings than in nodules or other organs. In roots, both genes are expressed in the absence of an exogenous nitrogen source. However the addition of nitrate leads to a short-term, 2- to 3-fold increase in the abundance of both mRNAs, and the addition of ammonium leads to a 2-fold increase in MtGSb mRNA. The nitrogen supply, therefore, influences the expression of the two genes in roots, but it is clearly not the major effector of their expression. In the discussion section, the expression of the GS gene family of the model legume M. truncatula is compared to those of other leguminous plants. PMID:7516082

  7. Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat.

    PubMed

    Buchner, Peter; Hawkesford, Malcolm J

    2014-10-01

    NPF (formerly referred to as low-affinity NRT1) and 'high-affinity' NRT2 nitrate transporter genes are involved in nitrate uptake by the root, and transport and distribution of nitrate within the plant. The NPF gene family consists of 53 members in Arabidopsis thaliana, however only 11 of these have been functionally characterized. Although homologous genes have been identified in genomes of different plant species including some cereals, there is little information available for wheat (Triticum aestivum). Sixteen genes were identified in wheat homologous to characterized Arabidopsis low-affinity nitrate transporter NPF genes, suggesting a complex wheat NPF gene family. The regulation of wheat NFP genes by plant N-status indicated involvement of these transporters in substrate transport in relation to N-metabolism. The complex expression pattern in relation to tissue specificity, nitrate availability and senescence may be associated with the complex growth patterns of wheat depending on sink/source demands, as well as remobilization during grain filling. PMID:24913625

  8. Functional genomics: Probing plant gene function and expression with transposons

    PubMed Central

    Martienssen, Robert A.

    1998-01-01

    Transposable elements provide a convenient and flexible means to disrupt plant genes, so allowing their function to be assessed. By engineering transposons to carry reporter genes and regulatory signals, the expression of target genes can be monitored and to some extent manipulated. Two strategies for using transposons to assess gene function are outlined here: First, the PCR can be used to identify plants that carry insertions into specific genes from among pools of heavily mutagenized individuals (site-selected transposon mutagenesis). This method requires that high copy transposons be used and that a relatively large number of reactions be performed to identify insertions into genes of interest. Second, a large library of plants, each carrying a unique insertion, can be generated. Each insertion site then can be amplified and sequenced systematically. These two methods have been demonstrated in maize, Arabidopsis, and other plant species, and the relative merits of each are discussed in the context of plant genome research. PMID:9482828

  9. In Silico Identification, Phylogenetic and Bioinformatic Analysis of Argonaute Genes in Plants

    PubMed Central

    Mirzaei, Khaled; Bahramnejad, Bahman; Shamsifard, Mohammad Hasan; Zamani, Wahid

    2014-01-01

    Argonaute protein family is the key players in pathways of gene silencing and small regulatory RNAs in different organisms. Argonaute proteins can bind small noncoding RNAs and control protein synthesis, affect messenger RNA stability, and even participate in the production of new forms of small RNAs. The aim of this study was to characterize and perform bioinformatic analysis of Argonaute proteins in 32 plant species that their genome was sequenced. A total of 437 Argonaute genes were identified and were analyzed based on lengths, gene structure, and protein structure. Results showed that Argonaute proteins were highly conserved across plant kingdom. Phylogenic analysis divided plant Argonautes into three classes. Argonaute proteins have three conserved domains PAZ, MID and PIWI. In addition to three conserved domains namely, PAZ, MID, and PIWI, we identified few more domains in AGO of some plant species. Expression profile analysis of Argonaute proteins showed that expression of these genes varies in most of tissues, which means that these proteins are involved in regulation of most pathways of the plant system. Numbers of alternative transcripts of Argonaute genes were highly variable among the plants. A thorough analysis of large number of putative Argonaute genes revealed several interesting aspects associated with this protein and brought novel information with promising usefulness for both basic and biotechnological applications. PMID:25309901

  10. Coordinations between gene modules control the operation of plant amino acid metabolic networks

    PubMed Central

    Less, Hadar; Galili, Gad

    2009-01-01

    Background Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results. Results Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a single group of "highly coordinated" genes within the branched aromatic amino acid metabolic network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly coordinated adjustable negative and positive expression responses to various stress cues, which apparently regulate adjustable metabolic shifts between competing branches of these networks. We also provide evidence implying that these highly coordinated genes are central to impose intra- and inter-network interactions between the Asp-family and aromatic amino acid metabolic networks as well as differential system interactions with other growth promoting and stress-associated genome-wide genes. Conclusion Our novel Gene Coordination elucidates that branched amino acid metabolic networks in plants are regulated by specific groups of highly coordinated genes that possess adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed for adaptation to the stresses. PMID:19171064

  11. Eyes absent: a gene family found in several metazoan phyla.

    PubMed

    Duncan, M K; Kos, L; Jenkins, N A; Gilbert, D J; Copeland, N G; Tomarev, S I

    1997-07-01

    Genes related to the Drosophila eyes absent gene were identified in vertebrates (mouse and human), mollusks (squid), and nematodes (C. elegans). Proteins encoded by these genes consist of conserved C-terminal and variable N-terminal domains. In the conserved 271-amino acid C-terminal region, Drosophila and vertebrate proteins are 65-67% identical. A vertebrate homolog of eyes absent, designated Eya2, was mapped to Chromosome (Chr) 2 in the mouse and to Chr 20q13.1 in human. Eya2 shows a dynamic pattern of expression during development. In the mouse, expression of Eya2 was first detected in 8.5-day embryos in the region of head ectoderm fated to become the forebrain. At later stages of development, Eya2 is expressed in the olfactory placode and in a variety of neural crest derivatives. In the eye, expression of Eya2 was first detected after formation of the lens vesicle. At day 17.5, the highest level of Eya2 mRNA was observed in primary lens fibers. Low levels of Eya2 expression was detected in retina, sclera, and cornea. By postnatal day 10, Eya2 was expressed in secondary lens fibers, cornea, and retina. Although Eya2 is expressed relatively late in eye development, it belongs to the growing list of factors that may be essential for eye development across metazoan phyla. Like members of the Pax-6 gene family, eyes absent gene family members were probably first involved in functions not related to vision, with recruitment for visual system formation and function occurring later. PMID:9195991

  12. A comprehensive survey of the grapevine VQ gene family and its transcriptional correlation with WRKY proteins

    PubMed Central

    Wang, Min; Vannozzi, Alessandro; Wang, Gang; Zhong, Yan; Corso, Massimiliano; Cavallini, Erika; Cheng, Zong-Ming (Max)

    2015-01-01

    WRKY proteins are a class of transcription factors (TFs) involved in the regulation of various physiological processes, including the plant response to biotic and abiotic stresses. Recent studies in Arabidopsis have revealed that some WRKY TFs interact with a class of proteins designed as VQ proteins because of their typical conserved motif (FxxxVQxLTG). So far, no information is available about the genomic organization and the function of VQ motif-containing protein in grapevine (Vitis vinifera L). In the current study, we analyzed the 12X V1 prediction of the nearly homozygous PN40024 genotype identifying up to 18 predicted VQ genes (VvVQ). VvVQs phylogenetic and bioinformatic analyses indicated that the intron-exon structures and motif distribution are highly divergent between different members of the grapevine VQ family. Moreover, the analysis of the V. vinifera cv. Corvina expression atlas revealed a tissue- and stage-specific expression of several members of the family which also showed a significant correlation with WRKY TFs. Grapevine VQ genes also exhibited altered expression in response to drought, powdery mildew infection, salicylic acid (SA) and ethylene (ETH) treatments. The present study represents the first characterization of VQ genes in a grapevine genotype and it is a pivotal foundation for further studies aimed at functionally characterizing this mostly unknown grapevine multigenic family. PMID:26124765

  13. Repeated evolution of chimeric fusion genes in the ?-globin gene family of laurasiatherian mammals.

    PubMed

    Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G

    2014-05-01

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the ?-globin gene family of placental mammals, the two postnatally expressed ?- and ?-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian ?-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the ?-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of ?-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion. PMID:24814285

  14. Repeated Evolution of Chimeric Fusion Genes in the ?-Globin Gene Family of Laurasiatherian Mammals

    PubMed Central

    Gaudry, Michael J.; Storz, Jay F.; Butts, Gary Tyler; Campbell, Kevin L.; Hoffmann, Federico G.

    2014-01-01

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the ?-globin gene family of placental mammals, the two postnatally expressed ?- and ?-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB “Lepore” deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian ?-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived “anti-Lepore” duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the ?-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20–100%) of ?-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion. PMID:24814285

  15. Babesia bovis expresses Bbo-6cys-E, a member of a novel gene family that is homologous to the 6-cys family of Plasmodium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel Babesia bovis gene family encoding proteins with similarities to the Plasmodium 6cys protein family was identified by TBLASTN searches of the Babesia bovis genome using the sequence of the P. falciparum PFS230 protein as query, and was termed Bbo-6cys gene family. The Bbo-cys6 gene family co...

  16. The Wall-associated Kinase gene family in rice genomes.

    PubMed

    de Oliveira, Luiz Felipe Valter; Christoff, Ana Paula; de Lima, Júlio Cesar; de Ross, Bruno Comparsi Feijó; Sachetto-Martins, Gilberto; Margis-Pinheiro, Marcia; Margis, Rogerio

    2014-12-01

    The environment is a dynamic system in which life forms adapt. Wall-Associated Kinases (WAK) are a subfamily of receptor-like kinases associated with the cell wall. These genes have been suggested as sensors of the extracellular environment and triggers of intracellular signals. They belong to the ePK superfamily with or without a conserved arginine before the catalytic subdomain VIB, which characterizes RD and non-RD WAKs. WAK is a large subfamily in rice. We performed an extensive comparison of WAK genes from A. thaliana (AtWAK), O. sativa japonica and indica subspecies (OsWAK). Phylogenetic studies and WAK domain characterization allowed for the identification of two distinct groups of WAK genes in Arabidopsis and rice. One group corresponds to a cluster containing only OsWAKs that most likely expanded after the monocot-dicot separation, which evolved into a non-RD kinase class. The other group comprises classical RD-kinases with both AtWAK and OsWAK representatives. Clusterization analysis using extracellular and kinase domains demonstrated putative functional redundancy for some genes, but also highlighted genes that could recognize similar extracellular stimuli and activate different cascades. The gene expression pattern of WAKs in response to cold suggests differences in the regulation of the OsWAK genes in the indica and japonica subspecies. Our results also confirm the hypothesis of functional diversification between A. thaliana and O. sativa WAK genes. Furthermore, we propose that plant WAKs constitute two evolutionarily related but independent subfamilies: WAK-RD and WAK-nonRD. Recognition of this structural division will further provide insights to understanding WAK functions and regulations. PMID:25443845

  17. Identification and Characterization of Plant Genes Involved in Agrobacterium -Mediated Plant Transformation by Virus-Induced Gene Silencing

    Microsoft Academic Search

    Ajith Anand; Zarir Vaghchhipawala; Choong-Min Ryu; Li Kang; Keri Wang; Olga del-Pozo; Gregory B. Martin; Kirankumar S. Mysore

    2007-01-01

    Genetic transformation of plant cells by Agrobacterium tu- mefaciens represents a unique case of trans-kingdom sex re- quiring the involvement of both bacterial virulence proteins and plant-encoded proteins. We have developed in planta and leaf-disk assays in Nicotiana benthamiana for identifying plant genes involved in Agrobacterium-mediated plant trans- formation using virus-induced gene silencing (VIGS) as a genomics tool. VIGS was

  18. Cyclic nucleotide gated channel gene family in tomato: genome-wide identification and functional analyses in disease resistance.

    PubMed

    Saand, Mumtaz A; Xu, You-Ping; Li, Wen; Wang, Ji-Peng; Cai, Xin-Zhong

    2015-01-01

    The cyclic nucleotide gated channel (CNGC) is suggested to be one of the important calcium conducting channels. Nevertheless, genome-wide identification and systemic functional analysis of CNGC gene family in crop plant species have not yet been conducted. In this study, we performed genome-wide identification of CNGC gene family in the economically important crop tomato (Solanum lycopersicum L.) and analyzed function of the group IVb SlCNGC genes in disease resistance. Eighteen CNGC genes were identified in tomato genome, and four CNGC loci that were misannotated at database were corrected by cloning and sequencing. Detailed bioinformatics analyses on gene structure, domain composition and phylogenetic relationship of the SlCNGC gene family were conducted and the group-specific feature was revealed. Comprehensive expression analyses demonstrated that SlCNGC genes were highly, widely but differently responsive to diverse stimuli. Pharmacological assays showed that the putative CNGC activators cGMP and cAMP enhanced resistance against Sclerotinia sclerotiorum. Silencing of group IVb SlCNGC genes significantly enhanced resistance to fungal pathogens Pythium aphanidermatum and S. sclerotiorum, strongly reduced resistance to viral pathogen Tobacco rattle virus, while attenuated PAMP- and DAMP-triggered immunity as shown by obvious decrease of the flg22- and AtPep1-elicited hydrogen peroxide accumulation in SlCNGC-silenced plants. Additionally, silencing of these SlCNGC genes significantly altered expression of a set of Ca(2+) signaling genes including SlCaMs, SlCDPKs, and SlCAMTA3. Collectively, our results reveal that group IV SlCNGC genes regulate a wide range of resistance in tomato probably by affecting Ca(2+) signaling. PMID:25999969

  19. Cyclic nucleotide gated channel gene family in tomato: genome-wide identification and functional analyses in disease resistance

    PubMed Central

    Saand, Mumtaz A.; Xu, You-Ping; Li, Wen; Wang, Ji-Peng; Cai, Xin-Zhong

    2015-01-01

    The cyclic nucleotide gated channel (CNGC) is suggested to be one of the important calcium conducting channels. Nevertheless, genome-wide identification and systemic functional analysis of CNGC gene family in crop plant species have not yet been conducted. In this study, we performed genome-wide identification of CNGC gene family in the economically important crop tomato (Solanum lycopersicum L.) and analyzed function of the group IVb SlCNGC genes in disease resistance. Eighteen CNGC genes were identified in tomato genome, and four CNGC loci that were misannotated at database were corrected by cloning and sequencing. Detailed bioinformatics analyses on gene structure, domain composition and phylogenetic relationship of the SlCNGC gene family were conducted and the group-specific feature was revealed. Comprehensive expression analyses demonstrated that SlCNGC genes were highly, widely but differently responsive to diverse stimuli. Pharmacological assays showed that the putative CNGC activators cGMP and cAMP enhanced resistance against Sclerotinia sclerotiorum. Silencing of group IVb SlCNGC genes significantly enhanced resistance to fungal pathogens Pythium aphanidermatum and S. sclerotiorum, strongly reduced resistance to viral pathogen Tobacco rattle virus, while attenuated PAMP- and DAMP-triggered immunity as shown by obvious decrease of the flg22- and AtPep1-elicited hydrogen peroxide accumulation in SlCNGC-silenced plants. Additionally, silencing of these SlCNGC genes significantly altered expression of a set of Ca2+ signaling genes including SlCaMs, SlCDPKs, and SlCAMTA3. Collectively, our results reveal that group IV SlCNGC genes regulate a wide range of resistance in tomato probably by affecting Ca2+ signaling. PMID:25999969

  20. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response.

    PubMed

    Wang, Yu; Wang, Qianqian; Zhao, Yang; Han, Guomin; Zhu, Suwen

    2015-07-15

    Class III peroxidases (PRXs) are plant-specific enzymes that play key roles in the responses to biotic and abiotic stress during plant growth and development. In this study, we identified 119 nonredundant PRX genes (designated ZmPRXs). These PRX genes were divided into 18 groups based on their phylogenetic relationships. We performed systematic bioinformatics analysis of the PRX genes, including analysis of gene structures, conserved motifs, phylogenetic relationships and gene expression profiles. The ZmPRXs are unevenly distributed on the 10 maize chromosomes. In addition, these genes have undergone 16 segmental duplication and 12 tandem duplication events, indicating that both segmental and tandem duplication were the main contributors to the expansion of the maize PRX family. Ka/Ks analysis suggested that most duplicated ZmPRXs experienced purifying selection, with limited functional divergence during the duplication events, and comparative analysis among maize, sorghum and rice revealed that there were independent duplication events besides the whole-genome duplication of the maize genome. Furthermore, microarray analysis indicated that most highly expressed genes might play significant roles in root. We examined the expression of five candidate ZmPRXs under H2O2, SA, NaCl and PEG stress conditions using quantitative real-time PCR (qRT-PCR), revealing differential expression patterns. This study provides useful information for further functional analysis of the PRX gene family in maize. PMID:25895479

  1. Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa.

    PubMed

    Loth-Pereda, Verónica; Orsini, Elena; Courty, Pierre-Emmanuel; Lota, Frédéric; Kohler, Annegret; Diss, Loic; Blaudez, Damien; Chalot, Michel; Nehls, Uwe; Bucher, Marcel; Martin, Francis

    2011-08-01

    Gene networks involved in inorganic phosphate (Pi) acquisition and homeostasis in woody perennial species able to form mycorrhizal symbioses are poorly known. Here, we describe the features of the 12 genes coding for Pi transporters of the Pht1 family in poplar (Populus trichocarpa). Individual Pht1 transporters play distinct roles in acquiring and translocating Pi in different tissues of mycorrhizal and nonmycorrhizal poplar during different growth conditions and developmental stages. Pi starvation triggered the up-regulation of most members of the Pht1 family, especially PtPT9 and PtPT11. PtPT9 and PtPT12 showed a striking up-regulation in ectomycorrhizas and endomycorrhizas, whereas PtPT1 and PtPT11 were strongly down-regulated. PtPT10 transcripts were highly abundant in arbuscular mycorrhiza (AM) roots only. PtPT8 and PtPT10 are phylogenetically associated to the AM-inducible Pht1 subfamily I. The analysis of promoter sequences revealed conserved motifs similar to other AM-inducible orthologs in PtPT10 only. To gain more insight into gene regulatory mechanisms governing the AM symbiosis in woody plant species, the activation of the poplar PtPT10 promoter was investigated and detected in AM of potato (Solanum tuberosum) roots. These results indicated that the regulation of AM-inducible Pi transporter genes is conserved between perennial woody and herbaceous plant species. Moreover, poplar has developed an alternative Pi uptake pathway distinct from AM plants, allowing ectomycorrhizal poplar to recruit PtPT9 and PtPT12 to cope with limiting Pi concentrations in forest soils. PMID:21705655

  2. Expansion of the HSFY gene family in pig lineages

    E-print Network

    Skinner, Benjamin M.; Lachani, Kim; Sargent, Carole A.; Yang, Fengtang; Ellis, Peter; Hunt, Toby; Fu, Beiyuan; Louzada, Sandra; Churcher, Carol; Tyler-Smith, Chris; Affara, Nabeel A

    2015-06-09

    in pig is different to known genomic conflict models, however, in that there are no observed gene family expansions on the X chromosome that might be responding to the expansion on the Y (see [1]), and we therefore consider that a similar mechanism... to amplification by their roles, locations or both. Methods Animal ethics statement Duroc tissue samples were provided by Genus PLC from a boar culled in a routine process. DNA samples from other suid species were provided by Genus PLC. No ethical approval...

  3. Manipulation of hormone biosynthetic genes in transgenic plants

    Microsoft Academic Search

    Peter Hedden; Andrew L Phillips

    2000-01-01

    Modification of plant hormone biosynthesis through the introduction of bacterial genes is a natural form of genetic engineering, which has been exploited in numerous studies on hormone function. Recently, biosynthetic pathways have been largely elucidated for most of the plant hormone classes, and genes encoding many of the enzymes have been cloned. These advances offer new opportunities to manipulate hormone

  4. Cloning and characterization of the ribosomal protein L3 (RPL3) gene family from Triticum aestivum.

    PubMed

    Lucyshyn, Doris; Busch, Bernhard L; Abolmaali, Shamsozoha; Steiner, Barbara; Chandler, Elizabeth; Sanjarian, Forough; Mousavi, Amir; Nicholson, Paul; Buerstmayr, Hermann; Adam, Gerhard

    2007-05-01

    Plant pathogenic fungi of the genus Fusarium can cause severe diseases on small grain cereals and maize. The contamination of harvested grain with Fusarium mycotoxins is a threat to human and animal health. In wheat production of the toxin deoxynivalenol (DON), which inhibits eukaryotic protein biosynthesis, is a virulence factor of Fusarium, and resistance against DON is considered to be part of Fusarium resistance. Previously, single amino acid changes in RPL3 (ribosomal protein L3) conferring DON resistance have been described in yeast. The goal of this work was to characterize the RPL3 gene family from wheat and to investigate the potential role of naturally existing RPL3 alleles in DON resistance by comparing Fusarium-resistant and susceptible cultivars. The gene family consists of three homoeologous alleles of both RPL3A and RPL3B, which are located on chromosomes 4A (RPL3-B2), 4B (RPL3-B1), 4D (RPL3-B3), 5A (RPL3-A3), 5B (RPL3-A2) and 5D (RPL3-A1). Alternative splicing was detected in the TaRPL3-A2 gene. Sequence comparison revealed no amino acid differences between cultivars differing in Fusarium resistance. While using developed SNP markers we nevertheless found that one of the genes, namely, TaRPL3-A3 mapped close to a Fusarium resistance QTL (Qfhs.ifa-5A). The potential role of the RPL3 gene family in DON resistance of wheat is discussed. PMID:17216491

  5. Differential expression pattern of UBX family genes in Caenorhabditis elegans

    SciTech Connect

    Yamauchi, Seiji [Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan); Sasagawa, Yohei [Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan); Ogura, Teru [Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan)]. E-mail: ogura@gpo.kumamoto-u.ac.jp; Yamanaka, Kunitoshi [Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan)]. E-mail: yamanaka@gpo.kumamoto-u.ac.jp

    2007-06-29

    UBX (ubiquitin regulatory X)-containing proteins belong to an evolutionary conserved protein family and determine the specificity of p97/VCP/Cdc48p function by binding as its adaptors. Caenorhabditis elegans was found to possess six UBX-containing proteins, named UBXN-1 to -6. However, no general or specific function of them has been revealed. During the course of understanding not only their function but also specified function of p97, we investigated spatial and temporal expression patterns of six ubxn genes in this study. Transcript analyses showed that the expression pattern of each ubxn gene was different throughout worm's development and may show potential developmental dynamics in their function, especially ubxn-5 was expressed specifically in the spermatogenic germline, suggesting a crucial role in spermatogenesis. In addition, as ubxn-4 expression was induced by ER stress, it would function as an ERAD factor in C. elegans. In vivo expression analysis by using GFP translational fusion constructs revealed that six ubxn genes show distinct expression patterns. These results altogether demonstrate that the expression of all six ubxn genes of C. elegans is differently regulated.

  6. The aquaporin gene family of the ectomycorrhizal fungus Laccaria bicolor: lessons for symbiotic functions.

    PubMed

    Dietz, Sandra; von Bülow, Julia; Beitz, Eric; Nehls, Uwe

    2011-06-01

    Soil humidity and bulk water transport are essential for nutrient mobilization. Ectomycorrhizal fungi, bridging soil and fine roots of woody plants, are capable of modulating both by being integrated into water movement driven by plant transpiration and the nocturnal hydraulic lift. Aquaporins are integral membrane proteins that function as gradient-driven water and/or solute channels. Seven aquaporins were identified in the genome of the ectomycorrhizal basidiomycete Laccaria bicolor and their role in fungal transfer processes was analyzed. Heterologous expression in Xenopus laevis oocytes revealed relevant water permeabilities for three aquaporins. In fungal mycelia, expression of the corresponding genes was high compared with other members of the gene family, indicating the significance of the respective proteins for plasma membrane water permeability. As growth temperature and ectomycorrhiza formation modified gene expression profiles of these water-conducting aquaporins, specific roles in those aspects of fungal physiology are suggested. Two aquaporins, which were highly expressed in ectomycorrhizas, conferred plasma membrane ammonia permeability in yeast. This indicates that these proteins are an integral part of ectomycorrhizal fungus-based plant nitrogen nutrition in symbiosis. PMID:21352231

  7. Transcription repressor HANABA TARANU controls flower development by integrating the actions of multiple hormones, floral organ specification genes, and GATA3 family genes in Arabidopsis.

    PubMed

    Zhang, Xiaolan; Zhou, Yun; Ding, Lian; Wu, Zhigang; Liu, Renyi; Meyerowitz, Elliot M

    2013-01-01

    Plant inflorescence meristems and floral meristems possess specific boundary domains that result in proper floral organ separation and specification. HANABA TARANU (HAN) encodes a boundary-expressed GATA3-type transcription factor that regulates shoot meristem organization and flower development in Arabidopsis thaliana, but the underlying mechanism remains unclear. Through time-course microarray analyses following transient overexpression of HAN, we found that HAN represses hundreds of genes, especially genes involved in hormone responses and floral organ specification. Transient overexpression of HAN also represses the expression of HAN and three other GATA3 family genes, HANL2 (HAN-LIKE 2), GNC (GATA, NITRATE-INDUCIBLE, CARBON-METABOLISM-INVOLVED), and GNL (GNC-LIKE), forming a negative regulatory feedback loop. Genetic analysis indicates that HAN and the three GATA3 family genes coordinately regulate floral development, and their expression patterns are partially overlapping. HAN can homodimerize and heterodimerize with the three proteins encoded by these genes, and HAN directly binds to its own promoter and the GNC promoter in vivo. These findings, along with the fact that constitutive overexpression of HAN produces an even stronger phenotype than the loss-of-function mutation, support the hypothesis that HAN functions as a key repressor that regulates floral development via regulatory networks involving genes in the GATA3 family, along with genes involved in hormone action and floral organ specification. PMID:23335616

  8. Gene silencing assessment for genes from recalcitrant or poorly studied plant species

    Microsoft Academic Search

    Takahiro Kamoi; Colin Charles Eady; Shinsuke Imai

    2008-01-01

    We have developed an efficient system of assessing the ability of a gene silencing cassette to silence transcripts from recalcitrant\\u000a or poorly studied plant species by using a model plant as a host for the gene of interest. Tobacco plants transgenic for Lachrymatory\\u000a Factor Synthase (LFS) enzyme activity from onion were first produced by introducing a CaMV 35S-onion-lfs gene construct.

  9. Recent Advances of Flowering Locus T Gene in Higher Plants

    PubMed Central

    Xu, Feng; Rong, Xiaofeng; Huang, Xiaohua; Cheng, Shuiyuan

    2012-01-01

    Flowering Locus T (FT) can promote flowering in the plant photoperiod pathway and also facilitates vernalization flowering pathways and other ways to promote flowering. The expression of products of the FT gene is recognized as important parts of the flowering hormone and can induce flowering by long-distance transportation. In the present study, many FT-like genes were isolated, and the transgenic results show that FT gene can promote flowering in plants. This paper reviews the progress of the FT gene and its expression products to provide meaningful information for further studies of the functions of FT genes. PMID:22489182

  10. Recent advances of flowering locus T gene in higher plants.

    PubMed

    Xu, Feng; Rong, Xiaofeng; Huang, Xiaohua; Cheng, Shuiyuan

    2012-01-01

    Flowering Locus T (FT) can promote flowering in the plant photoperiod pathway and also facilitates vernalization flowering pathways and other ways to promote flowering. The expression of products of the FT gene is recognized as important parts of the flowering hormone and can induce flowering by long-distance transportation. In the present study, many FT-like genes were isolated, and the transgenic results show that FT gene can promote flowering in plants. This paper reviews the progress of the FT gene and its expression products to provide meaningful information for further studies of the functions of FT genes. PMID:22489182

  11. Standardized Plant Disease Evaluations will Enhance Resistance Gene Discovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene discovery and marker development using DNA based tools require plant populations with well-documented phenotypes. Related crops such as apples and pears may share a number of genes, for example resistance to common diseases, and data mining in one crop may reveal genes for the other. However, u...

  12. Characterization of the bovine pregnancy-associated glycoprotein gene family – analysis of gene sequences, regulatory regions within the promoter and expression of selected genes

    Microsoft Academic Search

    Bhanu Prakash VL Telugu; Angela M Walker; Jonathan A Green

    2009-01-01

    BACKGROUND: The Pregnancy-associated glycoproteins (PAGs) belong to a large family of aspartic peptidases expressed exclusively in the placenta of species in the Artiodactyla order. In cattle, the PAG gene family is comprised of at least 22 transcribed genes, as well as some variants. Phylogenetic analyses have shown that the PAG family segregates into 'ancient' and 'modern' groupings. Along with sequence

  13. A complex interplay of tandem- and whole-genome duplication drives expansion of the L-type lectin receptor kinase gene family in the brassicaceae.

    PubMed

    Hofberger, Johannes A; Nsibo, David L; Govers, Francine; Bouwmeester, Klaas; Schranz, M Eric

    2015-03-01

    The comparative analysis of plant gene families in a phylogenetic framework has greatly accelerated due to advances in next generation sequencing. In this study, we provide an evolutionary analysis of the L-type lectin receptor kinase and L-type lectin domain proteins (L-type LecRKs and LLPs) that are considered as components in plant immunity, in the plant family Brassicaceae and related outgroups. We combine several lines of evidence provided by sequence homology, HMM-driven protein domain annotation, phylogenetic analysis, and gene synteny for large-scale identification of L-type LecRK and LLP genes within nine core-eudicot genomes. We show that both polyploidy and local duplication events (tandem duplication and gene transposition duplication) have played a major role in L-type LecRK and LLP gene family expansion in the Brassicaceae. We also find significant differences in rates of molecular evolution based on the mode of duplication. Additionally, we show that LLPs share a common evolutionary origin with L-type LecRKs and provide a consistent gene family nomenclature. Finally, we demonstrate that the largest and most diverse L-type LecRK clades are lineage-specific. Our evolutionary analyses of these plant immune components provide a framework to support future plant resistance breeding. PMID:25635042

  14. Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway

    PubMed Central

    2011-01-01

    Background In trees, a substantial amount of carbon is directed towards production of phenolics for development and defense. This metabolic pathway is also a major factor in resistance to insect pathogens in spruce. In such gene families, environmental stimuli may have an important effect on the evolutionary fate of duplicated genes, and different expression patterns may indicate functional diversification. Results Gene families in spruce (Picea) have expanded to superfamilies, including O-methyltransferases, cytochrome-P450, and dirigents/classIII-peroxidases. Neo-functionalization of superfamily members from different clades is reflected in expression diversification. Genetical genomics can provide new insights into the genetic basis and evolution of insect resistance in plants. Adopting this approach, we merged genotype data (252 SNPs in a segregating pedigree), gene expression levels (for 428 phenylpropanoid-related genes) and measures of susceptibility to Pissodes stobi, using a partial-diallel crossing-design with white spruce (Picea glauca). Thirty-eight expressed phenylpropanoid-related genes co-segregated with weevil susceptibility, indicating either causative or reactive effects of these genes to weevil resistance. We identified eight regulatory genomic regions with extensive overlap of quantitative trait loci from susceptibility and growth phenotypes (pQTLs) and expression QTL (eQTL) hotspots. In particular, SNPs within two different CCoAOMT loci regulate phenotypic variation from a common set of 24 genes and three resistance traits. Conclusions Pest resistance was associated with individual candidate genes as well as with trans-regulatory hotspots along the spruce genome. Our results showed that specific genes within the phenylpropanoid pathway have been duplicated and diversified in the conifer in a process fundamentally different from short-lived angiosperm species. These findings add to the information about the role of the phenylpropanoid pathway in the evolution of plant defense mechanisms against insect pests and provide substantial potential for the functional characterization of several not yet resolved alternative pathways in plant defenses. PMID:22177423

  15. Identification and characterization of a novel copper transporter gene family TaCT1 in common wheat.

    PubMed

    Li, Haoxun; Fan, Renchun; Li, Libin; Wei, Bo; Li, Guoliang; Gu, Liqing; Wang, Xianping; Zhang, Xiangqi

    2014-07-01

    Copper is an essential micronutrient for plant growth and development, and copper transporter plays a pivotal role for keeping copper homeostasis. However, little is known about copper transporters in wheat. Here, we report a novel copper transporter gene family, TaCT1, in common wheat. Three TaCT1 homoeologous genes were isolated and assigned to group 5 chromosomes. Each of the TaCT1 genes (TaCT1-5A, -5B or -5D) possesses 12 transmembrane domains. TaCT1 genes exhibited higher transcript levels in leaf than in root, culm and spikelet. Excess copper down-regulated the transcript levels of TaCT1 and copper deficiency-induced TaCT1 expression. Subcellular experiments localized the TaCT1 to the Golgi apparatus. Yeast expression experiments and virus-induced gene silencing analysis indicated that the TaCT1 functioned in copper transport. Site-directed mutagenesis demonstrated that three amino acid residues, Met(35), Met(38) and Cys(365), are required for TaCT1 function. Phylogenetic and functional analyses suggested that homologous genes shared high similarity with TaCT1 may exist exclusively in monocot plants. Our work reveals a novel wheat gene family encoding major facilitator superfamily (MFS)-type copper transporters, and provides evidence for their functional involvement in promoting copper uptake and keeping copper homeostasis in common wheat. PMID:24372025

  16. Distinct Functions of Egr Gene Family Members in Cognitive Processes

    PubMed Central

    Poirier, Roseline; Cheval, Hélène; Mailhes, Caroline; Garel, Sonia; Charnay, Patrick; Davis, Sabrina; Laroche, Serge

    2008-01-01

    The different gene members of the Egr family of transcriptional regulators have often been considered to have related functions in brain, based on their co-expression in many cell-types and structures, the relatively high homology of the translated proteins and their ability to bind to the same consensus DNA binding sequence. Recent research, however, suggest this might not be the case. In this review, we focus on the current understanding of the functional roles of the different Egr family members in learning and memory. We briefly outline evidence from mutant mice that Egr1 is required specifically for the consolidation of long-term memory, while Egr3 is primarily essential for short-term memory. We also review our own recent findings from newly generated forebrain-specific conditional Egr2 mutant mice, which revealed that Egr2, as opposed to Egr1 and Egr3, is dispensable for several forms of learning and memory and on the contrary can act as an inhibitory constraint for certain cognitive functions. The studies reviewed here highlight the fact that Egr family members may have different, and in certain circumstances antagonistic functions in the adult brain. PMID:18982106

  17. Polymorphism of the LEAFY Gene in Brassica Plants

    Microsoft Academic Search

    V. A. Vorobiev; V. V. Martynov; A. A. Pankin; E. E. Khavkin

    2005-01-01

    The arabidopsis gene LEAFY controls the induction of flowering and maintenance of the floral meristem identity. By comparing the primary structure of LEAFY and its homologs in other Brassicaceae species and beyond this family, we singled out four clusters corresponding to three systematically remote families of angiosperms, Brassicaceae, Solanaceae, and Poaceae, and to gymnosperms. Both structural and functional distinctions of

  18. The polyphenol oxidase gene family in poplar: phylogeny, differential expression and identification of a novel, vacuolar isoform.

    PubMed

    Tran, Lan T; Constabel, C Peter

    2011-10-01

    Polyphenol oxidases (PPOs) are oxidative enzymes that convert monophenols and o-diphenols to o-quinones using molecular oxygen. The quinone products are highly reactive following tissue damage and can interact with cellular constituents and cause oxidative browning and cross-linking. The induction of PPO in some plants as a result of wounding, herbivore attack, or pathogen infection has implicated them in defense. However, PPO-like enzymes that act as specific hydroxylases, for example in lignan and pigment biosynthesis, have also been discovered. Here, we present the first genome-enabled analysis of a PPO gene family. The Populus trichocarpa genome was found to contain a minimum of nine complete PPO genes, and seven of these were characterized further. The PPO gene family includes both recently duplicated and divergent sequences that are 36-98% identical at the amino acid level. Gene expression profiling in poplar tissues and organs revealed that the PPO genes are all differentially expressed during normal development, but that only a small subset of PPO genes are significantly upregulated by wounding, methyl jasmonate or pathogen infection. Our studies also identified PtrPPO13, a novel PPO gene that is predicted to encode an N-terminal signal peptide. Transient expression of green fluorescent protein fusions demonstrated its localization to the vacuolar lumen. Together, our findings show that the poplar PPO family is diverse and is likely linked to diverse physiological functions. PMID:21633811

  19. Genome-Wide Characterization and Expression Profiling of the AUXIN RESPONSE FACTOR (ARF) Gene Family in Eucalyptus grandis

    PubMed Central

    Yu, Hong; Soler, Marçal; Mila, Isabelle; San Clemente, Hélène; Savelli, Bruno; Dunand, Christophe; Paiva, Jorge A. P.; Myburg, Alexander A.; Bouzayen, Mondher; Grima-Pettenati, Jacqueline; Cassan-Wang, Hua

    2014-01-01

    Auxin is a central hormone involved in a wide range of developmental processes including the specification of vascular stem cells. Auxin Response Factors (ARF) are important actors of the auxin signalling pathway, regulating the transcription of auxin-responsive genes through direct binding to their promoters. The recent availability of the Eucalyptus grandis genome sequence allowed us to examine the characteristics and evolutionary history of this gene family in a woody plant of high economic importance. With 17 members, the E. grandis ARF gene family is slightly contracted, as compared to those of most angiosperms studied hitherto, lacking traces of duplication events. In silico analysis of alternative transcripts and gene truncation suggested that these two mechanisms were preeminent in shaping the functional diversity of the ARF family in Eucalyptus. Comparative phylogenetic analyses with genomes of other taxonomic lineages revealed the presence of a new ARF clade found preferentially in woody and/or perennial plants. High-throughput expression profiling among different organs and tissues and in response to environmental cues highlighted genes expressed in vascular cambium and/or developing xylem, responding dynamically to various environmental stimuli. Finally, this study allowed identification of three ARF candidates potentially involved in the auxin-regulated transcriptional program underlying wood formation. PMID:25269088

  20. Evolution of Plant MADS Box Transcription Factors: Evidence for Shifts in Selection Associated with Early Angiosperm Diversification and Concerted Gene Duplications

    Microsoft Academic Search

    Hongyan Shan; Laura Zahn; Stephane Guindon; P. Kerr Wall; Hongzhi Kong; Hong Ma; C. W. dePamphilis; Jim Leebens-Mack

    2009-01-01

    Phylogenomic analyses show that gene and genome duplication events have led to the diversification of transcription factor gene families throughout the evolutionary history of land plants and that gene duplications have played an important role in shaping regulatory networks influencing key phenotypic characters including floral development and flowering time. A molecular evolutionary investigation of the mode and tempo of selection

  1. Functional and structural diversity of the human Dickkopf gene family.

    PubMed

    Krupnik, V E; Sharp, J D; Jiang, C; Robison, K; Chickering, T W; Amaravadi, L; Brown, D E; Guyot, D; Mays, G; Leiby, K; Chang, B; Duong, T; Goodearl, A D; Gearing, D P; Sokol, S Y; McCarthy, S A

    1999-10-01

    Wnt proteins influence many aspects of embryonic development, and their activity is regulated by several secreted antagonists, including the Xenopus Dickkopf-1 (xDkk-1) protein. xDkk-1 inhibits Wnt activities in Xenopus embryos and may play a role in induction of head structures. Here, we characterize a family of human Dkk-related genes composed of Dkk-1, Dkk-2, Dkk-3, and Dkk-4, together with a unique Dkk-3 related protein termed Soggy (Sgy). hDkks 1-4 contain two distinct cysteine-rich domains in which the positions of 10 cysteine residues are highly conserved between family members. Sgy is a novel secreted protein related to Dkk-3 but which lacks the cysteine-rich domains. Members of the Dkk-related family display unique patterns of mRNA expression in human and mouse tissues, and are secreted when expressed in 293T cells. Furthermore, secreted hDkk-2 and hDkk-4 undergo proteolytic processing which results in cleavage of the second cysteine-rich domain from the full-length protein. Members of the human Dkk-related family differ not only in their structures and expression patterns, but also in their abilities to inhibit Wnt signaling. hDkk-1 and hDkk-4, but not hDkk-2, hDkk-3 or Sgy, suppress Wnt-induced secondary axis induction in Xenopus embryos. hDkk-1 and hDkk-4 do not block axis induction triggered either by Xenopus Dishevelled (Xdsh) or Xenopus Frizzled-8 (Xfz8), both of which function to transduce signals from Wnt ligands. Thus, hDkks 1 and 4 may inhibit Wnt activity by a mechanism upstream of Frizzled. Our findings highlight the structural and functional heterogeneity of human Dkk-related proteins. PMID:10570958

  2. ELN gene triplication responsible for familial supravalvular aortic aneurysm.

    PubMed

    Guemann, Anne-Sophie; Andrieux, Joris; Petit, Florence; Halimi, Emmanuel; Bouquillon, Sonia; Manouvrier-Hanu, Sylvie; Van De Kamp, Jiddeke; Boileau, Catherine; Hanna, Nadine; Jondeau, Guillaume; Vaksmann, Guy; Houfflin-Debarge, Veronique; Holder-Espinasse, Muriel

    2015-04-01

    Supravalvular aortic aneurysms are less frequent than abdominal ones. Among Supravalvular aortic aneurysm aetiologies, we focused on dystrophic lesions as they can be secondary to genetic causes such as elastin anomaly. We report on a familial 7q11.23 triplication - including the ELN gene - segregating with a supravalvular aortic aneurysm. During her first pregnancy, our index patient was diagnosed with tuberous sclerosis and with a Supravalvular aortic aneurysm. The foetus was affected equally. For the second pregnancy, parents applied for preimplantation diagnosis, and a subsequent prenatal diagnosis was offered to the couple, comprising TSC1 molecular analysis, karyotype, and multiplex ligation probe amplification. TSC1 mutation was not found on foetal deoxyribo nucleic acid. Foetal karyotype was normal, but multiplex ligation probe amplification detected a 7q11.23 duplication. Quantitative-polymerase chain reaction and array-comparative genomic hybridisation carried out to further assess this chromosome imbalance subsequently identified a 7q11.23 triplication involving ELN and LIMK1. Foetal heart ultrasound identified a Supravalvular aortic aneurysm. A familial screening was offered for the 7q11.23 triplication and, when found, heart ultrasound was performed. The triplication was diagnosed in our index case as well as in her first child. Of the 17 individuals from this family, 11 have the triplication. Of the 11 individuals with the triplication, 10 were identified to have a supravalvular aortic aneurysm. Of them, two individuals received a medical treatment and one individual needed surgery. We provide evidence of supravalvular aortic aneurysm segregating with 7q11.23 triplication in this family. We would therefore recommend cardiac surveillance for individuals with 7q11.23 triplication. It would also be interesting to offer a quantitative-polymerase chain reaction or an array-comparative genomic hybridisation to a larger cohort of patients presenting with isolated supravalvular aortic aneurysm, as it may provide further information. PMID:24932728

  3. Unresolved orthology and peculiar coding sequence properties of lamprey genes: the KCNA gene family as test case

    Microsoft Academic Search

    Huan Qiu; Falk Hildebrand; Shigehiro Kuraku; Axel Meyer

    2011-01-01

    Background  In understanding the evolutionary process of vertebrates, cyclostomes (hagfishes and lamprey) occupy crucial positions. Resolving\\u000a molecular phylogenetic relationships of cyclostome genes with gnathostomes (jawed vertebrates) genes is indispensable in deciphering\\u000a both the species tree and gene trees. However, molecular phylogenetic analyses, especially those including lamprey genes,\\u000a have produced highly discordant results between gene families. To efficiently scrutinize this problem using

  4. Virus-induced gene silencing of the alkaloid-producing basal eudicot model plant Eschscholzia californica (California Poppy).

    PubMed

    Tekleyohans, Dawit G; Lange, Sabrina; Becker, Annette

    2013-01-01

    Eschscholzia californica (California poppy), a member of the basal eudicot family of the Papaveraceae, is an important species to study alkaloid biosynthesis and the effect of alkaloids on plant metabolism. More recently, it has also been developed as a model system to study the evolution of plant morphogenesis. While progress has been made towards establishing methods for generating genetically modified cell culture lines, transcriptome data and gene expression analysis, the stable transformation and subsequent regeneration of transgenic plants has proven extremely time consuming and difficult. Here, we describe in detail a method to transiently down regulate expression of a target gene by virus-induced gene silencing (VIGS) and the subsequent analysis of the VIGS treated plants. VIGS in E. californica allows for the study of gene function within 2 to 3 weeks after inoculation, and the method proves very efficient, enabling the rapid analysis of gene functions. PMID:23386297

  5. The mouse angiogenin gene family: Structures of an angiogenin-related protein gene and two pseudogenes

    SciTech Connect

    Brown, W.E.; Nobile, V.; Shapiro, R. [Harvard Medical School, Boston, MA (United States)] [and others] [Harvard Medical School, Boston, MA (United States); and others

    1995-09-01

    Angiogenin, a homologue of pancreatic ribonuclease, is a potent inducer of blood vessel formation. As an initial step toward investigating the in vivo functional role of this protein via gene disruption, we undertook the isolation of the angiogenin gene (Ang) from the 129 strain mouse, which will be used for generating targeting constructs. Unexpectedly, screening of a genomic library with an Ang gene probe obtained previously from the BALB/c strain yielded two new genes closely similar to Ang rather than Ang itself. One of these encodes a protein with 78% sequence identity to angiogenin and is designated {open_quotes}Angrp{close_quotes} for {open_quotes}angiogenin-related protein.{close_quotes} The ribonucleolytic active site of angiogenin, which is critical for angiogenic activity, is completely conserved in Angrp, whereas a second essential site, thought to bind cellular receptors, is considerably different. Thus, the Angrp product may have a function distinct from that of angiogenin. The second gene obtained by library screening is a pseudogene, designated {open_quotes}Ang-ps1,{close_quotes} that contains a frame shift mutation in the early part of the coding region. Although the Ang gene was not isolated from this library, it was possible to amplify this gene from 129 mouse genomic DNA by the polymerase chain reaction (PCR). Sequence analysis showed that the 129 strain Ang gene is identical to the BALB/c gene throughout the coding region. PCR cloning also yielded a second Ang-like pseudogene, designated {open_quotes}Ang-ps2.{close_quotes} Southern blotting of genomic DNA confirmed the presence of Ang, Angrp, and at least one of the pseudogenes in an individual mouse and suggested that the mouse Ang gene family may contain more than the four members identified here. 31 refs., 4 figs., 1 tab.

  6. The evolution of hexapod engrailed-family genes: evidence for conservation and concerted evolution

    PubMed Central

    Peel, Andrew D; Telford, Maximilian J; Akam, Michael

    2006-01-01

    Phylogenetic analyses imply that multiple engrailed-family gene duplications occurred during hexapod evolution, a view supported by previous reports of only a single engrailed-family gene in members of the grasshopper genus Schistocerca and in the beetle Tribolium castaneum. Here, we report the cloning of a second engrailed-family gene from Schistocerca gregaria and present evidence for two engrailed-family genes from four additional hexapod species. We also report the existence of a second engrailed-family gene in the Tribolium genome. We suggest that the engrailed and invected genes of Drosophila melanogaster have existed as a conserved gene cassette throughout holometabolous insect evolution. In total 11 phylogenetically diverse hexapod orders are now known to contain species that possess two engrailed-family paralogues, with in each case only one paralogue encoding the RS-motif, a characteristic feature of holometabolous insect invected proteins. We propose that the homeoboxes of hexapod engrailed-family paralogues are evolving in a concerted fashion, resulting in gene trees that overestimate the frequency of gene duplication. We present new phylogenetic analyses using non-homeodomain amino acid sequence that support this view. The S. gregaria engrailed-family paralogues provide strong evidence that concerted evolution might in part be explained by recurrent gene conversion. Finally, we hypothesize that the RS-motif is part of a serine-rich domain targeted for phosphorylation. PMID:16790405

  7. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    PubMed

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes. PMID:25481634

  8. Three cases of kindred with familial breast cancer in which carrier detection by BRCA gene testing was performed on family members

    Microsoft Academic Search

    Tadashi Nomizu; Takeshi Sakuma; Mutsuo Yamada; Masami Matsuzaki; Naoto Katagata; Fumiaki Watanabe; Mitsuhiro Nihei; Chikashi Ishioka; Seiichi Takenoshita; Rikiya Abe

    We performed presymptomatic carrier detection by BRCA gene testing of the family members of three familial breast cancer kindred diagnosed with pathogenetic mutation in BRCA genes. All members were over 20 years of age. We explained familial breast cancer and BRCA gene testing, and obtained autonomic consent before gene testing. Genetic testing revealed twins in a family were dizygotic.\\u000a In another

  9. Flower form alteration by genetic transformation with the class B MADS-box genes of Agapanthus praecox spp. orientalis in transgenic dicot and monocot plants

    Microsoft Academic Search

    Masaru Nakano; Hiroto Umehara; Yoshihiro Hara; Motohide Makino; Mika Igarashi; Mutsumi Nakada; Toru Nakamura; Yoichiro Hoshino; Akira Kanno

    2007-01-01

    The class B genes, which belong to the MADS-box gene family, play important roles in regulating petal and stamen development\\u000a in flowering plants. These genes exist in two different types termed DEF- and GLO-like genes, and the B-function is provided by heterodimers of a DEF- and a GLO-like gene product. In the present study, dicot (tobacco and lettuce) and monocot

  10. Family 10 and 11 xylanase genes from Caldicellulosiruptor sp. strain Rt69B.1

    Microsoft Academic Search

    Daniel D. Morris; Moreland D. Gibbs; Michelle Ford; Justin Thomas; Peter L. Bergquist

    1999-01-01

    Three family 10 xylanase genes (xynA, xynB, and xynC) and a single family 11 xylanase gene (xynD) were identified from the extreme thermophile Caldicellulosiruptor strain Rt69B.1 through the use of consensus PCR in conjunction with sequencing and polyacrylamide gel electrophoresis. These\\u000a genes appear to comprise the complete endoxylanase system of Rt69B.1. The xynA gene was found to be homologous to

  11. The CALMODULIN-BINDING PROTEIN60 family includes both negative and positive regulators of plant immunity.

    PubMed

    Truman, William; Sreekanta, Suma; Lu, You; Bethke, Gerit; Tsuda, Kenichi; Katagiri, Fumiaki; Glazebrook, Jane

    2013-12-01

    Two members of the eight-member CALMODULIN-BINDING PROTEIN60 (CBP60) gene family, CBP60g and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1 (SARD1), encode positive regulators of plant immunity that promote the production of salicylic acid (SA) and affect the expression of SA-dependent and SA-independent defense genes. Here, we investigated the other six family members in Arabidopsis (Arabidopsis thaliana). Only cbp60a mutations affected growth of the bacterial pathogen Pseudomonas syringae pv maculicola ES4326. In contrast to cbp60g and sard1 mutations, cbp60a mutations reduced pathogen growth, indicating that CBP60a is a negative regulator of immunity. Bacterial growth was increased by cbp60g only in the presence of CBP60a, while the increase in growth due to sard1 was independent of CBP60a, suggesting that the primary function of CBP60g may be to counter the repressive effect of CBP60a. In the absence of pathogen, levels of SA as well as of several SA-dependent and SA-independent pathogen-inducible genes were higher in cbp60a plants than in the wild type, suggesting that the enhanced resistance of cbp60a plants may result from the activation of immune responses prior to pathogen attack. CBP60a bound calmodulin, and the calmodulin-binding domain was defined at the C-terminal end of the protein. Transgenes encoding mutant versions of CBP60a lacking the ability to bind calmodulin failed to complement null cbp60a mutations, indicating that calmodulin-binding ability is required for the immunity-repressing function of CBP60a. Regulation at the CBP60 node involves negative regulation by CBP60a as well as positive regulation by CBP60g and SARD1, providing multiple levels of control over the activation of immune responses. PMID:24134885

  12. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns

    PubMed Central

    2012-01-01

    Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that seven UGTs were flax diverged. Conclusions Flax has a large number of UGT genes including few flax diverged ones. Phylogenetic analysis and expression profiles of these genes identified tissue and condition specific repertoire of UGT genes from this crop. This study would facilitate precise selection of candidate genes and their further characterization of substrate specificities and in planta functions. PMID:22568875

  13. A Family of Activator Genes Regulates Expression of Rhizobium Meliloti Nodulation Genes

    PubMed Central

    Mulligan, J. T.; Long, S. R.

    1989-01-01

    Nodulation (nod) gene expression in Rhizobium meliloti requires plant inducers and the activating protein product of the nodD gene. We have examined three genes in R. meliloti which have nodD activity and sequence homology. These three nodD genes are designated nodD1, nodD2 and nodD3, and have distinctive properties. The nodD1 gene product activates expression of the nodABC operon, as measured by a nodC-lacZ fusion or by transcript analysis, in the presence of crude seed or plant wash or the inducer, luteolin. The nodD3 gene product can cause a high basal (uninduced) level of nodC-lacZ expression and nodABC transcripts which is relatively unaffected by inducers. The effect of nodD3 is dependent on the presence of another gene, syrM (symbiotic regulator). By primer extension analysis we determined that the transcription start site is the same for nodD1 plus luteolin or nodD3-syrM mediated expression of nodA and nodH mRNAs. syrM also enhances the expression of another symbiotically important trait, production of extracellular polysaccharide. This regulatory effect of syrM requires locus syrA, which is linked to nodD3 and syrM. The syrM-syrA mediated increase in polysaccharide production requires at least some of the previously identified exo genes and may be a parallel regulatory event to the syrM-nodD3 control of nod promoters. PMID:2731734

  14. Plant, Animal, and Fungal Micronutrient Queuosine Is Salvaged by Members of the DUF2419 Protein Family

    PubMed Central

    2015-01-01

    Queuosine (Q) is a modification found at the wobble position of tRNAs with GUN anticodons. Although Q is present in most eukaryotes and bacteria, only bacteria can synthesize Q de novo. Eukaryotes acquire queuine (q), the free base of Q, from diet and/or microflora, making q an important but under-recognized micronutrient for plants, animals, and fungi. Eukaryotic type tRNA-guanine transglycosylases (eTGTs) are composed of a catalytic subunit (QTRT1) and a homologous accessory subunit (QTRTD1) forming a complex that catalyzes q insertion into target tRNAs. Phylogenetic analysis of eTGT subunits revealed a patchy distribution pattern in which gene losses occurred independently in different clades. Searches for genes co-distributing with eTGT family members identified DUF2419 as a potential Q salvage protein family. This prediction was experimentally validated in Schizosaccharomyces pombe by confirming that Q was present by analyzing tRNAAsp with anticodon GUC purified from wild-type cells and by showing that Q was absent from strains carrying deletions in the QTRT1 or DUF2419 encoding genes. DUF2419 proteins occur in most Eukarya with a few possible cases of horizontal gene transfer to bacteria. The universality of the DUF2419 function was confirmed by complementing the S. pombe mutant with the Zea mays (maize), human, and Sphaerobacter thermophilus homologues. The enzymatic function of this family is yet to be determined, but structural similarity with DNA glycosidases suggests a ribonucleoside hydrolase activity. PMID:24911101

  15. Comprehensive analysis of cystatin family genes suggests their putative functions in sexual reproduction, embryogenesis, and seed formation.

    PubMed

    Zhao, Peng; Zhou, Xue-mei; Zou, Jie; Wang, Wei; Wang, Lu; Peng, Xiong-bo; Sun, Meng-xiang

    2014-09-01

    Cystatins are tightly bound and reversible inhibitors of cysteine proteases in C1A and C13 peptidase families, which have been identified in several species and shown to function in vegetative development and response to biotic/abiotic stresses in plants. Recent work revealed their critical role in regulating programmed cell death during embryogenesis in tobacco and suggested their more comprehensive roles in the process of sexual plant reproduction, although little is known about cystatin family genes in the processes. Here, 10 cystatin family genes in Nicotiana tabacum were identified using an expressed sequence tag (EST)-based gene clone strategy. Analysis of their biochemical properties showed that nine of them have the potency to inhibit the activities of both commercial cathepsin L-like proteases and extracted cysteine proteases from seeds, but with different K i values depending on the types of proteases and the developmental stages of the seed tested. This suggests that cystatin-dependent cathepsin L-like proteolytic pathways are probably important for early seed development. Comprehensive expression profile analysis revealed that cystatin family genes showed manifold variations in their transcription levels in different plant cell types, including the sperm, egg, and zygote, especially in the embryo and seed at different developmental stages. More interestingly, intracellular localization analysis of each cystatin revealed that most members of cystatin families are recognized as secretory proteins with signal peptides that direct them to the endoplasmic reticulum. These results suggest their widespread roles in cell fate determination and cell-cell communication in the process of sexual reproduction, especially in gamete and embryo development, as well as in seed formation. PMID:24996653

  16. Potassium channel genes and benign familial neonatal epilepsy.

    PubMed

    Maljevic, Snezana; Lerche, Holger

    2014-01-01

    Several potassium channel genes have been implicated in different neurological disorders including genetic and acquired epilepsy. Among them, KCNQ2 and KCNQ3, coding for KV7.2 and KV7.3 voltage-gated potassium channels, present an example how genetic dissection of an epileptic disorder can lead not only to a better understanding of disease mechanisms but also broaden our knowledge about the physiological function of the affected proteins and enable novel approaches in the antiepileptic therapy design. In this chapter, we focus on the neuronal KV7 channels and associated genetic disorders-channelopathies, in particular benign familial neonatal seizures, epileptic encephalopathy, and peripheral nerve hyperexcitability (neuromyotonia, myokymia) caused by KCNQ2 or KCNQ3 mutations. Furthermore, strategies using KV7 channels as targets or tools for the treatment of epileptic diseases caused by neuronal hyperexcitability are being addressed. PMID:25194482

  17. An Evolutionarily Conserved Protein Binding Sequence Upstream of a Plant Light-Regulated Gene

    Microsoft Academic Search

    G. Giuliano; E. Pichersky; V. S. Malik; M. P. Timko; P. A. Scolnik; A. R. Cashmore

    1988-01-01

    A protein factor, identified in nuclear extracts obtained from tomato (Lycopersicon esculentum, Solanaceae) and Arabidopsis thaliana (Brassicaceae) seedlings, specifically binds upstream sequences from the plant light-regulated gene family encoding the small subunit of ribulose 1,5-bisphosphate carboxylase\\/oxygenase (RBCS). RBCS upstream sequences from tomato, pea (Pisum sativum, Leguminosae), and Arabidopsis are recognized by the factor. The factor recognition occurs via a short

  18. Developmental Regulation of Diacylglycerol Acyltransferase Family Gene Expression in Tung Tree Tissues

    PubMed Central

    Cao, Heping; Shockey, Jay M.; Klasson, K. Thomas; Chapital, Dorselyn C.; Mason, Catherine B.; Scheffler, Brian E.

    2013-01-01

    Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tung tree (Vernicia fordii), whose novel seed TAGs are useful in a wide range of industrial applications. The objective of this study was to understand the developmental regulation of DGAT family gene expression in tung tree. To this end, we first cloned a tung tree gene encoding DGAT3, a putatively soluble form of DGAT that possesses 11 completely conserved amino acid residues shared among 27 DGAT3s from 19 plant species. Unlike DGAT1 and DGAT2 subfamilies, DGAT3 is absent from animals. We then used TaqMan and SYBR Green quantitative real-time PCR, along with northern and western blotting, to study the expression patterns of the three DGAT genes in tung tree tissues. Expression results demonstrate that 1) all three isoforms of DGAT genes are expressed in developing seeds, leaves and flowers; 2) DGAT2 is the major DGAT mRNA in tung seeds, whose expression profile is well-coordinated with the oil profile in developing tung seeds; and 3) DGAT3 is the major form of DGAT mRNA in tung leaves, flowers and immature seeds prior to active tung oil biosynthesis. These results suggest that DGAT2 is probably the major TAG biosynthetic isoform in tung seeds and that DGAT3 gene likely plays a significant role in TAG metabolism in other tissues. Therefore, DGAT2 should be a primary target for tung oil engineering in transgenic organisms. PMID:24146944

  19. CRISPR-Cas9-Mediated Single-Gene and Gene Family Disruption in Trypanosoma cruzi

    PubMed Central

    Peng, Duo; Kurup, Samarchith P.; Yao, Phil Y.; Minning, Todd A.

    2014-01-01

    ABSTRACT Trypanosoma cruzi is a protozoan parasite of humans and animals, affecting 10 to 20 million people and innumerable animals, primarily in the Americas. Despite being the largest cause of infection-induced heart disease worldwide, even among the neglected tropical diseases (NTDs) T. cruzi is considered one of the least well understood and understudied. The genetic complexity of T. cruzi as well as the limited set of efficient techniques for genome engineering contribute significantly to the relative lack of progress in and understanding of this pathogen. Here, we adapted the CRISPR-Cas9 system for the genetic engineering of T. cruzi, demonstrating rapid and efficient knockout of multiple endogenous genes, including essential genes. We observed that in the absence of a template, repair of the Cas9-induced double-stranded breaks (DSBs) in T. cruzi occurs exclusively by microhomology-mediated end joining (MMEJ) with various-sized deletions. When a template for DNA repair is provided, DSB repair by homologous recombination is achieved at an efficiency several orders of magnitude higher than that in the absence of CRISPR-Cas9-induced DSBs. We also demonstrate the high multiplexing capacity of CRISPR-Cas9 in T. cruzi by knocking down expression of an enzyme gene family consisting of 65 members, resulting in a significant reduction of enzymatic product with no apparent off-target mutations. Lastly, we show that Cas9 can mediate disruption of its own coding sequence, rescuing a growth defect in stable Cas9-expressing parasites. These results establish a powerful new tool for the analysis of gene functions in T. cruzi, enabling the study of essential genes and their functions and analysis of the many large families of related genes that occupy a substantial portion of the T. cruzi genome. PMID:25550322

  20. Characterization and phylogenetic analysis of allergenic Tryp_alpha_amyl protein family in plants.

    PubMed

    Wang, Jing; Yang, Litao; Zhao, Xiaoxiang; Li, Jing; Zhang, Dabing

    2014-01-01

    Most known allergenic proteins in rice ( Oryza sativa ) seed belong to the Tryp_alpha_amyl family (PF00234), but the sequence characterization and the evolution of the allergenic Tryp_alpha_amyl family members in plants have not been fully investigated. In this study, two specific motifs were found besides the common alpha-amylase inhibitors (AAI) domain from the allergenic Tryp_alpha_amyl family members in rice seeds (trRSAs). To understand the evolution and functional importance of the Tryp_alpha_amy1 family and the specific motifs for the allergenic one, a BLAST search identified 75 homologous proteins of trRSAs (trHAs) from 22 plant species including main crops such as rice, maize ( Zea mays ), wheat ( Triticum aestivum ), and sorghum ( Sorghum bicolor ) from all available sequences in the public databases. Statistical analysis showed that the allergenicity of trHAs is closely associated with these two motifs with high number of cysteine residues (p value = 0.00026), and the trHAs with and without the two motifs were clustered into separate clades, respectively. Furthermore, significant difference was observed on the secondary and tertiary structures of allergenic and nonallergenic trHAs. In addition, expression analysis showed that trHA-encoding genes of purple false brome ( Brachypodium distachyon ), barrel medic ( Medicago truncatula ), rice, and sorghum are dominantly expressed in seeds. This work provides insight into the understanding of the properties of allergens in the Tryp_alpha_amyl family and is helpful for allergy therapy. PMID:24328177

  1. PHYTOCHROME GENES IN HIGHER PLANTS: STRUCTURE,EXPRESSION, AND EVOLUTION

    Microsoft Academic Search

    Robert A. Sharrock; Sarah Mathews

    Phytochromes play critical roles in monitoring light quantity, quality, and periodicity in plants and they relay this photosensory information to a large number of signaling pathways that regulate plant growth and development. Given these complex functions, it is not surprising that the phytochrome apoproteins are encoded by small multigene families and that different forms of phytochrome regulate different aspects of

  2. Gene Flow and the Measurement of Dispersal in Plant Populations.

    ERIC Educational Resources Information Center

    Nicholls, Marc S.

    1986-01-01

    Reviews methods of estimating pollen and seed dispersals and discusses the extent and frequency of gene exchange within and between populations. Offers suggestions for designing exercises suitable for estimating dispersal distances in natural plant populations. (ML)

  3. New fimbrial gene cluster of S-fimbrial adhesin family.

    PubMed

    Babai, R; Stern, B E; Hacker, J; Ron, E Z

    2000-10-01

    Fimbrial adhesins that mediate attachment to host cells are produced by most virulent Escherichia coli isolates. These virulence factors play an important role in the initial stages of bacterial colonization and also in determination of the host and tissue specificity. Isolates belonging to serotype O78 are known to cause a large variety of clinical syndromes in farm animals and humans and have been shown to produce several types of adherence fimbriae. We studied the fimbrial adhesin from an avian septicemic E. coli isolate of serotype O78. Analysis of the genetic organization of the fac (fimbria of avian E. coli) gene cluster indicates that it belongs to the S-fimbrial adhesin family. Seven open reading frames coding for major and minor structural subunits were identified, and most of them showed a high degree of homology to the corresponding Sfa and Foc determinants. The least-conserved open reading frame was facS, encoding a protein known to play an important role in determining adherence specificity in other S-fimbrial gene clusters. PMID:10992500

  4. AtSIG6 and other members of the sigma gene family jointly but differentially determine plastid target gene expression in Arabidopsis thaliana

    PubMed Central

    Bock, Sylvia; Ortelt, Jennifer; Link, Gerhard

    2014-01-01

    Plants contain a nuclear gene family for plastid sigma factors, i.e., proteins that associate with the “bacterial-type” organellar RNA polymerase and confer the ability for correct promoter binding and transcription initiation. Questions that are still unresolved relate to the “division of labor” among members of the sigma family, both in terms of their range of target genes and their temporal and spatial activity during development. Clues to the in vivo role of individual sigma genes have mainly come from studies of sigma knockout lines. Despite its obvious strengths, however, this strategy does not necessarily trace-down causal relationships between mutant phenotype and a single sigma gene, if other family members act in a redundant and/or compensatory manner. We made efforts to reduce the complexity by genetic crosses of Arabidopsis single mutants (with focus on a chlorophyll-deficient sig6 line) to generate double knockout lines. The latter typically had a similar visible phenotype as the parental lines, but tended to be more strongly affected in the transcript patterns of both plastid and sigma genes. Because triple mutants were lethal under our growth conditions, we exploited a strategy of transformation of single and double mutants with RNAi constructs that contained sequences from the unconserved sigma region (UCR). These RNAi/knockout lines phenotypically resembled their parental lines, but were even more strongly affected in their plastid transcript patterns. Expression patterns of sigma genes revealed both similarities and differences compared to the parental lines, with transcripts at reduced or unchanged amounts and others that were found to be present in higher (perhaps compensatory) amounts. Together, our results reveal considerable flexibility of gene activity at the levels of both sigma and plastid gene expression. A (still viable) “basal state” seems to be reached, if 2–3 of the 6 Arabidopsis sigma genes are functionally compromised. PMID:25505479

  5. AtSIG6 and other members of the sigma gene family jointly but differentially determine plastid target gene expression in Arabidopsis thaliana.

    PubMed

    Bock, Sylvia; Ortelt, Jennifer; Link, Gerhard

    2014-01-01

    Plants contain a nuclear gene family for plastid sigma factors, i.e., proteins that associate with the "bacterial-type" organellar RNA polymerase and confer the ability for correct promoter binding and transcription initiation. Questions that are still unresolved relate to the "division of labor" among members of the sigma family, both in terms of their range of target genes and their temporal and spatial activity during development. Clues to the in vivo role of individual sigma genes have mainly come from studies of sigma knockout lines. Despite its obvious strengths, however, this strategy does not necessarily trace-down causal relationships between mutant phenotype and a single sigma gene, if other family members act in a redundant and/or compensatory manner. We made efforts to reduce the complexity by genetic crosses of Arabidopsis single mutants (with focus on a chlorophyll-deficient sig6 line) to generate double knockout lines. The latter typically had a similar visible phenotype as the parental lines, but tended to be more strongly affected in the transcript patterns of both plastid and sigma genes. Because triple mutants were lethal under our growth conditions, we exploited a strategy of transformation of single and double mutants with RNAi constructs that contained sequences from the unconserved sigma region (UCR). These RNAi/knockout lines phenotypically resembled their parental lines, but were even more strongly affected in their plastid transcript patterns. Expression patterns of sigma genes revealed both similarities and differences compared to the parental lines, with transcripts at reduced or unchanged amounts and others that were found to be present in higher (perhaps compensatory) amounts. Together, our results reveal considerable flexibility of gene activity at the levels of both sigma and plastid gene expression. A (still viable) "basal state" seems to be reached, if 2-3 of the 6 Arabidopsis sigma genes are functionally compromised. PMID:25505479

  6. Inferring Gene Family Histories in Yeast Identifies Lineage Specific Expansions

    E-print Network

    Ames, Ryan M.; Money, Daniel; Lovell, Simon C.

    2014-06-12

    The complement of genes found in the genome is a balance between gene gain and gene loss. Knowledge of the specific genes that are gained and lost over evolutionary time allows an understanding of the evolution of biological ...

  7. Molecular evolution of the HD-ZIP I gene family in legume genomes.

    PubMed

    Li, Zhen; Jiang, Haiyang; Zhou, Lingyan; Deng, Lin; Lin, Yongxiang; Peng, Xiaojian; Yan, Hanwei; Cheng, Beijiu

    2014-01-01

    Homeodomain leucine zipper I (HD-ZIP I) genes were used to increase the plasticity of plants by mediating external signals and regulating growth in response to environmental conditions. The way genomic histories drove the evolution of the HD-ZIP I family in legume species was described; HD-ZIP I genes were searched in Lotus japonicus, Medicago truncatula, Cajanus cajan and Phaseolus vulgaris, and then divided into five clades through phylogenetic analysis. Microsynteny analysis was made based on genomic segments containing the HD-ZIP I genes. Some pairs turned out to conform with syntenic genome regions, while others corresponded to those that were inverted, expanded, or contracted after the divergence of legumes. Besides, we dated their duplications by Ks analysis and demonstrated that all the blocks were formed after the monocot-dicot split; we observed Ka/Ks ratios representing strong purifying selections in the four legume species which might have been followed by gene loss and rearrangement. PMID:24095777

  8. Mini review roles of the bZIP gene family in rice.

    PubMed

    E, Z G; Zhang, Y P; Zhou, J H; Wang, L

    2014-01-01

    The basic leucine zipper (bZIP) genes encode transcription factors involved in the regulation of various biological processes. Similar to WRKY, basic helix-loop-helix, and several other groups of proteins, the bZIP proteins form a superfamily of transcription factors that mediate plant stress responses. In this review, we present the roles of bZIP proteins in multiple biological processes that include pathogen defense; responses to abiotic stresses; seed development and germination; senescence; and responses to salicylic, jasmonic, and abscisic acids in rice. We also examined the characteristics of the bZIP proteins and their genetic composition. To ascertain the evolutionary changes in and functions of this supergene family, we performed an exhaustive comparison among the 89 rice bZIP genes that were previously described and those more recently listed in the MSU Rice Genome Annotation Project Database using a Hidden Markov Model. We excluded 3 genes from the list, resulting in a total of 86 bZIP genes in japonica rice. PMID:24782137

  9. Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship.

    PubMed

    Perotto, Silvia; Rodda, Marco; Benetti, Alex; Sillo, Fabiano; Ercole, Enrico; Rodda, Michele; Girlanda, Mariangela; Murat, Claude; Balestrini, Raffaella

    2014-06-01

    Orchids fully depend on symbiotic interactions with specific soil fungi for seed germination and early development. Germinated seeds give rise to a protocorm, a heterotrophic organ that acquires nutrients, including organic carbon, from the mycorrhizal partner. It has long been debated if this interaction is mutualistic or antagonistic. To investigate the molecular bases of the orchid response to mycorrhizal invasion, we developed a symbiotic in vitro system between Serapias vomeracea, a Mediterranean green meadow orchid, and the rhizoctonia-like fungus Tulasnella calospora. 454 pyrosequencing was used to generate an inventory of plant and fungal genes expressed in mycorrhizal protocorms, and plant genes could be reliably identified with a customized bioinformatic pipeline. A small panel of plant genes was selected and expression was assessed by real-time quantitative PCR in mycorrhizal and non-mycorrhizal protocorm tissues. Among these genes were some markers of mutualistic (e.g. nodulins) as well as antagonistic (e.g. pathogenesis-related and wound/stress-induced) genes. None of the pathogenesis or wound/stress-related genes were significantly up-regulated in mycorrhizal tissues, suggesting that fungal colonization does not trigger strong plant defence responses. In addition, the highest expression fold change in mycorrhizal tissues was found for a nodulin-like gene similar to the plastocyanin domain-containing ENOD55. Another nodulin-like gene significantly more expressed in the symbiotic tissues of mycorrhizal protocorms was similar to a sugar transporter of the SWEET family. Two genes coding for mannose-binding lectins were significantly up-regulated in the presence of the mycorrhizal fungus, but their role in the symbiosis is unclear. PMID:24760407

  10. Nitric oxide and gene regulation in plants

    Microsoft Academic Search

    S. Grun; C. Lindermayr; S. Sell; J. Durner

    2006-01-01

    There is increasing evidence that nitric oxide (NO), which was first identified as a unique diffusible molecu- lar messenger in animals, plays an important role in diverse physiological processes in plants. Recent pro- gress that has deepened our understanding of NO signalling functions in plants, with special emphasis on defence signalling, is discussed here. Several stud- ies, based on plants

  11. Evolutionary Patterns of Gene Families Generated in the Early Stage of Vertebrates

    E-print Network

    Gu, Xun

    Evolutionary Patterns of Gene Families Generated in the Early Stage of Vertebrates Yufeng Wang, Xun- brate gene families that were generated in the early stage of vertebrates and/or shortly before occurred before the divergence be- tween vertebrate and Drosophila, indicating a possible misleading

  12. Accepted mutations in a gene family: Evolutionary diversification of duplicated DNA

    Microsoft Academic Search

    C. Weldon Jones; Fotis C. Kafatos

    1982-01-01

    Summary We report and compare the DNA sequences of 14 silkmoth (Antheraea polyphemus) chorion genes, derived from either cDNA or chromosomal DNA clones. Seven of these genes are members of the A multigene family, and seven are members of the B family. Where available, the previously reported (Jones and Kafatos 1980) intronic and extragenic flanking DNA sequences are also considered.

  13. The complete family of genes encoding G proteins of Caenorhabditis elegans

    Microsoft Academic Search

    Gert Jansen; Karen L Thijssen; Pia Werner; Marieke van derHorst; Esther Hazendonk; Ronald H A Plasterk

    1999-01-01

    Caenorhabditis elegans is the first animal whose genomic sequence has been determined. One of the new possibilities in post-sequence genetics is the analysis of complete gene families at once. We studied the family of heterotrimeric G proteins. C. elegans has 20 G?, 2 G? and 2 G? genes. There is 1 homologue of each of the 4 mammalian classes of

  14. Phylogenetic analysis of 48 gene families revealing relationships between Hagfishes, Lampreys, and Gnathostomata

    Microsoft Academic Search

    Shuiyan Yu; Weiwei Zhang; Ling Li; Huifang Huang; Fei Ma; Qingwei Li

    2008-01-01

    It has become clear that the extant vertebrates are divided into three major groups, that is, hagfishes, lampreys, and jawed vertebrates. Morphological and molecular studies, however, have resulted in conflicting views with regard to their interrelationships. To clarify the phylogenetic relationships between them, 48 orthologous protein-coding gene families were analyzed. Even as the analysis of 34 nuclear gene families supported

  15. Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study

    Microsoft Academic Search

    Mircea Podar; Jonathan R Eads; Toby H Richardson

    2005-01-01

    BACKGROUND: Completed genomes and environmental genomic sequences are bringing a significant contribution to understanding the evolution of gene families, microbial metabolism and community eco-physiology. Here, we used comparative genomics and phylogenetic analyses in conjunction with enzymatic data to probe the evolution and functions of a microbial nitrilase gene family. Nitrilases are relatively rare in bacterial genomes, their biological function being

  16. Genome-wide identification and transcriptional profiling analysis of auxin response-related gene families in cucumber

    PubMed Central

    2014-01-01

    Background Auxin signaling has a vital function in the regulation of plant growth and development, both which are known to be mediated by auxin-responsive genes. So far, significant progress has been made toward the identification and characterization of auxin-response genes in several model plants, while no systematic analysis for these families was reported in cucumber (Cucumis sativus L.), a reference species for Cucurbitaceae crops. The comprehensive analyses will help design experiments for functional validation of their precise roles in plant development and stress responses. Results A genome-wide search for auxin-response gene homologues identified 16 auxin-response factors (ARFs), 27 auxin/indole acetic acids (Aux/IAAs), 10 Gretchen Hagen 3 (GH3s), 61 small auxin-up mRNAs (SAURs), and 39 lateral organ boundaries (LBDs) in cucumber. Sequence analysis together with the organization of putative motifs indicated the potential diverse functions of these five auxin-related family members. The distribution and density of auxin response-related genes on chromosomes were not uniform. Evolutionary analysis showed that the chromosomal segment duplications mainly contributed to the expansion of the CsARF, CsIAA, CsGH3, and CsLBD gene families. Quantitative real-time RT-PCR analysis demonstrated that many ARFs, AUX/IAAs, GH3s, SAURs, and LBD genes were expressed in diverse patterns within different organs/tissues and during different development stages. They were also implicated in IAA, methyl jasmonic acid, or salicylic acid response, which is consistent with the finding that a great number of diverse cis-elements are present in their promoter regions involving a variety of signaling transduction pathways. Conclusion Genome-wide comparative analysis of auxin response-related family genes and their expression analysis provide new evidence for the potential role of auxin in development and hormone response of plants. Our data imply that the auxin response genes may be involved in various vegetative and reproductive developmental processes. Furthermore, they will be involved in different signal pathways and may mediate the crosstalk between various hormone responses. PMID:24708619

  17. CONSERVATION OF GENES CONTROLLING POD SHATTER IN DIVERGENT MODEL PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effort put forth to identify and characterize genes and their functions in model species is proving to be particularly valuable. By focusing on relatively few species as models, the conservation of gene function in plants can be examined and those similarities and differences exploited for agron...

  18. Ecdysone Receptor-Based Gene Switches for Applications in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are a number of circumstances in which it is advantageous to use an inducible gene regulation system, the most obvious being when introducing transgenes whose constitutive expression is detrimental or even lethal to the host plants. The selective induction of gene expression is typically accom...

  19. Plant gene responses to frequency-specific sound signals

    Microsoft Academic Search

    Mi-Jeong Jeong; Chang-Ki Shim; Jin-Ohk Lee; Hawk-Bin Kwon; Yang-Han Kim; Seong-Kon Lee; Myeong-Ok Byun; Soo-Chul Park

    2008-01-01

    We identified a set of sound-responsive genes in plants using a sound-treated subtractive library and demonstrated sound regulation\\u000a through mRNA expression analyses. Under both light and dark conditions, sound up-regulated expression of rbcS and ald. These are also light-responsive genes and these results suggest that sound could represent an alternative to light as a\\u000a gene regulator. Ald mRNA expression increased

  20. Appearance and elaboration of the ethylene receptor family during land plant evolution.

    PubMed

    Gallie, Daniel R

    2015-03-01

    Ethylene is perceived following binding to endoplasmic reticulum-localized receptors, which in Arabidopsis thaliana, include ETR1, ERS1, EIN4, ETR2, and ERS2. These receptors fall into two subfamilies based on conservation of features within their histidine kinase domain. Subfamily 1 contains ETR1 and ERS1 whereas subfamily 2 contains EIN4, ETR2, and ERS2. Because ethylene receptors are found only in plants, this raises questions of when each receptor evolved. Here it is shown that subfamily 1 receptors encoded by a multigene family are present in all charophytes examined, these being most homologous to ETR1 based on their evolutionary relationship as well as containing histidine kinase and receiver domains. In charophytes and Physcomitrella patens, one or more gene family members contain the intron characteristic of subfamily 2 genes, indicating the first step in subfamily 2 receptor evolution. ERS1 homologs appear in basal angiosperm species after Amborella trichopoda and, in some early and basal angiosperm species and monocots in general, it is the only subfamily 1 receptor present. Distinct EIN4 and ETR2 homologs appear only in core eudicots and ERS2 homologs appear only in the Brassicaceae, suggesting it is the most recent receptor to evolve. These findings show that a subfamily 1 receptor had evolved and a subfamily 2 receptor had begun to evolve in plants prior to the colonization of land and only these two existed up to the appearance of the first basal angiosperm. The appearance of ERS2 in the Brassicaceae suggests ongoing evolution of the ethylene receptor family. PMID:25682121

  1. Reference Gene Selection in the Desert Plant Eremosparton songoricum

    PubMed Central

    Li, Xiao-Shuang; Yang, Hong-Lan; Zhang, Dao-Yuan; Zhang, Yuan-Ming; Wood, Andrew J.

    2012-01-01

    Eremosparton songoricum (Litv.) Vass. (E. songoricum) is a rare and extremely drought-tolerant desert plant that holds promise as a model organism for the identification of genes associated with water deficit stress. Here, we cloned and evaluated the expression of eight candidate reference genes using quantitative real-time reverse transcriptase polymerase chain reactions. The expression of these candidate reference genes was analyzed in a diverse set of 20 samples including various E. songoricum plant tissues exposed to multiple environmental stresses. GeNorm analysis indicated that expression stability varied between the reference genes in the different experimental conditions, but the two most stable reference genes were sufficient for normalization in most conditions. EsEF and Es?-TUB were sufficient for various stress conditions, EsEF and EsACT were suitable for samples of differing germination stages, and EsGAPDHand EsUBQ were most stable across multiple adult tissue samples. The Es18S gene was unsuitable as a reference gene in our analysis. In addition, the expression level of the drought-stress related transcription factor EsDREB2 verified the utility of E. songoricum reference genes and indicated that no single gene was adequate for normalization on its own. This is the first systematic report on the selection of reference genes in E. songoricum, and these data will facilitate future work on gene expression in this species. PMID:22837673

  2. Chymotrypsin protease inhibitor gene family in rice: Genomic organization and evidence for the presence of a bidirectional promoter shared between two chymotrypsin protease inhibitor genes.

    PubMed

    Singh, Amanjot; Sahi, Chandan; Grover, Anil

    2009-01-01

    Protease inhibitors play important roles in stress and developmental responses of plants. Rice genome contains 17 putative members in chymotrypsin protease inhibitor (ranging in size from 7.21 to 11.9 kDa) gene family with different predicted localization sites. Full-length cDNA encoding for a putative subtilisin-chymotrypsin protease inhibitor (OCPI2) was obtained from Pusa basmati 1 (indica) rice seedlings. 620 bp-long OCPI2 cDNA contained 219 bp-long ORF, coding for 72 amino acid-long 7.7 kDa subtilisin-chymotrypsin protease inhibitor (CPI) cytoplasmic protein. Expression analysis by semi-quantitative RT-PCR analysis showed that OCPI2 transcript is induced by varied stresses including salt, ABA, low temperature and mechanical injury in both root and shoot tissues of the seedlings. Transgenic rice plants produced with OCPI2 promoter-gus reporter gene showed that this promoter directs high salt- and ABA-regulated expression of the GUS gene. Another CPI gene (OCPI1) upstream to OCPI2 (with 1126 bp distance between the transcription initiation sites of the two genes; transcription in the reverse orientation) was noted in genome sequence of rice genome. A vector that had GFP and GUS reporter genes in opposite orientations driven by 1881 bp intergenic sequence between the OCPI2 and OCPI1 (encompassing the region between the translation initiation sites of the two genes) was constructed and shot in onion epidermal cells by particle bombardment. Expression of both GFP and GUS from the same epidermal cell showed that this sequence represents a bidirectional promoter. Examples illustrating gene pairs showing co-expression of two divergent neighboring genes sharing a bidirectional promoter have recently been extensively worked out in yeast and human systems. We provide an example of a gene pair constituted of two homologous genes showing co-expression governed by a bidirectional promoter in rice. PMID:18952157

  3. Unresolved orthology and peculiar coding sequence properties of lamprey genes: the KCNA gene family as test case

    PubMed Central

    2011-01-01

    Background In understanding the evolutionary process of vertebrates, cyclostomes (hagfishes and lamprey) occupy crucial positions. Resolving molecular phylogenetic relationships of cyclostome genes with gnathostomes (jawed vertebrates) genes is indispensable in deciphering both the species tree and gene trees. However, molecular phylogenetic analyses, especially those including lamprey genes, have produced highly discordant results between gene families. To efficiently scrutinize this problem using partial genome assemblies of early vertebrates, we focused on the potassium voltage-gated channel, shaker-related (KCNA) family, whose members are mostly single-exon. Results Seven sea lamprey KCNA genes as well as six elephant shark genes were identified, and their orthologies to bony vertebrate subgroups were assessed. In contrast to robustly supported orthology of the elephant shark genes to gnathostome subgroups, clear orthology of any sea lamprey gene could not be established. Notably, sea lamprey KCNA sequences displayed unique codon usage pattern and amino acid composition, probably associated with exceptionally high GC-content in their coding regions. This lamprey-specific property of coding sequences was also observed generally for genes outside this gene family. Conclusions Our results suggest that secondary modifications of sequence properties unique to the lamprey lineage may be one of the factors preventing robust orthology assessments of lamprey genes, which deserves further genome-wide validation. The lamprey lineage-specific alteration of protein-coding sequence properties needs to be taken into consideration in tackling the key questions about early vertebrate evolution. PMID:21699680

  4. Beating the Biological Clock: The Compressed Family Life Cycle of Young Women with BRCA Gene Alterations

    Microsoft Academic Search

    Allison Werner-Lin

    2008-01-01

    Empirical and clinical literature suggests a temporal thread running through family narratives of hereditary disease, linking past experiences to current beliefs about risk. This study asked young women with elevated risk of developing hereditary breast or ovarian cancer (HBOC) how their family histories with cancer and their gene status inform meaning construction around cancer risk and family development. Twenty-three women

  5. Novel mutations in the muscle chloride channel CLCN1 gene causing myotonia congenita in Spanish families

    Microsoft Academic Search

    C. de Diego; J. Gámez; E. Plassart-Schiess; A. Lasa; E. Del Río; C. Cervera; M. Baiget; P. Gallano; B. Fontaine

    1999-01-01

    Mutations in the muscular voltage-dependent chloride channel gene (CLCN1), located at 7q35, lead to recessive and dominant myotonia congenita. We report four novel mutations identified in this gene,\\u000a after clinical, electromyographic, and genetic studies performed on 13 unrelated families. Two of the four mutations (2512insCTCA\\u000a and A218T) were identified in families with Thomsen’s disease, one (Q658X) in a family with

  6. Gene-for-Gene Recognition in Plant-Pathogen Interactions

    Microsoft Academic Search

    Ian R. Crute

    1994-01-01

    Mediated through specifically matching allele pairs in the host and pathogen (at resistance and avirulence loci respectively), plants have a refined and highly discriminating capability to recognize and differentiate among genetic variants of potential pathogens. Knowledge of pathogen recognition by plants has primarily resulted from research associated with the selective breeding of crop species for disease resistance. The phenomenon is

  7. KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis.

    PubMed

    Izhaki, Anat; Bowman, John L

    2007-02-01

    Embryo patterning in Arabidopsis thaliana is highly affected when KANADI or Class III HD-Zip genes are compromised. Triple loss-of-function kan1 kan2 kan4 embryos exhibit striking defects in the peripheral-central axis, developing lateral leaf-like organs from the hypocotyls, whereas loss of Class III HD-Zip gene activity results in a loss of bilateral symmetry. Loss of KANADI activity in a Class III HD-Zip mutant background mitigates the defects in bilateral symmetry, implying that the two gene families act antagonistically during embryonic pattern formation. Dynamic patterns of auxin concentration and flux contribute to embryo patterning. Polar cellular distribution of PIN-FORMED1 (PIN1) mediates auxin flow throughout embryogenesis and is required for establishment of the apical-basal axis and bilateral symmetry. Defects in the pattern of PIN1 expression are evident when members of either the KANADI or Class III HD-Zip gene families are compromised. Abnormal expression patterns of PIN1 in KANADI or Class III HD-Zip multiple mutants and the phenotype of plants in which members of both gene families are mutated suggest that pattern formation along the central-peripheral axis results from interplay between auxin and the KANADI and Class III HD-Zip transcription factors, whose defined spatial and temporal expression patterns may also be influenced by auxin. PMID:17307928

  8. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Microsoft Academic Search

    Jeffrey P Mower; Saša Stefanovi?; Weilong Hao; Julie S Gummow; Kanika Jain; Dana Ahmed; Jeffrey D Palmer

    2010-01-01

    BACKGROUND: Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. RESULTS: In order to uncover the mechanistic details of

  9. Inheritance and Expression of Foreign Genes in Transgenic Soybean Plants

    Microsoft Academic Search

    Paul Christou; William F. Swain; Ning-Sun Yang; Dennis E. McCabe

    1989-01-01

    DNA-coated gold particles were introduced into meristems of immature soybean seeds using electric discharge particle acceleration to produce transgenic fertile soybean plants. The lineages of integrated foreign DNA in two independently transformed plants were followed in the first (R1) and second (R2) generation of self-pollinated progeny. One plant (4615) was transformed with the Escherichia coli genes for beta -glucuronidase and

  10. The Glutathione Peroxidase Gene Family in Thellungiella salsuginea: Genome-Wide Identification, Classification, and Gene and Protein Expression Analysis under Stress Conditions

    PubMed Central

    Gao, Fei; Chen, Jing; Ma, Tingting; Li, Huayun; Wang, Ning; Li, Zhanglei; Zhang, Zichen; Zhou, Yijun

    2014-01-01

    Glutathione peroxidases (GPX) catalyze the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols using reduced glutathione, which plays an essential role in ROS (reactive oxygen species) homeostasis and stress signaling. Thellungiella salsuginea (Eutrema salsugineum), a relative of Arabidopsis thaliana, displays an extremely high level of tolerance to salt, drought, cold and oxidative stresses. The enzymatic antioxidant systems may contribute to the stress tolerance of T. salsuginea. In the present study, we aimed at understanding the roles of the antioxidant enzymes in T. salsuginea by focusing on the GPX family. We identified the eight GPX genes in T. salsuginea, and the structure of the N-terminal domains indicated their putative chloroplastic, mitochondrial and cytoplasmic location. The exon-intron organization of these genes exhibited a conserved pattern among plant GPX genes. Multiple environmental stresses and hormone response related cis-acting elements were predicted in the promoters of TsGPX genes. The gene and protein expression profiles of TsGPXs in response to high level of salinity and osmotic stresses, in leaves and roots of T. salsuginea were investigated using real-time RT-PCR and western blotting analysis. Our result showed that different members of the GPX gene family were coordinately regulated under specific environmental stress conditions, and supported the important roles of TsGPXs in salt and drought stress response in T. salsuginea. PMID:24566152

  11. The glutathione peroxidase gene family in Thellungiella salsuginea: genome-wide identification, classification, and gene and protein expression analysis under stress conditions.

    PubMed

    Gao, Fei; Chen, Jing; Ma, Tingting; Li, Huayun; Wang, Ning; Li, Zhanglei; Zhang, Zichen; Zhou, Yijun

    2014-01-01

    Glutathione peroxidases (GPX) catalyze the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols using reduced glutathione, which plays an essential role in ROS (reactive oxygen species) homeostasis and stress signaling. Thellungiella salsuginea (Eutrema salsugineum), a relative of Arabidopsis thaliana, displays an extremely high level of tolerance to salt, drought, cold and oxidative stresses. The enzymatic antioxidant systems may contribute to the stress tolerance of T. salsuginea. In the present study, we aimed at understanding the roles of the antioxidant enzymes in T. salsuginea by focusing on the GPX family. We identified the eight GPX genes in T. salsuginea, and the structure of the N-terminal domains indicated their putative chloroplastic, mitochondrial and cytoplasmic location. The exon-intron organization of these genes exhibited a conserved pattern among plant GPX genes. Multiple environmental stresses and hormone response related cis-acting elements were predicted in the promoters of TsGPX genes. The gene and protein expression profiles of TsGPXs in response to high level of salinity and osmotic stresses, in leaves and roots of T. salsuginea were investigated using real-time RT-PCR and western blotting analysis. Our result showed that different members of the GPX gene family were coordinately regulated under specific environmental stress conditions, and supported the important roles of TsGPXs in salt and drought stress response in T. salsuginea. PMID:24566152

  12. Characterization of the Class IV Homeodomain-Leucine Zipper Gene Family in Arabidopsis

    Microsoft Academic Search

    Miyuki Nakamura; Hiroshi Katsumata; Mitsutomo Abe; Naoto Yabe; Yoshibumi Komeda; Kotaro T. Yamamoto; Taku Takahashi

    2006-01-01

    The Arabidopsis (Arabidopsis thaliana) genome contains 16 genes belonging to the class IV homeodomain-Leucine zipper gene family. These include GLABRA2, ANTHOCYANINLESS2, FWA, ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1), and PROTODERMAL FACTOR2 (PDF2). Our previous study revealed thatatml1pdf2 double mutants have severe defects in the shoot epidermal cell differentiation. Here, we have characterized additional members of this gene family, which we designated

  13. A novel Twinkle (PEO1) gene mutation in a Chinese family with adPEO

    Microsoft Academic Search

    Zhirong Liu; Yao Ding; Ailian Du; Baorong Zhang; Guohua Zhao; Meiping Ding

    Purpose: Autosomal dominant progressive external ophthalmoplegia (adPEO) is a genetically heterogeneous, adult-onset disease. Thus far, disease loci have been identified on four different nuclear genes. The purpose of this study is to identify the gene responsible for causing adPEO in a Chinese family. Methods: Clinical data and genomic DNA of a Chinese adPEO family were collected following informed consent. Gene

  14. Plant sulfate assimilation genes: redundancy versus specialization

    Microsoft Academic Search

    Stanislav Kopriva; Sarah G. Mugford; Colette Matthewman; Anna Koprivova

    2009-01-01

    Sulfur is an essential nutrient present in the amino acids cysteine and methionine, co-enzymes and vitamins. Plants and many\\u000a microorganisms are able to utilize inorganic sulfate and assimilate it into these compounds. Sulfate assimilation in plants\\u000a has been extensively studied because of the many functions of sulfur in plant metabolism and stress defense. The pathway is\\u000a highly regulated in a

  15. Possible effect of biotechnology on plant gene pools in Turkey

    PubMed Central

    Demir, Aynur

    2015-01-01

    The recent rapid developments in biotechnology have made great contributions to the study of plant gene pools. The application of in vitro methods in freeze storage and DNA protection techniques in fast production studies has made major advances. From that aspect, biotechnology is an indispensable means for the protection of plant gene pools, which includes the insurance of sustainable agriculture and development of species. Besides all the positive developments, one of the primary risks posed by the uncontrolled spreading of genetically modified organisms is the possibility for other non-target organisms to be negatively affected. Genes of plant origin should be given priority in this type of studies by taking into consideration such negative effects that may result in disruption of ecological balance and damage to plant genetic pools. Turkey, due to its ecological conditions and history, has a very important position in terms of plant gene pools. This richness ought to be protected without corrupting its natural quality and natural evolution process in order to provide the sources of species that will be required for future sustainable agricultural applications. Thus, attention should be paid to the use of biotechnological methods, which play an important role especially in the protection and use of local and original plant gene pools. PMID:26019612

  16. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.)

    PubMed Central

    2014-01-01

    Background Canola (Brassica napus L.) is one of the most important oil-producing crops in China and worldwide. The yield and quality of canola is frequently threatened by environmental stresses including drought, cold and high salinity. Calcium is a ubiquitous intracellular secondary messenger in plants. Calcineurin B-like proteins (CBLs) are Ca2+ sensors and regulate a group of Ser/Thr protein kinases called CBL-interacting protein kinases (CIPKs). Although the CBL-CIPK network has been demonstrated to play crucial roles in plant development and responses to various environmental stresses in Arabidopsis, little is known about their function in canola. Results In the present study, we identified seven CBL and 23 CIPK genes from canola by database mining and cloning of cDNA sequences of six CBLs and 17 CIPKs. Phylogenetic analysis of CBL and CIPK gene families across a variety of species suggested genome duplication and diversification. The subcellular localization of three BnaCBLs and two BnaCIPKs were determined using green fluorescence protein (GFP) as the reporter. We also demonstrated interactions between six BnaCBLs and 17 BnaCIPKs using yeast two-hybrid assay, and a subset of interactions were further confirmed by bimolecular fluorescence complementation (BiFC). Furthermore, the expression levels of six selected BnaCBL and 12 BnaCIPK genes in response to salt, drought, cold, heat, ABA, methyl viologen (MV) and low potassium were examined by quantitative RT-PCR and these CBL or CIPK genes were found to respond to multiple stimuli, suggesting that the canola CBL-CIPK network may be a point of convergence for several different signaling pathways. We also performed a comparison of interaction patterns and expression profiles of CBL and CIPK in Arabidospsis, canola and rice, to examine the differences between orthologs, highlighting the importance of studying CBL-CIPK in canola as a prerequisite for improvement of this crop. Conclusions Our findings indicate that CBL and CIPK family members may form a dynamic complex to respond to different abiotic or hormone signaling. Our comparative analyses of the CBL-CIPK network between canola, Arabidopsis and rice highlight functional differences and the necessity to study CBL-CIPK gene functions in canola. Our data constitute a valuable resource for CBL and CPK genomics. PMID:24397480

  17. The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress.

    PubMed

    Sappl, Pia G; Carroll, Adam J; Clifton, Rachael; Lister, Ryan; Whelan, James; Harvey Millar, A; Singh, Karam B

    2009-04-01

    Plant glutathione transferases (GSTs) are induced by diverse biotic and abiotic stimuli, and are important for protecting plants against oxidative damage. We have studied the primary transcriptional stress response of the entire Arabidopsis GST family to seven stresses, including both biotic and abiotic stimuli, with a focus on early changes in gene expression. Our results indicate that individual GST genes are highly specific in their induction patterns. Furthermore, we have been able to link individual GSTs to particular stress stimuli. Using RNAi, we successfully co-silenced a group of four phi GSTs that represent some of the most highly expressed GST genes. Despite a marked reduction in total phi GST protein levels, the transgenic plants showed no reduction in GST activity as measured using the model substrate 1-chloro-2,4-dinitrobenzene (CDNB), and appeared to have surprisingly robust physical phenotypes during stress. However, analysis of metabolite pools showed oxidation of the glutathione pool in the RNAi lines, and we observed alterations in carbon and nitrogen compounds following salicylic acid and hydrogen peroxide stress treatments, indicative of oxidative modification of primary metabolism. Thus, there appears to be a high degree of functional redundancy within the Arabidopsis GST family, with extensive disruption being required to reveal the roles of phi GSTs in protection against oxidative stress. PMID:19067976

  18. Screening of 38 genes identifies mutations in 62% of families with nonsyndromic deafness in Turkey.

    PubMed

    Duman, Duygu; Sirmaci, Asli; Cengiz, F Basak; Ozdag, Hilal; Tekin, Mustafa

    2011-01-01

    More than 60% of prelingual deafness is genetic in origin, and of these up to 95% are monogenic autosomal recessive traits. Causal mutations have been identified in 1 of 38 different genes in a subset of patients with nonsyndromic autosomal recessive deafness. In this study, we screened 49 unrelated Turkish families with at least three affected children born to consanguineous parents. Probands from all families were negative for mutations in the GJB2 gene, two large deletions in the GJB6 gene, and the 1555A>G substitution in the mitochondrial DNA MTRNR1 gene. Each family was subsequently screened via autozygosity mapping with genomewide single-nucleotide polymorphism arrays. If the phenotype cosegregated with a haplotype flanking one of the 38 genes, mutation analysis of the gene was performed. We identified 22 different autozygous mutations in 11 genes, other than GJB2, in 26 of 49 families, which overall explains deafness in 62% of families. Relative frequencies of genes following GJB2 were MYO15A (9.9%), TMIE (6.6%), TMC1 (6.6%), OTOF (5.0%), CDH23 (3.3%), MYO7A (3.3%), SLC26A4 (1.7%), PCDH15 (1.7%), LRTOMT (1.7%), SERPINB6 (1.7%), and TMPRSS3 (1.7%). Nineteen of 22 mutations are reported for the first time in this study. Unknown rare genes for deafness appear to be present in the remaining 23 families. PMID:21117948

  19. Pan-metazoan phylogeny of the DMRT gene family: a framework for functional studies.

    PubMed

    Wexler, Judith R; Plachetzki, David C; Kopp, Artyom

    2014-06-01

    The family of Doublesex-Mab-3 Related Transcription factors (DMRTs) includes key regulators of sexual differentiation and neurogenesis. To help understand the functional diversification of this gene family, we examined DMRT gene complements from the whole genome sequences and predicted gene models of 32 animal species representing 12 different phyla and from several non-metazoan outgroups. DMRTs are present in all animals except the sponge Amphimedon queenslandica, but are not found in any of the outgroups, indicating that this gene family is specific to animals and has an ancient pre-eumetazoan origin. Our analyses suggest that DMRT genes diversified independently in bilaterian and non-bilaterian animals. Most clades in the DMRT gene tree, including those containing the well-characterized DMRT1 and doublesex genes, have phylogenetically limited distributions. PMID:24903586

  20. Abundantly and Rarely Expressed Lhc Protein Genes Exhibit Distinct Regulation Patterns in Plants1[W

    PubMed Central

    Klimmek, Frank; Sjödin, Andreas; Noutsos, Christos; Leister, Dario; Jansson, Stefan

    2006-01-01

    We have analyzed gene regulation of the Lhc supergene family in poplar (Populus spp.) and Arabidopsis (Arabidopsis thaliana) using digital expression profiling. Multivariate analysis of the tissue-specific, environmental, and developmental Lhc expression patterns in Arabidopsis and poplar was employed to characterize four rarely expressed Lhc genes, Lhca5, Lhca6, Lhcb7, and Lhcb4.3. Those genes have high expression levels under different conditions and in different tissues than the abundantly expressed Lhca1 to 4 and Lhcb1 to 6 genes that code for the 10 major types of higher plant light-harvesting proteins. However, in some of the datasets analyzed, the Lhcb4 and Lhcb6 genes as well as an Arabidopsis gene not present in poplar (Lhcb2.3) exhibited minor differences to the main cooperative Lhc gene expression pattern. The pattern of the rarely expressed Lhc genes was always found to be more similar to that of PsbS and the various light-harvesting-like genes, which might indicate distinct physiological functions for the rarely and abundantly expressed Lhc proteins. The previously undetected Lhcb7 gene encodes a novel plant Lhcb-type protein that possibly contains an additional, fourth, transmembrane N-terminal helix with a highly conserved motif. As the Lhcb4.3 gene seems to be present only in Eurosid species and as its regulation pattern varies significantly from that of Lhcb4.1 and Lhcb4.2, we conclude it to encode a distinct Lhc protein type, Lhcb8. PMID:16524980

  1. Gene genealogies and population variation in plants

    Microsoft Academic Search

    Barbara A. Schaal; Kenneth M. Olsen

    2000-01-01

    Early in the development of plant evolutionary biology, genetic drift, fluctuations in population size, and isolation were identified as critical processes that affect the course of evolution in plant species. Attempts to assess these processes in natural populations became possible only with the development of neutral genetic markers in the 1960s. More recently, the application of historically ordered neutral molecular

  2. Identification and developmental expression of the ets gene family in the sea urchin ( Strongylocentrotus purpuratus)

    Microsoft Academic Search

    Francesca Rizzo; Montserrat Fernandez-Serra; Paola Squarzoni; Aristea Archimandritis; Maria I. Arnone

    2006-01-01

    A systematic search in the available scaffolds of the Strongylocentrotus purpuratus genome has revealed that this sea urchin has 11 members of the ets gene family. A phylogenetic analysis of these genes showed that almost all vertebrate ets subfamilies, with the exception of one, so far found only in mammals, are each represented by one orthologous sea urchin gene. The

  3. PAP IB, a new member of the Reg gene family: cloning, expression, structural properties, and evolution by gene duplication

    E-print Network

    Paris-Sud XI, Université de

    1 PAP IB, a new member of the Reg gene family: cloning, expression, structural properties-type lectin-like domain but possess additional highly conserved amino acids. By studying human databases and FII families, respectively. REG I and PAP IB share 50% sequence identity. After cloning PAP IB

  4. Direct visualization of horizontal gene transfer in cotton plants.

    PubMed

    Hao, Junjie; Jia, Xinhe; Yu, Jiwen; Deng, Shizheng

    2014-01-01

    Plant mitochondrial and chloroplast genes that underwent horizontal transfer have been identified by parasite and grafting systems, respectively. Here, we directly observed 3 horizontal gene transfer (HGT) events in the 45 second axillary shoots of grafted cotton plants (Gossypium barbadense and Gossypium hirsutum) after extirpating the first axillary bud. The second axillary shoots showed phenotypic variations in cotton flowers and seeds that were evidence of spontaneous development from cells in the grafting site. As the progeny segregated and did not show stable inheritance across 3 generations, inheritance of traits in our study differed from the stable heredity of HGT plants in previous studies. In those studies, plants were artificially regenerated from the graft junctions, and inheritance involved only the movement of chloroplast DNA or genomic material between cells. Our findings may provide a feasible method to enhance plant breeding and the study of HGT. PMID:25160847

  5. ZINC-INDUCED FACILITATOR-LIKE family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa) paralogs

    PubMed Central

    2011-01-01

    Background Duplications are very common in the evolution of plant genomes, explaining the high number of members in plant gene families. New genes born after duplication can undergo pseudogenization, neofunctionalization or subfunctionalization. Rice is a model for functional genomics research, an important crop for human nutrition and a target for biofortification. Increased zinc and iron content in the rice grain could be achieved by manipulation of metal transporters. Here, we describe the ZINC-INDUCED FACILITATOR-LIKE (ZIFL) gene family in plants, and characterize the genomic structure and expression of rice paralogs, which are highly affected by segmental duplication. Results Sequences of sixty-eight ZIFL genes, from nine plant species, were comparatively analyzed. Although related to MSF_1 proteins, ZIFL protein sequences consistently grouped separately. Specific ZIFL sequence signatures were identified. Monocots harbor a larger number of ZIFL genes in their genomes than dicots, probably a result of a lineage-specific expansion. The rice ZIFL paralogs were named OsZIFL1 to OsZIFL13 and characterized. The genomic organization of the rice ZIFL genes seems to be highly influenced by segmental and tandem duplications and concerted evolution, as rice genome contains five highly similar ZIFL gene pairs. Most rice ZIFL promoters are enriched for the core sequence of the Fe-deficiency-related box IDE1. Gene expression analyses of different plant organs, growth stages and treatments, both from our qPCR data and from microarray databases, revealed that the duplicated ZIFL gene pairs are mostly co-expressed. Transcripts of OsZIFL4, OsZIFL5, OsZIFL7, and OsZIFL12 accumulate in response to Zn-excess and Fe-deficiency in roots, two stresses with partially overlapping responses. Conclusions We suggest that ZIFL genes have different evolutionary histories in monocot and dicot lineages. In rice, concerted evolution affected ZIFL duplicated genes, possibly maintaining similar expression patterns between pairs. The enrichment for IDE1 boxes in rice ZIFL gene promoters suggests a role in Zn-excess and Fe-deficiency up-regulation of ZIFL transcripts. Moreover, this is the first description of the ZIFL gene family in plants and the basis for functional studies on this family, which may play important roles in Zn and Fe homeostasis in plants. PMID:21266036

  6. High-throughput genome sequencing of lichenizing fungi to assess gene loss in the ammonium transporter/ammonia permease gene family

    PubMed Central

    2013-01-01

    Background Horizontal gene transfer has shaped the evolution of the ammonium transporter/ammonia permease gene family. Horizontal transfers of ammonium transporter/ammonia permease genes into the fungi include one transfer from archaea to the filamentous ascomycetes associated with the adaptive radiation of the leotiomyceta. The horizontally transferred gene has subsequently been lost in most of the group but has been selectively retained in lichenizing fungi. However, some groups of lichens appear to have secondarily lost the archaeal ammonium transporter. Definitive assessment of gene loss can only be made via whole genome sequencing. Results Ammonium transporter/ammonia permease gene sequences were recovered from the assembled genomes of eight lichenizing fungi in key clades including the Caliciales, the Peltigerales, the Ostropomycetidae, the Acarosporomycetidae, the Verrucariales, the Arthoniomycetidae and the Lichinales. The genes recovered were included in a refined phylogenetic analysis. The hypothesis that lichens symbiotic with a nitrogen-fixing cyanobacterium as a primary photobiont or lichens living in high nitrogen environments lose the plant-like ammonium transporters was upheld, but did not account for additional losses of ammonium transporters/ammonia permeases in the lichens from the Acarosporomycetidae, Chaetotheriomycetes and Arthoniomycetes. In addition, the four ammonium transporter/ammonia permease genes from Cladonia grayi were shown to be functional by expressing the lichen genes in a strain of Saccharomyces cerevisiae in which all three native ammonium transporters were deleted, and assaying for growth on limiting ammonia as a sole nitrogen source. Conclusions Given sufficient coverage, next-generation sequencing technology can definitively address the loss of a gene in a genome when using environmental DNA isolated from lichen thalli collected from their natural habitats. Lichen-forming fungi have been losing ammonium transporters/ammonia permease genes at a slower rate than the most closely related non-lichenized lineages. These horizontally transferred genes in the Cladonia grayi genome encode functional ammonium transporters/ammonia permeases. PMID:23557360

  7. Characterization of three Arabidopsis thaliana immunophilin genes involved in the plant defense response against Pseudomonas syringae.

    PubMed

    Pogorelko, Gennady V; Mokryakova, Maria; Fursova, Oksana V; Abdeeva, Inna; Piruzian, Eleonora S; Bruskin, Sergey A

    2014-03-15

    Plant immunophilins are a broadly conserved family of proteins, which carry out a variety of cellular functions. In this study, we investigated three immunophilin genes involved in the Arabidopsis thaliana response to Pseudomonas syringae infection: a cytoplasmic localized AtCYP19, a cytoplasmic and nuclear localized AtCYP57, and one nucleus directed FKBP known as AtFKBP65. Arabidopsis knock-out mutations in these immunophilins result in an increased susceptibility to P. syringae, whereas overexpression of these genes alters the transcription profile of pathogen-related defense genes and led to enhanced resistance. Histochemical analysis revealed local gene expression of AtCYP19, AtCYP57, and AtFKBP65 in response to pathogen infection. AtCYP19 was shown to be involved in reactive oxygen species production, and both AtCYP57 and AtFKBP65 provided callose accumulation in plant cell wall. Identification of the involvement of these genes in biotic stress response brings a new set of data that will advance plant immune system research and can be widely used for further investigation in this area. PMID:24440291

  8. A family with hereditary thrombocythaemia and normal genes for thrombopoietin and c-Mpl.

    PubMed

    Tecuceanu, N; Dardik, R; Rabizadeh, E; Raanani, P; Inbal, A

    2006-11-01

    Hereditary thrombocythaemia (HT) is an inherited autosomal dominant disorder. Recent studies reported six different mutations, four within the thrombopoietin (TPO) gene and two within c-Mpl (TPO receptor) gene in six unrelated families with HT. This study investigated the molecular basis of hereditary thrombocythaemia in an Israeli-Jewish family. We screened the genes for TPO and c-Mpl by amplification and sequencing of all the corresponding exons including exon/intron boundaries and promoters. In addition, plasma levels of TPO and erythropoietin (EPO) were measured. No abnormality in the TPO/c-Mpl genes has been identified in affected HT family members. Plasma TPO and EPO levels were found to be normal/low or normal respectively in the individuals affected. In conclusion, lack of a molecular lesion within either TPO or cMpl genes indicate that HT may be caused by factors other than TPO-cMpl axis in this family. PMID:16995886

  9. American Journal of Botany 87(2): 273292. 2000. A PHYLOGENY OF THE FLOWERING PLANT FAMILY

    E-print Network

    Downie, Stephen R.

    273 American Journal of Botany 87(2): 273­292. 2000. A PHYLOGENY OF THE FLOWERING PLANT FAMILY; rpl16 intron; rpoC1 intron; Saniculoideae; Umbelliferae. The flowering plant family Apiaceae Lindl, celeriac, celery, chervil, coriander (cilantro), cumin, dill, fennel, lovage, parsley, and pars- nip

  10. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis

    PubMed Central

    2012-01-01

    Background GDSL esterases/lipases are a newly discovered subclass of lipolytic enzymes that are very important and attractive research subjects because of their multifunctional properties, such as broad substrate specificity and regiospecificity. Compared with the current knowledge regarding these enzymes in bacteria, our understanding of the plant GDSL enzymes is very limited, although the GDSL gene family in plant species include numerous members in many fully sequenced plant genomes. Only two genes from a large rice GDSL esterase/lipase gene family were previously characterised, and the majority of the members remain unknown. In the present study, we describe the rice OsGELP (Oryza sativa GDSL esterase/lipase protein) gene family at the genomic and proteomic levels, and use this knowledge to provide insights into the multifunctionality of the rice OsGELP enzymes. Results In this study, an extensive bioinformatics analysis identified 114 genes in the rice OsGELP gene family. A complete overview of this family in rice is presented, including the chromosome locations, gene structures, phylogeny, and protein motifs. Among the OsGELPs and the plant GDSL esterase/lipase proteins of known functions, 41 motifs were found that represent the core secondary structure elements or appear specifically in different phylogenetic subclades. The specification and distribution of identified putative conserved clade-common and -specific peptide motifs, and their location on the predicted protein three dimensional structure may possibly signify their functional roles. Potentially important regions for substrate specificity are highlighted, in accordance with protein three-dimensional model and location of the phylogenetic specific conserved motifs. The differential expression of some representative genes were confirmed by quantitative real-time PCR. The phylogenetic analysis, together with protein motif architectures, and the expression profiling were analysed to predict the possible biological functions of the rice OsGELP genes. Conclusions Our current genomic analysis, for the first time, presents fundamental information on the organization of the rice OsGELP gene family. With combination of the genomic, phylogenetic, microarray expression, protein motif distribution, and protein structure analyses, we were able to create supported basis for the functional prediction of many members in the rice GDSL esterase/lipase family. The present study provides a platform for the selection of candidate genes for further detailed functional study. PMID:22793791

  11. Selective Gene Expression in Multigene Families from Yeast to Mammals

    NSDL National Science Digital Library

    Jacob Z. Dalgaard (Marie Curie Research Institute; REV)

    2004-10-26

    Cell identity is the direct consequence of the genes expressed. This STKE Review highlights the diverse mechanisms that cells use to achieve exclusive gene expression. The details of the molecular mechanism underlying yeast mating-type switching are compared and contrasted with the mechanisms involved in immunoglobulin gene expression and odorant receptor gene expression in mammals.

  12. Trichothecene triangle: toxins, genes, and plant disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecenes are a family of sesquiterpene epoxides that inhibit eukaryotic protein synthesis. These mycotoxins are produced in Fusarium-infested grains such as corn, wheat, and barley, and ingestion of contaminated grain can result in a variety of symptoms including diarrhea, hemorrhaging and fee...

  13. Trans-species polymorphism and allele-specific expression in the CBF gene family of wild tomatoes.

    PubMed

    Mboup, Mamadou; Fischer, Iris; Lainer, Hilde; Stephan, Wolfgang

    2012-12-01

    Abiotic stresses such as drought, extreme temperatures, and salinity have a strong impact on plant adaptation. They act as selective forces on plant physiology and morphology. These selective pressures leave characteristic footprints that can be detected at the DNA sequence level using population genetic tools. On the basis of a candidate gene approach, we investigated signatures of adaptation in two wild tomato species, Solanum peruvianum and S. chilense. These species are native to western South America and constitute a model system for studying adaptation, due to their ability to colonize diverse habitats and the available genetic resources. We have determined the selective forces acting on the C-repeat binding factor (CBF) gene family, which consists of three genes, and is known to be involved in tolerance to abiotic stresses, in particular in cold tolerance. We also analyzed the expression pattern of these genes after drought and cold stresses. We found that CBF3 evolves under very strong purifying selection, CBF2 is under balancing selection in some populations of both species (S. peruvianum/Quicacha and S. chilense/Nazca) maintaining a trans-species polymorphism, and CBF1 is a pseudogene. In contrast to previous studies of cultivated tomatoes showing that only CBF1 was cold induced, we found that all three CBF genes are cold induced in wild tomatoes. All three genes are also drought induced. CBF2 exhibits an allele-specific expression pattern associated with the trans-species polymorphism. PMID:22787283

  14. AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development.

    PubMed

    Péret, Benjamin; Swarup, Kamal; Ferguson, Alison; Seth, Malvika; Yang, Yaodong; Dhondt, Stijn; James, Nicholas; Casimiro, Ilda; Perry, Paula; Syed, Adnan; Yang, Haibing; Reemmer, Jesica; Venison, Edward; Howells, Caroline; Perez-Amador, Miguel A; Yun, Jeonga; Alonso, Jose; Beemster, Gerrit T S; Laplaze, Laurent; Murphy, Angus; Bennett, Malcolm J; Nielsen, Erik; Swarup, Ranjan

    2012-07-01

    Auxin transport, which is mediated by specialized influx and efflux carriers, plays a major role in many aspects of plant growth and development. AUXIN1 (AUX1) has been demonstrated to encode a high-affinity auxin influx carrier. In Arabidopsis thaliana, AUX1 belongs to a small multigene family comprising four highly conserved genes (i.e., AUX1 and LIKE AUX1 [LAX] genes LAX1, LAX2, and LAX3). We report that all four members of this AUX/LAX family display auxin uptake functions. Despite the conservation of their biochemical function, AUX1, LAX1, and LAX3 have been described to regulate distinct auxin-dependent developmental processes. Here, we report that LAX2 regulates vascular patterning in cotyledons. We also describe how regulatory and coding sequences of AUX/LAX genes have undergone subfunctionalization based on their distinct patterns of spatial expression and the inability of LAX sequences to rescue aux1 mutant phenotypes, respectively. Despite their high sequence similarity at the protein level, transgenic studies reveal that LAX proteins are not correctly targeted in the AUX1 expression domain. Domain swapping studies suggest that the N-terminal half of AUX1 is essential for correct LAX localization. We conclude that Arabidopsis AUX/LAX genes encode a family of auxin influx transporters that perform distinct developmental functions and have evolved distinct regulatory mechanisms. PMID:22773749

  15. The murine DSCR1-like (Down Syndrome Candidate Region 1) gene family: conserved synteny with the human orthologous genes

    Microsoft Academic Search

    Pierluigi Strippoli; Massimiliano Petrini; Luca Lenzi; Paolo Carinci; Maria Zannotti

    2000-01-01

    A recently recognized gene family, conserved from yeast to humans, includes Down syndrome candidate region 1 gene (DSCR1), Adapt78 (recognized as the hamster ortholog of the DSCR1 isoform 4), ZAKI-4 (renamed DSCR1-like 1, DSCR1L1) and DSCR1L2 (a novel gene on human chromosome 1), along with yeast and C. elegans single members (Strippoli P., Lenzi L., Petrini M., Carinci P., Zannotti

  16. Functional redundancy of the Notch gene family during mouse embryogenesis: Analysis of Notch gene expression in Notch3-deficient mice

    Microsoft Academic Search

    Takeo Kitamoto; Keikichi Takahashi; Hiroaki Takimoto; Kazuma Tomizuka; Michiko Hayasaka; Takeshi Tabira; Kazunori Hanaoka

    2005-01-01

    The Notch3 gene, a member of the Notch gene family, is expressed in a wide variety of tissues during development. We generated and analyzed Notch3-deficient mice to assess the in vivo role of the Notch3 gene. Consistent with previous observation of Krebs et al. [Characterization of Notch3-deficient mice: normal embryonic development and absence of genetic interactions with a Notch1 mutation,

  17. KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research.

    PubMed

    Afendi, Farit Mochamad; Okada, Taketo; Yamazaki, Mami; Hirai-Morita, Aki; Nakamura, Yukiko; Nakamura, Kensuke; Ikeda, Shun; Takahashi, Hiroki; Altaf-Ul-Amin, Md; Darusman, Latifah K; Saito, Kazuki; Kanaya, Shigehiko

    2012-02-01

    A database (DB) describing the relationships between species and their metabolites would be useful for metabolomics research, because it targets systematic analysis of enormous numbers of organic compounds with known or unknown structures in metabolomics. We constructed an extensive species-metabolite DB for plants, the KNApSAcK Core DB, which contains 101,500 species-metabolite relationships encompassing 20,741 species and 50,048 metabolites. We also developed a search engine within the KNApSAcK Core DB for use in metabolomics research, making it possible to search for metabolites based on an accurate mass, molecular formula, metabolite name or mass spectra in several ionization modes. We also have developed databases for retrieving metabolites related to plants used for a range of purposes. In our multifaceted plant usage DB, medicinal/edible plants are related to the geographic zones (GZs) where the plants are used, their biological activities, and formulae of Japanese and Indonesian traditional medicines (Kampo and Jamu, respectively). These data are connected to the species-metabolites relationship DB within the KNApSAcK Core DB, keyed via the species names. All databases can be accessed via the website http://kanaya.naist.jp/KNApSAcK_Family/. KNApSAcK WorldMap DB comprises 41,548 GZ-plant pair entries, including 222 GZs and 15,240 medicinal/edible plants. The KAMPO DB consists of 336 formulae encompassing 278 medicinal plants; the JAMU DB consists of 5,310 formulae encompassing 550 medicinal plants. The Biological Activity DB consists of 2,418 biological activities and 33,706 pairwise relationships between medicinal plants and their biological activities. Current statistics of the binary relationships between individual databases were characterized by the degree distribution analysis, leading to a prediction of at least 1,060,000 metabolites within all plants. In the future, the study of metabolomics will need to take this huge number of metabolites into consideration. PMID:22123792

  18. The Limits of Family Influence: Genes, Experience, and Behavior.

    ERIC Educational Resources Information Center

    Rowe, David C.

    This book examines socialization science, which is the empirical effort to understand how children acquire traits from their families and cultures. This work proposes that one part of the family influence process--broad differences in family environments, except for those that are neglectful, abusive, or without opportunity--may exert little…

  19. Transcriptome Wide Identification and Validation of Calcium Sensor Gene Family in the Developing Spikes of Finger Millet Genotypes for Elucidating Its Role in Grain Calcium Accumulation

    PubMed Central

    Singh, Uma M.; Chandra, Muktesh; Shankhdhar, Shailesh C.; Kumar, Anil

    2014-01-01

    Background In finger millet, calcium is one of the important and abundant mineral elements. The molecular mechanisms involved in calcium accumulation in plants remains poorly understood. Transcriptome sequencing of genetically diverse genotypes of finger millet differing in grain calcium content will help in understanding the trait. Principal Finding In this study, the transcriptome sequencing of spike tissues of two genotypes of finger millet differing in their grain calcium content, were performed for the first time. Out of 109,218 contigs, 78 contigs in case of GP-1 (Low Ca genotype) and out of 120,130 contigs 76 contigs in case of GP-45 (High Ca genotype), were identified as calcium sensor genes. Through in silico analysis all 82 unique calcium sensor genes were classified into eight calcium sensor gene family viz., CaM & CaMLs, CBLs, CIPKs, CRKs, PEPRKs, CDPKs, CaMKs and CCaMK. Out of 82 genes, 12 were found diverse from the rice orthologs. The differential expression analysis on the basis of FPKM value resulted in 24 genes highly expressed in GP-45 and 11 genes highly expressed in GP-1. Ten of the 35 differentially expressed genes could be assigned to three documented pathways involved mainly in stress responses. Furthermore, validation of selected calcium sensor responder genes was also performed by qPCR, in developing spikes of both genotypes grown on different concentration of exogenous calcium. Conclusion Through de novo transcriptome data assembly and analysis, we reported the comprehensive identification and functional characterization of calcium sensor gene family. The calcium sensor gene family identified and characterized in this study will facilitate in understanding the molecular basis of calcium accumulation and development of calcium biofortified crops. Moreover, this study also supported that identification and characterization of gene family through Illumina paired-end sequencing is a potential tool for generating the genomic information of gene family in non-model species. PMID:25157851

  20. Expression analysis of Arabidopsis XH/XS-domain proteins indicates overlapping and distinct functions for members of this gene family

    PubMed Central

    Butt, Haroon; Luschnig, Christian

    2014-01-01

    RNA-directed DNA methylation (RdDM) is essential for de novo DNA methylation in higher plants, and recent reports established novel elements of this silencing pathway in the model organism Arabidopsis thaliana. INVOLVED IN DE NOVO DNA METHYLATION 2 (IDN2) and the closely related FACTOR OF DNA METHYLATION (FDM) are members of a plant-specific family of dsRNA-binding proteins characterized by conserved XH/XS domains and implicated in the regulation of RdDM at chromatin targets. Genetic analyses have suggested redundant as well as non-overlapping activities for different members of the gene family. However, detailed insights into the function of XH/XS-domain proteins are still elusive. By the generation and analysis of higher-order mutant combinations affected in IDN2 and further members of the gene family, we have provided additional evidence for their redundant activity. Distinct roles for members of the XH/XS-domain gene family were indicated by differences in their expression and subcellular localization. Fluorescent protein-tagged FDM genes were expressed either in nuclei or in the cytoplasm, suggestive of activities of XH/XS-domain proteins in association with chromatin as well as outside the nuclear compartment. In addition, we observed altered location of a functional FDM1–VENUS reporter from the nucleus into the cytoplasm under conditions when availability of further FDM proteins was limited. This is suggestive of a mechanism by which redistribution of XH/XS-domain proteins could compensate for the loss of closely related proteins. PMID:24574485

  1. Expression analysis of Arabidopsis XH/XS-domain proteins indicates overlapping and distinct functions for members of this gene family.

    PubMed

    Butt, Haroon; Graner, Sonja; Luschnig, Christian

    2014-03-01

    RNA-directed DNA methylation (RdDM) is essential for de novo DNA methylation in higher plants, and recent reports established novel elements of this silencing pathway in the model organism Arabidopsis thaliana. Involved in de novo DNA methylation 2 (IDN2) and the closely related factor of DNA methylation (FDM) are members of a plant-specific family of dsRNA-binding proteins characterized by conserved XH/XS domains and implicated in the regulation of RdDM at chromatin targets. Genetic analyses have suggested redundant as well as non-overlapping activities for different members of the gene family. However, detailed insights into the function of XH/XS-domain proteins are still elusive. By the generation and analysis of higher-order mutant combinations affected in IDN2 and further members of the gene family, we have provided additional evidence for their redundant activity. Distinct roles for members of the XH/XS-domain gene family were indicated by differences in their expression and subcellular localization. Fluorescent protein-tagged FDM genes were expressed either in nuclei or in the cytoplasm, suggestive of activities of XH/XS-domain proteins in association with chromatin as well as outside the nuclear compartment. In addition, we observed altered location of a functional FDM1-VENUS reporter from the nucleus into the cytoplasm under conditions when availability of further FDM proteins was limited. This is suggestive of a mechanism by which redistribution of XH/XS-domain proteins could compensate for the loss of closely related proteins. PMID:24574485

  2. Disruption of the plant gene MOM releases transcriptional silencing of methylated genes

    Microsoft Academic Search

    Paolo Amedeo; Yoshiki Habu; Karin Afsar; Ortrun Mittelsten Scheid; Jerzy Paszkowski

    2000-01-01

    Epigenetic modifications change transcription patterns in multicellular organisms to achieve tissue-specific gene expression and inactivate alien DNA such as transposons or transgenes. In plants and animals, DNA methylation is involved in heritability and flexibility of epigenetic states, although its function is far from clear. We have isolated an Arabidopsis gene, MOM, whose product is required for the maintenance of transcriptional

  3. An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana.

    PubMed

    Jang, Ji Young; Kim, Dong Gu; Kim, Yeon Ok; Kim, Jin Sun; Kang, Hunseung

    2004-03-01

    Aquaporin belongs to a highly conserved group of membrane proteins called major intrinsic proteins that facilitate water transport across biological membranes. The genome of Arabidopsis encodes 35 aquaporin genes with 13 homologs in the plasma membrane intrinsic protein (PIP) subgroup. However, the function of each individual aquaporin isoform and the integrated function of plant aquaporins under various physiological conditions remain unclear. As a step toward understanding the aquaporin function in plants under various environmental stimuli, the expressions of a gene family encoding 13 PIPs in Arabidopsis thaliana under various abiotic stress conditions including drought, cold, and high salinity, or abscisic acid (ABA) treatment were investigated by a quantitative real-time reverse transcription-PCR analysis. Several PIP genes were predominantly expressed either in the roots or in the flowers. The expressions of both the highly expressed aquaporins including PIP1;1, PIP1;2, and PIP2;7 and the weakly expressed aquaporins such as PIP1;4, PIP2;1, PIP2;4, and PIP2;5 were modulated by external stimuli. The analyses of our data revealed that only the PIP2;5 was up-regulated by cold treatment, and most of the PIP genes were down-regulated by cold stress. Marked up- or down-regulation in PIP expression was observed by drought stress, whereas PIP genes were less-severely modulated by high salinity. The responsiveness of each aquaporin to ABA were different, implying that the regulation of aquaporin expression involves both ABA-dependent and ABA-independent signaling pathways. Together, our comprehensive expression profile of the 13 members of the PIP gene family provides novel basis to allocate the stress-related biological function to each PIP gene. PMID:15356390

  4. Atypical course in individuals from Spanish families with benign familial infantile seizures and mutations in the PRRT2 gene.

    PubMed

    Guerrero-López, Rosa; Ortega-Moreno, Laura; Giráldez, Beatriz G; Alarcón-Morcillo, Cristina; Sánchez-Martín, Gema; Nieto-Barrera, Manuel; Gutiérrez-Delicado, Eva; Gómez-Garre, Pilar; Martínez-Bermejo, Antonio; García-Peñas, Juan J; Serratosa, José M

    2014-10-01

    A benign prognosis has been claimed in benign familial infantile seizures (BFIS). However, few studies have assessed the long-term evolution of these patients. The objective of this study is to describe atypical courses and presentations in BFIS families with mutations in PRRT2 gene. We studied clinically affected individuals from five BFIS Spanish families. We found mutations in PRRT2 in all 5 families. A non-BFIS phenotype or an atypical BFIS course was found in 9/25 (36%) patients harbouring a PRRT2 mutation. Atypical features included neonatal onset, mild hemiparesis, learning difficulties or mental retardation, and recurrent seizures during adulthood. We also report a novel PRRT2 mutation (c.121_122delGT). In BFIS families an atypical phenotype was present in a high percentage of the patients. These findings expand the clinical spectrum of PRRT2 mutations including non-benign epileptic phenotypes. PMID:25060993

  5. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1,2-CUC2 transcription factor family in apple.

    PubMed

    Su, Hongyan; Zhang, Shizhong; Yuan, Xiaowei; Chen, Changtian; Wang, Xiao-Fei; Hao, Yu-Jin

    2013-10-01

    NAC (NAM, ATAF1,2, and CUC2) proteins constitute one of the largest families of plant-specific transcription factors. To date, little is known about the NAC genes in the apple (Malus domestica). In this study, a total of 180 NAC genes were identified in the apple genome and were phylogenetically clustered into six groups (I-VI) with the NAC genes from Arabidopsis and rice. The predicted apple NAC genes were distributed across all of 17 chromosomes at various densities. Additionally, the gene structure and motif compositions of the apple NAC genes were analyzed. Moreover, the expression of 29 selected apple NAC genes was analyzed in different tissues and under different abiotic stress conditions. All of the selected genes, with the exception of four genes, were expressed in at least one of the tissues tested, which indicates that the NAC genes are involved in various aspects of the physiological and developmental processes of the apple. Encouragingly, 17 of the selected genes were found to respond to one or more of the abiotic stress treatments, and these 17 genes included not only the expected 7 genes that were clustered with the well-known stress-related marker genes in group IV but also 10 genes located in other subgroups, none of which contains members that have been reported to be stress-related. To the best of our knowledge, this report describes the first genome-wide analysis of the apple NAC gene family, and the results should provide valuable information for understanding the classification and putative functions of this family. PMID:23867599

  6. Novel localization of callose in the spores of Physcomitrella patens and phylogenomics of the callose synthase gene family

    PubMed Central

    Schuette, Scott; Wood, Andrew J.; Geisler, Matt; Geisler-Lee, Jane; Ligrone, Roberto; Renzaglia, Karen S.

    2009-01-01

    Background and Aims Callose involvement in spore development is a plesiomorphic feature of land plants. Correlated light, fluorescence and immuno-electron microscopy was conducted on the developing spores of Physcomitrella patens to probe for callose. Using a bioinformatic approach, the callose synthase (PpCalS) genes were annotated and PpCalS and AtCalS gene families compared, testing the hypothesis that an exine development orthologue is present in P. patens based on deduced polypeptide similarity with AtCalS5, a known exine development gene. Methods Spores were stained with aniline blue fluorescent dye. Capsules were prepared for immuno-light and immuno-electron microscopy by gold labelling callose epitopes with monoclonal antibody. BLAST searches were conducted using the AtCalS5 sequence as a query against the P. patens genome. Phylogenomic analysis of the CalS gene family was conducted using PAUP (v.4·1b10). Key Results Callose is briefly present in the aperture of developing P. patens spores. The PpCalS gene family consists of 12 copies that fall into three distinct clades with AtCalS genes. PpCalS5 is an orthologue to AtCalS5 with highly conserved domains and 64 % similarity of their deduced polypeptides. Conclusions This is the first study to identify the presence of callose in moss spores. AtCalS5 was previously shown to be involved in pollen exine development, thus making PpCalS5 a suspect gene involved in moss spore exine development. PMID:19155219

  7. Saltatory Evolution of the Ectodermal Neural Cortex Gene Family at the Vertebrate Origin

    PubMed Central

    Feiner, Nathalie; Murakami, Yasunori; Breithut, Lisa; Mazan, Sylvie; Meyer, Axel; Kuraku, Shigehiro

    2013-01-01

    The ectodermal neural cortex (ENC) gene family, whose members are implicated in neurogenesis, is part of the kelch repeat superfamily. To date, ENC genes have been identified only in osteichthyans, although other kelch repeat-containing genes are prevalent throughout bilaterians. The lack of elaborate molecular phylogenetic analysis with exhaustive taxon sampling has obscured the possible link of the establishment of this gene family with vertebrate novelties. In this study, we identified ENC homologs in diverse vertebrates by means of database mining and polymerase chain reaction screens. Our analysis revealed that the ENC3 ortholog was lost in the basal eutherian lineage through single-gene deletion and that the triplication between ENC1, -2, and -3 occurred early in vertebrate evolution. Including our original data on the catshark and the zebrafish, our comparison revealed high conservation of the pleiotropic expression pattern of ENC1 and shuffling of expression domains between ENC1, -2, and -3. Compared with many other gene families including developmental key regulators, the ENC gene family is unique in that conventional molecular phylogenetic inference could identify no obvious invertebrate ortholog. This suggests a composite nature of the vertebrate-specific gene repertoire, consisting not only of de novo genes introduced at the vertebrate origin but also of long-standing genes with no apparent invertebrate orthologs. Some of the latter, including the ENC gene family, may be too rapidly evolving to provide sufficient phylogenetic signals marking orthology to their invertebrate counterparts. Such gene families that experienced saltatory evolution likely remain to be explored and might also have contributed to phenotypic evolution of vertebrates. PMID:23843192

  8. SMT3A, a human homologue of the S. cerevisiae SMT3 gene, maps to chromosome 21qter and defines a novel gene family

    SciTech Connect

    Lapenta, V.; Chiurazzi, P. [Catholic Univ., Rome (Italy)] [Catholic Univ., Rome (Italy); Van Der Spek, P.; Hanaoka, Fumio [Osaka, Univ. (Japan)] [and others] [Osaka, Univ. (Japan); and others

    1997-03-01

    cDNA selection was used to isolate coding sequences from cosmids mapping to the gene-rich telomeric region of human chromosome 21q. A novel cDNA, termed SMT3A, was isolated and mapped between the loci PFKL and D21S171, about 2.2 Mb proximal to the telomere. The predicted protein of 103 amino acids appears to be a homologue of the Saccharomyces cerevisiae SMT3 protein, whose gene was previously isolated as a suppressor of mutations in the MIF2 gene. The yeast MIF2 gene encodes an essential centromeric protein and shows homology to mammalian CENP-C, an integral component of active kinetochores. SMT3A was found to be highly homologous to two other recently isolated human genes, suggesting the presence of a new gene family. Homologous sequences were also found in protozoa, metazoa, and plants. Moreover, all predicted proteins show significant homology to ubiquitin. The proposed role of yeast SMT3 as centromeric protein and the strong evolutionary conservation of the SMT3A gene suggest an involvement of the encoded protein in the function and/or structure of the eukaryotic kinetochore. 30 refs., 5 figs.

  9. Horizontal transfer of expressed genes in a parasitic flowering plant

    PubMed Central

    2012-01-01

    Background Recent studies have shown that plant genomes have potentially undergone rampant horizontal gene transfer (HGT). In plant parasitic systems HGT appears to be facilitated by the intimate physical association between the parasite and its host. HGT in these systems has been invoked when a DNA sequence obtained from a parasite is placed phylogenetically very near to its host rather than with its closest relatives. Studies of HGT in parasitic plants have relied largely on the fortuitous discovery of gene phylogenies that indicate HGT, and no broad systematic search for HGT has been undertaken in parasitic systems where it is most expected to occur. Results We analyzed the transcriptomes of the holoparasite Rafflesia cantleyi Solms-Laubach and its obligate host Tetrastigma rafflesiae Miq. using phylogenomic approaches. Our analyses show that several dozen actively transcribed genes, most of which appear to be encoded in the nuclear genome, are likely of host origin. We also find that hundreds of vertically inherited genes (VGT) in this parasitic plant exhibit codon usage properties that are more similar to its host than to its closest relatives. Conclusions Our results establish for the first time a substantive number of HGTs in a plant host-parasite system. The elevated rate of unidirectional host-to- parasite gene transfer raises the possibility that HGTs may provide a fitness benefit to Rafflesia for maintaining these genes. Finally, a similar convergence in codon usage of VGTs has been shown in microbes with high HGT rates, which may help to explain the increase of HGTs in these parasitic plants. PMID:22681756

  10. A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants

    PubMed Central

    Chiappetta, Adriana; Muto, Antonella; Bruno, Leonardo; Woloszynska, Magdalena; Lijsebettens, Mieke Van; Bitonti, Maria B.

    2015-01-01

    Dehydrins belong to a protein family whose expression may be induced or enhanced by developmental process and environmental stresses that lead to cell dehydration. A dehydrin gene named OesDHN was isolated and characterized from oleaster (Olea europaea L. subsp. europaea, var. sylvestris), the wild form of olive. To elucidate the contribution of OesDHN in the development of drought tolerance, its expression levels were investigated in oleaster plants during development and under drought stress condition. The involvement of OesDHN in plant stress response was also evaluated in Arabidopsis transgenic lines, engineered to overexpress this gene, and exposed to a controlled mild osmotic stress. OesDHN expression was found to be modulated during development and induced under mild drought stress in oleaster plants. In addition, the Arabidopsis transgenic plants showed a better tolerance to osmotic stress than wild-type plants. The results demonstrated that OesDHN expression is induced by drought stress and is able to confer osmotic stress tolerance. We suggest a role for OesDHN, as a putative functional marker of plant stress tolerance. PMID:26175736

  11. Transcriptional profiling of the human fibrillin/LTBP gene family, key regulators of mesenchymal cell functions

    PubMed Central

    Davis, Margaret R.; Andersson, Robin; Severin, Jessica; de Hoon, Michiel; Bertin, Nicolas; Baillie, J. Kenneth; Kawaji, Hideya; Sandelin, Albin; Forrest, Alistair R.R.; Summers, Kim M.

    2014-01-01

    The fibrillins and latent transforming growth factor binding proteins (LTBPs) form a superfamily of extracellular matrix (ECM) proteins characterized by the presence of a unique domain, the 8-cysteine transforming growth factor beta (TGF?) binding domain. These proteins are involved in the structure of the extracellular matrix and controlling the bioavailability of TGF? family members. Genes encoding these proteins show differential expression in mesenchymal cell types which synthesize the extracellular matrix. We have investigated the promoter regions of the seven gene family members using the FANTOM5 CAGE database for human. While the protein and nucleotide sequences show considerable sequence similarity, the promoter regions were quite diverse. Most genes had a single predominant transcription start site region but LTBP1 and LTBP4 had two regions initiating different transcripts. Most of the family members were expressed in a range of mesenchymal and other cell types, often associated with use of alternative promoters or transcription start sites within a promoter in different cell types. FBN3 was the lowest expressed gene, and was found only in embryonic and fetal tissues. The different promoters for one gene were more similar to each other in expression than to promoters of the other family members. Notably expression of all 22 LTBP2 promoters was tightly correlated and quite distinct from all other family members. We located candidate enhancer regions likely to be involved in expression of the genes. Each gene was associated with a unique subset of transcription factors across multiple promoters although several motifs including MAZ, SP1, GTF2I and KLF4 showed overrepresentation across the gene family. FBN1 and FBN2, which had similar expression patterns, were regulated by different transcription factors. This study highlights the role of alternative transcription start sites in regulating the tissue specificity of closely related genes and suggests that this important class of extracellular matrix proteins is subject to subtle regulatory variations that explain the differential roles of members of this gene family. PMID:24703491

  12. Transcriptional profiling of the human fibrillin/LTBP gene family, key regulators of mesenchymal cell functions.

    PubMed

    Davis, Margaret R; Andersson, Robin; Severin, Jessica; de Hoon, Michiel; Bertin, Nicolas; Baillie, J Kenneth; Kawaji, Hideya; Sandelin, Albin; Forrest, Alistair R R; Summers, Kim M

    2014-05-01

    The fibrillins and latent transforming growth factor binding proteins (LTBPs) form a superfamily of extracellular matrix (ECM) proteins characterized by the presence of a unique domain, the 8-cysteine transforming growth factor beta (TGF?) binding domain. These proteins are involved in the structure of the extracellular matrix and controlling the bioavailability of TGF? family members. Genes encoding these proteins show differential expression in mesenchymal cell types which synthesize the extracellular matrix. We have investigated the promoter regions of the seven gene family members using the FANTOM5 CAGE database for human. While the protein and nucleotide sequences show considerable sequence similarity, the promoter regions were quite diverse. Most genes had a single predominant transcription start site region but LTBP1 and LTBP4 had two regions initiating different transcripts. Most of the family members were expressed in a range of mesenchymal and other cell types, often associated with use of alternative promoters or transcription start sites within a promoter in different cell types. FBN3 was the lowest expressed gene, and was found only in embryonic and fetal tissues. The different promoters for one gene were more similar to each other in expression than to promoters of the other family members. Notably expression of all 22 LTBP2 promoters was tightly correlated and quite distinct from all other family members. We located candidate enhancer regions likely to be involved in expression of the genes. Each gene was associated with a unique subset of transcription factors across multiple promoters although several motifs including MAZ, SP1, GTF2I and KLF4 showed overrepresentation across the gene family. FBN1 and FBN2, which had similar expression patterns, were regulated by different transcription factors. This study highlights the role of alternative transcription start sites in regulating the tissue specificity of closely related genes and suggests that this important class of extracellular matrix proteins is subject to subtle regulatory variations that explain the differential roles of members of this gene family. PMID:24703491

  13. Divergence of gene body DNA methylation and evolution of plant duplicate genes.

    PubMed

    Wang, Jun; Marowsky, Nicholas C; Fan, Chuanzhu

    2014-01-01

    It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences) of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes. PMID:25310342

  14. Genetic analysis of the ADGF multigene family by homologous recombination and gene conversion in Drosophila.

    PubMed Central

    Dolezal, Tomas; Gazi, Michal; Zurovec, Michal; Bryant, Peter J

    2003-01-01

    Many Drosophila genes exist as members of multigene families and within each family the members can be functionally redundant, making it difficult to identify them by classical mutagenesis techniques based on phenotypic screening. We have addressed this problem in a genetic analysis of a novel family of six adenosine deaminase-related growth factors (ADGFs). We used ends-in targeting to introduce mutations into five of the six ADGF genes, taking advantage of the fact that five of the family members are encoded by a three-gene cluster and a two-gene cluster. We used two targeting constructs to introduce loss-of-function mutations into all five genes, as well as to isolate different combinations of multiple mutations, independent of phenotypic consequences. The results show that (1) it is possible to use ends-in targeting to disrupt gene clusters; (2) gene conversion, which is usually considered a complication in gene targeting, can be used to help recover different mutant combinations in a single screening procedure; (3) the reduction of duplication to a single copy by induction of a double-strand break is better explained by the single-strand annealing mechanism than by simple crossing over between repeats; and (4) loss of function of the most abundantly expressed family member (ADGF-A) leads to disintegration of the fat body and the development of melanotic tumors in mutant larvae. PMID:14573477

  15. Inducible Gene Expression in Mammals: Plants Add to the Menu

    NSDL National Science Digital Library

    Sean R. Cutler (Department of Botany and Plant Sciences; Center for Plant Cell Biology REV)

    2011-03-15

    Achieving inducible gene expression in mammalian cells with inexpensive and nontoxic inducers is an ongoing quest. The plant hormone abscisic acid has now been added to the list of compounds that can be used for regulating transcription and controlling protein function by induced proximity. These advances may enable new clinical applications of proximity-induced systems, and they highlight the value of fundamental research in plant biology.

  16. Expression of a Maize Ubiquitin Gene Promoter-bar Chimeric Gene in Transgenic Rice Plants 1

    PubMed Central

    Toki, Seiichi; Takamatsu, Susumu; Nojiri, Chyuhei; Ooba, Shinya; Anzai, Hiroyuki; Iwata, Michiaki; Christensen, Alan H.; Quail, Peter H.; Uchimiya, Hirofumi

    1992-01-01

    We have constructed a chimeric gene consisting of the promoter, first exon, and first intron of a maize ubiquitin gene (Ubi-1) and the coding sequence of the bar gene from Streptomyces hygroscopicus. This construct was transferred into rice (Oryza sativa L.) protoplasts via electroporation, and 10 plants were regenerated from calli that had been selected for resistance to exogenously supplied bialaphos. Transgenic plants grown in a greenhouse were resistant to both bialaphos and phosphinothricine at a dosage lethal to untransformed control plants. Evidence of stable integration of the transferred gene into the genome of the regenerated primary transformant plants was obtained from Southern blot analysis. In addition, northern blot analysis indicated expression and proper splicing of the maize ubiquitin gene first intron from the primary chimeric transcript in these transgenic rice plants, and western blot analysis and enzymic assays verified expression of the active bar gene product. Apparent mendelian segregation for bialaphos resistance in T1 progeny of primary transformants was confirmed. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:16653150

  17. Identifying Conserved Gene Clusters in the Presence of Homology Families

    E-print Network

    Goldwasser, Michael

    demonstrate the utility of our methods by studying two bacterial genomes, E. coli K­12 and B. subtilis. Many of the teams identified by our algorithm correlate with documented E. coli operons, while several others match Keywords: cluster of orthologous genes, comparative genomics, conserved gene cluster, gene team, homology

  18. Identifying Conserved Gene Clusters in the Presence of Homology Families

    E-print Network

    Goldwasser, Michael

    demonstrate the utility of our methods by studying two bacterial genomes, E. coli K-12 and B. subtilis. Many of the teams identified by our algorithm correlate with documented E. coli operons, while several others match Keywords: cluster of orthologous genes, comparative genomics, conserved gene cluster, gene team, homology

  19. The Snail Family Gene Snai3 Is Not Essential for Embryogenesis in Mice

    PubMed Central

    Han, Xianghua; Booth, Carmen J.; Yoon, Jeong Kyo; Krebs, Luke T.; Gridley, Thomas

    2013-01-01

    The Snail gene family encodes zinc finger-containing transcriptional repressor proteins. Three members of the Snail gene family have been described in mammals, encoded by the Snai1, Snai2, and Snai3 genes. The function of the Snai1 and Snai2 genes have been studied extensively during both vertebrate embryogenesis and tumor progression and metastasis, and play critically important roles during these processes. However, little is known about the function of the Snai3 gene and protein. We describe here generation and analysis of Snai3 conditional and null mutant mice. We also generated an EYFP-tagged Snai3 null allele that accurately reflects endogenous Snai3 gene expression, with the highest levels of expression detected in thymus and skeletal muscle. Snai3 null mutant homozygous mice are viable and fertile, and exhibit no obvious phenotypic defects. These results demonstrate that Snai3 gene function is not essential for embryogenesis in mice. PMID:23762348

  20. Expression of a sugar-transporter gene family in a photoautotrophic suspension culture of Chenopodium rubrum L.

    PubMed

    Roitsch, T; Tanner, W

    1994-01-01

    Photoautotrophic suspension-culture cells of Chenopodium rubrum L. were shifted to mixotrophic growth by adding glucose to investigate whether the activities of plant sugar transporters, as well as the expression of the corresponding genes, are regulated in response to sugars. The rate of D-glucose uptake was shown not to be affected by mixotrophic growth in the presence of D-glucose. The polymerase chain reaction (PCR) technique was applied to amplify cDNA and genomic fragments from monosaccharide-carrier genes. Seven members of a monosaccharide-carrier family were identified of which three were found to be expressed in the suspension-culture cells. The expression of the monosaccharide-carrier genes was independent of the presence of D-glucose. PMID:7764872

  1. University of Hawaii-Botany Department: Vascular Plant Family Access Page

    NSDL National Science Digital Library

    Carr, Gerald D.

    Created by botanist Dr. Gerald D. Carr of the University of Hawaii, this website is filled with great annotated photos of vascular plants. The site is organized into sections for the non-flowering and flowering plant families. The plant families are organized according to several systems including traditional presentation, Arthur Cronquistâ??s classification scheme (1981), and the phylogenetic outline of Judd et al. (2002). The site also offers a new integrated Alphabetical Index for Flowering Plant Families. Plant familiesâ?? are hyperlinked to an introductory paragraph accompanied by photos and information about selected species in that group. For example, the Moraceae section includes annotated photos for jack fruit (_Artocarpus heterophyllus_), climbing fig (_Ficus pumila_), and mulberry (_Morus alba_). The site also includes diagrams depicting non-flowering vascular plants as treated by Judd et al., and flowering plant relationships according to Cronquist.

  2. Plant-soil feedbacks from 30-year family-specific soil cultures: phylogeny, soil chemistry and plant life stage

    PubMed Central

    Mehrabi, Zia; Bell, Thomas; Lewis, Owen T

    2015-01-01

    Intraspecific negative feedback effects, where performance is reduced on soils conditioned by conspecifics, are widely documented in plant communities. However, interspecific feedbacks are less well studied, and their direction, strength, causes, and consequences are poorly understood. If more closely related species share pathogens, or have similar soil resource requirements, plants may perform better on soils conditioned by more distant phylogenetic relatives. There have been few empirical tests of this prediction across plant life stages, and none of which attempt to account for soil chemistry. Here, we test the utility of phylogeny for predicting soil feedback effects on plant survival and performance (germination, seedling survival, growth rate, biomass). We implement a full factorial experiment growing species representing five families on five plant family-specific soil sources. Our experiments exploit soils that have been cultured for over 30 years in plant family-specific beds at Oxford University Botanic Gardens. Plant responses to soil source were idiosyncratic, and species did not perform better on soils cultured by phylogenetically more distant relatives. The magnitude and sign of feedback effects could, however, be explained by differences in the chemical properties of “home” and “away” soils. Furthermore, the direction of soil chemistry-related plant-soil feedbacks was dependent on plant life stage, with the effects of soil chemistry on germination success and accumulation of biomass inversely related. Our results (1) suggest that the phylogenetic distance between plant families cannot predict plant–soil feedbacks across multiple life stages, and (2) highlight the need to consider changes in soil chemistry as an important driver of population responses. The contrasting responses at plant life stages suggest that studies focusing on brief phases in plant demography (e.g., germination success) may not give a full picture of plant–soil feedback effects. PMID:26120423

  3. Gene loss from a plant sex chromosome system.

    PubMed

    Bergero, Roberta; Qiu, Suo; Charlesworth, Deborah

    2015-05-01

    Sex chromosomes have evolved independently in numerous animal and plant lineages. After recombination becomes suppressed between two homologous sex chromosomes, genes on the non-recombining Y chromosomes (and W chromosomes in ZW systems) undergo genetic degeneration, losing functions retained by their X- or Z-linked homologs, changing their expression, and becoming lost [1, 2]. Adaptive changes may also occur, both on the non-recombining Y chromosome, to shut down expression of maladapted genes [3], and on the X chromosome (or the Z in ZW systems), which may evolve dosage compensation to increase low expression or compensate for poor protein function in the heterogametic sex [2, 4, 5]. Although empirical approaches to studying genetic degeneration have been developed for model species [3, 6], the onset and dynamics of these changes are still poorly understood, particularly in de novo evolving sex chromosomes. Sex chromosomes of some plants evolved much more recently than those of mammals, birds, and Drosophila [7-9], making them suitable for studying the early stages of genetic degeneration in de novo evolving sex chromosomes. In plants, haploid selection should oppose gene loss from Y chromosomes, but recent work on sex chromosomes of two plant species has estimated that Y-linked transcripts are lacking for 10%-30% of X-linked genes [10-12]. Here, we provide evidence that, in Silene latifolia, this largely involved losses of Y-linked genes, and not suppressed expression of Y-linked alleles, or gene additions to the X chromosome. Our results also suggest that chromosome-wide dosage compensation does not occur in this plant. PMID:25913399

  4. Is the CACNA1A gene involved in familial migraine with aura?

    Microsoft Academic Search

    R. Brugnoni; M. Leone; A. Rigamonti; E. Moranduzzo; F. Cornelio; R. Mantegazza; G. Bussone

    2002-01-01

    .   The discovery of mutations in the neural calcium channel (CACNA1A) gene in familial hemiplegic migraine (FHM), variant of\\u000a migraine with aura, led to the suggestion that this gene might be involved in familial migraine with aura (FMA). We investigated\\u000a whether the mutations in FHM are present in FMA patients, analyzing genomic DNA by PCR, single stranded conformation polymorphism,\\u000a sequencing

  5. Analysis of expression of the actin gene family throughout the cell cycle of Physarum polycephalum 

    E-print Network

    Arellano, Olga Leticia

    1989-01-01

    ANALYSIS OF EXPRESSION OF THE ACTIN GENE FAMILY THROUGHOUT THE CELL CYCLE OF PHYSARUM POLYCEPHALUM A Thesis by OLGA LETICIA ARELLANO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1989 Major Subject: Biology ANALYSIS OF EXPRESSION OF THE ACTIN GENE FAMILY THROUGHOUT THE CELL CYCLE OF PHYSARUM POLYCEPHALUM A Thesis by OLGA LETICIA ARELLANO Approved as to style and content by...

  6. Discovery and expression profile analysis of AP2\\/ERF family genes from Triticum aestivum

    Microsoft Academic Search

    Jing Zhuang; Jian-Min Chen; Quan-Hong Yao; Fei Xiong; Chao-Cai Sun; Xi-Rong Zhou; Jian Zhang; Ai-Sheng Xiong

    2011-01-01

    Throughout its development, common wheat, Triticum aestivum responds to different kinds of adverse abiotic and biotic stress by expressing specific genes that allow it to adapt to these\\u000a stresses. In this process, genes in the AP2\\/ERF family encode transcriptional regulators involved in diverse developmental\\u000a and physiological processes play critical roles. Here, we established an extensive picture of the AP2\\/ERF family

  7. Co-segregation of LMNA and PMP22 gene mutations in the same family

    Microsoft Academic Search

    Elena Pegoraro; Bruno F. Gavassini; Sara Benedetti; Immacolata Menditto; Gabriella Zara; Roberta Padoan; Maria Luisa Mostacciuolo; Maurizio Ferrari; Corrado Angelini

    2005-01-01

    We report here clinical, electrophysiological, and molecular findings in a family affected with two inherited genetic diseases: limb girdle muscular dystrophy type 1B (LGMD1B) and hereditary neuropathy with liability to pressure palsies (HNPP). Members of the family carry a novel missense mutation in the LMNA gene and a nonsense mutation in the PMP22 gene. Interestingly, the double LMNA\\/PMP22 mutations carriers

  8. Overexpression of cotton RAV1 gene in Arabidopsis confers transgenic plants high salinity and drought sensitivity.

    PubMed

    Li, Xiao-Jie; Li, Mo; Zhou, Ying; Hu, Shan; Hu, Rong; Chen, Yun; Li, Xue-Bao

    2015-01-01

    RAV (related to ABI3/VP1) protein containing an AP2 domain in the N-terminal region and a B3 domain in the C-terminal region, which belongs to AP2 transcription factor family, is unique in higher plants. In this study, a gene (GhRAV1) encoding a RAV protein of 357 amino acids was identified in cotton (Gossypium hirsutum). Transient expression analysis of the eGFP:GhRAV1 fusion genes in tobacco (Nicotiana tabacum) epidermal cells revealed that GhRAV1 protein was localized in the cell nucleus. Quantitative RT-PCR analysis indicated that expression of GhRAV1 in cotton is induced by abscisic acid (ABA), NaCl and polyethylene glycol (PEG). Overexpression of GhRAV1 in Arabidopsis resulted in plant sensitive to ABA, NaCl and PEG. With abscisic acid (ABA) treatment, seed germination and green seedling rates of the GhRAV1 transgenic plants were remarkably lower than those of wild type. In the presence of NaCl, the seed germination and seedling growth of the GhRAV1 transgenic lines were inhibited greater than those of wild type. And chlorophyll content and maximum photochemical efficiency of the transgenic plants were significantly lower than those of wild type. Under drought stress, the GhRAV1 transgenic plants displayed more severe wilting than wild type. Furthermore, expressions of the stress-related genes were altered in the GhRAV1 transgenic Arabidopsis plants under high salinity and drought stresses. Collectively, our data suggested that GhRAV1 may be involved in response to high salinity and drought stresses through regulating expressions of the stress-related genes during cotton development. PMID:25710493

  9. Gene Pyramiding of Peptidase Inhibitors Enhances Plant Resistance to the Spider Mite Tetranychus urticae

    PubMed Central

    Santamaria, Maria Estrella; Cambra, Inés; Martinez, Manuel; Pozancos, Clara; González-Melendi, Pablo; Grbic, Vojislava; Castañera, Pedro; Ortego, Felix; Diaz, Isabel

    2012-01-01

    The two-spotted spider mite Tetranychus urticae is a damaging pest worldwide with a wide range of host plants and an extreme record of pesticide resistance. Recently, the complete T. urticae genome has been published and showed a proliferation of gene families associated with digestion and detoxification of plant secondary compounds which supports its polyphagous behaviour. To overcome spider mite adaptability a gene pyramiding approach has been developed by co-expressing two barley proteases inhibitors, the cystatin Icy6 and the trypsin inhibitor Itr1 genes in Arabidopsis plants by Agrobacterium-mediated transformation. The presence and expression of both transgenes was studied by conventional and quantitative real time RT-PCR assays and by indirect ELISA assays. The inhibitory activity of cystatin and trypsin inhibitor was in vitro analysed using specific substrates. Single and double transformants were used to assess the effects of spider mite infestation. Double transformed lines showed the lowest damaged leaf area in comparison to single transformants and non-transformed controls and different accumulation of H2O2 as defence response in the leaf feeding site, detected by diaminobenzidine staining. Additionally, an impact on endogenous mite cathepsin B- and L-like activities was observed after feeding on Arabidopsis lines, which correlates with a significant increase in the mortality of mites fed on transformed plants. These effects were analysed in view of the expression levels of the target mite protease genes, C1A cysteine peptidase and S1 serine peptidase, identified in the four developmental mite stages (embryo, larvae, nymphs and adults) performed using the RNA-seq information available at the BOGAS T. urticae database. The potential of pyramiding different classes of plant protease inhibitors to prevent plant damage caused by mites as a new tool to prevent pest resistance and to improve pest control is discussed. PMID:22900081

  10. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    PubMed Central

    2010-01-01

    Background Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests that transferred genes may be evolutionarily important in generating mitochondrial genetic diversity. Finally, the complex relationships within each lineage of transferred genes imply a surprisingly complicated history of these genes in Plantago subsequent to their acquisition via HGT and this history probably involves some combination of additional transfers (including intracellular transfer), gene duplication, differential loss and mutation-rate variation. Unravelling this history will probably require sequencing multiple mitochondrial and nuclear genomes from Plantago. See Commentary: http://www.biomedcentral.com/1741-7007/8/147. PMID:21176201

  11. TRANSLUCENT GREEN, an ERF family transcription factor, controls water balance in Arabidopsis by activating the expression of aquaporin genes.

    PubMed

    Zhu, Danling; Wu, Zhe; Cao, Guangyu; Li, Jigang; Wei, Jia; Tsuge, Tomohiko; Gu, Hongya; Aoyama, Takashi; Qu, Li-Jia

    2014-04-01

    Water is the most abundant molecule in almost all living organisms. Aquaporins are channel proteins that play critical roles in controlling the water content of cells. Here, we report the identification of an AP2/EREBP family transcription factor in Arabidopsis thaliana, TRANSLUCENT GREEN (TG), whose overexpression in transgenic plants gave enhanced drought tolerance and vitrified leaves. TG protein is localized in the nucleus, binds DRE and GCC elements in vitro, and acts as a transcriptional activator in yeast cells. Microarray analysis revealed a total of 330 genes regulated by TG, among which five genes encode aquaporins. A transient expression assay showed that TG directly binds to the promoters of three aquaporin genes, such as AtTIP1;1, AtTIP2;3, and AtPIP2;2, indicating that TG directly regulates the expression of these genes. Moreover, overexpression of AtTIP1;1 resulted in vitrified phenotypes in transgenic Arabidopsis plants, similar to those observed in TG overexpression lines. Water injection into wild-type leaves recapitulated the vitrified leaf phenotypes, which was reversed by cutting off the water supply from vascular bundles. Taken together, our data support that TG controls water balance in Arabidopsis through directly activating the expression of aquaporin genes. PMID:24177687

  12. Structure-Function Analysis of a Broad Specificity Populus trichocarpa Endo-?-glucanase Reveals an Evolutionary Link between Bacterial Licheninases and Plant XTH Gene Products*

    PubMed Central

    Eklöf, Jens M.; Shojania, Shaheen; Okon, Mark; McIntosh, Lawrence P.; Brumer, Harry

    2013-01-01

    The large xyloglucan endotransglycosylase/hydrolase (XTH) gene family continues to be the focus of much attention in studies of plant cell wall morphogenesis due to the unique catalytic functions of the enzymes it encodes. The XTH gene products compose a subfamily of glycoside hydrolase family 16 (GH16), which also comprises a broad range of microbial endoglucanases and endogalactanases, as well as yeast cell wall chitin/?-glucan transglycosylases. Previous whole-family phylogenetic analyses have suggested that the closest relatives to the XTH gene products are the bacterial licheninases (EC 3.2.1.73), which specifically hydrolyze linear mixed linkage ?(1?3)/?(1?4)-glucans. In addition to their specificity for the highly branched xyloglucan polysaccharide, XTH gene products are distinguished from the licheninases and other GH16 enzyme subfamilies by significant active site loop alterations and a large C-terminal extension. Given these differences, the molecular evolution of the XTH gene products in GH16 has remained enigmatic. Here, we present the biochemical and structural analysis of a unique, mixed function endoglucanase from black cottonwood (Populus trichocarpa), which reveals a small, newly recognized subfamily of GH16 members intermediate between the bacterial licheninases and plant XTH gene products. We postulate that this clade comprises an important link in the evolution of the large plant XTH gene families from a putative microbial ancestor. As such, this analysis provides new insights into the diversification of GH16 and further unites the apparently disparate members of this important family of proteins. PMID:23572521

  13. A unified GMDR method for detecting gene-gene interactions in family and unrelated samples with application to nicotine dependence.

    PubMed

    Chen, Guo-Bo; Liu, Nianjun; Klimentidis, Yann C; Zhu, Xiaofeng; Zhi, Degui; Wang, Xujing; Lou, Xiang-Yang

    2014-02-01

    Gene-gene and gene-environment interactions govern a substantial portion of the variation in complex traits and diseases. In convention, a set of either unrelated or family samples are used in detection of such interactions; even when both kinds of data are available, the unrelated and the family samples are analyzed separately, potentially leading to loss in statistical power. In this report, to detect gene-gene interactions we propose a generalized multifactor dimensionality reduction method that unifies analyses of nuclear families and unrelated subjects within the same statistical framework. We used principal components as genetic background controls against population stratification, and when sibling data are included, within-family control were used to correct for potential spurious association at the tested loci. Through comprehensive simulations, we demonstrate that the proposed method can remarkably increase power by pooling unrelated and offspring's samples together as compared with individual analysis strategies and the Fisher's combining p value method while it retains a controlled type I error rate in the presence of population structure. In application to a real dataset, we detected one significant tetragenic interaction among CHRNA4, CHRNB2, BDNF, and NTRK2 associated with nicotine dependence in the Study of Addiction: Genetics and Environment sample, suggesting the biological role of these genes in nicotine dependence development. PMID:24057800

  14. Identification of the soybean HyPRP family and specific gene response to Asian soybean rust disease

    PubMed Central

    Neto, Lauro Bücker; de Oliveira, Rafael Rodrigues; Wiebke-Strohm, Beatriz; Bencke, Marta; Weber, Ricardo Luís Mayer; Cabreira, Caroline; Abdelnoor, Ricardo Vilela; Marcelino, Francismar Correa; Zanettini, Maria Helena Bodanese; Passaglia, Luciane Maria Pereira

    2013-01-01

    Soybean [Glycine max (L.) Merril], one of the most important crop species in the world, is very susceptible to abiotic and biotic stress. Soybean plants have developed a variety of molecular mechanisms that help them survive stressful conditions. Hybrid proline-rich proteins (HyPRPs) constitute a family of cell-wall proteins with a variable N-terminal domain and conserved C-terminal domain that is phylogenetically related to non-specific lipid transfer proteins. Members of the HyPRP family are involved in basic cellular processes and their expression and activity are modulated by environmental factors. In this study, microarray analysis and real time RT-qPCR were used to identify putative HyPRP genes in the soybean genome and to assess their expression in different plant tissues. Some of the genes were also analyzed by time-course real time RT-qPCR in response to infection by Phakopsora pachyrhizi, the causal agent of Asian soybean rust disease. Our findings indicate that the time of induction of a defense pathway is crucial in triggering the soybean resistance response to P. pachyrhizi. This is the first study to identify the soybean HyPRP group B family and to analyze disease-responsive GmHyPRP during infection by P. pachyrhizi. PMID:23885204

  15. The splicing fate of plant SPO11 genes

    PubMed Central

    Sprink, Thorben; Hartung, Frank

    2014-01-01

    Toward the global understanding of plant meiosis, it seems to be essential to decipher why all as yet sequenced plants need or at least encode for two different meiotic SPO11 genes. This is in contrast to mammals and fungi, where only one SPO11 is present. Both SPO11 in Arabidopsis thaliana are essential for the initiation of double strand breaks (DSBs) during the meiotic prophase. In nearly all eukaryotic organisms DSB induction during prophase I by SPO11 leads to meiotic DSB repair, thereby ensuring the formation of a necessary number of crossovers (CO) as physical connections between the homologous chromosomes. We aim to investigate the specific functions and evolution of both SPO11 genes in land plants. Therefore, we identified and cloned the respective orthologous genes from Brassica rapa, Carica papaya, Oryza sativa, and Physcomitrella patens. In parallel we determined the full length cDNA sequences of SPO11-1 and -2 from all of these plants by RT-PCR. During these experiments we observed that the analyzed plants exhibit a pattern of alternative splicing products of both SPO11 mRNAs. Such an aberrant splicing has previously been described for Arabidopsis and therefore seems to be conserved throughout evolution. Most of the splicing forms of SPO11-1 and -2 seem to be non-functional as they either showed intron retention (IR) or shortened exons. However, the positional distribution and number of alternative splicing events vary strongly between the different plants. The cDNAs showed in most cases premature termination codons (PTCs) due to frameshift. Nevertheless, in some cases we found alternatively spliced but functional cDNAs. These findings let us suggest that alternative splicing of SPO11 depends on the respective gene sequence and on the plant species. Therefore, this conserved mechanism might play a role concerning regulation of SPO11. PMID:25018755

  16. Analysis of the aquaporin gene family in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquaporins are intrinsic membrane proteins present across kingdoms. In plants, aquaporins play roles in intercellular and intracellular water movement in response to osmotic and hydraulic potentials resulting from changing environmental conditions. In higher plants, aquaporins consist of five subfam...

  17. Gene families encoding transcription factors expressed in early development of Strongylocentrotus purpuratus

    Microsoft Academic Search

    Meredith Howard-Ashby; Stefan C. Materna; C. Titus Brown; Lili Chen; R. Andrew Cameron; Eric H. Davidson

    2006-01-01

    All genes encoding transcription factors of the bHLH, Nuclear Receptor, Basic Leucine Zipper, T-box, Smad, Sox, and other smaller families were identified in the Strongylocentrotus purpuratus genome by means of a permissive blast search of the genome using a database of known transcription factors. Phylogenetic trees were constructed for the major families, permitting a comparison of the regulatory protein repertoire

  18. The low-density lipoprotein receptor gene family: a cellular Swiss army knife?

    Microsoft Academic Search

    Anders Nykjaer; Thomas E. Willnow

    2002-01-01

    The low-density lipoprotein receptor gene family is an evolutionarily conserved group of cell-surface receptors produced by mammals and other organisms. Initially thought to be endocytic receptors that mediate the uptake of lipoproteins, recent findings have shown that these receptors have other roles in a range of cellular processes. Among other activities, members of this family act as signal transducers in

  19. Molecular analysis of type III polyketide synthase (PKS) gene family from Zingiber officinale Rosc

    Microsoft Academic Search

    E. V. Soniya

    2009-01-01

    Enzymes of the type III polyketide synthase family is considered to have significant role in biosynthesis of structurally diverse polyketide scaffolds in Zingiber officinale. Genome wide analysis of polyketide synthase gene family in Z. officinale identified partial sequences of six members. Comparative sequence analysis showed that four of them ZoPKS2, 3, 4 and 6 were novel forms as revealed by

  20. Significant improvement of stress tolerance in tobacco plants by overexpressing a stress-responsive aldehyde dehydrogenase gene from maize ( Zea mays )

    Microsoft Academic Search

    Weizao Huang; Xinrong Ma; Qilin Wang; Yongfeng Gao; Ying Xue; Xiangli Niu; Guirong Yu; Yongsheng Liu

    2008-01-01

    Aldehyde dehydrogenases (ALDHs) play a central role in detoxification processes of aldehydes generated in plants when exposed\\u000a to the stressed conditions. In order to identify genes required for the stresses responses in the grass crop Zea mays, an ALDH (ZmALDH22A1) gene was isolated and characterized. ZmALDH22A1 belongs to the family ALDH22 that is currently known only in plants. The ZmALDH22A1 encodes

  1. Standardized plant disease evaluations will enhance resistance gene discovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene discovery and marker development using DNA-based tools require plant populations with well documented phenotypes. If dissimilar phenotype evaluation methods or data scoring techniques are employed with different crops, or at different labs for the same crops, then data mining for genetic marker...

  2. Direct gene transfer to plant protoplasts by mild sonication

    Microsoft Academic Search

    Morten Joersbo; Janne Brunstedt

    1990-01-01

    A novel procedure employing mild sonication for transformation of plant protoplasts is described. Transient expression of a chloramphenicol acetyltransferase (CAT) gene in protoplasts of sugar beet (Beta vulgaris L.) and tobacco (Nicotiana tabacum L.) was obtained by a brief exposure of the protoplasts to 20 kHz ultrasound in the presence of plasmid DNA. Maximum levels of CAT activity were achieved

  3. Plant biotechnology: Caffeine synthase gene from tea leaves

    Microsoft Academic Search

    Misako Kato; Kouichi Mizuno; Alan Crozier; Tatsuhito Fujimura; Hiroshi Ashihara

    2000-01-01

    Caffeine synthase is an enzyme that catalyses the final two steps in the caffeine biosynthesis pathway. We have cloned the gene encoding caffeine synthase from young leaves of tea (Camellia sinensis), opening up the possibility of creating tea and coffee (Coffea arabica) plants that are naturally deficient in caffeine. Consumers concerned about the possible adverse effects of caffeine consumption will

  4. Gene expression profiling of plant responses to abiotic stress

    Microsoft Academic Search

    Samuel P. Hazen; Yajun Wu; Joel A. Kreps

    2003-01-01

    Expression profiling has become an important tool to investigate how an organism responds to environmental changes. Plants, being sessile, have the ability to dramatically alter their gene expression patterns in response to environmental changes such as temperature, water availability or the presence of deleterious levels of ions. Sometimes these transcriptional changes are successful adaptations leading to tolerance while in other

  5. Identification and Expression Analysis of the Barley (Hordeum vulgare L.) Aquaporin Gene Family

    PubMed Central

    Hove, Runyararo M.; Ziemann, Mark; Bhave, Mrinal

    2015-01-01

    Aquaporins (AQPs) are major intrinsic proteins (MIPs) that mediate bidirectional flux of water and other substrates across cell membranes, and play critical roles in plant-water relations, dehydration stress responses and crop productivity. However, limited data are available as yet on the contributions of these proteins to the physiology of the major crop barley (Hordeum vulgare). The present work reports the identification and expression analysis of the barley MIP family. A comprehensive search of publicly available leaf mRNA-seq data, draft barley genome data, GenBank transcripts and sixteen new annotations together revealed that the barley MIP family is comprised of at least forty AQPs. Alternative splicing events were likely in two plasma membrane intrinsic protein (PIP) AQPs. Analyses of the AQP signature sequences and specificity determining positions indicated a potential of several putative AQP isoforms to transport non-aqua substrates including physiological important substrates, and respond to abiotic stresses. Analysis of our publicly available leaf mRNA-seq data identified notable differential expression of HvPIP1;2 and HvTIP4;1 under salt stress. Analyses of other gene expression resources also confirmed isoform-specific responses in different tissues and/or in response to salinity, as well as some potentially inter-cultivar differences. The work reports systematic and comprehensive analysis of most, if not all, barley AQP genes, their sequences, expression patterns in different tissues, potential transport and stress response functions, and a strong framework for selection and/or development of stress tolerant barley varieties. In addition, the barley data would be highly valuable for genetic studies of the evolutionarily closely related wheat (Triticum aestivum L.). PMID:26057533

  6. Genome-Wide Analysis of PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) Genes in Plants Reveals the Eudicot-Wide PDAT Gene Expansion and Altered Selective Pressures Acting on the Core Eudicot PDAT Paralogs1[OPEN

    PubMed Central

    Pan, Xue; Peng, Fred Y.; Weselake, Randall J.

    2015-01-01

    PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) is an enzyme that catalyzes the transfer of a fatty acyl moiety from the sn-2 position of a phospholipid to the sn-3-position of sn-1,2-diacylglyerol, thus forming triacylglycerol and a lysophospholipid. Although the importance of PDAT in triacylglycerol biosynthesis has been illustrated in some previous studies, the evolutionary relationship of plant PDATs has not been studied in detail. In this study, we investigated the evolutionary relationship of the PDAT gene family across the green plants using a comparative phylogenetic framework. We found that the PDAT candidate genes are present in all examined green plants, including algae, lowland plants (a moss and a lycophyte), monocots, and eudicots. Phylogenetic analysis revealed the evolutionary division of the PDAT gene family into seven major clades. The separation is supported by the conservation and variation in the gene structure, protein properties, motif patterns, and/or selection constraints. We further demonstrated that there is a eudicot-wide PDAT gene expansion, which appears to have been mainly caused by the eudicot-shared ancient gene duplication and subsequent species-specific segmental duplications. In addition, selection pressure analyses showed that different selection constraints have acted on three core eudicot clades, which might enable paleoduplicated PDAT paralogs to either become nonfunctionalized or develop divergent expression patterns during evolution. Overall, our study provides important insights into the evolution of the plant PDAT gene family and explores the evolutionary mechanism underlying the functional diversification among the core eudicot PDAT paralogs. PMID:25585619

  7. Structural and functional analysis of chitinase gene family in wheat (Triticum aestivum).

    PubMed

    Mishra, A K; Pandey, Bharati; Tyagi, Chetna; Chakraborty, Ohika; Kumar, Amrender; Jain, A K

    2015-04-01

    Chitinases are the hydrolytic enzymes which protect plants against pathogen attack. However, the precise role of chitinases in disease resistance has not been explored in wheat. In the present study, in silico approach, including secondary structure analysis, detailed signature pattern study, cis-acting regulatory elements survey, evolutionary trends and three-dimensional molecular modeling was used for different chitinase classes of wheat (Triticum aestivum). Homology modeling of class I, II, IV and 3 chitinase proteins was performed using the template crystal structure. The model structures were further refined by molecular mechanics methods using different tools, such as Procheck, ProSA and Verify3D. Secondary structure studies revealed greater percentage of residues forming a helix conformation with specific signature pattern, similar to casein kinase II phosphorylation site, amidation site, N-myristoylation (N-MYR) site and protein kinase C phoshorylation site. The expression profile suggested that wheat chitinase gene was highly expressed in cell culture and callus. We found that wheat chitinases showed more functional similarity with rice and barley. The results provide insight into the evolution of the chitinase family, constituting a diverse array of pathogenesis-related proteins. The study also provides insight into the possible binding sites of chitinase proteins and may further enhance our knowledge of fungal resistance mechanism in plants. PMID:26118129

  8. Multiple mechanisms for transcriptional regulation of the myc gene family in small-cell lung cancer

    SciTech Connect

    Krystal, G.; Birrer, M.; Way, J.; Nau, M.; Sausville, E.; Thompson, C.; Minna, J.; Battey, J.

    1988-08-01

    The molecular mechanisms reported to regulate the expression of myc family genes are multiple and complex and include gene amplification, transcriptional activation, transcriptional attenuation, and mRNA stability. The authors have investigated which of these mechanisms are responsible for the extreme variation in myc gene family mRNA levels observed in human small-cell lung cancer cell lines. In addition to gene amplification, a block to nascent mRNA chain elongation, causing attenuation of transcription, is an important regulatory mechanism controlling the steady-state levels of c-myc and L-myc in mRNA. The loss of transcriptional attenuation is correlated with overexpression of these two genes in cell lines which do not show gene amplification. Expression of c-myc mRNA appears to be dependent on promoter activity and attenuator function. In contrast, regulation of expression of the N-myc gene does not involve transcriptional attenutation; steady-state mRNA levels are correlated with promoter activity as well as gene amplification. They conclude that transcriptional regulation of each member of the myc gene family is accomplished by a different assortment of complex mechanisms, including gene copy number, promoter activation, and transcriptional attenuation. Interference at multiple points in this complex regulatory process appears to be an important mechanism by which small-cell lung cancer and other human tumors evade growth control.

  9. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of NKR genes. PMID:23724088

  10. Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49

    PubMed Central

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of NKR genes. PMID:23724088

  11. Phylogenetic conservation and physical mapping of members of the H6 homeobox gene family

    Microsoft Academic Search

    H. S. Stadler; J. C. Murray; N. J. Leysens; P. J. Goodfellow; M. Solursh

    1995-01-01

    Homeobox genes represent a class of transcription factors that play key roles in the regulation of embryogenesis and development. Here we report the identification of a homeobox-containing gene family that is highly conserved at both the nucleotide and amino acid levels in a diverse number of species. These species encompass both vertebrate and invertebrate phylogenies, ranging from Homo sapiens to

  12. Copyright 0 1996 by the Genetics Society of America Evolution of the hedgehog Gene Family

    E-print Network

    Kumar, Sudhir

    Copyright 0 1996 by the Genetics Society of America Evolution of the hedgehog Gene Family Sudhir. Secreted hedgehog (hh) protein is essential for both long- and short-range cellular signaling required intercellular communication for which extracel- lular signalingmolecules are essential.The hedgehog (hh) gene

  13. Absence of Duplication of Chromosome 21 Genes in Familial and Sporadic Alzheimer's Disease

    Microsoft Academic Search

    Peter H. St. George-Hyslop; Rudolph E. Tanzi; Ronald J. Polinsky; Rachael L. Neve; Daniel A. Pollen; David A. Drachman; John Growdon; L. Adrienne Cupples; Linda Nee; Richard H. Myers; Dianne O'Sullivan; Paul C. Watkins; Jean A. Amos; Curtis K. Deutsch; James W. Bodfish; Marcel Kinsbourne; Robert G. Feldman; Amalia Bruni; Luigi Amaducci; Jean-Francois Foncin; James F. Gusella

    1987-01-01

    The possibility that Alzheimer's disease (AD) is caused by overexpression or duplication of one or more genes on chromosome 21 has been raised by the observation of AD-like neuropathologic changes in individuals with Down syndrome and by the mapping of both the defect for familial AD and the amyloid beta protein gene to this autosome. Possible duplication on chromosome 21

  14. Single genes from Agrobacterium rhizogenes influence plant development

    PubMed Central

    Schmülling, T.; Schell, J.; Spena, A.

    1988-01-01

    The combined expression of the rol A, B and C loci of Agrobacterium rhizogens Ri-plasmids establishes, in transgenic tobacco plants, a pathological state called hairy-root syndrome. However, when expressed separately they provoke distinct developmental abnormalities characteristic for each rol gene. Moreover, changes in their mode of expression obtained by replacing the promoters of the rol B and C genes with the cauliflower mosaic virus 35S promoter elicit new and distinct developmental patterns. These results indicate that the different rol gene products have either different targets, or have a qualitatively different effect on the same target. The target(s) must be involved in the control of plant development. Although each of the three rol genes are independently able to promote root formation in tobacco, efficient root initiation and growth is best achieved through the combined activities of more than a single rol gene. Models explaining the biological effects of A. rhizogenes-derived TL-DNA genes are discussed. Images PMID:15977331

  15. Single genes from Agrobacterium rhizogenes influence plant development.

    PubMed

    Schmülling, T; Schell, J; Spena, A

    1988-09-01

    The combined expression of the rol A, B, and C loci of Agrobacterium rhizogenes Ri-plasmids establishes, in transgenic tobacco plants, a pathological state called hairy-root syndrome. However, when expressed separately they provoke distinct developmental abnormalities characteristic for each rol gene. Moreover, changes in their mode of expression obtained by replacing the promoters of the rol B and C genes with the cauliflower mosaic virus 35S promoter elicit new and distinct developmental patterns. These results indicate that the different rol gene products have either different targets, or have a qualitatively different effect on the same target. The target(s) must be involved in the control of plant development. Although each of the three rol genes are independently able to promote root formation in tobacco, efficient root initiation and growth is best achieved through the combined activities of more than a single rol gene. Models explaining the biological effects of A. rhizogenes-derived TL-DNA genes are discussed. PMID:15977331

  16. Mouse T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D. [Paul-Ehrlich-Inst., Langen (Germany); Clark, S.P. [Amgen Center, Thousand Oaks, CA (United States); Mak, T.W. [Amgen Inst., Toronto, Ontario (Canada)

    1995-10-01

    All mouse T-cell receptor {alpha}/{delta}, {beta}, and {gamma} variable (Tcra/d-, b-, and g-V) gene segments were aligned to compare the sequences with one another, to group them into subfamilies, and to derive a name which complies with the standard nomenclature. it was necessary to change the names of some V gene segments because they conflicted with those of other segments. The traditional classification into subfamilies was re-evaluated using a much larger pool of sequences. In the mouse, most V gene segments can be grouped into subfamilies of closely related genes with significantly less similarity between different subfamilies. 118 refs., 11 figs., 4 tabs.

  17. Six members of the mouse forkhead gene family are developmentally regulated.

    PubMed Central

    Kaestner, K H; Lee, K H; Schlöndorff, J; Hiemisch, H; Monaghan, A P; Schütz, G

    1993-01-01

    The 110-aa forkhead domain defines a class of transcription factors that have been shown to be developmentally regulated in Drosophila melanogaster and Xenopus laevis. The forkhead domain is necessary and sufficient for target DNA binding as shown for the rat hepatic nuclear factor 3 (HNF3) gene family. We have cloned six forkhead gene family members from a mouse genomic library in addition to the mouse equivalents of the genes for HNF3 alpha, -beta, and -gamma. The six genes, termed fkh-1 to fkh-6, share a high degree of similarity with the Drosophila forkhead gene, having 57-67% amino acid identity within the forkhead domain. fkh-1 seems to be the mammalian homologue of the Drosophila FD1 gene, as the sequences are 86% identical. fkh-1 to fkh-6 show distinct spatial patterns of expression in adult tissues and are expressed during embryogenesis. Images Fig. 2 Fig. 3 PMID:7689224

  18. Genome-wide identification and expression analysis of the mitogen-activated protein kinase gene family from banana suggest involvement of specific members in different stages of fruit ripening.

    PubMed

    Asif, Mehar Hasan; Lakhwani, Deepika; Pathak, Sumya; Bhambhani, Sweta; Bag, Sumit K; Trivedi, Prabodh Kumar

    2014-03-01

    Mitogen-activated protein kinases (MAPKs) are important components of the tripartite mitogen-activated protein kinase signaling cascade and play an important role in plant growth and development. Although members of the MAPK gene family have been identified in model plants, little information is available regarding this gene family in fruit crops. In this study, we carried out a computational analysis using the Musa Genome database to identify members of the MAPK gene family in banana, an economically important crop and the most popular fruit worldwide. Our analysis identified 25 members of the MAP kinase (MAPK or MPK) gene family. Phylogenetic analyses of MPKs in Arabidopsis, Oryza, and Populus have classified these MPKs into four subgroups. The presence of conserved domains in the deduced amino acid sequences, phylogeny, and genomic organization strongly support their identity as members of the MPK gene family. Expression analysis during ethylene-induced banana fruit ripening suggests the involvement of several MPKs in the ethylene signal transduction pathway that are necessary for banana fruit ripening. Analysis of the cis-regulatory elements in the promoter regions and the involvement of the identified MPKs in various cellular processes, as analyzed using Pathway Studio, suggest a role for the banana MPK gene family in diverse functions related to growth, development, and the stress response. This report is the first concerning the identification of members of a gene family and the elucidation of their role in various processes using the Musa Genome database. PMID:24275941

  19. Structure and Expression Profile of the Phosphate Pht1 Transporter Gene Family in Mycorrhizal Populus trichocarpa1[W

    PubMed Central

    Loth-Pereda, Verónica; Orsini, Elena; Courty, Pierre-Emmanuel; Lota, Frédéric; Kohler, Annegret; Diss, Loic; Blaudez, Damien; Chalot, Michel; Nehls, Uwe; Bucher, Marcel; Martin, Francis

    2011-01-01

    Gene networks involved in inorganic phosphate (Pi) acquisition and homeostasis in woody perennial species able to form mycorrhizal symbioses are poorly known. Here, we describe the features of the 12 genes coding for Pi transporters of the Pht1 family in poplar (Populus trichocarpa). Individual Pht1 transporters play distinct roles in acquiring and translocating Pi in different tissues of mycorrhizal and nonmycorrhizal poplar during different growth conditions and developmental stages. Pi starvation triggered the up-regulation of most members of the Pht1 family, especially PtPT9 and PtPT11. PtPT9 and PtPT12 showed a striking up-regulation in ectomycorrhizas and endomycorrhizas, whereas PtPT1 and PtPT11 were strongly down-regulated. PtPT10 transcripts were highly abundant in arbuscular mycorrhiza (AM) roots only. PtPT8 and PtPT10 are phylogenetically associated to the AM-inducible Pht1 subfamily I. The analysis of promoter sequences revealed conserved motifs similar to other AM-inducible orthologs in PtPT10 only. To gain more insight into gene regulatory mechanisms governing the AM symbiosis in woody plant species, the activation of the poplar PtPT10 promoter was investigated and detected in AM of potato (Solanum tuberosum) roots. These results indicated that the regulation of AM-inducible Pi transporter genes is conserved between perennial woody and herbaceous plant species. Moreover, poplar has developed an alternative Pi uptake pathway distinct from AM plants, allowing ectomycorrhizal poplar to recruit PtPT9 and PtPT12 to cope with limiting Pi concentrations in forest soils. PMID:21705655

  20. Genome-, Transcriptome- and Proteome-Wide Analyses of the Gliadin Gene Families in Triticum urartu.

    PubMed

    Zhang, Yanlin; Luo, Guangbin; Liu, Dongcheng; Wang, Dongzhi; Yang, Wenlong; Sun, Jiazhu; Zhang, Aimin; Zhan, Kehui

    2015-01-01

    Gliadins are the major components of storage proteins in wheat grains, and they play an essential role in the dough extensibility and nutritional quality of flour. Because of the large number of the gliadin family members, the high level of sequence identity, and the lack of abundant genomic data for Triticum species, identifying the full complement of gliadin family genes in hexaploid wheat remains challenging. Triticum urartu is a wild diploid wheat species and considered the A-genome donor of polyploid wheat species. The accession PI428198 (G1812) was chosen to determine the complete composition of the gliadin gene families in the wheat A-genome using the available draft genome. Using a PCR-based cloning strategy for genomic DNA and mRNA as well as a bioinformatics analysis of genomic sequence data, 28 gliadin genes were characterized. Of these genes, 23 were ?-gliadin genes, three were ?-gliadin genes and two were ?-gliadin genes. An RNA sequencing (RNA-Seq) survey of the dynamic expression patterns of gliadin genes revealed that their synthesis in immature grains began prior to 10 days post-anthesis (DPA), peaked at 15 DPA and gradually decreased at 20 DPA. The accumulation of proteins encoded by 16 of the expressed gliadin genes was further verified and quantified using proteomic methods. The phylogenetic analysis demonstrated that the homologs of these ?-gliadin genes were present in tetraploid and hexaploid wheat, which was consistent with T. urartu being the A-genome progenitor species. This study presents a systematic investigation of the gliadin gene families in T. urartu that spans the genome, transcriptome and proteome, and it provides new information to better understand the molecular structure, expression profiles and evolution of the gliadin genes in T. urartu and common wheat. PMID:26132381

  1. Genome-, Transcriptome- and Proteome-Wide Analyses of the Gliadin Gene Families in Triticum urartu

    PubMed Central

    Wang, Dongzhi; Yang, Wenlong; Sun, Jiazhu; Zhang, Aimin; Zhan, Kehui

    2015-01-01

    Gliadins are the major components of storage proteins in wheat grains, and they play an essential role in the dough extensibility and nutritional quality of flour. Because of the large number of the gliadin family members, the high level of sequence identity, and the lack of abundant genomic data for Triticum species, identifying the full complement of gliadin family genes in hexaploid wheat remains challenging. Triticum urartu is a wild diploid wheat species and considered the A-genome donor of polyploid wheat species. The accession PI428198 (G1812) was chosen to determine the complete composition of the gliadin gene families in the wheat A-genome using the available draft genome. Using a PCR-based cloning strategy for genomic DNA and mRNA as well as a bioinformatics analysis of genomic sequence data, 28 gliadin genes were characterized. Of these genes, 23 were ?-gliadin genes, three were ?-gliadin genes and two were ?-gliadin genes. An RNA sequencing (RNA-Seq) survey of the dynamic expression patterns of gliadin genes revealed that their synthesis in immature grains began prior to 10 days post-anthesis (DPA), peaked at 15 DPA and gradually decreased at 20 DPA. The accumulation of proteins encoded by 16 of the expressed gliadin genes was further verified and quantified using proteomic methods. The phylogenetic analysis demonstrated that the homologs of these ?-gliadin genes were present in tetraploid and hexaploid wheat, which was consistent with T. urartu being the A-genome progenitor species. This study presents a systematic investigation of the gliadin gene families in T. urartu that spans the genome, transcriptome and proteome, and it provides new information to better understand the molecular structure, expression profiles and evolution of the gliadin genes in T. urartu and common wheat. PMID:26132381

  2. Gene-Environment Interplay, Family Relationships, and Child Adjustment

    ERIC Educational Resources Information Center

    Horwitz, Briana N.; Neiderhiser, Jenae M.

    2011-01-01

    This paper reviews behavioral genetic research from the past decade that has moved beyond simply studying the independent influences of genes and environments. The studies considered in this review have instead focused on understanding gene-environment interplay, including genotype-environment correlation (rGE) and genotype x environment…

  3. ORIGINAL ARTICLE Copy number variation of lipocalin family genes

    E-print Network

    Kocher, Thomas D.

    in tilapia and its association with gender A Shirak1 , M Golik1 , B-Y Lee2 , AE Howe2 , TD Kocher2 , G Hulata that the previously reported tilapia male-specific protein (MSP) is a lipocalin encoded by a variety of paralogous and homologous genes in different tilapia species. Exon­intron boundaries of MSP genes were typical of the six

  4. The CLE family of plant polypeptide signaling molecules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polypeptide ligands have long been recognized as primary signaling molecules in diverse physiological processes in animal systems. Recent studies in plants have provided major breakthroughs with the discovery that small polypeptides are also involved inmany plant biological processes, indicating tha...

  5. Family 10 and 11 xylanase genes from Caldicellulosiruptor sp. strain Rt69B.1.

    PubMed

    Morris, D D; Gibbs, M D; Ford, M; Thomas, J; Bergquist, P L

    1999-05-01

    Three family 10 xylanase genes (xynA, xynB, and xynC) and a single family 11 xylanase gene (xynD) were identified from the extreme thermophile Caldicellulosiruptor strain Rt69B.1 through the use of consensus PCR in conjunction with sequencing and polyacrylamide gel electrophoresis. These genes appear to comprise the complete endoxylanase system of Rt69B.1. The xynA gene was found to be homologous to the xynA gene of the closely related Caldicellulosiruptor strain Rt8B.4, and primers designed previously to amplify the Rt8B.4 xynA gene could amplify homologous full-length xynA gene fragments from Rt69B.1. The complete nucleotide sequences of the Rt69B.1 xynB, xynC, and xynD genes were obtained using genomic walking PCR. The full-length xynB and xynC genes are more than 5 kb in length and encode highly modular enzymes that are the largest xylanases reported to date. XynB has an architecture similar to the family 10 xylanases from Thermoanaerobacterium saccharolyticum (XynA) and Clostridium thermocellum (XynX) and may be cell wall associated, while XynC is a bifunctional enzyme with an architecture similar to the bifunctional beta-glycanases from Caldicellulosiroptor saccharolyticus. The xynD gene encodes a two-domain family 11 xylanase that is identical in architecture to the XynB family 11 xylanase from the unrelated extreme thermophile Dictyoglomus thermophilum strain Rt46B.1. The sequence similarities between the Rt69B.1 xylanases with respect to their evolution are discussed. PMID:10356996

  6. Diversity of Beetle Genes Encoding Novel Plant Cell Wall Degrading Enzymes

    PubMed Central

    Pauchet, Yannick; Wilkinson, Paul; Chauhan, Ritika; ffrench-Constant, Richard H.

    2010-01-01

    Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs) are therefore important in a wide range of biotechnological processes from the production of biofuels and food to waste processing. However, despite the fact that the last common ancestor of all deuterostomes was inferred to be able to digest, or even synthesize, cellulose using endogenous genes, all model insects whose complete genomes have been sequenced lack genes encoding such enzymes. To establish if the apparent “disappearance” of PCWDEs from insects is simply a sampling problem, we used 454 mediated pyrosequencing to scan the gut transcriptomes of beetles that feed on a variety of plant derived diets. By sequencing the transcriptome of five beetles, and surveying publicly available ESTs, we describe 167 new beetle PCWDEs belonging to eight different enzyme families. This survey proves that these enzymes are not only present in non-model insects but that the multigene families that encode them are apparently undergoing complex birth-death dynamics. This reinforces the observation that insects themselves, and not just their microbial symbionts, are a rich source of PCWDEs. Further it emphasises that the apparent absence of genes encoding PCWDEs from model organisms is indeed simply a sampling artefact. Given the huge diversity of beetles alive today, and the diversity of their lifestyles and diets, we predict that beetle guts will emerge as an important new source of enzymes for use in biotechnology. PMID:21179425

  7. Duplications and losses in gene families of rust pathogens highlight putative effectors.

    PubMed

    Pendleton, Amanda L; Smith, Katherine E; Feau, Nicolas; Martin, Francis M; Grigoriev, Igor V; Hamelin, Richard; Nelson, C Dana; Burleigh, J Gordon; Davis, John M

    2014-01-01

    Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity. PMID:25018762

  8. The expression of lysyl-oxidase gene family members in myeloproliferative neoplasms.

    PubMed

    Tadmor, T; Bejar, J; Attias, D; Mischenko, E; Sabo, E; Neufeld, G; Vadasz, Z

    2013-05-01

    Myeloproliferative neoplasms (MPNs) are malignant disorders originating from clonal expansion of a single neoplastic stem cell and characteristically show an increase in bone marrow reticulin fibers. Lysyl oxidases (LOXs) are copper-dependent amine oxidases that play a critical role in the biogenesis of connective tissue by crosslinking extracellular matrix proteins, collagen and elastin. Expression of LOX gene family members is increased in disorders associated with increased fibrosis. To evaluate involvement of LOX gene family in various MPNs. In-situ hybridization was used to detect Lysyl-Oxidase family members in bone marrow biopsies from patients with different MPNs. We compared normal bone marrows and those from patients with polycythemia vera, essential thrombocythemia, chronic myeloid leukemia, and primary myelofibrosis (PMF). Serum levels of lysyl-oxidase from patients with PMF and healthy controls were also examined. LOX gene family was not detected in normal bone marrows. All members of the LOX gene family were over expressed in PMF. In other MPNs a differential pattern of expression was observed. Differences in gene expression were statistically significant (P < 0.010). The medianserum LOX levels in normal controls was 28.4 ± 2.5 ng\\ml and 44.6 ± 9.44 ng\\ml in PMF (P = 0.02). The varying pattern of expression of LOX genes may reflect differences in the pathophysiology of bone marrow fibrosis in these MPNs. These observations could be used as the basis for future targeted therapy directed against bone marrow fibrosis. PMID:23494965

  9. Duplications and losses in gene families of rust pathogens highlight putative effectors

    PubMed Central

    Pendleton, Amanda L.; Smith, Katherine E.; Feau, Nicolas; Martin, Francis M.; Grigoriev, Igor V.; Hamelin, Richard; Nelson, C. Dana; Burleigh, J. Gordon; Davis, John M.

    2014-01-01

    Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity. PMID:25018762

  10. Agrobacterium-mediated gene transfer in plants and biosafety considerations.

    PubMed

    Mehrotra, Shweta; Goyal, Vinod

    2012-12-01

    Agrobacterium, the natures' genetic engineer, has been used as a vector to create transgenic plants. Agrobacterium-mediated gene transfer in plants is a highly efficient transformation process which is governed by various factors including genotype of the host plant, explant, vector, plasmid, bacterial strain, composition of culture medium, tissue damage, and temperature of co-cultivation. Agrobacterium has been successfully used to transform various economically and horticulturally important monocot and dicot species by standard tissue culture and in planta transformation techniques like floral or seedling infilteration, apical meristem transformation, and the pistil drip methods. Monocots have been comparatively difficult to transform by Agrobacterium. However, successful transformations have been reported in the last few years based on the adjustment of the parameters that govern the responses of monocots to Agrobacterium. A novel Agrobacterium transferred DNA-derived nanocomplex method has been developed which will be highly valuable for plant biology and biotechnology. Agrobacterium-mediated genetic transformation is known to be the preferred method of creating transgenic plants from a commercial and biosafety perspective. Agrobacterium-mediated gene transfer predominantly results in the integration of foreign genes at a single locus in the host plant, without associated vector backbone and is also known to produce marker free plants, which are the prerequisites for commercialization of transgenic crops. Research in Agrobacterium-mediated transformation can provide new and novel insights into the understanding of the regulatory process controlling molecular, cellular, biochemical, physiological, and developmental processes occurring during Agrobacterium-mediated transformation and also into a wide range of aspects on biological safety of transgenic crops to improve crop production to meet the demands of ever-growing world's population. PMID:23090683

  11. Differential regulation of four members of the ACC synthase gene family in plum

    PubMed Central

    El-Sharkawy, I.; Kim, W. S.; Jayasankar, S.; Svircev, A. M.; Brown, D. C. W.

    2008-01-01

    The regulation of ACC synthase (ACS) genes was studied in early (‘Early Golden’) and late (‘Shiro’) Japanese plum cultivars (Prunus salicina L.) in order to determine the role of this gene family in fruit ripening. Of the four Ps-ACS cDNAs isolated, two (Ps-ACS1 and -3) showed differential expression between the two cultivars. Ps-ACS1 accumulated during fruit ripening of ‘Early Golden’ (‘EG’) and ‘Shiro’ (‘SH’) in ethylene-dependent and -independent manners, respectively. Ps-ACS3a transcripts accumulated throughout fruit development and during ‘EG’ fruit ripening. Ps-ACS3b was detected only during ripening of ‘SH’ fruit. Furthermore, Ps-ACS3a transcript accumulation was negatively regulated by ethylene, whereas Ps-ACS3b was positively induced by the hormone. In both cultivars, the expression of Ps-ACS4 and -5 is under positive and negative feedback control by ethylene, respectively. Genetic analyses of ‘EG’ and ‘SH’ cultivars demonstrated that ‘EG’ is homozygous for Ps-ACS3a whereas ‘SH’ is heterozygous for Ps-ACS3 (a/b). The role of ethylene-overproducer 1-like in delaying fruit ripening by interacting with Ps-ACS proteins was also studied. The effect of the plant hormones, auxin, gibberellin, and cytokinin, in regulating ethylene production by promoting the induction of the different Ps-ACS mRNAs in plum was investigated. A model is presented in which differences in Ps-ACS alleles and gene expression between early and late plums are critical in determining the ripening behaviour of the cultivars. PMID:18535295

  12. The wheat ?-gliadin genes: characterization of ten new sequences and further understanding of ?-gliadin gene family structure

    Microsoft Academic Search

    O. D. Anderson; C. C. Hsia

    2001-01-01

    Ten new wheat ?-gliadin gene sequences are reported and an analysis of ?-gliadin gene family structure is carried out using\\u000a all known ?-gliadin sequences. The new sequences comprise four genomic clones with significantly more flanking DNA than previously\\u000a reported, and six cDNA clones from a wheat endosperm EST project. Analysis of extended flanking DNA from the genomic clones\\u000a indicates the

  13. Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants

    PubMed Central

    Alinsug, Malona V; Yu, Chun-Wei; Wu, Keqiang

    2009-01-01

    Background Although histone deacetylases from model organisms have been previously identified, there is no clear basis for the classification of histone deacetylases under the RPD3/HDA1 superfamily, particularly on plants. Thus, this study aims to reconstruct a phylogenetic tree to determine evolutionary relationships between RPD3/HDA1 histone deacetylases from six different plants representing dicots with Arabidopsis thaliana, Populus trichocarpa, and Pinus taeda, monocots with Oryza sativa and Zea mays, and the lower plants with Physcomitrella patens. Results Sixty two histone deacetylases of RPD3/HDA1 family from the six plant species were phylogenetically analyzed to determine corresponding orthologues. Three clusters were formed separating Class I, Class II, and Class IV. We have confirmed lower and higher plant orthologues for AtHDA8 and AtHDA14, classifying both genes as Class II histone deacetylases in addition to AtHDA5, AtHDA15, and AtHDA18. Since Class II histone deacetylases in other eukaryotes have been known to undergo nucleocytoplasmic transport, it remains unknown whether such functional regulation also happens in plants. Thus, bioinformatics studies using different programs and databases were conducted to predict their corresponding localization sites, nuclear export signal, nuclear localization signal, as well as expression patterns. We also found new conserved domains in most of the RPD3/HDA1 histone deacetylases which were similarly conserved in its corresponding orthologues. Assessing gene expression patterns using Genevestigator, it appears that RPD3/HDA1 histone deacetylases are expressed all throughout the plant parts and developmental stages of the plant. Conclusion The RPD3/HDA1 histone deacetylase family in plants is divided into three distinct groups namely, Class I, Class II, and Class IV suggesting functional diversification. Class II comprises not only AtHDA5, AtHDA15, and AtHDA18 but also includes AtHDA8 and AtHDA14. New conserved domains have also been identified in most of the RPD3/HDA1 family indicating further versatile roles other than histone deacetylation. PMID:19327164

  14. [Molecular evolution of Orf1 gene in plant LTR-retrotransposons].

    PubMed

    Liu, Jing; Du, Jian-Chang

    2013-09-01

    LTR-Retrotransposons are the major DNA components in plant genomes. They usually contain gag and pol, two genes necessary for transpositinal process. Our previous study on soybean genome annotation identified a SARE LTR-Retrotransposon family, which carries the third gene, Orf1. Using a bioinformatics approach, we here reported that 7 out of 33 sequenced genomes have some LTR-Retrotransposons with an extra Orf1 gene/gene fragment (approximately 1-2 kb) in the region between 5' LTR and gag gene, including Eucalyptus grandis, Populus trichocarpa, Gossypium raimondii, Glycine max, Lotus japonica, Linum usitatissimum, and Medicago truncatula. The majority of these elements were inserted into the genomes they reside within the last 3 million years, but their structures, frequencies, intensity, and activity in different host genomes are quite different. Phylogenetic analysis indicated that these unusual elements were clustered in a eudicot branch, suggesting that they may be generated in the evolution of some eudicot species. The relative conservation, transcriptional activity, and the presence of multiple potential conserved motifs suggest that Orf1 gene may still be functional. PMID:24400486

  15. A method for cellular localization of gene expression via quantitative in situ hybridization in plants.

    PubMed

    Küpper, Hendrik; Seib, Laura Ort; Sivaguru, Mayandi; Hoekenga, Owen A; Kochian, Leon V

    2007-04-01

    A quantitative in situ hybridization technique (quantitative whole-mount in situ hybridization, QISH) for plants is described. It employs direct hybridization of fluorescently labelled gene-specific oligonucleotides in large tissue pieces combined with optical sectioning. It dramatically increases the throughput compared with conventional antibody- and microtome-based in situ mRNA hybridization methods, while simultaneously eliminating artefact-prone preparation steps that prevent reliable quantification in conventional methods. The key feature of this technique is the quantification of gene expression using housekeeping genes (cytosolic GAPDH and 18S RNA) as internal standards. This feature enables a correction of varying cytoplasm/vacuole ratios in different cell types, as well as tissue optical effects and non-specific signals. The quantitative nature of the technique allows for analysis of gene expression in response to different environmental conditions, as well as tissue- and age-dependent differences in gene expression patterns. In addition to testing tissue permeabilization, structural preservation, specificity, linearity and tissue optical effects, we verified the reliability of the technique with three Arabidopsis thaliana genes of known function and distribution. These were the rbcL gene for ribulose 1,5-bisphosphate carboxylase, the developmentally related gene SCARECROW (AtSCR) and PHOT-1, a photoreceptor kinase. As expected, rbcL mRNA was found in all photosynthetic cells, while SCR mRNA was detected mainly in bundle sheath cells and PHOT-1 was found predominantly in epidermal and cortical cells of the apical hook of light-grown seedlings. As an application example, QISH was used to measure transcript abundance for a zinc transporter from the ZIP family of transporters in the Zn/Cd hyperaccumulator model plant, Thlaspi caerulescens, and the related non-accumulator Thlaspi arvense. This showed that QISH can be used to compare differences in mRNA levels between cell types, plant growth conditions and plant species. Messenger RNA for the zinc transporter gene ZNT1 was abundant in photosynthetic cells, but not in the epidermal storage cells where metal hyperaccumulation in T. caerulescens occurs. This indicates that ZNT1 does not directly participate in metal hyperaccumulation within the leaf. Growing T. caerulescens with high zinc levels strongly reduced ZNT1 transcript abundance in the spongy mesophyll cells, but less in the other cell types. In T. arvense, ZNT1 mRNA levels were generally much lower, and were furthermore drastically reduced by growth at increased zinc levels, confirming earlier reports regarding ZNT1 regulation in these two Thlaspi species. PMID:17397510

  16. Gene regulation networks generate diverse pigmentation patterns in plants

    PubMed Central

    Albert, Nick W; Davies, Kevin M; Schwinn, Kathy E

    2014-01-01

    The diversity of pigmentation patterns observed in plants occurs due to the spatial distribution and accumulation of colored compounds, which may also be associated with structural changes to the tissue. Anthocyanins are flavonoids that provide red/purple/blue coloration to plants, often forming complex patterns such as spots, stripes, and vein-associated pigmentation, particularly in flowers. These patterns are determined by the activity of MYB-bHLH-WDR (MBW) transcription factor complexes, which activate the anthocyanin biosynthesis genes, resulting in anthocyanin pigment accumulation. Recently, we established that the MBW complex controlling anthocyanin synthesis acts within a gene regulation network that is conserved within at least the Eudicots. This network involves hierarchy, reinforcement, and feedback mechanisms that allow for stringent and responsive regulation of the anthocyanin biosynthesis genes. The gene network and mobile nature of the WDR and R3-MYB proteins provide exciting new opportunities to explore the basis of pigmentation patterning, and to investigate the evolutionary history of the MBW components in land plants. PMID:25763693

  17. The expression of tomato prosystemin gene in tobacco plants highly affects host proteomic repertoire.

    PubMed

    Rocco, Mariapina; Corrado, Giandomenico; Arena, Simona; D'Ambrosio, Chiara; Tortiglione, Claudia; Sellaroli, Stefano; Marra, Mauro; Rao, Rosa; Scaloni, Andrea

    2008-07-21

    Systemin, an octadecapeptide isolated from tomato, is a primary signal molecule involved in the local and systemic responses to pest attack, elicited by activation of a set of defence genes. It derives from processing of prosystemin, a prohormone of almost 200 amino acids. Prosystemin orthologues have been found in other Solanaceae species but not in tobacco, where are present hydroxyproline-rich peptides functionally but not structurally related to tomato systemin. Molecular events leading to the release of signalling peptides from protein precursors are unknown in plants; the occurrence of a family of signal molecules suggests that initiation of wound response may involve different processing mechanisms. It has been previously shown that the protein product from an engineered tomato prosystemin gene is processed in tobacco, thus suggesting that the components responsible for its post-translational modifications are present in this species. By analyzing analysing the proteome repertoire of transformed tobacco plant leaves with 2-DE, here we demonstrate that the constitutive expression of the tomato prosystemin gene highly affected host protein synthesis. In particular, engineered plants showed a number of differentially synthesized proteins that were identified by PMF MALDI-TOF and microLC-ESI-IT-MS/MS experiments as polypeptide species involved in protection from pathogens and oxidative stress, or in carbon/energy metabolism. Significant differences in over-produced proteins were observed with respect to previous data reported on systemin-engineered tomato plants. Our results strongly support the need of using proteomic approaches during systematic analysis of plant tissues to investigate the principle of substantial equivalence in transgenic plants expressing a transgene coding for a signalling molecule. PMID:18617145

  18. Transcriptomic and phylogenetic analysis of Culex pipiens quinquefasciatus for three detoxification gene families

    PubMed Central

    2012-01-01

    Background The genomes of three major mosquito vectors of human diseases, Anopheles gambiae, Aedes aegypti, and Culex pipiens quinquefasciatus, have been previously sequenced. C. p. quinquefasciatus has the largest number of predicted protein-coding genes, which partially results from the expansion of three detoxification gene families: cytochrome P450 monooxygenases (P450), glutathione S-transferases (GST), and carboxyl/cholinesterases (CCE). However, unlike An. gambiae and Ae. aegypti, which have large amounts of gene expression data, C. p. quinquefasciatus has limited transcriptomic resources. Knowledge of complete gene expression information is very important for the exploration of the functions of genes involved in specific biological processes. In the present study, the three detoxification gene families of C. p. quinquefasciatus were analyzed for phylogenetic classification and compared with those of three other dipteran insects. Gene expression during various developmental stages and the differential expression responsible for parathion resistance were profiled using the digital gene expression (DGE) technique. Results A total of 302 detoxification genes were found in C. p. quinquefasciatus, including 71 CCE, 196 P450, and 35 cytosolic GST genes. Compared with three other dipteran species, gene expansion in Culex mainly occurred in the CCE and P450 families, where the genes of ?-esterases, juvenile hormone esterases, and CYP325 of the CYP4 subfamily showed the most pronounced expansion on the genome. For the five DGE libraries, 3.5-3.8 million raw tags were generated and mapped to 13314 reference genes. Among 302 detoxification genes, 225 (75%) were detected for expression in at least one DGE library. One fourth of the CCE and P450 genes were detected uniquely in one stage, indicating potential developmentally regulated expression. A total of 1511 genes showed different expression levels between a parathion-resistant and a susceptible strain. Fifteen detoxification genes, including 2 CCEs, 6 GSTs, and 7 P450s, were expressed at higher levels in the resistant strain. Conclusions The results of the present study provide new insights into the functions and evolution of three detoxification gene families in mosquitoes and comprehensive transcriptomic resources for C. p. quinquefasciatus, which will facilitate the elucidation of molecular mechanisms underlying the different biological characteristics of the three major mosquito vectors. PMID:23140097

  19. Structural and functional properties of the cotton Aquaporin gene family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water uptake and transport is a fundamental process of growth and development in living organisms. Aquaporins are transmembrane water channel proteins and are present as diverse forms in plants and animals where they facilitate transport of water and other small molecules. Plant aquaporins have been...

  20. Investigation of the mechanism underlying the inhibitory effect of heterologous ras genes in plant cells

    Microsoft Academic Search

    Zong R. Liu; John C. Sanford

    1993-01-01

    The ras genes from yeast and mammalian cells were fused to plant expression promoters, and introduced into plant cells via Agrobacterium, to study their effect on cell growth and development. All introduced ras genes had a strong inhibitory effect on callus and shoot regeneration from plant tissues. This is consistent with earlier findings that heterologous ras genes were highly lethal

  1. Phylogenetic analysis reveals conservation and diversification of micro RNA166 genes among diverse plant species.

    PubMed

    Barik, Suvakanta; SarkarDas, Shabari; Singh, Archita; Gautam, Vibhav; Kumar, Pramod; Majee, Manoj; Sarkar, Ananda K

    2014-01-01

    Similar to the majority of the microRNAs, mature miR166s are derived from multiple members of MIR166 genes (precursors) and regulate various aspects of plant development by negatively regulating their target genes (Class III HD-ZIP). The evolutionary conservation or functional diversification of miRNA166 family members remains elusive. Here, we show the phylogenetic relationships among MIR166 precursor and mature sequences from three diverse model plant species. Despite strong conservation, some mature miR166 sequences, such as ppt-miR166m, have undergone sequence variation. Critical sequence variation in ppt-miR166m has led to functional diversification, as it targets non-HD-ZIPIII gene transcript (s). MIR166 precursor sequences have diverged in a lineage specific manner, and both precursors and mature osa-miR166i/j are highly conserved. Interestingly, polycistronic MIR166s were present in Physcomitrella and Oryza but not in Arabidopsis. The nature of cis-regulatory motifs on the upstream promoter sequences of MIR166 genes indicates their possible contribution to the functional variation observed among miR166 species. PMID:24275521

  2. A specific gene conversion of an Alu family member in the LDL-receptor gene

    SciTech Connect

    Deininger, P.L.; Kass, D.H.; Batzer, M.A. [Lawrence Livermore National Lab., CA (United States)

    1994-09-01

    There are about 500,000 Alu family members dispersed throughout the human genome. Each of these elements is about 300 bp long and they are spread through an RNA-mediated transposition process termed retroposition. The Alu elements are not identical in sequence, but instead seem to be randomly diverged from several subfamily consensus sequences. These subfamilies can be roughly divided, based on diagnostic nucleotide positions, into groups of Alu sequences inserted during different stages in primate evolution. A PCR-based assay in which we amplify a specific Alu-containing site in the genomes of different primates allows us to detect the time of insertion of that individual Alu element in the primate genome. In studying members of one of the youngest Alu subfamilies, Sb2, we detected one element that had apparently inserted over 25 million years ago, much earlier than any other Sb2 element tested. Upon sequencing the amplified PCR products, we found that an Alu was in that precise location for 25 million years, but only in the human genome was it an Sb2 element. Its sequence was consistent with the oldest (PS) Alu subfamily in the other primates. This element evolves as expected throughout primates with the exception of the human, where it has suddenly acquired 16 separate diagnostic subfamily mutations. Although the exact mechanism is unknown, this Alu element has been specifically gene converted by an Alu element from this newer subfamily, without affecting the flanking sequences at all. It is clear that the majority of Alu subfamily evolution is dominated by insertion processes. However, this event shows that some of the details of Alu subfamily evolution may also be affected by gene conservation. Studies on several humans also show that this locus continued to accumulate mutations at an exceptionally high level after the conversion, making it useful as a polymorphic marker for the LDL-receptor locus.

  3. Analysis of the hybrid proline-rich protein families from seven plant species suggests rapid diversification of their sequences and expression patterns

    PubMed Central

    Dvo?áková, Lenka; Cvr?ková, Fatima; Fischer, Lukáš

    2007-01-01

    Background Plant hybrid proline-rich proteins (HyPRPs) are putative cell wall proteins consisting, usually, of a repetitive proline-rich (PR) N-terminal domain and a conserved eight-cysteine motif (8 CM) C-terminal domain. Understanding the evolutionary dynamics of HyPRPs might provide not only insight into their so far elusive function, but also a model for other large protein families in plants. Results We have performed a phylogenetic analysis of HyPRPs from seven plant species, including representatives of gymnosperms and both monocot and dicot angiosperms. Every species studied possesses a large family of 14–52 HyPRPs. Angiosperm HyPRPs exhibit signs of recent major diversification involving, at least in Arabidopsis and rice, several independent tandem gene multiplications. A distinct subfamily of relatively well-conserved C-type HyPRPs, often with long hydrophobic PR domains, has been identified. In most of gymnosperm (pine) HyPRPs, diversity appears within the C-type group while angiosperms have only a few of well-conserved C-type representatives. Atypical (glycine-rich or extremely short) N-terminal domains apparently evolved independently in multiple lineages of the HyPRP family, possibly via inversion or loss of sequences encoding proline-rich domains. Expression profiles of potato and Arabidopsis HyPRP genes exhibit instances of both overlapping and complementary organ distribution. The diversified non-C-type HyPRP genes from recently amplified chromosomal clusters in Arabidopsis often share their specialized expression profiles. C-type genes have broader expression patterns in both species (potato and Arabidopsis), although orthologous genes exhibit some differences. Conclusion HyPRPs represent a dynamically evolving protein family apparently unique to seed plants. We suggest that ancestral HyPRPs with long proline-rich domains produced the current diversity through ongoing gene duplications accompanied by shortening, modification or loss of the proline-rich domains. Most of the diversity in gymnosperms and angiosperms originates from different branches of the HyPRP family. Rapid sequence diversification is consistent with only limited requirements for structure conservation and, together with high variability of gene expression patterns, limits the interpretation of any functional study focused on a single HyPRP gene or a couple of HYPRP genes in single plant species. PMID:17997832

  4. The Unit of Natural Selection: Groups, Families, Individuals, or Genes?

    ERIC Educational Resources Information Center

    Reiss, Michael J.

    1985-01-01

    Offers perspectives on natural selection and the phenomenon of altruism. Presents evidence for and against the theories that evolution acts essentially on genes, on individuals, on kin, or on larger groups. (ML)

  5. Mutation analysis of the MSMB gene in familial prostate cancer

    Microsoft Academic Search

    Z Kote-Jarai; D Leongamornlert; M Tymrakiewicz; H Field; M Guy; A A Al Olama; J Morrison; L O'Brien; R Wilkinson; A Hall; E Sawyer; K Muir; F Hamdy; J Donovan; D Neal; D Easton; R Eeles

    2010-01-01

    Background:MSMB, a gene coding for ?-microseminoprotein, has been identified as a candidate susceptibility gene for prostate cancer (PrCa) in two genome-wide association studies (GWAS). SNP rs10993994 is 2 bp upstream of the transcription initiation site of MSMB and was identified as an associated PrCa risk variant. The MSMB protein is underexpressed in PrCa and it was previously proposed to be

  6. Gene silencing and gene expression in phytopathogenic fungi using a plant virus vector.

    PubMed

    Mascia, Tiziana; Nigro, Franco; Abdallah, Alì; Ferrara, Massimo; De Stradis, Angelo; Faedda, Roberto; Palukaitis, Peter; Gallitelli, Donato

    2014-03-18

    RNA interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including phytopathogenic fungi. In such fungi, RNAi has been induced by expressing hairpin RNAs delivered through plasmids, sequences integrated in fungal or plant genomes, or by RNAi generated in planta by a plant virus infection. All these approaches have some drawbacks ranging from instability of hairpin constructs in fungal cells to difficulties in preparing and handling transgenic plants to silence homologous sequences in fungi grown on these plants. Here we show that RNAi can be expressed in the phytopathogenic fungus Colletotrichum acutatum (strain C71) by virus-induced gene silencing (VIGS) without a plant intermediate, but by using the direct infection of a recombinant virus vector based on the plant virus, tobacco mosaic virus (TMV). We provide evidence that a wild-type isolate of TMV is able to enter C71 cells grown in liquid medium, replicate, and persist therein. With a similar approach, a recombinant TMV vector carrying a gene for the ectopic expression of the green fluorescent protein (GFP) induced the stable silencing of the GFP in the C. acutatum transformant line 10 expressing GFP derived from C71. The TMV-based vector also enabled C. acutatum to transiently express exogenous GFP up to six subcultures and for at least 2 mo after infection, without the need to develop transformation technology. With these characteristics, we anticipate this approach will find wider application as a tool in functional genomics of filamentous fungi. PMID:24594602

  7. Clade classification of monolignol biosynthesis gene family members reveals target genes to decrease lignin in Lolium perenne.

    PubMed

    van Parijs, F R D; Ruttink, T; Boerjan, W; Haesaert, G; Byrne, S L; Asp, T; Roldán-Ruiz, I; Muylle, H

    2015-07-01

    In monocots, lignin content has a strong impact on the digestibility of the cell wall fraction. Engineering lignin biosynthesis requires a profound knowledge of the role of paralogues in the multigene families that constitute the monolignol biosynthesis pathway. We applied a bioinformatics approach for genome-wide identification of candidate genes in Lolium perenne that are likely to be involved in the biosynthesis of monolignols. More specifically, we performed functional subtyping of phylogenetic clades in four multigene families: 4CL, COMT, CAD and CCR. Essential residues were considered for functional clade delineation within these families. This classification was complemented with previously published experimental evidence on gene expression, gene function and enzymatic activity in closely related crops and model species. This allowed us to assign functions to novel identified L. perenne genes, and to assess functional redundancy among paralogues. We found that two 4CL paralogues, two COMT paralogues, three CCR paralogues and one CAD gene are prime targets for genetic studies to engineer developmentally regulated lignin in this species. Based on the delineation of sequence conservation between paralogues and a first analysis of allelic diversity, we discuss possibilities to further study the roles of these paralogues in lignin biosynthesis, including expression analysis, reverse genetics and forward genetics, such as association mapping. We propose criteria to prioritise paralogues within multigene families and certain SNPs within these genes for developing genotyping assays or increasing power in association mapping studies. Although L. perenne was the target of the analyses presented here, this functional subtyping of phylogenetic clades represents a valuable tool for studies investigating monolignol biosynthesis genes in other monocot species. PMID:25683375

  8. Multispecies Analysis of Expression Pattern Diversification in the Recently Expanded Insect Ly6 Gene Family.

    PubMed

    Tanaka, Kohtaro; Diekmann, Yoan; Hazbun, Alexis; Hijazi, Assia; Vreede, Barbara; Roch, Fernando; Sucena, Élio

    2015-07-01

    Gene families often consist of members with diverse expression domains reflecting their functions in a wide variety of tissues. However, how the expression of individual members, and thus their tissue-specific functions, diversified during the course of gene family expansion is not well understood. In this study, we approached this question through the analysis of the duplication history and transcriptional evolution of a rapidly expanding subfamily of insect Ly6 genes. We analyzed different insect genomes and identified seven Ly6 genes that have originated from a single ancestor through sequential duplication within the higher Diptera. We then determined how the original embryonic expression pattern of the founding gene diversified by characterizing its tissue-specific expression in the beetle Tribolium castaneum, the butterfly Bicyclus anynana, and the mosquito Anopheles stephensi and those of its duplicates in three higher dipteran species, representing various stages of the duplication history (Megaselia abdita, Ceratitis capitata, and Drosophila melanogaster). Our results revealed that frequent neofunctionalization episodes contributed to the increased expression breadth of this subfamily and that these events occurred after duplication and speciation events at comparable frequencies. In addition, at each duplication node, we consistently found asymmetric expression divergence. One paralog inherited most of the tissue-specificities of the founder gene, whereas the other paralog evolved drastically reduced expression domains. Our approach attests to the power of combining a well-established duplication history with a comprehensive coverage of representative species in acquiring unequivocal information about the dynamics of gene expression evolution in gene families. PMID:25743545

  9. Identification and characterization of the RCI2 gene family in maize (Zea mays).

    PubMed

    Zhao, Yang; Tong, Haiqing; Cai, Ronghao; Peng, Xiaojian; Li, Xiaoyu; Gan, Defang; Zhu, Suwen

    2014-12-01

    Rare-cold-inducible (RCI2) genes are structurally conserved members that encode small, highly hydrophobic proteins involved in response to various abiotic stresses. Phylogenetic and functional analyses of these genes have been conducted in Arabidopsis, but an extensive investigation of the RCI2 gene family has not yet been carried out in maize. In the present study, 10 RCI2 genes were identified in a fully sequenced maize genome. Structural characterization and expression pattern analysis of 10 ZmRCI2s (Zea mays RCI2 genes) were subsequently determined. Sequence and phylogenetic analyses indicated that ZmRCI2s are highly conserved, and most of them could be grouped with their orthologues from other organisms. Chromosomal location analysis indicated that ZmRCI2s were distributed unevenly on seven chromosomes with two segmental duplication events, suggesting that maize RCI2 gene family is an evolutionarily conserved family. Putative stress-responsive cis-elements were detected in the 2-kb promoter regions of the 10 ZmRCI2s. In addition, the 10 ZmRCI2s showed different expression patterns in maize development based on transcriptome analysis. Further, microarray and quantitative real-time PCR (qRT-PCR) analysis showed that each maize RCI2 genes were responsive to drought stress, suggesting their important roles in drought stress response. The results of this work provide a basis for future cloning and application studies of maize RCI2 genes. PMID:25572224

  10. Multispecies Analysis of Expression Pattern Diversification in the Recently Expanded Insect Ly6 Gene Family

    PubMed Central

    Tanaka, Kohtaro; Hazbun, Alexis; Hijazi, Assia; Vreede, Barbara; Sucena, Élio

    2015-01-01

    Gene families often consist of members with diverse expression domains reflecting their functions in a wide variety of tissues. However, how the expression of individual members, and thus their tissue-specific functions, diversified during the course of gene family expansion is not well understood. In this study, we approached this question through the analysis of the duplication history and transcriptional evolution of a rapidly expanding subfamily of insect Ly6 genes. We analyzed different insect genomes and identified seven Ly6 genes that have originated from a single ancestor through sequential duplication within the higher Diptera. We then determined how the original embryonic expression pattern of the founding gene diversified by characterizing its tissue-specific expression in the beetle Tribolium castaneum, the butterfly Bicyclus anynana, and the mosquito Anopheles stephensi and those of its duplicates in three higher dipteran species, representing various stages of the duplication history (Megaselia abdita, Ceratitis capitata, and Drosophila melanogaster). Our results revealed that frequent neofunctionalization episodes contributed to the increased expression breadth of this subfamily and that these events occurred after duplication and speciation events at comparable frequencies. In addition, at each duplication node, we consistently found asymmetric expression divergence. One paralog inherited most of the tissue-specificities of the founder gene, whereas the other paralog evolved drastically reduced expression domains. Our approach attests to the power of combining a well-established duplication history with a comprehensive coverage of representative species in acquiring unequivocal information about the dynamics of gene expression evolution in gene families. PMID:25743545

  11. Sessile snails, dynamic genomes: gene rearrangements within the mitochondrial genome of a family of caenogastropod molluscs

    PubMed Central

    2010-01-01

    Background Widespread sampling of vertebrates, which comprise the majority of published animal mitochondrial genomes, has led to the view that mitochondrial gene rearrangements are relatively rare, and that gene orders are typically stable across major taxonomic groups. In contrast, more limited sampling within the Phylum Mollusca has revealed an unusually high number of gene order arrangements. Here we provide evidence that the lability of the molluscan mitochondrial genome extends to the family level by describing extensive gene order changes that have occurred within the Vermetidae, a family of sessile marine gastropods that radiated from a basal caenogastropod stock during the Cenozoic Era. Results Major mitochondrial gene rearrangements have occurred within this family at a scale unexpected for such an evolutionarily young group and unprecedented for any caenogastropod examined to date. We determined the complete mitochondrial genomes of four species (Dendropoma maximum, D. gregarium, Eualetes tulipa, and Thylacodes squamigerus) and the partial mitochondrial genomes of two others (Vermetus erectus and Thylaeodus sp.). Each of the six vermetid gastropods assayed possessed a unique gene order. In addition to the typical mitochondrial genome complement of 37 genes, additional tRNA genes were evident in D. gregarium (trnK) and Thylacodes squamigerus (trnV, trnLUUR). Three pseudogenes and additional tRNAs found within the genome of Thylacodes squamigerus provide evidence of a past duplication event in this taxon. Likewise, high sequence similarities between isoaccepting leucine tRNAs in Thylacodes, Eualetes, and Thylaeodus suggest that tRNA remolding has been rife within this family. While vermetids exhibit gene arrangements diagnostic of this family, they also share arrangements with littorinimorph caenogastropods, with which they have been linked based on sperm morphology and primary sequence-based phylogenies. Conclusions We have uncovered major changes in gene order within a family of caenogastropod molluscs that are indicative of a highly dynamic mitochondrial genome. Studies of mitochondrial genomes at such low taxonomic levels should help to illuminate the dynamics of gene order change, since the telltale vestiges of gene duplication, translocation, and remolding have not yet been erased entirely. Likewise, gene order characters may improve phylogenetic hypotheses at finer taxonomic levels than once anticipated and aid in investigating the conditions under which sequence-based phylogenies lack resolution or prove misleading. PMID:20642828

  12. Ectopic expression of different cytokinin-regulated transcription factor genes of Arabidopsis thaliana alters plant growth and development.

    PubMed

    Köllmer, Ireen; Werner, Tomáš; Schmülling, Thomas

    2011-08-15

    The plant hormone cytokinin rapidly alters the steady state transcript levels of a number of transcription factor genes suggesting that these might have a function in mediating cytokinin effects. Here we report the analysis of Arabidopsis thaliana plants with an altered expression level of four different cytokinin-regulated transcription factor genes. These include GATA22 (also known as CGA1/GNL), two genes coding for members of the homeodomain zip (HD zip) class II transcription factor family (HAT4, HAT22), and bHLH64. Ectopic expression of the GATA22 gene induced the development of chloroplasts in root tissue where it is normally suppressed and led to the formation of shorter and less branched roots. Overexpression of HAT22 lowered the seedlings chlorophyll content and caused an earlier onset of leaf senescence. Enhanced expression of the HAT4 gene led to severe defects in inflorescence stem development and to a decrease in root growth and branching, while hat4 insertional mutants developed a larger root system. 35S:bHLH64 transgenic plants showed a pleiotropic phenotype, consisting of larger rosettes, reduced chlorophyll content and an elongated and thickened hypocotyl. Flower development was strongly disturbed leading to sterile plants. The results are consistent with specific functions of these transcription factor genes in regulating part of the cytokinin activities and suggest their action as convergence point with other signalling pathways, particularly those of gibberellin and light. PMID:21453984

  13. Large, rapidly evolving gene families are at the forefront of host-parasite interactions in Apicomplexa.

    PubMed

    Reid, Adam J

    2015-02-01

    The Apicomplexa is a phylum of parasitic protozoa, which includes the malaria parasite Plasmodium, amongst other species that can devastate human and animal health. The past decade has seen the release of genome sequences for many of the most important apicomplexan species, providing an excellent basis for improving our understanding of their biology. One of the key features of each genome is a unique set of large, variant gene families. Although closely related species share the same families, even different types of malaria parasite have distinct families. In some species they tend to be found at the ends of chromosomes, which may facilitate aspects of gene expression regulation and generation of sequence diversity. In others they are scattered apparently randomly across chromosomes. For some families there is evidence they are involved in antigenic variation, immune regulation and immune evasion. For others there are no known functions. Even where function is unknown these families are most often predicted to be exposed to the host, contain much sequence diversity and evolve rapidly. Based on these properties it is clear that they are at the forefront of host-parasite interactions. In this review I compare and contrast the genomic context, gene structure, gene expression, protein localization and function of these families across different species. PMID:25257746

  14. A new member of the plasma protease inhibitor gene family.

    PubMed Central

    Ragg, H

    1986-01-01

    A 2.1-kb cDNA clone representing a new member of the protease inhibitor family was isolated from a human liver cDNA library. The inhibitor, named human Leuserpin 2 (hLS2), comprises 480 amino acids and contains a leucine residue at its putative reactive center. HLS2 is about 25-28% homologous to three human members of the plasma protease inhibitor family: antithrombin III, alpha 1-antitrypsin and alpha 1-antichymotrypsin. A comparison with published partial amino acid sequences shows that hLS2 is closely related to the thrombin inhibitor heparin cofactor II. Images PMID:3003690

  15. Gene Delivery into Plant Cells for Recombinant Protein Production

    PubMed Central

    Chen, Qiang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  16. Identification and Characterization of 40 Isolated Rehmannia glutinosa MYB Family Genes and Their Expression Profiles in Response to Shading and Continuous Cropping.

    PubMed

    Wang, Fengqing; Suo, Yanfei; Wei, He; Li, Mingjie; Xie, Caixia; Wang, Lina; Chen, Xinjian; Zhang, Zhongyi

    2015-01-01

    The v-myb avian myeloblastosis viral oncogene homolog (MYB) superfamily constitutes one of the most abundant groups of transcription factors (TFs) described in plants. To date, little is known about the MYB genes in Rehmannia glutinosa. Forty unique MYB genes with full-length cDNA sequences were isolated. These 40 genes were grouped into five categories, one R1R2R3-MYB, four TRFL MYBs, four SMH MYBs, 25 R2R3-MYBs, and six MYB-related members. The MYB DNA-binding domain (DBD) sequence composition was conserved among proteins of the same subgroup. As expected, most of the closely related members in the phylogenetic tree exhibited common motifs. Additionally, the gene structure and motifs of the R. glutinosa MYB genes were analyzed. MYB gene expression was analyzed in the leaf and the tuberous root under two abiotic stress conditions. Expression profiles showed that most R. glutinosa MYB genes were expressed in the leaf and the tuberous root, suggesting that MYB genes are involved in various physiological and developmental processes in R. glutinosa. Seven MYB genes were up-regulated in response to shading in at least one tissue. Two MYB genes showed increased expression and 13 MYB genes showed decreased expression in the tuberous root under continuous cropping. This investigation is the first comprehensive study of the MYB gene family in R. glutinosa. PMID:26147429

  17. Towards revealing the functions of all genes in plants.

    PubMed

    Rhee, Seung Yon; Mutwil, Marek

    2014-04-01

    The great recent progress made in identifying the molecular parts lists of organisms revealed the paucity of our understanding of what most of the parts do. In this review, we introduce computational and statistical approaches and omics data used for inferring gene function in plants, with an emphasis on network-based inference. We also discuss caveats associated with network-based function predictions such as performance assessment, annotation propagation, the guilt-by-association concept, and the meaning of hubs. Finally, we note the current limitations and possible future directions such as the need for gold standard data from several species, unified access to data and tools, quantitative comparison of data and tool quality, and high-throughput experimental validation platforms for systematic gene function elucidation in plants. PMID:24231067

  18. Discovery of MicroRNA169 Gene Copies in Genomes of Flowering Plants through Positional Information

    PubMed Central

    Calviño, Martín; Messing, Joachim

    2013-01-01

    Expansion and contraction of microRNA (miRNA) families can be studied in sequenced plant genomes through sequence alignments. Here, we focused on miR169 in sorghum because of its implications in drought tolerance and stem-sugar content. We were able to discover many miR169 copies that have escaped standard genome annotation methods. A new miR169 cluster was found on sorghum chromosome 1. This cluster is composed of the previously annotated sbi-MIR169o together with two newly found MIR169 copies, named sbi-MIR169t and sbi-MIR169u. We also found that a miR169 cluster on sorghum chr7 consisting of sbi-MIR169l, sbi-MIR169m, and sbi-MIR169n is contained within a chromosomal inversion of at least 500 kb that occurred in sorghum relative to Brachypodium, rice, foxtail millet, and maize. Surprisingly, synteny of chromosomal segments containing MIR169 copies with linked bHLH and CONSTANS-LIKE genes extended from Brachypodium to dictotyledonous species such as grapevine, soybean, and cassava, indicating a strong conservation of linkages of certain flowering and/or plant height genes and microRNAs, which may explain linkage drag of drought and flowering traits and would have consequences for breeding new varieties. Furthermore, alignment of rice and sorghum orthologous regions revealed the presence of two additional miR169 gene copies (miR169r and miR169s) on sorghum chr7 that formed an antisense miRNA gene pair. Both copies are expressed and target different set of genes. Synteny-based analysis of microRNAs among different plant species should lead to the discovery of new microRNAs in general and contribute to our understanding of their evolution. PMID:23348041

  19. Human T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D. [Paul-Ehrlich-Inst., Langen (Germany); Clark, S.P. [Amgen Center, Thousand Oaks, CA (United States); Mak, T.W. [Imgen Inst., Toronto, Ontario (Canada)

    1995-10-01

    Multiple DNA and protein sequence alignments have been constructed for the human T-cell receptor {alpha}/{delta}, {beta}, and {gamma} (TCRA/D, B, and G) variable (V) gene segments. The traditional classification into subfamilies was confirmed using a much larger pool of sequences. For each sequence, a name was derived which complies with the standard nomenclature. The traditional numbering of V gene segments in the order of their discovery was continued and changed when in conflict with names of other segments. By discriminating between alleles at the same locus versus genes from different loci, we were able to reduce the number of more than 150 different TCRBV sequences in the database to a repertoire of only 47 functional TCRBV gene segments. An extension of this analysis to the over 100 TCRAV sequences results in a predicted repertoire of 42 functional TCRAV gene segments. Our alignment revealed two residues that distinguish between the highly homologous V{delta} and V{alpha}, one at a site that in V{sub H} contacts the constant region, the other at the interface between immunoglobulin V{sub H} and V{sub L}. This site may be responsible for restricted pairing between certain V{delta} and V{gamma} chains. On the other hand, V{beta} and V{gamma} appear to be related by the fact that their CDR2 length is increased by four residues as compared with that of V{alpha}/{delta} peptides. 150 refs., 12 figs., 5 tabs.

  20. IDENTIFICATION AND CHARACTERIZATION OF THE PEROXIREDOXIN GENE FAMILY IN AVES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peroxiredoxin (PRX) is a crucial antioxidant protein that protects against endogenously produced peroxides in prokaryotes to eukaryotes. To date, six different isoforms have been identified in mammals. In this study, we describe the first members of the PRX protein family to be characterized in Aves...

  1. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    E-print Network

    Grigoriev, Igor V.

    2011-01-01

    report the genome sequence of the non?seed vascular  plant, plants) and the lycophytes  (1).   We report here the genome sequence genome sequence to uncover genes associated  with major evolutionary transitions in land plants.    

  2. Analysis of the Arabidopsis NAC gene superfamily in plant development 

    E-print Network

    Alvarado Chavez, Veria Ysabel

    2009-05-15

    and overexpression lines................................................ 65 3.12 Retesting protein interactions in yeast ........................... 70 4.1 Pro TAPNAC-1700 confers anther specific GUS expression .. 91 4.2 Pro TAPNAC-1700 confers... control plants on selected genes ................ 54 3.4 Putative cis-regulatory elements identified in the TAPNAC regulated promoters........................................ 61 3.5 Analysis of nitrogen, zinc and iron contents in seeds...

  3. Activation tagging in plants: a tool for gene discovery

    Microsoft Academic Search

    Helen Tani; Xinwei Chen; Pedro Nurmberg; John J. Grant; Marjorie SantaMaria; Andrea Chini; Eleanor Gilroy; Paul R. J. Birch; Gary J. Loake

    2004-01-01

    A significant limitation of classical loss-of-function screens designed to dissect genetic pathways is that they rarely uncover genes that function redundantly, are compensated by alternative metabolic or regulatory circuits, or which have an additional role in early embryo or gametophyte development. Activation T-DNA tagging is one approach that has emerged in plants to help circumvent these potential problems. This technique

  4. Plant Polyphenol Intake Alters Gene Expression in Canine Leukocytes

    Microsoft Academic Search

    Anna Salas; Francesc Subirada; Miguel Pérez-Enciso; Francesc Blanch; Isabelle Jeusette; Víctor Romano; Celina Torre

    2009-01-01

    Background\\/Aims: Polyphenol compounds may explain most of the health-related beneficial effects of plants and vegetables, mainly through their antioxidant properties. The aim of the study was to assess the main changes on leukocyte gene expression of dogs caused by intake of three natural polyphenol-rich extracts and to compare them with caloric restriction. Methods: 20 female dogs were divided into 5

  5. Resistance Gene Analogs in Rosaceae: Family-wide Classification Including Raspberry, Cherry, and Wild Apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic studies have shown that NBS-LRR Resistance Gene Analogs (RGAs)tend to occur in clusters and often map to major resistance genes or QTLs. The identification and use of specific RGAs as molecular markers among plant material displaying different resistance phenotypes has the pote