Sample records for plant gene family

  1. Plant protein-coding gene families: emerging bioinformatics approaches.

    PubMed

    Martinez, Manuel

    2011-10-01

    Protein-coding gene families are sets of similar genes with a shared evolutionary origin and, generally, with similar biological functions. In plants, the size and role of gene families has been only partially addressed. However, suitable bioinformatics tools are being developed to cluster the enormous number of sequences currently available in databases. Specifically, comparative genomic databases promise to become powerful tools for gene family annotation in plant clades. In this review, I evaluate the data retrieved from various gene family databases, the ease with which they can be extracted and how useful the extracted information is. PMID:21757395

  2. Evolutionary analyses of non-family genes in plants

    SciTech Connect

    Ye, Chuyu [ORNL; Li, Ting [ORNL; Yin, Hengfu [ORNL; Weston, David [ORNL; Tuskan, Gerald A [ORNL; Tschaplinski, Timothy J [ORNL; Yang, Xiaohan [ORNL

    2013-01-01

    There are a large number of non-family (NF) genes that do not cluster into families with three or more members per genome. While gene families have been extensively studied, a systematic analysis of NF genes has not been reported. We performed comparative studies on NF genes in 14 plant species. Based on the clustering of protein sequences, we identified ~94,000 NF genes across these species that were divided into five evolutionary groups: Viridiplantae-wide, angiosperm-specific, monocot-specific, dicot-specific, and those that were species-specific. Our analysis revealed that the NF genes resulted largely from less frequent gene duplications and/or a higher rate of gene loss after segmental duplication relative to genes in both low-copy-number families (LF; 3 10 copies per genome) and high-copy-number families (HF; >10 copies). Furthermore, we identified functions enriched in the NF gene set as compared with the HF genes. We found that NF genes were involved in essential biological processes shared by all plant lineages (e.g., photosynthesis and translation), as well as gene regulation and stress responses associated with phylogenetic diversification. In particular, our analysis of an Arabidopsis protein-protein interaction network revealed that hub proteins with the top 10% most connections were over-represented in the NF set relative to the HF set. This research highlights the roles that NF genes may play in evolutionary and functional genomics research.

  3. Evolutionary analyses of non-family genes in plants

    SciTech Connect

    Ye, Chuyu [ORNL; Li, Ting [ORNL; Yin, Hengfu [ORNL; Weston, David [ORNL; Tuskan, Gerald A [ORNL; Tschaplinski, Timothy J [ORNL; Yang, Xiaohan [ORNL

    2013-01-01

    There are a large number of non-family (NF) genes that do not cluster into families with three or more members per genome. While gene families have been extensively studied, a systematic analysis of NF genes has not been reported. We performed comparative studies on NF genes in 14 plant species. Based on the clustering of protein sequences, we identified ~94 000 NF genes across these species that were divided into five evolutionary groups: Viridiplantae wide, angiosperm specific, monocot specific, dicot specific, and those that were species specific. Our analysis revealed that the NF genes resulted largely from less frequent gene duplications and/or a higher rate of gene loss after segmental duplication relative to genes in both lowcopy- number families (LF; 3 10 copies per genome) and high-copy-number families (HF; >10 copies). Furthermore, we identified functions enriched in the NF gene set as compared with the HF genes. We found that NF genes were involved in essential biological processes shared by all plant lineages (e.g. photosynthesis and translation), as well as gene regulation and stress responses associated with phylogenetic diversification. In particular, our analysis of an Arabidopsis protein protein interaction network revealed that hub proteins with the top 10% most connections were over-represented in the NF set relative to the HF set. This research highlights the roles that NF genes may play in evolutionary and functional genomics research.

  4. [Progress in the plant GH3 gene family].

    PubMed

    Sun, Tao; Chai, Tuanyao; Liu, Geyu; Zhang, Yuxiu

    2008-11-01

    Phytohormone auxins play important roles in plant growth and development. The primary auxin-response genes can be classified into three major groups: Aux/IAAs, SAURs and GH3s. Significant progress has been made in understanding these gene families by approaches of the functional genomics, molecular genetics and molecular biology. In this review, we focused on the structures, functions and models of the expressional regulation of plant GH3 genes. The interactions in the signal transduction pathways between auxins and other signals mediated by the GH3 genes, the relationship between the GH3 genes and the stress adaptation responses of plants are emphasized. PMID:19256330

  5. The sieve element occlusion gene family in dicotyledonous plants

    PubMed Central

    Jekat, Stephan B; Nordzieke, Steffen; Reineke, Anna R; Müller, Boje; Bornberg-Bauer, Erich; Noll, Gundula A

    2011-01-01

    Sieve element occlusion (SEO) genes encoding forisome subunits have been identified in Medicago truncatula and other legumes. Forisomes are structural phloem proteins uniquely found in Fabaceae sieve elements. They undergo a reversible conformational change after wounding, from a condensed to a dispersed state, thereby blocking sieve tube translocation and preventing the loss of photoassimilates. Recently, we identified SEO genes in several non-Fabaceae plants (lacking forisomes) and concluded that they most probably encode conventional non-forisome P-proteins. Molecular and phylogenetic analysis of the SEO gene family has identified domains that are characteristic for SEO proteins. Here, we extended our phylogenetic analysis by including additional SEO genes from several diverse species based on recently published genomic data. Our results strengthen the original assumption that SEO genes seem to be widespread in dicotyledonous angiosperms, and further underline the divergent evolution of SEO genes within the Fabaceae. PMID:21422825

  6. Different evolutionary histories of two cation/proton exchanger gene families in plants

    PubMed Central

    2013-01-01

    Background Gene duplication events have been proposed to be involved in the adaptation of plants to stress conditions; precisely how is unclear. To address this question, we studied the evolution of two families of antiporters. Cation/proton exchangers are important for normal cell function and in plants, Na+,K+/H+ antiporters have also been implicated in salt tolerance. Two well-known plant cation/proton antiporters are NHX1 and SOS1, which perform Na+ and K+ compartmentalization into the vacuole and Na+ efflux from the cell, respectively. However, our knowledge about the evolution of NHX and SOS1 stress responsive gene families is still limited. Results In this study we performed a comprehensive molecular evolutionary analysis of the NHX and SOS1 families. Using available sequences from a total of 33 plant species, we estimated gene family phylogenies and gene duplication histories, as well as examined heterogeneous selection pressure on amino acid sites. Our results show that, while the NHX family expanded and specialized, the SOS1 family remained a low copy gene family that appears to have undergone neofunctionalization during its evolutionary history. Additionally, we found that both families are under purifying selection although SOS1 is less constrained. Conclusions We propose that the different evolution histories are related with the proteins’ function and localization, and that the NHX and SOS1 families are examples of two different evolutionary paths through which duplication events may result in adaptive evolution of stress tolerance. PMID:23822194

  7. Genome-Wide Analysis of the NADK Gene Family in Plants

    PubMed Central

    Li, Wen-Yan; Wang, Xiang; Li, Ri; Li, Wen-Qiang; Chen, Kun-Ming

    2014-01-01

    Background NAD(H) kinase (NADK) is the key enzyme that catalyzes de novo synthesis of NADP(H) from NAD(H) for NADP(H)-based metabolic pathways. In plants, NADKs form functional subfamilies. Studies of these families in Arabidopsis thaliana indicate that they have undergone considerable evolutionary selection; however, the detailed evolutionary history and functions of the various NADKs in plants are not clearly understood. Principal Findings We performed a comparative genomic analysis that identified 74 NADK gene homologs from 24 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots and eudicots. Phylogenetic and structural analysis classified these NADK genes into four well-conserved subfamilies with considerable variety in the domain organization and gene structure among subfamily members. In addition to the typical NAD_kinase domain, additional domains, such as adenylate kinase, dual-specificity phosphatase, and protein tyrosine phosphatase catalytic domains, were found in subfamily II. Interestingly, NADKs in subfamily III exhibited low sequence similarity (?30%) in the kinase domain within the subfamily and with the other subfamilies. These observations suggest that gene fusion and exon shuffling may have occurred after gene duplication, leading to specific domain organization seen in subfamilies II and III, respectively. Further analysis of the exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures, during the process of structural evolution of NADK family genes. Finally, both available global microarray data analysis and qRT-RCR experiments revealed that the NADK genes in Arabidopsis and Oryza sativa show different expression patterns in different developmental stages and under several different abiotic/biotic stresses and hormone treatments, underscoring the functional diversity and functional divergence of the NADK family in plants. Conclusions These findings will facilitate further studies of the NADK family and provide valuable information for functional validation of this family in plants. PMID:24968225

  8. The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion

    PubMed Central

    2012-01-01

    Background Plant polyphenol oxidases (PPOs) are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals. Results Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss) and Glycine max (soybean) each had 11 genes. Populus trichocarpa (poplar) contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae) genomes or Arabidopsis (A. lyrata and A. thaliana). We found that many PPOs contained one or two introns often near the 3’ terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes. Conclusion Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic relationships based on primary sequence data. The dynamic nature of this gene family differentiates PPO from other oxidative enzymes, and is consistent with a protein important for a diversity of functions relating to environmental adaptation. PMID:22897796

  9. F-box gene family is expanded in herbaceous annual plants Arabidopsis and rice relative to woody perennial plant Populus

    SciTech Connect

    Yang, Xiaohan [ORNL; Kalluri, Udaya C [ORNL; Jawdy, Sara [ORNL; Gunter, Lee E [ORNL; Yin, Tongming [ORNL; Tschaplinski, Timothy J [ORNL; Weston, David [ORNL; Ranjan, Priya [ORNL; Tuskan, Gerald A [ORNL

    2008-01-01

    F-box proteins are generally responsible for substrate recognition in the Skp1-Cullin-F-box complexes that are involved in protein degradation via the ubiquitin-26S proteosome pathway. In plants, F-box genes influence a variety of biological processes such as leaf senescence, branching, self-incompatibility and responses to biotic and abiotic stresses. The number of F-box genes in Populus (~320) is less than half that found in Arabidopsis (~660) or rice (~680), even though the total number of genes in Populus is equivalent to that in rice and 1.5 times that in Arabidopsis. We performed comparative genomic analysis between the woody perennial plant Populus and the herbaceous annual plants Arabidopsis and rice in order to explicate the functional implications of this large gene family. Our analyses reveal interspecific differences in genomic distribution, orthologous relationship, intron evolution, protein domain structure and gene expression. The set of F-box genes shared by these three species appear to be involved in core biological processes essential for plant growth and development; lineage-specific differences primarily occurred because of an expansion of the F-box genes via tandem duplications in Arabidopsis and rice. The present study provides insights into the relationship between the structure and composition of the F-box gene family in herbaceous and woody species and their associated developmental and physiological features.

  10. Conserved and Diversified Gene Families of Monovalent Cation/H+ Antiporters from Algae to Flowering Plants

    PubMed Central

    Chanroj, Salil; Wang, Guoying; Venema, Kees; Zhang, Muren Warren; Delwiche, Charles F.; Sze, Heven

    2012-01-01

    All organisms have evolved strategies to regulate ion and pH homeostasis in response to developmental and environmental cues. One strategy is mediated by monovalent cation–proton antiporters (CPA) that are classified in two superfamilies. Many CPA1 genes from bacteria, fungi, metazoa, and plants have been functionally characterized; though roles of plant CPA2 genes encoding K+-efflux antiporter (KEA) and cation/H+ exchanger (CHX) families are largely unknown. Phylogenetic analysis showed that three clades of the CPA1 Na+–H+ exchanger (NHX) family have been conserved from single-celled algae to Arabidopsis. These are (i) plasma membrane-bound SOS1/AtNHX7 that share ancestry with prokaryote NhaP, (ii) endosomal AtNHX5/6 that is part of the eukaryote Intracellular-NHE clade, and (iii) a vacuolar NHX clade (AtNHX1–4) specific to plants. Early diversification of KEA genes possibly from an ancestral cyanobacterium gene is suggested by three types seen in all plants. Intriguingly, CHX genes diversified from three to four members in one subclade of early land plants to 28 genes in eight subclades of Arabidopsis. Homologs from Spirogyra or Physcomitrella share high similarity with AtCHX20, suggesting that guard cell-specific AtCHX20 and its closest relatives are founders of the family, and pollen-expressed CHX genes appeared later in monocots and early eudicots. AtCHX proteins mediate K+ transport and pH homeostasis, and have been localized to intracellular and plasma membrane. Thus KEA genes are conserved from green algae to angiosperms, and their presence in red algae and secondary endosymbionts suggest a role in plastids. In contrast, AtNHX1–4 subtype evolved in plant cells to handle ion homeostasis of vacuoles. The great diversity of CHX genes in land plants compared to metazoa, fungi, or algae would imply a significant role of ion and pH homeostasis at dynamic endomembranes in the vegetative and reproductive success of flowering plants. PMID:22639643

  11. Conserved and diversified gene families of monovalent cation/h(+) antiporters from algae to flowering plants.

    PubMed

    Chanroj, Salil; Wang, Guoying; Venema, Kees; Zhang, Muren Warren; Delwiche, Charles F; Sze, Heven

    2012-01-01

    All organisms have evolved strategies to regulate ion and pH homeostasis in response to developmental and environmental cues. One strategy is mediated by monovalent cation-proton antiporters (CPA) that are classified in two superfamilies. Many CPA1 genes from bacteria, fungi, metazoa, and plants have been functionally characterized; though roles of plant CPA2 genes encoding K(+)-efflux antiporter (KEA) and cation/H(+) exchanger (CHX) families are largely unknown. Phylogenetic analysis showed that three clades of the CPA1 Na(+)-H(+) exchanger (NHX) family have been conserved from single-celled algae to Arabidopsis. These are (i) plasma membrane-bound SOS1/AtNHX7 that share ancestry with prokaryote NhaP, (ii) endosomal AtNHX5/6 that is part of the eukaryote Intracellular-NHE clade, and (iii) a vacuolar NHX clade (AtNHX1-4) specific to plants. Early diversification of KEA genes possibly from an ancestral cyanobacterium gene is suggested by three types seen in all plants. Intriguingly, CHX genes diversified from three to four members in one subclade of early land plants to 28 genes in eight subclades of Arabidopsis. Homologs from Spirogyra or Physcomitrella share high similarity with AtCHX20, suggesting that guard cell-specific AtCHX20 and its closest relatives are founders of the family, and pollen-expressed CHX genes appeared later in monocots and early eudicots. AtCHX proteins mediate K(+) transport and pH homeostasis, and have been localized to intracellular and plasma membrane. Thus KEA genes are conserved from green algae to angiosperms, and their presence in red algae and secondary endosymbionts suggest a role in plastids. In contrast, AtNHX1-4 subtype evolved in plant cells to handle ion homeostasis of vacuoles. The great diversity of CHX genes in land plants compared to metazoa, fungi, or algae would imply a significant role of ion and pH homeostasis at dynamic endomembranes in the vegetative and reproductive success of flowering plants. PMID:22639643

  12. Evolution of the PEBP Gene Family in Plants: Functional Diversification in Seed Plant Evolution1[W][OA

    PubMed Central

    Karlgren, Anna; Gyllenstrand, Niclas; Källman, Thomas; Sundström, Jens F.; Moore, David; Lascoux, Martin; Lagercrantz, Ulf

    2011-01-01

    The phosphatidyl ethanolamine-binding protein (PEBP) gene family is present in all eukaryote kingdoms, with three subfamilies identified in angiosperms (FLOWERING LOCUS T [FT], MOTHER OF FT AND TFL1 [MFT], and TERMINAL FLOWER1 [TFL1] like). In angiosperms, PEBP genes have been shown to function both as promoters and suppressors of flowering and to control plant architecture. In this study, we focus on previously uncharacterized PEBP genes from gymnosperms. Extensive database searches suggest that gymnosperms possess only two types of PEBP genes, MFT-like and a group that occupies an intermediate phylogenetic position between the FT-like and TFL1-like (FT/TFL1-like). Overexpression of Picea abies PEBP genes in Arabidopsis (Arabidopsis thaliana) suggests that the FT/TFL1-like genes (PaFTL1 and PaFTL2) code for proteins with a TFL1-like function. However, PaFTL1 and PaFTL2 also show highly divergent expression patterns. While the expression of PaFTL2 is correlated with annual growth rhythm and mainly confined to needles and vegetative and reproductive buds, the expression of PaFTL1 is largely restricted to microsporophylls of male cones. The P. abies MFT-like genes (PaMFT1 and PaMFT2) show a predominant expression during embryo development, a pattern that is also found for many MFT-like genes from angiosperms. P. abies PEBP gene expression is primarily detected in tissues undergoing physiological changes related to growth arrest and dormancy. A first duplication event resulting in two families of plant PEBP genes (MFT-like and FT/TFL1-like) seems to coincide with the evolution of seed plants, in which independent control of bud and seed dormancy was required, and the second duplication resulting in the FT-like and TFL1-like clades probably coincided with the evolution of angiosperms. PMID:21642442

  13. Functional Evolution in the Plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Family

    PubMed Central

    Preston, Jill C.; Hileman, Lena C.

    2013-01-01

    The SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) family of transcription factors is functionally diverse, controlling a number of fundamental aspects of plant growth and development, including vegetative phase change, flowering time, branching, and leaf initiation rate. In natural plant populations, variation in flowering time and shoot architecture have major consequences for fitness. Likewise, in crop species, variation in branching and developmental rate impact biomass and yield. Thus, studies aimed at dissecting how the various functions are partitioned among different SPL genes in diverse plant lineages are key to providing insight into the genetic basis of local adaptation and have already garnered attention by crop breeders. Here we use phylogenetic reconstruction to reveal nine major SPL gene lineages, each of which is described in terms of function and diversification. To assess evidence for ancestral and derived functions within each SPL gene lineage, we use ancestral character state reconstructions. Our analyses suggest an emerging pattern of sub-functionalization, neo-functionalization, and possible convergent evolution following both ancient and recent gene duplication. Based on these analyses we suggest future avenues of research that may prove fruitful for elucidating the importance of SPL gene evolution in plant growth and development. PMID:23577017

  14. Plant Receptor-Like Kinase Gene Family: Diversity, Function, and Signaling

    NSDL National Science Digital Library

    Shin-Han Shiu (University of Wisconsin-Madison; The Department of Botany REV)

    2001-12-18

    A basic feature of all biological systems is the ability to sense and process information from chemical signals via cell-surface receptors. One prevalent class of receptors in both plants and animals is the receptor protein kinases. These proteins contain a signal-binding region located outside the cell linked to a region inside the cell called the protein kinase domain. The protein kinase domain transmits information to other cellular components by catalyzing the transfer of a phosphate group from adenosine triphosphate (ATP) to an amino acid residue on the target proteins. In animals and humans, the well-studied family of receptor tyrosine kinases (RTKs) mediates a wide range of signaling events at the cell surface. The importance of receptor protein kinases in plant biology was revealed by the discovery of a family of more than 400 genes coding for receptor-like kinases (RLKs) present in the recently sequenced genome of the model plant Arabidopsis. Unlike most animal RTKs, the plant RLKs use serine and threonine residues in proteins as targets for phosphorylation. Detailed studies of a handful of plant RLK genes have implicated them in the control of plant growth and development and in responses to pathogens. Multiple signals can be sensed by different RLKs, including peptides produced by neighboring cells, steroid hormones, and pathogen cell-wall proteins and carbohydrates. Major challenges for the future will include understanding the wide range of specific signaling functions performed by this large family of receptors and discovering how the information from this multitude of signal initiation points is integrated by the plant's cells.

  15. Convergent Evolution of Disease Resistance Gene Specificity in Two Flowering Plant FamiliesW?

    PubMed Central

    Ashfield, Tom; Ong, Laura E.; Nobuta, Kan; Schneider, Christopher M.; Innes, Roger W.

    2004-01-01

    Plant disease resistance (R) genes that mediate recognition of the same pathogen determinant sometimes can be found in distantly related plant families. This observation implies that some R gene alleles may have been conserved throughout the diversification of land plants. To address this question, we have compared R genes from Glycine max (soybean), Rpg1-b, and Arabidopsis thaliana, RPM1, that mediate recognition of the same type III effector protein from Pseudomonas syringae, AvrB. RPM1 has been cloned previously, and here, we describe the isolation of Rpg1-b. Although RPM1 and Rpg1-b both belong to the coiled-coil nucleotide binding site (NBS) Leu-rich repeat (LRR) class of R genes, they share only limited sequence similarity outside the conserved domains characteristic of this class. Phylogenetic analyses of A. thaliana and legume NBS-LRR sequences demonstrate that Rpg1-b and RPM1 are not orthologous. We conclude that convergent evolution, rather than the conservation of an ancient specificity, is responsible for the generation of these AvrB-specific genes. PMID:14742871

  16. The Lateral Organ Boundaries Gene Defines a Novel, Plant-Specific Gene Family1

    PubMed Central

    Shuai, Bin; Reynaga-Peña, Cristina G.; Springer, Patricia S.

    2002-01-01

    The LATERAL ORGAN BOUNDARIES (LOB) gene in Arabidopsis defines a new conserved protein domain. LOB is expressed in a band of cells at the adaxial base of all lateral organs formed from the shoot apical meristem and at the base of lateral roots. LOB encodes a predicted protein that does not have recognizable functional motifs, but that contains a conserved domain (the LOB domain) that is present in 42 other Arabidopsis proteins and in proteins from a variety of other plant species. Proteins showing similarity to the LOB domain were not found outside of plant databases, indicating that this unique protein may play a role in plant-specific processes. Genes encoding LOB domain proteins are expressed in a variety of temporal- and tissue-specific patterns, suggesting that they may function in diverse processes. Loss-of-function LOB mutants have no detectable phenotype under standard growth conditions, suggesting that LOB is functionally redundant or required during growth under specific environmental conditions. Ectopic expression of LOB leads to alterations in the size and shape of leaves and floral organs and causes male and female sterility. The expression of LOB at the base of lateral organs suggests a potential role for LOB in lateral organ development. PMID:12068116

  17. Phylogeny, structural evolution and functional diversification of the plant PHOSPHATE1 gene family: a focus on Glycine max

    PubMed Central

    2013-01-01

    Background PHOSPHATE1 (PHO1) gene family members have diverse roles in plant growth and development, and they have been studied in Arabidopsis, rice, and Physcomitrella. However, it has yet to be described in other plants. Therefore, we surveyed the evolutionary patterns of genomes within the plant PHO1 gene family, focusing on soybean (Glycine max) due to its economic importance. Results Our data show that PHO1 genes could be classified into two major groups (Class I and Class II). Class I genes were only present and expanded in dicotyledonous plants and Selaginella moellendorffii; Class II genes were found in all land plants. Class I sequence losses in other lineages may be attributed to gene loss after duplication events in land plant evolution. Introns varied from 7 to 14, and ancestral state reconstruction analyses revealed that genes with 13 introns were ancestral, thus suggesting that the intron loss was a chief constituent of PHO1 gene evolution. In the soybean genome, only 12 PHO1-like genes (GmaPHO1) were detected at the mRNA level. These genes display tissue-specific or tissue-preferential expression patterns during soybean plant and fruit development. Class I genes were more broadly expressed than Class II. GmaPHO1 genes had altered expression in response to salt, osmotic, and inorganic phosphate stresses. Conclusions Our study revealed that PHO1 genes originated from a eukaryotic ancestor and that two major classes formed in land plants. Class I genes are only present in dicots and lycophytes. GmaPHO1genes had diverse expression patterns in soybean, indicating their dramatic functional diversification. PMID:23705930

  18. Snf2 family gene distribution in higher plant genomes reveals DRD1 expansion and diversification in the tomato genome.

    PubMed

    Bargsten, Joachim W; Folta, Adam; Mlynárová, Ludmila; Nap, Jan-Peter

    2013-01-01

    As part of large protein complexes, Snf2 family ATPases are responsible for energy supply during chromatin remodeling, but the precise mechanism of action of many of these proteins is largely unknown. They influence many processes in plants, such as the response to environmental stress. This analysis is the first comprehensive study of Snf2 family ATPases in plants. We here present a comparative analysis of 1159 candidate plant Snf2 genes in 33 complete and annotated plant genomes, including two green algae. The number of Snf2 ATPases shows considerable variation across plant genomes (17-63 genes). The DRD1, Rad5/16 and Snf2 subfamily members occur most often. Detailed analysis of the plant-specific DRD1 subfamily in related plant genomes shows the occurrence of a complex series of evolutionary events. Notably tomato carries unexpected gene expansions of DRD1 gene members. Most of these genes are expressed in tomato, although at low levels and with distinct tissue or organ specificity. In contrast, the Snf2 subfamily genes tend to be expressed constitutively in tomato. The results underpin and extend the Snf2 subfamily classification, which could help to determine the various functional roles of Snf2 ATPases and to target environmental stress tolerance and yield in future breeding. PMID:24312269

  19. The monosaccharide transporter gene family in land plants is ancient and shows differential subfamily expression and expansion across lineages

    PubMed Central

    Johnson, Deborah A; Hill, Jeffrey P; Thomas, Michael A

    2006-01-01

    Background In plants, tandem, segmental and whole-genome duplications are prevalent, resulting in large numbers of duplicate loci. Recent studies suggest that duplicate genes diverge predominantly through the partitioning of expression and that breadth of gene expression is related to the rate of gene duplication and protein sequence evolution. Here, we utilize expressed sequence tag (EST) data to study gene duplication and expression patterns in the monosaccharide transporter (MST) gene family across the land plants. In Arabidopsis, there are 53 MST genes that form seven distinct subfamilies. We created profile hidden Markov models of each subfamily and searched EST databases representing diverse land plant lineages to address the following questions: 1) Are homologs of each Arabidopsis subfamily present in the earliest land plants? 2) Do expression patterns among subfamilies and individual genes within subfamilies differ across lineages? 3) Has gene duplication within each lineage resulted in lineage-specific expansion patterns? We also looked for correlations between relative EST database representation in Arabidopsis and similarity to orthologs in early lineages. Results Homologs of all seven MST subfamilies were present in land plants at least 400 million years ago. Subfamily expression levels vary across lineages with greater relative expression of the STP, ERD6-like, INT and PLT subfamilies in the vascular plants. In the large EST databases of the moss, gymnosperm, monocot and eudicot lineages, EST contig construction reveals that MST subfamilies have experienced lineage-specific expansions. Large subfamily expansions appear to be due to multiple gene duplications arising from single ancestral genes. In Arabidopsis, one or a few genes within most subfamilies have much higher EST database representation than others. Most highly represented (broadly expressed) genes in Arabidopsis have best match orthologs in early divergent lineages. Conclusion The seven subfamilies of the Arabidopsis MST gene family are ancient in land plants and show differential subfamily expression and lineage-specific subfamily expansions. Patterns of gene expression in Arabidopsis and correlation of highly represented genes with best match homologs in early lineages suggests that broadly expressed genes are often highly conserved, and that most genes have more limited expression. PMID:16923188

  20. Gene families as soft cliques with backbones: Amborella contrasted with other flowering plants

    PubMed Central

    2014-01-01

    Background Chaining is a major problem in constructing gene families. Results We define a new kind of cluster on graphs with strong and weak edges: soft cliques with backbones (SCWiB). This differs from other definitions in how it controls the "chaining effect", by ensuring clusters satisfy a tolerant edge density criterion that takes into account cluster size. We implement algorithms for decomposing a graph of similarities into SCWiBs. We compare examples of output from SCWiB and the Markov Cluster Algorithm (MCL), and also compare some curated Arabidopsis thaliana gene families with the results of automatic clustering. We apply our method to 44 published angiosperm genomes with annotation, and discover that Amborella trichopoda is distinct from all the others in having substantially and systematically smaller proportions of moderate- and large-size gene families. Conclusions We offer several possible evolutionary explanations for this result. PMID:25572777

  1. A Comparative Analysis of the Plant Cellulose Synthase (CesA) Gene Family1

    PubMed Central

    Holland, Neta; Holland, Doron; Helentjaris, Tim; Dhugga, Kanwarpal S.; Xoconostle-Cazares, Beatriz; Delmer, Deborah P.

    2000-01-01

    CesA genes are believed to encode the catalytic subunit of cellulose synthase. Identification of nine distinct CesA cDNAs from maize (Zea mays) has allowed us to initiate comparative studies with homologs from Arabidopsis and other plant species. Mapping studies show that closely related CesA genes are not clustered but are found at different chromosomal locations in both Arabidopsis and maize. Furthermore, sequence comparisons among the CesA-deduced proteins show that these cluster in groups wherein orthologs are often more similar than paralogs, indicating that different subclasses evolved prior to the divergence of the monocot and dicot lineages. Studies using reverse transcriptase polymerase chain reaction with gene-specific primers for six of the nine maize genes indicate that all genes are expressed to at least some level in all of the organs examined. However, when expression patterns for a few selected genes from maize and Arabidopsis were analyzed in more detail, they were found to be expressed in unique cell types engaged in either primary or secondary wall synthesis. These studies also indicate that amino acid sequence comparisons, at least in some cases, may have value for prediction of such patterns of gene expression. Such analyses begin to provide insights useful for future genetic engineering of cellulose deposition, in that identification of close orthologs across species may prove useful for prediction of patterns of gene expression and may also aid in prediction of mutant combinations that may be necessary to generate severe phenotypes. PMID:10938350

  2. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants.

    PubMed

    Socha, Amanda L; Guerinot, Mary Lou

    2014-01-01

    Manganese (Mn), an essential trace element, is important for plant health. In plants, Mn serves as a cofactor in essential processes such as photosynthesis, lipid biosynthesis and oxidative stress. Mn deficient plants exhibit decreased growth and yield and are more susceptible to pathogens and damage at freezing temperatures. Mn deficiency is most prominent on alkaline soils with approximately one third of the world's soils being too alkaline for optimal crop production. Despite the importance of Mn in plant development, relatively little is known about how it traffics between plant tissues and into and out of organelles. Several gene transporter families have been implicated in Mn transport in plants. These transporter families include NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like), ZIP (zinc regulated transporter/iron-regulated transporter [ZRT/IRT1]-related protein), CAX (cation exchanger), CCX (calcium cation exchangers), CDF/MTP (cation diffusion facilitator/metal tolerance protein), P-type ATPases and VIT (vacuolar iron transporter). A combination of techniques including mutant analysis and Synchrotron X-ray Fluorescence Spectroscopy can assist in identifying essential transporters of Mn. Such knowledge would vastly improve our understanding of plant Mn homeostasis. PMID:24744764

  3. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants

    PubMed Central

    Socha, Amanda L.; Guerinot, Mary Lou

    2014-01-01

    Manganese (Mn), an essential trace element, is important for plant health. In plants, Mn serves as a cofactor in essential processes such as photosynthesis, lipid biosynthesis and oxidative stress. Mn deficient plants exhibit decreased growth and yield and are more susceptible to pathogens and damage at freezing temperatures. Mn deficiency is most prominent on alkaline soils with approximately one third of the world's soils being too alkaline for optimal crop production. Despite the importance of Mn in plant development, relatively little is known about how it traffics between plant tissues and into and out of organelles. Several gene transporter families have been implicated in Mn transport in plants. These transporter families include NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like), ZIP (zinc regulated transporter/iron-regulated transporter [ZRT/IRT1]-related protein), CAX (cation exchanger), CCX (calcium cation exchangers), CDF/MTP (cation diffusion facilitator/metal tolerance protein), P-type ATPases and VIT (vacuolar iron transporter). A combination of techniques including mutant analysis and Synchrotron X-ray Fluorescence Spectroscopy can assist in identifying essential transporters of Mn. Such knowledge would vastly improve our understanding of plant Mn homeostasis. PMID:24744764

  4. Species-Specific Expansion and Molecular Evolution of the 3-hydroxy-3-methylglutaryl Coenzyme A Reductase (HMGR) Gene Family in Plants

    PubMed Central

    Li, Wei; Liu, Wei; Wei, Hengling; He, Qiuling; Chen, Jinhong; Zhang, Baohong; Zhu, Shuijin

    2014-01-01

    The terpene compounds represent the largest and most diverse class of plant secondary metabolites which are important in plant growth and development. The 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR; EC 1.1.1.34) is one of the key enzymes contributed to terpene biosynthesis. To better understand the basic characteristics and evolutionary history of the HMGR gene family in plants, a genome-wide analysis of HMGR genes from 20 representative species was carried out. A total of 56 HMGR genes in the 14 land plant genomes were identified, but no genes were found in all 6 algal genomes. The gene structure and protein architecture of all plant HMGR genes were highly conserved. The phylogenetic analysis revealed that the plant HMGRs were derived from one ancestor gene and finally developed into four distinct groups, two in the monocot plants and two in dicot plants. Species-specific gene duplications, caused mainly by segmental duplication, led to the limited expansion of HMGR genes in Zea mays, Gossypium raimondii, Populus trichocarpa and Glycine max after the species diverged. The analysis of Ka/Ks ratios and expression profiles indicated that functional divergence after the gene duplications was restricted. The results suggested that the function and evolution of HMGR gene family were dramatically conserved throughout the plant kingdom. PMID:24722776

  5. Torn at the Genes One Family's Debate Over Genetically Altered Plants

    NSDL National Science Digital Library

    Jennifer Nelson

    2000-01-01

    The setting for this case is the family dinner table, where a heated discussion about genetically altered foods is taking place. Marsha Cumberland’s brother-in-law has joined the family for dinner. Ed is an industry official whose job it is to decide whether or not new products need pre-market approval by the FDA. He has just returned from a conference on transgenic foods.  When it turns out that some of the food on the dinner table is genetically modified, a debate ensues with different members of the family at different ends of the spectrum. Written for an introductory biology course, the case considers the scientific and ethical issues of genetically altered plants.

  6. Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ.

    PubMed Central

    Osteryoung, K W; Stokes, K D; Rutherford, S M; Percival, A L; Lee, W Y

    1998-01-01

    The division of plastids is critical for viability in photosynthetic eukaryotes, but the mechanisms associated with this process are still poorly understood. We previously identified a nuclear gene from Arabidopsis encoding a chloroplast-localized homolog of the bacterial cell division protein FtsZ, an essential cytoskeletal component of the prokaryotic cell division apparatus. Here, we report the identification of a second nuclear-encoded FtsZ-type protein from Arabidopsis that does not contain a chloroplast targeting sequence or other obvious sorting signals and is not imported into isolated chloroplasts, which strongly suggests that it is localized in the cytosol. We further demonstrate using antisense technology that inhibiting expression of either Arabidopsis FtsZ gene (AtFtsZ1-1 or AtFtsZ2-1) in transgenic plants reduces the number of chloroplasts in mature leaf cells from 100 to one, indicating that both genes are essential for division of higher plant chloroplasts but that each plays a distinct role in the process. Analysis of currently available plant FtsZ sequences further suggests that two functionally divergent FtsZ gene families encoding differentially localized products participate in chloroplast division. Our results provide evidence that both chloroplastic and cytosolic forms of FtsZ are involved in chloroplast division in higher plants and imply that important differences exist between chloroplasts and prokaryotes with regard to the roles played by FtsZ proteins in the division process. PMID:9836740

  7. Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls

    PubMed Central

    2014-01-01

    Background Pectins are acidic sugar-containing polysaccharides that are universally conserved components of the primary cell walls of plants and modulate both tip and diffuse cell growth. However, many of their specific functions and the evolution of the genes responsible for producing and modifying them are incompletely understood. The moss Physcomitrella patens is emerging as a powerful model system for the study of plant cell walls. To identify deeply conserved pectin-related genes in Physcomitrella, we generated phylogenetic trees for 16 pectin-related gene families using sequences from ten plant genomes and analyzed the evolutionary relationships within these families. Results Contrary to our initial hypothesis that a single ancestral gene was present for each pectin-related gene family in the common ancestor of land plants, five of the 16 gene families, including homogalacturonan galacturonosyltransferases, polygalacturonases, pectin methylesterases, homogalacturonan methyltransferases, and pectate lyase-like proteins, show evidence of multiple members in the early land plant that gave rise to the mosses and vascular plants. Seven of the gene families, the UDP-rhamnose synthases, UDP-glucuronic acid epimerases, homogalacturonan galacturonosyltransferase-like proteins, ?-1,4-galactan ?-1,4-galactosyltransferases, rhamnogalacturonan II xylosyltransferases, and pectin acetylesterases appear to have had a single member in the common ancestor of land plants. We detected no Physcomitrella members in the xylogalacturonan xylosyltransferase, rhamnogalacturonan I arabinosyltransferase, pectin methylesterase inhibitor, or polygalacturonase inhibitor protein families. Conclusions Several gene families related to the production and modification of pectins in plants appear to have multiple members that are conserved as far back as the common ancestor of mosses and vascular plants. The presence of multiple members of these families even before the divergence of other important cell wall-related genes, such as cellulose synthases, suggests a more complex role than previously suspected for pectins in the evolution of land plants. The presence of relatively small pectin-related gene families in Physcomitrella as compared to Arabidopsis makes it an attractive target for analysis of the functions of pectins in cell walls. In contrast, the absence of genes in Physcomitrella for some families suggests that certain pectin modifications, such as homogalacturonan xylosylation, arose later during land plant evolution. PMID:24666997

  8. Genome-Wide Analyses of a Plant-Specific LIM-Domain Gene Family Implicate Its Evolutionary Role in Plant Diversification

    PubMed Central

    Zhao, Man; He, Lingli; Gu, Yongzhe; Wang, Yan; Chen, Qingshan; He, Chaoying

    2014-01-01

    The Arabidopsis DA1 genes appear to have multiple functions in regulating organ size and abiotic stress response, but the biological roles of its closely related genes remain unknown. Evolutionary analyses might provide some clues to aid in an understanding of their functional diversification. In this work, we characterized the molecular evolution and expressional diversification of DA1-like genes. Surveying 354 sequenced genomes revealed 142 DA1-like genes only in plants, indicating plant-specificity of these genes. The DA1-like protein modular structure was composed of two UIMs (ubiquitin interaction motifs), one LIM-domain (from lin-11, isl-1, and mec-3), and a conserved C-terminal, and was distinguishable from the already defined three groups of LIM-domain proteins. We further found that the DA1-like genes diverged into Classes I and II at the ancestor of seed plants and acquired 13 clade-specific residues during their evolutionary history. Moreover, diverse intron size evolution was noted following the transition from size-expandable introns to minimal ones, accompanying the emergence and diversification of angiosperms. Functional diversification as it relates to gene expression was further investigated in soybean. Glycine max DA1 genes showed diverse tissues expression patterns during development and had substantially varied abiotic stress response expression. Thus, variations in the coding regions, intron size, and gene expression contributed to the functional diversification of this gene family. Our data suggest that the evolution of the DA1-like genes facilitated the development of diverse molecular and functional diversification patterns to accompany the successful radiation of plants into diverse environments during evolution. PMID:24723730

  9. Transcript profiles of the cytokinin response regulator gene family in Populus imply diverse roles in plant development.

    PubMed

    Ramírez-Carvajal, Gustavo A; Morse, Alison M; Davis, John M

    2008-01-01

    Cytokinins are plant hormones that influence diverse processes of growth and development. In this study the cytokinin response regulators (RRs) were identified, annotated and characterized at the transcript level in Populus balsamifera ssp. trichocarpa genotype Nisqually 1. The Populus genome was searched for genes that exhibit high sequence identity across their receiver domains. Gene structure was determined by prediction software and, where possible, corroborated by publicly available expressed sequence tags (ESTs). Thirty-three genes belonging to the cytokinin RR gene family were identified in Populus: 11 type As, 11 type Bs and 11 pseudo-RRs. Developmental and cytokinin-responsive expression of the Populus RRs was assessed by whole-genome microarrays and semiquantitative reverse transcription polymerase chain reaction (RT-PCR). Populus RR type As and type Bs appear to be preferentially expressed in nodes, while pseudo-RRs are preferentially expressed in mature leaves. Seven type As and three type Bs were rapidly induced by exogenous cytokinin. Organ-preferred expression patterns suggest possible roles for type As and Bs in development and for pseudo-RRs in integration of environmental signals with plant function. PMID:17944821

  10. An update on the ABCC transporter family in plants: many genes, many proteins, but how many functions?

    PubMed

    Wanke, D; Kolukisaoglu, H Uner

    2010-09-01

    The ABCC subfamily of the ATP binding cassette (ABC) transporters, which were formerly known as multidrug resistance-related proteins (MRPs), consists of closely related members found in all eukaryotic organisms. Although more than a decade of intensive research has elapsed since the first MRP protein was functionally characterised in Arabidopsis thaliana, knowledge of this particular transporter family is still limited in plants. Although ABCC proteins were originally defined as vacuolar pumps of glutathione-S (GS) conjugates, evidence, as well as speculation, on their endogenous functions inside the cell ranges from detoxification and heavy metal sequestration, to chlorophyll catabolite transport and ion channel regulation. The characterisation of knockout mutants in Arabidopsis has been pivotal for elucidation of different roles of ABCC transporters. However, a functional annotation for the majority of these transport proteins is still lacking, even in this model plant. On the one hand, this problem seems to be caused by functional redundancy between family members, which might lead to physiological complementation by a highly homologous gene in the mutant lines. On the other hand, there is growing evidence that the functional diversity of ABCC genes in Arabidopsis and other plants is far greater than previously assumed. For example, analysis of microarray expression data supports involvement of ABCC transporters in the response to biotic stress: particular changes in ABCC transcript levels are found, which are pathogen-specific and evoke distinct signalling cascades. Current knowledge about plant ABCC transporters indicates that novel and unexpected functions and substrates of these proteins are still waiting to be elucidated. PMID:20712617

  11. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes.

    PubMed Central

    Milligan, S B; Bodeau, J; Yaghoobi, J; Kaloshian, I; Zabel, P; Williamson, V M

    1998-01-01

    The Mi locus of tomato confers resistance to root knot nematodes. Tomato DNA spanning the locus was isolated as bacterial artificial chromosome clones, and 52 kb of contiguous DNA was sequenced. Three open reading frames were identified with similarity to cloned plant disease resistance genes. Two of them, Mi-1.1 and Mi-1.2, appear to be intact genes; the third is a pseudogene. A 4-kb mRNA hybridizing with these genes is present in tomato roots. Complementation studies using cloned copies of Mi-1.1 and Mi-1.2 indicated that Mi-1.2, but not Mi-1.1, is sufficient to confer resistance to a susceptible tomato line with the progeny of transformants segregating for resistance. The cloned gene most similar to Mi-1.2 is Prf, a tomato gene required for resistance to Pseudomonas syringae. Prf and Mi-1.2 share several structural motifs, including a nucleotide binding site and a leucine-rich repeat region, that are characteristic of a family of plant proteins, including several that are required for resistance against viruses, bacteria, fungi, and now, nematodes. PMID:9707531

  12. Plant F-Box Protein Evolution Is Determined by Lineage-Specific Timing of Major Gene Family Expansion Waves

    PubMed Central

    Quint, Marcel

    2013-01-01

    F-box proteins (FBPs) represent one of the largest and fastest evolving gene/protein families in the plant kingdom. The FBP superfamily can be divided in several subfamilies characterized by different C-terminal protein-protein interaction domains that recruit targets for proteasomal degradation. Hence, a clear picture of their phylogeny and molecular evolution is of special interest for the general understanding of evolutionary histories of multi-domain and/or large protein families in plants. In an effort to further understand the molecular evolution of F-box family proteins, we asked whether the largest subfamily in Arabidopsis thaliana, which carries a C-terminal F-box associated domain (FBA proteins) shares evolutionary patterns and signatures of selection with other FBPs. To address this question, we applied phylogenetic and molecular evolution analyses in combination with the evaluation of transcriptional profiles. Based on the 2219 FBA proteins we de novo identified in 34 completely sequenced plant genomes, we compared their evolutionary patterns to a previously analyzed large subfamily carrying C-terminal kelch repeats. We found that these two large FBP subfamilies generally tend to evolve by massive waves of duplication, followed by sequence conservation of the F-box domain and sequence diversification of the target recruiting domain. We conclude that the earlier in evolutionary time a major wave of expansion occurred, the more pronounced these selection signatures are. As a consequence, when performing cross species comparisons among FBP subfamilies, significant differences will be observed in the selective signatures of protein-protein interaction domains. Depending on the species, the investigated subfamilies comprise up to 45% of the complete superfamily, indicating that other subfamilies possibly follow similar modes of evolution. PMID:23904908

  13. Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses

    PubMed Central

    Parrent, Jeri Lynn; James, Timothy Y; Vasaitis, Rimvydas; Taylor, Andrew FS

    2009-01-01

    Background Many fungi are obligate biotrophs of plants, growing in live plant tissues, gaining direct access to recently photosynthesized carbon. Photosynthate within plants is transported from source to sink tissues as sucrose, which is hydrolyzed by plant glycosyl hydrolase family 32 enzymes (GH32) into its constituent monosaccharides to meet plant cellular demands. A number of plant pathogenic fungi also use GH32 enzymes to access plant-derived sucrose, but less is known about the sucrose utilization ability of mutualistic and commensal plant biotrophic fungi, such as mycorrhizal and endophytic fungi. The aim of this study was to explore the distribution and abundance of GH32 genes in fungi to understand how sucrose utilization is structured within and among major ecological guilds and evolutionary lineages. Using bioinformatic and PCR-based analyses, we tested for GH32 gene presence in all available fungal genomes and an additional 149 species representing a broad phylogenetic and ecological range of biotrophic fungi. Results We detected 9 lineages of GH32 genes in fungi, 4 of which we describe for the first time. GH32 gene number in fungal genomes ranged from 0–12. Ancestral state reconstruction of GH32 gene abundance showed a strong correlation with nutritional mode, and gene family expansion was observed in several clades of pathogenic filamentous Ascomycota species. GH32 gene number was negatively correlated with animal pathogenicity and positively correlated with plant biotrophy, with the notable exception of mycorrhizal taxa. Few mycorrhizal species were found to have GH32 genes as compared to other guilds of plant-associated fungi, such as pathogens, endophytes and lichen-forming fungi. GH32 genes were also more prevalent in the Ascomycota than in the Basidiomycota. Conclusion We found a strong signature of both ecological strategy and phylogeny on GH32 gene number in fungi. These data suggest that plant biotrophic fungi exhibit a wide range of ability to access plant-synthesized sucrose. Endophytic fungi are more similar to plant pathogens in their possession of GH32 genes, whereas most genomes of mycorrhizal taxa lack GH32 genes. Reliance on plant GH32 enzyme activity for C acquisition in these symbionts supports earlier predictions of possible plant control over C allocation in the mycorrhizal symbiosis. PMID:19566942

  14. Genome Wide Analysis of the Apple MYB Transcription Factor Family Allows the Identification of MdoMYB121 Gene Confering Abiotic Stress Tolerance in Plants

    PubMed Central

    Wang, Rong-Kai; Zhang, Rui-Fen; Hao, Yu-Jin

    2013-01-01

    The MYB proteins comprise one of the largest families of transcription factors (TFs) in plants. Although several MYB genes have been characterized to play roles in secondary metabolism, the MYB family has not yet been identified in apple. In this study, 229 apple MYB genes were identified through a genome-wide analysis and divided into 45 subgroups. A computational analysis was conducted using the apple genomic database to yield a complete overview of the MYB family, including the intron-exon organizations, the sequence features of the MYB DNA-binding domains, the carboxy-terminal motifs, and the chromosomal locations. Subsequently, the expression of 18 MYB genes, including 12 were chosen from stress-related subgroups, while another 6 ones from other subgroups, in response to various abiotic stresses was examined. It was found that several of these MYB genes, particularly MdoMYB121, were induced by multiple stresses. The MdoMYB121 was then further functionally characterized. Its predicted protein was found to be localized in the nucleus. A transgenic analysis indicated that the overexpression of the MdoMYB121 gene remarkably enhanced the tolerance to high salinity, drought, and cold stresses in transgenic tomato and apple plants. Our results indicate that the MYB genes are highly conserved in plant species and that MdoMYB121 can be used as a target gene in genetic engineering approaches to improve the tolerance of plants to multiple abiotic stresses. PMID:23950843

  15. Identification of multi-gene families encoding isopentenyl diphosphate isomerase in plants by heterologous complementation in Escherichia coli.

    PubMed

    Cunningham, F X; Gantt, E

    2000-01-01

    Two cDNAs encoding isopentenyl diphosphate isomerase (IPI) in Adonis aestivalis, Arabidopsis thaliana, and Lactuca sativa, and single examples from Oryza sativa and Tagetes erecta were identified. An analysis of these and other ipi leads us to suggest a separate origin for green algal and plant genes and propose that a single gene encodes plastid and cytosolic IPI in plants. PMID:10750717

  16. Analysis of Arabidopsis genome sequence reveals a large new gene family in plants

    Microsoft Academic Search

    J. P. Ride; E. M. Davies; F. C. H. Franklin; D. F. Marshall

    1999-01-01

    A detailed analysis of the currently available Arabidopsis thaliana genomic sequence has revealed the presence of a large number of open reading frames with homology to the stigmatic self-incompatibility (S) genes of Papaver rhoeas. The products of these potential genes are all predicted to be relatively small, basic, secreted proteins with similar predicted secondary structures. We have named these potential

  17. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants.

    PubMed

    Tavares, Sílvia; Wirtz, Markus; Beier, Marcel P; Bogs, Jochen; Hell, Rüdiger; Amâncio, Sara

    2015-01-01

    In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family of the crop plant Vitis vinifera. The identified four members of the VvSERAT protein family are assigned to three distinct groups upon their sequence similarities to Arabidopsis SERATs. Expression of fluorescently labeled VvSERAT proteins uncover that the sub-cellular localization of VvSERAT1;1 and VvSERAT3;1 is the cytosol and that VvSERAT2;1 and VvSERAT2;2 localize in addition in plastids and mitochondria, respectively. The purified VvSERATs of group 1 and 2 have higher enzymatic activity than VvSERAT3;1, which display a characteristic C-terminal extension also present in AtSERAT3;1. VvSERAT1;1 and VvSERAT2;2 are evidenced to form the CSC. CSC formation activates VvSERAT2;2, by releasing CSC-associated VvSERAT2;2 from cysteine inhibition. Thus, subcellular distribution of SERAT isoforms and CSC formation in cytosol and mitochondria is conserved between Arabidopsis and grapevine. Surprisingly, VvSERAT2;1 lack the canonical C-terminal tail of plant SERATs, does not form the CSC and is almost insensitive to cysteine inhibition (IC50 = 1.9 mM cysteine). Upon sulfate depletion VvSERAT2;1 is strongly induced at the transcriptional level, while transcription of other VvSERATs is almost unaffected in sulfate deprived grapevine cell suspension cultures. Application of abiotic stresses to soil grown grapevine plants revealed isoform-specific induction of VvSERAT2;1 in leaves upon drought, whereas high light- or temperature- stress hardly trigger VvSERAT2;1 transcription. PMID:25741355

  18. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants

    PubMed Central

    Tavares, Sílvia; Wirtz, Markus; Beier, Marcel P.; Bogs, Jochen; Hell, Rüdiger; Amâncio, Sara

    2015-01-01

    In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family of the crop plant Vitis vinifera. The identified four members of the VvSERAT protein family are assigned to three distinct groups upon their sequence similarities to Arabidopsis SERATs. Expression of fluorescently labeled VvSERAT proteins uncover that the sub-cellular localization of VvSERAT1;1 and VvSERAT3;1 is the cytosol and that VvSERAT2;1 and VvSERAT2;2 localize in addition in plastids and mitochondria, respectively. The purified VvSERATs of group 1 and 2 have higher enzymatic activity than VvSERAT3;1, which display a characteristic C-terminal extension also present in AtSERAT3;1. VvSERAT1;1 and VvSERAT2;2 are evidenced to form the CSC. CSC formation activates VvSERAT2;2, by releasing CSC-associated VvSERAT2;2 from cysteine inhibition. Thus, subcellular distribution of SERAT isoforms and CSC formation in cytosol and mitochondria is conserved between Arabidopsis and grapevine. Surprisingly, VvSERAT2;1 lack the canonical C-terminal tail of plant SERATs, does not form the CSC and is almost insensitive to cysteine inhibition (IC50 = 1.9 mM cysteine). Upon sulfate depletion VvSERAT2;1 is strongly induced at the transcriptional level, while transcription of other VvSERATs is almost unaffected in sulfate deprived grapevine cell suspension cultures. Application of abiotic stresses to soil grown grapevine plants revealed isoform-specific induction of VvSERAT2;1 in leaves upon drought, whereas high light- or temperature- stress hardly trigger VvSERAT2;1 transcription. PMID:25741355

  19. Organization and Expression of the GSK3\\/Shaggy Kinase Gene Family in the Moss Physcomitrella patens Suggest Early Gene Multiplication in Land Plants and an Ancestral Response to Osmotic Stress

    Microsoft Academic Search

    Odile Richard; Nicolas Paquet; Elise Haudecoeur; Bénédicte Charrier

    2005-01-01

    GSK3\\/Shaggy kinases are involved in a wide range of fundamental processes in animal development and metabolism. In angiosperm plants, these kinases are encoded by moderate-sized gene families, which appear to have a complex set of functions. Here, we present the characterization of five members of the GSK3\\/Shaggy gene family in the bryophyte Physcomitrella patens. The P. patens GSK3\\/Shaggy kinases (PpSK)

  20. A plant-specific HUA2-LIKE (HULK) gene family in Arabidopsis thaliana is essential for development

    PubMed Central

    Jali, Sathya S; Rosloski, Sarah M; Janakirama, Preetam; Steffen, Joshua G; Zhurov, Vladimir; Berleth, Thomas; Clark, Richard M; Grbic, Vojislava

    2014-01-01

    In Arabidopsis thaliana, the HUA2 gene is required for proper expression of FLOWERING LOCUS C (FLC) and AGAMOUS, key regulators of flowering time and reproductive development, respectively. Although HUA2 is broadly expressed, plants lacking HUA2 function have only moderately reduced plant stature, leaf initiation rate and flowering time. To better understand HUA2 activity, and to test whether redundancy with similar genes underlies the absence of strong phenotypes in HUA2 mutant plants, we identified and subsequently characterized three additional HUA2-LIKE (HULK) genes in Arabidopsis. These genes form two clades (HUA2/HULK1 and HULK2/HULK3), with members broadly conserved in both vascular and non-vascular plants, but not present outside the plant kingdom. Plants with progressively reduced HULK activity had increasingly severe developmental defects, and plants homozygous for loss-of-function mutations in all four HULK genes were not recovered. Multiple mutants displayed reproductive, embryonic and post-embryonic abnormalities, and provide detailed insights into the overlapping and unique functions of individual HULK genes. With regard to flowering time, opposing influences were apparent: hua2 hulk1 plants were early-flowering, while hulk2 hulk3 mutants were late-flowering, and hua2 acted epistatically to cause early flowering in all combinations. Genome-wide expression profiling of mutant combinations using RNA-Seq revealed complex transcriptional changes in seedlings, with FLC, a known target of HUA2, among the most affected. Our studies, which include characterization of HULK expression patterns and subcellular localization, suggest that the HULK genes encode conserved nuclear factors with partially redundant but essential functions associated with diverse genetic pathways in plants. PMID:25070081

  1. Transcript Profiles of the Cytokinin Response Regulator Gene Family in Populus Imply Diverse Roles in Plant Development

    Microsoft Academic Search

    Gustavo A. Ramírez-Carvajal; Alison M. Morse; John M. Davis

    2008-01-01

    • Cytokinins are plant hormones that influence diverse processes of growth and development. In this study the cytokinin response regulators (RRs) were identified, annotated and characterized at the transcript level in Populus balsamifera ssp. trichocarpa genotype Nisqually 1. • The Populus genome was searched for genes that exhibit high sequence identity across their receiver domains. Gene structure was determined by

  2. Expression Analysis of a Family of nsLTP Genes Tissue Specifically Expressed throughout the Plant and during Potato Tuber Life Cycle1

    PubMed Central

    Horvath, Beatrix M.; Bachem, Christian W.B.; Trindade, Luisa M.; Oortwijn, Marian E.P.; Visser, Richard G.F.

    2002-01-01

    Non-specific lipid-transfer proteins (nsLTPs) are capable of binding lipid compounds in plant tissues and are coded by the nsLTP genes. Here, we present the analysis of expression of a family of potato (Solanum tuberosum) nsLTP genes that express throughout the developing plant in a highly tissue-specific manner. Three transcript-derived fragments were isolated using an amplified restriction fragment polymorphism-derived technique for RNA fingerprinting that show homology to plant nsLTP genes. These transcript-derived fragments displayed modulated expression profiles related to the development of new tissues, with a peak of transcription around the time of tuberization and just prior to sprout development, at dormancy breakage. In addition, a homologous family of expressed sequence tags was identified whose individual members could be classified according to their tissue specificity. Two subgroups of expressed sequence tags were found to express during tuber life cycle. To study the regulation of potato nsLTP genes, two putative potato nsLTP promoters were isolated and their expression was studied using promoter-marker-gene fusions. The results showed that one of the two promoters directed a highly specific pattern of expression detected in the phloem surrounding the nodes of young plants and in the same tissue of tuber related organs, whereas the second putative promoter showed little tissue or organ specificity. This difference in expression is likely due to a 331-bp insertion present in the tissue-specific promoter. PMID:12177463

  3. Members of the Arabidopsis Dynamin-Like Gene Family, ADL1, Are Essential for Plant Cytokinesis and Polarized Cell Growth

    Microsoft Academic Search

    Byung-Ho Kang; James S. Busse; Sebastian Y. Bednarek

    2003-01-01

    Polarized membrane trafficking during plant cytokinesis and cell expansion are critical for plant morphogenesis, yet very little is known about the molecular mechanisms that guide this process. Dynamin and dynamin-related proteins are large GTP binding proteins that are involved in membrane trafficking. Here, we show that two functionally redundant members of the Arabidopsis dynamin-related protein family, ADL1A and ADL1E, are

  4. Early evolutionary colocalization of the nuclear ribosomal 5S and 45S gene families in seed plants: evidence from the living fossil gymnosperm Ginkgo biloba

    PubMed Central

    Galián, J A; Rosato, M; Rosselló, J A

    2012-01-01

    In seed plants, the colocalization of the 5S loci within the intergenic spacer (IGS) of the nuclear 45S tandem units is restricted to the phylogenetically derived Asteraceae family. However, fluorescent in situ hybridization (FISH) colocalization of both multigene families has also been observed in other unrelated seed plant lineages. Previous work has identified colocalization of 45S and 5S loci in Ginkgo biloba using FISH, but these observations have not been confirmed recently by sequencing a 1.8?kb IGS. In this work, we report the presence of the 45S–5S linkage in G. biloba, suggesting that in seed plants the molecular events leading to the restructuring of the ribosomal loci are much older than estimated previously. We obtained a 6.0?kb IGS fragment showing structural features of functional sequences, and a single copy of the 5S gene was inserted in the same direction of transcription as the ribosomal RNA genes. We also obtained a 1.8?kb IGS that was a truncate variant of the 6.0?kb IGS lacking the 5S gene. Several lines of evidence strongly suggest that the 1.8?kb variants are pseudogenes that are present exclusively on the satellite chromosomes bearing the 45S–5S genes. The presence of ribosomal IGS pseudogenes best reconciles contradictory results concerning the presence or absence of the 45S–5S linkage in Ginkgo. Our finding that both ribosomal gene families have been unified to a single 45S–5S unit in Ginkgo indicates that an accurate reassessment of the organization of rDNA genes in basal seed plants is necessary. PMID:22354111

  5. Over-expression of an arabidopsis family A sucrose phosphate synthase (SPS) gene alters plant growth and fibre development

    Microsoft Academic Search

    Ji-Young Park; Thomas Canam; Kyu-Young Kang; David D. Ellis; Shawn D. Mansfield

    2008-01-01

    The objective of this study was to manipulate the intracellular pools of sucrose by differentially expressing exogenous sucrose\\u000a phosphate synthase (SPS) and investigating its role in regulating plant growth and fibre development. Tobacco (Nicotiana tabacum cv. Xanthi) plants were transformed with an arabidopsis SPS gene under the regulation of the ubiquitously expressed tandem\\u000a repeat of the 35S cauliflower mosaic virus

  6. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner.

    PubMed

    Seo, Young-Su; Rojas, Maria R; Lee, Jung-Youn; Lee, Sang-Won; Jeon, Jong-Seong; Ronald, Pamela; Lucas, William J; Gilbertson, Robert L

    2006-08-01

    Genes involved in a viral resistance response in common bean (Phaseolus vulgaris cv. Othello) were identified by inoculating a geminivirus reporter (Bean dwarf mosaic virus expressing the green fluorescent protein), extracting RNA from tissue undergoing the defense response, and amplifying sequences with degenerate R gene primers. One such gene (a TIR-NBS-LRR gene, RT4-4) was selected for functional analysis in which transgenic Nicotiana benthamiana were generated and screened for resistance to a range of viruses. This analysis revealed that RT4-4 did not confer resistance to the reporter geminivirus; however, it did activate a resistance-related response (systemic necrosis) to seven strains of Cucumber mosaic virus (CMV) from pepper or tomato, but not to a CMV strain from common bean. Of these eight CMV strains, only the strain from common bean systemically infected common bean cv. Othello. Additional evidence that RT4-4 is a CMV R gene came from the detection of resistance response markers in CMV-challenged leaves of RT4-4 transgenic plants, and the identification of the CMV 2a gene product as the elicitor of the necrosis response. These findings indicate that RT4-4 functions across two plant families and is up-regulated in a non-virus-specific manner. This experimental approach holds promise for providing insights into the mechanisms by which plants activate resistance responses against pathogens. PMID:16880399

  7. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner

    PubMed Central

    Seo, Young-Su; Rojas, Maria R.; Lee, Jung-Youn; Lee, Sang-Won; Jeon, Jong-Seong; Ronald, Pamela; Lucas, William J.; Gilbertson, Robert L.

    2006-01-01

    Genes involved in a viral resistance response in common bean (Phaseolus vulgaris cv. Othello) were identified by inoculating a geminivirus reporter (Bean dwarf mosaic virus expressing the green fluorescent protein), extracting RNA from tissue undergoing the defense response, and amplifying sequences with degenerate R gene primers. One such gene (a TIR-NBS-LRR gene, RT4-4) was selected for functional analysis in which transgenic Nicotiana benthamiana were generated and screened for resistance to a range of viruses. This analysis revealed that RT4-4 did not confer resistance to the reporter geminivirus; however, it did activate a resistance-related response (systemic necrosis) to seven strains of Cucumber mosaic virus (CMV) from pepper or tomato, but not to a CMV strain from common bean. Of these eight CMV strains, only the strain from common bean systemically infected common bean cv. Othello. Additional evidence that RT4-4 is a CMV R gene came from the detection of resistance response markers in CMV-challenged leaves of RT4-4 transgenic plants, and the identification of the CMV 2a gene product as the elicitor of the necrosis response. These findings indicate that RT4-4 functions across two plant families and is up-regulated in a non-virus-specific manner. This experimental approach holds promise for providing insights into the mechanisms by which plants activate resistance responses against pathogens. PMID:16880399

  8. [Advance in the study of PPR gene family].

    PubMed

    Xu, Xiang-Bo; Qiu, Deng-Lin; Sun, Yong-Tang; Wang, Shou-Jing; Sun, Gui-Zhi; Li, Xin-Hua

    2006-06-01

    PPR (pentatricopeptide repeats) gene family, one of the largest gene families discovered in plants, is characterized by tandem arrays of pentatricopeptide repeats, which play essential roles in mitochondria or chloroplasts, probably via binding to organellar transcripts. In this review, we summarized the current status in the study of PPR family, including the structure character of PPR gene, the distribution in the chromosome arms and other genomes, as well as the biological function of PPR gene. PMID:16818438

  9. Identification and characterization of plant-specific NAC gene family in canola (Brassica napus L.) reveal novel members involved in cell death.

    PubMed

    Wang, Boya; Guo, Xiaohua; Wang, Chen; Ma, Jieyu; Niu, Fangfang; Zhang, Hanfeng; Yang, Bo; Liang, Wanwan; Han, Feng; Jiang, Yuan-Qing

    2015-03-01

    NAC transcription factors are plant-specific and play important roles in plant development processes, response to biotic and abiotic cues and hormone signaling. However, to date, little is known about the NAC genes in canola (or oilseed rape, Brassica napus L.). In this study, a total of 60 NAC genes were identified from canola through a systematical analysis and mining of expressed sequence tags. Among these, the cDNA sequences of 41 NAC genes were successfully cloned. The translated protein sequences of canola NAC genes with the NAC genes from representative species were phylogenetically clustered into three major groups and multiple subgroups. The transcriptional activities of these BnaNAC proteins were assayed in yeast. In addition, by quantitative real-time RT-PCR, we further observed that some of these BnaNACs were regulated by different hormone stimuli or abiotic stresses. Interestingly, we successfully identified two novel BnaNACs, BnaNAC19 and BnaNAC82, which could elicit hypersensitive response-like cell death when expressed in Nicotiana benthamiana leaves, which was mediated by accumulation of reactive oxygen species. Overall, our work has laid a solid foundation for further characterization of this important NAC gene family in canola. PMID:25616736

  10. PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species.

    PubMed

    Dardick, Chris; Callahan, Ann; Horn, Renate; Ruiz, Karina B; Zhebentyayeva, Tetyana; Hollender, Courtney; Whitaker, Michael; Abbott, Albert; Scorza, Ralph

    2013-08-01

    Trees are capable of tremendous architectural plasticity, allowing them to maximize their light exposure under highly competitive environments. One key component of tree architecture is the branch angle, yet little is known about the molecular basis for the spatial patterning of branches in trees. Here, we report the identification of a candidate gene for the br mutation in Prunus persica (peach) associated with vertically oriented growth of branches, referred to as 'pillar' or 'broomy'. Ppa010082, annotated as hypothetical protein in the peach genome sequence, was identified as a candidate gene for br using a next generation sequence-based mapping approach. Sequence similarity searches identified rice TAC1 (tiller angle control 1) as a putative ortholog, and we thus named it PpeTAC1. In monocots, TAC1 is known to lead to less compact growth by increasing the tiller angle. In Arabidopsis, an attac1 mutant showed more vertical branch growth angles, suggesting that the gene functions universally to promote the horizontal growth of branches. TAC1 genes belong to a gene family (here named IGT for a shared conserved motif) found in all plant genomes, consisting of two clades: one containing TAC1-like genes; the other containing LAZY1, which contains an EAR motif, and promotes vertical shoot growth in Oryza sativa (rice) and Arabidopsis through influencing polar auxin transport. The data suggest that IGT genes are ancient, and play conserved roles in determining shoot growth angles in plants. Understanding how IGT genes modulate branch angles will provide insights into how different architectural growth habits evolved in terrestrial plants. PMID:23663106

  11. [Imprinted genes in plants].

    PubMed

    Zhang, Li-Geng; Yang, Ruo-Fei; Fu, Feng-Ling; Li, Wan-Chen

    2010-12-01

    The expression of imprinted genes is regulated by epigenetic mechanism. In plant endosperm, the allele of imprinted genes is expressed in a pattern of parent-of-origin-dependent. The expression of imprinted genes plays essential roles in the development of embryos and their annexe structures, as well as seed size, reproductive barriers and apomixis. Along with the progress of plant epigenetic research, the exploration of imprinted genes is becoming hotspot in epigenetic research. This review focused on the parental conflict theory about the origin of imprinted genes, and the latest research advances in expression regulation mechanism of plant imprinted genes, using the examples of the important imprinted genes MEA, FIS2, FWA, MPC, and PHE1 in Arabidopsis, and FIEI and FIE2 in maize. PMID:21513148

  12. Family miridae - the plant bugs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Presented for the true bug family Miridae (Hemiptera: Heteroptera), commonly called plant bugs, is an overview of the classification, morphology, habitats and host plants, life history and habits, economic importance, and natural enemies. Adult illustrations providing examples of seven of the eight...

  13. Heavy Metals Need Assistance: The Contribution of Nicotianamine to Metal Circulation Throughout the Plant and the Arabidopsis NAS Gene Family

    PubMed Central

    Schuler, Mara; Bauer, Petra

    2011-01-01

    Understanding the regulated inter- and intra-cellular metal circulation is one of the challenges in the field of metal homeostasis. Inside organisms metal ions are bound to organic ligands to prevent their uncontrolled reactivity and to increase their solubility. Nicotianamine (NA) is one of the important ligands. This non-proteinogenic amino acid is synthesized by nicotianamine synthase (NAS). NA is involved in mobilization, uptake, transport, storage, and detoxification of metals. Much of the progress in understanding NA function has been achieved by studying mutants with altered nicotianamine levels. Mild and strong Arabidopsis mutants impaired in nicotianamine synthesis have been identified and characterized, namely nas4x-1 and nas4x-2. Arabidopsis thaliana has four NAS genes. In this review, we summarize the structure and evolution of the NAS genes in the Arabidopsis genome. We summarize previous results and present novel evidence that the four NAS genes have partially overlapping functions when plants are exposed to Fe deficiency and nickel supply. We compare the phenotypes of nas4x-1 and nas4x-2 and summarize the functions of NAS genes and NA as deduced from the studies of mutant phenotypes. PMID:22639605

  14. Overexpression of a Cotton Gene That Encodes a Putative Transcription Factor of AP2/EREBP Family in Arabidopsis Affects Growth and Development of Transgenic Plants

    PubMed Central

    Li, Xiao-Jie; Hu, Rong; Chen, Yun; Li, Xue-Bao

    2013-01-01

    In the study, a gene encoding a putative ethylene response factor of AP2/EREBP family was isolated from cotton (Gossypium hirsutum) and designated as GhERF12. Sequence alignment showed that GhERF12 protein contains a central AP2/ERF domain (58 amino acids) with two functional conserved amino acid residues (ala14 and asp19). Transactivation assay indicated that GhERF12 displayed strong transcription activation activity in yeast cells, suggesting that this protein may be a transcriptional activator in cotton. Quantitative RT-PCR analysis showed that GhERF12 expression in cotton was induced by ACC and IAA. Overexpression of GhERF12 in Arabidopsis affected seedling growth and development. The GhERF12 transgenic plants grew slowly, and displayed a dwarf phenotype. The mean bolting time of the transgenic plants was delayed for about 10 days, compared with that of wild type. Further study revealed that some ethylene-related and auxin-related genes were dramatically up-regulated in the transgenic plants, compared with those of wild type. Collectively, we speculated that GhERF12, as a transcription factor, may be involved in regulation of plant growth and development by activating the constitutive ethylene response likely related to auxin biosynthesis and/or signaling. PMID:24194949

  15. Fast Plants and Families I

    NSDL National Science Digital Library

    The Wisconsin Fast Plants Program

    Description: This is an investigation describing the procedure for looking at a seed pod from a mature Fast Plant with a dry pod by sandwiching the pod between layers of clear tape, then exploring the sibling seeds. Questions that might be considered:- In how many ways can you describe the pod (the mother)? Are the pods from one plant more like each other than they are like the pods from other plants? What about the siblings from a single pod? - Do all the seeds in a pod have the same father? - How much variation is there within and between families of Fast Plants? - How much does the environment affect the variation in Fast Plants, e.g. the number of seeds per pod, style length, plant height, days to first flowering, etc? - Is there any relationship between the length of the seed pod and its position on the maternal plant?

  16. Numbers of genes in the NBS and RLK families vary by more than four-fold within a plant species and are regulated by multiple factors

    PubMed Central

    Zhang, Meiping; Wu, Yen-Hsuan; Lee, Mi-Kyung; Liu, Yun-Hua; Rong, Ying; Santos, Teofila S.; Wu, Chengcang; Xie, Fangming; Nelson, Randall L.; Zhang, Hong-Bin

    2010-01-01

    Many genes exist in the form of families; however, little is known about their size variation, evolution and biology. Here, we present the size variation and evolution of the nucleotide-binding site (NBS)-encoding gene family and receptor-like kinase (RLK) gene family in Oryza, Glycine and Gossypium. The sizes of both families vary by numeral fold, not only among species, surprisingly, also within a species. The size variations of the gene families are shown to correlate with each other, indicating their interactions, and driven by natural selection, artificial selection and genome size variation, but likely not by polyploidization. The numbers of genes in the families in a polyploid species are similar to those of one of its diploid donors, suggesting that polyploidization plays little roles in the expansion of the gene families and that organisms tend not to maintain their ‘surplus’ genes in the course of evolution. Furthermore, it is found that the size variations of both gene families are associated with organisms’ phylogeny, suggesting their roles in speciation and evolution. Since both selection and speciation act on organism’s morphological, physiological and biological variation, our results indicate that the variation of gene family size provides a source of genetic variation and evolution. PMID:20542917

  17. The CBF gene family in apple (malus x domestica Borkh.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many vascular plants have evolved mechanisms for protecting themselves from freeze damage. One of the key pathways controlling higher plant responses to low temperature involves a family of genes which belong to the AP2 domain class of transcription factors. The promoters of many genes involved in...

  18. Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax.

    PubMed

    Walder, Florian; Brulé, Daphnée; Koegel, Sally; Wiemken, Andres; Boller, Thomas; Courty, Pierre-Emmanuel

    2015-03-01

    In a preceding microcosm study, we found huge differences in phosphorus (P) acquisition in sorghum (Sorghum bicolor) and flax (Linum usitatissimum) sharing a common mycorrhizal network (CMN). Is the transcriptional regulation of arbuscular mycorrhizal (AM)-induced inorganic orthophosphate (Pi) transporters responsible for these differences? We characterized and analyzed the expression of Pi transporters of the Pht1 family in both plant species, and identified two new AM-inducible Pi transporters in flax. Mycorrhizal Pi acquisition was strongly affected by the combination of plant and AM fungal species. A corresponding change in the expression of two AM-inducible Pht1 transporters was noticed in both plants (SbPT9, SbPT10, LuPT5 and LuPT8), but the effect was very weak. Overall, the expression level of these genes did not explain why flax took up more Pi from the CMN than did sorghum. The post-transcriptional regulation of the transporters and their biochemical properties may be more important for their function than the fine-tuning of their gene expression. PMID:25615409

  19. Family selection in plant breeding

    Microsoft Academic Search

    N. W. Simmonds

    1996-01-01

    Plant breeding programmes rarely take explicit practical account of the two sources of genetic variance, namely between and within full-sib families, even though existence of these two sources of variation has long been recognised. This paper refers to inbred and clonal crops, not to outbred, seed-propagated species. Theory suggests that the two variances should be of similar size, sometimes very

  20. Testing Times for Plant Family Recognition

    ERIC Educational Resources Information Center

    Burrows, Geoffrey E.

    2010-01-01

    Plant families are the level of the taxonomic hierarchy that many biologists use to organise their understanding of plant diversity. Consequently, from many perspectives, it is very useful to be able to recognise the major plant families "on sight". To this end numerous books and web sites have described and illustrated plant families, but few…

  1. The Families of Flowering Plants

    NSDL National Science Digital Library

    Australian authors L. Watson and M. J. Dallwitz have updated this magnificent resource of detailed character descriptions, taxonomic information, references, and line illustrations of "all the Angiosperm families" from Acanthaceae to Zygophyllaceae. Users will find extensive data on plant and flower morphology, "seedling germination type, embryology, anther ontogeny, pollen cytology and morphology, stigma type, sieve-tube plastids, leaf, stem, nodal and wood anatomy, and phytochemistry (phenolics, alkaloids, cyanogenesis, etc.)." Watson and Dallwitz also include detailed taxonomic information on family synonyms, "numbers of species and genera in each family, and complete lists or (in the case of the largest families only) examples of the genera in each." A character list and an 'implicit attributes' section accompany the resource; information for downloading is available at the site. For teachers and graduate students alike, this online resource will be hard to beat.

  2. Composition and phylogenetic analysis of wheat cryptochrome gene family

    Microsoft Academic Search

    Pei Xu; Hui Lan Zhu; Hai Bin Xu; Zheng Zhi Zhang; Cai Qin Zhang; Li Xia Zhang; Zheng Qiang Ma

    2010-01-01

    Cryptochrome (CRY) gene family encodes photoreceptors mediating developmental responses to blue light throughout the life\\u000a of plants. We report here the characterization of CRY gene family in hexaploid wheat. Degenerate PCR amplification of the regions encoding the conserved flavin-binding domain\\u000a of CRY proteins yielded seven bands, resulting from amplification of CRY1a, CRY1b and CRY2 homologous genes. Assignment of individual amplicons

  3. Characterization of the multigene family TaHKT 2;1 in bread wheat and the role of gene members in plant Na+ and K+ status

    PubMed Central

    2014-01-01

    Background A member of the TaHKT2;1 multigene family was previously identified as a Na+ transporter with a possible role in root Na+ uptake. In the present study, the existing full-length cDNA of this member was used as a basis to query the International Wheat Genome Survey Sequence to identify all members of the TaHKT2;1 family. Individual TaHKT2;1 genes were subsequently studied for gene and predicted protein structures, promoter variability, tissue expression and their role in Na+ and K+ status of wheat. Results Six TaHKT2;1 genes were characterized which included four functional genes (TaHKT2;1 7AL-1, TaHKT2;1 7BL-1, TaHKT2;1 7BL-2 and TaHKT2;1 7DL-1) and two pseudogenes (TaHKT2;1 7AL-2 and TaHKT2;1 7AL-3), on chromosomes 7A, 7B and 7D of hexaploid wheat. Variability in protein domains for cation specificity and in cis-regulatory elements for salt response in gene promoters, were identified amongst the functional TaHKT2;1 members. The functional genes were expressed under low and high NaCl conditions in roots and leaf sheaths, but were down regulated in leaf blades. Alternative splicing events were evident in TaHKT2;1 7AL-1. Aneuploid lines null for each functional gene were grown in high NaCl nutrient solution culture to identify potential role of each TaHKT2;1 member. Aneuploid lines null for TaHKT2;1 7AL-1, TaHKT2;1 7BL-1 and TaHKT2;1 7BL-2 showed no difference in Na+ concentration between Chinese Spring except for higher Na+ in sheaths. The same aneuploid lines had lower K+ in roots, sheath and youngest fully expanded leaf but only under high (200 mM) NaCl in the external solution. There was no difference in Na+ or K+ concentration for any treatment between aneuploid line null for the TaHKT2;1 7DL-1 gene and Chinese Spring. Conclusions TaHKT2;1 is a complex family consisting of pseudogenes and functional members. TaHKT2;1 genes do not have an apparent role in controlling root Na+ uptake in bread wheat seedlings under experimental conditions in this study, contrary to existing hypotheses. However, TaHKT2;1 genes or, indeed other genes in the same chromosome region on 7AL, are candidates that may control Na+ transport from root to sheath and regulate K+ levels in different plant tissues. PMID:24920193

  4. Virgaviridae : a new family of rod-shaped plant viruses

    Microsoft Academic Search

    Michael J. AdamsJohn; John F. Antoniw; Jan Kreuze

    2009-01-01

    The new plant virus family Virgaviridae is described. The family is named because its members have rod-shaped virions (from the Latin virga = rod), and it includes the genera Furovirus, Hordeivirus, Pecluvirus, Pomovirus, Tobamovirus and Tobravirus. The chief characteristics of members of the family are presented with phylogenetic analyses of selected genes to support\\u000a the creation of the family. Species demarcation criteria

  5. Familial aggregation analysis of gene expressions

    PubMed Central

    Rao, Shao-Qi; Xu, Liang-De; Zhang, Guang-Mei; Li, Xia; Li, Lin; Shen, Gong-Qing; Jiang, Yang; Yang, Yue-Ying; Gong, Bin-Sheng; Jiang, Wei; Zhang, Fan; Xiao, Yun; Wang, Qing K

    2007-01-01

    Traditional studies of familial aggregation are aimed at defining the genetic (and non-genetic) causes of a disease from physiological or clinical traits. However, there has been little attempt to use genome-wide gene expressions, the direct phenotypic measures of genes, as the traits to investigate several extended issues regarding the distributions of familially aggregated genes on chromosomes or in functions. In this study we conducted a genome-wide familial aggregation analysis by using the in vitro cell gene expressions of 3300 human autosome genes (Problem 1 data provided to Genetic Analysis Workshop 15) in order to answer three basic genetics questions. First, we investigated how gene expressions aggregate among different types (degrees) of relative pairs. Second, we conducted a bioinformatics analysis of highly familially aggregated genes to see how they are distributed on chromosomes. Third, we performed a gene ontology enrichment test of familially aggregated genes to find evidence to support their functional consensus. The results indicated that 1) gene expressions did aggregate in families, especially between sibs. Of 3300 human genes analyzed, there were a total of 1105 genes with one or more significant (empirical p < 0.05) familial correlation; 2) there were several genomic hot spots where highly familially aggregated genes (e.g., the chromosome 6 HLA genes cluster) were clustered; 3) as we expected, gene ontology enrichment tests revealed that the 1105 genes were aggregating not only in families but also in functional categories. PMID:18466548

  6. Proteinase Inhibitor from Ginkgo Seeds Is a Member of the Plant Nonspecific Lipid Transfer Protein Gene Family1

    PubMed Central

    Sawano, Yoriko; Hatano, Ken-ichi; Miyakawa, Takuya; Komagata, Hideki; Miyauchi, Yumiko; Yamazaki, Hiroshi; Tanokura, Masaru

    2008-01-01

    A 9-kD proteinase inhibitor was isolated from the seeds of ginkgo (Ginkgo biloba) and purified to homogeneity. This protein was revealed to partial-noncompetitively inhibit the aspartic acid proteinase pepsin and the cysteine proteinase papain (inhibition constant = 10?5–10?4 m). The cDNA of the inhibitor was revealed to contain a 357-bp open reading frame encoding a 119-amino acid protein with a potential signal peptide (27 residues), indicating that this protein is synthesized as a preprotein and secreted outside the cells. Semiquantitative reverse transcription-polymerase chain reaction revealed that this gene expresses only in seeds, not in stems, leaves, and roots, suggesting that the protein is involved in seed development and/or germination. The inhibitor showed about 40% sequence homology with type-I nonspecific lipid transfer protein (nsLTP1) from other plant species. Actually, this inhibitor exerted both lipid transfer activity and lipid-binding activity, while the protein did not show any antifungal and antibacterial activities. Furthermore, the site-directed mutagenesis study using a recombinant ginkgo nsLTP1 revealed that proline (Pro)-79 and phenylalanine-80 are important on phospholipid transfer activity and that Pro-79 and isoleucine-82 are essential for the binding activity toward cis-unsaturated fatty acids. On the other hand, the ?-helical content of P79A and F80A mutants was significantly lower than that of the wild-type protein. It was noteworthy that the papain-inhibitory activity of P79A and F80A mutants was elevated twice as much as that of the wild-type protein. In summary, we concluded that Pro-79 plays a critical role in both the lipid transfer and binding activities of ginkgo nsLTP1. PMID:18305212

  7. The insect SNMP gene family.

    PubMed

    Vogt, Richard G; Miller, Natalie E; Litvack, Rachel; Fandino, Richard A; Sparks, Jackson; Staples, Jon; Friedman, Robert; Dickens, Joseph C

    2009-07-01

    SNMPs are membrane proteins observed to associate with chemosensory neurons in insects; in Drosophila melanogaster, SNMP1 has been shown to be essential for the detection of the pheromone cis-vaccenyl acetate (CVA). SNMPs are one of three insect gene clades related to the human fatty acid transporter CD36. We previously characterized the CD36 gene family in 4 insect Orders that effectively cover the Holometabola, or some 80% of known insect species and the 300 million years of evolution since this lineage emerged: Lepidoptera (e.g. Bombyx mori, Antheraea polyphemus, Manduca sexta, Heliothis virescens, Helicoverpa assulta, Helicoverpa armigera, Mamestra brassicae); Diptera (D. melanogaster, Drosophila pseudoobscura, Aedes aegypti, Anopheles gambiae, Culex pipiens quinquefasciatus); Hymenoptera (Apis mellifera); and Coleoptera (Tribolium castaneum). This previous study suggested a complex topography within the SNMP clade including a strongly supported SNMP1 sub-clade plus additional SNMP genes. To further resolve the SNMP clade here, we used cDNA sequences of SNMP1 and SNMP2 from various Lepidoptera species, D. melanogaster and Ae. aegypti, as well as BAC derived genomic sequences from Ae. aegypti as models for proposing corrected sequences of orthologues in the D. pseudoobscura and An. gambiae genomes, and for identifying orthologues in the B. mori and C. pipiens q. genomes. We then used these sequences to analyze the SNMP clade of the insect CD36 gene family, supporting the existence of two well supported sub-clades, SNMP1 and SNMP2, throughout the dipteran and lepidopteran lineages, and plausibly throughout the Holometabola and across a broad evolutionary time scale. We present indirect evidence based on evolutionary selection (dN/dS) that the dipteran SNMPs are expressed as functional proteins. We observed expansions of the SNMP1 sub-clade in C. pipiens q. and T. castaneum suggesting that the SNMP1s may have an expanded functional role in these species. PMID:19364529

  8. Identification of a nematode chemosensory gene family

    E-print Network

    Baillie, David

    Identification of a nematode chemosensory gene family Nansheng Chen* , Shraddha Pai*, Zhongying to Caenorhabditis elegans, we have examined the chemosensory gene superfamily by using comparative genomic methods. We have iden- tified a chemosensory gene family, serpentine receptor class ab (srab), which exists

  9. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations

    PubMed Central

    Jupe, Florian; Witek, Kamil; Verweij, Walter; ?liwka, Jadwiga; Pritchard, Leighton; Etherington, Graham J; Maclean, Dan; Cock, Peter J; Leggett, Richard M; Bryan, Glenn J; Cardle, Linda; Hein, Ingo; Jones, Jonathan DG

    2013-01-01

    Summary RenSeq is a NB-LRR (nucleotide binding-site leucine-rich repeat) gene-targeted, Resistance gene enrichment and sequencing method that enables discovery and annotation of pathogen resistance gene family members in plant genome sequences. We successfully applied RenSeq to the sequenced potato Solanum tuberosum clone DM, and increased the number of identified NB-LRRs from 438 to 755. The majority of these identified R gene loci reside in poorly or previously unannotated regions of the genome. Sequence and positional details on the 12 chromosomes have been established for 704 NB-LRRs and can be accessed through a genome browser that we provide. We compared these NB-LRR genes and the corresponding oligonucleotide baits with the highest sequence similarity and demonstrated that ?80% sequence identity is sufficient for enrichment. Analysis of the sequenced tomato S. lycopersicum ‘Heinz 1706’ extended the NB-LRR complement to 394 loci. We further describe a methodology that applies RenSeq to rapidly identify molecular markers that co-segregate with a pathogen resistance trait of interest. In two independent segregating populations involving the wild Solanum species S. berthaultii (Rpi-ber2) and S. ruiz-ceballosii (Rpi-rzc1), we were able to apply RenSeq successfully to identify markers that co-segregate with resistance towards the late blight pathogen Phytophthora infestans. These SNP identification workflows were designed as easy-to-adapt Galaxy pipelines. PMID:23937694

  10. Contrasting Modes of Diversification in the Aux/IAA and ARF Gene Families1[w

    E-print Network

    Remington, David

    Contrasting Modes of Diversification in the Aux/IAA and ARF Gene Families1[w] David L. Remington families in plants. The Aux/IAA and ARF gene families, consisting of 29 and 23 loci in Arabidopsis morphological development. We developed scenarios for the genomic proliferation of the Aux/IAA and ARF families

  11. Characterization of the caleosin gene family in the Triticeae

    PubMed Central

    2014-01-01

    Background The caleosin genes encode proteins with a single conserved EF hand calcium-binding domain and comprise small gene families found in a wide range of plant species. Some members of the gene family have been shown to be upregulated by environmental stresses including low water availability and high salinity. Caleosin 3 from wheat has been shown to interact with the ?-subunit of the heterotrimeric G proteins, and to act as a GTPase activating protein (GAP). This study characterizes the size and diversity of the gene family in wheat and related species and characterizes the differential tissue-specific expression of members of the gene family. Results A total of 34 gene family members that belong to eleven paralogous groups of caleosins were identified in the hexaploid bread wheat, T. aestivum. Each group was represented by three homeologous copies of the gene located on corresponding homeologous chromosomes, except the caleosin 10, which has four gene copies. Ten gene family members were identified in diploid barley, Hordeum vulgare, and in rye, Secale cereale, seven in Brachypodium distachyon, and six in rice, Oryza sativa. The analysis of gene expression was assayed in triticale and rye by RNA-Seq analysis of 454 sequence sets and members of the gene family were found to have diverse patterns of gene expression in the different tissues that were sampled in rye and in triticale, the hybrid hexaploid species derived from wheat and rye. Expression of the gene family in wheat and barley was also previously determined by microarray analysis, and changes in expression during development and in response to environmental stresses are presented. Conclusions The caleosin gene family had a greater degree of expansion in the Triticeae than in the other monocot species, Brachypodium and rice. The prior implication of one member of the gene family in the stress response and heterotrimeric G protein signaling, points to the potential importance of the caleosin gene family. The complexity of the family and differential expression in various tissues and under conditions of abiotic stress suggests the possibility that caleosin family members may play diverse roles in signaling and development that warrants further investigation. PMID:24673767

  12. Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceae plants

    Microsoft Academic Search

    Boris Rüping; Antonia M Ernst; Stephan B Jekat; Steffen Nordzieke; Anna R Reineke; Boje Müller; Erich Bornberg-Bauer; Dirk Prüfer; Gundula A Noll

    2010-01-01

    BACKGROUND: The phloem of dicotyledonous plants contains specialized P-proteins (phloem proteins) that accumulate during sieve element differentiation and remain parietally associated with the cisternae of the endoplasmic reticulum in mature sieve elements. Wounding causes P-protein filaments to accumulate at the sieve plates and block the translocation of photosynthate. Specialized, spindle-shaped P-proteins known as forisomes that undergo reversible calcium-dependent conformational changes

  13. Auxin-Responsive Genes AIR12 Code for a New Family of Plasma Membrane b-Type Cytochromes Specific to Flowering Plants1[C][W][OA

    PubMed Central

    Preger, Valeria; Tango, Nunzio; Marchand, Christophe; Lemaire, Stéphane D.; Carbonera, Donatella; Di Valentin, Marilena; Costa, Alex; Pupillo, Paolo; Trost, Paolo

    2009-01-01

    We report here on the identification of the major plasma membrane (PM) ascorbate-reducible b-type cytochrome of bean (Phaseolus vulgaris) and soybean (Glycine max) hypocotyls as orthologs of Arabidopsis (Arabidopsis thaliana) AIR12 (for auxin induced in root cultures). Soybean AIR12, which is glycosylated and glycosylphosphatidylinositol-anchored to the external side of the PM in vivo, was expressed in Pichia pastoris in a recombinant form, lacking the glycosylphosphatidylinositol modification signal and purified from the culture medium. Recombinant AIR12 is a soluble protein predicted to fold into a ?-sandwich domain and belonging to the DOMON (for dopamine ?-monooxygenase N terminus) domain superfamily. It is shown to be a b-type cytochrome with a symmetrical ?-band at 561 nm, fully reduced by ascorbate, and fully oxidized by monodehydroascorbate radical. AIR12 is a high-potential cytochrome b showing a wide bimodal dependence from the redox potential between +80 mV and +300 mV. Optical absorption and electron paramagnetic resonance analysis indicate that AIR12 binds a single, highly axial low-spin heme, likely coordinated by methionine-91 and histidine-76, which are strongly conserved in AIR12 sequences. Phylogenetic analyses reveal that the auxin-responsive genes AIR12 represent a new family of PM b-type cytochromes specific to flowering plants. Circumstantial evidence suggests that AIR12 may interact with other redox partners within the PM to constitute a redox link between cytoplasm and apoplast. PMID:19386804

  14. Auxin-responsive genes AIR12 code for a new family of plasma membrane b-type cytochromes specific to flowering plants.

    PubMed

    Preger, Valeria; Tango, Nunzio; Marchand, Christophe; Lemaire, Stéphane D; Carbonera, Donatella; Di Valentin, Marilena; Costa, Alex; Pupillo, Paolo; Trost, Paolo

    2009-06-01

    We report here on the identification of the major plasma membrane (PM) ascorbate-reducible b-type cytochrome of bean (Phaseolus vulgaris) and soybean (Glycine max) hypocotyls as orthologs of Arabidopsis (Arabidopsis thaliana) AIR12 (for auxin induced in root cultures). Soybean AIR12, which is glycosylated and glycosylphosphatidylinositol-anchored to the external side of the PM in vivo, was expressed in Pichia pastoris in a recombinant form, lacking the glycosylphosphatidylinositol modification signal and purified from the culture medium. Recombinant AIR12 is a soluble protein predicted to fold into a beta-sandwich domain and belonging to the DOMON (for dopamine beta-monooxygenase N terminus) domain superfamily. It is shown to be a b-type cytochrome with a symmetrical alpha-band at 561 nm, fully reduced by ascorbate, and fully oxidized by monodehydroascorbate radical. AIR12 is a high-potential cytochrome b showing a wide bimodal dependence from the redox potential between +80 mV and +300 mV. Optical absorption and electron paramagnetic resonance analysis indicate that AIR12 binds a single, highly axial low-spin heme, likely coordinated by methionine-91 and histidine-76, which are strongly conserved in AIR12 sequences. Phylogenetic analyses reveal that the auxin-responsive genes AIR12 represent a new family of PM b-type cytochromes specific to flowering plants. Circumstantial evidence suggests that AIR12 may interact with other redox partners within the PM to constitute a redox link between cytoplasm and apoplast. PMID:19386804

  15. Knots in the family tree: evolutionary relationships and functions of knox homeobox genes

    Microsoft Academic Search

    Leonore Reiser; Patricia Sánchez-Baracaldo; Sarah Hake

    2000-01-01

    Knotted-like homeobox (knox) genes constitute a gene family in plants. Class I knox genes are expressed in shoot apical meristems, and (with notable exceptions) not in lateral organ primordia. Class II genes have more diverse expression patterns. Loss and gain of function mutations indicate that knox genes are important regulators of meristem function. Gene duplication has contributed to the evolution

  16. Multiple Actin Isotypes in Plants: Diverse Genes for Diverse Roles?

    PubMed Central

    Šlajcherová, Kate?ina; Fišerová, Jind?iška; Fischer, Lukáš; Schwarzerová, Kate?ina

    2012-01-01

    Plant actins are encoded by a gene family. Despite the crucial significance of the actin cytoskeleton for plant structure and function, the importance of individual actin isotypes and their specific roles in various plant tissues or even single cells is rather poorly understood. This review summarizes our current knowledge about the plant actin gene family including its evolution, gene and protein structure, and the expression profiles and regulation. Based on this background information, we review mutant and complementation analyses in Arabidopsis to draw an emerging picture of overlapping and specific roles of plant actin isotypes. Finally, we examine hypotheses explaining the mechanisms of isotype-specific functions. PMID:23091476

  17. Multiple Inter-Kingdom Horizontal Gene Transfers in the Evolution of the Phosphoenolpyruvate Carboxylase Gene Family

    PubMed Central

    Wang, Wen; Su, Bing

    2012-01-01

    Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought. PMID:23251445

  18. Lineage-Specific Expansion of IFIT Gene Family: An Insight into Coevolution with IFN Gene Family

    PubMed Central

    Liu, Ying; Zhang, Yi-Bing; Liu, Ting-Kai; Gui, Jian-Fang

    2013-01-01

    In mammals, IFIT (Interferon [IFN]-induced proteins with Tetratricopeptide Repeat [TPR] motifs) family genes are involved in many cellular and viral processes, which are tightly related to mammalian IFN response. However, little is known about non-mammalian IFIT genes. In the present study, IFIT genes are identified in the genome databases from the jawed vertebrates including the cartilaginous elephant shark but not from non-vertebrates such as lancelet, sea squirt and acorn worm, suggesting that IFIT gene family originates from a vertebrate ancestor about 450 million years ago. IFIT family genes show conserved gene structure and gene arrangements. Phylogenetic analyses reveal that this gene family has expanded through lineage-specific and species-specific gene duplication. Interestingly, IFN gene family seem to share a common ancestor and a similar evolutionary mechanism; the function link of IFIT genes to IFN response is present early since the origin of both gene families, as evidenced by the finding that zebrafish IFIT genes are upregulated by fish IFNs, poly(I:C) and two transcription factors IRF3/IRF7, likely via the IFN-stimulated response elements (ISRE) within the promoters of vertebrate IFIT family genes. These coevolution features creates functional association of both family genes to fulfill a common biological process, which is likely selected by viral infection during evolution of vertebrates. Our results are helpful for understanding of evolution of vertebrate IFN system. PMID:23818968

  19. Gene encoding plant asparagine synthetase

    DOEpatents

    Coruzzi, Gloria M. (New York, NY); Tsai, Fong-Ying (New York, NY)

    1993-10-26

    The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

  20. A Bayesian model for gene family evolution

    PubMed Central

    2011-01-01

    Background A birth and death process is frequently used for modeling the size of a gene family that may vary along the branches of a phylogenetic tree. Under the birth and death model, maximum likelihood methods have been developed to estimate the birth and death rate and the sizes of ancient gene families (numbers of gene copies at the internodes of the phylogenetic tree). This paper aims to provide a Bayesian approach for estimating parameters in the birth and death model. Results We develop a Bayesian approach for estimating the birth and death rate and other parameters in the birth and death model. In addition, a Bayesian hypothesis test is developed to identify the gene families that are unlikely under the birth and death process. Simulation results suggest that the Bayesian estimate is more accurate than the maximum likelihood estimate of the birth and death rate. The Bayesian approach was applied to a real dataset of 3517 gene families across genomes of five yeast species. The results indicate that the Bayesian model assuming a constant birth and death rate among branches of the phylogenetic tree cannot adequately explain the observed pattern of the sizes of gene families across species. The yeast dataset was thus analyzed with a Bayesian heterogeneous rate model that allows the birth and death rate to vary among the branches of the tree. The unlikely gene families identified by the Bayesian heterogeneous rate model are different from those given by the maximum likelihood method. Conclusions Compared to the maximum likelihood method, the Bayesian approach can produce more accurate estimates of the parameters in the birth and death model. In addition, the Bayesian hypothesis test is able to identify unlikely gene families based on Bayesian posterior p-values. As a powerful statistical technique, the Bayesian approach can effectively extract information from gene family data and thereby provide useful information regarding the evolutionary process of gene families across genomes. PMID:22044581

  1. Gene Family Evolution across 12 Drosophila Genomes

    Microsoft Academic Search

    Matthew W. Hahn; Mira V. Han; Sang-Gook Han

    2007-01-01

    Comparison of whole genomes has revealed large and frequent changes in the size of gene families. These changes occur because of high rates of both gene gain (via duplication) and loss (via deletion or pseudogenization), as well as the evolution of entirely new genes. Here we use the genomes of 12 fully sequenced Drosophila species to study the gain and

  2. The mammalian aldehyde oxidase gene family

    PubMed Central

    2009-01-01

    Aldehyde oxidases (EC 1.2.3.1) are a small group of structurally conserved cytosolic proteins represented in both the animal and plant kingdoms. In vertebrates, aldehyde oxidases constitute the small sub-family of molybdo-flavoenzymes, along with the evolutionarily and structurally related protein, xanthine oxidoreductase. These enzymes require a molybdo-pterin cofactor (molybdenum cofactor, MoCo) and flavin adenine dinucleotide for their catalytic activity. Aldehyde oxidases have broad substrate specificity and catalyse the hydroxylation of N-heterocycles and the oxidation of aldehydes to the corresponding acid. In humans, a single aldehyde oxidase gene (AOX1) and two pseudogenes clustering on a short stretch of chromosome 2q are known. In other mammals, a variable number of structurally conserved aldehyde oxidase genes has been described. Four genes (Aox1, Aox3, Aox4 and Aox3l1), coding for an equivalent number of catalytically active enzymes, are present in the mouse and rat genomes. Although human AOX1 and its homologous proteins are best known as drug metabolising enzymes, the physiological substrate(s) and function(s) are as yet unknown. The present paper provides an update of the available information on the evolutionary history, tissue- and cell-specific distribution and function of mammalian aldehyde oxidases. PMID:20038499

  3. PLANT MORPHOGENESIS AND KNOX GENES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    KNOX genes function in plant meristems, which produce leaves and stems. Three recent studies show that the dwarf phenotype, brevipedicellus, is caused by a recessive mutation in a KNOX gene. A fourth study shows that misexpression of KNOX genes leads to novel features that may have selective value....

  4. IDENTIFICATION AND CHARACTERIZATION OF NBS-LRR GENES IN THE MODEL PLANT MEDICAGO TRUNCATULA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NBS-LRR gene family accounts for the largest number of known disease resistance genes, and is one of the largest gene families in plant genomes. We describe this gene family in the model legume genome Medicago truncatula (“Medicago”). The current public draft genome sequence (Mt1.0) is estima...

  5. Genome-wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling.

    PubMed

    Bhattacharjee, Annapurna; Ghangal, Rajesh; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Homeobox genes encode transcription factors that are known to play a major role in different aspects of plant growth and development. In the present study, we identified homeobox genes belonging to 14 different classes in five legume species, including chickpea, soybean, Medicago, Lotus and pigeonpea. The characteristic differences within homeodomain sequences among various classes of homeobox gene family were quite evident. Genome-wide expression analysis using publicly available datasets (RNA-seq and microarray) indicated that homeobox genes are differentially expressed in various tissues/developmental stages and under stress conditions in different legumes. We validated the differential expression of selected chickpea homeobox genes via quantitative reverse transcription polymerase chain reaction. Genome duplication analysis in soybean indicated that segmental duplication has significantly contributed in the expansion of homeobox gene family. The Ka/Ks ratio of duplicated homeobox genes in soybean showed that several members of this family have undergone purifying selection. Moreover, expression profiling indicated that duplicated genes might have been retained due to sub-functionalization. The genome-wide identification and comprehensive gene expression profiling of homeobox gene family members in legumes will provide opportunities for functional analysis to unravel their exact role in plant growth and development. PMID:25745864

  6. Genome-Wide Analysis of Homeobox Gene Family in Legumes: Identification, Gene Duplication and Expression Profiling

    PubMed Central

    Garg, Rohini; Jain, Mukesh

    2015-01-01

    Homeobox genes encode transcription factors that are known to play a major role in different aspects of plant growth and development. In the present study, we identified homeobox genes belonging to 14 different classes in five legume species, including chickpea, soybean, Medicago, Lotus and pigeonpea. The characteristic differences within homeodomain sequences among various classes of homeobox gene family were quite evident. Genome-wide expression analysis using publicly available datasets (RNA-seq and microarray) indicated that homeobox genes are differentially expressed in various tissues/developmental stages and under stress conditions in different legumes. We validated the differential expression of selected chickpea homeobox genes via quantitative reverse transcription polymerase chain reaction. Genome duplication analysis in soybean indicated that segmental duplication has significantly contributed in the expansion of homeobox gene family. The Ka/Ks ratio of duplicated homeobox genes in soybean showed that several members of this family have undergone purifying selection. Moreover, expression profiling indicated that duplicated genes might have been retained due to sub-functionalization. The genome-wide identification and comprehensive gene expression profiling of homeobox gene family members in legumes will provide opportunities for functional analysis to unravel their exact role in plant growth and development. PMID:25745864

  7. Tomato ABSCISIC ACID STRESS RIPENING (ASR) Gene Family Revisited

    PubMed Central

    Golan, Ido; Dominguez, Pia Guadalupe; Konrad, Zvia; Shkolnik-Inbar, Doron; Carrari, Fernando; Bar-Zvi, Dudy

    2014-01-01

    Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding. PMID:25310287

  8. Comparison of Cytochrome P450 Genes from Six Plant Genomes

    Microsoft Academic Search

    David R. Nelson; Ray Ming; Maqsudul Alam; Mary A. Schuler

    2008-01-01

    Plants depend on cytochrome P450 (CYP) enzymes for nearly every aspect of their biology. In several sequenced angiosperms,\\u000a CYP genes constitute up to 1% of the protein coding genes. The angiosperm sequence diversity is encapsulated by 59 CYP families,\\u000a of which 52 families form a widely distributed core set. In the 20 years since the first plant P450 was sequenced, 3,387

  9. Book Review: Plant Gene Expression

    NSDL National Science Digital Library

    Alan Rose (University of California Davis; Molecular and Cellular Biology REV)

    2007-05-22

    Whereas many important biological discoveries have been made using plants, subsequent progress in some areas of plant research has fallen behind that in other organisms for which funding and in vitro assays are more readily available. Gene expression is one such field in which importance continues to grow because many potential plant biotechnology–based solutions to global problems depend on regulating the expression of specific genes. Previous limitations to exploring gene expression in plants have been partially mitigated by recent advances in genomics, genetics, and transformation techniques. The book Regulation of Gene Expression in Plants: The Role of Transcript Structure and Processing, edited by Carole L. Bassett, summarizes our current understanding of plant gene expression, with an emphasis on transcriptional and posttranscriptional regulation. The topics covered in six chapters include differences in messenger RNA (mRNA) structure caused by variations in transcription start and polyadenylation sites, alternative splicing, regulation by small RNAs, and mRNA transport and degradation. The chapters vary in depth, quality, and the degree to which the emphasis is placed on plants rather than eukaryotes in general. However, this slim volume is a useful review of gene expression in plants. The question of whether or not all differences in mRNA structure have functional importance remains open.

  10. Characterization of the glycinin gene family in soybean.

    PubMed Central

    Nielsen, N C; Dickinson, C D; Cho, T J; Thanh, V H; Scallon, B J; Fischer, R L; Sims, T L; Drews, G N; Goldberg, R B

    1989-01-01

    We characterized the structure, organization, and expression of genes that encode the soybean glycinins, a family of storage proteins synthesized exclusively in seeds during embryogenesis. Five genes encode the predominant glycinin subunits found in soybeans, and they have each been cloned, sequenced, and compared. The five genes have diverged into two subfamilies that are designated as Group-I and Group-II glycinin genes. Each glycinin gene contains four exons and three introns like genes that encode related proteins in other legumes. Two other genes have been identified and designated as "glycinin-related" because they hybridize weakly with the five glycinin genes. Although not yet characterized, glycinin-related genes could encode other glycinin subunit families whose members accumulate in minor amounts in seeds. The three Group-I glycinin genes are organized into two chromosomal domains, each about 45 kilobase pairs in length. The two domains have a high degree of homology, and contain at least five genes each that are expressed either in embryos or in mature plant leaves. Gel blot studies with embryo mRNA, as well as transcription studies with 32P-RNA synthesized in vitro from purified embryo nuclei, indicate that glycinin and glycinin-related genes become transcriptionally activated in a coordinated fashion early in embryogenesis, and are repressed coordinately late in seed development. In addition to transcriptional control processes, posttranscriptional events also are involved in regulating glycinin and glycinin-related mRNA levels during embryogenesis. PMID:2485233

  11. PLANT SCIENCES: Plant Genes on Steroids

    NSDL National Science Digital Library

    Robert Sablowski (John Innes Centre; Department of Cell and Developmental Biology)

    2005-03-11

    Access to the article is free, however registration and sign-in are required. Plants, like animals, use steroid hormones to regulate their development. However, in plants, the steroid hormone is bound by a receptor at the cell surface instead of a nuclear receptor. In a Perspective, Sablowski and Harberd discuss studies published here (He et al.) and elsewhere that provide the missing link between binding of the steroid by its receptor and changes in the expression of target genes.

  12. A TOOL FOR EXPLORING GENE FAMILY EVOLUTION

    Microsoft Academic Search

    Roderic D. M. Page; James A. Cotton

    Molecular biologists interested in the evolution of gene families and molecular sys- tematists interested in the evolution of whole organisms are both concerned with the relationship between gene phylogenies and organism phylogenies. We present reconciled trees as a tool for exploring this relationship. In discussing recent de- velopments, we focus on techniques which enable researchers to take account of uncertainty

  13. The ubiquilin gene family: evolutionary patterns and functional insights

    PubMed Central

    2014-01-01

    Background Ubiquilins are proteins that function as ubiquitin receptors in eukaryotes. Mutations in two ubiquilin-encoding genes have been linked to the genesis of neurodegenerative diseases. However, ubiquilin functions are still poorly understood. Results In this study, evolutionary and functional data are combined to determine the origin and diversification of the ubiquilin gene family and to characterize novel potential roles of ubiquilins in mammalian species, including humans. The analysis of more than six hundred sequences allowed characterizing ubiquilin diversity in all the main eukaryotic groups. Many organisms (e. g. fungi, many animals) have single ubiquilin genes, but duplications in animal, plant, alveolate and excavate species are described. Seven different ubiquilins have been detected in vertebrates. Two of them, here called UBQLN5 and UBQLN6, had not been hitherto described. Significantly, marsupial and eutherian mammals have the most complex ubiquilin gene families, composed of up to 6 genes. This exceptional mammalian-specific expansion is the result of the recent emergence of four new genes, three of them (UBQLN3, UBQLN5 and UBQLNL) with precise testis-specific expression patterns that indicate roles in the postmeiotic stages of spermatogenesis. A gene with related features has independently arisen in species of the Drosophila genus. Positive selection acting on some mammalian ubiquilins has been detected. Conclusions The ubiquilin gene family is highly conserved in eukaryotes. The infrequent lineage-specific amplifications observed may be linked to the emergence of novel functions in particular tissues. PMID:24674348

  14. Heterochronic genes in plant evolution and development

    PubMed Central

    Geuten, Koen; Coenen, Heleen

    2013-01-01

    Evolution of morphology includes evolutionary shifts of developmental processes in space or in time. Heterochronic evolution is defined as a temporal shift. The concept of heterochrony has been very rewarding to investigators of both animal and plant developmental evolution, because it has strong explanatory power when trying to understand morphological diversity. While for animals, extensive literature on heterochrony developed along with the field of evolution of development, in plants the concept has been applied less often and is less elaborately developed. Yet novel genetic findings highlight heterochrony as a developmental and evolutionary process in plants. Similar to what has been found for the worm Caenorhabditis, a heterochronic gene pathway controlling developmental timing has been elucidated in flowering plants. Two antagonistic microRNA’s miR156 and miR172 target two gene families of transcription factors, SQUAMOSA PROMOTOR BINDING PROTEIN-LIKE and APETALA2-like, respectively. Here, we propose that this finding now allows the molecular investigation of cases of heterochronic evolution in plants. We illustrate this point by examining microRNA expression patterns in the Antirrhinum majus incomposita and choripetala heterochronic mutants. Some of the more beautiful putative cases of heterochronic evolution can be found outside flowering plants, but little is known about the extent of conservation of this flowering plant pathway in other land plants. We show that the expression of an APETALA2-like gene decreases with age in a fern species. This contributes to the idea that ferns share some heterochronic gene functions with flowering plants. PMID:24093023

  15. The Botrytis cinerea endopolygalacturonase gene family

    Microsoft Academic Search

    Have ten A

    2000-01-01

    C<\\/strong> ell w<\\/strong> all d<\\/strong> egrading e<\\/strong> nzyme s<\\/strong> (CWDEs) secreted by microbial plant pathogens have been suggested to function as virulence factors. Evidence that particular bacterial CWDEs contribute to virulence has emerged in the last two decades. Targeted gene replacement of different genes encoding CWDEs resulted in mutants with reduced virulence on a number of host plants. Similar molecular

  16. Metazoan Gene Families from Metazome

    DOE Data Explorer

    Metazome is a joint project of the Department of Energy's Joint Genome Institute and the Center for Integrative Genomics to facilitate comparative genomic studies amongst metazoans. Clusters of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These clusters allow easy access to clade specific orthology/paralogy relationships as well as clade specific genes and gene expansions. As of version 2.0.4, Metazome provides access to twenty-four sequenced and annotated metazoan genomes, clustered at nine evolutionarily significant nodes. Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, Ensembl, and JGI are hyper-linked and searchable. The included organisms (by common name) are: Human, Mouse, Rat, Dog, Opossum, Chicken, Frog, Stickleback, Medaka, Fugu pufferfish; Zebrafish, Seasquirt - savignyi, Seasquirt - intestinalis, Amphioxus, Sea Urchin, Fruitfly, Mosquite, Yellow Fever Mosquito, Silkworm, Red Flour Beetle, Worm, Briggsae Worm, Owl limpet (snail), and Sea anemone. [Copied from Metazome Overview at http://www.metazome.net/Metazome_info.php

  17. Evolution of the FGF Gene Family

    PubMed Central

    Oulion, Silvan; Bertrand, Stephanie; Escriva, Hector

    2012-01-01

    Fibroblast Growth Factors (FGFs) are small proteins generally secreted, acting through binding to transmembrane tyrosine kinase receptors (FGFRs). Activation of FGFRs triggers several cytoplasmic cascades leading to the modification of cell behavior. FGFs play critical roles in a variety of developmental and physiological processes. Since their discovery in mammals, FGFs have been found in many metazoans and some arthropod viruses. Efforts have been previously made to decipher the evolutionary history of this family but conclusions were limited due to a poor taxonomic coverage. We took advantage of the availability of many new sequences from diverse metazoan lineages to further explore the possible evolutionary scenarios explaining the diversity of the FGF gene family. Our analyses, based on phylogenetics and synteny conservation approaches, allow us to propose a new classification of FGF genes into eight subfamilies, and to draw hypotheses for the evolutionary events leading to the present diversity of this gene family. PMID:22919541

  18. Ascorbate peroxidase gene family in tomato: its identification and characterization

    Microsoft Academic Search

    Naim Najami; Tibor Janda; Waseim Barriah; Galya Kayam; Moshe Tal; Micha Guy; Micha Volokita

    2008-01-01

    The antioxidative response, where ascorbate peroxidase (APX) is a key enzyme, is an integral part of the plant tolerance response\\u000a to environmental stresses. As a first step towards the study of the physiological role and the regulation of the members of\\u000a the Apx gene family, the orthologs of the stress-sensitive cultivated tomato Solanum lycopersicum cv. M82 (Slm) and of the

  19. Molecular Phylogeny and Evolution of the Coronin Gene Family

    Microsoft Academic Search

    Reginald O. Morgan; M. Pilar Fernandez

    The coronin gene family comprises seven vertebrate paralogs and at least five unclassified subfamilies in nonvertebrate metazoa,\\u000a fungi and protozoa, but no representatives in plants or distant protists. All known members exhibit elevated structural conservation\\u000a in two unique domains of unknown function (DUF1899 and DUF1900) interspaced by three canonical WD40 domains (plus additional\\u000a pseudo domains) that form part of a

  20. The Dynein Gene Family in Chlamydomonas Reinhardtii

    PubMed Central

    Porter, M. E.; Knott, J. A.; Myster, S. H.; Farlow, S. J.

    1996-01-01

    To correlate dynein heavy chain (Dhc) genes with flagellar mutations and gain insight into the function of specific dynein isoforms, we placed eight members of the Dhc gene family on the genetic map of Chlamydomonas. Using a PCR-based strategy, we cloned 11 Dhc genes from Chlamydomonas. Comparisons with other Dhc genes indicate that two clones correspond to genes encoding the alpha and beta heavy chains of the outer dynein arm. Alignment of the predicted amino acid sequences spanning the nucleotide binding site indicates that the remaining nine clones can be subdivided into three groups that are likely to include representatives of the inner-arm Dhc isoforms. Gene-specific probes reveal that each clone represents a single-copy gene that is expressed as a transcript of the appropriate size (>13 kb) sufficient to encode a high molecular weight Dhc polypeptide. The expression of all nine genes is upregulated in response to deflagellation, suggesting a role in axoneme assembly or motility. Restriction fragment length polymorphisms between divergent C. reinhardtii strains have been used to place each Dhc gene on the genetic map of Chlamydomonas. These studies lay the groundwork for correlating defects in different Dhc genes with specific flagellar mutations. PMID:8889521

  1. Legumes as a Model Plant Family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The human population derives the majority of its nutrition either directly or indirectly (via animal protein) from two plant families: the grasses and the legumes. Grain legumes alone supply approximately 33% of human protein nutrition. Thus, it is critical for genetic improvement of legume crop spe...

  2. Molecular characterization of the SPL gene family in Populus trichocarpa

    PubMed Central

    2014-01-01

    Background SPLs, a family of transcription factors specific to plants, play vital roles in plant growth and development through regulation of various physiological and biochemical processes. Although Populus trichocarpa is a model forest tree, the PtSPL gene family has not been systematically studied. Results Here we report the identification of 28 full-length PtSPLs, which distribute on 14 P. trichocarpa chromosomes. Based on the phylogenetic relationships of SPLs in P. trichocarpa and Arabidopsis, plant SPLs can be classified into 6 groups. Each group contains at least a PtSPL and an AtSPL. The N-terminal zinc finger 1 (Zn1) of SBP domain in group 6 SPLs has four cysteine residues (CCCC-type), while Zn1 of SPLs in the other groups mainly contains three cysteine and one histidine residues (C2HC-type). Comparative analyses of gene structures, conserved motifs and expression patterns of PtSPLs and AtSPLs revealed the conservation of plant SPLs within a group, whereas among groups, the P. trichocarpa and Arabidopsis SPLs were significantly different. Various conserved motifs were identified in PtSPLs but not found in AtSPLs, suggesting the diversity of plant SPLs. A total of 11 pairs of intrachromosome-duplicated PtSPLs were identified, suggesting the importance of gene duplication in SPL gene expansion in P. trichocarpa. In addition, 18 of the 28 PtSPLs, belonging to G1, G2 and G5, were found to be targets of miR156. Consistently, all of the AtSPLs in these groups are regulated by miR156. It suggests the conservation of miR156-mediated posttranscriptional regulation in plants. Conclusions A total of 28 full-length SPLs were identified from the whole genome sequence of P. trichocarpa. Through comprehensive analyses of gene structures, phylogenetic relationships, chromosomal locations, conserved motifs, expression patterns and miR156-mediated posttranscriptional regulation, the PtSPL gene family was characterized. Our results provide useful information for evolution and biological function of plant SPLs. PMID:24884654

  3. Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid.

    PubMed

    Csiszár, Jolán; Horváth, Edit; Váry, Zsolt; Gallé, Ágnes; Bela, Krisztina; Brunner, Szilvia; Tari, Irma

    2014-05-01

    A family tree of the multifunctional proteins, glutathione transferases (GSTs, EC 2.5.1.18) was created in Solanum lycopersicum based on homology to known Arabidopsis GSTs. The involvement of selected SlGSTs was studied in salt stress response of tomato primed with salicylic acid (SA) or in un-primed plants by real-time qPCR. Selected tau GSTs (SlGSTU23, SlGSTU26) were up-regulated in the leaves, while GSTs from lambda, theta, dehydroascorbate reductase and zeta classes (SlGSTL3, SlGSTT2, SlDHAR5, SlGSTZ2) in the root tissues under salt stress. Priming with SA exhibited a concentration dependency; SA mitigated the salt stress injury and caused characteristic changes in the expression pattern of SlGSTs only at 10(-4) M concentration. SlGSTF4 displayed a significant up-regulation in the leaves, while the abundance of SlGSTL3, SlGSTT2 and SlGSTZ2 transcripts were enhanced in the roots of plants primed with high SA concentration. Unexpectedly, under high salinity the SlDHAR2 expression decreased in primed roots as compared to the salt-stressed plants, however, the up-regulation of SlDHAR5 isoenzyme contributed to the maintenance of DHAR activity in roots primed with high SA. The members of lambda, theta and zeta class GSTs have a specific role in salt stress acclimation of tomato, while SlGSTU26 and SlGSTF4, the enzymes with high glutathione conjugating activity, characterize a successful priming in both roots and leaves. In contrast to low concentration, high SA concentration induced those GSTs in primed roots, which were up-regulated under salt stress. Our data indicate that induction of GSTs provide a flexible tool in maintaining redox homeostasis during unfavourable conditions. PMID:24607575

  4. Codon usage in plant genes.

    PubMed Central

    Murray, E E; Lotzer, J; Eberle, M

    1989-01-01

    We have examined codon bias in 207 plant gene sequences collected from Genbank and the literature. When this sample was further divided into 53 monocot and 154 dicot genes, the pattern of relative use of synonymous codons was shown to differ between these taxonomic groups, primarily in the use of G + C in the degenerate third base. Maize and soybean codon bias were examined separately and followed the monocot and dicot codon usage patterns respectively. Codon preference in ribulose 1,5 bisphosphate and chlorophyll a/b binding protein, two of the most abundant proteins in leaves was investigated. These highly expressed are more restricted in their codon usage than plant genes in general. PMID:2644621

  5. Prevalence of intron gain over intron loss in the evolution of paralogous gene families

    Microsoft Academic Search

    Vladimir N. Babenko; Igor B. Rogozin; Sergei L. Mekhedov; Eugene V. Koonin

    2004-01-01

    The mechanisms and evolutionary dynamics of intron insertion and loss in eukaryotic genes remain poorly understood. Reconstruction of parsimonious scen- arios of gene structure evolution in paralogous gene families in animals and plants revealed numer- ous gains and losses of introns. In all analyzed lineages, the number of acquired new introns was substantially greater than the number of lost ancestral

  6. Structure and expression of the maize (Zea mays L.) SUN-domain protein gene family: evidence for the existence of

    E-print Network

    Bass, Hank W.

    Structure and expression of the maize (Zea mays L.) SUN- domain protein gene family: evidence for the existence of two divergent classes of SUN proteins in plants Murphy et al. Murphy et al. BMC Plant Biology Access Structure and expression of the maize (Zea mays L.) SUN-domain protein gene family: evidence

  7. Genome-Wide Analysis of the GRAS Gene Family in Rice and Arabidopsis

    Microsoft Academic Search

    Chaoguang Tian; Ping Wan; Shouhong Sun; Jiayang Li; Mingsheng Chen

    2004-01-01

    Members of the GRAS gene family encode transcriptional regulators that have diverse functions in plant growth and development\\u000a such as gibberellin signal transduction, root radial patterning, axillary meristem formation, phytochrome A signal transduction,\\u000a and gametogenesis. Bioinformatic analysis identified 57 and 32 GRAS genes in rice and Arabidopsis, respectively. Here, we provide a complete overview of this gene family, describing the

  8. Chromosomal evolution in the plant family Solanaceae

    PubMed Central

    2010-01-01

    Background Over the past decades, extensive comparative mapping research has been performed in the plant family Solanaceae. The recent identification of a large set of single-copy conserved orthologous (COSII) markers has greatly accelerated comparative mapping studies among major solanaceous species including tomato, potato, eggplant, pepper and diploid Nicotiana species (as well as tetraploid tobacco). The large amount of comparative data now available for these species provides the opportunity to describe the overall patterns of chromosomal evolution in this important plant family. The results of this investigation are described herein. Results We combined data from multiple COSII studies, and other comparative mapping studies performed in tomato, potato, eggplant, pepper and diploid Nicotiana species, to deduce the features and outcomes of chromosomal evolution in the Solanaceae over the past 30 million years. This includes estimating the rates and timing of chromosomal changes (inversions and translocations) as well as deducing the age of ancestral progenitor species and predicting their genome configurations. Conclusions The Solanaceae has experienced chromosomal changes at a modest rate compared with other families and the rates are likely conserved across different lineages of the family. Chromosomal inversions occur at a consistently higher rate than do translocations. Further, we find evidences for non-random positioning of the chromosomal rearrangement breakpoints. This finding is consistent with the similar finding in mammals, where hot spots for chromosomal breakages have apparently played a significant role in shaping genome evolution. Finally, by utilizing multiple genome comparisons we were able to reconstruct the most likely genome configuration for a number of now-extinct progenitor species that gave rise to the extant solanaceous species used in this research. The results from this study provide the first broad overview of chromosomal evolution in the family Solanaceae, and one of the most detailed thus far for any family of plants. PMID:20236516

  9. A novel family of small proteins that affect plant development

    SciTech Connect

    John Charles Walker

    2011-04-29

    The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.

  10. Massive expansion of the calpain gene family in unicellular eukaryotes

    PubMed Central

    2012-01-01

    Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes. PMID:23020305

  11. Protease gene families in Populus and Arabidopsis

    Microsoft Academic Search

    Maribel García-Lorenzo; Andreas Sjödin; Stefan Jansson; Christiane Funk

    2006-01-01

    BACKGROUND: Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. RESULTS: We have performed a comparative analysis of protease genes in the two sequenced

  12. Plant DNA viruses and gene silencing

    Microsoft Academic Search

    Simon N. Covey; Nadia S. Al-Kaff

    2000-01-01

    Gene silencing is a multifaceted phenomenon leading to propagative down-regulation of gene expression. Gene silencing, first observed in plants containing transgenes, can operate both at the transcriptional and post-transcriptional levels. Silencing effects can be triggered by nuclear transgenes and by cytoplasmic RNA viruses, and it can be propagated between these elements and endogenous plant genes that share sequence homology. Although

  13. Characterization of resistance gene analogues (RGAs) in Apple (Malus 6domestica Borkh.) and their evolutionary history of the Rosaceae family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The family of resistance gene analogues (RGAs) with a nucleotide-binding site (NBS) domain accounts for the largest number of disease resistance genes and is one of the largest gene families in plants. We have identified 868 RGAs in the genome of the apple (Malus × domestica Borkh.) cultivar ‘Golden...

  14. MicroSyn: a user friendly tool for detection of microsynteny in a gene family

    SciTech Connect

    Cai, Bin [Nanjing Agricultural University; Yang, Xiaohan [ORNL; Tuskan, Gerald A [ORNL; Cheng, Zong-Ming [ORNL

    2011-01-01

    Background: The traditional phylogeny analysis within gene family is mainly based on DNA or amino acid sequence homologies. However, these phylogenetic tree analyses are not suitable for those non-traditional gene families like microRNA with very short sequences. For the normal protein-coding gene families, low bootstrap values are frequently encountered in some nodes, suggesting low confidence or likely inappropriateness of placement of those members in those nodes. Results: We introduce MicroSyn software as a means of detecting microsynteny in adjacent genomic regions surrounding genes in gene families. MicroSyn searches for conserved, flanking colinear homologous gene pairs between two genomic fragments to determine the relationship between two members in a gene family. The colinearity of homologous pairs is controlled by a statistical distance function. As a result, gene duplication history can be inferred from the output independent of gene sequences. MicroSyn was designed for both experienced and non-expert users with a user-friendly graphical-user interface. MicroSyn is available from: http://fcsb.njau.edu. cn/microsyn/. Conclusions: Case studies of the microRNA167 genes in plants and Xyloglucan ndotransglycosylase/Hydrolase family in Populus trichocarpa were presented to show the utility of the software. The easy using of MicroSyn in these examples suggests that the software is an additional valuable means to address the problem intrinsic in the computational methods and sequence qualities themselves in gene family analysis.

  15. Carcinoembryonic antigen gene family: Molecular biology and clinical perspectives

    Microsoft Academic Search

    John A. Thompson; Fritz Grunert; Wolfgang Zimmermann

    1991-01-01

    The carcinoembryonic antigen (CEA) gene family belongs to the immunoglobulin super- gene family and can be divided into two main subgroups based on sequence comparisons. In humans it is clustered on the long arm of chromosome 19 and consists of approxi- mately 20 genes. The CEA subgroup genes code for CEA and its classical crossreacting antigens, which are mainly membrane-bound,

  16. Evolution of the interferon alpha gene family in eutherian mammals

    PubMed Central

    Woelk, Christopher H.; Frost, Simon D. W.; Richman, Douglas D.; Higley, Prentice E.; Kosakovsky Pond, Sergei L.

    2007-01-01

    Interferon alpha (IFNA) genes code for proteins with important signaling roles during the innate immune response. Phylogenetically, IFNA family members in eutherians (placental mammals) cluster together in a species-specific manner except for closely related species (i.e. Homo sapiens and Pan troglodytes) where gene-specific clustering is evident. Previous research has been unable to clarify whether gene conversion or recent gene duplication accounts for gene-specific clustering, partly because the similarity of members of the IFNA family within species has made it historically difficult to identify the exact composition of IFNA gene families. IFNA gene families were fully characterized in recently available genomes from Canis familiaris, Macaca mulatta, Pan troglodytes and Rattus norvegicus, and combined with previously characterized IFNA gene families from Homo sapiens and Mus musculus, for the analysis of both whole and partial gene conversion events using a variety of statistical methods. Gene conversion was inferred in every eutherian species analyzed and comparison of the IFNA gene family locus between primate species revealed independent gene duplication in M. mulatta. Thus, both gene conversion and gene duplication have shaped the evolution of the IFNA gene family in eutherian species. Scenarios may be envisaged whereby the increased production of a specific IFN-? protein would be beneficial against a particular pathogenic infection. Gene conversion, similar to duplication, provides a mechanism by which the protein product of a specific IFNA gene can be increased. PMID:17512142

  17. The IQD Gene Family in Soybean: Structure, Phylogeny, Evolution and Expression

    PubMed Central

    Ma, Hui; Chen, Xue; Li, Yuan; Wang, Yiyi; Xiang, Yan

    2014-01-01

    Members of the plant-specific IQ67-domain (IQD) protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum), Brachypodium distachyon and rice (Oryza sativa), systematic analysis and expression profiling of this gene family in soybean (Glycine max) have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD1–67) was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I–IV) based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1–3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development. PMID:25343341

  18. Comparative Genomics and Reverse Genetics Analysis Reveal Indispensable Functions of the Serine Acetyltransferase Gene Family in Arabidopsis

    Microsoft Academic Search

    Mutsumi Watanabe; Keiichi Mochida; Tomohiko Kato; Satoshi Tabata; Naoko Yoshimoto; Masaaki Noji; K. Saito

    2008-01-01

    Ser acetyltransferase (SERAT), which catalyzes O-acetyl-Ser (OAS) formation, plays a key role in sulfur assimilation and Cys synthesis. Despite several studies on SERATs from various plant species, the in vivo function of multiple SERAT genes in plant cells remains unaddressed. Comparative genomics studies with the five genes of the SERAT gene family in Arabidopsis thaliana indicated that all three Arabidopsis

  19. Plant nitrogen regulatory P-PII genes

    DOEpatents

    Coruzzi, Gloria M. (New York, NY); Lam, Hon-Ming (Hong Kong, HK); Hsieh, Ming-Hsiun (Woodside, NY)

    2001-01-01

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the

  20. The Tomato Terpene Synthase Gene Family1[W][OA

    PubMed Central

    Falara, Vasiliki; Akhtar, Tariq A.; Nguyen, Thuong T.H.; Spyropoulou, Eleni A.; Bleeker, Petra M.; Schauvinhold, Ines; Matsuba, Yuki; Bonini, Megan E.; Schilmiller, Anthony L.; Last, Robert L.; Schuurink, Robert C.; Pichersky, Eran

    2011-01-01

    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far. PMID:21813655

  1. Widespread impact of horizontal gene transfer on plant colonization of land

    PubMed Central

    Yue, Jipei; Hu, Xiangyang; Sun, Hang; Yang, Yongping; Huang, Jinling

    2012-01-01

    In complex multicellular eukaryotes such as animals and plants, horizontal gene transfer is commonly considered rare with very limited evolutionary significance. Here we show that horizontal gene transfer is a dynamic process occurring frequently in the early evolution of land plants. Our genome analyses of the moss Physcomitrella patens identified 57 families of nuclear genes that were acquired from prokaryotes, fungi or viruses. Many of these gene families were transferred to the ancestors of green or land plants. Available experimental evidence shows that these anciently acquired genes are involved in some essential or plant-specific activities such as xylem formation, plant defence, nitrogen recycling as well as the biosynthesis of starch, polyamines, hormones and glutathione. These findings suggest that horizontal gene transfer had a critical role in the transition of plants from aquatic to terrestrial environments. On the basis of these findings, we propose a model of horizontal gene transfer mechanism in nonvascular and seedless vascular plants. PMID:23093189

  2. Comparative and evolutionary analysis of major peanut allergen gene families.

    PubMed

    Ratnaparkhe, Milind B; Lee, Tae-Ho; Tan, Xu; Wang, Xiyin; Li, Jingping; Kim, Changsoo; Rainville, Lisa K; Lemke, Cornelia; Compton, Rosana O; Robertson, Jon; Gallo, Maria; Bertioli, David J; Paterson, Andrew H

    2014-09-01

    Peanut (Arachis hypogaea L.) causes one of the most serious food allergies. Peanut seed proteins, Arah1, Arah2, and Arah3, are considered to be among the most important peanut allergens. To gain insights into genome organization and evolution of allergen-encoding genes, approximately 617 kb from the genome of cultivated peanut and 215 kb from a wild relative were sequenced including three Arah1, one Arah2, eight Arah3, and two Arah6 gene family members. To assign polarity to differences between homoeologous regions in peanut, we used as outgroups the single orthologous regions in Medicago, Lotus, common bean, chickpea, and pigeonpea, which diverged from peanut about 50 Ma and have not undergone subsequent polyploidy. These regions were also compared with orthologs in many additional dicot plant species to help clarify the timing of evolutionary events. The lack of conservation of allergenic epitopes between species, and the fact that many different proteins can be allergenic, makes the identification of allergens across species by comparative studies difficult. The peanut allergen genes are interspersed with low-copy genes and transposable elements. Phylogenetic analyses revealed lineage-specific expansion and loss of low-copy genes between species and homoeologs. Arah1 syntenic regions are conserved in soybean, pigeonpea, tomato, grape, Lotus, and Arabidopsis, whereas Arah3 syntenic regions show genome rearrangements. We infer that tandem and segmental duplications led to the establishment of the Arah3 gene family. Our analysis indicates differences in conserved motifs in allergen proteins and in the promoter regions of the allergen-encoding genes. Phylogenetic analysis and genomic organization studies provide new insights into the evolution of the major peanut allergen-encoding genes. PMID:25193311

  3. Comparative and Evolutionary Analysis of Major Peanut Allergen Gene Families

    PubMed Central

    Ratnaparkhe, Milind B.; Lee, Tae-Ho; Tan, Xu; Wang, Xiyin; Li, Jingping; Kim, Changsoo; Rainville, Lisa K.; Lemke, Cornelia; Compton, Rosana O.; Robertson, Jon; Gallo, Maria; Bertioli, David J.; Paterson, Andrew H.

    2014-01-01

    Peanut (Arachis hypogaea L.) causes one of the most serious food allergies. Peanut seed proteins, Arah1, Arah2, and Arah3, are considered to be among the most important peanut allergens. To gain insights into genome organization and evolution of allergen-encoding genes, approximately 617 kb from the genome of cultivated peanut and 215 kb from a wild relative were sequenced including three Arah1, one Arah2, eight Arah3, and two Arah6 gene family members. To assign polarity to differences between homoeologous regions in peanut, we used as outgroups the single orthologous regions in Medicago, Lotus, common bean, chickpea, and pigeonpea, which diverged from peanut about 50 Ma and have not undergone subsequent polyploidy. These regions were also compared with orthologs in many additional dicot plant species to help clarify the timing of evolutionary events. The lack of conservation of allergenic epitopes between species, and the fact that many different proteins can be allergenic, makes the identification of allergens across species by comparative studies difficult. The peanut allergen genes are interspersed with low-copy genes and transposable elements. Phylogenetic analyses revealed lineage-specific expansion and loss of low-copy genes between species and homoeologs. Arah1 syntenic regions are conserved in soybean, pigeonpea, tomato, grape, Lotus, and Arabidopsis, whereas Arah3 syntenic regions show genome rearrangements. We infer that tandem and segmental duplications led to the establishment of the Arah3 gene family. Our analysis indicates differences in conserved motifs in allergen proteins and in the promoter regions of the allergen-encoding genes. Phylogenetic analysis and genomic organization studies provide new insights into the evolution of the major peanut allergen-encoding genes. PMID:25193311

  4. Genomic analysis of the terpenoid synthase ( AtTPS ) gene family of Arabidopsis thaliana

    Microsoft Academic Search

    S. Aubourg; A. Lecharny; J. Bohlmann

    2002-01-01

    A family of 40 terpenoid synthase genes (AtTPS) was discovered by genome sequence analysis in Arabidopsis thaliana. This is the largest and most diverse group of TPS genes currently known for any species. AtTPS genes cluster into five phylogenetic subfamilies of the plant TPS superfamily. Surprisingly, thirty AtTPS closely resemble, in all aspects of gene architecture, sequence relatedness and phylogenetic

  5. Duplication, divergence and persistence in the Phytochrome photoreceptor gene family of cottons (Gossypium spp.)

    Microsoft Academic Search

    Ibrokhim Y Abdurakhmonov; Zabardast T Buriev; Carla Jo Logan-Young; Abdusattor Abdukarimov; Alan E Pepper

    2010-01-01

    BACKGROUND: Phytochromes are a family of red\\/far-red photoreceptors that regulate a number of important developmental traits in cotton (Gossypium spp.), including plant architecture, fiber development, and photoperiodic flowering. Little is known about the composition and evolution of the phytochrome gene family in diploid (G. herbaceum, G. raimondii) or allotetraploid (G. hirsutum, G. barbadense) cotton species. The objective of this study

  6. Familial Hypercholesterolemia: The Lipids or the Genes?

    PubMed Central

    2011-01-01

    Familial Hypercholesterolemia (FH) is a common cause of premature cardiovascular disease and is often undiagnosed in young people. Although the disease is diagnosed clinically by high LDL cholesterol levels and family history, to date there are no single internationally accepted criteria for the diagnosis of FH. Several genes have been shown to be involved in FH; yet determining the implications of the different mutations on the phenotype remains a hard task. The polygenetic nature of FH is being enhanced by the discovery of new genes that serve as modifiers. Nevertheless, the picture is still unclear and many unknown genes contributing to the phenotype are most likely involved. Because of this evolving polygenetic nature, the diagnosis of FH by genetic testing is hampered by its cost and effectiveness. In this review, we reconsider the clinical versus genetic nomenclature of FH in the literature. After we describe each of the genetic causes of FH, we summarize the known correlation with phenotypic measures so far for each genetic defect. We then discuss studies from different populations on the genetic and clinical diagnoses of FH to draw helpful conclusions on cost-effectiveness and suggestions for diagnosis. PMID:21513517

  7. ERECTA family genes regulate development of cotyledons during embryogenesis.

    PubMed

    Chen, Ming-Kun; Shpak, Elena D

    2014-11-01

    Receptor-like kinases are important regulators of plant growth. Often a single receptor is involved in regulation of multiple developmental processes in a variety of tissues. ERECTA family (ERf) receptors have previously been linked with stomata development, above-ground organ elongation, shoot apical meristem function, flower differentiation and biotic/abiotic stresses. Here we explore the role of these genes during embryogenesis. ERfs are expressed in the developing embryo, where their expression is progressively limited to the upper half of the embryo. During embryogenesis ERfs redundantly stimulate the growth of cotyledons by promoting cell proliferation and inhibiting premature stomata differentiation. PMID:25240196

  8. Genome-wide analysis of the ERF gene family in Arabidopsis and rice.

    PubMed

    Nakano, Toshitsugu; Suzuki, Kaoru; Fujimura, Tatsuhito; Shinshi, Hideaki

    2006-02-01

    Genes in the ERF family encode transcriptional regulators with a variety of functions involved in the developmental and physiological processes in plants. In this study, a comprehensive computational analysis identified 122 and 139 ERF family genes in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa L. subsp. japonica), respectively. A complete overview of this gene family in Arabidopsis is presented, including the gene structures, phylogeny, chromosome locations, and conserved motifs. In addition, a comparative analysis between these genes in Arabidopsis and rice was performed. As a result of these analyses, the ERF families in Arabidopsis and rice were divided into 12 and 15 groups, respectively, and several of these groups were further divided into subgroups. Based on the observation that 11 of these groups were present in both Arabidopsis and rice, it was concluded that the major functional diversification within the ERF family predated the monocot/dicot divergence. In contrast, some groups/subgroups are species specific. We discuss the relationship between the structure and function of the ERF family proteins based on these results and published information. It was further concluded that the expansion of the ERF family in plants might have been due to chromosomal/segmental duplication and tandem duplication, as well as more ancient transposition and homing. These results will be useful for future functional analyses of the ERF family genes. PMID:16407444

  9. Cloning and expression analysis of novel Aux/IAA family genes in Gossypium hirsutum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Members of the auxin/indole-3-acetic acid (Aux/IAA) gene family encode proteins to mediate the responses of auxin gene expression and to regulate various aspects of plant morphological development. In this paper, we report the identification of nine cDNAs that contain complete open reading frame (OR...

  10. The SLC13 gene family of sodium sulphate\\/carboxylate cotransporters

    Microsoft Academic Search

    Daniel Markovich; Heini Murer

    2004-01-01

    The SLC13 gene family consist of five sequence-related members that have been identified in a variety of animals, plants, yeast and bacteria. Proteins encoded by these genes are divided into two functionally unrelated groups: the Na +-sulphate (NaS) cotransporters and the Na +-carboxylate (NaC) cotransporters. Members of this family include the renal Na +-dependent inorganic sulphate transporter-1 (NaSi-1, SLC13A1), the

  11. Expression Patterns of a Novel AtCHX Gene Family Highlight Potential Roles in Osmotic Adjustment

    E-print Network

    Sze, Heven

    a novel CHX gene family in flowering plants with potential functions in pollen development, germination, Maryland 20742­5815 (H.S., S.P., K.W.B., X.L.); Biochimie et Physiologie Mole´culaire des Plantes, Unite's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030 (N.-H.C., K.D.H.); Department

  12. Genome-wide identification and analysis of the MADS-box gene family in apple.

    PubMed

    Tian, Yi; Dong, Qinglong; Ji, Zhirui; Chi, Fumei; Cong, Peihua; Zhou, Zongshan

    2015-01-25

    The MADS-box gene family is one of the most widely studied families in plants and has diverse developmental roles in flower pattern formation, gametophyte cell division and fruit differentiation. Although the genome-wide analysis of this family has been performed in some species, little is known regarding MADS-box genes in apple (Malus domestica). In this study, 146 MADS-box genes were identified in the apple genome and were phylogenetically clustered into six subgroups (MIKC(c), MIKC*, M?, M?, M? and M?) with the MADS-box genes from Arabidopsis and rice. The predicted apple MADS-box genes were distributed across all 17 chromosomes at different densities. Additionally, the MADS-box domain, exon length, gene structure and motif compositions of the apple MADS-box genes were analysed. Moreover, the expression of all of the apple MADS-box genes was analysed in the root, stem, leaf, flower tissues and five stages of fruit development. All of the apple MADS-box genes, with the exception of some genes in each group, were expressed in at least one of the tissues tested, which indicates that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the apple. To the best of our knowledge, this report describes the first genome-wide analysis of the apple MADS-box gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family. PMID:25447908

  13. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Legumes and many nonleguminous plants enter symbiotic interactions with microbes, and it is poorly understood how host plants respond to promote beneficial, symbiotic microbial interactions while suppressing those that are deleterious or pathogenic. Trans-acting siRNAs (tasiRNAs) negatively regulate...

  14. Selection for Higher Gene Copy Number after Different Types of Plant Gene Duplications

    PubMed Central

    Hudson, Corey M.; Puckett, Emily E.; Bekaert, Michaël; Pires, J. Chris; Conant, Gavin C.

    2011-01-01

    The evolutionary origins of the multitude of duplicate genes in the plant genomes are still incompletely understood. To gain an appreciation of the potential selective forces acting on these duplicates, we phylogenetically inferred the set of metabolic gene families from 10 flowering plant (angiosperm) genomes. We then compared the metabolic fluxes for these families, predicted using the Arabidopsis thaliana and Sorghum bicolor metabolic networks, with the families' duplication propensities. For duplications produced by both small scale (small-scale duplications) and genome duplication (whole-genome duplications), there is a significant association between the flux and the tendency to duplicate. Following this global analysis, we made a more fine-scale study of the selective constraints observed on plant sodium and phosphate transporters. We find that the different duplication mechanisms give rise to differing selective constraints. However, the exact nature of this pattern varies between the gene families, and we argue that the duplication mechanism alone does not define a duplicated gene's subsequent evolutionary trajectory. Collectively, our results argue for the interplay of history, function, and selection in shaping the duplicate gene evolution in plants. PMID:22056313

  15. Inferring Gene Family Histories in Yeast Identifies Lineage Specific Expansions

    PubMed Central

    Ames, Ryan M.; Money, Daniel; Lovell, Simon C.

    2014-01-01

    The complement of genes found in the genome is a balance between gene gain and gene loss. Knowledge of the specific genes that are gained and lost over evolutionary time allows an understanding of the evolution of biological functions. Here we use new evolutionary models to infer gene family histories across complete yeast genomes; these models allow us to estimate the relative genome-wide rates of gene birth, death, innovation and extinction (loss of an entire family) for the first time. We show that the rates of gene family evolution vary both between gene families and between species. We are also able to identify those families that have experienced rapid lineage specific expansion/contraction and show that these families are enriched for specific functions. Moreover, we find that families with specific functions are repeatedly expanded in multiple species, suggesting the presence of common adaptations and that these family expansions/contractions are not random. Additionally, we identify potential specialisations, unique to specific species, in the functions of lineage specific expanded families. These results suggest that an important mechanism in the evolution of genome content is the presence of lineage-specific gene family changes. PMID:24921666

  16. The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization, and expression

    PubMed Central

    Barakat, Abdelali; Bagniewska-Zadworna, Agnieszka; Choi, Alex; Plakkat, Urmila; DiLoreto, Denis S; Yellanki, Priyadarshini; Carlson, John E

    2009-01-01

    Background Lignin is a phenolic heteropolymer in secondary cell walls that plays a major role in the development of plants and their defense against pathogens. The biosynthesis of monolignols, which represent the main component of lignin involves many enzymes. The cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis as it catalyzes the final step in the synthesis of monolignols. The CAD gene family has been studied in Arabidopsis thaliana, Oryza sativa and partially in Populus. This is the first comprehensive study on the CAD gene family in woody plants including genome organization, gene structure, phylogeny across land plant lineages, and expression profiling in Populus. Results The phylogenetic analyses showed that CAD genes fall into three main classes (clades), one of which is represented by CAD sequences from gymnosperms and angiosperms. The other two clades are represented by sequences only from angiosperms. All Populus CAD genes, except PoptrCAD 4 are distributed in Class II and Class III. CAD genes associated with xylem development (PoptrCAD 4 and PoptrCAD 10) belong to Class I and Class II. Most of the CAD genes are physically distributed on duplicated blocks and are still in conserved locations on the homeologous duplicated blocks. Promoter analysis of CAD genes revealed several motifs involved in gene expression modulation under various biological and physiological processes. The CAD genes showed different expression patterns in poplar with only two genes preferentially expressed in xylem tissues during lignin biosynthesis. Conclusion The phylogeny of CAD genes suggests that the radiation of this gene family may have occurred in the early ancestry of angiosperms. Gene distribution on the chromosomes of Populus showed that both large scale and tandem duplications contributed significantly to the CAD gene family expansion. The duplication of several CAD genes seems to be associated with a genome duplication event that happened in the ancestor of Salicaceae. Phylogenetic analyses associated with expression profiling and results from previous studies suggest that CAD genes involved in wood development belong to Class I and Class II. The other CAD genes from Class II and Class III may function in plant tissues under biotic stresses. The conservation of most duplicated CAD genes, the differential distribution of motifs in their promoter regions, and the divergence of their expression profiles in various tissues of Populus plants indicate that genes in the CAD family have evolved tissue-specialized expression profiles and may have divergent functions. PMID:19267902

  17. Concerted gene recruitment in early plant evolution

    PubMed Central

    Huang, Jinling; Gogarten, J Peter

    2008-01-01

    Background Horizontal gene transfer occurs frequently in prokaryotes and unicellular eukaryotes. Anciently acquired genes, if retained among descendants, might significantly affect the long-term evolution of the recipient lineage. However, no systematic studies on the scope of anciently acquired genes and their impact on macroevolution are currently available in eukaryotes. Results Analyses of the genome of the red alga Cyanidioschyzon identified 37 genes that were acquired from non-organellar sources prior to the split of red algae and green plants. Ten of these genes are rarely found in cyanobacteria or have additional plastid-derived homologs in plants. These genes most likely provided new functions, often essential for plant growth and development, to the ancestral plant. Many remaining genes may represent replacements of endogenous homologs with a similar function. Furthermore, over 78% of the anciently acquired genes are related to the biogenesis and functionality of plastids, the defining character of plants. Conclusion Our data suggest that, although ancient horizontal gene transfer events did occur in eukaryotic evolution, the number of acquired genes does not predict the role of horizontal gene transfer in the adaptation of the recipient organism. Our data also show that multiple independently acquired genes are able to generate and optimize key evolutionary novelties in major eukaryotic groups. In light of these findings, we propose and discuss a general mechanism of horizontal gene transfer in the macroevolution of eukaryotes. PMID:18611267

  18. Running title: Phylogenetic profiling in plants Mailing address: Yves Van de Peer

    E-print Network

    Gent, Universiteit

    : gene families, evolution, core genes, orphans, phylogenomics, Arabidopsis thaliana, Oryza sativa #12 insights into plant gene evolution, and identifies species and lineage-specific gene families, orphan genes

  19. Going nuclear: gene family evolution and vertebrate phylogeny reconciled.

    PubMed Central

    Cotton, James A; Page, Roderic D M

    2002-01-01

    Gene duplications have been common throughout vertebrate evolution, introducing paralogy and so complicating phylogenetic inference from nuclear genes. Reconciled trees are one method capable of dealing with paralogy, using the relationship between a gene phylogeny and the phylogeny of the organisms containing those genes to identify gene duplication events. This allows us to infer phylogenies from gene families containing both orthologous and paralogous copies. Vertebrate phylogeny is well understood from morphological and palaeontological data, but studies using mitochondrial sequence data have failed to reproduce this classical view. Reconciled tree analysis of a database of 118 vertebrate gene families supports a largely classical vertebrate phylogeny. PMID:12184825

  20. The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family

    E-print Network

    Higgins, Darren

    . The Wnt family encodes secreted glycoproteins of molecular mass The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family), a Drosophila Wnt (Wnt) family member. Mouse and Xenopus homologs of porc (Mporc and Xporc) were identified

  1. Scaling Law in Sizes of Protein Sequence Families: From Super-Families to Orphan Genes

    E-print Network

    Unger, Ron

    Scaling Law in Sizes of Protein Sequence Families: From Super-Families to Orphan Genes Ron Unger,1 number of members and many "orphan" proteins that do not belong to any family. Here it is shown, different for the super families and the orphan proteins. A simple model of protein evolu- tion is proposed

  2. Analyses of the oligopeptide transporter gene family in poplar and grape

    PubMed Central

    2011-01-01

    Background Oligopeptide transporters (OPTs) are a group of membrane-localized proteins that have a broad range of substrate transport capabilities and that are thought to contribute to many biological processes. The OPT proteins belong to a small gene family in plants, which includes about 25 members in Arabidopsis and rice. However, no comprehensive study incorporating phylogeny, chromosomal location, gene structure, expression profiling, functional divergence and selective pressure analysis has been reported thus far for Populus and Vitis. Results In the present study, a comprehensive analysis of the OPT gene family in Populus (P. trichocarpa) and Vitis (V. vinifera) was performed. A total of 20 and 18 full-length OPT genes have been identified in Populus and Vitis, respectively. Phylogenetic analyses indicate that these OPT genes consist of two classes that can be further subdivided into 11 groups. Gene structures are considerably conserved among the groups. The distribution of OPT genes was found to be non-random across chromosomes. A high proportion of the genes are preferentially clustered, indicating that tandem duplications may have contributed significantly to the expansion of the OPT gene family. Expression patterns based on our analyses of microarray data suggest that many OPT genes may be important in stress response and functional development of plants. Further analyses of functional divergence and adaptive evolution show that, while purifying selection may have been the main force driving the evolution of the OPTs, some of critical sites responsible for the functional divergence may have been under positive selection. Conclusions Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus and Vitis OPT gene family and of the function and evolution of the OPT gene family in higher plants. PMID:21943393

  3. Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice

    Microsoft Academic Search

    Danhua Jiang; Changsong Yin; Aiping Yu; Xiaofan Zhou; Wanqi Liang; Zheng Yuan; Yun Xu; Qingbo Yu; Tieqiao Wen; Dabing Zhang

    2006-01-01

    To understand the expansion of multicopy microRNA (miRNA) families in plants, we localized the reported miRNA genes from Arabidopsis and rice to their chromosomes, respectively, and observed that 37% of 117 miRNA genes from Arabidopsis and 35% of 173 miRNA genes from rice were segmental duplications in the genome. In order to characterize whether the expression diversification has occurred among

  4. Silencing of the pollen-specific gene NTP303 and its family members in tobacco affects in vivo pollen tube growth and results in male sterile plants

    Microsoft Academic Search

    Peter de Groot; Koen Weterings; M. W. H. J. de Been; Floyd Wittink; Raymond Hulzink; J. B. M. Custers; Marinus van Herpen; George Wullems

    2004-01-01

    In seed plants, successful fertilization requires correct regulation of pollen tube growth. At germination and during growth, the pollen tube interacts with tissues from the pistil while the pollen tube extends via tip growth. Despite the fact that much research has been devoted to the mechanisms regulating pollen tube growth, many aspects are currently unknown. Previously, we have isolated a

  5. Phylogenomics of the plant family Araceae.

    PubMed

    Henriquez, Claudia L; Arias, Tatiana; Pires, J Chris; Croat, Thomas B; Schaal, Barbara A

    2014-06-01

    The biogeography, chromosome number evolution, pollination biology and evolutionary history of the plant family Araceae have recently become much clearer (Cabrera et al., 2008; Chartier et al., 2013; Cusimano et al., 2011, 2012; Nauheimer et al., 2012). However, phylogenetic ambiguity near the root of the tree precludes answering questions about the early evolution of the family. We use Illumina sequencing technology and reference based assembly to resolve the remaining questions in the deep phylogeny of Araceae. We sampled 32 genera and obtained 7 from GenBank (including an outgroup), representing 42 of 44 major clades described in Cusimano et al. (2011). A subsequent phylogenomic analysis based on mitochondrial data was performed to test congruence between plastid and mitochondrial data for phylogenetic inference. Plastid sequences produced strongly supported phylogenies. In contrast, mitochondrial phylogenies were weakly supported and incongruent with chloroplast data (Templeton test, p?0.0001), although several smaller clades were recovered. New strongly-supported clades seen here are: (1) Anubias and Montrichardia, excluding Calla, form a clade that is sister to the Zantedeschia clade; (2) the South African genus Zantedeschia is sister to the Old World Anchomanes clade; and (3) within the Zantedeschia clade, Philodendron is sister to the rest. Calla and Schismatoglottis form a clade at the base of one of two major clades in Aroideae based on complete chloroplast sequences. Although statistical support is weak, morphological and cytological features support this topology. PMID:24594061

  6. The Groucho-related Gene Family Regulates the Gonadotropin-releasing Hormone Gene through Interaction

    E-print Network

    Mellon, Pamela L.

    - related gene (GRG) family of co-repressors is expressed in a model cell line for the GnRH neuron and co increases as the neurons enter the anterior forebrain (15). Moreover, GnRH gene expression increasesThe Groucho-related Gene Family Regulates the Gonadotropin-releasing Hormone Gene through

  7. Large gene family of phosphoenolpyruvate carboxylase in the crassulacean acid metabolism plant Kalanchoe pinnata (Crassulaceae) characterised by partial cDNA sequence analysis

    Microsoft Academic Search

    Hans H. Gehrig; Joshua A. Wood; Mary Ann Cushman; Aurelio Virgo; John C. Cushman; Klaus Winter

    Abstract. Clones coding for a 1100-bp cDNA sequence of phosphoenolpyruvate carboxylase (PEPC) of the constitutive crassulacean acid metabolism (CAM) plant Kalanchoe pinnata (Lam.) Pers., were isolated by reverse transcription-polymerase chain reaction (RT–PCR) and characterised by restriction fragment length polymorphism analysis and DNA sequencing. Seven distinct PEPC isogenes were recovered, four in leaves and three in roots (EMBL accession numbers: AJ344052–AJ344058).

  8. Evolutionary Dynamics of Plant R-Genes

    NSDL National Science Digital Library

    Joy Bergelson (University of Chicago; Department of Ecology and Evolution)

    2001-06-22

    Plant R-genes involved in gene-for-gene interactions with pathogens are expected to undergo coevolutionary arms races in which plant specificity and pathogen virulence continually adapt in response to each other. Lending support to this idea, the solvent-exposed amino acid residues of leucine-rich repeats, a region of R-genes involved in recognizing pathogens, often evolve at unusually fast rates. But within-species polymorphism is also common in R-genes, implying that the adaptive substitution process is not simply one of successive selective sweeps. Here we document these features in available data and discuss them in light of the evolutionary dynamics they likely reflect.

  9. Genome Dynamics Explain the Evolution of Flowering Time CCT Domain Gene Families in the Poaceae

    PubMed Central

    Cockram, James; Thiel, Thomas; Steuernagel, Burkhard; Stein, Nils; Taudien, Stefan; Bailey, Paul C.; O'Sullivan, Donal M.

    2012-01-01

    Numerous CCT domain genes are known to control flowering in plants. They belong to the CONSTANS-like (COL) and PREUDORESPONSE REGULATOR (PRR) gene families, which in addition to a CCT domain possess B-box or response-regulator domains, respectively. Ghd7 is the most recently identified COL gene to have a proven role in the control of flowering time in the Poaceae. However, as it lacks B-box domains, its inclusion within the COL gene family, technically, is incorrect. Here, we show Ghd7 belongs to a larger family of previously uncharacterized Poaceae genes which possess just a single CCT domain, termed here CCT MOTIF FAMILY (CMF) genes. We molecularly describe the CMF (and related COL and PRR) gene families in four sequenced Poaceae species, as well as in the draft genome assembly of barley (Hordeum vulgare). Genetic mapping of the ten barley CMF genes identified, as well as twelve previously unmapped HvCOL and HvPRR genes, finds the majority map to colinear positions relative to their Poaceae orthologues. Combined inter-/intra-species comparative and phylogenetic analysis of CMF, COL and PRR gene families indicates they evolved prior to the monocot/dicot divergence ?200 mya, with Poaceae CMF evolution described as the interplay between whole genome duplication in the ancestral cereal, and subsequent clade-specific mutation, deletion and duplication events. Given the proven role of CMF genes in the modulation of cereals flowering, the molecular, phylogenetic and comparative analysis of the Poaceae CMF, COL and PRR gene families presented here provides the foundation from which functional investigation can be undertaken. PMID:23028921

  10. Characterization of murine carcinoembryonic antigen gene family members

    Microsoft Academic Search

    Fritz Rudert; Ann M. Saunders; Sabine Rebstock; John A. Thompson; Wolfgang Zimmermann

    1992-01-01

    The carcinoembryonic antigen (CEA) is a human tumor marker whose gene belongs to a family with more than 20 members. This gene family codes for a group of proteins with in vitro cell adhesion properties and for a group of abundantly expressed pregnancy-specific glycoproteins (PSG) with unknown functions. As a basis for in vivo functional studies, we have started to

  11. NEUROTRANSMITTER TRANSPORTERS: THREE IMPORTANT GENE FAMILIES FOR NEURONAL FUNCTION

    Microsoft Academic Search

    GEORGE R. UHL; PETER S. JOHNSON

    1994-01-01

    Summary Three distinct gene families encode transporter proteins that aid in temporal and spatial buffering of neurotransmitter and neurotransmitter metabolite concentrations and allow neurons to cycle and recycle transmitter molecules. Analyses of these gene families and their products are likely to enhance understanding of the molecular neurobiology of neuronal function and may elucidate contributors to the genetic etiologies of neurological

  12. Emerging Use of Gene Expression Microarrays in Plant Physiology

    PubMed Central

    Difazio, Stephen P.

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology were selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry. PMID:18629133

  13. Emerging use of gene expression microarrays in plant physiology.

    PubMed

    Wullschleger, Stan D; Difazio, Stephen P

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology were selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry. PMID:18629133

  14. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa

    SciTech Connect

    Kalluri, Udaya C [ORNL; DiFazio, Stephen P [West Virginia University; Brunner, A. [Virginia Polytechnic Institute and State University (Virginia Tech); Tuskan, Gerald A [ORNL

    2007-01-01

    Auxin/Indole-3-Acetic Acid (Aux/IAA) and Auxin Response Factor (ARF) transcription factors are key regulators of auxin responses in plants. A total of 35 Aux/IAA and 39 ARF genes were identified in the Populus genome. Comparative phylogenetic analysis revealed that the subgroups PoptrARF2, 6, 9 and 16 and PoptrIAA3, 16, 27 and 29 have differentially expanded in Populus relative to Arabidopsis. Activator ARFs were found to be two fold-overrepresented in the Populus genome. PoptrIAA and PoptrARF gene families appear to have expanded due to high segmental and low tandem duplication events. Furthermore, expression studies showed that genes in the expanded PoptrIAA3 subgroup display differential expression. The gene-family analysis reported here will be useful in conducting future functional genomics studies to understand how the molecular roles of these large gene families translate into a diversity of biologically meaningful auxin effects.

  15. Overexpression of the Retinoblastoma Gene in a Familial Adrenocortical Carcinoma

    Microsoft Academic Search

    Sally Warneford; Megan Townsend; Peter B. Rowe; Luciano Dalla-Pozza; Geoff Symonds

    1991-01-01

    Abstrad Tumors derived from a Li-Fraumeni syndrome cancer- susceptible family were examined for expression of the retinoblastoma susceptibility gene (RB). Whereas RB expression was normal in a primary breast carcinoma and its metastases from one member of this family, overexpression of RB was found in an adrenocortical carcinoma from another family member. This was in contrast to normal RB expression

  16. 3. LOOKING EAST OVER GENE PUMP PLANT AND CAMP; PARKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. LOOKING EAST OVER GENE PUMP PLANT AND CAMP; PARKER DAM VILLAGE IN BACKGROUND. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  17. Systematic Analysis and Identification of Stress-Responsive Genes of the NAC Gene Family in Brachypodium distachyon.

    PubMed

    You, Jun; Zhang, Lihua; Song, Bo; Qi, Xiaoquan; Chan, Zhulong

    2015-01-01

    Plant-specific NAC proteins are one of the largest families of transcription factors in plants, and members of this family have been characterized with roles in the regulation of diverse biological processes, including development and stress responses. In the present study, we identified 101 putative NAC domain-encoding genes (BdNACs) through systematic sequence analysis in Brachypodium distachyon, a new model plant of family Poaceae. BdNAC proteins were phylogenetically clustered into 13 groups, and each group possesses similar motif compositions. Phylogenetic analysis using known stress-related NACs from Arabidopsis and rice as query sequences identified 18 BdNACs as putative stress-responsive genes. In silico promoter analysis showed that almost all BdNAC genes contain putative stress-related cis-elements in their promoter regions. Expression profile of BdNAC genes in response to abiotic stresses and phytohormones was analyzed by quantitative real-time RT-PCR. Several putative stress-responsive BdNAC genes, including BdNAC003 and BdNAC044 which is ortholog of known stress-responsive rice gene SNAC1 and SNAC2, respectively, were highly regulated by multiple abiotic stresses and stress-related phytohormone treatments. Taken together, our results presented here would be helpful in laying the foundation for understanding of the complex mechanisms of NAC mediated abiotic stress signaling transduction pathways in B. distachyon. PMID:25815771

  18. Systematic Analysis and Identification of Stress-Responsive Genes of the NAC Gene Family in Brachypodium distachyon

    PubMed Central

    You, Jun; Zhang, Lihua; Song, Bo; Qi, Xiaoquan; Chan, Zhulong

    2015-01-01

    Plant-specific NAC proteins are one of the largest families of transcription factors in plants, and members of this family have been characterized with roles in the regulation of diverse biological processes, including development and stress responses. In the present study, we identified 101 putative NAC domain-encoding genes (BdNACs) through systematic sequence analysis in Brachypodium distachyon, a new model plant of family Poaceae. BdNAC proteins were phylogenetically clustered into 13 groups, and each group possesses similar motif compositions. Phylogenetic analysis using known stress-related NACs from Arabidopsis and rice as query sequences identified 18 BdNACs as putative stress-responsive genes. In silico promoter analysis showed that almost all BdNAC genes contain putative stress-related cis-elements in their promoter regions. Expression profile of BdNAC genes in response to abiotic stresses and phytohormones was analyzed by quantitative real-time RT-PCR. Several putative stress-responsive BdNAC genes, including BdNAC003 and BdNAC044 which is ortholog of known stress-responsive rice gene SNAC1 and SNAC2, respectively, were highly regulated by multiple abiotic stresses and stress-related phytohormone treatments. Taken together, our results presented here would be helpful in laying the foundation for understanding of the complex mechanisms of NAC mediated abiotic stress signaling transduction pathways in B. distachyon. PMID:25815771

  19. GeneSeqer add PlantGDB: gene structure prediction in plant genomes

    Microsoft Academic Search

    Shannon D. Schlueter; Qunfeng Dong; Volker Brendel

    2003-01-01

    The GeneSeqer@PlantGDB Web server (http:\\/\\/ www.plantgdb.org\\/cgi-bin\\/GeneSeqer.cgi) provides a gene structure prediction tool tailored for applica- tions to plant genomic sequences. Predictions are based on spliced alignment with source-native ESTs and full-length cDNAs or non-native probes derived from putative homologous genes. The tool is illustrated with applications to refinement of current gene structure annotation and de novo annotation of draft genomic

  20. Paleo-evolutionary plasticity of plant disease resistance genes

    PubMed Central

    2014-01-01

    Background The recent access to a large set of genome sequences, combined with a robust evolutionary scenario of modern monocot (i.e. grasses) and eudicot (i.e. rosids) species from their founder ancestors, offered the opportunity to gain insights into disease resistance genes (R-genes) evolutionary plasticity. Results We unravel in the current article (i) a R-genes repertoire consisting in 7883 for monocots and 15758 for eudicots, (ii) a contrasted R-genes conservation with 23.8% for monocots and 6.6% for dicots, (iii) a minimal ancestral founder pool of 384 R-genes for the monocots and 150 R-genes for the eudicots, (iv) a general pattern of organization in clusters accounting for more than 60% of mapped R-genes, (v) a biased deletion of ancestral duplicated R-genes between paralogous blocks possibly compensated by clusterization, (vi) a bias in R-genes clusterization where Leucine-Rich Repeats act as a ‘glue’ for domain association, (vii) a R-genes/miRNAs interome enriched toward duplicated R-genes. Conclusions Together, our data may suggest that R-genes family plasticity operated during plant evolution (i) at the structural level through massive duplicates loss counterbalanced by massive clusterization following polyploidization; as well as at (ii) the regulation level through microRNA/R-gene interactions acting as a possible source of functional diploidization of structurally retained R-genes duplicates. Such evolutionary shuffling events leaded to CNVs (i.e. Copy Number Variation) and PAVs (i.e. Presence Absence Variation) between related species operating in the decay of R-genes colinearity between plant species. PMID:24617999

  1. Gene transfer: anything goes in plant mitochondria

    PubMed Central

    2010-01-01

    Parasitic plants and their hosts have proven remarkably adept at exchanging fragments of mitochondrial DNA. Two recent studies provide important mechanistic insights into the pattern, process and consequences of horizontal gene transfer, demonstrating that genes can be transferred in large chunks and that gene conversion between foreign and native genes leads to intragenic mosaicism. A model involving duplicative horizontal gene transfer and differential gene conversion is proposed as a hitherto unrecognized source of genetic diversity. See research article: http://www.biomedcentral.com/1741-7007/8/150 PMID:21176244

  2. Includes pre-computed gene families, multiple sequence

    E-print Network

    Gent, Universiteit

    genomes from flowering plants, (club-)mosses and several green algae · All data can be downloaded PLAZA release 2.5 · Includes >900,000 genes from 25 plants covering 13 dicots, 5 monocots, 2 (club-)mosses

  3. Includes pre-computed gene families, multiple sequence alignments &

    E-print Network

    Gent, Universiteit

    23 plants covering 11 dicots, 5 monocots, 2 (club-)mosses and 5 algae · Advanced panel of (inter to perform analyses on their genes · Includes published genomes from flowering plants, mosses and several

  4. Plant breeding (review) Transformation of Poaceae and gene expression

    E-print Network

    Paris-Sud XI, Université de

    Plant breeding (review) Transformation of Poaceae and gene expression in transgenic plants J Fütterer I Potrykus Institute for Plant Sciences, Federal Institute of Technology, ETH Zürich used for transformation and for achieving controlled gene expression in transgenic plants and discusses

  5. Expression analysis of LIM gene family in poplar, toward an updated phylogenetic classification

    PubMed Central

    2012-01-01

    Background Plant LIM domain proteins may act as transcriptional activators of lignin biosynthesis and/or as actin binding and bundling proteins. Plant LIM genes have evolved in phylogenetic subgroups differing in their expression profiles: in the whole plant or specifically in pollen. However, several poplar PtLIM genes belong to uncharacterized monophyletic subgroups and the expression patterns of the LIM gene family in a woody plant have not been studied. Findings In this work, the expression pattern of the twelve duplicated poplar PtLIM genes has been investigated by semi quantitative RT-PCR in different vegetative and reproductive tissues. As in other plant species, poplar PtLIM genes were widely expressed in the tree or in particular tissues. Especially, PtXLIM1a, PtXLIM1b and PtWLIM1b genes were preferentially expressed in the secondary xylem, suggesting a specific function in wood formation. Moreover, the expression of these genes and of the PtPLIM2a gene was increased in tension wood. Western-blot analysis confirmed the preferential expression of PtXLIM1a protein during xylem differentiation and tension wood formation. Genes classified within the pollen specific PLIM2 and PLIM2-like subgroups were all strongly expressed in pollen but also in cottony hairs. Interestingly, pairs of duplicated PtLIM genes exhibited different expression patterns indicating subfunctionalisations in specific tissues. Conclusions The strong expression of several LIM genes in cottony hairs and germinating pollen, as well as in xylem fibers suggests an involvement of plant LIM domain proteins in the control of cell expansion. Comparisons of expression profiles of poplar LIM genes with the published functions of closely related plant LIM genes suggest conserved functions in the areas of lignin biosynthesis, pollen tube growth and mechanical stress response. Based on these results, we propose a novel nomenclature of poplar LIM domain proteins. PMID:22339987

  6. The Phaseolus vulgaris ZIP gene family: identification, characterization, mapping, and gene expression

    PubMed Central

    Astudillo, Carolina; Fernandez, Andrea C.; Blair, Matthew W.; Cichy, Karen A.

    2013-01-01

    Zinc is an essential mineral for humans and plants and is involved in many physiological and biochemical processes. In humans, Zn deficiency has been associated with retarded growth and reduction of immune response. In plants, Zn is an essential component of more than 300 enzymes including RNA polymerase, alkaline phosphatase, alcohol dehydrogenase, Cu/Zn superoxidase dismutase, and carbonic anhydrase. The accumulation of Zn in plants involves many genes and characterization of the role of these genes will be useful in biofortification. Here we report the identification and phlyogenetic and sequence characterization of the 23 members of the ZIP (ZRT, IRT like protein) family of metal transporters and three transcription factors of the bZIP family in Phaseolus vulgaris L. Expression patterns of seven of these genes were characterized in two bean genotypes (G19833 and DOR364) under two Zn treatments. Tissue analyzed included roots and leaves at vegetative and flowering stages, and pods at 20 days after flowering. Four of the genes, PvZIP12, PvZIP13, PvZIP16, and Pv bZIP1, showed differential expression based on tissue, Zn treatment, and/or genotype. PvZIP12 and PvZIP13 were both more highly expressed in G19833 than DOR364. PvZIP12 was most highly expressed in vegetative leaves under the Zn (?) treatment. PvZIP16 was highly expressed in leaf tissue, especially leaf tissue at flowering stage grown in the Zn (?) treatment. Pv bZIP1 was most highly expressed in leaf and pod tissue. The 23 PvZIP genes and three bZIP genes were mapped on the DOR364 × G19833 linkage map. PvZIP12, PvZIP13, and PvZIP18, Pv bZIP2, and Pv bZIP3 were located near QTLs for Zn accumulation in the seed. Based on the expression and mapping results, PvZIP12 is a good candidate gene for increasing seed Zn concentration and increase understanding of the role of ZIP genes in metal uptake, distribution, and accumulation of zinc in P. vulgaris. PMID:23908661

  7. VH gene family expression in mice with the xid defect

    PubMed Central

    1991-01-01

    Preferential use of particular VH gene families in the response to specific antigens has been demonstrated in several systems. The lack of responses to certain types of antigens, therefore, could be the result of deletion of or failure to express some VH genes. Because CBA/N mice, which carry the X-linked immunodeficiency (xid) gene defect, have been shown to be unresponsive to thymus-independent polysaccharide antigens, it was of interest to examine if this unresponsiveness could be accounted for by abnormal expression of particular VH gene families. Using in situ hybridization on B cell colonies, we determined the expression of nine VH gene families in CBA/CaHN females (genotypically normal), CBA/N males (xid) and females (xid), and (CBA/N x CBA/CaHN)F1 males (xid) and females (phenotypically normal). Our results indicate that VH gene family expression, including the S107 family, in CBA/N males and F1 males, is similar to that of CBA/CaHN and F1 females with predominant expression of J558, the largest gene family, in all individuals. Interestingly, CBA/N female mice, which carry two defective X chromosomes, as a group expressed significantly reduced levels of the J558 gene family, and as individuals showed variation in which family was predominantly expressed. We conclude that the unresponsiveness of mice with the xid defect to polysaccharide antigens can not attributed to a failure to express the nine VH gene families that we examined. Our findings do not support previous studies (Primi, D., and P.-A. Cazenave 1986. J. Exp. Med. 165:357), which found an absence of expression of the S107 family in xid mice. PMID:1711566

  8. Virus-mediated reprogramming of gene expression in plants

    Microsoft Academic Search

    John A Lindbo; Wayne P Fitzmaurice; Guy della-Cioppa

    2001-01-01

    Plant viruses have made many significant contributions to plant biology over the years: they have provided plant researchers with functional promoters, transient expression systems and, most recently, with critical insights into the phenomenon of posttranscriptional gene silencing. Plant virus expression vectors have the ability to either overexpress genes or suppress gene expression in plants. Whereas the ‘rules’ for gene expression

  9. Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage).

    PubMed

    Duan, Weike; Song, Xiaoming; Liu, Tongkun; Huang, Zhinan; Ren, Jun; Hou, Xilin; Li, Ying

    2015-02-01

    The MADS-box gene family is an ancient and well-studied transcription factor family that functions in almost every developmental process in plants. There are a number of reports about the MADS-box family in different plant species, but systematic analysis of the MADS-box transcription factor family in Brassica rapa (Chinese cabbage) is still lacking. In this study, 160 MADS-box transcription factors were identified from the entire Chinese cabbage genome and compared with the MADS-box factors from 21 other representative plant species. A detailed list of MADS proteins from these 22 species was sorted. Phylogenetic analysis of the BrMADS genes, together with their Arabidopsis and rice counterparts, showed that the BrMADS genes were categorised into type I (M?, M?, M?) and type II (MIKC(C), MIKC*) groups, and the MIKC(C) proteins were further divided into 13 subfamilies. The Chinese cabbage type II group has 95 members, which is twice as much as the Arabidopsis type II group, indicating that the Chinese cabbage type II genes have been retained more frequently than the type I genes. Finally, RNA-seq transcriptome data and quantitative real-time PCR analysis revealed that BrMADS genes are expressed in a tissue-specific manner similar to Arabidopsis. Interestingly, a number of BrMIKC genes showed responses to different abiotic stress treatments, suggesting a function for some of the genes in these processes as well. Taken together, the characterization of the B. rapa MADS-box family presented here, will certainly help in the selection of appropriate candidate genes and further facilitate functional studies in Chinese cabbage. PMID:25216934

  10. Differential expression of potato U1A spliceosomal protein genes: a rapid method for expression profiling of multigene families

    Microsoft Academic Search

    Adel F. M. Ibrahim; Jenny A. Watters; John W. S. Brown

    2001-01-01

    The spliceosomal protein, U1A, is a component of the U1snRNP essential to pre-mRNA splicing. From the ubiquitous nature of the splicing machinery, expression of U1A genes is expected to be constitutive. However, many plant genes are organised in multigene families that exhibit variation in expression profiles. Without detailed knowledge of the size of the U1A gene family or their degree

  11. Rhox Homeobox Gene Cluster: Recent Duplication of Three Family Members

    E-print Network

    Wilkinson, Miles F.

    stage when new members of a gene cluster first appear. In this study we report that the mouseLETTER Rhox Homeobox Gene Cluster: Recent Duplication of Three Family Members James A. MacLean II,1 2006 Summary: We recently reported the discovery of a homeo- box gene cluster on the mouse X chromosome

  12. Potential phylogenetic utility of WRKY gene family members

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single and low copy nuclear genes represent a source of multiple, unlinked and independently-evolving loci, the ideal data set for molecular phylogenetic inference due to their high rate of synonymous substitution compared to chloroplast or mitochondrial genes. The WRKY gene family of transcription ...

  13. Evolution of the Class IV HD-Zip Gene Family in Streptophytes

    PubMed Central

    Zalewski, Christopher S.; Floyd, Sandra K.; Furumizu, Chihiro; Sakakibara, Keiko; Stevenson, Dennis W.; Bowman, John L.

    2013-01-01

    Class IV homeodomain leucine zipper (C4HDZ) genes are plant-specific transcription factors that, based on phenotypes in Arabidopsis thaliana, play an important role in epidermal development. In this study, we sampled all major extant lineages and their closest algal relatives for C4HDZ homologs and phylogenetic analyses result in a gene tree that mirrors land plant evolution with evidence for gene duplications in many lineages, but minimal evidence for gene losses. Our analysis suggests an ancestral C4HDZ gene originated in an algal ancestor of land plants and a single ancestral gene was present in the last common ancestor of land plants. Independent gene duplications are evident within several lineages including mosses, lycophytes, euphyllophytes, seed plants, and, most notably, angiosperms. In recently evolved angiosperm paralogs, we find evidence of pseudogenization via mutations in both coding and regulatory sequences. The increasing complexity of the C4HDZ gene family through the diversification of land plants correlates to increasing complexity in epidermal characters. PMID:23894141

  14. The SLC26 Gene Family of Anion Transporters and Channels

    PubMed Central

    Alper, Seth L.; Sharma, Alok K.

    2012-01-01

    The phylogenetically ancient SLC26 gene family encodes multifunctional anion exchangers and anion channels transporting a broad range of substrates, including Cl?, HCO3?, sulfate, oxalate, I?, and formate. SLC26 polypeptides are characterized by N-terminal cytoplasmic domains, 10–14 hydrophobic transmembrane spans, and C-terminal cytoplasmic STAS domains, and appear to be homo-oligomeric. SLC26-related SulP proteins of marine bacteria likely transport HCO3? as part of oceanic carbon fixation. SulP genes present in antibiotic operons may provide sulfate for antibiotic biosynthetic pathways. SLC26-related Sultr proteins transport sulfate in unicellular eukaryotes and in plants. Mutations in three human SLC26 genes are associated with congenital or early onset Mendelian diseases: chondrodysplasias for SLC26A2, chloride diarrhea for SLC26A3, and deafness with enlargement of the vestibular aqueduct for SLC26A4. Additional disease phenotypes evident only in mouse knockout models include oxalate urolithiasis for Slc26a6 and Slc26a1, non-syndromic deafness for Slc26a5, gastric hypochlorhydria for Slc26a7 and Slc26a9, distal renal tubular acidosis for Slc26a7, and male infertility for Slc26a8. STAS domains are required for cell surface expression of SLC26 proteins, and contribute to regulation of the cystic fibrosis transmembrane regulator in complex, cell- and tissue-specific ways. The protein interactomes of SLC26 polypeptides are under active vestigation. PMID:23506885

  15. Gene and protein structure of the mate recognition protein gene family in Brachionus manjavacas (Rotifera)

    Microsoft Academic Search

    Kristin E. Gribble; Terry Snell; David B. Mark Welch

    2011-01-01

    The mate recognition protein (MRP) gene is a member of a family of extracellular matrix protein genes, called MRP Motif Repeat\\u000a (MMR) genes, with no known homologs. Two sets of MMR genes, designated MMR-A and MMR-B, were found in Brachionus manjavacas. MMR-B has previously been shown to encode the MRP in the Brachionus plicatilis species complex. MMR family genes share

  16. The Expansion of the PRAME Gene Family in Eutheria

    PubMed Central

    Chang, Ti-Cheng; Yang, Yang; Yasue, Hiroshi; Bharti, Arvind K.; Retzel, Ernest F.; Liu, Wan-Sheng

    2011-01-01

    The PRAME gene family belongs to the group of cancer/testis genes whose expression is restricted primarily to the testis and a variety of cancers. The expansion of this gene family as a result of gene duplication has been observed in primates and rodents. We analyzed the PRAME gene family in Eutheria and discovered a novel Y-linked PRAME gene family in bovine, PRAMEY, which underwent amplification after a lineage-specific, autosome-to-Y transposition. Phylogenetic analyses revealed two major evolutionary clades. Clade I containing the amplified PRAMEYs and the unamplified autosomal homologs in cattle and other eutherians is under stronger functional constraints; whereas, Clade II containing the amplified autosomal PRAMEs is under positive selection. Deep-sequencing analysis indicated that eight of the identified 16 PRAMEY loci are active transcriptionally. Compared to the bovine autosomal PRAME that is expressed predominantly in testis, the PRAMEY gene family is expressed exclusively in testis and is up-regulated during testicular maturation. Furthermore, the sense RNA of PRAMEY is expressed specifically whereas the antisense RNA is expressed predominantly in spermatids. This study revealed that the expansion of the PRAME family occurred in both autosomes and sex chromosomes in a lineage-dependent manner. Differential selection forces have shaped the evolution and function of the PRAME family. The positive selection observed on the autosomal PRAMEs (Clade II) may result in their functional diversification in immunity and reproduction. Conversely, selective constraints have operated on the expanded PRAMEYs to preserve their essential function in spermatogenesis. PMID:21347312

  17. Histone demethylases and control of gene expression in plants.

    PubMed

    Prakash, S; Singh, R; Lodhi, N

    2014-01-01

    Covalent histone modifications, chromatin remodeling and incorporation of histone variants regulate the dynamics of chromatin structure. Among covalent histone modifications, histone methylation mediates by histone methylases that influence the gene expression in heterochromatin silencing, genomic imprinting and transcription. In contrast to methylases, histone demethylases remove the methyl groups from lysine or arginine residues of histones and have enormous impact on gene expression via modified chromatin structures. Two types of histone lysie demethylases have been identified, including lysine specific demethylases 1 (LSD1) and Jmj (Jumonji) domain containing family proteins. The human demethyliminase (PADI4) converts monomethyl arginine residue to citrulline by the arginine demethylimination. In this review we summarize recent advances to understand the mechanism of demethylases in regulation of plant gene expression. In addition we are highlighting the function of four human like LSD1 (LDL) and jmj domain containing genes of Arabidopsis that regulate the defense related, flowering controlling and brassinosteroid response genes. PMID:25535719

  18. Gene expression from plants grown on the International Space Station

    NASA Astrophysics Data System (ADS)

    Stimpson, Alexander; Pereira, Rhea; Kiss, John Z.; Correll, Melanie

    Three experiments were performed on the International Space Station (ISS) in 2006 as part of the TROPI experiments. These experiments were performed to study graviTROPIsm and photoTROPIsm responses of Arabidopsis in microgravity (µg). Seedlings were grown with a variety of light and gravitational treatments for approximately five days. The frozen samples were returned to Earth during three space shuttle missions in 2007 and stored at -80° C. Due to the limited amount of plant biomass returned, new protocols were developed to minimize the amount of material needed for RNA extraction as a preparation for microarray analysis. Using these new protocols, RNA was extracted from several sets of seedlings grown in red light followed by blue light with one sample from 1.0g treatment and the other at µg. Using a 2-fold change criterion, microarray (Affymetrix, GeneChip) results showed that 613 genes were upregulated in the µg sample while 757 genes were downregulated. Upregulated genes in response to µg included transcription factors from the WRKY (15 genes), MYB (3) and ZF (8) families as well as those that are involved in auxin responses (10). Downregulated genes also included transcription factors such as MYB (5) and Zinc finger (10) but interestingly only two WRKY family genes were down-regulated during the µg treatment. Studies are underway to compare these results with other samples to identify the genes involved in the gravity and light signal transduction pathways (this project is Supported By: NASA NCC2-1200).

  19. Genome-wide analysis and identification of KT/HAK/KUP potassium transporter gene family in peach (Prunus persica).

    PubMed

    Song, Z Z; Ma, R J; Yu, M L

    2015-01-01

    The KT/HAK/KUP family members encoding high-affinity potassium (K(+)) transporters mediate K(+) transport across the plasma membranes of plant cells to maintain plant normal growth and metabolic activities. In this paper, we identified 16 potassium transporter genes in the peach (Prunus persica) using the Hidden Markov model scanning strategy and searching the peach genome database. Utilizing the Arabidopsis KT/HAK/KUP family as a reference, phylogenetic analysis indicates that the KT/HAK/KUP family in the peach can be classified into 3 groups. Genomic localization indicated that 16 KT/HAK/KUP family genes were well distributed on 7 scaffolds. Gene structure analysis showed that the KT/HAK/KUP family genes have 6-9 introns. In addition, all of the KT/HAK/KUP family members were hydrophobic proteins; they exhibited similar secondary structure patterns and homologous tertiary structures. Putative cis-elements involved in abiotic stress adaption, Ca(2+) response, light and circadian rhythm regulation, and seed development were observed in the promoters of the KT/HAK/KUP family genes. Subcellular localization prediction indicated that the KT/HAK/KUP members were mainly located in the plasma membrane. Expression levels of the KT/HAK/ KUP family genes were much higher in the fruit and flower than those in the other 7 tissues examined, indicating that the KT/HAK/KUP family genes may have important roles in K(+) uptake and transport, which mainly contribute to flower formation and fruit development in the peach. PMID:25730015

  20. Phylogenetics and evolution of Trx SET genes in fully sequenced land plants.

    PubMed

    Zhu, Xinyu; Chen, Caoyi; Wang, Baohua

    2012-04-01

    Plant Trx SET proteins are involved in H3K4 methylation and play a key role in plant floral development. Genes encoding Trx SET proteins constitute a multigene family in which the copy number varies among plant species and functional divergence appears to have occurred repeatedly. To investigate the evolutionary history of the Trx SET gene family, we made a comprehensive evolutionary analysis on this gene family from 13 major representatives of green plants. A novel clustering (here named as cpTrx clade), which included the III-1, III-2, and III-4 orthologous groups, previously resolved was identified. Our analysis showed that plant Trx proteins possessed a variety of domain organizations and gene structures among paralogs. Additional domains such as PHD, PWWP, and FYR were early integrated into primordial SET-PostSET domain organization of cpTrx clade. We suggested that the PostSET domain was lost in some members of III-4 orthologous group during the evolution of land plants. At least four classes of gene structures had been formed at the early evolutionary stage of land plants. Three intronless orphan Trx SET genes from the Physcomitrella patens (moss) were identified, and supposedly, their parental genes have been eliminated from the genome. The structural differences among evolutionary groups of plant Trx SET genes with different functions were described, contributing to the design of further experimental studies. PMID:22417073

  1. PLEXdb: Gene expression resources for plants and plant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PLEXdb (Plant Expression Database), in partnership with community databases, supports comparisons of gene expression across multiple plant and pathogen species, promoting individuals and/or consortia to upload genome-scale data sets to contrast them to previously archived data. These analyses facili...

  2. A comparative genome analysis of PME and PMEI families reveals the evolution of pectin metabolism in plant cell walls.

    PubMed

    Wang, Maojun; Yuan, Daojun; Gao, Wenhui; Li, Yang; Tan, Jiafu; Zhang, Xianlong

    2013-01-01

    Pectins are fundamental polysaccharides in the plant primary cell wall. Pectins are synthesized and secreted to cell walls as highly methyl-esterified polymers and then demethyl-esterified by pectin methylesterases (PMEs), which are spatially regulated by pectin methylesterase inhibitors (PMEIs). Although PME and PMEI genes are pivotal in plant cell wall formation, few studies have focused on the evolutionary patterns of the PME and PMEI gene families. In this study, the gene origin, evolution, and expression diversity of these two families were systematically analyzed using 11 representative species, including algae, bryophytes, lycophytes and flowering land plants. The results show that 1) for the two subfamilies (PME and proPME) of PME, the origin of the PME subfamily is consistent with the appearance of pectins in early charophyte cell walls, 2) Whole genome duplication (WGD) and tandem duplication contribute to the expansion of proPME and PMEI families in land plants, 3) Evidence of selection pressure shows that the proPME and PMEI families have rapidly evolved, particularly the PMEI family in vascular plants, and 4) Comparative expression profile analysis of the two families indicates that the eudicot Arabidopsis and monocot rice have different expression patterns. In addition, the gene structure and sequence analyses show that the origin of the PMEI domain may be derived from the neofunctionalization of the pro domain after WGD. This study will advance the evolutionary understanding of the PME and PMEI families and plant cell wall development. PMID:23951288

  3. A Comparative Genome Analysis of PME and PMEI Families Reveals the Evolution of Pectin Metabolism in Plant Cell Walls

    PubMed Central

    Wang, Maojun; Yuan, Daojun; Gao, Wenhui; Li, Yang; Tan, Jiafu; Zhang, Xianlong

    2013-01-01

    Pectins are fundamental polysaccharides in the plant primary cell wall. Pectins are synthesized and secreted to cell walls as highly methyl-esterified polymers and then demethyl-esterified by pectin methylesterases (PMEs), which are spatially regulated by pectin methylesterase inhibitors (PMEIs). Although PME and PMEI genes are pivotal in plant cell wall formation, few studies have focused on the evolutionary patterns of the PME and PMEI gene families. In this study, the gene origin, evolution, and expression diversity of these two families were systematically analyzed using 11 representative species, including algae, bryophytes, lycophytes and flowering land plants. The results show that 1) for the two subfamilies (PME and proPME) of PME, the origin of the PME subfamily is consistent with the appearance of pectins in early charophyte cell walls, 2) Whole genome duplication (WGD) and tandem duplication contribute to the expansion of proPME and PMEI families in land plants, 3) Evidence of selection pressure shows that the proPME and PMEI families have rapidly evolved, particularly the PMEI family in vascular plants, and 4) Comparative expression profile analysis of the two families indicates that the eudicot Arabidopsis and monocot rice have different expression patterns. In addition, the gene structure and sequence analyses show that the origin of the PMEI domain may be derived from the neofunctionalization of the pro domain after WGD. This study will advance the evolutionary understanding of the PME and PMEI families and plant cell wall development. PMID:23951288

  4. Independent gene evolution in the potato actin gene family demonstrated by phylogenetic procedures for resolving gene conversions and the phylogeny of angiosperm actin genes.

    PubMed

    Drouin, G; Dover, G A

    1990-08-01

    Nine different actin DNA sequences were isolated from the common potato, Solanum tuberosum, and the nucleotide sequence of five actin loci and of two allelic variants are presented. Unlike the wide variation in intron position among animal actin genes, the potato actin genes have three introns situated in the same positions as reported for all other angiosperm actin genes. Using a novel combination of analytical procedures (G-test and compatibility analysis), we could not find evidence of frequent large or small nonreciprocal exchanges of genetic material between the sequenced loci, although there were a few candidates. Resolution of such gene conversion events and the quantification of independence of gene evolution in multigene families is critical to the inference of phylogenetic relationships. Comparison with actin genes in other angiosperm species suggests that the actin multigene family can be divided into a number of subfamilies, evolved by descent rather than gene conversion, which are of possible functional origin, with one major subfamily diversification occurring before the divergence of monocots and dicots. The silent rate of nucleotide substitution was estimated to be similar to that suggested for a number of other plant nuclear genes, whereas the replacement rate was extremely slow, suggestive of selective constraints. PMID:2120451

  5. Molecular characterization of edestin gene family in Cannabis sativa L.

    PubMed

    Docimo, Teresa; Caruso, Immacolata; Ponzoni, Elena; Mattana, Monica; Galasso, Incoronata

    2014-11-01

    Globulins are the predominant class of seed storage proteins in a wide variety of plants. In many plant species globulins are present in several isoforms encoded by gene families. The major seed storage protein of Cannabis sativa L. is the globulin edestin, widely known for its nutritional potential. In this work, we report the isolation of seven cDNAs encoding for edestin from the C. sativa variety Carmagnola. Southern blot hybridization is in agreement with the number of identified edestin genes. All seven sequences showed the characteristic globulin features, but they result to be divergent members/forms of two edestin types. According to their sequence similarity four forms named CsEde1A, CsEde1B, CsEde1C, CsEde1D have been assigned to the edestin type 1 and the three forms CsEde2A, CsEde2B, CsEde2C to the edestin type 2. Analysis of the coding sequences revealed a high percentage of similarity (98-99%) among the different forms belonging to the same type, which decreased significantly to approximately 64% between the forms belonging to different types. Quantitative RT-PCR analysis revealed that both edestin types are expressed in developing hemp seeds and the amount of CsEde1 was 4.44 ± 0.10 higher than CsEde2. Both edestin types exhibited a high percentage of arginine (11-12%), but CsEde2 resulted particularly rich in methionine residues (2.36%) respect to CsEde1 (0.82%). The amino acid composition determined in CsEde1 and CsEde2 types suggests that these seed proteins can be used to improve the nutritional quality of plant food-stuffs. PMID:25280223

  6. Interferon induced IFIT family genes in host antiviral defense.

    PubMed

    Zhou, Xiang; Michal, Jennifer J; Zhang, Lifan; Ding, Bo; Lunney, Joan K; Liu, Bang; Jiang, Zhihua

    2013-01-01

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IFN-stimulated genes. This family contains a cluster of duplicated loci. Most mammals have IFIT1, IFIT2, IFIT3 and IFIT5; however, bird, marsupial, frog and fish have only IFIT5. Regardless of species, IFIT5 is always adjacent to SLC16A12. IFIT family genes are predominantly induced by type I and type III interferons and are regulated by the pattern recognition and the JAK-STAT signaling pathway. IFIT family proteins are involved in many processes in response to viral infection. However, some viruses can escape the antiviral functions of the IFIT family by suppressing IFIT family genes expression or methylation of 5' cap of viral molecules. In addition, the variants of IFIT family genes could significantly influence the outcome of hepatitis C virus (HCV) therapy. We believe that our current review provides a comprehensive picture for the community to understand the structure and function of IFIT family genes in response to pathogens in human, as well as in animals. PMID:23459883

  7. Duplication, divergence and persistence in the Phytochrome photoreceptor gene family of cottons (Gossypium spp.)

    PubMed Central

    2010-01-01

    Background Phytochromes are a family of red/far-red photoreceptors that regulate a number of important developmental traits in cotton (Gossypium spp.), including plant architecture, fiber development, and photoperiodic flowering. Little is known about the composition and evolution of the phytochrome gene family in diploid (G. herbaceum, G. raimondii) or allotetraploid (G. hirsutum, G. barbadense) cotton species. The objective of this study was to obtain a preliminary inventory and molecular-evolutionary characterization of the phytochrome gene family in cotton. Results We used comparative sequence resources to design low-degeneracy PCR primers that amplify genomic sequence tags (GSTs) for members of the PHYA, PHYB/D, PHYC and PHYE gene sub-families from A- and D-genome diploid and AD-genome allotetraploid Gossypium species. We identified two paralogous PHYA genes (designated PHYA1 and PHYA2) in diploid cottons, the result of a Malvaceae-specific PHYA gene duplication that occurred approximately 14 million years ago (MYA), before the divergence of the A- and D-genome ancestors. We identified a single gene copy of PHYB, PHYC, and PHYE in diploid cottons. The allotetraploid genomes have largely retained the complete gene complements inherited from both of the diploid genome ancestors, with at least four PHYA genes and two genes encoding PHYB, PHYC and PHYE in the AD-genomes. We did not identify a PHYD gene in any cotton genomes examined. Conclusions Detailed sequence analysis suggests that phytochrome genes retained after duplication by segmental duplication and allopolyploidy appear to be evolving independently under a birth-and-death-process with strong purifying selection. Our study provides a preliminary phytochrome gene inventory that is necessary and sufficient for further characterization of the biological functions of each of the cotton phytochrome genes, and for the development of 'candidate gene' markers that are potentially useful for cotton improvement via modern marker-assisted selection strategies. PMID:20565911

  8. Evolution of fruit development genes in flowering plants

    PubMed Central

    Pabón-Mora, Natalia; Wong, Gane Ka-Shu; Ambrose, Barbara A.

    2014-01-01

    The genetic mechanisms regulating dry fruit development and opercular dehiscence have been identified in Arabidopsis thaliana. In the bicarpellate silique, valve elongation and differentiation is controlled by FRUITFULL (FUL) that antagonizes SHATTERPROOF1-2 (SHP1/SHP2) and INDEHISCENT (IND) at the dehiscence zone where they control normal lignification. SHP1/2 are also repressed by REPLUMLESS (RPL), responsible for replum formation. Similarly, FUL indirectly controls two other factors ALCATRAZ (ALC) and SPATULA (SPT) that function in the proper formation of the separation layer. FUL and SHP1/2 belong to the MADS-box family, IND and ALC belong to the bHLH family and RPL belongs to the homeodomain family, all of which are large transcription factor families. These families have undergone numerous duplications and losses in plants, likely accompanied by functional changes. Functional analyses of homologous genes suggest that this network is fairly conserved in Brassicaceae and less conserved in other core eudicots. Only the MADS box genes have been functionally characterized in basal eudicots and suggest partial conservation of the functions recorded for Brassicaceae. Here we do a comprehensive search of SHP, IND, ALC, SPT, and RPL homologs across core-eudicots, basal eudicots, monocots and basal angiosperms. Based on gene-tree analyses we hypothesize what parts of the network for fruit development in Brassicaceae, in particular regarding direct and indirect targets of FUL, might be conserved across angiosperms. PMID:25018763

  9. Genome-wide analysis of the GRAS gene family in Prunus mume.

    PubMed

    Lu, Jiuxing; Wang, Tao; Xu, Zongda; Sun, Lidan; Zhang, Qixiang

    2015-02-01

    Prunus mume is an ornamental flower and fruit tree in Rosaceae. We investigated the GRAS gene family to improve the breeding and cultivation of P. mume and other Rosaceae fruit trees. The GRAS gene family encodes transcriptional regulators that have diverse functions in plant growth and development, such as gibberellin and phytochrome A signal transduction, root radial patterning, and axillary meristem formation and gametogenesis in the P. mume genome. Despite the important roles of these genes in plant growth regulation, no findings on the GRAS genes of P. mume have been reported. In this study, we discerned phylogenetic relationships of P. mume GRAS genes, and their locations, structures in the genome and expression levels of different tissues. Out of 46 identified GRAS genes, 45 were located on the 8 P. mume chromosomes. Phylogenetic results showed that these genes could be classified into 11 groups. We found that Group X was P. mume-specific, and three genes of Group IX clustered with the rice-specific gene Os4. We speculated that these genes existed before the divergence of dicotyledons and monocotyledons and were lost in Arabidopsis. Tissue expression analysis indicated that 13 genes showed high expression levels in roots, stems, leaves, flowers and fruits, and were related to plant growth and development. Functional analysis of 24 GRAS genes and an orthologous relationship analysis indicated that many functioned during plant growth and flower and fruit development. Our bioinformatics analysis provides valuable information to improve the economic, agronomic and ecological benefits of P. mume and other Rosaceae fruit trees. PMID:25245166

  10. [Genome-wide identification and bioinformatic analysis of PPR gene family in tomato].

    PubMed

    Ding, Anming; Li, Ling; Qu, Xu; Sun, Tingting; Chen, Yaqiong; Zong, Peng; Li, Zunqiang; Gong, Daping; Sun, Yuhe

    2014-01-01

    Pentatricopeptide repeats (PPRs) genes constitute one of the largest gene families in plants, which play a broad and essential role in plant growth and development. In this study, the protein sequences annotated by the tomato (S. lycopersicum L.) genome project were screened with the Pfam PPR sequences. A total of 471 putative PPR-encoding genes were identified. Based on the motifs defined in A. thaliana L., protein structure and conserved sequences for each tomato motif were analyzed. We also analyzed phylogenetic relationship, subcellular localization, expression and GO analysis of the identified gene sequences. Our results demonstrate that tomato PPR gene family contains two subfamilies, P and PLS, each accounting for half of the family. PLS subfamily can be divided into four subclasses i.e., PLS, E, E+ and DYW. Each subclass of sequences forms a clade in the phylogenetic tree. The PPR motifs were found highly conserved among plants. The tomato PPR genes were distributed over 12 chromosomes and most of them lack introns. The majority of PPR proteins harbor mitochondrial or chloroplast localization sequences, whereas GO analysis showed that most PPR proteins participate in RNA-related biological processes. PMID:24846921

  11. Positive selection drives neofunctionalization of the UbiA prenyltransferase gene family.

    PubMed

    Wang, Jiao; Chu, Shanshan; Zhu, Ying; Cheng, Hao; Yu, Deyue

    2015-03-01

    Gene duplication provides the key materials for new genes and novel functions. However, the mechanism underlying functional innovation remains unknown. In this study, we revealed the evolutionary pattern of the prenyltransferases of the UbiA gene family in 15 higher plants. Prenyltransferases of the UbiA gene family are involved in many important biological processes of both primary and secondary metabolism. Based on the phylogenetic relationships of the UbiA genes, seven subfamilies are classified. Confirming this classification, genes within each subfamily are characterized by similar exon numbers, exon lengths and patterns of motif combinations. Similar numbers of UbiA genes are found in different species within each subfamily except for Subfamily I, in which a Phaseoleae-specific expansion is detected in clade I-A. Homologous genes in clade I-A evolve rapidly, exchange sequences frequently and experience positive selection. Genes in clade I-A function as flavonoid prenyltransferase synthesis secondary compounds, while other genes from Subfamily I encode homogentisate phytyltransferase, which plays a role in primary metabolism. Thus, our results suggest that the secondary metabolism genes acquire new functions from those of primary metabolism through gene duplication and neofunctionalization driven by positive selection. PMID:25605655

  12. BOTANY: A Plant Receptor with a Big Family

    NSDL National Science Digital Library

    Erwin Grill (Technical University Munich; Department of Plant Science)

    2007-03-23

    Access to the article is free, however registration and sign-in are required. A hormone that controls plant development and survival acts through a member of a receptor family whose other members are pervasive in animal cells.

  13. Differential evolution of members of the rhomboid gene family with conservative and divergent patterns.

    PubMed

    Li, Qi; Zhang, Ning; Zhang, Liangsheng; Ma, Hong

    2015-04-01

    Rhomboid proteins are intramembrane serine proteases that are involved in a plethora of biological functions, but the evolutionary history of the rhomboid gene family is not clear. We performed a comprehensive molecular evolutionary analysis of the rhomboid gene family and also investigated the organization and sequence features of plant rhomboids in different subfamilies. Our results showed that eukaryotic rhomboids could be divided into five subfamilies (RhoA-RhoD and PARL). Most orthology groups appeared to be conserved only as single or low-copy genes in all lineages in RhoB-RhoD and PARL, whereas RhoA genes underwent several duplication events, resulting in multiple gene copies. These duplication events were due to whole genome duplications in plants and animals and the duplicates might have experienced functional divergence. We also identified a novel group of plant rhomboid (RhoB1) that might have lost their enzymatic activity; their existence suggests that they might have evolved new mechanisms. Plant and animal rhomboids have similar evolutionary patterns. In addition, there are mutations affecting key active sites in RBL8, RBL9 and one of the Brassicaceae PARL duplicates. This study delineates a possible evolutionary scheme for intramembrane proteins and illustrates distinct fates and a mechanism of evolution of gene duplicates. PMID:25417867

  14. Cloning and characterisation of JAZ gene family in Hevea brasiliensis.

    PubMed

    Hong, H; Xiao, H; Yuan, H; Zhai, J; Huang, X

    2015-05-01

    Mechanical wounding or treatment with exogenous jasmonates (JA) induces differentiation of the laticifer in Hevea brasiliensis. JA is a key signal for latex biosynthesis and wounding response in the rubber tree. Identification of JAZ (jasmonate ZIM-domain) family of proteins that repress JA responses has facilitated rapid progress in understanding how this lipid-derived hormone controls gene expression and related physiological processes in plants. In this work, the full-length cDNAs of six JAZ genes were cloned from H. brasiliensis (termed HbJAZ). These HbJAZ have different lengths and sequence diversity, but all of them contain Jas and ZIM domains, and two of them contain an ERF-associated amphiphilic repression (EAR) motif in the N-terminal. Real-time RT-PCR analyses revealed that HbJAZ have different expression patterns and tissue specificity. Four HbJAZ were up-regulated, one was down-regulated, while two were less effected by rubber tapping treatment, suggesting that they might play distinct roles in the wounding response. A yeast two-hybrid assay revealed that HbJAZ proteins interact with each other to form homologous or heterogeneous dimer complexes, indicating that the HbJAZ proteins may expand their function through diverse JAZ-JAZ interactions. This work lays a foundation for identification of the JA signalling pathway and molecular mechanisms of latex biosynthesis in rubber trees. PMID:25399518

  15. GEO: the Gene Expression Omnibus A family of databases for gene expression related data

    E-print Network

    Levin, Judith G.

    GEO: the Gene Expression Omnibus A family of databases for gene expression related data http Contact: info@ncbi.nlm.nih.gov Scope and access The Gene Expression Omnibus (GEO) is a public repository databases, data and record types While GEO was originally established to host gene expression data, it has

  16. Genome-Wide Identification, Evolution and Expression Analysis of mTERF Gene Family in Maize

    PubMed Central

    Zhao, Yanxin; Cai, Manjun; Zhang, Xiaobo; Li, Yurong; Zhang, Jianhua; Zhao, Hailiang; Kong, Fei; Zheng, Yonglian; Qiu, Fazhan

    2014-01-01

    Plant mitochondrial transcription termination factor (mTERF) genes comprise a large family with important roles in regulating organelle gene expression. In this study, a comprehensive database search yielded 31 potential mTERF genes in maize (Zea mays L.) and most of them were targeted to mitochondria or chloroplasts. Maize mTERF were divided into nine main groups based on phylogenetic analysis, and group IX represented the mitochondria and species-specific clade that diverged from other groups. Tandem and segmental duplication both contributed to the expansion of the mTERF gene family in the maize genome. Comprehensive expression analysis of these genes, using microarray data and RNA-seq data, revealed that these genes exhibit a variety of expression patterns. Environmental stimulus experiments revealed differential up or down-regulation expression of maize mTERF genes in seedlings exposed to light/dark, salts and plant hormones, respectively, suggesting various important roles of maize mTERF genes in light acclimation and stress-related responses. These results will be useful for elucidating the roles of mTERF genes in the growth, development and stress response of maize. PMID:24718683

  17. Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins

    PubMed Central

    Holmes, Roger S.; Wright, Matthew W.; Laulederkind, Stanley J. F.; Cox, Laura A.; Hosokawa, Masakiyo; Imai, Teruko; Ishibashi, Shun; Lehner, Richard; Miyazaki, Masao; Perkins, Everett J.; Potter, Phillip M.; Redinbo, Matthew R.; Robert, Jacques; Satoh, Tetsuo; Yamashita, Tetsuro; Yan, Bingfan; Yokoi, Tsuyoshi; Zechner, Rudolf; Maltais, Lois J.

    2011-01-01

    Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and “CES” (human) and “Ces” (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding “P” and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species. PMID:20931200

  18. Heterelogous Expression of Plant Genes

    PubMed Central

    Yesilirmak, Filiz; Sayers, Zehra

    2009-01-01

    Heterologous expression allows the production of plant proteins in an organism which is simpler than the natural source. This technology is widely used for large-scale purification of plant proteins from microorganisms for biochemical and biophysical analyses. Additionally expression in well-defined model organisms provides insights into the functions of proteins in complex pathways. The present review gives an overview of recombinant plant protein production methods using bacteria, yeast, insect cells, and Xenopus laevis oocytes and discusses the advantages of each system for functional studies and protein characterization. PMID:19672459

  19. SOME USEFUL PLANTS OF THE BOTANICAL FAMILY LAURACEAE

    Microsoft Academic Search

    C. A. Schroeder

    Cinnamon spice for cooking, bay leaves for flavoring, camphor for moth repellant and medicinal purposes, myrtlewood and stinkwood furniture, sassafras tea and avocado fruits to eat are all products from the botanical family Lauraceae to which the avocado belongs. The family Lauraceae, which derives its name from the prominent member, the Grecian laurel, Laurus nobilis, is characterized by plants which

  20. Evolution and significance of the Lon gene family in Arabidopsis organelle biogenesis and energy metabolism

    PubMed Central

    Rigas, Stamatis; Daras, Gerasimos; Tsitsekian, Dikran; Alatzas, Anastasios; Hatzopoulos, Polydefkis

    2014-01-01

    Lon is the first identified ATP-dependent protease highly conserved across all kingdoms. Model plant species Arabidopsis thaliana has a small Lon gene family of four members. Although these genes share common structural features, they have distinct properties in terms of gene expression profile, subcellular targeting and substrate recognition motifs. This supports the notion that their functions under different environmental conditions are not necessarily redundant. This article intends to unravel the biological role of Lon proteases in energy metabolism and plant growth through an evolutionary perspective. Given that plants are sessile organisms exposed to diverse environmental conditions and plant organelles are semi-autonomous, it is tempting to suggest that Lon genes in Arabidopsis are paralogs. Adaptive evolution through repetitive gene duplication events of a single archaic gene led to Lon genes with complementing sets of subfunctions providing to the organism rapid adaptability for canonical development under different environmental conditions. Lon1 function is adequately characterized being involved in mitochondrial biogenesis, modulating carbon metabolism, oxidative phosphorylation and energy supply, all prerequisites for seed germination and seedling establishment. Lon is not a stand-alone proteolytic machine in plant organelles. Lon in association with other nuclear-encoded ATP-dependent proteases builds up an elegant nevertheless, tight interconnected circuit. This circuitry channels properly and accurately, proteostasis and protein quality control among the distinct subcellular compartments namely mitochondria, chloroplasts, and peroxisomes. PMID:24782883

  1. Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa.

    PubMed

    Kayum, Md Abdul; Jung, Hee-Jeong; Park, Jong-In; Ahmed, Nasar Uddin; Saha, Gopal; Yang, Tae-Jin; Nou, Ill-Sup

    2015-02-01

    WRKY proteins constitute one of the largest transcription factor families in higher plants, and they are involved in multiple biological processes such as plant development, metabolism, and responses to biotic and abiotic stresses. Genes of this family have been well documented in response to many abiotic and biotic stresses in many plant species, but not yet against Pectobacterium carotovorum subsp. carotovorum and Fusarium oxysporum f.sp. conglutinans in any of the plants. Moreover, potentiality of a specific gene may vary depending on stress conditions and genotypes. To identify stress resistance-related potential WRKY genes of Brassica rapa, we analyzed their expressions against above-mentioned pathogens and cold, salt, and drought stresses in B. rapa. Stress resistance-related functions of all Brassica rapa WRKY (BrWRKY) genes were firstly analyzed through homology study with existing biotic and abiotic stress resistance-related WRKY genes of other plant species and found a high degree of homology. We then identified all BrWRKY genes in a Br135K microarray dataset, which was created by applying low-temperature stresses to two contrasting Chinese cabbage doubled haploid (DH) lines, Chiifu and Kenshin, and selected 41 BrWRKY genes with high and differential transcript abundance levels. These selected genes were further investigated under cold, salt, and drought stresses as well as after infection with P. carotovorum subsp. carotovorum and F. oxysporum f.sp. conglutinans in B. rapa. The selected genes showed an organ-specific expression, and 22 BrWRKY genes were differentially expressed in Chiifu compared to Kenshin under cold and drought stresses. Six BrWRKY genes were more responsive in Kenshin compared to Chiffu under salt stress. In addition, eight BrWRKY genes showed differential expression after P. carotovorum subsp. carotovorum infection and five genes after F. oxysporum f.sp. conglutinans infection in B. rapa. Thus, the differentially expressed BrWRKY genes might be potential resources for molecular breeding of Brassica crops against abiotic and biotic stresses and several genes, which showed differential expressions commonly in response to several stresses, might be useful for multiple stress resistance. These findings would also be helpful in resolving the complex regulatory mechanism of WRKY genes in stress resistance and for this further functional genomics study of these potential genes in different Brassica crops is essential. PMID:25149146

  2. Genome-Wide Analysis of the RNA Helicase Gene Family in Gossypium raimondii

    PubMed Central

    Chen, Jie; Zhang, Yujuan; Liu, Jubo; Xia, Minxuan; Wang, Wei; Shen, Fafu

    2014-01-01

    The RNA helicases, which help to unwind stable RNA duplexes, and have important roles in RNA metabolism, belong to a class of motor proteins that play important roles in plant development and responses to stress. Although this family of genes has been the subject of systematic investigation in Arabidopsis, rice, and tomato, it has not yet been characterized in cotton. In this study, we identified 161 putative RNA helicase genes in the genome of the diploid cotton species Gossypium raimondii. We classified these genes into three subfamilies, based on the presence of either a DEAD-box (51 genes), DEAH-box (52 genes), or DExD/H-box (58 genes) in their coding regions. Chromosome location analysis showed that the genes that encode RNA helicases are distributed across all 13 chromosomes of G. raimondii. Syntenic analysis revealed that 62 of the 161 G. raimondii helicase genes (38.5%) are within the identified syntenic blocks. Sixty-six (40.99%) helicase genes from G. raimondii have one or several putative orthologs in tomato. Additionally, GrDEADs have more conserved gene structures and more simple domains than GrDEAHs and GrDExD/Hs. Transcriptome sequencing data demonstrated that many of these helicases, especially GrDEADs, are highly expressed at the fiber initiation stage and in mature leaves. To our knowledge, this is the first report of a genome-wide analysis of the RNA helicase gene family in cotton. PMID:24642883

  3. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family

    Microsoft Academic Search

    Gregg Duester; Jaume Farrés; Michael R Felder; Roger S Holmes; Jan-Olov Höög; Xavier Parés; Bryce V Plapp; Shih-Jiun Yin; Hans Jörnvall

    1999-01-01

    The alcohol dehydrogenase (ADH) gene family encodes enzymes that metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. Studies on 19 vertebrate animals have identified ADH orthologs across several species, and this has now led to questions of how best to name ADH proteins and genes. Seven distinct classes of vertebrate ADH

  4. The insect SNMP gene family Richard G. Vogt a,*,1

    E-print Network

    Vogt, Richard G.

    The insect SNMP gene family Richard G. Vogt a,*,1 , Natalie E. Miller a , Rachel Litvack proteins observed to associate with chemosensory neurons in insects; in Drosophila melanogaster, SNMP1 has are one of three insect gene clades related to the human fatty acid transporter CD36. We previously

  5. Genome-wide analysis of the R2R3-MYB transcription factor gene family in sweet orange (Citrus sinensis).

    PubMed

    Liu, Chaoyang; Wang, Xia; Xu, Yuantao; Deng, Xiuxin; Xu, Qiang

    2014-10-01

    MYB transcription factor represents one of the largest gene families in plant genomes. Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide, and recently the genome has been sequenced. This provides an opportunity to investigate the organization and evolutionary characteristics of sweet orange MYB genes from whole genome view. In the present study, we identified 100 R2R3-MYB genes in the sweet orange genome. A comprehensive analysis of this gene family was performed, including the phylogeny, gene structure, chromosomal localization and expression pattern analyses. The 100 genes were divided into 29 subfamilies based on the sequence similarity and phylogeny, and the classification was also well supported by the highly conserved exon/intron structures and motif composition. The phylogenomic comparison of MYB gene family among sweet orange and related plant species, Arabidopsis, cacao and papaya suggested the existence of functional divergence during evolution. Expression profiling indicated that sweet orange R2R3-MYB genes exhibited distinct temporal and spatial expression patterns. Our analysis suggested that the sweet orange MYB genes may play important roles in different plant biological processes, some of which may be potentially involved in citrus fruit quality. These results will be useful for future functional analysis of the MYB gene family in sweet orange. PMID:25008995

  6. Genomic Characterization of the LEED..PEEDs, a Gene Family Unique to the Medicago Lineage

    PubMed Central

    Trujillo, Diana I.; Silverstein, Kevin A. T.; Young, Nevin D.

    2014-01-01

    The LEED..PEED (LP) gene family in Medicago truncatula (A17) is composed of 13 genes coding small putatively secreted peptides with one to two conserved domains of negatively charged residues. This family is not present in the genomes of Glycine max, Lotus japonicus, or the IRLC species Cicer arietinum. LP genes were also not detected in a Trifolium pratense draft genome or Pisum sativum nodule transcriptome, which were sequenced de novo in this study, suggesting that the LP gene family arose within the past 25 million years. M. truncatula accession HM056 has 13 LP genes with high similarity to those in A17, whereas M. truncatula ssp. tricycla (R108) and M. sativa have 11 and 10 LP gene copies, respectively. In M. truncatula A17, 12 LP genes are located on chromosome 7 within a 93-kb window, whereas one LP gene copy is located on chromosome 4. A phylogenetic analysis of the gene family is consistent with most gene duplications occurring prior to Medicago speciation events, mainly through local tandem duplications and one distant duplication across chromosomes. Synteny comparisons between R108 and A17 confirm that gene order is conserved between the two subspecies, although a further duplication occurred solely in A17. In M. truncatula A17, all 13 LPs are exclusively transcribed in nodules and absent from other plant tissues, including roots, leaves, flowers, seeds, seed shells, and pods. The recent expansion of LP genes in Medicago spp. and their timing and location of expression suggest a novel function in nodulation, possibly as an aftermath of the evolution of bacteroid terminal differentiation or potentially associated with rhizobial–host specificity. PMID:25155275

  7. Genomic characterization of the LEED..PEEDs, a gene family unique to the medicago lineage.

    PubMed

    Trujillo, Diana I; Silverstein, Kevin A T; Young, Nevin D

    2014-10-01

    The LEED..PEED (LP) gene family in Medicago truncatula (A17) is composed of 13 genes coding small putatively secreted peptides with one to two conserved domains of negatively charged residues. This family is not present in the genomes of Glycine max, Lotus japonicus, or the IRLC species Cicer arietinum. LP genes were also not detected in a Trifolium pratense draft genome or Pisum sativum nodule transcriptome, which were sequenced de novo in this study, suggesting that the LP gene family arose within the past 25 million years. M. truncatula accession HM056 has 13 LP genes with high similarity to those in A17, whereas M. truncatula ssp. tricycla (R108) and M. sativa have 11 and 10 LP gene copies, respectively. In M. truncatula A17, 12 LP genes are located on chromosome 7 within a 93-kb window, whereas one LP gene copy is located on chromosome 4. A phylogenetic analysis of the gene family is consistent with most gene duplications occurring prior to Medicago speciation events, mainly through local tandem duplications and one distant duplication across chromosomes. Synteny comparisons between R108 and A17 confirm that gene order is conserved between the two subspecies, although a further duplication occurred solely in A17. In M. truncatula A17, all 13 LPs are exclusively transcribed in nodules and absent from other plant tissues, including roots, leaves, flowers, seeds, seed shells, and pods. The recent expansion of LP genes in Medicago spp. and their timing and location of expression suggest a novel function in nodulation, possibly as an aftermath of the evolution of bacteroid terminal differentiation or potentially associated with rhizobial-host specificity. PMID:25155275

  8. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice

    Microsoft Academic Search

    Yujie Fang; Jun You; Kabin Xie; Weibo Xie; Lizhong Xiong

    2008-01-01

    NAM, ATAF, and CUC (NAC) transcription factors comprise a large plant-specific gene family and a few members of this family\\u000a have been characterized for their roles in plant growth, development, and stress tolerance. In this study, systematic sequence\\u000a analysis revealed 140 putative NAC or NAC-like genes (ONAC) in rice. Phylogenetic analysis suggested that NAC family can be divided into five

  9. A family of RRM-type RNA-binding proteins specific to plant mitochondria

    PubMed Central

    Vermel, Matthieu; Guermann, Benoit; Delage, Ludovic; Grienenberger, Jean-Michel; Maréchal-Drouard, Laurence; Gualberto, José M.

    2002-01-01

    Expression of higher plant mitochondrial (mt) genes is regulated at the transcriptional, posttranscriptional, and translational levels, but the vast majority of the mtDNA and RNA-binding proteins involved remain to be identified. Plant mt single-stranded nucleic acid-binding proteins were purified by affinity chromatography, and corresponding genes have been identified. A majority of these proteins belong to a family of RNA-binding proteins characterized by the presence of an N-terminal RNA-recognition motif (RRM) sequence. They diverge in their C-terminal sequences, suggesting that they can be involved in different plant mt regulation processes. Mitochondrial localization of the proteins was confirmed both in vitro and in vivo and by immunolocalization. Binding experiments showed that several proteins have a preference for poly(U)-rich sequences. This mt protein family contains the ubiquitous RRM motif and has no known mt counterpart in non-plant species. Phylogenetic and functional analysis suggest a common ancestor with RNA-binding glycine-rich proteins (GRP), a family of developmentally regulated proteins of unknown function. As with several plant, cyanobacteria, and animal proteins that have similar structures, the expression of one of the Arabidopsis thaliana mt RNA-binding protein genes is induced by low temperatures. PMID:11972043

  10. Gene – Environment Interplay, Family Relationships, and Child Adjustment

    PubMed Central

    Horwitz, Briana N.; Neiderhiser, Jenae M.

    2011-01-01

    This paper reviews behavioral genetic research from the past decade that has moved beyond simply studying the independent influences of genes and environments. The studies considered in this review have instead focused on understanding gene – environment interplay, including genotype – environment correlation ( rGE) and genotype × environment interaction (G × E). Studies have suggested that rGE is an important pathway through which family relationships are associated with child adjustment. Also important are direct causal influences of family relationships on child adjustment, independent of genetic confounds. Other studies have indicated that genetic and environmental influences on child adjustment are moderated by different levels of family relationships in G × E interactions. Genetically informed studies that have examined family relations have been critical to advancing our understanding of gene – environment interplay. PMID:22162877

  11. The multifunctional SNM1 gene family: not just nucleases

    PubMed Central

    Yan, Yiyi; Akhter, Shamima; Zhang, Xiaoshan; Legerski, Randy

    2010-01-01

    The archetypical member of the SNM1 gene family was discovered 30 years ago in the budding yeast Saccharomyces cerevisiae. This small but ubiquitous gene family is characterized by metallo-?-lactamase and ?-CASP domains, which together have been demonstrated to comprise a nuclease activity. Three mammalian members of this family, SNM1A, SNM1B/Apollo and Artemis, have been demonstrated to play surprisingly divergent roles in cellular metabolism. These pathways include variable (diversity) joining recombination, nonhomologous end-joining of double-strand breaks, DNA damage and mitotic cell cycle checkpoints, telomere maintenance and protein ubiquitination. Not all of these functions are consistent with a model in which these proteins act only as nucleases, and indicate that the SNM1 gene family encodes multifunctional products that can act in diverse biochemical pathways. In this article we discuss the various functions of SNM1A, SNM1B/Apollo and Artemis. PMID:20528238

  12. A novel plant cysteine-rich peptide family conferring cadmium tolerance to yeast and plants.

    PubMed

    Matsuda, Taiki; Kuramata, Masato; Takahashi, Yoshihiro; Kitagawa, Etsuko; Youssefian, Shohab; Kusano, Tomonobu

    2009-05-01

    We have identified a novel cDNA clone, termed DcCDT1, from Digitaria ciliaris, that confers cadmium (Cd)-tolerance to yeast (Saccharomyces cerevisiae). The gene encodes a predicted peptide of 55 amino acid residues of which 15 (27.3%) are cysteine residues. We found that monocotyledonous plants possess multiple DcCDT1 homologues, for example rice contains five DcCDT1 homologues (designated OsCDT1~5), whereas dicotyledonous plants, including Arabidopsis thaliana, Brassica rapa, poplar (Populus tremula x Populus alba) and Picea sitchensis, appear to possess only a single homologue. GFP fusion experiments demonstrate that DcCDT1 and OsCDT1 are targeted to both the plant cytoplasmic membranes and cell walls. Constitutive expression of DcCDT1 or OsCDT1 confers Cd-tolerance to transgenic A. thaliana plants by lowering the accumulation of Cd in the cells. The functions of the DcCDT1 family members are discussed in the light of these findings. PMID:19816106

  13. The aquaporin gene family of cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquaporin proteins are found in most living organisms and are quite diverse in plants where they function as transport systems for water and other small molecules. Plant aquaporins have been shown to be differentially regulated under environmental stress such as drought, salt and cold treatment. The...

  14. Characterization of the inositol monophosphatase gene family in Arabidopsis

    PubMed Central

    Nourbakhsh, Aida; Collakova, Eva; Gillaspy, Glenda E.

    2015-01-01

    Synthesis of myo-inositol is crucial in multicellular eukaryotes for production of phosphatidylinositol and inositol phosphate signaling molecules. The myo-inositol monophosphatase (IMP) enzyme is required for the synthesis of myo-inositol, breakdown of inositol (1,4,5)-trisphosphate, a second messenger involved in Ca2+ signaling, and synthesis of L-galactose, a precursor of ascorbic acid. Two myo-inositol monophosphatase -like (IMPL) genes in Arabidopsis encode chloroplast proteins with homology to the prokaryotic IMPs and one of these, IMPL2, can complement a bacterial histidinol 1-phosphate phosphatase mutant defective in histidine synthesis, indicating an important role for IMPL2 in amino acid synthesis. To delineate how this small gene family functions in inositol synthesis and metabolism, we sought to compare recombinant enzyme activities, expression patterns, and impact of genetic loss-of-function mutations for each. Our data show that purified IMPL2 protein is an active histidinol-phosphate phosphatase enzyme in contrast to the IMPL1 enzyme, which has the ability to hydrolyze D-galactose 1-phosphate, and D-myo-inositol 1-phosphate, a breakdown product of D-inositol (1,4,5) trisphosphate. Expression studies indicated that all three genes are expressed in multiple tissues, however, IMPL1 expression is restricted to above-ground tissues only. Identification and characterization of impl1 and impl2 mutants revealed no viable mutants for IMPL1, while two different impl2 mutants were identified and shown to be severely compromised in growth, which can be rescued by histidine. Analyses of metabolite levels in impl2 and complemented mutants reveals impl2 mutant growth is impacted by alterations in the histidine biosynthesis pathway, but does not impact myo-inositol synthesis. Together, these data indicate that IMPL2 functions in the histidine biosynthetic pathway, while IMP and IMPL1 catalyze the hydrolysis of inositol- and galactose-phosphates in the plant cell. PMID:25620968

  15. Genomewide survey and characterization of metacaspase gene family in rice (Oryza sativa).

    PubMed

    Wang, Likai; Zhang, Hua

    2014-04-01

    Metacaspases (MCs), which are cysteine-dependent proteases found in plants, fungi, and protozoa, may be involved in programmed cell death processes, being distant relatives of metazoan caspases. In this study, we analysed the structures, phylogenetic relationship, genome localizations, expression patterns and domestic selections of eight MC genes identified in rice (OsMC). Alignment analysis of the corresponding protein sequences suggested OsMC proteins can be classified into two subtypes. The expression profiles of eight OsMC genes were analysed in 27 tissues covering the whole life cycle of rice. There are four OsMC genes uniquely expressed in mature tissues, indicating that these genes might play certain roles in senescence. Under abiotic and biotic stresses, four OsMC genes were expressed with treatments of one or more of Magnaporthe oryzae (M. oryzae) infected, pest damaged, cold stress and drought stress, indicating they might be involved in plant defense. In addition, gene trees and genetic diversity (?) were performed to measure whether candidate genes were selected during rice domestication. The results suggested that all the type I genes could not be domestication genes. However, two of five type II OsMC genes showed strong evidence for selective sweep, suggesting that these genes might be involved in cultivated rice domestication. These results provide a foundation for future functional genomic studies of this family in rice. PMID:24840826

  16. Arabidopsis Ovate Family Proteins, a Novel Transcriptional Repressor Family, Control Multiple Aspects of Plant Growth and Development

    PubMed Central

    Guo, Jianjun; Zeng, Qingning; Ellis, Brian E.; Chen, Jin-Gui

    2011-01-01

    Background The Arabidopsis genome contains 18 genes that are predicted to encode Ovate Family Proteins (AtOFPs), a protein family characterized by a conserved OVATE domain, an approximately 70-amino acid domain that was originally found in tomato OVATE protein. Among AtOFP family members, AtOFP1 has been shown to suppress cell elongation, in part, by suppressing the expression of AtGA20ox1, AtOFP4 has been shown to regulate secondary cell wall formation by interact with KNOTTED1-LIKE HOMEODOMAIN PROTEIN 7 (KNAT7), and AtOFP5 has been shown to regulate the activity of a BEL1-LIKEHOMEODOMAIN 1(BLH1)-KNAT3 complex during early embryo sac development, but little is known about the function of other AtOFPs. Methodology/Principal Findings We demonstrated here that AtOFP proteins could function as effective transcriptional repressors in the Arabidopsis protoplast transient expression system. The analysis of loss-of-function alleles of AtOFPs suggested AtOFP genes may have overlapping function in regulating plant growth and development, because none of the single mutants identified, including T-DNA insertion mutants in AtOFP1, AtOFP4, AtOFP8, AtOFP10, AtOFP15 and AtOFP16, displayed any apparent morphological defects. Further, Atofp1 Atofp4 and Atofp15 Atofp16 double mutants still did not differ significantly from wild-type. On the other hand, plants overexpressing AtOFP genes displayed a number of abnormal phenotypes, which could be categorized into three distinct classes, suggesting that AtOFP genes may also have diverse functions in regulating plant growth and development. Further analysis suggested that AtOFP1 regulates cotyledon development in a postembryonic manner, and global transcript profiling revealed that it suppress the expression of many other genes. Conclusions/Significance Our results showed that AtOFPs function as transcriptional repressors and they regulate multiple aspects of plant growth and development. These results provided the first overview of a previously unknown transcriptional repressor family, and revealed their possible roles in plant growth and development. PMID:21886836

  17. Gene turnover and differential retention in the relaxin/insulin-like gene family in primates.

    PubMed

    Arroyo, José Ignacio; Hoffmann, Federico G; Opazo, Juan C

    2012-06-01

    The relaxin/insulin-like gene family is related to the insulin gene family, and includes two separate types of peptides: relaxins (RLNs) and insulin-like peptides (INSLs) that perform a variety of physiological roles including testicular descent, growth and differentiation of the mammary glands, trophoblast development, and cell differentiation. In vertebrates, these genes are found on three separate genomic loci, and in mammals, variation in the number and nature of genes in this family is mostly restricted to the Relaxin Family Locus B. For example, this locus contains a single copy of RLN in platypus and opossum, whereas it contains copies of the INSL6, INSL4, RLN2 and RLN1 genes in human and chimp. The main objective of this research is to characterize changes in the size and membership composition of the RLN/INSL gene family in primates, reconstruct the history of the RLN/INSL genes of primates, and test competing evolutionary scenarios regarding the origin of INSL4 and of the duplicated copies of the RLN gene of apes. Our results show that the relaxin/INSL-like gene family of primates has had a more dynamic evolutionary history than previously thought, including several examples of gene duplications and losses which are consistent with the predictions of the birth-and-death model of gene family evolution. In particular, we found that the differential retention of relatively old paralogs played a key role in shaping the gene complement of this family in primates. Two examples of this phenomenon are the origin of the INSL4 gene of catarrhines (the group that includes Old World monkeys and apes), and of the duplicate RLN1 and RLN2 paralogs of apes. In the case of INSL4, comparative genomics and phylogenetic analyses indicate that the origin of this gene, which was thought to represent a catarrhine-specific evolutionary innovation, is as old as the split between carnivores and primates, which took place approximately 97 million years ago. In addition, in the case of the RLN1 and RLN2 genes of apes our phylogenetic trees and topology tests indicate that the duplication that gave rise to these two genes maps to the last common ancestor of anthropoid primates. All these genomic changes in gene complement, which are particularly prevalent among anthropoid primates, might be linked to the many physiological and anatomical changes found in this group. Given the various roles of members of the RLN/INSL-like gene family in reproductive biology, it might be that changes in this gene family are associated to changes in reproductive traits. PMID:22405815

  18. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana

    PubMed Central

    Cannon, Steven B; Mitra, Arvind; Baumgarten, Andrew; Young, Nevin D; May, Georgiana

    2004-01-01

    Background Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses. Results Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions. Conclusions Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families. PMID:15171794

  19. Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family.

    PubMed

    Teunissen, A W; Steensma, H Y

    1995-09-15

    The quality of brewing strains is, in large part, determined by their flocculation properties. By classical genetics, several dominant, semidominant and recessive flocculation genes have been recognized. Recent results of experiments to localize the flocculation genes FLO5 and FLO8, combined with the in silicio analysis of the available sequence data of the yeast genome, have revealed that the flocculation genes belong to a family which comprises at least four genes and three pseudogenes. All members of this gene family are located near the end of chromosomes, just like the SUC, MEL and MAL genes, which are also important for good quality baking or brewing strains. Transcription of the flocculation genes is repressed by several regulatory genes. In addition, a number of genes have been found which cause cell aggregation upon disruption or overexpression in an as yet unknown manner. In total, 33 genes have been reported that are involved in flocculation or cell aggregation. PMID:7502576

  20. Regulation of meiotic gene expression in plants

    PubMed Central

    Zhou, Adele; Pawlowski, Wojciech P.

    2014-01-01

    With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been assembled. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa), wheat (Triticum aestivum), petunia (Petunia hybrida), sunflower (Helianthus annuus), and maize (Zea mays). Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs that might be involved in the regulation of meiotic transcription patterns. PMID:25202317

  1. Transgene-induced gene silencing in plants.

    PubMed

    Jin, Yun; Guo, Hui-Shan

    2015-01-01

    RNAi is the most important reverse genetics tool to trigger transgenic gene silencing, which is now applied widely to investigate gene function and also practically applied to enhance resistance to biotic and abiotic stress. Recently, the most effective way to induce transgenic gene silencing is to introduce inverted repeat (IR) double-stranded RNA (dsRNA) or artificial microRNA (amiRNA) instead of a transgenic sense or antisense strand of genes. The stable transgenic plants can be acquired through Agrobacterium tumefaciens-mediated transformation of binary vectors containing an RNAi hairpin construct or amiRNA precursor backbone sequence. Here we primarily describe these two methods' vector construction, plant transformation, and transgenic line verification. PMID:25740359

  2. Developmental regulation of embryonic genes in plants

    SciTech Connect

    Borkird, C.; Choi, Jung, H.; Jin, Zhenghua; Franz, G.; Hatzopoulos, P.; Chorneaus, R.; Bonas, U.; Pelegri, F.; Sung, Z.R.

    1988-09-01

    Somatic embryogenesis from cultured carrot cells progresses through successive morphogenetic stages termed globular, heart, and torpedo. To understand the molecular mechanisms underlying plant embryogenesis, the authors isolated two genes differentially expressed during embryo development. The expression of these two genes is associated with heart-stage embryogenesis. By altering the culture conditions and examining their expressions in a developmental variant cell line, they found that these genes were controlled by the developmental program of embryogenesis and were not directly regulated by 2,4-dichlorophenoxyacetic acid, the growth regulator that promotes unorganized growth of cultured cells and suppresses embryo morphogenesis. These genes are also expressed in carrot zygotic embryos but not in seedlings or mature plants.

  3. Plant defense genes are regulated by ethylene

    SciTech Connect

    Ecker, J.R.; Davis, R.W.

    1987-08-01

    One of the earliest detectable events during plant-pathogen interaction is a rapid increase in ethylene biosynthesis. This gaseous plant stress hormone may be a signal for plants to activate defense mechanisms against invading pathogens such as bacteria, fungi, and viruses. The effect of ethylene on four plant genes involved in three separate plant defense response pathways was examined; these included (i and ii) genes that encode L-phenylalanine ammonia-lyase (EC 4.3.1.5) and 4-coumarate:CoA ligase (4-coumarate:CoA ligase (AMP-forming), EC 6.2.1.12), enzymes of the phenylpropanoid pathway, (iii) the gene encoding chalcone synthase, an enzyme of the flavonoid glycoside pathway, and (iv) the genes encoding hydroxyproline-rich glycoprotein, a major protein component(s) of plant cell walls. Blot hybridization analysis of mRNA from ethylene-treated carrot roots reveals marked increases in the levels of phenylalanine ammonia-lyase mRNA, 4-coumarate CoA ligase mRNA, chalcone synthase mRNA, and certain hydroxyproline-rich glycoprotein transcripts. The effect of ethylene on hydroxyproline-rich glycoprotein mRNA accumulation was different from that of wounding. Ethylene induces two hydroxyproline-rich glycoprotein mRNAs (1.8 and 4.0 kilobases), whereas wounding of carrot root leads to accumulation of an additional hydroxyproline-rich mRNA (1.5 kilobases). These results indicate that at least two distinct signals, ethylene and a wound signal, can affect the expression of plant defense-response genes.

  4. Transformation of antisense constructs of the chalcone synthase gene superfamily into Gerbera hybrida : differential effect on the expression of family members

    Microsoft Academic Search

    Paula Elomaa; Yrjö Helariutta; Mika Kotilainen; Teemu H. Teeri

    1996-01-01

    Suppression of gene expression using antisense technology has been successful in various applications. In this paper we report differential inhibition of gene expression of the chalcone synthase (chs) gene superfamily members in transgenic Gerbera hybrida (Asteraceae) plants. We have transformed two different cDNAs of the chs gene family, gchs 1 [4] and gchs2, in antisense orientation under control of the

  5. Homologs of breast cancer genes in plants.

    PubMed

    Trapp, Oliver; Seeliger, Katharina; Puchta, Holger

    2011-01-01

    Since the initial discovery of genes involved in hereditary breast cancer in humans, a vast wealth of information has been published. Breast cancer proteins were shown to work as tumor suppressors primarily through their involvement in DNA-damage repair. Surprisingly, homologs of these genes can be found in plant genomes, as well. Here, we want to give an overview of the identification and characterization of the biological roles of these proteins, in plants. In addition to the conservation of their function in DNA repair, new plant-specific characteristics have been revealed. BRCA1 is required for the efficient repair of double strand breaks (DSB) by homologous recombination in somatic cells of the model plant Arabidopsis thaliana. Bioinformatic analysis indicates that, whereas most homologs of key components of the different mammalian BRCA1 complexes are present in plant genomes, homologs of most factors involved in the recruitment of BRCA1 to the DSB cannot be identified. Thus, it is not clear at the moment whether differences exist between plants and animals at this important step. The most conserved region of BRCA1 and BARD1 homologs in plants is a PHD domain which is absent in mammals and which, in AtBARD1, might be involved in the transcriptional regulation of plant development. The presence of a plant-specific domain prompted us to reevaluate the current model for the evolution of BRCA1 homologs and to suggest a new hypothesis, in which we postulate that plant BRCA1 and BARD1 have one common predecessor that gained a PHD domain before duplication. Furthermore, work in Arabidopsis demonstrates that - as in animals - BRCA2 homologs are important for meiotic DNA recombination. Surprisingly, recent research has revealed that AtBRCA2 also has an important role in systemic acquired resistance. In Arabidopsis, BRCA2 is involved in the transcriptional regulation of pathogenesis-related (PR) genes via its interaction with the strand exchange protein RAD51. PMID:22629260

  6. Homologs of Breast Cancer Genes in Plants

    PubMed Central

    Trapp, Oliver; Seeliger, Katharina; Puchta, Holger

    2011-01-01

    Since the initial discovery of genes involved in hereditary breast cancer in humans, a vast wealth of information has been published. Breast cancer proteins were shown to work as tumor suppressors primarily through their involvement in DNA-damage repair. Surprisingly, homologs of these genes can be found in plant genomes, as well. Here, we want to give an overview of the identification and characterization of the biological roles of these proteins, in plants. In addition to the conservation of their function in DNA repair, new plant-specific characteristics have been revealed. BRCA1 is required for the efficient repair of double strand breaks (DSB) by homologous recombination in somatic cells of the model plant Arabidopsis thaliana. Bioinformatic analysis indicates that, whereas most homologs of key components of the different mammalian BRCA1 complexes are present in plant genomes, homologs of most factors involved in the recruitment of BRCA1 to the DSB cannot be identified. Thus, it is not clear at the moment whether differences exist between plants and animals at this important step. The most conserved region of BRCA1 and BARD1 homologs in plants is a PHD domain which is absent in mammals and which, in AtBARD1, might be involved in the transcriptional regulation of plant development. The presence of a plant-specific domain prompted us to reevaluate the current model for the evolution of BRCA1 homologs and to suggest a new hypothesis, in which we postulate that plant BRCA1 and BARD1 have one common predecessor that gained a PHD domain before duplication. Furthermore, work in Arabidopsis demonstrates that – as in animals – BRCA2 homologs are important for meiotic DNA recombination. Surprisingly, recent research has revealed that AtBRCA2 also has an important role in systemic acquired resistance. In Arabidopsis, BRCA2 is involved in the transcriptional regulation of pathogenesis-related (PR) genes via its interaction with the strand exchange protein RAD51. PMID:22629260

  7. Evolutionary relationship and structural characterization of the EPF/EPFL gene family.

    PubMed

    Takata, Naoki; Yokota, Kiyonobu; Ohki, Shinya; Mori, Masashi; Taniguchi, Toru; Kurita, Manabu

    2013-01-01

    EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that AtEPF1/EPF2-like peptides form an additional disulfide bond in their loop regions and show greater flexibility in these regions than AtEPFL9/Stomagen-like peptides. This study uncovered the evolutionary relationship and the conformational divergence of proteins encoded by the EPF/EPFL family genes. PMID:23755192

  8. Molecular evolution of the polyamine oxidase gene family in Metazoa

    PubMed Central

    2012-01-01

    Background Polyamine oxidase enzymes catalyze the oxidation of polyamines and acetylpolyamines. Since polyamines are basic regulators of cell growth and proliferation, their homeostasis is crucial for cell life. Members of the polyamine oxidase gene family have been identified in a wide variety of animals, including vertebrates, arthropodes, nematodes, placozoa, as well as in plants and fungi. Polyamine oxidases (PAOs) from yeast can oxidize spermine, N1-acetylspermine, and N1-acetylspermidine, however, in vertebrates two different enzymes, namely spermine oxidase (SMO) and acetylpolyamine oxidase (APAO), specifically catalyze the oxidation of spermine, and N1-acetylspermine/N1-acetylspermidine, respectively. Little is known about the molecular evolutionary history of these enzymes. However, since the yeast PAO is able to catalyze the oxidation of both acetylated and non acetylated polyamines, and in vertebrates these functions are addressed by two specialized polyamine oxidase subfamilies (APAO and SMO), it can be hypothesized an ancestral reference for the former enzyme from which the latter would have been derived. Results We analysed 36 SMO, 26 APAO, and 14 PAO homologue protein sequences from 54 taxa including various vertebrates and invertebrates. The analysis of the full-length sequences and the principal domains of vertebrate and invertebrate PAOs yielded consensus primary protein sequences for vertebrate SMOs and APAOs, and invertebrate PAOs. This analysis, coupled to molecular modeling techniques, also unveiled sequence regions that confer specific structural and functional properties, including substrate specificity, by the different PAO subfamilies. Molecular phylogenetic trees revealed a basal position of all the invertebrates PAO enzymes relative to vertebrate SMOs and APAOs. PAOs from insects constitute a monophyletic clade. Two PAO variants sampled in the amphioxus are basal to the dichotomy between two well supported monophyletic clades including, respectively, all the SMOs and APAOs from vertebrates. The two vertebrate monophyletic clades clustered strictly mirroring the organismal phylogeny of fishes, amphibians, reptiles, birds, and mammals. Evidences from comparative genomic analysis, structural evolution and functional divergence in a phylogenetic framework across Metazoa suggested an evolutionary scenario where the ancestor PAO coding sequence, present in invertebrates as an orthologous gene, has been duplicated in the vertebrate branch to originate the paralogous SMO and APAO genes. A further genome evolution event concerns the SMO gene of placental, but not marsupial and monotremate, mammals which increased its functional variation following an alternative splicing (AS) mechanism. Conclusions In this study the explicit integration in a phylogenomic framework of phylogenetic tree construction, structure prediction, and biochemical function data/prediction, allowed inferring the molecular evolutionary history of the PAO gene family and to disambiguate paralogous genes related by duplication event (SMO and APAO) and orthologous genes related by speciation events (PAOs, SMOs/APAOs). Further, while in vertebrates experimental data corroborate SMO and APAO molecular function predictions, in invertebrates the finding of a supported phylogenetic clusters of insect PAOs and the co-occurrence of two PAO variants in the amphioxus urgently claim the need for future structure-function studies. PMID:22716069

  9. Plant Glycosyltransferases Beyond CAZy: A Perspective on DUF Families

    PubMed Central

    Hansen, Sara Fasmer; Harholt, Jesper; Oikawa, Ai; Scheller, Henrik V.

    2012-01-01

    The carbohydrate active enzyme (CAZy) database is an invaluable resource for glycobiology and currently contains 45 glycosyltransferase families that are represented in plants. Glycosyltransferases (GTs) have many functions in plants, but the majority are likely to be involved in biosynthesis of polysaccharides and glycoproteins in the plant cell wall. Bioinformatic approaches and structural modeling suggest that a number of protein families in plants include GTs that have not yet been identified as such and are therefore not included in CAZy. These families include proteins with domain of unknown function (DUF) DUF23, DUF246, and DUF266. The evidence for these proteins being GTs and their possible roles in cell wall biosynthesis is discussed. PMID:22629278

  10. Evolution of xyloglucan-related genes in green plants

    PubMed Central

    2010-01-01

    Background The cell shape and morphology of plant tissues are intimately related to structural modifications in the primary cell wall that are associated with key processes in the regulation of cell growth and differentiation. The primary cell wall is composed mainly of cellulose immersed in a matrix of hemicellulose, pectin, lignin and some structural proteins. Xyloglucan is a hemicellulose polysaccharide present in the cell walls of all land plants (Embryophyta) and is the main hemicellulose in non-graminaceous angiosperms. Results In this work, we used a comparative genomic approach to obtain new insights into the evolution of the xyloglucan-related enzymatic machinery in green plants. Detailed phylogenetic analyses were done for enzymes involved in xyloglucan synthesis (xyloglucan transglycosylase/hydrolase, ?-xylosidase, ?-galactosidase, ?-glucosidase and ?-fucosidase) and mobilization/degradation (?-(1?4)-glucan synthase, ?-fucosyltransferases, ?-galactosyltransferases and ?-xylosyl transferase) based on 12 fully sequenced genomes and expressed sequence tags from 29 species of green plants. Evidence from Chlorophyta and Streptophyta green algae indicated that part of the Embryophyta xyloglucan-related machinery evolved in an aquatic environment, before land colonization. Streptophyte algae have at least three enzymes of the xyloglucan machinery: xyloglucan transglycosylase/hydrolase, ?-(1?4)-glucan synthase from the celullose synthase-like C family and ?-xylosidase that is also present in chlorophytes. Interestingly, gymnosperm sequences orthologs to xyloglucan transglycosylase/hydrolases with exclusively hydrolytic activity were also detected, suggesting that such activity must have emerged within the last common ancestor of spermatophytes. There was a positive correlation between the numbers of founder genes within each gene family and the complexity of the plant cell wall. Conclusions Our data support the idea that a primordial xyloglucan-like polymer emerged in streptophyte algae as a pre-adaptation that allowed plants to subsequently colonize terrestrial habitats. Our results also provide additional evidence that charophycean algae and land plants are sister groups. PMID:21054875

  11. Analyses of the sucrose synthase gene family in cotton: structure, phylogeny and expression patterns

    PubMed Central

    2012-01-01

    Background In plants, sucrose synthase (Sus) is widely considered as a key enzyme involved in sucrose metabolism. Several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, while limited information of Sus genes is available to date for cotton. Results Here, we report the molecular cloning, structural organization, phylogenetic evolution and expression profiles of seven Sus genes (GaSus1 to 7) identified from diploid fiber cotton (Gossypium arboreum). Comparisons between cDNA and genomic sequences revealed that the cotton GaSus genes were interrupted by multiple introns. Comparative screening of introns in homologous genes demonstrated that the number and position of Sus introns are highly conserved among Sus genes in cotton and other more distantly related plant species. Phylogenetic analysis showed that GaSus1, GaSus2, GaSus3, GaSus4 and GaSus5 could be clustered together into a dicot Sus group, while GaSus6 and GaSus7 were separated evenly into other two groups, with members from both dicot and monocot species. Expression profiles analyses of the seven Sus genes indicated that except GaSus2, of which the transcripts was undetectable in all tissues examined, and GaSus7, which was only expressed in stem and petal, the other five paralogues were differentially expressed in a wide ranges of tissues, and showed development-dependent expression profiles in cotton fiber cells. Conclusions This is a comprehensive study of the Sus gene family in cotton plant. The results presented in this work provide new insights into the evolutionary conservation and sub-functional divergence of the cotton Sus gene family in response to cotton fiber growth and development. PMID:22694895

  12. Gene Pyramiding of Peptidase Inhibitors Enhances Plant Resistance to the Spider Mite Tetranychus urticae

    Microsoft Academic Search

    Maria Estrella Santamaria; Inés Cambra; Manuel Martinez; Clara Pozancos; Pablo González-Melendi; Vojislava Grbic; Pedro Castañera; Felix Ortego; Isabel Diaz

    2012-01-01

    The two-spotted spider mite Tetranychus urticae is a damaging pest worldwide with a wide range of host plants and an extreme record of pesticide resistance. Recently, the complete T. urticae genome has been published and showed a proliferation of gene families associated with digestion and detoxification of plant secondary compounds which supports its polyphagous behaviour. To overcome spider mite adaptability

  13. Identification and analysis of the germin-like gene family in soybean

    PubMed Central

    2010-01-01

    Background Germin and germin-like proteins constitute a ubiquitous family of plant proteins. A role of some family members in defense against pathogen attack had been proposed based on gene regulation studies and transgenic approaches. Soybean (G. max L. Merr.) germin genes had not been characterized at the molecular and functional levels. Results In the present study, twenty-one germin gene members in soybean cultivar 'Maple Arrow' (partial resistance to Sclerotinia stem rot of soybean) were identified by in silico identification and RACE method (GmGER 1 to GmGER 21). A genome-wide analyses of these germin-like protein genes using a bioinformatics approach showed that the genes located on chromosomes 8, 1, 15, 20, 16, 19, 7, 3 and 10, on which more disease-resistant genes were located on. Sequence comparison revealed that the genes encoded three germin-like domains. The phylogenetic relationships and functional diversity of the germin gene family of soybean were analyzed among diverse genera. The expression of the GmGER genes treated with exogenous IAA suggested that GmGER genes might be regulated by auxin. Transgenic tobacco that expressed the GmGER 9 gene exhibited high tolerance to the salt stress. In addition, the GmGER mRNA increased transiently at darkness and peaked at a time that corresponded approximately to the critical night length. The mRNA did not accumulate significantly under the constant light condition, and did not change greatly under the SD and LD treatments. Conclusions This study provides a complex overview of the GmGER genes in soybean. Phylogenetic analysis suggested that the germin and germin-like genes of the plant species that had been founded might be evolved by independent gene duplication events. The experiment indicated that germin genes exhibited diverse expression patterns during soybean development. The different time courses of the mRNAs accumulation of GmGER genes in soybean leaves appeared to have a regular photoperiodic reaction in darkness. Also the GmGER genes were proved to response to abiotic stress (such as auxin and salt), suggesting that these paralogous genes were likely involved in complex biological processes in soybean. PMID:21059215

  14. PTGBase: an integrated database to study tandem duplicated genes in plants.

    PubMed

    Yu, Jingyin; Ke, Tao; Tehrim, Sadia; Sun, Fengming; Liao, Boshou; Hua, Wei

    2015-01-01

    Tandem duplication is a wide-spread phenomenon in plant genomes and plays significant roles in evolution and adaptation to changing environments. Tandem duplicated genes related to certain functions will lead to the expansion of gene families and bring increase of gene dosage in the form of gene cluster arrays. Many tandem duplication events have been studied in plant genomes; yet, there is a surprising shortage of efforts to systematically present the integration of large amounts of information about publicly deposited tandem duplicated gene data across the plant kingdom. To address this shortcoming, we developed the first plant tandem duplicated genes database, PTGBase. It delivers the most comprehensive resource available to date, spanning 39 plant genomes, including model species and newly sequenced species alike. Across these genomes, 54?130 tandem duplicated gene clusters (129?652 genes) are presented in the database. Each tandem array, as well as its member genes, is characterized in complete detail. Tandem duplicated genes in PTGBase can be explored through browsing or searching by identifiers or keywords of functional annotation and sequence similarity. Users can download tandem duplicated gene arrays easily to any scale, up to the complete annotation data set for an entire plant genome. PTGBase will be updated regularly with newly sequenced plant species as they become available. Database URL: http://ocri-genomics.org/PTGBase/. PMID:25797062

  15. PTGBase: an integrated database to study tandem duplicated genes in plants

    PubMed Central

    Yu, Jingyin; Ke, Tao; Tehrim, Sadia; Sun, Fengming; Liao, Boshou; Hua, Wei

    2015-01-01

    Tandem duplication is a wide-spread phenomenon in plant genomes and plays significant roles in evolution and adaptation to changing environments. Tandem duplicated genes related to certain functions will lead to the expansion of gene families and bring increase of gene dosage in the form of gene cluster arrays. Many tandem duplication events have been studied in plant genomes; yet, there is a surprising shortage of efforts to systematically present the integration of large amounts of information about publicly deposited tandem duplicated gene data across the plant kingdom. To address this shortcoming, we developed the first plant tandem duplicated genes database, PTGBase. It delivers the most comprehensive resource available to date, spanning 39 plant genomes, including model species and newly sequenced species alike. Across these genomes, 54?130 tandem duplicated gene clusters (129?652 genes) are presented in the database. Each tandem array, as well as its member genes, is characterized in complete detail. Tandem duplicated genes in PTGBase can be explored through browsing or searching by identifiers or keywords of functional annotation and sequence similarity. Users can download tandem duplicated gene arrays easily to any scale, up to the complete annotation data set for an entire plant genome. PTGBase will be updated regularly with newly sequenced plant species as they become available. Database URL: http://ocri-genomics.org/PTGBase/. PMID:25797062

  16. Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants.

    PubMed

    de Abreu-Neto, João Braga; Turchetto-Zolet, Andreia C; de Oliveira, Luiz Felipe Valter; Zanettini, Maria Helena Bodanese; Margis-Pinheiro, Marcia

    2013-04-01

    Metallochaperones are key proteins for the safe transport of metallic ions inside the cell. HIPPs (heavy metal-associated isoprenylated plant proteins) are metallochaperones that contain a metal binding domain (HMA) and a C-terminal isoprenylation motif. In this study, we provide evidence that proteins of this family are found only in vascular plants and may be separated into five distinct clusters. HIPPs may be involved in (a) heavy metal homeostasis and detoxification mechanisms, especially those involved in cadmium tolerance, (b) transcriptional responses to cold and drought, and (c) plant-pathogen interactions. In particular, our results show that the rice (Oryza sativa) HIPP OsHIPP41 gene is highly expressed in response to cold and drought stresses, and its product is localized in the cytosol and the nucleus. The results suggest that HIPPs play an important role in the development of vascular plants and in plant responses to environmental changes. PMID:23368984

  17. Architecture of the PPR gene family in the moss Physcomitrella patens.

    PubMed

    Sugita, Mamoru; Ichinose, Mizuho; Ide, Mizuki; Sugita, Chieko

    2013-09-01

    Pentatricopeptide repeat (PPR) proteins are widespread in eukaryotes and in particular, include several hundred members in land plants. The majority of PPR proteins are localized in mitochondria and plastids, where they play a crucial role in various aspects of RNA metabolism at the post-transcriptional level in gene expression. However, many of their functions remain to be characterized. In contrast to vascular plants, the moss Physcomitrella patens has only 105 PPR genes. This number may represent a minimum set of PPR proteins required for post-transcriptional regulation in plant organelles. Here, we review the overall structure of the P. patens PPR gene family and the current status of the functional characterization of moss PPR proteins. PMID:23645116

  18. Architecture of the PPR gene family in the moss Physcomitrella patens

    PubMed Central

    Sugita, Mamoru; Ichinose, Mizuho; Ide, Mizuki; Sugita, Chieko

    2013-01-01

    Pentatricopeptide repeat (PPR) proteins are widespread in eukaryotes and in particular, include several hundred members in land plants. The majority of PPR proteins are localized in mitochondria and plastids, where they play a crucial role in various aspects of RNA metabolism at the post-transcriptional level in gene expression. However, many of their functions remain to be characterized. In contrast to vascular plants, the moss Physcomitrella patens has only 105 PPR genes. This number may represent a minimum set of PPR proteins required for post-transcriptional regulation in plant organelles. Here, we review the overall structure of the P. patens PPR gene family and the current status of the functional characterization of moss PPR proteins. PMID:23645116

  19. A Comprehensive Analysis of the Cupin Gene Family in Soybean (Glycine max)

    PubMed Central

    Wang, Xiaobo; Zhang, Haowei; Gao, Yali; Sun, Genlou; Zhang, Wenming; Qiu, Lijuan

    2014-01-01

    Cupin superfamily of proteins, including germin and germin-like proteins (GLPs) from higher plants, is known to play crucial roles in plant development and defense. To date, no systematic analysis has been conducted in soybean (Glycine max) incorporating genome organization, gene structure, expression compendium. In this study, 69 putative Cupin genes were identified from the whole-genome of soybean, which were non-randomly distributed on 17 of the 20 chromosomes. These Gmcupin proteins were phylogenetically clustered into ten distinct subgroups among which the gene structures were highly conserved. Eighteen pairs (52.2%) of duplicate paralogous genes were preferentially retained in duplicated regions of the soybean genome. The distributions of GmCupin genes implied that long segmental duplications contributed significantly to the expansion of the GmCupin gene family. According to the RNA-seq data analysis, most of the Gmcupins were differentially expressed in tissue-specific expression pattern and the expression of some duplicate genes were partially redundant while others showed functional diversity, suggesting the Gmcupins have been retained by substantial subfunctionalization during soybean evolutionary processes. Selective analysis based on single nucleotide polymorphisms (SNPs) in cultivated and wild soybeans revealed sixteen Gmcupins had selected site(s), with all SNPs in Gmcupin10.3 and Gmcupin07.2 genes were selected sites, which implied these genes may have undergone strong selection effects during soybean domestication. Taken together, our results contribute to the functional characterization of Gmcupin genes in soybean. PMID:25360675

  20. Gene Family Evolution by Duplication, Speciation and Loss1 Cedric Chauve2

    E-print Network

    Chauve, Cedric

    We consider two algorithmic questions related to the evolution of gene families. First, given a geneGene Family Evolution by Duplication, Speciation and Loss1 Cedric Chauve2 Jean-Philippe Doyon3 Nadia El-Mabrouk4 Keywords: gene families evolution, gene losses, reconciliation, algorithms. Abstract

  1. Coming of age: orphan genes in plants.

    PubMed

    Arendsee, Zebulun W; Li, Ling; Wurtele, Eve Syrkin

    2014-11-01

    Sizable minorities of protein-coding genes from every sequenced eukaryotic and prokaryotic genome are unique to the species. These so-called ‘orphan genes’ may evolve de novo from non-coding sequence or be derived from older coding material. They are often associated with environmental stress responses and species-specific traits or regulatory patterns. However, difficulties in studying genes where comparative analysis is impossible, and a bias towards broadly conserved genes, have resulted in underappreciation of their importance. We review here the identification, possible origins, evolutionary trends, and functions of orphans with an emphasis on their role in plant biology. We exemplify several evolutionary trends with an analysis of Arabidopsis thaliana and present QQS as a model orphan gene. PMID:25151064

  2. Horizontal gene transfer from Agrobacterium to plants

    PubMed Central

    Matveeva, Tatiana V.; Lutova, Ludmila A.

    2014-01-01

    Most genetic engineering of plants uses Agrobacterium mediated transformation to introduce novel gene content. In nature, insertion of T-DNA in the plant genome and its subsequent transfer via sexual reproduction has been shown in several species in the genera Nicotiana and Linaria. In these natural examples of horizontal gene transfer from Agrobacterium to plants, the T-DNA donor is assumed to be a mikimopine strain of A. rhizogenes. A sequence homologous to the T-DNA of the Ri plasmid of Agrobacterium rhizogenes was found in the genome of untransformed Nicotiana glauca about 30 years ago, and was named “cellular T-DNA” (cT-DNA). It represents an imperfect inverted repeat and contains homologs of several T-DNA oncogenes (NgrolB, NgrolC, NgORF13, NgORF14) and an opine synthesis gene (Ngmis). A similar cT-DNA has also been found in other species of the genus Nicotiana. These presumably ancient homologs of T-DNA genes are still expressed, indicating that they may play a role in the evolution of these plants. Recently T-DNA has been detected and characterized in Linaria vulgaris and L. dalmatica. In Linaria vulgaris the cT-DNA is present in two copies and organized as a tandem imperfect direct repeat, containing LvORF2, LvORF3, LvORF8, LvrolA, LvrolB, LvrolC, LvORF13, LvORF14, and the Lvmis genes. All L. vulgaris and L. dalmatica plants screened contained the same T-DNA oncogenes and the mis gene. Evidence suggests that there were several independent T-DNA integration events into the genomes of these plant genera. We speculate that ancient plants transformed by A. rhizogenes might have acquired a selective advantage in competition with the parental species. Thus, the events of T-DNA insertion in the plant genome might have affected their evolution, resulting in the creation of new plant species. In this review we focus on the structure and functions of cT-DNA in Linaria and Nicotiana and discuss their possible evolutionary role. PMID:25157257

  3. Notung: Dating Gene Duplications using Gene Family Trees Kevin Chen,

    E-print Network

    Farach-Colton, Martin

    from other ge- nomic rearrangments, such as transpositions and reversals, in that the time organism with 6000 genes [6], while mice have an estimated 50,000 - 100,000 genes [27]. How did this order duplication followed by differentiation of se- quence and function through mutation is posited to be a primary

  4. The evolutionary history of calreticulin and calnexin genes in green plants.

    PubMed

    Del Bem, Luiz Eduardo V

    2011-02-01

    Calreticulin and calnexin are Ca(2+)-binding chaperones localized in the endoplasmic reticulum of eukaryotes acting in glycoprotein folding quality control and Ca(2+) homeostasis. The evolutionary histories of calreticulin and calnexin gene families were inferred by comprehensive phylogenetic analyses using 18 completed genomes and ESTs covering the major green plants groups, from green algae to angiosperms. Calreticulin and calnexin possibly share a common origin, and both proteins are present along all green plants lineages. The calreticulin founder gene within green plants duplicated in early tracheophytes leading to two possible groups of orthologs with specialized functions, followed by lineage-specific gene duplications in spermatophytes. Calnexin founder gene in land plants was inherited from basal green algae during evolution in a very conservative copy number. A comprehensive classification in possible groups of orthologs and a catalog of calreticulin and calnexin genes from green plants are provided. PMID:21222018

  5. Genome-wide analysis of WRKY gene family in Cucumis sativus

    PubMed Central

    2011-01-01

    Background WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as Arabidopsis. Results We identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (CsWRKY) genes were classified into three groups (group 1-3). Analysis of expression profiles of CsWRKY genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible CsWRKY genes were correlated with those of their putative Arabidopsis WRKY (AtWRKY) orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 AtWRKY genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among CsWRKY group 3 genes, which may have led to the expressional divergence of group 3 orthologs. Conclusions Fifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes. PMID:21955985

  6. Different HATS of the ING1 gene family

    Microsoft Academic Search

    Xiaolan Feng; Yasuo Hara; KarlT Riabowol

    2002-01-01

    The ING family of proteins are involved in chromatin remodelling, and bind to and affect the activity of histone acetyltransferase, histone deacetylase, and factor acetyltransferase protein complexes. Some family members affect transcription, including the expression of p53-inducible genes such as p21 and Bax, and ING2 induces p53 acetylation on a site implicated in the regulation of p53 activity. ING1 promotes

  7. Morphological evolution in land plants: new designs with old genes

    PubMed Central

    Pires, Nuno D.; Dolan, Liam

    2012-01-01

    The colonization and radiation of multicellular plants on land that started over 470 Ma was one of the defining events in the history of this planet. For the first time, large amounts of primary productivity occurred on the continental surface, paving the way for the evolution of complex terrestrial ecosystems and altering global biogeochemical cycles; increased weathering of continental silicates and organic carbon burial resulted in a 90 per cent reduction in atmospheric carbon dioxide levels. The evolution of plants on land was itself characterized by a series of radical transformations of their body plans that included the formation of three-dimensional tissues, de novo evolution of a multicellular diploid sporophyte generation, evolution of multicellular meristems, and the development of specialized tissues and organ systems such as vasculature, roots, leaves, seeds and flowers. In this review, we discuss the evolution of the genes and developmental mechanisms that drove the explosion of plant morphologies on land. Recent studies indicate that many of the gene families which control development in extant plants were already present in the earliest land plants. This suggests that the evolution of novel morphologies was to a large degree driven by the reassembly and reuse of pre-existing genetic mechanisms. PMID:22232763

  8. Small auxin upregulated RNA (SAUR) gene family in maize: identification, evolution, and its phylogenetic comparison with Arabidopsis, rice, and sorghum.

    PubMed

    Chen, Yuzhu; Hao, Xi; Cao, Jun

    2014-02-01

    Small auxin-up RNAs (SAURs) are the early auxin-responsive genes represented by a large multigene family in plants. Here, we identified 79 SAUR gene family members from maize (Zea mays subsp. mays) by a reiterative database search and manual annotation. Phylogenetic analysis indicated that the SAUR proteins from Arabidopsis, rice, sorghum, and maize had divided into 16 groups. These genes were non-randomly distributed across the maize chromosomes, and segmental duplication and tandem duplication contributed to the expansion of the maize SAUR gene family. Synteny analysis established orthology relationships and functional linkages between SAUR genes in maize and sorghum genomes. We also found that the auxin-responsive elements were conserved in the upstream sequences of maize SAUR members. Selection analyses identified some significant site-specific constraints acted on most SAUR paralogs. Expression profiles based on microarray data have provided insights into the possible functional divergence among members of the SAUR gene family. Quantitative real-time PCR analysis indicated that some of the 10 randomly selected ZmSAUR genes could be induced at least in maize shoot or root tissue tested. The results reveal a comprehensive overview of the maize SAUR gene family and may pave the way for deciphering their function during plant development. PMID:24472286

  9. Multigenic families and proteomics: extended protein characterization as a tool for paralog gene identification.

    PubMed

    Delalande, François; Carapito, Christine; Brizard, Jean-Paul; Brugidou, Christophe; Van Dorsselaer, Alain

    2005-02-01

    In classical proteomic studies, the searches in protein databases lead mostly to the identification of protein functions by homology due to the non-exhaustiveness of the protein databases. The quality of the identification depends on the studied organism, its complexity and its representation in the protein databases. Nevertheless, this basic function identification is insufficient for certain applications namely for the development of RNA-based gene-silencing strategies, commonly termed RNA interference (RNAi) in animals and post-transcriptional gene silencing (PTGS) in plants, that require an unambiguous identification of the targeted gene sequence. A PTGS strategy was considered in the study of the infection of Oryza sativa by the Rice Yellow Mottle Virus (RYMV). It is suspected that the RYMV recruits host proteins after its entry into plant cells to form a complex facilitating virus multiplication and spreading. The protein partners of this complex were identified by a classical proteomic approach, nano liquid chromatography tandem mass spectrometry. Among the identified proteins, several were retained for a PTGS strategy. Nevertheless most of the protein candidates appear to be members of multigenic families for which all paralog genes are not present in protein databases. Thus the identification of the real expressed paralog gene with classical protein database searches is impossible. Consequently, as the genome contains all genes and thus all paralog genes, a whole genome search strategy was developed to determine the specific expressed paralog gene. With this approach, the identification of peptides matching only a single gene, called discriminant peptides, allows definitive proof of the expression of this identified gene. This strategy has several requirements: (i) a genome completely sequenced and accessible; (ii) high protein sequence coverage. In the present work, through three examples, we report and validate for the first time a genome database search strategy to specifically identify paralog genes belonging to multigenic families expressed under specific conditions. PMID:15627959

  10. Transcriptomes of the parasitic plant family Orobanchaceae reveal surprising conservation of chlorophyll synthesis.

    PubMed

    Wickett, Norman J; Honaas, Loren A; Wafula, Eric K; Das, Malay; Huang, Kan; Wu, Biao; Landherr, Lena; Timko, Michael P; Yoder, John; Westwood, James H; dePamphilis, Claude W

    2011-12-20

    Parasitism in flowering plants has evolved at least 11 times [1]. Only one family, Orobanchaceae, comprises all major nutritional types of parasites: facultative, hemiparasitic (partially photosynthetic), and holoparasitic (nonphotosynthetic) [2]. Additionally, the family includes Lindenbergia, a nonparasitic genus sister to all parasitic Orobanchaceae [3-6]. Parasitic Orobanchaceae include species with severe economic impacts: Striga (witchweed), for example, affects over 50 million hectares of crops in sub-Saharan Africa, causing more than $3 billion in damage annually [7]. Although gene losses and increased substitution rates have been characterized for parasitic plant plastid genomes [5, 8-11], the nuclear genome and transcriptome remain largely unexplored. The Parasitic Plant Genome Project (PPGP; http://ppgp.huck.psu.edu/) [2] is leveraging the natural variation in Orobanchaceae to explore the evolution and genomic consequences of parasitism in plants through a massive transcriptome and gene discovery project involving Triphysaria versicolor (facultative hemiparasite), Striga hermonthica (obligate hemiparasite), and Phelipanche aegyptiaca (Orobanche [12]; holoparasite). Here we present the first set of large-scale genomic resources for parasitic plant comparative biology. Transcriptomes of above-ground tissues reveal that, in addition to the predictable loss of photosynthesis-related gene expression in P. aegyptiaca, the nonphotosynthetic parasite retains an intact, expressed, and selectively constrained chlorophyll synthesis pathway. PMID:22169535

  11. An Evolutionary Screen Highlights Canonical and Noncanonical Candidate Antiviral Genes within the Primate TRIM Gene Family

    PubMed Central

    Malfavon-Borja, Ray; Sawyer, Sara L.; Wu, Lily I.; Emerman, Michael; Malik, Harmit S.

    2013-01-01

    Recurrent viral pressure has acted on host-encoded antiviral genes during primate and mammalian evolution. This selective pressure has resulted in dramatic episodes of adaptation in host antiviral genes, often detected via positive selection. These evolutionary signatures of adaptation have the potential to highlight previously unrecognized antiviral genes (also called restriction factors). Although the TRIM multigene family is recognized for encoding several bona fide restriction factors (e.g., TRIM5alpha), most members of this expansive gene family remain uncharacterized. Here, we investigated the TRIM multigene family for signatures of positive selection to identify novel candidate antiviral genes. Our analysis reveals previously undocumented signatures of positive selection in 17 TRIM genes, 10 of which represent novel candidate restriction factors. These include the unusual TRIM52 gene, which has evolved under strong positive selection despite its encoded protein lacking a putative viral recognition (B30.2) domain. We show that TRIM52 arose via gene duplication from the TRIM41 gene. Both TRIM52 and TRIM41 have dramatically expanded RING domains compared with the rest of the TRIM multigene family, yet this domain has evolved under positive selection only in primate TRIM52, suggesting that it represents a novel host–virus interaction interface. Our evolutionary-based screen not only documents positive selection in known TRIM restriction factors but also highlights candidate novel restriction factors, providing insight into the interfaces of host–pathogen interactions mediated by the TRIM multigene family. PMID:24158625

  12. Root parasitic plant Orobanche aegyptiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific strictosidine synthase-like genes by horizontal gene transfer

    PubMed Central

    2014-01-01

    Background Besides gene duplication and de novo gene generation, horizontal gene transfer (HGT) is another important way of acquiring new genes. HGT may endow the recipients with novel phenotypic traits that are important for species evolution and adaption to new ecological niches. Parasitic systems expectedly allow the occurrence of HGT at relatively high frequencies due to their long-term physical contact. In plants, a number of HGT events have been reported between the organelles of parasites and the hosts, but HGT between host and parasite nuclear genomes has rarely been found. Results A thorough transcriptome screening revealed that a strictosidine synthase-like (SSL) gene in the root parasitic plant Orobanche aegyptiaca and the shoot parasitic plant Cuscuta australis showed much higher sequence similarities with those in Brassicaceae than with those in their close relatives, suggesting independent gene horizontal transfer events from Brassicaceae to these parasites. These findings were strongly supported by phylogenetic analysis and their identical unique amino acid residues and deletions. Intriguingly, the nucleus-located SSL genes in Brassicaceae belonged to a new member of SSL gene family, which were originated from gene duplication. The presence of introns indicated that the transfer occurred directly by DNA integration in both parasites. Furthermore, positive selection was detected in the foreign SSL gene in O. aegyptiaca but not in C. australis. The expression of the foreign SSL genes in these two parasitic plants was detected in multiple development stages and tissues, and the foreign SSL gene was induced after wounding treatment in C. australis stems. These data imply that the foreign genes may still retain certain functions in the recipient species. Conclusions Our study strongly supports that parasitic plants can gain novel nuclear genes from distantly related host species by HGT and the foreign genes may execute certain functions in the new hosts. PMID:24411025

  13. The New Human Kallikrein Gene Family: Implications in Carcinogenesis

    Microsoft Academic Search

    Eleftherios P. Diamandis; George M. Yousef; Liu-Ying Luo; Angeliki Magklara; Christina V. Obiezu

    2000-01-01

    The traditional human kallikrein gene family consists of three genes, namely KLK1 [encoding human kallikrein 1 (hK1) or pancreatic\\/renal kallikrein], KLK2 (encoding hK2, previously known as human glandular kallikrein 1) and KLK3 [encoding hK3 or prostate-specific antigen (PSA)]. KLK2 and KLK3 have important applications in prostate cancer diagnostics and, more recently, in breast cancer diagnostics. During the past two to

  14. DCEG Scientists Identify New Gene Mutation Related to Familial Melanoma

    Cancer.gov

    Scientists have identified a rare inherited mutation in a gene that can increase the risk of familial melanoma, according to a study that appeared online in Nature Genetics on March 30, 2014. Although the finding does not offer immediate benefit to patients, variation in the Protection of Telomeres-1 (POT1) gene provides additional clues as to the origins of melanoma and may open new avenues in prevention and treatment research. Read the full NCI Benchmarks blog post about this study.

  15. Analysis of Arabidopsis floral transcriptome: detection of new florally expressed genes and expansion of Brassicaceae-specific gene families

    PubMed Central

    Zhang, Liangsheng; Wang, Lei; Yang, Yulin; Cui, Jie; Chang, Fang; Wang, Yingxiang; Ma, Hong

    2015-01-01

    The flower is essential for sexual reproduction of flowering plants and has been extensively studied. However, it is still not clear how many genes are expressed in the flower. Here, we performed RNA-seq analysis as a highly sensitive approach to investigate the Arabidopsis floral transcriptome at three developmental stages. We provide evidence that at least 23, 961 genes are active in the Arabidopsis flower, including 8512 genes that have not been reported as florally expressed previously. We compared gene expression at different stages and found that many genes encoding transcription factors are preferentially expressed in early flower development. Other genes with expression at distinct developmental stages included DUF577 in meiotic cells and DUF220, DUF1216, and Oleosin in stage 12 flowers. DUF1216 and DUF577 are Brassicaceae specific, and together with other families experienced expansion within the Brassicaceae lineage, suggesting novel/greater roles in Brassicaceae floral development than other plants. The large dataset from this study can serve as a resource for expression analysis of genes involved in flower development in Arabidopsis and for comparison with other species. Together, this work provides clues regarding molecular networks underlying flower development. PMID:25653662

  16. Family size evolution in Drosophila chemosensory gene families: a comparative analysis with a critical appraisal of methods.

    PubMed

    Almeida, Francisca C; Sánchez-Gracia, Alejandro; Campos, Jose Luis; Rozas, Julio

    2014-07-01

    Gene turnover rates and the evolution of gene family sizes are important aspects of genome evolution. Here, we use curated sequence data of the major chemosensory gene families from Drosophila-the gustatory receptor, odorant receptor, ionotropic receptor, and odorant-binding protein families-to conduct a comparative analysis among families, exploring different methods to estimate gene birth and death rates, including an ad hoc simulation study. Remarkably, we found that the state-of-the-art methods may produce very different rate estimates, which may lead to disparate conclusions regarding the evolution of chemosensory gene family sizes in Drosophila. Among biological factors, we found that a peculiarity of D. sechellia's gene turnover rates was a major source of bias in global estimates, whereas gene conversion had negligible effects for the families analyzed herein. Turnover rates vary considerably among families, subfamilies, and ortholog groups although all analyzed families were quite dynamic in terms of gene turnover. Computer simulations showed that the methods that use ortholog group information appear to be the most accurate for the Drosophila chemosensory families. Most importantly, these results reveal the potential of rate heterogeneity among lineages to severely bias some turnover rate estimation methods and the need of further evaluating the performance of these methods in a more diverse sampling of gene families and phylogenetic contexts. Using branch-specific codon substitution models, we find further evidence of positive selection in recently duplicated genes, which attests to a nonneutral aspect of the gene birth-and-death process. PMID:24951565

  17. The d4 gene family in the human genome

    SciTech Connect

    Chestkov, A.V.; Baka, I.D.; Kost, M.V. [Engelhardt Inst. of Molecular Biology, Moscow (Russian Federation)] [and others] [Engelhardt Inst. of Molecular Biology, Moscow (Russian Federation); and others

    1996-08-15

    The d4 domain, a novel zinc finger-like structural motif, was first revealed in the rat neuro-d4 protein. Here we demonstrate that the d4 domain is conserved in evolution and that three related genes form a d4 family in the human genome. The human neuro-d4 is very similar to rat neuro-d4 at both the amino acid and the nucleotide levels. Moreover, the same splice variants have been detected among rat and human neuro-d4 transcripts. This gene has been localized on chromosome 19, and two other genes, members of the d4 family isolated by screening of the human genomic library at low stringency, have been mapped to chromosomes 11 and 14. The gene on chromosome 11 is the homolog of the ubiquitously expressed mouse gene ubi-d4/requiem, which is required for cell death after deprivation of trophic factors. A gene with a conserved d4 domain has been found in the genome of the nematode Caenorhabditis elegans. The conservation of d4 proteins from nematodes to vertebrates suggests that they have a general importance, but a diversity of d4 proteins expressed in vertebrate nervous systems suggests that some family members have special functions. 11 refs., 2 figs.

  18. Genome-wide identification and expression profiling of the SnRK2 gene family in Malus prunifolia.

    PubMed

    Shao, Yun; Qin, Yuan; Zou, Yangjun; Ma, Fengwang

    2014-11-15

    Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) constitutes a small plant-specific serine/threonine kinase family with essential roles in the abscisic acid (ABA) signal pathway and in responses to osmotic stress. Although a genome-wide analysis of this family has been conducted in some species, little is known about SnRK2 genes in apple (Malus domestica). We identified 14 putative sequences encoding 12 deduced SnRK2 proteins within the apple genome. Gene chromosomal location and synteny analysis of the apple SnRK2 genes indicated that tandem and segmental duplications have likely contributed to the expansion and evolution of these genes. All 12 full-length coding sequences were confirmed by cloning from Malus prunifolia. The gene structure and motif compositions of the apple SnRK2 genes were analyzed. Phylogenetic analysis showed that MpSnRK2s could be classified into four groups. Profiling of these genes presented differential patterns of expression in various tissues. Under stress conditions, transcript levels for some family members were up-regulated in the leaves in response to drought, salinity, or ABA treatments. This suggested their possible roles in plant response to abiotic stress. Our findings provide essential information about SnRK2 genes in apple and will contribute to further functional dissection of this gene family. PMID:25218039

  19. Multiparental Mapping of Plant Height and Flowering Time QTL in Partially Isogenic Sorghum Families

    PubMed Central

    Higgins, R. H.; Thurber, C. S.; Assaranurak, I.; Brown, P. J.

    2014-01-01

    Sorghum varieties suitable for grain production at temperate latitudes show dwarfism and photoperiod insensitivity, both of which are controlled by a small number of loci with large effects. We studied the genetic control of plant height and flowering time in five sorghum families (A–E), each derived from a cross between a tropical line and a partially isogenic line carrying introgressions derived from a common, temperate-adapted donor. A total of 724 F2:3 lines were phenotyped in temperate and tropical environments for plant height and flowering time and scored at 9139 SNPs using genotyping-by-sequencing. Biparental mapping was compared with multiparental mapping in different subsets of families (AB, ABC, ABCD, and ABCDE) using both a GWAS approach, which fit each QTL as a single effect across all families, and using a joint linkage approach, which fit QTL effects as nested within families. GWAS using all families (ABCDE) performed best at the cloned Dw3 locus, whereas joint linkage using all families performed best at the cloned Ma1 locus. Both multiparental approaches yielded apparently synthetic associations due to genetic heterogeneity and were highly dependent on the subset of families used. Comparison of all mapping approaches suggests that a GA2-oxidase underlies Dw1, and that a mir172a gene underlies a Dw1-linked flowering time QTL. PMID:25237111

  20. Genomewide analysis of TCP transcription factor gene family in Malus domestica.

    PubMed

    Xu, Ruirui; Sun, Peng; Jia, Fengjuan; Lu, Longtao; Li, Yuanyuan; Zhang, Shizhong; Huang, Jinguang

    2014-12-01

    Teosinte branched 1/cycloidea/proliferating cell factor 1 (TCP) proteins are a large family of transcriptional regulators in angiosperms. They are involved in various biological processes, including development and plant metabolism pathways. In this study, a total of 52 TCP genes were identified in apple (Malus domestica) genome. Bioinformatic methods were employed to predicate and analyse their relevant gene classification, gene structure, chromosome location, sequence alignment and conserved domains of MdTCP proteins. Expression analysis from microarray data showed that the expression levels of 28 and 51 MdTCP genes changed during the ripening and rootstock-scion interaction processes, respectively. The expression patterns of 12 selected MdTCP genes were analysed in different tissues and in response to abiotic stresses. All of the selected genes were detected in at least one of the tissues tested, and most of them were modulated by adverse treatments indicating that the MdTCPs were involved in various developmental and physiological processes. To the best of our knowledge, this is the first study of a genomewide analysis of apple TCP gene family. These results provide valuable information for studies on functions of the TCP transcription factor genes in apple. PMID:25572232

  1. Expansive Evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE Gene Family in Arabidopsis1[W

    PubMed Central

    Vandesteene, Lies; López-Galvis, Lorena; Vanneste, Kevin; Feil, Regina; Maere, Steven; Lammens, Willem; Rolland, Filip; Lunn, John E.; Avonce, Nelson; Beeckman, Tom; Van Dijck, Patrick

    2012-01-01

    Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a two-step reaction in which trehalose-6-phosphate (T6P) is synthesized from UDP-glucose and glucose-6-phosphate (catalyzed by T6P synthase [TPS]), and subsequently dephosphorylated to produce the disaccharide trehalose (catalyzed by T6P phosphatase [TPP]). In Arabidopsis (Arabidopsis thaliana), 11 genes encode proteins with both TPS- and TPP-like domains but only one of these (AtTPS1) appears to be an active (TPS) enzyme. In addition, plants contain a large family of smaller proteins with a conserved TPP domain. Here, we present an in-depth analysis of the 10 TPP genes and gene products in Arabidopsis (TPPA-TPPJ). Collinearity analysis revealed that all of these genes originate from whole-genome duplication events. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that all encode active TPP enzymes with an essential role for some conserved residues in the catalytic domain. These results suggest that the TPP genes function in the regulation of T6P levels, with T6P emerging as a novel key regulator of growth and development in higher plants. Extensive gene expression analyses using a complete set of promoter-?-glucuronidase/green fluorescent protein reporter lines further uncovered cell- and tissue-specific expression patterns, conferring spatiotemporal control of trehalose metabolism. Consistently, phenotypic characterization of knockdown and overexpression lines of a single TPP, AtTPPG, points to unique properties of individual TPPs in Arabidopsis, and underlines the intimate connection between trehalose metabolism and abscisic acid signaling. PMID:22855938

  2. Phylogenetic diversification of glycogen synthase kinase 3/SHAGGY-like kinase genes in plants

    PubMed Central

    Yoo, Mi-Jeong; Albert, Victor A; Soltis, Pamela S; Soltis, Douglas E

    2006-01-01

    Background The glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinases (GSKs) are non-receptor serine/threonine protein kinases that are involved in a variety of biological processes. In contrast to the two members of the GSK3 family in mammals, plants appear to have a much larger set of divergent GSK genes. Plant GSKs are encoded by a multigene family; analysis of the Arabidopsis genome revealed the existence of 10 GSK genes that fall into four major groups. Here we characterized the structure of Arabidopsis and rice GSK genes and conducted the first broad phylogenetic analysis of the plant GSK gene family, covering a taxonomically diverse array of algal and land plant sequences. Results We found that the structure of GSK genes is generally conserved in Arabidopsis and rice, although we documented examples of exon expansion and intron loss. Our phylogenetic analyses of 139 sequences revealed four major clades of GSK genes that correspond to the four subgroups initially recognized in Arabidopsis. ESTs from basal angiosperms were represented in all four major clades; GSK homologs from the basal angiosperm Persea americana (avocado) appeared in all four clades. Gymnosperm sequences occurred in clades I, III, and IV, and a sequence of the red alga Porphyra was sister to all green plant sequences. Conclusion Our results indicate that (1) the plant-specific GSK gene lineage was established early in the history of green plants, (2) plant GSKs began to diversify prior to the origin of extant seed plants, (3) three of the four major clades of GSKs present in Arabidopsis and rice were established early in the evolutionary history of extant seed plants, and (4) diversification into four major clades (as initially reported in Arabidopsis) occurred either just prior to the origin of the angiosperms or very early in angiosperm history. PMID:16504046

  3. The Vein Patterning 1 (VEP1) Gene Family Laterally Spread through an Ecological Network

    PubMed Central

    Tarrío, Rosa; Ayala, Francisco J.; Rodríguez-Trelles, Francisco

    2011-01-01

    Lateral gene transfer (LGT) is a major evolutionary mechanism in prokaryotes. Knowledge about LGT— particularly, multicellular— eukaryotes has only recently started to accumulate. A widespread assumption sees the gene as the unit of LGT, largely because little is yet known about how LGT chances are affected by structural/functional features at the subgenic level. Here we trace the evolutionary trajectory of VEin Patterning 1, a novel gene family known to be essential for plant development and defense. At the subgenic level VEP1 encodes a dinucleotide-binding Rossmann-fold domain, in common with members of the short-chain dehydrogenase/reductase (SDR) protein family. We found: i) VEP1 likely originated in an aerobic, mesophilic and chemoorganotrophic ?-proteobacterium, and was laterally propagated through nets of ecological interactions, including multiple LGTs between phylogenetically distant green plant/fungi-associated bacteria, and five independent LGTs to eukaryotes. Of these latest five transfers, three are ancient LGTs, implicating an ancestral fungus, the last common ancestor of land plants and an ancestral trebouxiophyte green alga, and two are recent LGTs to modern embryophytes. ii) VEP1's rampant LGT behavior was enabled by the robustness and broad utility of the dinucleotide-binding Rossmann-fold, which provided a platform for the evolution of two unprecedented departures from the canonical SDR catalytic triad. iii) The fate of VEP1 in eukaryotes has been different in different lineages, being ubiquitous and highly conserved in land plants, whereas fungi underwent multiple losses. And iv) VEP1-harboring bacteria include non-phytopathogenic and phytopathogenic symbionts which are non-randomly distributed with respect to the type of harbored VEP1 gene. Our findings suggest that VEP1 may have been instrumental for the evolutionary transition of green plants to land, and point to a LGT-mediated ‘Trojan Horse’ mechanism for the evolution of bacterial pathogenesis against plants. VEP1 may serve as tool for revealing microbial interactions in plant/fungi-associated environments. PMID:21818306

  4. Characterization of a Family of Arabidopsis Genes Related to Xyloglucan Fucosyltransferase11

    PubMed Central

    Sarria, Rodrigo; Wagner, Tanya A.; O'Neill, Malcolm A.; Faik, Ahmed; Wilkerson, Curtis G.; Keegstra, Kenneth; Raikhel, Natasha V.

    2001-01-01

    To understand primary cell wall assembly in Arabidopsis, we have focused on identifying and characterizing enzymes involved in xyloglucan biosynthesis. Nine genes (AtFUT2–10) were identified that share between 47% and 62% amino acid similarity with the xyloglucan-specific fucosyltransferase AtFUT1. Reverse transcriptase-PCR analysis indicates that all these genes are expressed. Bioinformatic analysis predicts that these family members are fucosyltransferases, and we first hypothesized that some may also be involved in xyloglucan biosynthesis. AtFUT3, AtFUT4, and AtFUT5 were expressed in tobacco (Nicotiana tabacum L. cv BY2) suspension culture cells, and the resulting proteins did not transfer fucose (Fuc) from GDP-Fuc to tamarind xyloglucan. AtFUT3, AtFUT4, and AtFUT5 were overexpressed in Arabidopsis plants. Leaves of plants overexpressing AtFUT4 or AtFUT5 contained more Fuc than wild-type plants. Stems of plants overexpressing AtFUT4 or AtFUT5 contained more xylose, less arabinose, and less galactose than wild-type plants. We suggest that the AtFUT family is likely to include fucosyltransferases important for the synthesis of wall carbohydrates. A targeted analysis of isolated cell wall matrix components from plants altered in expression of these proteins will help determine their specificity and biological function. PMID:11743104

  5. Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium.

    PubMed

    Ding, Mingquan; Chen, Jiadong; Jiang, Yurong; Lin, Lifeng; Cao, YueFen; Wang, Minhua; Zhang, Yuting; Rong, Junkang; Ye, Wuwei

    2015-02-01

    WRKY transcription factors play important roles in various stress responses in diverse plant species. In cotton, this family has not been well studied, especially in relation to fiber development. Here, the genomes and transcriptomes of Gossypium raimondii and Gossypium arboreum were investigated to identify fiber development related WRKY genes. This represents the first comprehensive comparative study of WRKY transcription factors in both diploid A and D cotton species. In total, 112 G. raimondii and 109 G. arboreum WRKY genes were identified. No significant gene structure or domain alterations were detected between the two species, but many SNPs distributed unequally in exon and intron regions. Physical mapping revealed that the WRKY genes in G. arboreum were not located in the corresponding chromosomes of G. raimondii, suggesting great chromosome rearrangement in the diploid cotton genomes. The cotton WRKY genes, especially subgroups I and II, have expanded through multiple whole genome duplications and tandem duplications compared with other plant species. Sequence comparison showed many functionally divergent sites between WRKY subgroups, while the genes within each group are under strong purifying selection. Transcriptome analysis suggested that many WRKY genes participate in specific fiber development processes such as fiber initiation, elongation and maturation with different expression patterns between species. Complex WRKY gene expression such as differential Dt and At allelic gene expression in G. hirsutum and alternative splicing events were also observed in both diploid and tetraploid cottons during fiber development process. In conclusion, this study provides important information on the evolution and function of WRKY gene family in cotton species. PMID:25190108

  6. Evolutionary dynamics of the wnt gene family: a lophotrochozoan perspective.

    PubMed

    Cho, Sung-Jin; Vallès, Yvonne; Giani, Vincent C; Seaver, Elaine C; Weisblat, David A

    2010-07-01

    The wnt gene family encodes a set of secreted glycoproteins involved in key developmental processes, including cell fate specification and regulation of posterior growth (Cadigan KM, Nusse R. 1997. Wnt signaling: a common theme in animal development. Genes Dev. 11:3286-3305.; Martin BL, Kimelman D. 2009. Wnt signaling and the evolution of embryonic posterior development. Curr Biol. 19:R215-R219.). As for many other gene families, evidence for expansion and/or contraction of the wnt family is available from deuterostomes (e.g., echinoderms and vertebrates [Nusse R, Varmus HE. 1992. Wnt genes. Cell. 69:1073-1087.; Schubert M, Holland LZ, Holland ND, Jacobs DK. 2000. A phylogenetic tree of the Wnt genes based on all available full-length sequences, including five from the cephalochordate amphioxus. Mol Biol Evol. 17:1896-1903.; Croce JC, Wu SY, Byrum C, Xu R, Duloquin L, Wikramanayake AH, Gache C, McClay DR. 2006. A genome-wide survey of the evolutionarily conserved Wnt pathways in the sea urchin Strongylocentrotus purpuratus. Dev Biol. 300:121-131.]) and ecdysozoans (e.g., arthropods and nematodes [Eisenmann DM. 2005. Wnt signaling. WormBook. 1-17.; Bolognesi R, Farzana L, Fischer TD, Brown SJ. 2008. Multiple Wnt genes are required for segmentation in the short-germ embryo of Tribolium castaneum. Curr Biol. 18:1624-1629.]), but little is known from the third major bilaterian group, the lophotrochozoans (e.g., mollusks and annelids [Prud'homme B, Lartillot N, Balavoine G, Adoutte A, Vervoort M. 2002. Phylogenetic analysis of the Wnt gene family. Insights from lophotrochozoan members. Curr Biol. 12:1395.]). To obtain a more comprehensive scenario of the evolutionary dynamics of this gene family, we exhaustively mined wnt gene sequences from the whole genome assemblies of a mollusk (Lottia gigantea) and two annelids (Capitella teleta and Helobdella robusta) and examined them by phylogenetic, genetic linkage, intron-exon structure, and embryonic expression analyses. The 36 wnt genes obtained represent 11, 12, and 9 distinct wnt subfamilies in Lottia, Capitella, and Helobdella, respectively. Thus, two of the three analyzed lophotrochozoan genomes retained an almost complete ancestral complement of wnt genes emphasizing the importance and complexity of this gene family across metazoans. The genome of the leech Helobdella reflects significantly more dynamism than those of Lottia and Capitella, as judged by gene duplications and losses, branch length, and changes in genetic linkage. Finally, we performed a detailed expression analysis for all the Helobdella wnt genes during embryonic development. We find that, although the patterns show substantial overlap during early cleavage stages, each wnt gene has a unique expression pattern in the germinal plate and during tissue morphogenesis. Comparisons of the embryonic expression patterns of the duplicated wnt genes in Helobdella with their orthologs in Capitella reveal extensive regulatory diversification of the duplicated leech wnt genes. PMID:20176615

  7. Genome-Wide Identification and Expression Analysis of NBS-Encoding Genes in Malus x domestica and Expansion of NBS Genes Family in Rosaceae

    PubMed Central

    Arya, Preeti; Kumar, Gulshan; Acharya, Vishal; Singh, Anil K.

    2014-01-01

    Nucleotide binding site leucine-rich repeats (NBS-LRR) disease resistance proteins play an important role in plant defense against pathogen attack. A number of recent studies have been carried out to identify and characterize NBS-LRR gene families in many important plant species. In this study, we identified NBS-LRR gene family comprising of 1015 NBS-LRRs using highly stringent computational methods. These NBS-LRRs were characterized on the basis of conserved protein motifs, gene duplication events, chromosomal locations, phylogenetic relationships and digital gene expression analysis. Surprisingly, equal distribution of Toll/interleukin-1 receptor (TIR) and coiled coil (CC) (1?1) was detected in apple while the unequal distribution was reported in majority of all other known plant genome studies. Prediction of gene duplication events intriguingly revealed that not only tandem duplication but also segmental duplication may equally be responsible for the expansion of the apple NBS-LRR gene family. Gene expression profiling using expressed sequence tags database of apple and quantitative real-time PCR (qRT-PCR) revealed the expression of these genes in wide range of tissues and disease conditions, respectively. Taken together, this study will provide a blueprint for future efforts towards improvement of disease resistance in apple. PMID:25232838

  8. A phylogenetic mixture model for gene family loss in parasitic bacteria

    E-print Network

    tree. The first phylogenetic model of gene family gain and loss assumed that the rates of gain and lossA phylogenetic mixture model for gene family loss in parasitic bacteria Submitted as a research words: gene families, mixture model, parasites, maximum likelihood,phylogenetics Running head: gene

  9. Update on the Kelch-like (KLHL) gene family

    PubMed Central

    2013-01-01

    The Kelch-like (KLHL) gene family encodes a group of proteins that generally possess a BTB/POZ domain, a BACK domain, and five to six Kelch motifs. BTB domains facilitate protein binding and dimerization. The BACK domain has no known function yet is of functional importance since mutations in this domain are associated with disease. Kelch domains form a tertiary structure of ?-propellers that have a role in extracellular functions, morphology, and binding to other proteins. Presently, 42 KLHL genes have been classified by the HUGO Gene Nomenclature Committee (HGNC), and they are found across multiple human chromosomes. The KLHL family is conserved throughout evolution. Phylogenetic analysis of KLHL family members suggests that it can be subdivided into three subgroups with KLHL11 as the oldest member and KLHL9 as the youngest. Several KLHL proteins bind to the E3 ligase cullin 3 and are known to be involved in ubiquitination. KLHL genes are responsible for several Mendelian diseases and have been associated with cancer. Further investigation of this family of proteins will likely provide valuable insights into basic biology and human disease. PMID:23676014

  10. Update on the Kelch-like (KLHL) gene family.

    PubMed

    Dhanoa, Bajinder S; Cogliati, Tiziana; Satish, Akhila G; Bruford, Elspeth A; Friedman, James S

    2013-01-01

    The Kelch-like (KLHL) gene family encodes a group of proteins that generally possess a BTB/POZ domain, a BACK domain, and five to six Kelch motifs. BTB domains facilitate protein binding and dimerization. The BACK domain has no known function yet is of functional importance since mutations in this domain are associated with disease. Kelch domains form a tertiary structure of ?-propellers that have a role in extracellular functions, morphology, and binding to other proteins. Presently, 42 KLHL genes have been classified by the HUGO Gene Nomenclature Committee (HGNC), and they are found across multiple human chromosomes. The KLHL family is conserved throughout evolution. Phylogenetic analysis of KLHL family members suggests that it can be subdivided into three subgroups with KLHL11 as the oldest member and KLHL9 as the youngest. Several KLHL proteins bind to the E3 ligase cullin 3 and are known to be involved in ubiquitination. KLHL genes are responsible for several Mendelian diseases and have been associated with cancer. Further investigation of this family of proteins will likely provide valuable insights into basic biology and human disease. PMID:23676014

  11. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance

    Microsoft Academic Search

    Minggui Yang; Qingyong Yang; Tingdong Fu; Yongming Zhou

    2011-01-01

    The GRAS proteins are a family of transcription regulators found in plants and play diverse roles in plant growth and development.\\u000a To study the biological roles of GRAS family genes in Brassica napus, an Arabidopsis LAS homologous gene, BnLAS and its two homologs were cloned from B. napus and its two progenitor species, Brassica rapa and Brassica oleracea. Relatively high

  12. Comprehensive analysis of CCCH-type zinc finger gene family in citrus (Clementine mandarin) by genome-wide characterization.

    PubMed

    Liu, Shengrui; Khan, Muhammad Rehman Gul; Li, Yongping; Zhang, Jinzhi; Hu, Chungen

    2014-10-01

    The CCCH-type zinc finger proteins comprise a large gene family of regulatory proteins and are widely distributed in eukaryotic organisms. The CCCH proteins have been implicated in multiple biological processes and environmental responses in plants. Little information is available, however, about CCCH genes in plants, especially in woody plants such as citrus. The release of the whole-genome sequence of citrus allowed us to perform a genome-wide analysis of CCCH genes and to compare the identified proteins with their orthologs in model plants. In this study, 62 CCCH genes and a total of 132 CCCH motifs were identified, and a comprehensive analysis including the chromosomal locations, phylogenetic relationships, functional annotations, gene structures and conserved motifs was performed. Distribution mapping revealed that 54 of the 62 CCCH genes are unevenly dispersed on the nine citrus chromosomes. Based on phylogenetic analysis and gene structural features, we constructed 5 subfamilies of 62 CCCH members and integrative subfamilies from citrus, Arabidopsis, and rice, respectively. Importantly, large numbers of SNPs and InDels in 26 CCCH genes were identified from Poncirus trifoliata and Fortunella japonica using whole-genome deep re-sequencing. Furthermore, citrus CCCH genes showed distinct temporal and spatial expression patterns in different developmental processes and in response to various stress conditions. Our comprehensive analysis of CleC3Hs is a valuable resource that further elucidates the roles of CCCH family members in plant growth and development. In addition, variants and comparative genomics analyses deepen our understanding of the evolution of the CCCH gene family and will contribute to further genetics and genomics studies of citrus and other plant species. PMID:24820208

  13. Identification of the familial cylindromatosis tumour-suppressor gene.

    PubMed

    Bignell, G R; Warren, W; Seal, S; Takahashi, M; Rapley, E; Barfoot, R; Green, H; Brown, C; Biggs, P J; Lakhani, S R; Jones, C; Hansen, J; Blair, E; Hofmann, B; Siebert, R; Turner, G; Evans, D G; Schrander-Stumpel, C; Beemer, F A; van Den Ouweland, A; Halley, D; Delpech, B; Cleveland, M G; Leigh, I; Leisti, J; Rasmussen, S

    2000-06-01

    Familial cylindromatosis is an autosomal dominant genetic predisposition to multiple tumours of the skin appendages. The susceptibility gene (CYLD) has previously been localized to chromosome 16q and has the genetic attributes of a tumour-suppressor gene (recessive oncogene). Here we have identified CYLD by detecting germline mutations in 21 cylindromatosis families and somatic mutations in 1 sporadic and 5 familial cylindromas. All mutations predict truncation or absence of the encoded protein. CYLD encodes three cytoskeletal-associated-protein-glycine-conserved (CAP-GLY) domains, which are found in proteins that coordinate the attachment of organelles to microtubules. CYLD also has sequence homology to the catalytic domain of ubiquitin carboxy-terminal hydrolases (UCH). PMID:10835629

  14. Genome-wide analysis and identification of stress-responsive genes of the CCCH zinc finger family in Solanum lycopersicum.

    PubMed

    Xu, Ruirui

    2014-10-01

    Zinc finger genes comprise a large and diverse gene family. Based on their individual finger structures and spacing, zinc finger proteins are further divided into different families according to their specific molecular functions. Genes in the CCCH family encode zinc finger proteins containing a motif with three cysteines and one histidine. They play important roles in plant growth and development, and in response to biotic and abiotic stresses. However, the limited analysis of the genome sequence has meant that there is no detailed information concerning the CCCH zinc finger family in tomato (Solanum lycopersicum). Here, we identified 80 CCCH zinc finger protein genes in the tomato genome. A complete overview of this gene family in tomato was presented, including the chromosome locations, gene duplications, phylogeny, gene structures and protein motifs. Promoter sequences and expression profiles of putative stress-responsive members were also investigated. These results revealed that, with the exception of four genes, the 80 CCCH genes are distributed over all 12 chromosomes with different densities, and include six segmental duplication events. The CCCH family in tomato could be divided into 12 groups based on their different CCCH motifs and into eight subfamilies by phylogenetic analysis. Analysis showed that almost all CCCH genes contain putative stress-responsive cis-elements in their promoter regions. Nine CCCH genes chosen for further quantitative real-time PCR analysis showed differential expression patterns in three representative tomato tissues. In addition, their expression levels indicated that these genes are mostly involved in the response to mannitol, heat, salicylic acid, ethylene or methyl jasmonate treatments. To the best of our knowledge, this is the first report of a genome-wide analysis of the tomato CCCH zinc finger family. Our data provided valuable information on tomato CCCH proteins and form a foundation for future studies of these proteins, especially for those members that may play important roles in stress responses. PMID:24870401

  15. Effects of the Family Environment: Gene-Environment Interaction and Passive Gene-Environment Correlation

    ERIC Educational Resources Information Center

    Price, Thomas S.; Jaffee, Sara R.

    2008-01-01

    The classical twin study provides a useful resource for testing hypotheses about how the family environment influences children's development, including how genes can influence sensitivity to environmental effects. However, existing statistical models do not account for the possibility that children can inherit exposure to family environments…

  16. FRAGARIA VESCA, A REFERENCE PLANT FOR THE ROSACEAE FAMILY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fresh and processed products of the Rosaceae plant family (almonds, apples, apricots, blackberries, peaches, pears, plums, sweet and tart cherries, strawberries, raspberries, and roses) in the U.S. are valued at over $7 billion. Rosaceous crops are rich sources of vitamins, minerals, dietary fi...

  17. A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.)

    PubMed Central

    2013-01-01

    Background The application and nutritional value of vegetable oil is highly dependent on its fatty acid composition, especially the relative proportion of its two major fatty acids, i.e oleic acid and linoleic acid. Microsomal oleoyl phosphatidylcholine desaturase encoded by FAD2 gene is known to introduce a double bond at the ?12 position of an oleic acid on phosphatidylcholine and convert it to linoleic acid. The known plant FAD2 enzymes are encoded by small gene families consisting of 1-4 members. In addition to the classic oleate ?12-desaturation activity, functional variants of FAD2 that are capable of undertaking additional or alternative acyl modifications have also been reported in a limited number of plant species. In this study, our objective was to identify FAD2 genes from safflower and analyse their differential expression profile and potentially diversified functionality. Results We report here the characterization and functional expression of an exceptionally large FAD2 gene family from safflower, and the temporal and spatial expression profiles of these genes as revealed through Real-Time quantitative PCR. The diversified functionalities of some of the safflower FAD2 gene family members were demonstrated by ectopic expression in yeast and transient expression in Nicotiana benthamiana leaves. CtFAD2-1 and CtFAD2-10 were demonstrated to be oleate desaturases specifically expressed in developing seeds and flower head, respectively, while CtFAD2-2 appears to have relatively low oleate desaturation activity throughout the plant. CtFAD2-5 and CtFAD2-8 are specifically expressed in root tissues, while CtFAD2-3, 4, 6, 7 are mostly expressed in the cotyledons and hypocotyls in young safflower seedlings. CtFAD2-9 was found to encode a novel desaturase operating on C16:1 substrate. CtFAD2-11 is a tri-functional enzyme able to introduce a carbon double bond in either cis or trans configuration, or a carbon triple (acetylenic) bond at the ?12 position. Conclusions In this study, we isolated an unusually large FAD2 gene family with 11 members from safflower. The seed expressed FAD2 oleate ?12 desaturase genes identified in this study will provide candidate targets to manipulate the oleic acid level in safflower seed oil. Further, the divergent FAD2 enzymes with novel functionality could be used to produce rare fatty acids, such as crepenynic acid, in genetically engineered crop plants that are precursors for economically important phytoalexins and oleochemical products. PMID:23289946

  18. Genome-Wide Analysis of LIM Gene Family in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa

    PubMed Central

    Arnaud, Dominique; Déjardin, Annabelle; Leplé, Jean-Charles; Lesage-Descauses, Marie-Claude; Pilate, Gilles

    2007-01-01

    Abstract In Eukaryotes, LIM proteins act as developmental regulators in basic cellular processes such as regulating the transcription or organizing the cytoskeleton. The LIM domain protein family in plants has mainly been studied in sunflower and tobacco plants, where several of its members exhibit a specific pattern of expression in pollen. In this paper, we finely characterized in poplar six transcripts encoding these proteins. In Populus trichocarpa genome, the 12 LIM gene models identified all appear to be duplicated genes. In addition, we describe several new LIM domain proteins deduced from Arabidopsis and rice genomes, raising the number of LIM gene models to six for both species. Plant LIM genes have a core structure of four introns with highly conserved coding regions. We also identified new LIM domain proteins in several other species, and a phylogenetic analysis of plant LIM proteins reveals that they have undergone one or several duplication events during the evolution. We gathered several LIM protein members within new monophyletic groups. We propose to classify the plant LIM proteins into four groups: ?LIM1, ?LIM1, ?LIM2, and ?LIM2, subdivided according to their specificity to a taxonomic class and/or to their tissue-specific expression. Our investigation of the structure of the LIM domain proteins revealed that they contain many conserved motifs potentially involved in their function. PMID:17573466

  19. Annotation, phylogeny and expression analysis of the nuclear factor Y gene families in common bean (Phaseolus vulgaris)

    PubMed Central

    Rípodas, Carolina; Castaingts, Mélisse; Clúa, Joaquín; Blanco, Flavio; Zanetti, María Eugenia

    2015-01-01

    In the past decade, plant nuclear factor Y (NF-Y) genes have gained major interest due to their roles in many biological processes in plant development or adaptation to environmental conditions, particularly in the root nodule symbiosis established between legume plants and nitrogen fixing bacteria. NF-Ys are heterotrimeric transcriptional complexes composed of three subunits, NF-YA, NF-YB, and NF-YC, which bind with high affinity and specificity to the CCAAT box, a cis element present in many eukaryotic promoters. In plants, NF-Y subunits consist of gene families with about 10 members each. In this study, we have identified and characterized the NF-Y gene families of common bean (Phaseolus vulgaris), a grain legume of worldwide economical importance and the main source of dietary protein of developing countries. Expression analysis showed that some members of each family are up-regulated at early or late stages of the nitrogen fixing symbiotic interaction with its partner Rhizobium etli. We also showed that some genes are differentially accumulated in response to inoculation with high or less efficient R. etli strains, constituting excellent candidates to participate in the strain-specific response during symbiosis. Genes of the NF-YA family exhibit a highly structured intron-exon organization. Moreover, this family is characterized by the presence of upstream ORFs when introns in the 5? UTR are retained and miRNA target sites in their 3? UTR, suggesting that these genes might be subjected to a complex post-transcriptional regulation. Multiple protein alignments indicated the presence of highly conserved domains in each of the NF-Y families, presumably involved in subunit interactions and DNA binding. The analysis presented here constitutes a starting point to understand the regulation and biological function of individual members of the NF-Y families in different developmental processes in this grain legume. PMID:25642232

  20. Gravity-Induced Gene Expression in Plants.

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.

    Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high sequence identity as well as a conserved pattern of transcript abundance changes after gravity stimulation between corn pulvinus tissue and Arabidopsis root apices. The functions of these genes in gravitropic responses are currently being analyzed and should give us important information about evolutionary conserved elements in plant gravity signal transduction. (This research was funded by NASA). Kimbrough, J. M., R. Salinas-Mondragon, et al. (2004). "The Fast and Transient Transcriptional Network of Gravity and Mechanical Stimulation in the Arabidopsis Root Apex." Plant Physiol. 136(1): 2790-2805. Moseyko, N., T. Zhu, et al. (2002). "Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays." Plant Physiol 130(2): 720-8. Salinas-Mondragon, R., A. Brogan, et al. (2005). "Gravity and light: integrating transcriptional regulation in roots." Gravit Space Biol Bull 18(2): 121-2.

  1. Functional independence of circadian clocks that regulate plant gene expression

    E-print Network

    Millar, Andrew J.

    Functional independence of circadian clocks that regulate plant gene expression Simon C. Thain and behaviour of most eukaryotes, controlling an orderly succession of physiological processes in plants. Peripheral plant and animal tissues also maintain circadian rhythms when isolated in culture

  2. Comprehensive genomic analysis and expression profiling of diacylglycerol kinase gene family in Malus prunifolia (Willd.) Borkh.

    PubMed

    Li, Yali; Tan, Yanxiao; Shao, Yun; Li, Mingjun; Ma, Fengwang

    2015-05-01

    Diacylglycerol kinase (DGK) is a pivotal enzyme that phosphorylates diacylglycerol (DAG) to form phosphatidic acid (PA). The production of PA from phospholipase D (PLD) and the coupled phospholipase C (PLC)/DGK route is a critical signaling process in animal and plant cells. Next to PLD, DGK is the second most important generator of PA in biotic and abiotic stress responses. We identified 8 DGK members within the apple genome and all of their putative proteins contain one DGK catalytic domain and one DGK accessory domain. Four coding sequences were confirmed by cloning from Malus prunifolia. Phylogenetic and gene structure analyses showed that the apple DGK genes could be assigned to Clusters I, II, or III. Expression analysis of 6 of them revealed that their transcript levels were highest in stems. Some apple DGK genes were also significantly up-regulated in response to salt and drought stresses. This suggested their possible roles in plant defenses against environmental challenges. As a first step toward genome-wide analyses of the DGK genes in woody plants, our results imply that apple DGK genes are involved in the signaling of stress responses. These findings will contribute to further functional dissection of this gene family. PMID:25688881

  3. Plant introductions, hybridization and gene flow.

    PubMed Central

    Abbott, Richard J; James, Juliet K; Milne, Richard I; Gillies, Amanda C M

    2003-01-01

    Many regional floras contain a high proportion of recently introduced plant species. Occasionally, hybridization between an introduced species and another species (introduced or native) can result in interspecific gene flow. This may occur even in instances where the F(1) hybrid shows very high sterility, but occasionally produces a few viable gametes. We provide examples of gene flow occurring between some rhododendrons recently introduced to the British flora, and between an introduced and native Senecio species. Neutral molecular markers have normally been employed to obtain evidence of interspecific gene flow, but the challenge now is to isolate and characterize functional introgressed genes and to determine how they affect the fitness of introgressants and whether they improve adaptation to novel habitats allowing introgressants to expand the range of a species. We outline a candidate gene approach for isolating and characterizing an allele of the RAY gene in Senecio vulgaris, which is believed to have introgressed from S. squalidus, and which causes the production of ray florets in flower heads. We discuss the effects of this introgressed allele on individual fitness, including those that originate directly from the production of ray florets plus those that may arise from pleiotropy and/or linkage. PMID:12831478

  4. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.).

    PubMed

    Yu, Liying; Tang, Weiqi; He, Weiyi; Ma, Xiaoli; Vasseur, Liette; Baxter, Simon W; Yang, Guang; Huang, Shiguo; Song, Fengqin; You, Minsheng

    2015-01-01

    Cytochrome P450 monooxygenases are present in almost all organisms and can play vital roles in hormone regulation, metabolism of xenobiotics and in biosynthesis or inactivation of endogenous compounds. In the present study, a genome-wide approach was used to identify and analyze the P450 gene family of diamondback moth, Plutella xylostella, a destructive worldwide pest of cruciferous crops. We identified 85 putative cytochrome P450 genes from the P. xylostella genome, including 84 functional genes and 1 pseudogene. These genes were classified into 26 families and 52 subfamilies. A phylogenetic tree constructed with three additional insect species shows extensive gene expansions of P. xylostella P450 genes from clans 3 and 4. Gene expression of cytochrome P450s was quantified across multiple developmental stages (egg, larva, pupa and adult) and tissues (head and midgut) using P. xylostella strains susceptible or resistant to insecticides chlorpyrifos and fiprinol. Expression of the lepidopteran specific CYP367s predominantly occurred in head tissue suggesting a role in either olfaction or detoxification. CYP340s with abundant transposable elements and relatively high expression in the midgut probably contribute to the detoxification of insecticides or plant toxins in P. xylostella. This study will facilitate future functional studies of the P. xylostella P450s in detoxification. PMID:25752830

  5. Genome-wide identification, classification and expression profiling of nicotianamine synthase (NAS) gene family in maize

    PubMed Central

    2013-01-01

    Background Nicotianamine (NA), a ubiquitous molecule in plants, is an important metal ion chelator and the main precursor for phytosiderophores biosynthesis. Considerable progress has been achieved in cloning and characterizing the functions of nicotianamine synthase (NAS) in plants including barley, Arabidopsis and rice. Maize is not only an important cereal crop, but also a model plant for genetics and evolutionary study. The genome sequencing of maize was completed, and many gene families were identified. Although three NAS genes have been characterized in maize, there is still no systematic identification of maize NAS family by genomic mining. Results In this study, nine NAS genes in maize were identified and their expression patterns in different organs including developing seeds were determined. According to the evolutionary relationship and tissue specific expression profiles of ZmNAS genes, they can be subgrouped into two classes. Moreover, the expression patterns of ZmNAS genes in response to fluctuating metal status were analysed. The class I ZmNAS genes were induced under Fe deficiency and were suppressed under Fe excessive conditions, while the expression pattern of class II genes were opposite to class I. The complementary expression patterns of class I and class II ZmNAS genes confirmed the classification of this family. Furthermore, the histochemical localization of ZmNAS1;1/1;2 and ZmNAS3 were determined using in situ hybridization. It was revealed that ZmNAS1;1/1;2, representing the class I genes, mainly expressed in cortex and stele of roots with sufficient Fe, and its expression can expanded in epidermis, as well as shoot apices under Fe deficient conditions. On the contrary, ZmNAS3, one of the class II genes, was accumulated in axillary meristems, leaf primordia and mesophyll cells. These results suggest that the two classes of ZmNAS genes may be regulated on transcriptional level when responds to various demands for iron uptake, translocation and homeostasis. Conclusion These results provide significant insights into the molecular bases of ZmNAS in balancing iron uptake, translocation and homeostasis in response to fluctuating environmental Fe status. PMID:23575343

  6. Functional Characterization of the Plastidic Phosphate Translocator Gene Family from the Thermo-Acidophilic Red Alga Galdieria sulphuraria Reveals Specific Adaptations of Primary Carbon Partitioning in Green Plants and Red Algae1[W][OA

    PubMed Central

    Linka, Marc; Jamai, Aziz; Weber, Andreas P.M.

    2008-01-01

    In chloroplasts of green plants and algae, CO2 is assimilated into triose-phosphates (TPs); a large part of these TPs is exported to the cytosol by a TP/phosphate translocator (TPT), whereas some is stored in the plastid as starch. Plastidial phosphate translocators have evolved from transport proteins of the host endomembrane system shortly after the origin of chloroplasts by endosymbiosis. The red microalga Galdieria sulphuraria shares three conserved putative orthologous transport proteins with the distantly related seed plants and green algae. However, red algae, in contrast to green plants, store starch in their cytosol, not inside plastids. Hence, due to the lack of a plastidic starch pool, a larger share of recently assimilated CO2 needs to be exported to the cytosol. We thus hypothesized that red algal transporters have distinct substrate specificity in comparison to their green orthologs. This hypothesis was tested by expression of the red algal genes in yeast (Saccharomyces cerevisiae) and assessment of their substrate specificities and kinetic constants. Indeed, two of the three red algal phosphate translocator candidate orthologs have clearly distinct substrate specificities when compared to their green homologs. GsTPT (for G. sulphuraria TPT) displays very narrow substrate specificity and high affinity; in contrast to green plant TPTs, 3-phosphoglyceric acid is poorly transported and thus not able to serve as a TP/3-phosphoglyceric acid redox shuttle in vivo. Apparently, the specific features of red algal primary carbon metabolism promoted the evolution of a highly efficient export system with high affinities for its substrates. The low-affinity TPT of plants maintains TP levels sufficient for starch biosynthesis inside of chloroplasts, whereas the red algal TPT is optimized for efficient export of TP from the chloroplast. PMID:18799657

  7. Genomic and expression analysis of glycosyl hydrolase family 35 genes from rice (Oryza sativa L.)

    PubMed Central

    Tanthanuch, Waraporn; Chantarangsee, Mallika; Maneesan, Janjira; Ketudat-Cairns, James

    2008-01-01

    Background Many plant ?-galactosidases (Bgals) have been well characterized and their deduced biological functions mainly involve degradation of structural pectins, xyloglucans or arabinogalactoproteins in plant cell walls. However, gene multiplicity in glycosyl hydrolase family 35 (GH35), to which these proteins belong, implies diverse functions. In this study, the gene multiplicity, apparent evolutionary relationships and transcript expression of rice Bgal genes were examined, in order to predict their biological functions. Results Fifteen rice Bgal genes were identified in the plant genome, one of which encodes a protein similar to animal Bgals (OsBgal9), and the remaining 14 fall in a nearly plant-specific subfamily of Bgals. The presence of both classes of Bgals in bryophytes, as well as vascular plants, suggests both gene lineages were present early in plant evolution. All 15 proteins were predicted to contain secretory signal sequences, suggesting they have secretory pathway or external roles. RT-PCR and database analysis found two distinct lineages to be expressed nearly exclusively in reproductive tissues and to be closely related to Arabidopsis Bgals expressed most highly in flower and pollen. On the other hand, OsBgal6 is expressed primarily in young vegetative tissues, and alternative splicing in panicle prevents its production of full-length protein in this reproductive tissue. OsBgal11 also showed alternative splicing to produce different length proteins. OsBgal13 produced by recombinant expression in Escherichia coli hydrolyzed ?-L-arabinoside in addition to ?-D-galactoside and ?-(1?3)-, ?-(1?4)- and ?-(1?6)- linked galacto-oligosaccharides. Conclusion Rice GH35 contains fifteen genes with a diversity of protein sequences, predicted locations and expression and splicing patterns that suggest that OsBgals enzymes may play a variety of roles in metabolism of cell wall polysaccharides, glycoproteins and glycolipids. PMID:18664295

  8. Population- and Family-Based Studies Associate the "MTHFR" Gene with Idiopathic Autism in Simplex Families

    ERIC Educational Resources Information Center

    Liu, Xudong; Solehdin, Fatima; Cohen, Ira L.; Gonzalez, Maripaz G.; Jenkins, Edmund C.; Lewis, M. E. Suzanne; Holden, Jeanette J. A.

    2011-01-01

    Two methylenetetrahydrofolate reductase gene ("MTHFR") functional polymorphisms were studied in 205 North American simplex (SPX) and 307 multiplex (MPX) families having one or more children with an autism spectrum disorder. Case-control comparisons revealed a significantly higher frequency of the low-activity 677T allele, higher prevalence of the…

  9. Efficient plant male fertility depends on vegetative nuclear movement mediated by two families of plant outer nuclear membrane proteins

    PubMed Central

    Zhou, Xiao; Meier, Iris

    2014-01-01

    Increasing evidence suggests that nuclear migration is important for eukaryotic development. Although nuclear migration is conserved in plants, its importance for plant development has not yet been established. The most extraordinary plant nuclear migration events involve plant fertilization, which is starkly different from that of animals. Instead of evolving self-propelled sperm cells (SCs), plants use pollen tubes to deliver SCs, in which the pollen vegetative nucleus (VN) and the SCs migrate as a unit toward the ovules, a fundamental but barely understood process. Here, we report that WPP domain-interacting proteins (WIPs) and their binding partners the WPP domain-interacting tail-anchored proteins (WITs) are essential for pollen nuclear migration. Loss-of-function mutations in WIT and/or WIP gene families resulted in impaired VN movement, inefficient SC delivery, and defects in pollen tube reception. WIPs are Klarsicht/ANC-1/Syne-1 Homology (KASH) analogs in plants. KASH proteins are key players in animal nuclear migration. Thus, this study not only reveals an important nuclear migration mechanism in plant fertilization but also, suggests that similar nuclear migration machinery is conserved between plants and animals. PMID:25074908

  10. Multiple regulatory genes control expression of a gene family during development of Dictyostelium discoideum.

    PubMed

    Alexander, S; Cibulsky, A M; Cuneo, S D

    1986-12-01

    Mutant strains of Dictyostelium discoideum carrying dis mutations fail to transcribe specifically the family of developmentally regulated discoidin lectin genes during morphogenesis. The phenotypes of these mutants strongly suggested that the mutations reside in regulatory genes. Using these mutant strains, we showed that multiple regulatory genes are required for the expression of the lectin structural genes and that these regulatory genes (the dis+ alleles) act in trans to regulate this gene family. These regulatory genes fall into two complementation groups (disA and disB) and map to linkage groups II and III, respectively. A further regulatory locus was defined by the identification of an unlinked supressor gene, drsA (discoidin restoring), which is epistatic to disB, but not disA, and results in the restoration of lectin expression in cells carrying the disB mutation. Mutant cells carrying the drsA allele express the discoidin lectin gene family during growth and development, in contrast to wild-type cells which express it only during development. Therefore, the suppressor activity of the drsA allele appears to function by making the expression of the discoidin lectins constitutive and no longer strictly developmentally regulated. The data indicate that normal expression of the discoidin lectins is dependent on the sequential action of the disB+, drsA+, and disA+ gene products. Thus, we described an interacting network of regulatory genes which in turn controls the developmental expression of a family of genes during the morphogenesis of D. discoideum. PMID:3796605

  11. Diversity and Linkage of Genes in the Self-Incompatibility Gene Family in Arabidopsis lyrata

    Microsoft Academic Search

    Deborah Charlesworth; Barbara K. Mable; Mikkel H. Schierup; Carolina Bartolome ´; Philip Awadalla

    We report studies of seven members of the S-domain gene family in Arabidopsis lyrata, a member of the Brassicaceae that has a sporophytic self-incompatibility (SI) system. Orthologs for five loci are identifiable in the self-compatible relative A. thaliana. Like the Brassica stigmatic incompatibility protein locus (SRK), some of these genes have kinase domains. We show that several of these genes

  12. Deletion of the MGMT gene in familial melanoma.

    PubMed

    Appelqvist, Frida; Yhr, Maria; Erlandson, Anna; Martinsson, Tommy; Enerbäck, Charlotta

    2014-08-01

    The DNA repair gene MGMT (O-6-methylguanine-DNA methyltransferase) is important for maintaining normal cell physiology and genomic stability. Alterations in MGMT play a critical role in the development of several types of cancer, including glioblastoma, lung cancer, and colorectal cancer. The purpose of this study was to explore the function of genetic alterations in MGMT and their connection with familial melanoma (FM). Using multiplex ligation-dependent probe amplification, we identified a deletion that included the MGMT gene in one of 64 families with a melanoma predisposition living in western Sweden. The mutation segregated with the disease as a heterozygous deletion in blood-derived DNA, but a homozygous deletion including the promoter region and exon 1 was seen in tumor tissue based on Affymetrix 500K and 6.0 arrays. By sequence analysis of the MGMT gene in the other 63 families with FM from western Sweden, we identified four common polymorphisms, nonfunctional, as predominantly described in previous studies. We conclude that inherited alterations in the MGMT gene might be a rare cause of FM, and we suggest that MGMT contributes to melanoma predisposition. PMID:24801985

  13. GFScan: A Gene Family Search Tool at Genomic Zhenyu Xuan, W. Richard McCombie, and Michael Q. Zhang1

    E-print Network

    -known strate- gies for gene family analysis is to detect all the gene models first in one genome with some geneGFScan: A Gene Family Search Tool at Genomic DNA Level Zhenyu Xuan, W. Richard Mc GFScan (Gene Family Scan), a tool that identifies members of a gene family by searching genomic DNA

  14. Large gene family expansion and variable selective pressures for cathepsin B in aphids.

    PubMed

    Rispe, Claude; Kutsukake, Mayako; Doublet, Vincent; Hudaverdian, Sylvie; Legeai, Fabrice; Simon, Jean-Christophe; Tagu, Denis; Fukatsu, Takema

    2008-01-01

    Aphids exclusively feed on plant phloem sap that contains much sugar and some nonessential amino acids but is poor in lipids and proteins. Conventionally, it has been believed that aphids substantially have no intestinal digestion of proteins. However, we here report an unexpected finding that cysteine protease genes of the family cathepsin B are massively amplified in the lineage of aphids and that many of the protease genes exhibit gut-specific overexpression. By making use of expressed sequence tag data, sequenced cDNAs, and genomic trace sequences of the pea aphid Acyrthosiphon pisum, we identified a total of 28 cathepsin B-like gene copies in the genome of A. pisum. Phylogenetic analyses of all the cathepsin B genes in aphids revealed that genic expansion has continuously proceeded with basal, intermediary, and recent duplications. Estimation of molecular evolutionary rates indicated that major alterations of the rates often occurred after duplications. For example, a gene copy ("348") was shown to be slow evolving and close to genes of other insects like Drosophila melanogaster, whereas the other gene copies appeared to have evolved faster with higher ratios of nonsynonymous to synonymous substitutions. We identified a number of gene copies (16 in A. pisum) that contained a replacement at the site required for catalytic activity of the protease. Among these, 2 copies were pseudogenes, whereas the remaining copies were structurally intact and possibly acquired new functions. For example, a cluster of such gene copies ("1674") has been subjected to positive selection. Quantitative reverse transcriptase-polymerase chain reaction analyses revealed that the more conserved gene copy ("348") showed a constitutive expression, whereas 5 other forms ("84," "16," "16D," "1874," and "2744") were preferentially expressed in the gut of A. pisum. Putative biological roles of the diversified cathepsin B-like gene copies in aphids are discussed in relation to their nutritional physiology specialized for plant sap feeding lifestyle. PMID:17934209

  15. Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume.

    PubMed

    Xu, Zongda; Zhang, Qixiang; Sun, Lidan; Du, Dongliang; Cheng, Tangren; Pan, Huitang; Yang, Weiru; Wang, Jia

    2014-10-01

    MADS-box genes encode transcription factors that play crucial roles in plant development, especially in flower and fruit development. To gain insight into this gene family in Prunus mume, an important ornamental and fruit plant in East Asia, and to elucidate their roles in flower organ determination and fruit development, we performed a genome-wide identification, characterisation and expression analysis of MADS-box genes in this Rosaceae tree. In this study, 80 MADS-box genes were identified in P. mume and categorised into MIKC, M?, M?, M? and M? groups based on gene structures and phylogenetic relationships. The MIKC group could be further classified into 12 subfamilies. The FLC subfamily was absent in P. mume and the six tandemly arranged DAM genes might experience a species-specific evolution process in P. mume. The MADS-box gene family might experience an evolution process from MIKC genes to M? genes to M?, M? and M? genes. The expression analysis suggests that P. mume MADS-box genes have diverse functions in P. mume development and the functions of duplicated genes diverged after the duplication events. In addition to its involvement in the development of female gametophytes, type I genes also play roles in male gametophytes development. In conclusion, this study adds to our understanding of the roles that the MADS-box genes played in flower and fruit development and lays a foundation for selecting candidate genes for functional studies in P. mume and other species. Furthermore, this study also provides a basis to study the evolution of the MADS-box family. PMID:24859011

  16. Plant KT/KUP/HAK Potassium Transporters: Single Family – Multiple Functions

    PubMed Central

    Grabov, Alexander

    2007-01-01

    Background and Aims Potassium transporters belonging to the KT/KUP/HAK family are important for various aspects of plant life including mineral nutrition and the regulation of development. Genes encoding these transporters are present in the genomes of all plants, but have not been found in the genomes of Protista or Animalia. The aim of this Botanical Briefing is to analyse the function of KT/KUP/HAK transporters from evolutionary, molecular and physiological perspectives. Scope This Briefing covers the phylogeny and evolution of KT/KUP/HAK transporters, the role of transporters in plant mineral nutrition and potassium homeostasis, and the role of KT/KUP/HAK transporters in plant development. PMID:17495982

  17. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family.

    PubMed

    Duester, G; Farrés, J; Felder, M R; Holmes, R S; Höög, J O; Parés, X; Plapp, B V; Yin, S J; Jörnvall, H

    1999-08-01

    The alcohol dehydrogenase (ADH) gene family encodes enzymes that metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. Studies on 19 vertebrate animals have identified ADH orthologs across several species, and this has now led to questions of how best to name ADH proteins and genes. Seven distinct classes of vertebrate ADH encoded by non-orthologous genes have been defined based upon sequence homology as well as unique catalytic properties or gene expression patterns. Each class of vertebrate ADH shares <70% sequence identity with other classes of ADH in the same species. Classes may be further divided into multiple closely related isoenzymes sharing >80% sequence identity such as the case for class I ADH where humans have three class I ADH genes, horses have two, and mice have only one. Presented here is a nomenclature that uses the widely accepted vertebrate ADH class system as its basis. It follows the guidelines of human and mouse gene nomenclature committees, which recommend coordinating names across species boundaries and eliminating Roman numerals and Greek symbols. We recommend that enzyme subunits be referred to by the symbol "ADH" (alcohol dehydrogenase) followed by an Arabic number denoting the class; i.e. ADH1 for class I ADH. For genes we recommend the italicized root symbol "ADH" for human and "Adh" for mouse, followed by the appropriate Arabic number for the class; i.e. ADH1 or Adh1 for class I ADH genes. For organisms where multiple species-specific isoenzymes exist within a class, we recommend adding a capital letter after the Arabic number; i.e. ADH1A, ADH1B, and ADH1C for human alpha, beta, and gamma class I ADHs, respectively. This nomenclature will accommodate newly discovered members of the vertebrate ADH family, and will facilitate functional and evolutionary studies. PMID:10424757

  18. Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica

    PubMed Central

    2013-01-01

    Background Through the diversity of cytokinin regulated processes, this phytohormone has a profound impact on plant growth and development. Cytokinin signaling is involved in the control of apical and lateral meristem activity, branching pattern of the shoot, and leaf senescence. These processes influence several traits, including the stem diameter, shoot architecture, and perennial life cycle, which define the development of woody plants. To facilitate research about the role of cytokinin in regulation of woody plant development, we have identified genes associated with cytokinin signaling and homeostasis pathways from two hardwood tree species. Results Taking advantage of the sequenced black cottonwood (Populus trichocarpa) and peach (Prunus persica) genomes, we have compiled a comprehensive list of genes involved in these pathways. We identified genes belonging to the six families of cytokinin oxidases (CKXs), isopentenyl transferases (IPTs), LONELY GUY genes (LOGs), two-component receptors, histidine containing phosphotransmitters (HPts), and response regulators (RRs). All together 85 Populus and 45 Prunus genes were identified, and compared to their Arabidopsis orthologs through phylogenetic analyses. Conclusions In general, when compared to Arabidopsis, differences in gene family structure were often seen in only one of the two tree species. However, one class of genes associated with cytokinin signal transduction, the CKI1-like family of two-component histidine kinases, was larger in both Populus and Prunus than in Arabidopsis. PMID:24341635

  19. Molecular Evolution of the Plant SLT Protein Family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The products of the sodium/lithium tolerance (Slt) genes are proteins that have molecular chaperone activity in vitro. The results from extensive database analyses indicate that SLT-orthologous proteins are present only in seed plants (Spermatopsida). Herein we describe the sequence analysis of th...

  20. Molecular analyses of the rice tubby-like protein gene family and their response to bacterial infection

    Microsoft Academic Search

    Yanjun Kou; Deyun Qiu; Lei Wang; Xianghua Li; Shiping Wang

    2009-01-01

    Tubby-like protein family has been identified in various multicellular organisms, indicating its fundamental functions in\\u000a the organisms. However, the roles of plant tubby-like proteins are unknown. In this study, we have defined the tubby-like\\u000a protein gene (OsTLP) family with 14 members in rice. Most of the OsTLPs harbor a tubby domain in their carboxyl terminus and an F-box domain\\u000a in

  1. Genomewide identification and expression analysis of the ARF gene family in apple.

    PubMed

    Luo, Xiao-Cui; Sun, Mei-Hong; Xu, Rui-Rui; Shu, Huai-Rui; Wang, Jia-Wei; Zhang, Shi-Zhong

    2014-12-01

    Auxin response factors (ARF) are transcription factors that regulate auxin responses in plants. Although the genomewide analysis of this family has been performed in some species, little is known regarding ARF genes in apple (Malus domestica). In this study, 31 putative apple ARF genes have been identified and located within the apple genome. The phylogenetic analysis revealed that MdARFs could be divided into three subfamilies (groups I, II and III). The predicted MdARFs were distributed across 15 of 17 chromosomes with different densities. In addition, the analysis of exon-intron junctions and of the intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Expression profile analyses of MdARF genes were performed in different tissues (root, stem, leaf, flower and fruit), and all the selected genes were expressed in at least one of the tissues that were tested, which indicated that MdARFs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this report is the first to provide a genomewide analysis of the apple ARF gene family. This study provides valuable information for understanding the classification and putative functions of the ARF signal in apple. PMID:25572237

  2. The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution.

    PubMed

    Kumar, A; Ellis, B E

    2001-09-01

    In raspberry (Rubus idaeus), development of fruit color and flavor are critically dependent on products of the phenylpropanoid pathway. To determine how these metabolic functions are integrated with the fruit ripening program, we are examining the properties and expression of key genes in the pathway. Here, we report that L- phenylalanine ammonia-lyase (PAL) is encoded in raspberry by a family of two genes (RiPAL1 and RiPAL2). RiPAL1 shares 88% amino acid sequence similarity to RiPAL2, but phylogenetic analysis places RiPAL1 and RiPAL2 in different clusters within the plant PAL gene family. The spatial and temporal expression patterns of the two genes were investigated in various vegetative and floral tissues using the reverse transcriptase competitor polymerase chain reaction assay. Although expression of both genes was detected in all tissues examined, RiPAL1 was associated with early fruit ripening events, whereas expression of RiPAL2 correlated more with later stages of flower and fruit development. Determination of the absolute levels of the two transcripts in various tissues showed that RiPAL1 transcripts were 3- to 10-fold more abundant than those of RiPAL2 in leaves, shoots, roots, young fruits, and ripe fruits. The two RiPAL genes therefore appear to be controlled by different regulatory mechanisms. PMID:11553751

  3. Genome-wide analysis of the AP2/ERF gene family in Salix arbutifolia

    PubMed Central

    Rao, Guodong; Sui, Jinkai; Zeng, Yanfei; He, Caiyun; Zhang, Jianguo

    2015-01-01

    AP2/ERF genes encode transcriptional regulators with a variety of functions in plant growth and development and in response to biotic and abiotic stresses. To date, there are no detailed classification and expression profiles for AP2/ERF genes in Salix. In this study, a comprehensive computational analysis identified 173 AP2/ERF superfamily genes in willow (Salix arbutifolia), by using in silico cloning methods with the use of the AP2/ERF conserved domain amino acid sequence of Arabidopsis thaliana as a probe. Based on the results of phylogenetic analyses and the number of AP2/ERF domains, the AP2/ERF genes were classified into four groups: AP2, RAV, ERF and Soloist. The expression profile was analyzed using transcriptome data from different tissues. A comparative analysis of AP2/ERF superfamily genes among Salix, Populus and Arabidopsis was performed. The Salix DREB, AP2 and RAV groups had a similar number to those in Arabidopsis, and the size of the ERF subfamily in Salix was about 1.4-fold that of Arabidopsis. The Salix DREB subfamily was smaller compared to Populus, while the other families were similar in size to those in Populus. These results will be useful for future functional analyses of the ERF family genes.

  4. The legumin gene family: structure of a B type gene of Vicia faba and a possible legumin gene specific regulatory element.

    PubMed Central

    Bäumlein, H; Wobus, U; Pustell, J; Kafatos, F C

    1986-01-01

    The field bean, Vicia faba L. var. minor, possesses two sub-families of 11 S legumin genes named A and B. We isolated from a genomic library a B-type gene (LeB4) and determined its primary DNA sequence. Gene LeB4 codes for a 484 amino acid residue prepropolypeptide, encompassing a signal peptide of 22 amino acid residues, an acidic, very hydrophilic alpha-chain of 281 residues and a basic, somewhat hydrophobic beta-chain of 181 residues. The latter two coding regions are immediately contiguous, but each is interrupted by a short intron. Type A legumin genes from soybean and pea are known to have introns in the same two positions, in addition to an extra intron (within the alpha-coding sequence). Sequence comparisons of legumin genes from these three plants revealed a highly conserved sequence element of at least 28 bp, centered at approximately 100 bp upstream of each cap site. The element is absent from the equivalent position of all non-legumin and other plant and fungal genes examined. We tentatively name this element "legumin box" and suggest that it may have a function in the regulation of legumin gene expression. PMID:3960730

  5. Leiomodins: larger members of the tropomodulin (Tmod) gene family

    NASA Technical Reports Server (NTRS)

    Conley, C. A.; Fritz-Six, K. L.; Almenar-Queralt, A.; Fowler, V. M.

    2001-01-01

    The 64-kDa autoantigen D1 or 1D, first identified as a potential autoantigen in Graves' disease, is similar to the tropomodulin (Tmod) family of actin filament pointed end-capping proteins. A novel gene with significant similarity to the 64-kDa human autoantigen D1 has been cloned from both humans and mice, and the genomic sequences of both genes have been identified. These genes form a subfamily closely related to the Tmods and are here named the Leiomodins (Lmods). Both Lmod genes display a conserved intron-exon structure, as do three Tmod genes, but the intron-exon structure of the Lmods and the Tmods is divergent. mRNA expression analysis indicates that the gene formerly known as the 64-kDa autoantigen D1 is most highly expressed in a variety of human tissues that contain smooth muscle, earning it the name smooth muscle Leiomodin (SM-Lmod; HGMW-approved symbol LMOD1). Transcripts encoding the novel Lmod gene are present exclusively in fetal and adult heart and adult skeletal muscle, and it is here named cardiac Leiomodin (C-Lmod; HGMW-approved symbol LMOD2). Human C-Lmod is located near the hypertrophic cardiomyopathy locus CMH6 on human chromosome 7q3, potentially implicating it in this disease. Our data demonstrate that the Lmods are evolutionarily related and display tissue-specific patterns of expression distinct from, but overlapping with, the expression of Tmod isoforms. Copyright 2001 Academic Press.

  6. Phytochrome-mediated differential gene expression of plant Ran\\/TC4 small G-proteins

    Microsoft Academic Search

    Yew Lee; Min-Hee Kim; Seong-Ki Kim; Soo-Hwan Kim

    2008-01-01

    Ran\\/TC4 is the only known member of the family of small GTP-binding proteins primarily localized inside the nucleus. We cloned\\u000a a pea Ran gene (PsRan1) and characterized its expression in tissues, and under different light sources. PsRan1 is a member of a highly homologous multigene family, and it encodes a protein containing plant-specific amino acids in its\\u000a sequence. It is

  7. Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses

    E-print Network

    Klee, Harry J.

    Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate. * For correspondence (fax +1 352 846 2063; e-mail hjklee@mail.ifas.u¯.edu). Summary The plant hormone ethylene regulates many aspects of growth, development and responses to the environment. The Arabidopsis ETHYLENE

  8. Functional and structural diversity of the human Dickkopf gene family

    Microsoft Academic Search

    Valery E. Krupnik; John D. Sharp; Chian Jiang; Keith Robison; Troy W. Chickering; Lakshmi Amaravadi; Diane E. Brown; Deborah Guyot; Gail Mays; Kevin Leiby; Belle Chang; Thao Duong; Andrew D. J. Goodearl; David P. Gearing; Sergei Y. Sokol; Sean A. McCarthy

    1999-01-01

    Wnt proteins influence many aspects of embryonic development, and their activity is regulated by several secreted antagonists, including the Xenopus Dickkopf-1 (xDkk-1) protein. xDkk-1 inhibits Wnt activities in Xenopus embryos and may play a role in induction of head structures. Here, we characterize a family of human Dkk-related genes composed of Dkk-1, Dkk-2, Dkk-3, and Dkk-4, together with a unique

  9. Current Overview of Allergens of Plant Pathogenesis Related Protein Families

    PubMed Central

    Sinha, Mau; Singh, Rashmi Prabha; Kushwaha, Gajraj Singh; Iqbal, Naseer; Singh, Avinash; Kaushik, Sanket; Sharma, Sujata; Singh, Tej P.

    2014-01-01

    Pathogenesis related (PR) proteins are one of the major sources of plant derived allergens. These proteins are induced by the plants as a defense response system in stress conditions like microbial and insect infections, wounding, exposure to harsh chemicals, and atmospheric conditions. However, some plant tissues that are more exposed to environmental conditions like UV irradiation and insect or fungal attacks express these proteins constitutively. These proteins are mostly resistant to proteases and most of them show considerable stability at low pH. Many of these plant pathogenesis related proteins are found to act as food allergens, latex allergens, and pollen allergens. Proteins having similar amino acid sequences among the members of PR proteins may be responsible for cross-reactivity among allergens from diverse plants. This review analyzes the different pathogenesis related protein families that have been reported as allergens. Proteins of these families have been characterized in regard to their biological functions, amino acid sequence, and cross-reactivity. The three-dimensional structures of some of these allergens have also been evaluated to elucidate the antigenic determinants of these molecules and to explain the cross-reactivity among the various allergens. PMID:24696647

  10. Current overview of allergens of plant pathogenesis related protein families.

    PubMed

    Sinha, Mau; Singh, Rashmi Prabha; Kushwaha, Gajraj Singh; Iqbal, Naseer; Singh, Avinash; Kaushik, Sanket; Kaur, Punit; Sharma, Sujata; Singh, Tej P

    2014-01-01

    Pathogenesis related (PR) proteins are one of the major sources of plant derived allergens. These proteins are induced by the plants as a defense response system in stress conditions like microbial and insect infections, wounding, exposure to harsh chemicals, and atmospheric conditions. However, some plant tissues that are more exposed to environmental conditions like UV irradiation and insect or fungal attacks express these proteins constitutively. These proteins are mostly resistant to proteases and most of them show considerable stability at low pH. Many of these plant pathogenesis related proteins are found to act as food allergens, latex allergens, and pollen allergens. Proteins having similar amino acid sequences among the members of PR proteins may be responsible for cross-reactivity among allergens from diverse plants. This review analyzes the different pathogenesis related protein families that have been reported as allergens. Proteins of these families have been characterized in regard to their biological functions, amino acid sequence, and cross-reactivity. The three-dimensional structures of some of these allergens have also been evaluated to elucidate the antigenic determinants of these molecules and to explain the cross-reactivity among the various allergens. PMID:24696647

  11. The Phytocyanin Gene Family in Rice (Oryza sativa L.): Genome-Wide Identification, Classification and Transcriptional Analysis

    PubMed Central

    Ma, Haoli; Zhao, Heming; Liu, Zhi; Zhao, Jie

    2011-01-01

    Background Phytocyanins (PCs) are plant-specific blue copper proteins involved in electron transport, and a large number of known PCs are considered to be chimeric arabinogalactan proteins (AGPs). To date there has not been a genome-wide overview of the OsPC gene family. Therefore, as the first step and a useful strategy to elucidate the functions of OsPCs, there is an urgent need for a thorough genome-wide analysis of this gene family. Methodology/Principal Findings In this study, a total of 62 OsPC genes were identified through a comprehensive bioinformatics analysis of the rice (Oryza sativa L.) genome. Based on phylogeny and motif constitution, the family of OsPCs was classified into three subclasses: uclacyanin-like proteins (OsUCLs), stellacyanin-like proteins (OsSCLs) and early nodulin-like proteins (OsENODLs). Structure and glycosylation prediction indicated that 46 OsPCs were glycosylphosphatigylinositol-anchored proteins and 38 OsPCs were chimeric AGPs. Gene duplication analysis revealed that chromosomal segment and tandem duplications contributed almost equally to the expansion of this gene family, and duplication events were mostly happened in the OsUCL subfamily. The expression profiles of OsPC genes were analyzed at different stages of vegetative and reproductive development and under abiotic stresses. It revealed that a large number of OsPC genes were abundantly expressed in the various stages of development. Moreover, 17 genes were regulated under the treatments of abiotic stresses. Conclusions/Significance The genome-wide identification and expression analysis of OsPC genes should facilitate research in this gene family and give new insights toward elucidating their functions in higher plants. PMID:21984902

  12. Evolution of the tyrosinase gene family in bivalve molluscs: independent expansion of the mantle gene repertoire.

    PubMed

    Aguilera, Felipe; McDougall, Carmel; Degnan, Bernard M

    2014-09-01

    Tyrosinase is a copper-containing enzyme that mediates the hydroxylation of monophenols and oxidation of o-diphenols to o-quinones. This enzyme is involved in a variety of biological processes, including pigment production, innate immunity, wound healing, and exoskeleton fabrication and hardening (e.g. arthropod skeleton and mollusc shell). Here we show that the tyrosinase gene family has undergone large expansions in pearl oysters (Pinctada spp.) and the Pacific oyster (Crassostrea gigas). Phylogenetic analysis reveals that pearl oysters possess at least four tyrosinase genes that are not present in the Pacific oyster. Likewise, C. gigas has multiple tyrosinase genes that are not orthologous to the Pinctada genes, indicating that this gene family has expanded independently in these bivalve lineages. Many of the tyrosinase genes in these bivalves are expressed at relatively high levels in the mantle, the organ responsible for shell fabrication. Detailed comparisons of tyrosinase gene expression in different regions of the mantle in two closely related pearl oysters, P. maxima and P. margaritifera, reveals that recently evolved orthologous tyrosinase genes can have markedly different expression profiles. The expansion of tyrosinase genes in these oysters and their co-option into the mantle's gene regulatory network is consistent with mollusc shell formation being underpinned by a rapidly evolving transcriptome. PMID:24704693

  13. [Orthologs of arabidopsis CLAVATA 1 gene in cultivated Brassicaceae plants].

    PubMed

    Martynov, V V; Tsvetkov, I L; Khavkin, E E

    2004-01-01

    In arabidopsis (Arabidopsis thaliana), the CLAVATA1 (CLV1) gene is involved in maintaining the balance between the stem cells in the central zone of the stem apical meristem and the determined cells at its periphery. However, CLV1 has not been previously characterized in other Brassicaceae. Using the direct amplification of genomic DNA, we obtained a full-length CLV1 ortholog from canola plants (Brassica napus), and also three CLV1 fragments from rape (B. rapa), canola (B. napus), and false flax (Camelina sativa), which corresponded to the transmembrane domain and a part of the kinase domain of the CLAVATA1 protein. The nucleotide and deduced amino acid sequences of the full-size CLV1 ortholog from B. napus were similar by 81 and 87% to the prototype gene from arabidopsis; in the case of shorter gene fragments, the similarity was as high as 91-93 and 98%, respectively. By their primary structure, the CLV1 genes in the Brassicaceae considerably differ from its putative structural homologs beyond this family. PMID:15027212

  14. Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis

    Microsoft Academic Search

    Hariom Kushwaha; Shubhra Gupta; Vinay Kumar Singh; Smita Rastogi; Dinesh Yadav

    The Dof (DNA binding with One Finger) family represents a classic zinc-finger transcription factors involved with multifarious\\u000a roles exclusively in plants. There exists great diversity in terms of number of Dof genes observed in different crops. In current study, a total of 28 putative Dof genes have been predicted in silico from the recently available whole genome shotgun sequence of

  15. Molecular analyses of the rice glutamate dehydrogenase gene family and their response to nitrogen and phosphorous deprivation

    Microsoft Academic Search

    Xuhua Qiu; Weibo Xie; Xingming Lian; Qifa Zhang

    2009-01-01

    Glutamate dehydrogenases (GDH, EC 1.4.1.2~4) are ubiquitous enzymes encoded by GDH genes. So far, at least two GDH members have been characterized in plants, but most members of this family in rice remains to be characterized. Here, we\\u000a show that four putative GDH genes (OsGDH1-4) are present in the rice genome. The GDH sequences from rice and other species can

  16. Structure and expression analysis of early auxin-responsive Aux\\/IAA gene family in rice ( Oryza sativa )

    Microsoft Academic Search

    Mukesh Jain; Navneet Kaur; Rohini Garg; Jitendra K. Thakur; Akhilesh K. Tyagi; Jitendra P. Khurana

    2006-01-01

    Auxin exerts pleiotropic effects on plant growth and development by regulating the expression of early auxin-responsive genes\\u000a of auxin\\/indoleacetic acid (Aux\\/IAA), small auxin-up RNA, and GH3 classes. These genes have been studied extensively in dicots like soybean and Arabidopsis. We had earlier characterized a cDNA of the first monocot member of Aux\\/IAA family from rice. The achievement of the large

  17. 4-Coumarate:CoA ligase gene family in Rubus idaeus : cDNA structures, evolution, and expression

    Microsoft Academic Search

    Amrita Kumar; Brian E. Ellis

    2003-01-01

    The enzyme 4-coumarate:CoA ligase (4CL) activates cinnamic acid and its hydroxylated derivatives by forming the corresponding CoA thioesters. These serve as substrates for biosynthesis of phenylpropanoid-derived end-products that are important determinants of fruit quality in raspberry (Rubus idaeus L.). In higher plants, 4CL is typically encoded by a gene family. To investigate the participation of distinct 4CL genes in the

  18. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function

    Microsoft Academic Search

    Susann WickeGerald; Gerald M. Schneeweiss; Claude W. dePamphilis; Kai F. Müller; Dietmar Quandt

    2011-01-01

    This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative\\u000a ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions\\u000a of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid\\u000a chromosomes, including

  19. Plant breeding Brown-midrib genes of maize: a review

    E-print Network

    Paris-Sud XI, Université de

    Plant breeding Brown-midrib genes of maize: a review Y Barrière* O Argillier INRA, Station d'Amélioration des Plantes Fourragères, F86600 Lusignan, France (Received 21 May 1993; accepted 23 September 1993 incrustration. Four brown-midrib genes (bm1, bm2, bm3 and bm4) have been described in maize. Brown-midrib plants

  20. Gene Turnover in the Avian Globin Gene Families and Evolutionary Changes in Hemoglobin Isoform Expression

    PubMed Central

    Opazo, Juan C.; Hoffmann, Federico G.; Natarajan, Chandrasekhar; Witt, Christopher C.; Berenbrink, Michael; Storz, Jay F.

    2015-01-01

    The apparent stasis in the evolution of avian chromosomes suggests that birds may have experienced relatively low rates of gene gain and loss in multigene families. To investigate this possibility and to explore the phenotypic consequences of variation in gene copy number, we examined evolutionary changes in the families of genes that encode the ?- and ?-type subunits of hemoglobin (Hb), the tetrameric ?2?2 protein responsible for blood-O2 transport. A comparative genomic analysis of 52 bird species revealed that the size and membership composition of the ?- and ?-globin gene families have remained remarkably constant during approximately 100 My of avian evolution. Most interspecific variation in gene content is attributable to multiple independent inactivations of the ?D-globin gene, which encodes the ?-chain subunit of a functionally distinct Hb isoform (HbD) that is expressed in both embryonic and definitive erythrocytes. Due to consistent differences in O2-binding properties between HbD and the major adult-expressed Hb isoform, HbA (which incorporates products of the ?A-globin gene), recurrent losses of ?D-globin contribute to among-species variation in blood-O2 affinity. Analysis of HbA/HbD expression levels in the red blood cells of 122 bird species revealed high variability among lineages and strong phylogenetic signal. In comparison with the homologous gene clusters in mammals, the low retention rate for lineage-specific gene duplicates in the avian globin gene clusters suggests that the developmental regulation of Hb synthesis in birds may be more highly conserved, with orthologous genes having similar stage-specific expression profiles and similar functional properties in disparate taxa. PMID:25502940

  1. Gene turnover in the avian globin gene families and evolutionary changes in hemoglobin isoform expression.

    PubMed

    Opazo, Juan C; Hoffmann, Federico G; Natarajan, Chandrasekhar; Witt, Christopher C; Berenbrink, Michael; Storz, Jay F

    2015-04-01

    The apparent stasis in the evolution of avian chromosomes suggests that birds may have experienced relatively low rates of gene gain and loss in multigene families. To investigate this possibility and to explore the phenotypic consequences of variation in gene copy number, we examined evolutionary changes in the families of genes that encode the ?- and ?-type subunits of hemoglobin (Hb), the tetrameric ?2?2 protein responsible for blood-O2 transport. A comparative genomic analysis of 52 bird species revealed that the size and membership composition of the ?- and ?-globin gene families have remained remarkably constant during approximately 100 My of avian evolution. Most interspecific variation in gene content is attributable to multiple independent inactivations of the ?(D)-globin gene, which encodes the ?-chain subunit of a functionally distinct Hb isoform (HbD) that is expressed in both embryonic and definitive erythrocytes. Due to consistent differences in O2-binding properties between HbD and the major adult-expressed Hb isoform, HbA (which incorporates products of the ?(A)-globin gene), recurrent losses of ?(D)-globin contribute to among-species variation in blood-O2 affinity. Analysis of HbA/HbD expression levels in the red blood cells of 122 bird species revealed high variability among lineages and strong phylogenetic signal. In comparison with the homologous gene clusters in mammals, the low retention rate for lineage-specific gene duplicates in the avian globin gene clusters suggests that the developmental regulation of Hb synthesis in birds may be more highly conserved, with orthologous genes having similar stage-specific expression profiles and similar functional properties in disparate taxa. PMID:25502940

  2. The discoidin I gene family of Dictyostelium discoideum is linked to genes regulating its expression.

    PubMed

    Welker, D L

    1988-07-01

    The discoidin I protein has been studied extensively as a marker of early development in the cellular slime mold Dictyostelium discoideum. However, like most other developmentally regulated proteins in this system, no reliable information was available on the linkage of the discoidin genes to other known genes. Analysis of the linkage of the discoidin I genes by use of restriction fragment length polymorphisms revealed that all three discoidin I genes as well as a pseudogene are located on linkage group II. This evidence is consistent with the discoidin I genes forming a gene cluster that may be under the control of a single regulatory element. The discoidin I genes are linked to three genetic loci (disA, motA, daxA) that affect the expression of the discoidin I protein. Linkage of the gene family members to regulatory loci may be important in the coordinate maintenance of the gene family and regulatory loci. A duplication affecting the entire discoidin gene family is also linked to group II; this appears to be a small tandem duplication. This duplication was mapped using a DNA polymorphism generated by insertion of the Tdd-3 mobile genetic element into a Tdd-2 element flanking the gamma gene. A probe for Tdd-2 identified a restriction fragment length polymorphism in strain AX3K that was consistent with generation by a previously proposed Tdd-3 insertion event. A putative duplication or rearrangement of a second Tdd-2 element on linkage group IV of strain AX3K was also identified. This is the first linkage information available for mobile genetic elements in D. discoideum. PMID:3402731

  3. Evolutionary History of Chordate PAX Genes: Dynamics of Change in a Complex Gene Family

    PubMed Central

    Paixão-Côrtes, Vanessa Rodrigues; Salzano, Francisco Mauro; Bortolini, Maria Cátira

    2013-01-01

    Paired box (PAX) genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory. PMID:24023886

  4. Differential expression of S100 gene family in human esophageal squamous cell carcinoma

    Microsoft Academic Search

    Junfang Ji; Liqun Zhao; Xiuqin Wang; Chuannong Zhou; Fang Ding; Lei Su; Chunlin Zhang; Xuezheng Mao; Min Wu; Zhihua Liu

    2004-01-01

    Purpose To study the differential expression of the S100 gene family at the RNA level in human esophageal squamous cell carcinoma (ESCC), and to find the relationship of the S100 gene family with ESCC. Methods Firstly, the specific primers were designed for the different S100 genes with Software Primer 3, which required that both primer sequences of each S100 gene

  5. A Family of Potassium Channel Genes Related to eag in Drosophila and Mammals

    Microsoft Academic Search

    Jeffrey W. Warmke; Barry Ganetzky

    1994-01-01

    We have identified a conserved family of genes related to Drosophila eag, which encodes a distinct type of voltage-activated K^+ channel. Three related genes were recovered in screens of cDNA libraries from Drosophila, mouse, and human tissues. One gene is the mouse counterpart of eag; the other two represent additional subfamilies. The human gene maps to chromosome 7. Family members

  6. Cloning and Characterization of the Members of the Vertebrate Dlx Gene Family

    Microsoft Academic Search

    Antonio Simeone; Dario Acampora; Maria Pannese; Maurizio D'Esposito; Anna Stornaiuolo; Massimo Gulisano; Antonio Mallamaci; Kumar Kastury; Teresa Druck; Kay Huebner; Edoardo Boncinelli

    1994-01-01

    A number of vertebrate genes of the Dlx gene family have been cloned in mouse, frog, and zebrafish. These genes contain a homeobox related to that of Distalless, a gene expressed in the developing head and limbs of Drosophila embryos. We cloned and studied the expression of two members of this family, which we named Dlx5 and Dlx6, in human

  7. Evidence for a Conserved Polydnavirus Gene Family: Ichnovirus Homologs of the CsIV Repeat Element Genes

    Microsoft Academic Search

    A.-N. Volkoff; C. Béliveau; J. Rocher; R. Hilgarth; A. Levasseur; M. Duonor-Cérutti; M. Cusson; B. A. Webb

    2002-01-01

    In Campoletis sonorensis Ichnovirus (CsIV), the repeat element genes constitute a gene family of 28 members. In the present work, we document the presence of members of this gene family in two additional ichnoviruses, Hyposoter didymator Ichnovirus (HdIV) and Tranosema rostrale Ichnovirus (TrIV). Two repeat element genes, representing at least one functional gene, were identified in TrIV, whereas HdIV was

  8. Polymorphism in the interferon-{alpha} gene family

    SciTech Connect

    Golovleva, I.; Lundgren, E.; Beckman, L. [Univ. of Umea (Sweden); Kandefer-Szerszen, M. [Maria Curie-Sklodowska Univ., Lublin (Poland)

    1996-09-01

    A pronounced genetic polymorphism of the interferon type I gene family has been assumed on the basis of RFLP analysis of the genomic region as well as the large number of sequences published compared to the number of loci. However, IFNA2 is the only locus that has been carefully analyzed concerning gene frequency, and only naturally occurring rare alleles have been found. We have extended the studies on a variation of expressed sequences by studying the IFNA1, IFNA2, IFNA10, IFNA13, IFNA14, and IFNA17 genes. Genomic white-blood-cell DNA from a population sample of blood donors and from a family material were screened by single-nucleotide primer extension (allele-specific primer extension) of PCR fragments. Because of sequence similarities, in some cases {open_quotes}nested{close_quotes} PCR was used, and, when applicable, restriction analysis or control sequencing was performed. All individuals carried the interferon-{alpha} 1 and interferon-{alpha} 13 variants but not the LeIF D variant. At the IFNA2 and IFNA14 loci only one sequence variant was found, while in the IFNA10 and IFNA17 groups two alleles were detected in each group. The IFNA10 and IFNA17 alleles segregated in families and showed a close fit to the Hardy-Weinberg equilibrium. There was a significant linkage disequilibrium between IFNA10 and IFNA17 alleles. The fact that the extent of genetic polymorphism was lower than expected suggests that a majority of the previously described gene sequences represent nonpolymorphic rare mutants that may have arisen in tumor cell lines. 44 refs., 4 figs., 4 tabs.

  9. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance

    SciTech Connect

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)] [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Deyholos, Michael K. [Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9 (Canada)] [Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9 (Canada); Chen, Qin [Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403-1 Ave., South P.O. Box 3000, Lethbridge, AB, Canada T1J 4B1 (Canada)] [Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403-1 Ave., South P.O. Box 3000, Lethbridge, AB, Canada T1J 4B1 (Canada); Chen, Chao; Ji, Wei [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)] [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhu, Yanming, E-mail: ymzhu@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)] [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer We isolated and characterized a novel JAZ family gene, GsJAZ2, from Glycine soja. Black-Right-Pointing-Pointer Overexpression of GsJAZ2 enhanced plant tolerance to salt and alkali stress. Black-Right-Pointing-Pointer The transcriptions of stress marker genes were higher in GsJAZ2 overexpression lines. Black-Right-Pointing-Pointer GsJAZ2 was localized to nucleus. -- Abstract: Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.

  10. Reproduction on orbit by plants in the Brassicaceae family

    NASA Astrophysics Data System (ADS)

    Musgrave, Mary E.; Kuang, Anxiu; Xiao, Ying; Matthews, Sharon W.

    1999-01-01

    Previous studies on growth and development during spaceflight had indicated that the transition from vegetative to reproductive growth was particularly difficult for plants. Our objective has been to study how the spaceflight environment impacts the different steps in plant reproduction. This goal has been pursued in two general ways: by using plants that had been pre-grown to the flowering stage on earth, and by using plants that developed completely on orbit. Our objectives have been met by a combination of experiments that required essentially no crew time on orbit, and those that required an extensive commitment of crew time. The plants chosen for the studies were closely related members of the family Brassicaceae: Arabidopsis thaliana and Brassica rapa. In a series of short-duration experiments with Arabidopsis on the space shuttle we found that depletion of carbon dioxide in closed chambers resulted in aborted development of both the male and female reproductive apparatus in microgravity. Normal development was restored by addition of carbon dioxide or by providing air flow. A subsequent shuttle experiment with Brassica utilizing hardware that provides a vigorous air flow confirmed embryo development following pollination on orbit. Brassica plants grown from seed on the Mir space station produced seed that germinated and grew when replanted on orbit. Future experiments will determine effects of multiple generations in space.

  11. Evolution of the Vertebrate Paralemmin Gene Family: Ancient Origin of Gene Duplicates Suggests Distinct Functions

    PubMed Central

    Hultqvist, Greta; Ocampo Daza, Daniel; Larhammar, Dan; Kilimann, Manfred W.

    2012-01-01

    Paralemmin-1 is a protein implicated in plasma membrane dynamics, the development of filopodia, neurites and dendritic spines, as well as the invasiveness and metastatic potential of cancer cells. However, little is known about its mode of action, or about the biological functions of the other paralemmin isoforms: paralemmin-2, paralemmin-3 and palmdelphin. We describe here evolutionary analyses of the paralemmin gene family in a broad range of vertebrate species. Our results suggest that the four paralemmin isoform genes (PALM1, PALM2, PALM3 and PALMD) arose by quadruplication of an ancestral gene in the two early vertebrate genome duplications. Paralemmin-1 and palmdelphin were further duplicated in the teleost fish specific genome duplication. We identified a unique sequence motif common to all paralemmins, consisting of 11 highly conserved residues of which four are invariant. A single full-length paralemmin homolog with this motif was identified in the genome of the sea lamprey Petromyzon marinus and an isolated putative paralemmin motif could be detected in the genome of the lancelet Branchiostoma floridae. This allows us to conclude that the paralemmin gene family arose early and has been maintained throughout vertebrate evolution, suggesting functional diversification and specific biological roles of the paralemmin isoforms. The paralemmin genes have also maintained specific features of gene organisation and sequence. This includes the occurrence of closely linked downstream genes, initially identified as a readthrough fusion protein with mammalian paralemmin-2 (Palm2-AKAP2). We have found evidence for such an arrangement for paralemmin-1 and -2 in several vertebrate genomes, as well as for palmdelphin and paralemmin-3 in teleost fish genomes, and suggest the name paralemmin downstream genes (PDG) for this new gene family. Thus, our findings point to ancient roles for paralemmins and distinct biological functions of the gene duplicates. PMID:22855693

  12. 11. PUMP ROOM FLOOR OF GENE PLANT FROM NORTH END, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. PUMP ROOM FLOOR OF GENE PLANT FROM NORTH END, CENTRIFUGAL PUMPS DESIGNED BY BYRON JACKSON CO., MANUFACTURED BY PELTON WATER WHEEL CO. OF SAN FRANCISCO. POWERED BY G.E. SYNCHRONOUS MOTOR 9000 HP, 6900 VOLTS, 612 AMPS, 7320 KVA, 3 PHASE, 60 CYCLES, 400 RPM, EXCITATION AT 125 VOLTS, 540 AMPS. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  13. Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato.

    PubMed

    Audran-Delalande, Corinne; Bassa, Carole; Mila, Isabelle; Regad, Farid; Zouine, Mohamed; Bouzayen, Mondher

    2012-04-01

    Auxin is a central hormone that exerts pleiotropic effects on plant growth including the development of roots, shoots, flowers and fruit. The perception and signaling of the plant hormone auxin rely on the cooperative action of several components, among which auxin/indole-3-acetic acid (Aux/IAA) proteins play a pivotal role. In this study, we identified and comprehensively analyzed the entire Aux/IAA gene family in tomato (Solanum lycopersicum), a reference species for Solanaceae plants, and the model plant for fleshy fruit development. Functional characterization using a dedicated single cell system revealed that tomato Aux/IAA proteins function as active repressors of auxin-dependent gene transcription, with, however, different Aux/IAA members displaying varying levels of repression. Phylogenetic analysis indicated that the Aux/IAA gene family is slightly contracted in tomato compared with Arabidopsis, with a lower representation of non-canonical proteins. Sl-IAA genes display distinctive expression pattern in different tomato organs and tissues, and some of them display differential responses to auxin and ethylene, suggesting that Aux/IAAs may play a role in linking both hormone signaling pathways. The data presented here shed more light on Sl-IAA genes and provides new leads towards the elucidation of their function during plant development and in mediating hormone cross-talk. PMID:22368074

  14. The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family.

    PubMed

    Lin, Choun-Sea; Chen, Jeremy J W; Huang, Yao-Ting; Chan, Ming-Tsair; Daniell, Henry; Chang, Wan-Jung; Hsu, Chen-Tran; Liao, De-Chih; Wu, Fu-Huei; Lin, Sheng-Yi; Liao, Chen-Fu; Deyholos, Michael K; Wong, Gane Ka-Shu; Albert, Victor A; Chou, Ming-Lun; Chen, Chun-Yi; Shih, Ming-Che

    2015-01-01

    The NAD(P)H dehydrogenase complex is encoded by 11 ndh genes in plant chloroplast (cp) genomes. However, ndh genes are truncated or deleted in some autotrophic Epidendroideae orchid cp genomes. To determine the evolutionary timing of the gene deletions and the genomic locations of the various ndh genes in orchids, the cp genomes of Vanilla planifolia, Paphiopedilum armeniacum, Paphiopedilum niveum, Cypripedium formosanum, Habenaria longidenticulata, Goodyera fumata and Masdevallia picturata were sequenced; these genomes represent Vanilloideae, Cypripedioideae, Orchidoideae and Epidendroideae subfamilies. Four orchid cp genome sequences were found to contain a complete set of ndh genes. In other genomes, ndh deletions did not correlate to known taxonomic or evolutionary relationships and deletions occurred independently after the orchid family split into different subfamilies. In orchids lacking cp encoded ndh genes, non cp localized ndh sequences were identified. In Erycina pusilla, at least 10 truncated ndh gene fragments were found transferred to the mitochondrial (mt) genome. The phenomenon of orchid ndh transfer to the mt genome existed in ndh-deleted orchids and also in ndh containing species. PMID:25761566

  15. The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family

    PubMed Central

    Lin, Choun-Sea; Chen, Jeremy J. W.; Huang, Yao-Ting; Chan, Ming-Tsair; Daniell, Henry; Chang, Wan-Jung; Hsu, Chen-Tran; Liao, De-Chih; Wu, Fu-Huei; Lin, Sheng-Yi; Liao, Chen-Fu; Deyholos, Michael K.; Wong, Gane Ka-Shu; Albert, Victor A.; Chou, Ming-Lun; Chen, Chun-Yi; Shih, Ming-Che

    2015-01-01

    The NAD(P)H dehydrogenase complex is encoded by 11 ndh genes in plant chloroplast (cp) genomes. However, ndh genes are truncated or deleted in some autotrophic Epidendroideae orchid cp genomes. To determine the evolutionary timing of the gene deletions and the genomic locations of the various ndh genes in orchids, the cp genomes of Vanilla planifolia, Paphiopedilum armeniacum, Paphiopedilum niveum, Cypripedium formosanum, Habenaria longidenticulata, Goodyera fumata and Masdevallia picturata were sequenced; these genomes represent Vanilloideae, Cypripedioideae, Orchidoideae and Epidendroideae subfamilies. Four orchid cp genome sequences were found to contain a complete set of ndh genes. In other genomes, ndh deletions did not correlate to known taxonomic or evolutionary relationships and deletions occurred independently after the orchid family split into different subfamilies. In orchids lacking cp encoded ndh genes, non cp localized ndh sequences were identified. In Erycina pusilla, at least 10 truncated ndh gene fragments were found transferred to the mitochondrial (mt) genome. The phenomenon of orchid ndh transfer to the mt genome existed in ndh-deleted orchids and also in ndh containing species. PMID:25761566

  16. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family

    PubMed Central

    Guo, Chunlei; Guo, Rongrong; Wang, Xiping

    2014-01-01

    WRKY proteins comprise a large family of transcription factors that play important roles in plant defence regulatory networks, including responses to various biotic and abiotic stresses. To date, no large-scale study of WRKY genes has been undertaken in grape (Vitis vinifera L.). In this study, a total of 59 putative grape WRKY genes (VvWRKY) were identified and renamed on the basis of their respective chromosome distribution. A multiple sequence alignment analysis using all predicted grape WRKY genes coding sequences, together with those from Arabidopsis thaliana and tomato (Solanum lycopersicum), indicated that the 59 VvWRKY genes can be classified into three main groups (I–III). An evaluation of the duplication events suggested that several WRKY genes arose before the divergence of the grape and Arabidopsis lineages. Moreover, expression profiles derived from semiquantitative PCR and real-time quantitative PCR analyses showed distinct expression patterns in various tissues and in response to different treatments. Four VvWRKY genes showed a significantly higher expression in roots or leaves, 55 responded to varying degrees to at least one abiotic stress treatment, and the expression of 38 were altered following powdery mildew (Erysiphe necator) infection. Most VvWRKY genes were downregulated in response to abscisic acid or salicylic acid treatments, while the expression of a subset was upregulated by methyl jasmonate or ethylene treatments. PMID:24510937

  17. Identification of the trehalose-6-phosphate synthase gene family in winter wheat and expression analysis under conditions of freezing stress.

    PubMed

    Xie, D W; Wang, X N; Fu, L S; Sun, J; Zheng, W; Li, Z F

    2015-03-01

    Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in plants. Trehalose contents are potentially modulated by trehalose-6-phosphate synthase (TPS), which is a key enzyme in the trehalose biosynthetic pathway. Using available wheat expressed sequence tag sequence information from NCBI and two wheat genome databases, we identified 12 wheat TPS genes and performed a comprehensive study on their structural, evolutionary and functional properties. The estimated divergence time of wheat TPS gene pairs and wheat-rice orthologues suggested that wheat and rice have a common ancestor. The number of TPS genes in the wheat genome was estimated to be at least 12, which is close to the number found in rice, Arabidopsis and soybean. Moreover, it has been reported earlier in other plants that TPS genes respond to abiotic stress, however, our study mainly analysed the TPS gene family under freezing conditions in winter wheat, and determined that most of the TPS gene expression in winter wheat was induced by freezing conditions, which further suggested that wheat TPS genes were involved in winter wheat freeze-resistance signal transduction pathways. Taken together, the current study represents the first comprehensive study of TPS genes in winter wheat and provides a foundation for future functional studies of this important gene family in Triticeae. PMID:25846877

  18. Phylogeny and evolutionary history of glycogen synthase kinase 3/SHAGGY-like kinase genes in land plants

    PubMed Central

    2013-01-01

    Background GSK3 (glycogen synthase kinase 3) genes encode signal transduction proteins with roles in a variety of biological processes in eukaryotes. In contrast to the low copy numbers observed in animals, GSK3 genes have expanded into a multi-gene family in land plants (embryophytes), and have also evolved functions in diverse plant specific processes, including floral development in angiosperms. However, despite previous efforts, the phylogeny of land plant GSK3 genes is currently unclear. Here, we analyze genes from a representative sample of phylogenetically pivotal taxa, including basal angiosperms, gymnosperms, and monilophytes, to reconstruct the evolutionary history and functional diversification of the GSK3 gene family in land plants. Results Maximum Likelihood phylogenetic analyses resolve a gene tree with four major gene duplication events that coincide with the emergence of novel land plant clades. The single GSK3 gene inherited from the ancestor of land plants was first duplicated along the ancestral branch to extant vascular plants, and three subsequent duplications produced three GSK3 loci in the ancestor of euphyllophytes, four in the ancestor of seed plants, and at least five in the ancestor of angiosperms. A single gene in the Amborella trichopoda genome may be the sole survivor of a sixth GSK3 locus that originated in the ancestor of extant angiosperms. Homologs of two Arabidopsis GSK3 genes with genetically confirmed roles in floral development, AtSK11 and AtSK12, exhibit floral preferential expression in several basal angiosperms, suggesting evolutionary conservation of their floral functions. Members of other gene lineages appear to have independently evolved roles in plant reproductive tissues in individual taxa. Conclusions Our phylogenetic analyses provide the most detailed reconstruction of GSK3 gene evolution in land plants to date and offer new insights into the origins, relationships, and functions of family members. Notably, the diversity of this “green” branch of the gene family has increased in concert with the increasing morphological and physiological complexity of land plant life forms. Expression data for seed plants indicate that the functions of GSK3 genes have also diversified during evolutionary time. PMID:23834366

  19. Eyes absent: a gene family found in several metazoan phyla.

    PubMed

    Duncan, M K; Kos, L; Jenkins, N A; Gilbert, D J; Copeland, N G; Tomarev, S I

    1997-07-01

    Genes related to the Drosophila eyes absent gene were identified in vertebrates (mouse and human), mollusks (squid), and nematodes (C. elegans). Proteins encoded by these genes consist of conserved C-terminal and variable N-terminal domains. In the conserved 271-amino acid C-terminal region, Drosophila and vertebrate proteins are 65-67% identical. A vertebrate homolog of eyes absent, designated Eya2, was mapped to Chromosome (Chr) 2 in the mouse and to Chr 20q13.1 in human. Eya2 shows a dynamic pattern of expression during development. In the mouse, expression of Eya2 was first detected in 8.5-day embryos in the region of head ectoderm fated to become the forebrain. At later stages of development, Eya2 is expressed in the olfactory placode and in a variety of neural crest derivatives. In the eye, expression of Eya2 was first detected after formation of the lens vesicle. At day 17.5, the highest level of Eya2 mRNA was observed in primary lens fibers. Low levels of Eya2 expression was detected in retina, sclera, and cornea. By postnatal day 10, Eya2 was expressed in secondary lens fibers, cornea, and retina. Although Eya2 is expressed relatively late in eye development, it belongs to the growing list of factors that may be essential for eye development across metazoan phyla. Like members of the Pax-6 gene family, eyes absent gene family members were probably first involved in functions not related to vision, with recruitment for visual system formation and function occurring later. PMID:9195991

  20. IDENTIFICATION AND CHARACTERIZATION OF THERMOBIFIDA FUSCA GENES INVOLVED IN PLANT CELL WALL DEGRADATION.

    SciTech Connect

    David B. Wilson

    2006-01-23

    Micro-array experiments identified a number of Thermobifida fusca genes which were upregulated by growth on cellulose or plant biomass. Five of these genes were cloned, overexpressed in E. coli and the expressed proteins were purified and characterized. These were a xyloglucanase,a 1-3,beta glucanase, a family 18 hydrolase and twocellulose binding proteins that contained no catalytic domains. The catalyic domain of the family 74 endoxyloglucanase with a C-terminal, cellulose binding module was crystalized and its 3-dimensional structure was determined by X-ray crystallography.

  1. A gene family derived from transposable elements during early angiosperm evolution has reproductive fitness benefits in Arabidopsis thaliana.

    PubMed

    Joly-Lopez, Zoé; Forczek, Ewa; Hoen, Douglas R; Juretic, Nikoleta; Bureau, Thomas E

    2012-09-01

    The benefits of ever-growing numbers of sequenced eukaryotic genomes will not be fully realized until we learn to decipher vast stretches of noncoding DNA, largely composed of transposable elements. Transposable elements persist through self-replication, but some genes once encoded by transposable elements have, through a process called molecular domestication, evolved new functions that increase fitness. Although they have conferred numerous adaptations, the number of such domesticated transposable element genes remains unknown, so their evolutionary and functional impact cannot be fully assessed. Systematic searches that exploit genomic signatures of natural selection have been employed to identify potential domesticated genes, but their predictions have yet to be experimentally verified. To this end, we investigated a family of domesticated genes called MUSTANG (MUG), identified in a previous bioinformatic search of plant genomes. We show that MUG genes are functional. Mutants of Arabidopsis thaliana MUG genes yield phenotypes with severely reduced plant fitness through decreased plant size, delayed flowering, abnormal development of floral organs, and markedly reduced fertility. MUG genes are present in all flowering plants, but not in any non-flowering plant lineages, such as gymnosperms, suggesting that the molecular domestication of MUG may have been an integral part of early angiosperm evolution. This study shows that systematic searches can be successful at identifying functional genetic elements in noncoding regions and demonstrates how to combine systematic searches with reverse genetics in a fruitful way to decipher eukaryotic genomes. PMID:22969437

  2. Regulated expression of Arabidopsis Shaker K + channel genes involved in K + uptake and distribution in the plant

    Microsoft Academic Search

    Guillaume Pilot; Frédéric Gaymard; Karine Mouline; Isabelle Chérel; Hervé Sentenac

    2003-01-01

    Potassium is the most abundant cation in the cytosol, where it plays a role in basal functions. Rapid uptake and distribution of K+ is therefore required for plant growth. Three members of the so-called Shaker K+ channel gene family (nine genes identified in Arabidopsis) play a role in these transports: AKT1, SKOR and AKT2. The encoded proteins are involved in

  3. Molecular Mapping of Adult-Plant Race-Specific Leaf Rust Resistance Gene Lr12 in Bread Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum aestivum) gene Lr12 provides adult-plant race-specific resistance to leaf rust caused by Puccinia triticina. It is completely linked or identical to Lr31, which confers seedling resistance only when the complementary gene Lr27 is also present. F2 and F2-derived F3 families were devel...

  4. Expansion Mechanisms and Functional Divergence of the Glutathione S-Transferase Family in Sorghum and Other Higher Plants

    PubMed Central

    Chi, Yunhua; Cheng, Yansong; Vanitha, Jeevanandam; Kumar, Nadimuthu; Ramamoorthy, Rengasamy; Ramachandran, Srinivasan; Jiang, Shu-Ye

    2011-01-01

    Glutathione S-transferases (GSTs) exist in various eukaryotes and function in detoxification of xenobiotics and in response to abiotic and biotic stresses. We have carried out a genome-wide survey of this gene family in 10 plant genomes. Our data show that tandem duplication has been regarded as the major expansion mechanism and both monocot and dicot plants may have practiced different expansion and evolutionary history. Non-synonymous substitutions per site (Ka) and synonymous substitutions per site (Ks) analyses showed that N- and C-terminal functional domains of GSTs (GST_N and GST_C) seem to have evolved under a strong purifying selection (Ka/Ks < 1) under different selective pressures. Differential evolutionary rates between GST_N and GST_C and high degree of expression divergence have been regarded as the major drivers for the retention of duplicated genes and the adaptability to various stresses. Expression profiling also indicated that the gene family plays a role not only in stress-related biological processes but also in the sugar-signalling pathway. Our survey provides additional annotation of the plant GST gene family and advance the understanding of plant GSTs in lineage-specific expansion and species diversification. PMID:21169340

  5. Babesia bovis expresses Bbo-6cys-E, a member of a novel gene family that is homologous to the 6-cys family of Plasmodium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel Babesia bovis gene family encoding proteins with similarities to the Plasmodium 6cys protein family was identified by TBLASTN searches of the Babesia bovis genome using the sequence of the P. falciparum PFS230 protein as query, and was termed Bbo-6cys gene family. The Bbo-cys6 gene family co...

  6. Living With Her Genes Early Onset Familial Alzheimer's Disease

    NSDL National Science Digital Library

    Lynne H. Gildensoph

    2008-01-01

    When a 30-year-old genetic counselor learns that her 38-year-old sister has developed early onset familial Alzheimer’s disease (EOFAD), a dominantly inherited disorder that led to their father's death at age 42, she struggles with whether to undergo genetic testing and whether to have children. This interrupted case study examines the impact of genetic testing on people and their families when there is no treatment or cure for a disease. It covers principles of Mendelian inheritance as well as genetic and reproductive technologies ,such as gene tests, pre-implantation genetic diagnosis, and in vitro fertilization. It can be used in introductory biology courses for both majors and non-majors or adapted for more advanced courses in genetics and molecular biology.

  7. Diverse and bioactive endophytic Aspergilli inhabit Cupressaceae plant family.

    PubMed

    Soltani, Jalal; Moghaddam, Mahdieh S Hosseyni

    2014-09-01

    Aspergilli are filamentous, cosmopolitan and ubiquitous fungi which have significant impact on human, animal and plant welfare worldwide. Due to their extraordinary metabolic diversity, Aspergillus species are used in biotechnology for the production of a vast array of biomolecules. However, little is known about Aspergillus species that are able to adapt an endophytic lifestyle in Cupressaceae plant family and are capable of producing cytotoxic, antifungal and antibacterial metabolites. In this work, we report a possible ecological niche for pathogenic fungi such as Aspergillus fumigatus and Aspergillus flavus. Indeed, our findings indicate that A. fumigatus, A. flavus, Aspergillus niger var. niger and A. niger var. awamori adapt an endophytic lifestyle inside the Cupressaceous plants including Cupressus arizonica, Cupressus sempervirens var. fastigiata, Cupressus semipervirens var. cereiformis, and Thuja orientalis. In addition, we found that extracts of endophytic Aspergilli showed significant growth inhibition and cytotoxicity against the model fungus Pyricularia oryzae and bacteria such as Bacillus sp., Erwinia amylovora and Pseudomonas syringae. These endophytic Aspergilli also showed in vitro antifungal effects on the cypress fungal phytopathogens including Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. In conclusion, our findings clearly support the endophytic association of Aspergilli with Cupressaceae plants and their possible role in protection of host plants against biotic stresses. Observed bioactivities of such endophytic Aspergilli may represent a significant potential for bioindustry and biocontrol applications. PMID:24912659

  8. Evolution of the fibropellin gene family and patterns of fibropellin gene expression in sea urchin phylogeny

    Microsoft Academic Search

    Brent W. Bisgrove; Mary E. Andrews; Rudolf A. Raff

    1995-01-01

    This study documents evolutionary modifications in the expression patterns of the sea urchin EGF I and EGF III genes, which encode a family of extracellular matrix proteins, the fibropellins. We show that the sea urchin apical lamina, a macromolecular extracellular matrix that surrounds the sea urchin embryo and is made up of the fibropellins, has been conserved through at least

  9. Mutation screening in candidate genes in four Chinese brachydactyly families.

    PubMed

    Dong, Sufang; Wang, Yinghui; Tao, Shengxiang; Zheng, Fang

    2015-01-01

    Autosomal dominant brachydactyly (BD) is a skeletal disorder with several subtypes, including brachydactyly type A1 (BDA1) and brachydactyly type B1 (BDB1). Mutations in Indian hedgehog (IHH) are usually associated with BDA1, whereas heterozygous mutations in receptor tyrosine kinase-like orphan receptor 2 (ROR2) are mainly responsible for BDB1. On the basis of the clinical phenotype identification, we screened IHH and ROR2 by the candidate gene approach using PCR direct sequencing. We found three known mutations of IHH (c.283_285delGAG, p.E95del; c.298 G>A, p.D100N; c.300C>G, p.D100E) in three Chinese families with BDA1, and a novel heterozygous nonsense mutation of ROR2 (c.2273C>A, p.S758X) in a BDB1 family. It was noted that c.300C>G mutation was a new nucleotide substitution compared to the reported c.300C>A, which led to the same amino acid change (p.D100E). The novel nonsense mutation p.S758X was verified by absence in the unaffected family members and the 100 randomly-selected controls. In this paper, we report three recurrent mutations with a new nucleotide substitution of IHH in three Chinese families with BDA1 and a novel nonsense mutation in BDB1 pedigree. We therefore recommend the approach of candidate gene screening as the first choice for genetic testing for BD. PMID:25696018

  10. Use of NAP gene to manipulate leaf senescence in plants

    SciTech Connect

    Gan, Susheng; Guo, Yongfeng

    2013-04-16

    The present invention discloses transgenic plants having an altered level of NAP protein compared to that of a non-transgenic plant, where the transgenic plants display an altered leaf senescence phenotype relative to a non-transgenic plant, as well as mutant plants comprising an inactivated NAP gene, where mutant plants display a delayed leaf senescence phenotype compared to that of a non-mutant plant. The present invention also discloses methods for delaying leaf senescence in a plant, as well as methods of making a mutant plant having a decreased level of NAP protein compared to that of a non-mutant plant, where the mutant plant displays a delayed leaf senescence phenotype relative to a non-mutant plant. Methods for causing precocious leaf senescence or promoting leaf senescence in a plant are also disclosed. Also disclosed are methods of identifying a candidate plant suitable for breeding that displays a delayed leaf senescence and/or enhanced yield phenotype.

  11. In Silico Identification, Phylogenetic and Bioinformatic Analysis of Argonaute Genes in Plants

    PubMed Central

    Mirzaei, Khaled; Bahramnejad, Bahman; Shamsifard, Mohammad Hasan; Zamani, Wahid

    2014-01-01

    Argonaute protein family is the key players in pathways of gene silencing and small regulatory RNAs in different organisms. Argonaute proteins can bind small noncoding RNAs and control protein synthesis, affect messenger RNA stability, and even participate in the production of new forms of small RNAs. The aim of this study was to characterize and perform bioinformatic analysis of Argonaute proteins in 32 plant species that their genome was sequenced. A total of 437 Argonaute genes were identified and were analyzed based on lengths, gene structure, and protein structure. Results showed that Argonaute proteins were highly conserved across plant kingdom. Phylogenic analysis divided plant Argonautes into three classes. Argonaute proteins have three conserved domains PAZ, MID and PIWI. In addition to three conserved domains namely, PAZ, MID, and PIWI, we identified few more domains in AGO of some plant species. Expression profile analysis of Argonaute proteins showed that expression of these genes varies in most of tissues, which means that these proteins are involved in regulation of most pathways of the plant system. Numbers of alternative transcripts of Argonaute genes were highly variable among the plants. A thorough analysis of large number of putative Argonaute genes revealed several interesting aspects associated with this protein and brought novel information with promising usefulness for both basic and biotechnological applications. PMID:25309901

  12. Evolution of plant NBS encoding disease resistance genes.

    PubMed

    Sha, Luo

    2014-12-01

    NBS (nucleotide-binding site) genes are a major class of disease resistance (R) genes in plants. Studies on their evolutionary pattern, structure characteristics and functional regulation have been always paid much attentions. NBS genes exist in a various plants by different copy numbers and low expression levels. They encode proteins containing conserved NBS domain and C-terminal leucine-rich repeats (LRRs). The NBS genes have frequent sequence exchanges among homologs and consequently show extensive diversity and poor synteny. Two types of NBS genes are distinguished based on their frequency of sequence exchanges. In this review, we summarize the latest progress of plant NBS encoding genes in terms of structure, number, evolutionary pattern, sequence diversity and distribution in genome, providing some insights into the further research on NBS genes in plant. PMID:25487266

  13. Repeated Evolution of Chimeric Fusion Genes in the ?-Globin Gene Family of Laurasiatherian Mammals

    PubMed Central

    Gaudry, Michael J.; Storz, Jay F.; Butts, Gary Tyler; Campbell, Kevin L.; Hoffmann, Federico G.

    2014-01-01

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the ?-globin gene family of placental mammals, the two postnatally expressed ?- and ?-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB “Lepore” deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian ?-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived “anti-Lepore” duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the ?-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20–100%) of ?-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion. PMID:24814285

  14. Repeated evolution of chimeric fusion genes in the ?-globin gene family of laurasiatherian mammals.

    PubMed

    Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G

    2014-05-01

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the ?-globin gene family of placental mammals, the two postnatally expressed ?- and ?-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian ?-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the ?-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of ?-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion. PMID:24814285

  15. Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa.

    PubMed

    Loth-Pereda, Verónica; Orsini, Elena; Courty, Pierre-Emmanuel; Lota, Frédéric; Kohler, Annegret; Diss, Loic; Blaudez, Damien; Chalot, Michel; Nehls, Uwe; Bucher, Marcel; Martin, Francis

    2011-08-01

    Gene networks involved in inorganic phosphate (Pi) acquisition and homeostasis in woody perennial species able to form mycorrhizal symbioses are poorly known. Here, we describe the features of the 12 genes coding for Pi transporters of the Pht1 family in poplar (Populus trichocarpa). Individual Pht1 transporters play distinct roles in acquiring and translocating Pi in different tissues of mycorrhizal and nonmycorrhizal poplar during different growth conditions and developmental stages. Pi starvation triggered the up-regulation of most members of the Pht1 family, especially PtPT9 and PtPT11. PtPT9 and PtPT12 showed a striking up-regulation in ectomycorrhizas and endomycorrhizas, whereas PtPT1 and PtPT11 were strongly down-regulated. PtPT10 transcripts were highly abundant in arbuscular mycorrhiza (AM) roots only. PtPT8 and PtPT10 are phylogenetically associated to the AM-inducible Pht1 subfamily I. The analysis of promoter sequences revealed conserved motifs similar to other AM-inducible orthologs in PtPT10 only. To gain more insight into gene regulatory mechanisms governing the AM symbiosis in woody plant species, the activation of the poplar PtPT10 promoter was investigated and detected in AM of potato (Solanum tuberosum) roots. These results indicated that the regulation of AM-inducible Pi transporter genes is conserved between perennial woody and herbaceous plant species. Moreover, poplar has developed an alternative Pi uptake pathway distinct from AM plants, allowing ectomycorrhizal poplar to recruit PtPT9 and PtPT12 to cope with limiting Pi concentrations in forest soils. PMID:21705655

  16. Contrasting evolutionary patterns of the Rp1 resistance gene family in different species of Poaceae.

    PubMed

    Luo, Sha; Peng, Junhua; Li, Kunpeng; Wang, Min; Kuang, Hanhui

    2011-01-01

    Disease-resistance genes (R-genes) in plants show complex evolutionary patterns. We investigated the evolution of the Rp1 R-gene family in Poaceae, and 409 Rp1 fragments were sequenced from 21 species. Our data showed that the common ancestor of Poaceae had two Rp1 loci, but the number of Rp1 locus in extant species varies from one to five. Some wheat and Zea genotypes have dozens of Rp1 homologues in striking contrast to one or two copies in Brachypodium distachyon. The large number of diverse Rp1 homologues in Zea was the result of duplications followed by extensive sequence exchanges among paralogues, and all genes in maize have evolved in a pattern of Type I R-genes. The high frequency of sequence exchanges did not cause concerted evolution in Zea species, but concerted evolution was obvious between Rp1 homologues from genera Zea and Sorghum. Differentiation of Type I and Type II Rp1 homologues was observed in Oryza species, likely occurred in their common ancestor. One member (Type II R-gene) in the Oryza Rp1 cluster did not change sequences with its paralogues, whereas the other paralogues (Type I R-genes) had frequent sequence exchanges. The functional Pi37 resistance gene in rice was generated through an unequal crossover between two neighboring paralogues followed by four point mutations. The Rp1 homologues in wheat and barley were most divergent, probably due to lack of sequence exchanges among them. Our results shed more light on R-gene evolution, particularly on the differentiation of Type I and Type II R-genes. PMID:20713469

  17. Phylogeny and Biogeography of the Carnivorous Plant Family Sarraceniaceae

    PubMed Central

    Ellison, Aaron M.; Butler, Elena D.; Hicks, Emily Jean; Naczi, Robert F. C.; Calie, Patrick J.; Bell, Charles D.; Davis, Charles C.

    2012-01-01

    The carnivorous plant family Sarraceniaceae comprises three genera of wetland-inhabiting pitcher plants: Darlingtonia in the northwestern United States, Sarracenia in eastern North America, and Heliamphora in northern South America. Hypotheses concerning the biogeographic history leading to this unusual disjunct distribution are controversial, in part because genus- and species-level phylogenies have not been clearly resolved. Here, we present a robust, species-rich phylogeny of Sarraceniaceae based on seven mitochondrial, nuclear, and plastid loci, which we use to illuminate this family's phylogenetic and biogeographic history. The family and genera are monophyletic: Darlingtonia is sister to a clade consisting of Heliamphora+Sarracenia. Within Sarracenia, two clades were strongly supported: one consisting of S. purpurea, its subspecies, and S. rosea; the other consisting of nine species endemic to the southeastern United States. Divergence time estimates revealed that stem group Sarraceniaceae likely originated in South America 44–53 million years ago (Mya) (highest posterior density [HPD] estimate?=?47 Mya). By 25–44 (HPD?=?35) Mya, crown-group Sarraceniaceae appears to have been widespread across North and South America, and Darlingtonia (western North America) had diverged from Heliamphora+Sarracenia (eastern North America+South America). This disjunction and apparent range contraction is consistent with late Eocene cooling and aridification, which may have severed the continuity of Sarraceniaceae across much of North America. Sarracenia and Heliamphora subsequently diverged in the late Oligocene, 14–32 (HPD?=?23) Mya, perhaps when direct overland continuity between North and South America became reduced. Initial diversification of South American Heliamphora began at least 8 Mya, but diversification of Sarracenia was more recent (2–7, HPD?=?4 Mya); the bulk of southeastern United States Sarracenia originated co-incident with Pleistocene glaciation, <3 Mya. Overall, these results suggest climatic change at different temporal and spatial scales in part shaped the distribution and diversity of this carnivorous plant clade. PMID:22720090

  18. Iridoid synthase activity is common among the plant progesterone 5?-reductase family.

    PubMed

    Munkert, Jennifer; Pollier, Jacob; Miettinen, Karel; Van Moerkercke, Alex; Payne, Richard; Müller-Uri, Frieder; Burlat, Vincent; O'Connor, Sarah E; Memelink, Johan; Kreis, Wolfgang; Goossens, Alain

    2015-01-01

    Catharanthus roseus, the Madagascar periwinkle, synthesizes bioactive monoterpenoid indole alkaloids, including the anti-cancer drugs vinblastine and vincristine. The monoterpenoid branch of the alkaloid pathway leads to the secoiridoid secologanin and involves the enzyme iridoid synthase (IS), a member of the progesterone 5?-reductase (P5?R) family. IS reduces 8-oxogeranial to iridodial. Through transcriptome mining, we show that IS belongs to a family of six C. roseus P5?R genes. Characterization of recombinant CrP5?R proteins demonstrates that all but CrP5?R3 can reduce progesterone and thus can be classified as P5?Rs. Three of them, namely CrP5?R1, CrP5?R2, and CrP5?R4, can also reduce 8-oxogeranial, pointing to a possible redundancy with IS (corresponding to CrP5?R5) in secoiridoid synthesis. In-depth functional analysis by subcellular protein localization, gene expression analysis, in situ hybridization, and virus-induced gene silencing indicate that besides IS, CrP5?R4 may also participate in secoiridoid biosynthesis. We cloned a set of P5?R genes from angiosperm plant species not known to produce iridoids and demonstrate that the corresponding recombinant proteins are also capable of using 8-oxogeranial as a substrate. This suggests that IS activity is intrinsic to angiosperm P5?R proteins and has evolved early during evolution. PMID:25578278

  19. Iridoid Synthase Activity Is Common among the Plant Progesterone 5?-Reductase Family.

    PubMed

    Munkert, Jennifer; Pollier, Jacob; Miettinen, Karel; Van Moerkercke, Alex; Payne, Richard; Müller-Uri, Frieder; Burlat, Vincent; O'Connor, Sarah E; Memelink, Johan; Kreis, Wolfgang; Goossens, Alain

    2014-09-19

    Catharanthus roseus, the Madagascar periwinkle, synthesizes bioactive monoterpenoid indole alkaloids, among which the anti-cancer drugs vinblastine and vincristine. The monoterpenoid branch of the alkaloid pathway leads to the secoiridoid secologanin and involves the enzyme iridoid synthase (IS), a member of the progesterone 5?-reductase (P5?R) family. IS reduces 8-oxogeranial to iridodial. Through transcriptome mining, we show that IS belongs to a family of six C. roseus P5?R genes. Characterisation of recombinant CrP5?R proteins demonstrates that all but CrP5?R3 can reduce progesterone, and thus can be classified as P5?Rs. Three of them, namely CrP5?R1, CrP5?R2 and CrP5?R4, could also reduce 8-oxogeranial, pointing to a possible redundancy with IS (corresponding to CrP5?R5) in secoiridoid synthesis. In depth functional analysis by subcellular protein localisation, gene expression analysis, in situ hybridisation and virus-induced gene silencing, indicates that besides IS, CrP5?R4 may also participate in secoiridoid biosynthesis. Finally, we cloned a set of P5?R genes from angiosperm plant species not known to produce iridoids and demonstrate that the corresponding recombinant proteins are also capable of using 8-oxogeranial as a substrate. This suggests that 'IS activity' is intrinsic to angiosperm P5?R proteins and has evolved early during evolution. PMID:25239067

  20. TreeFam: a curated database of phylogenetic trees of animal gene families

    Microsoft Academic Search

    Heng Li; Avril Coghlan; Jue Ruan; Lachlan James M. Coin; Jean-karim Hériché; Lara Osmotherly; Ruiqiang Li; Tao Liu; Zhang Zhang; Lars Bolund; Gane Ka-shu Wong; Wei-mou Zheng; Paramvir Dehal; Jun Wang; Richard Durbin

    2006-01-01

    TreeFam is a database of phylogenetic trees of gene families found in animals. It aims to develop a curated resource that presents the accurate evolutionary his- 20 tory of all animal gene families, as well as reliable ortholog and paralog assignments. Curated families are being added progressively, based on seed align- ments and trees in a similar fashion to Pfam.

  1. Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula

    PubMed Central

    Shen, Chenjia; Yue, Runqing; Sun, Tao; Zhang, Lei; Xu, Luqin; Tie, Shuanggui; Wang, Huizhong; Yang, Yanjun

    2015-01-01

    Auxin response factors (ARFs) bind specifically to auxin response elements (AuxREs) in the promoters of down-stream target genes and play roles in plant responses to diverse environmental factors. Using the latest updated Medicago truncatula reference genome sequence, a comprehensive characterization and analysis of 24 MtARF (M. truncatula ARF) genes were performed. To uncover the basic information and functions of MtARF genes during symbiosis, we analyzed the expression patterns of MtARF genes during the early phase of Sinorhizobium meliloti infection. The systematic analysis indicated that changes in MtARF gene expression occur during these early stages of infection, suggesting a functional role in symbiosis. Furthermore, the roles of MtARF-mediated auxin signaling in symbiosis were tested in the infection resistant mutant (dmi3). The expression responses of MtARFs to S. meliloti infection were attenuated in the mutant compared to wild-type A17. In summary, our results show that changes in MtARF gene expression occur during the response to S. meliloti infection, suggesting that members of this family may have important roles in the symbiotic interaction.

  2. Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula.

    PubMed

    Shen, Chenjia; Yue, Runqing; Sun, Tao; Zhang, Lei; Xu, Luqin; Tie, Shuanggui; Wang, Huizhong; Yang, Yanjun

    2015-01-01

    Auxin response factors (ARFs) bind specifically to auxin response elements (AuxREs) in the promoters of down-stream target genes and play roles in plant responses to diverse environmental factors. Using the latest updated Medicago truncatula reference genome sequence, a comprehensive characterization and analysis of 24 MtARF (M. truncatula ARF) genes were performed. To uncover the basic information and functions of MtARF genes during symbiosis, we analyzed the expression patterns of MtARF genes during the early phase of Sinorhizobium meliloti infection. The systematic analysis indicated that changes in MtARF gene expression occur during these early stages of infection, suggesting a functional role in symbiosis. Furthermore, the roles of MtARF-mediated auxin signaling in symbiosis were tested in the infection resistant mutant (dmi3). The expression responses of MtARFs to S. meliloti infection were attenuated in the mutant compared to wild-type A17. In summary, our results show that changes in MtARF gene expression occur during the response to S. meliloti infection, suggesting that members of this family may have important roles in the symbiotic interaction. PMID:25759704

  3. Phylogenetic, Molecular, and Biochemical Characterization of Caffeic Acid o-Methyltransferase Gene Family in Brachypodium distachyon

    PubMed Central

    Wu, Xianting; Wu, Jiajie; Luo, Yangfan; Bragg, Jennifer; Anderson, Olin; Vogel, John; Gu, Yong Q.

    2013-01-01

    Caffeic acid o-methyltransferase (COMT) is one of the important enzymes controlling lignin monomer production in plant cell wall synthesis. Analysis of the genome sequence of the new grass model Brachypodium distachyon identified four COMT gene homologs, designated as BdCOMT1, BdCOMT2, BdCOMT3, and BdCOMT4. Phylogenetic analysis suggested that they belong to the COMT gene family, whereas syntenic analysis through comparisons with rice and sorghum revealed that BdCOMT4 on Chromosome 3 is the orthologous copy of the COMT genes well characterized in other grass species. The other three COMT genes are unique to Brachypodium since orthologous copies are not found in the collinear regions of rice and sorghum genomes. Expression studies indicated that all four Brachypodium COMT genes are transcribed but with distinct patterns of tissue specificity. Full-length cDNAs were cloned in frame into the pQE-T7 expression vector for the purification of recombinant Brachypodium COMT proteins. Biochemical characterization of enzyme activity and substrate specificity showed that BdCOMT4 has significant effect on a broad range of substrates with the highest preference for caffeic acid. The other three COMTs had low or no effect on these substrates, suggesting that a diversified evolution occurred on these duplicate genes that not only impacted their pattern of expression, but also altered their biochemical properties. PMID:23431288

  4. Molecular Characterization of Maize Acetylcholinesterase. A Novel Enzyme Family in the Plant Kingdom1

    PubMed Central

    Sagane, Yoshimasa; Nakagawa, Tomoyuki; Yamamoto, Kosuke; Michikawa, Soichi; Oguri, Suguru; Momonoki, Yoshie S.

    2005-01-01

    Acetylcholinesterase (AChE) has been increasingly recognized in plants by indirect evidence of its activity. Here, we report purification and cloning of AChE from maize (Zea mays), thus providing to our knowledge the first direct evidence of the AChE molecule in plants. AChE was identified as a mixture of disulfide- and noncovalently linked 88-kD homodimers consisting of 42- to 44-kD polypeptides. The AChE hydrolyzed acetylthiocholine and propyonylthiocholine, but not S-butyrylthiocholine, and the AChE-specific inhibitor neostigmine bromide competitively inhibited its activity, implying that maize AChE functions in a similar manner as the animal enzyme. However, kinetic analyses indicated that maize AChE showed a lower affinity to substrates and inhibitors than animal AChE. The full-length cDNA of maize AChE gene is 1,471 nucleotides, which encode a protein having 394 residues, including a signal peptide. The deduced amino acid sequence exhibited no apparent similarity with that of the animal enzyme, although the catalytic triad was the same as in the animal AChE. In silico screening indicated that maize AChE homologs are widely distributed in plants but not in animals. These findings lead us to propose that the AChE family, as found here, comprises a novel family of the enzymes that is specifically distributed in the plant kingdom. PMID:15980188

  5. The Roles of Gene Duplication, Gene Conversion and Positive Selection in Rodent Esp and Mup Pheromone Gene Families with Comparison to the Abp Family

    PubMed Central

    Karn, Robert C.; Laukaitis, Christina M.

    2012-01-01

    Three proteinaceous pheromone families, the androgen-binding proteins (ABPs), the exocrine-gland secreting peptides (ESPs) and the major urinary proteins (MUPs) are encoded by large gene families in the genomes of Mus musculus and Rattus norvegicus. We studied the evolutionary histories of the Mup and Esp genes and compared them with what is known about the Abp genes. Apparently gene conversion has played little if any role in the expansion of the mouse Class A and Class B Mup genes and pseudogenes, and the rat Mups. By contrast, we found evidence of extensive gene conversion in many Esp genes although not in all of them. Our studies of selection identified at least two amino acid sites in ?-sheets as having evolved under positive selection in the mouse Class A and Class B MUPs and in rat MUPs. We show that selection may have acted on the ESPs by determining Ka/Ks for Exon 3 sequences with and without the converted sequence segment. While it appears that purifying selection acted on the ESP signal peptides, the secreted portions of the ESPs probably have undergone much more rapid evolution. When the inner gene converted fragment sequences were removed, eleven Esp paralogs were present in two or more pairs with Ka/Ks >1.0 and thus we propose that positive selection is detectable by this means in at least some mouse Esp paralogs. We compare and contrast the evolutionary histories of all three mouse pheromone gene families in light of their proposed functions in mouse communication. PMID:23094077

  6. Diversification of the Light-Harvesting Complex Gene Family via Intra- and Intergenic Duplications in the Coral Symbiotic Alga Symbiodinium.

    PubMed

    Maruyama, Shinichiro; Shoguchi, Eiichi; Satoh, Nori; Minagawa, Jun

    2015-01-01

    The light-harvesting complex (LHC) is an essential component in light energy capture and transduction to facilitate downstream photosynthetic reactions in plant and algal chloroplasts. The unicellular dinoflagellate alga Symbiodinium is an endosymbiont of cnidarian animals, including corals and sea anemones, and provides carbohydrates generated through photosynthesis to host animals. Although Symbiodinium possesses a unique LHC gene family, called chlorophyll a-chlorophyll c2-peridinin protein complex (acpPC), its genome-level diversity and evolutionary trajectories have not been investigated. Here, we describe a phylogenetic analysis revealing that many of the LHCs are encoded by highly duplicated genes with multi-subunit polyprotein structures in the nuclear genome of Symbiodinium minutum. This analysis provides an extended list of the LHC gene family in a single organism, including 80 loci encoding polyproteins composed of 145 LHC subunits recovered in the phylogenetic tree. In S. minutum, 5 phylogenetic groups of the Lhcf-type gene family, which is exclusively conserved in algae harboring secondary plastids of red algal origin, were identified. Moreover, 5 groups of the Lhcr-type gene family, of which members are known to be associated with PSI in red algal plastids and secondary plastids of red algal origin, were identified. Notably, members classified within a phylogenetic group of the Lhcf-type (group F1) are highly duplicated, which may explain the presence of an unusually large number of LHC genes in this species. Some gene units were homologous to other units within single loci of the polyprotein genes, whereas intergenic homologies between separate loci were conspicuous in other cases, implying that gene unit 'shuffling' by gene conversion and/or genome rearrangement might have been a driving force for diversification. These results suggest that vigorous intra- and intergenic gene duplication events have resulted in the genomic framework of photosynthesis in coral symbiont dinoflagellate algae. PMID:25741697

  7. Diversification of the Light-Harvesting Complex Gene Family via Intra- and Intergenic Duplications in the Coral Symbiotic Alga Symbiodinium

    PubMed Central

    Maruyama, Shinichiro; Shoguchi, Eiichi; Satoh, Nori; Minagawa, Jun

    2015-01-01

    The light-harvesting complex (LHC) is an essential component in light energy capture and transduction to facilitate downstream photosynthetic reactions in plant and algal chloroplasts. The unicellular dinoflagellate alga Symbiodinium is an endosymbiont of cnidarian animals, including corals and sea anemones, and provides carbohydrates generated through photosynthesis to host animals. Although Symbiodinium possesses a unique LHC gene family, called chlorophyll a-chlorophyll c2-peridinin protein complex (acpPC), its genome-level diversity and evolutionary trajectories have not been investigated. Here, we describe a phylogenetic analysis revealing that many of the LHCs are encoded by highly duplicated genes with multi-subunit polyprotein structures in the nuclear genome of Symbiodinium minutum. This analysis provides an extended list of the LHC gene family in a single organism, including 80 loci encoding polyproteins composed of 145 LHC subunits recovered in the phylogenetic tree. In S. minutum, 5 phylogenetic groups of the Lhcf-type gene family, which is exclusively conserved in algae harboring secondary plastids of red algal origin, were identified. Moreover, 5 groups of the Lhcr-type gene family, of which members are known to be associated with PSI in red algal plastids and secondary plastids of red algal origin, were identified. Notably, members classified within a phylogenetic group of the Lhcf-type (group F1) are highly duplicated, which may explain the presence of an unusually large number of LHC genes in this species. Some gene units were homologous to other units within single loci of the polyprotein genes, whereas intergenic homologies between separate loci were conspicuous in other cases, implying that gene unit ‘shuffling’ by gene conversion and/or genome rearrangement might have been a driving force for diversification. These results suggest that vigorous intra- and intergenic gene duplication events have resulted in the genomic framework of photosynthesis in coral symbiont dinoflagellate algae. PMID:25741697

  8. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules.

    PubMed

    Dourado, Manuella Nóbrega; Bogas, Andrea Cristina; Pomini, Armando M; Andreote, Fernando Dini; Quecine, Maria Carolina; Marsaioli, Anita J; Araújo, Welington Luiz

    2013-12-01

    Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically) with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules) and/or by the plant roots (e.g. flavonoids, ethanol and methanol), respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones) and plant exudates (including ethanol) in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF), adaptation to stressful environment (crtI, phoU and sss), to interactions with plant metabolism compounds (acdS) and pathogenicity (patatin and phoU). Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization), which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction. PMID:24688531

  9. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules

    PubMed Central

    Dourado, Manuella Nóbrega; Bogas, Andrea Cristina; Pomini, Armando M.; Andreote, Fernando Dini; Quecine, Maria Carolina; Marsaioli, Anita J.; Araújo, Welington Luiz

    2013-01-01

    Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically) with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules) and/or by the plant roots (e.g. flavonoids, ethanol and methanol), respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones) and plant exudates (including ethanol) in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF), adaptation to stressful environment (crtI, phoU and sss), to interactions with plant metabolism compounds (acdS) and pathogenicity (patatin and phoU). Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization), which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction. PMID:24688531

  10. Evolution and Function of the Plant Cell Wall Synthesis-Related Glycosyltransferase Family 81[W][OA

    PubMed Central

    Yin, Yanbin; Chen, Huiling; Hahn, Michael G.; Mohnen, Debra; Xu, Ying

    2010-01-01

    Carbohydrate-active enzyme glycosyltransferase family 8 (GT8) includes the plant galacturonosyltransferase1-related gene family of proven and putative ?-galacturonosyltransferase (GAUT) and GAUT-like (GATL) genes. We computationally identified and investigated this family in 15 fully sequenced plant and green algal genomes and in the National Center for Biotechnology Information nonredundant protein database to determine the phylogenetic relatedness of the GAUTs and GATLs to other GT8 family members. The GT8 proteins fall into three well-delineated major classes. In addition to GAUTs and GATLs, known or predicted to be involved in plant cell wall biosynthesis, class I also includes a lower plant-specific GAUT and GATL-related (GATR) subfamily, two metazoan subfamilies, and proteins from other eukaryotes and cyanobacteria. Class II includes galactinol synthases and plant glycogenin-like starch initiation proteins that are not known to be directly involved in cell wall synthesis, as well as proteins from fungi, metazoans, viruses, and bacteria. Class III consists almost entirely of bacterial proteins that are lipooligo/polysaccharide ?-galactosyltransferases and ?-glucosyltransferases. Sequence motifs conserved across all GT8 subfamilies and those specific to plant cell wall-related GT8 subfamilies were identified and mapped onto a predicted GAUT1 protein structure. The tertiary structure prediction identified sequence motifs likely to represent key amino acids involved in catalysis, substrate binding, protein-protein interactions, and structural elements required for GAUT1 function. The results show that the GAUTs, GATLs, and GATRs have a different evolutionary origin than other plant GT8 genes, were likely acquired from an ancient cyanobacterium (Synechococcus) progenitor, and separate into unique subclades that may indicate functional specialization. PMID:20522722

  11. Manipulation of hormone biosynthetic genes in transgenic plants

    Microsoft Academic Search

    Peter Hedden; Andrew L Phillips

    2000-01-01

    Modification of plant hormone biosynthesis through the introduction of bacterial genes is a natural form of genetic engineering, which has been exploited in numerous studies on hormone function. Recently, biosynthetic pathways have been largely elucidated for most of the plant hormone classes, and genes encoding many of the enzymes have been cloned. These advances offer new opportunities to manipulate hormone

  12. Evolutionary analysis of multidrug resistance genes in fungi - impact of gene duplication and family conservation.

    PubMed

    Gossani, Cristiani; Bellieny-Rabelo, Daniel; Venancio, Thiago M

    2014-11-01

    Although the emergence of bacterial drug resistance is of great concern to the scientific community, few studies have evaluated this phenomenon systematically in fungi by using genome-wide datasets. In the present study, we assembled a large compendium of Saccharomyces cerevisiae chemical genetic data to study the evolution of multidrug resistance genes (MDRs) in the fungal lineage. We found that MDRs typically emerge in widely conserved families, most of which containing homologs from pathogenic fungi, such as Candida albicans and Coccidioides immitis, which could favor the evolution of drug resistance in those species. By integrating data from chemical genetics with protein family conservation, genetic and protein interactions, we found that gene families rarely have more than one MDR, indicating that paralogs evolve asymmetrically with regard to multidrug resistance roles. Furthermore, MDRs have more genetic and protein interaction partners than non-MDRs, supporting their participation in complex biochemical systems underlying the tolerance to multiple bioactive molecules. MDRs share more chemical genetic interactions with other MDRs than with non-MDRs, regardless of their evolutionary affinity. These results suggest the existence of an intricate system involved in the global drug tolerance phenotypes. Finally, MDRs are more likely to be hit repeatedly by mutations in laboratory evolution experiments, indicating that they have great adaptive potential. The results presented here not only reveal the main genomic features underlying the evolution of MDRs, but also shed light on the gene families from which drug resistance is more likely to emerge in fungi. PMID:25220072

  13. Mechanisms of Functional and Physical Genome Reduction in Photosynthetic and Nonphotosynthetic Parasitic Plants of the Broomrape Family[W][OPEN

    PubMed Central

    Wicke, Susann; Müller, Kai F.; de Pamphilis, Claude W.; Quandt, Dietmar; Wickett, Norman J.; Zhang, Yan; Renner, Susanne S.; Schneeweiss, Gerald M.

    2013-01-01

    Nonphotosynthetic plants possess strongly reconfigured plastomes attributable to convergent losses of photosynthesis and housekeeping genes, making them excellent systems for studying genome evolution under relaxed selective pressures. We report the complete plastomes of 10 photosynthetic and nonphotosynthetic parasites plus their nonparasitic sister from the broomrape family (Orobanchaceae). By reconstructing the history of gene losses and genome reconfigurations, we find that the establishment of obligate parasitism triggers the relaxation of selective constraints. Partly because of independent losses of one inverted repeat region, Orobanchaceae plastomes vary 3.5-fold in size, with 45 kb in American squawroot (Conopholis americana) representing the smallest plastome reported from land plants. Of the 42 to 74 retained unique genes, only 16 protein genes, 15 tRNAs, and four rRNAs are commonly found. Several holoparasites retain ATP synthase genes with intact open reading frames, suggesting a prolonged function in these plants. The loss of photosynthesis alters the chromosomal architecture in that recombinogenic factors accumulate, fostering large-scale chromosomal rearrangements as functional reduction proceeds. The retention of DNA fragments is strongly influenced by both their proximity to genes under selection and the co-occurrence with those in operons, indicating complex constraints beyond gene function that determine the evolutionary survival time of plastid regions in nonphotosynthetic plants. PMID:24143802

  14. The UDP-Glucuronate Decarboxylase Gene Family in Populus: Structure, Expression, and Association Genetics

    PubMed Central

    Tian, Jiaxing; Li, Bailian; Zhang, Deqiang

    2013-01-01

    In woody crop plants, the oligosaccharide components of the cell wall are essential for important traits such as bioenergy content, growth, and structural wood properties. UDP-glucuronate decarboxylase (UXS) is a key enzyme in the synthesis of UDP-xylose for the formation of xylans during cell wall biosynthesis. Here, we isolated a multigene family of seven members (PtUXS1-7) encoding UXS from Populus tomentosa, the first investigation of UXSs in a tree species. Analysis of gene structure and phylogeny showed that the PtUXS family could be divided into three groups (PtUXS1/4, PtUXS2/5, and PtUXS3/6/7), consistent with the tissue-specific expression patterns of each PtUXS. We further evaluated the functional consequences of nucleotide polymorphisms in PtUXS1. In total, 243 single-nucleotide polymorphisms (SNPs) were identified, with a high frequency of SNPs (1/18 bp) and nucleotide diversity (?T?=?0.01033, ?w?=?0.01280). Linkage disequilibrium (LD) analysis showed that LD did not extend over the entire gene (r2<0.1, P<0.001, within 700 bp). SNP- and haplotype-based association analysis showed that nine SNPs (Q <0.10) and 12 haplotypes (P<0.05) were significantly associated with growth and wood property traits in the association population (426 individuals), with 2.70% to 12.37% of the phenotypic variation explained. Four significant single-marker associations (Q <0.10) were validated in a linkage mapping population of 1200 individuals. Also, RNA transcript accumulation varies among genotypic classes of SNP10 was further confirmed in the association population. This is the first comprehensive study of the UXS gene family in woody plants, and lays the foundation for genetic improvements of wood properties and growth in trees using genetic engineering or marker-assisted breeding. PMID:23613749

  15. Standardized Plant Disease Evaluations will Enhance Resistance Gene Discovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene discovery and marker development using DNA based tools require plant populations with well-documented phenotypes. Related crops such as apples and pears may share a number of genes, for example resistance to common diseases, and data mining in one crop may reveal genes for the other. However, u...

  16. Plant improvement Management of the ig gene for haploid

    E-print Network

    Paris-Sud XI, Université de

    Plant improvement Management of the ig gene for haploid induction in maize M Pollacsek INRA; accepted 16 January 1992) Summary — The effect of the ig gene showed the same intensity level, the genetic background of the ig gene has a strong effect in paternal haploid induction

  17. Identification, expression, and comparative genomic analysis of the IPT and CKX gene families in Chinese cabbage (Brassica rapa ssp. pekinensis)

    PubMed Central

    2013-01-01

    Background Cytokinins (CKs) have significant roles in various aspects of plant growth and development, and they are also involved in plant stress adaptations. The fine-tuning of the controlled CK levels in individual tissues, cells, and organelles is properly maintained by isopentenyl transferases (IPTs) and cytokinin oxidase/dehydrogenases (CKXs). Chinese cabbage is one of the most economically important vegetable crops worldwide. The whole genome sequencing of Brassica rapa enables us to perform the genome-wide identification and functional analysis of the IPT and CKX gene families. Results In this study, a total of 13 BrIPT genes and 12 BrCKX genes were identified. The gene structures, conserved domains and phylogenetic relationships were analyzed. The isoelectric point, subcellular localization and glycosylation sites of the proteins were predicted. Segmental duplicates were found in both BrIPT and BrCKX gene families. We also analyzed evolutionary patterns and divergence of the IPT and CKX genes in the Cruciferae family. The transcription levels of BrIPT and BrCKX genes were analyzed to obtain an initial picture of the functions of these genes. Abiotic stress elements related to adverse environmental stimuli were found in the promoter regions of BrIPT and BrCKX genes and they were confirmed to respond to drought and high salinity conditions. The effects of 6-BA and ABA on the expressions of BrIPT and BrCKX genes were also investigated. Conclusions The expansion of BrIPT and BrCKX genes after speciation from Arabidopsis thaliana is mainly attributed to segmental duplication events during the whole genome triplication (WGT) and substantial duplicated genes are lost during the long evolutionary history. Genes produced by segmental duplication events have changed their expression patterns or may adopted new functions and thus are obtained. BrIPT and BrCKX genes respond well to drought and high salinity stresses, and their transcripts are affected by exogenous hormones, such as 6-BA and ABA, suggesting their potential roles in abiotic stress conditions and regulatory mechanisms of plant hormone homeostasis. The appropriate modulation of endogenous CKs levels by IPT and CKX genes is a promising approach for developing economically important high-yielding and high-quality stress-tolerant crops in agriculture. PMID:24001366

  18. Update of the NAD(P)H:quinone oxidoreductase (NQO) gene family

    PubMed Central

    2006-01-01

    The NAD(P)H:quinone acceptor oxidoreductase (NQO) gene family belongs to the flavoprotein clan and, in the human genome, consists of two genes (NQO1 and NQO2). These two genes encode cytosolic flavoenzymes that catalyse the beneficial two-electron reduction of quinones to hydroquinones. This reaction prevents the unwanted one-electron reduction of quinones by other quinone reductases; one-electron reduction results in the formation of reactive oxygen species, generated by redox cycling of semiquinones in the presence of molecular oxygen. Both the mammalian NQO1 and NQO2 genes are upregulated as a part of the oxidative stress response and are inexplicably overexpressed in particular types of tumours. A non-synonymous mutation in the NQO1 gene, leading to absence of enzyme activity, has been associated with an increased risk of myeloid leukaemia and other types of blood dyscrasia in workers exposed to benzene. NQO2 has a melatonin-binding site, which may explain the anti-oxidant role of melatonin. An ancient NQO3 subfamily exists in eubacteria and the authors suggest that there should be additional divisions of the NQO family to include the NQO4 subfamily in fungi and NQO5 subfamily in archaebacteria. Interestingly, no NQO genes could be identified in the worm, fly, sea squirt or plants; because these taxa carry quinone reductases capable of one- and two-electron reductions, there has been either convergent evolution or redundancy to account for the appearance of these enzyme functions whenever they have been needed during evolution. PMID:16595077

  19. Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway

    PubMed Central

    2011-01-01

    Background In trees, a substantial amount of carbon is directed towards production of phenolics for development and defense. This metabolic pathway is also a major factor in resistance to insect pathogens in spruce. In such gene families, environmental stimuli may have an important effect on the evolutionary fate of duplicated genes, and different expression patterns may indicate functional diversification. Results Gene families in spruce (Picea) have expanded to superfamilies, including O-methyltransferases, cytochrome-P450, and dirigents/classIII-peroxidases. Neo-functionalization of superfamily members from different clades is reflected in expression diversification. Genetical genomics can provide new insights into the genetic basis and evolution of insect resistance in plants. Adopting this approach, we merged genotype data (252 SNPs in a segregating pedigree), gene expression levels (for 428 phenylpropanoid-related genes) and measures of susceptibility to Pissodes stobi, using a partial-diallel crossing-design with white spruce (Picea glauca). Thirty-eight expressed phenylpropanoid-related genes co-segregated with weevil susceptibility, indicating either causative or reactive effects of these genes to weevil resistance. We identified eight regulatory genomic regions with extensive overlap of quantitative trait loci from susceptibility and growth phenotypes (pQTLs) and expression QTL (eQTL) hotspots. In particular, SNPs within two different CCoAOMT loci regulate phenotypic variation from a common set of 24 genes and three resistance traits. Conclusions Pest resistance was associated with individual candidate genes as well as with trans-regulatory hotspots along the spruce genome. Our results showed that specific genes within the phenylpropanoid pathway have been duplicated and diversified in the conifer in a process fundamentally different from short-lived angiosperm species. These findings add to the information about the role of the phenylpropanoid pathway in the evolution of plant defense mechanisms against insect pests and provide substantial potential for the functional characterization of several not yet resolved alternative pathways in plant defenses. PMID:22177423

  20. ELN gene triplication responsible for familial supravalvular aortic aneurysm.

    PubMed

    Guemann, Anne-Sophie; Andrieux, Joris; Petit, Florence; Halimi, Emmanuel; Bouquillon, Sonia; Manouvrier-Hanu, Sylvie; Van De Kamp, Jiddeke; Boileau, Catherine; Hanna, Nadine; Jondeau, Guillaume; Vaksmann, Guy; Houfflin-Debarge, Veronique; Holder-Espinasse, Muriel

    2015-04-01

    Supravalvular aortic aneurysms are less frequent than abdominal ones. Among Supravalvular aortic aneurysm aetiologies, we focused on dystrophic lesions as they can be secondary to genetic causes such as elastin anomaly. We report on a familial 7q11.23 triplication - including the ELN gene - segregating with a supravalvular aortic aneurysm. During her first pregnancy, our index patient was diagnosed with tuberous sclerosis and with a Supravalvular aortic aneurysm. The foetus was affected equally. For the second pregnancy, parents applied for preimplantation diagnosis, and a subsequent prenatal diagnosis was offered to the couple, comprising TSC1 molecular analysis, karyotype, and multiplex ligation probe amplification. TSC1 mutation was not found on foetal deoxyribo nucleic acid. Foetal karyotype was normal, but multiplex ligation probe amplification detected a 7q11.23 duplication. Quantitative-polymerase chain reaction and array-comparative genomic hybridisation carried out to further assess this chromosome imbalance subsequently identified a 7q11.23 triplication involving ELN and LIMK1. Foetal heart ultrasound identified a Supravalvular aortic aneurysm. A familial screening was offered for the 7q11.23 triplication and, when found, heart ultrasound was performed. The triplication was diagnosed in our index case as well as in her first child. Of the 17 individuals from this family, 11 have the triplication. Of the 11 individuals with the triplication, 10 were identified to have a supravalvular aortic aneurysm. Of them, two individuals received a medical treatment and one individual needed surgery. We provide evidence of supravalvular aortic aneurysm segregating with 7q11.23 triplication in this family. We would therefore recommend cardiac surveillance for individuals with 7q11.23 triplication. It would also be interesting to offer a quantitative-polymerase chain reaction or an array-comparative genomic hybridisation to a larger cohort of patients presenting with isolated supravalvular aortic aneurysm, as it may provide further information. PMID:24932728

  1. Identification and characterization of a novel copper transporter gene family TaCT1 in common wheat.

    PubMed

    Li, Haoxun; Fan, Renchun; Li, Libin; Wei, Bo; Li, Guoliang; Gu, Liqing; Wang, Xianping; Zhang, Xiangqi

    2014-07-01

    Copper is an essential micronutrient for plant growth and development, and copper transporter plays a pivotal role for keeping copper homeostasis. However, little is known about copper transporters in wheat. Here, we report a novel copper transporter gene family, TaCT1, in common wheat. Three TaCT1 homoeologous genes were isolated and assigned to group 5 chromosomes. Each of the TaCT1 genes (TaCT1-5A, -5B or -5D) possesses 12 transmembrane domains. TaCT1 genes exhibited higher transcript levels in leaf than in root, culm and spikelet. Excess copper down-regulated the transcript levels of TaCT1 and copper deficiency-induced TaCT1 expression. Subcellular experiments localized the TaCT1 to the Golgi apparatus. Yeast expression experiments and virus-induced gene silencing analysis indicated that the TaCT1 functioned in copper transport. Site-directed mutagenesis demonstrated that three amino acid residues, Met(35), Met(38) and Cys(365), are required for TaCT1 function. Phylogenetic and functional analyses suggested that homologous genes shared high similarity with TaCT1 may exist exclusively in monocot plants. Our work reveals a novel wheat gene family encoding major facilitator superfamily (MFS)-type copper transporters, and provides evidence for their functional involvement in promoting copper uptake and keeping copper homeostasis in common wheat. PMID:24372025

  2. Molecular characterization, expression pattern, and functional analysis of the OsIRL gene family encoding intracellular Ras-group-related LRR proteins in rice

    Microsoft Academic Search

    Changjun You; Xiaoxia Dai; Xingwang Li; Lei Wang; Guoxing Chen; Jinghua Xiao; Changyin Wu

    2010-01-01

    Leucine-rich repeat proteins constitute a large gene family and play important roles in plant growth and development. Among\\u000a them, Arabidopsis PIRL is a plant-specific class of intracellular Ras-group-related leucine-rich repeat proteins. In this study, we identified\\u000a eight homologues of PIRLs in rice and designated them as OsIRL proteins. We described the gene structures, chromosome localizations,\\u000a protein motifs, and phylogenetic relationships

  3. The Yeast VRG4 Gene Is Required for Normal Golgi Functions and Defines a New Family of Related Genes*

    E-print Network

    Citovsky, Vitaly

    The Yeast VRG4 Gene Is Required for Normal Golgi Functions and Defines a New Family of Related specifically in the Golgi complex. Protein secreted from vrg4 mutants lacks the outer chain glycosylation is a founding member of a family of structurally similar genes. Taken together, these results suggest

  4. Tubulin evolution in insects: gene duplication and subfunctionalization provide specialized isoforms in a functionally constrained gene family

    Microsoft Academic Search

    Mark G. Nielsen; Sudhindra R. Gadagkar; Lisa Gutzwiller

    2010-01-01

    BACKGROUND: The completion of 19 insect genome sequencing projects spanning six insect orders provides the opportunity to investigate the evolution of important gene families, here tubulins. Tubulins are a family of eukaryotic structural genes that form microtubules, fundamental components of the cytoskeleton that mediate cell division, shape, motility, and intracellular trafficking. Previous in vivo studies in Drosophila find a stringent

  5. Methods and compositions for regulating gene expression in plant cells

    NASA Technical Reports Server (NTRS)

    Beachy, Roger N. (Inventor); Luis, Maria Isabel Ordiz (Inventor); Dai, Shunhong (Inventor)

    2010-01-01

    Novel chimeric plant promoter sequences are provided, together with plant gene expression cassettes comprising such sequences. In certain preferred embodiments, the chimeric plant promoters comprise the BoxII cis element and/or derivatives thereof. In addition, novel transcription factors are provided, together with nucleic acid sequences encoding such transcription factors and plant gene expression cassettes comprising such nucleic acid sequences. In certain preferred embodiments, the novel transcription factors comprise the acidic domain, or fragments thereof, of the RF2a transcription factor. Methods for using the chimeric plant promoter sequences and novel transcription factors in regulating the expression of at least one gene of interest are provided, together with transgenic plants comprising such chimeric plant promoter sequences and novel transcription factors.

  6. Switching on plant genes by external chemical signals

    Microsoft Academic Search

    John A. Pickett; Guy M. Poppy

    2001-01-01

    During the past decade there has been rapidly increasing interest in the role of plant volatiles in insect–plant interactions and the induction of plant defence systems by both pathogens and herbivores. Scientists are striving to link the proximate studies elucidating pathways and genes with the ultimate adaptive studies that attempt to explain their ecological role. However, we still do not

  7. Control of mucin-type O-glycosylation: A classification of the polypeptide GalNAc-transferase gene family

    PubMed Central

    Bennett, Eric P; Mandel, Ulla; Clausen, Henrik; Gerken, Thomas A; Fritz, Timothy A; Tabak, Lawrence A

    2012-01-01

    Glycosylation of proteins is an essential process in all eukaryotes and a great diversity in types of protein glycosylation exists in animals, plants and microorganisms. Mucin-type O-glycosylation, consisting of glycans attached via O-linked N-acetylgalactosamine (GalNAc) to serine and threonine residues, is one of the most abundant forms of protein glycosylation in animals. Although most protein glycosylation is controlled by one or two genes encoding the enzymes responsible for the initiation of glycosylation, i.e. the step where the first glycan is attached to the relevant amino acid residue in the protein, mucin-type O-glycosylation is controlled by a large family of up to 20 homologous genes encoding UDP-GalNAc:polypeptide GalNAc-transferases (GalNAc-Ts) (EC 2.4.1.41). Therefore, mucin-type O-glycosylation has the greatest potential for differential regulation in cells and tissues. The GalNAc-T family is the largest glycosyltransferase enzyme family covering a single known glycosidic linkage and it is highly conserved throughout animal evolution, although absent in bacteria, yeast and plants. Emerging studies have shown that the large number of genes (GALNTs) in the GalNAc-T family do not provide full functional redundancy and single GalNAc-T genes have been shown to be important in both animals and human. Here, we present an overview of the GalNAc-T gene family in animals and propose a classification of the genes into subfamilies, which appear to be conserved in evolution structurally as well as functionally. PMID:22183981

  8. Genome-Wide Characterization and Expression Profiling of the AUXIN RESPONSE FACTOR (ARF) Gene Family in Eucalyptus grandis

    PubMed Central

    Yu, Hong; Soler, Marçal; Mila, Isabelle; San Clemente, Hélène; Savelli, Bruno; Dunand, Christophe; Paiva, Jorge A. P.; Myburg, Alexander A.; Bouzayen, Mondher; Grima-Pettenati, Jacqueline; Cassan-Wang, Hua

    2014-01-01

    Auxin is a central hormone involved in a wide range of developmental processes including the specification of vascular stem cells. Auxin Response Factors (ARF) are important actors of the auxin signalling pathway, regulating the transcription of auxin-responsive genes through direct binding to their promoters. The recent availability of the Eucalyptus grandis genome sequence allowed us to examine the characteristics and evolutionary history of this gene family in a woody plant of high economic importance. With 17 members, the E. grandis ARF gene family is slightly contracted, as compared to those of most angiosperms studied hitherto, lacking traces of duplication events. In silico analysis of alternative transcripts and gene truncation suggested that these two mechanisms were preeminent in shaping the functional diversity of the ARF family in Eucalyptus. Comparative phylogenetic analyses with genomes of other taxonomic lineages revealed the presence of a new ARF clade found preferentially in woody and/or perennial plants. High-throughput expression profiling among different organs and tissues and in response to environmental cues highlighted genes expressed in vascular cambium and/or developing xylem, responding dynamically to various environmental stimuli. Finally, this study allowed identification of three ARF candidates potentially involved in the auxin-regulated transcriptional program underlying wood formation. PMID:25269088

  9. GeneFarm, structural and functional annotation of Arabidopsis gene and protein families by a network of experts.

    PubMed

    Aubourg, Sébastien; Brunaud, Véronique; Bruyère, Clémence; Cock, Mark; Cooke, Richard; Cottet, Annick; Couloux, Arnaud; Déhais, Patrice; Deléage, Gilbert; Duclert, Aymeric; Echeverria, Manuel; Eschbach, Aimée; Falconet, Denis; Filippi, Ghislain; Gaspin, Christine; Geourjon, Christophe; Grienenberger, Jean-Michel; Houlné, Guy; Jamet, Elisabeth; Lechauve, Frédéric; Leleu, Olivier; Leroy, Philippe; Mache, Régis; Meyer, Christian; Nedjari, Hafed; Negrutiu, Ioan; Orsini, Valérie; Peyretaillade, Eric; Pommier, Cyril; Raes, Jeroen; Risler, Jean-Loup; Rivière, Stéphane; Rombauts, Stéphane; Rouzé, Pierre; Schneider, Michel; Schwob, Philippe; Small, Ian; Soumayet-Kampetenga, Ghislain; Stankovski, Darko; Toffano, Claire; Tognolli, Michael; Caboche, Michel; Lecharny, Alain

    2005-01-01

    Genomic projects heavily depend on genome annotations and are limited by the current deficiencies in the published predictions of gene structure and function. It follows that, improved annotation will allow better data mining of genomes, and more secure planning and design of experiments. The purpose of the GeneFarm project is to obtain homogeneous, reliable, documented and traceable annotations for Arabidopsis nuclear genes and gene products, and to enter them into an added-value database. This re-annotation project is being performed exhaustively on every member of each gene family. Performing a family-wide annotation makes the task easier and more efficient than a gene-by-gene approach since many features obtained for one gene can be extrapolated to some or all the other genes of a family. A complete annotation procedure based on the most efficient prediction tools available is being used by 16 partner laboratories, each contributing annotated families from its field of expertise. A database, named GeneFarm, and an associated user-friendly interface to query the annotations have been developed. More than 3000 genes distributed over 300 families have been annotated and are available at http://genoplante-info.infobiogen.fr/Genefarm/. Furthermore, collaboration with the Swiss Institute of Bioinformatics is underway to integrate the GeneFarm data into the protein knowledgebase Swiss-Prot. PMID:15608279

  10. Genome-Wide Survey and Expression Analysis of Amino Acid Transporter Gene Family in Rice (Oryza sativa L.)

    PubMed Central

    Zhao, Heming; Ma, Haoli; Yu, Li; Wang, Xin; Zhao, Jie

    2012-01-01

    Background Amino acid transporters (AATs) that transport amino acids across cellular membranes are essential for plant growth and development. To date, a genome-wide overview of the AAT gene family in rice is not yet available. Methodology/Principal Findings In this study, a total of 85 AAT genes were identified in rice genome and were classified into eleven distinct subfamilies based upon their sequence composition and phylogenetic relationship. A large number of OsAAT genes were expanded via gene duplication, 23 and 24 OsAAT genes were tandemly and segmentally duplicated, respectively. Comprehensive analyses were performed to investigate the expression profiles of OsAAT genes in various stages of vegetative and reproductive development by using data from EST, Microarrays, MPSS and Real-time PCR. Many OsAAT genes exhibited abundant and tissue-specific expression patterns. Moreover, 21 OsAAT genes were found to be differentially expressed under the treatments of abiotic stresses. Comparative analysis indicates that 26 AAT genes with close evolutionary relationships between rice and Arabidopsis exhibited similar expression patterns. Conclusions/Significance This study will facilitate further studies on OsAAT family and provide useful clues for functional validation of OsAATs. PMID:23166615

  11. A gene from the cellulose synthase-like C family encodes a beta-1,4 glucan synthase.

    PubMed

    Cocuron, Jean-Christophe; Lerouxel, Olivier; Drakakaki, Georgia; Alonso, Ana P; Liepman, Aaron H; Keegstra, Kenneth; Raikhel, Natasha; Wilkerson, Curtis G

    2007-05-15

    Despite the central role of xyloglucan (XyG) in plant cell wall structure and function, important details of its biosynthesis are not understood. To identify the gene(s) responsible for synthesizing the beta-1,4 glucan backbone of XyG, we exploited a property of nasturtium (Tropaeolum majus) seed development. During the last stages of nasturtium seed maturation, a large amount of XyG is deposited as a reserve polysaccharide. A cDNA library was produced from mRNA isolated during the deposition of XyG, and partial sequences of 10,000 cDNA clones were determined. A single member of the C subfamily from the large family of cellulose synthase-like (CSL) genes was found to be overrepresented in the cDNA library. Heterologous expression of this gene in the yeast Pichia pastoris resulted in the production of a beta-1,4 glucan, confirming that the CSLC protein has glucan synthase activity. The Arabidopsis CSLC4 gene, which is the gene with the highest sequence similarity to the nasturtium CSL gene, is coordinately expressed with other genes involved in XyG biosynthesis. These and other observations provide a compelling case that the CSLC gene family encode proteins that synthesize the XyG backbone. PMID:17488821

  12. Alphaherpesviruses possess a gene homologous to the protein kinase gene family of eukaryotes and retroviruses.

    PubMed Central

    McGeoch, D J; Davison, A J

    1986-01-01

    The US3 genes of herpes simplex virus serotypes 1 and 2, and the corresponding gene of varicella-zoster virus, encode proteins whose sequences are clearly homologous to members of the protein kinase family of eukaryotes and retroviruses. Similarity is most characteristic, and strongest, in an 80 residue region comprising part of the catalytic structure of the kinases. In this region the herpesvirus proteins are most like a yeast cell division control protein, and least like the retrovirus protein-tyrosine kinases. We consider that the herpesvirus proteins are probably involved in modulation of cellular processes during lytic infection, although other roles are also possible, for example in latent infection. PMID:3005981

  13. Molecular homology among members of the R gene family in maize.

    PubMed

    Consonni, G; Geuna, F; Gavazzi, G; Tonelli, C

    1993-02-01

    The R gene family determines the timing, distribution and amount of anthocyanin pigmentation in maize. This family comprises a set of regulatory genes, consisting of a cluster of several elements at the R locus, on chromosome 10, the Lc and Sn gene lying about two units R distal and B on chromosome 2. Each gene determines a tissue-specific pigmentation of different parts of the seed and plant. The proposed duplicated function of R, Sn, Lc and B loci is reflected in cDNA sequence similarity. In this paper an extensive analysis of the predicted proteins of the R, Sn, Lc and B genes together with a search for putative sites of post-translational modification is reported. A comparison with the prosite database discloses several N-glycosylation and phosphorylation sites, as well as the basic Helix-Loop-Helix (HLH) domain of transcriptional activators. Sn, Lc, and R-S show a high conservation of these sites, while B is more divergent. Analysis of the 5' leader of mRNA sequences discloses the presence of five ATG triplets with two upstream open reading frames (uORFs) of 38 and 15 amino acids and a loop structure indicating a possible mechanism of control at the translational level. It is conceivable that possible mechanisms acting at the translational and post-translational level could modulate the expression and the activation of these transcription factors. Northern analysis of various tissues of different R alleles highlights a strict correlation between pigment accumulation in different tissues and the expression of the regulatory and structural genes suggesting that the pattern of pigmentation relies on a mechanism of differential expression of the members of the R family. Analysis of the Sn promoter discloses the presence of several sequences resembling binding sites of known transcription factors (as GAGA and GT) that might be responsible for the spatial and light-induced expression of this gene. Two regions include a short sequence homologous to the consensus binding site of the B-HLH domain suggesting a self-regulatory control of the Sn gene. PMID:8220447

  14. Characterization and phylogenetic analysis of allergenic Tryp_alpha_amyl protein family in plants.

    PubMed

    Wang, Jing; Yang, Litao; Zhao, Xiaoxiang; Li, Jing; Zhang, Dabing

    2014-01-01

    Most known allergenic proteins in rice ( Oryza sativa ) seed belong to the Tryp_alpha_amyl family (PF00234), but the sequence characterization and the evolution of the allergenic Tryp_alpha_amyl family members in plants have not been fully investigated. In this study, two specific motifs were found besides the common alpha-amylase inhibitors (AAI) domain from the allergenic Tryp_alpha_amyl family members in rice seeds (trRSAs). To understand the evolution and functional importance of the Tryp_alpha_amy1 family and the specific motifs for the allergenic one, a BLAST search identified 75 homologous proteins of trRSAs (trHAs) from 22 plant species including main crops such as rice, maize ( Zea mays ), wheat ( Triticum aestivum ), and sorghum ( Sorghum bicolor ) from all available sequences in the public databases. Statistical analysis showed that the allergenicity of trHAs is closely associated with these two motifs with high number of cysteine residues (p value = 0.00026), and the trHAs with and without the two motifs were clustered into separate clades, respectively. Furthermore, significant difference was observed on the secondary and tertiary structures of allergenic and nonallergenic trHAs. In addition, expression analysis showed that trHA-encoding genes of purple false brome ( Brachypodium distachyon ), barrel medic ( Medicago truncatula ), rice, and sorghum are dominantly expressed in seeds. This work provides insight into the understanding of the properties of allergens in the Tryp_alpha_amyl family and is helpful for allergy therapy. PMID:24328177

  15. A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death.

    PubMed Central

    Martin, G B; Frary, A; Wu, T; Brommonschenkel, S; Chunwongse, J; Earle, E D; Tanksley, S D

    1994-01-01

    Leaves of tomato cultivars that contain the Pto bacterial resistance locus develop small necrotic lesions within 24 hr after exposure to fenthion, an organophosphorous insecticide. Recently, the Pto gene was isolated and shown to be a putative serine/threonine protein kinase. Pto is one member of a multigene family that is clustered within a 400-kb region on chromosome 5. Here, we report that another member of this gene family, termed Fen, is responsible for the sensitivity to fenthion. Fen was isolated by map-based cloning using closely linked DNA markers to identify a yeast artificial chromosome clone that spanned the Pto region. After transformation with the Fen gene under control of the cauliflower mosaic virus (CaMV) 35S promoter, tomato plants that are normally insensitive to fenthion rapidly developed extensive necrotic lesions upon exposure to fenthion. Two related insecticides, fensulfothion and fenitrothion, also elicited necrotic lesions specifically on Fen-transformed plants. Transgenic tomato plants harboring integrated copies of the Pto gene under control of the CaMV 35S promoter displayed sensitivity to fenthion but to a lesser extent than did wild-type fenthion-sensitive plants. The Fen protein shares 80% identity (87% similarity) with Pto but does not confer resistance to Pseudomonas syringae pv tomato. These results suggest that Pto and Fen participate in the same signal transduction pathway. PMID:7827490

  16. The evolution of hexapod engrailed-family genes: evidence for conservation and concerted evolution

    PubMed Central

    Peel, Andrew D; Telford, Maximilian J; Akam, Michael

    2006-01-01

    Phylogenetic analyses imply that multiple engrailed-family gene duplications occurred during hexapod evolution, a view supported by previous reports of only a single engrailed-family gene in members of the grasshopper genus Schistocerca and in the beetle Tribolium castaneum. Here, we report the cloning of a second engrailed-family gene from Schistocerca gregaria and present evidence for two engrailed-family genes from four additional hexapod species. We also report the existence of a second engrailed-family gene in the Tribolium genome. We suggest that the engrailed and invected genes of Drosophila melanogaster have existed as a conserved gene cassette throughout holometabolous insect evolution. In total 11 phylogenetically diverse hexapod orders are now known to contain species that possess two engrailed-family paralogues, with in each case only one paralogue encoding the RS-motif, a characteristic feature of holometabolous insect invected proteins. We propose that the homeoboxes of hexapod engrailed-family paralogues are evolving in a concerted fashion, resulting in gene trees that overestimate the frequency of gene duplication. We present new phylogenetic analyses using non-homeodomain amino acid sequence that support this view. The S. gregaria engrailed-family paralogues provide strong evidence that concerted evolution might in part be explained by recurrent gene conversion. Finally, we hypothesize that the RS-motif is part of a serine-rich domain targeted for phosphorylation. PMID:16790405

  17. Expression of the fibroblast growth factor family and their receptor family genes during mouse brain development.

    PubMed

    Ozawa, K; Uruno, T; Miyakawa, K; Seo, M; Imamura, T

    1996-09-01

    The fibroblast growth factor (FGF) family is composed of nine members and four genes encode protein tyrosine kinase receptors for them. To gain insight into the involvement of FGFs and their receptors in the development of nervous system, their expression in brains of perinatal and adult mice was examined by semi-quantitative reverse transcription-linked polymerase chain reactions and in situ hybridization. Although all the genes, with the exception of FGF-4, were found to be expressed, FGF-3, FGF-6, FGF-7 and FGF-8 genes demonstrated higher expression in the late embryonic stages than in postnatal stages, suggesting that these members are involved in the late stages of brain development. In contrast, expression of FGF-1 and FGF-5 increased after birth. Interestingly, FGF-6 expression in perinatal mice was restricted to the central nervous system and skeltal muscles, with intense signals in the developing cerebrum in embryos but in cerebellum in 5-day-old neonates. Furthermore, FGF-receptor (FGFR)-4, a cognate receptor for FGF-6, demonstrated similar spatiotemporal expression, suggesting that FGF-6 and FGFR-4 plays significant roles in the maturation of nervous system as a ligand-receptor system. The results indicate that individual member of the fibroblast growth factor and their receptor family are expressed either sequentially or simultaneously in brain development, strongly suggesting their involvement in the regulation of a variety of developmental processes of brain, i.e., proliferation and migration of neuronal progenitor cells, neuron and glia differentiation, neurite extensions, and synapse formations. PMID:8883961

  18. Virus-induced gene silencing of the alkaloid-producing basal eudicot model plant Eschscholzia californica (California Poppy).

    PubMed

    Tekleyohans, Dawit G; Lange, Sabrina; Becker, Annette

    2013-01-01

    Eschscholzia californica (California poppy), a member of the basal eudicot family of the Papaveraceae, is an important species to study alkaloid biosynthesis and the effect of alkaloids on plant metabolism. More recently, it has also been developed as a model system to study the evolution of plant morphogenesis. While progress has been made towards establishing methods for generating genetically modified cell culture lines, transcriptome data and gene expression analysis, the stable transformation and subsequent regeneration of transgenic plants has proven extremely time consuming and difficult. Here, we describe in detail a method to transiently down regulate expression of a target gene by virus-induced gene silencing (VIGS) and the subsequent analysis of the VIGS treated plants. VIGS in E. californica allows for the study of gene function within 2 to 3 weeks after inoculation, and the method proves very efficient, enabling the rapid analysis of gene functions. PMID:23386297

  19. Genome-wide identification and evolutionary analysis of the SBP-box gene family in castor bean.

    PubMed

    Zhang, Shu-Dong; Ling, Li-Zhen

    2014-01-01

    Genes in the SQUAMOSA promoter-binding-protein (SBP-box) gene family encode transcriptional regulators and perform a variety of regulatory functions that involved in the developmental and physiological processes of plants. In this study, a comprehensive computational analysis identified 15 candidates of the SBP-box gene family in the castor bean (Ricinus communis). The phylogenetic and domain analysis indicated that these genes were divided into two groups (group I and II). The group II was a big branch and was further classified into three subgroups (subgroup II-1 to 3) based on the phylogeny, gene structures and conserved motifs. It was observed that the genes of subgroup II-1 had distinct evolutionary features from those of the other two subgroups, however, were more similar to those of group I. Therefore, we inferred that group I and subgroup II-1 might retain ancient signals, whereas the subgroup II-2 and 3 exhibited the divergence during evolutionary process. Estimation of evolutionary parameters (dN and dN/dS) further supported our hypothesis. At first, the group I was more constrained by strong purifying selection and evolved slowly with a lower substitution rate than group II. As regards the three subgroups, subgroup II-1 had the lowest rate of substitution and was under strong purifying selection. By contrast, subgroups II-2 and 3 evolved more rapidly and experienced less purifying selection. These results indicated that the different evolutionary rates and selection strength caused the different evolutionary patterns of the members of SBP-box genes in castor bean. Taken together, these results provide better insights into understanding evolutionary divergence of the members of SBP-box gene family in castor bean and provide a guide for future functional diverse analyses of this gene family. PMID:24466202

  20. The Molecular Clock Runs at Different Rates Among Closely Related Members of a Gene Family

    Microsoft Academic Search

    Peter E. M. Gibbs; Werner F. Witke; Achilles Dugaiczyk

    1998-01-01

    .   The serum albumin gene family is composed of four members that have arisen by a series of duplications from a common ancestor.\\u000a From sequence differences between members of the gene family, we infer that a gene duplication some 580 Myr ago gave rise\\u000a to the vitamin D–binding protein (DBP) gene and a second lineage, which reduplicated about 295 Myr

  1. Gene duplication and transfer events in plant mitochondria genome

    SciTech Connect

    Xiong Aisheng [Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106 (China)], E-mail: aishengxiongcn@yahoo.com.cn; Peng Rihe; Zhuang Jing; Gao Feng; Zhu Bo; Fu Xiaoyan; Xue Yong; Jin Xiaofen; Tian Yongsheng; Zhao Wei [Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106 (China); Yao Quanhong [Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106 (China)], E-mail: yaoquanhong@saas.sh.cn

    2008-11-07

    Gene or genome duplication events increase the amount of genetic material available to increase the genomic, and thereby phenotypic, complexity of organisms during evolution. Gene duplication and transfer events have been important to molecular evolution in all three domains of life, and may be the first step in the emergence of new gene functions. Gene transfer events have been proposed as another accelerator of evolution. The duplicated gene or genome, mainly nuclear, has been the subject of several recent reviews. In addition to the nuclear genome, organisms have organelle genomes, including mitochondrial genome. In this review, we briefly summarize gene duplication and transfer events in the plant mitochondrial genome.

  2. Horizontal gene transfer by the parasitic plant Striga hermonthica.

    PubMed

    Yoshida, Satoko; Maruyama, Shinichiro; Nozaki, Hisayoshi; Shirasu, Ken

    2010-05-28

    Horizontal gene transfer has been postulated to occur between crops to co-occurring parasitic plants, but empirical evidence has been lacking. We present evidence that an HGT event moved a nuclear monocot gene into the genome of the eudicot parasite witchweed (Striga hermonthica), which infects many grass species in Africa. Analysis of expressed sequence tags revealed that the genome of S. hermonthica contains a nuclear gene that is widely conserved among grass species but is not found in other eudicots. Phylogenetically, this gene clusters with sorghum genes, the monocot host of the parasitic weed, suggesting that nuclear genes can be captured by parasitic weeds in nature. PMID:20508124

  3. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family.

    PubMed

    Haun, William; Coffman, Andrew; Clasen, Benjamin M; Demorest, Zachary L; Lowy, Anita; Ray, Erin; Retterath, Adam; Stoddard, Thomas; Juillerat, Alexandre; Cedrone, Frederic; Mathis, Luc; Voytas, Daniel F; Zhang, Feng

    2014-09-01

    Soybean oil is high in polyunsaturated fats and is often partially hydrogenated to increase its shelf life and improve oxidative stability. The trans-fatty acids produced through hydrogenation pose a health threat. Soybean lines that are low in polyunsaturated fats were generated by introducing mutations in two fatty acid desaturase 2 genes (FAD2-1A and FAD2-1B), which in the seed convert the monounsaturated fat, oleic acid, to the polyunsaturated fat, linoleic acid. Transcription activator-like effector nucleases (TALENs) were engineered to recognize and cleave conserved DNA sequences in both genes. In four of 19 transgenic soybean lines expressing the TALENs, mutations in FAD2-1A and FAD2-1B were observed in DNA extracted from leaf tissue; three of the four lines transmitted heritable FAD2-1 mutations to the next generation. The fatty acid profile of the seed was dramatically changed in plants homozygous for mutations in both FAD2-1A and FAD2-1B: oleic acid increased from 20% to 80% and linoleic acid decreased from 50% to under 4%. Further, mutant plants were identified that lacked the TALEN transgene and only carried the targeted mutations. The ability to create a valuable trait in a single generation through targeted modification of a gene family demonstrates the power of TALENs for genome engineering and crop improvement. PMID:24851712

  4. Comprehensive analysis of cystatin family genes suggests their putative functions in sexual reproduction, embryogenesis, and seed formation.

    PubMed

    Zhao, Peng; Zhou, Xue-mei; Zou, Jie; Wang, Wei; Wang, Lu; Peng, Xiong-bo; Sun, Meng-xiang

    2014-09-01

    Cystatins are tightly bound and reversible inhibitors of cysteine proteases in C1A and C13 peptidase families, which have been identified in several species and shown to function in vegetative development and response to biotic/abiotic stresses in plants. Recent work revealed their critical role in regulating programmed cell death during embryogenesis in tobacco and suggested their more comprehensive roles in the process of sexual plant reproduction, although little is known about cystatin family genes in the processes. Here, 10 cystatin family genes in Nicotiana tabacum were identified using an expressed sequence tag (EST)-based gene clone strategy. Analysis of their biochemical properties showed that nine of them have the potency to inhibit the activities of both commercial cathepsin L-like proteases and extracted cysteine proteases from seeds, but with different K i values depending on the types of proteases and the developmental stages of the seed tested. This suggests that cystatin-dependent cathepsin L-like proteolytic pathways are probably important for early seed development. Comprehensive expression profile analysis revealed that cystatin family genes showed manifold variations in their transcription levels in different plant cell types, including the sperm, egg, and zygote, especially in the embryo and seed at different developmental stages. More interestingly, intracellular localization analysis of each cystatin revealed that most members of cystatin families are recognized as secretory proteins with signal peptides that direct them to the endoplasmic reticulum. These results suggest their widespread roles in cell fate determination and cell-cell communication in the process of sexual reproduction, especially in gamete and embryo development, as well as in seed formation. PMID:24996653

  5. Comprehensive analysis of cystatin family genes suggests their putative functions in sexual reproduction, embryogenesis, and seed formation

    PubMed Central

    Zhao, Peng; Zhou, Xue-mei; Zou, Jie; Wang, Wei; Wang, Lu; Peng, Xiong-bo; Sun, Meng-xiang

    2014-01-01

    Cystatins are tightly bound and reversible inhibitors of cysteine proteases in C1A and C13 peptidase families, which have been identified in several species and shown to function in vegetative development and response to biotic/abiotic stresses in plants. Recent work revealed their critical role in regulating programmed cell death during embryogenesis in tobacco and suggested their more comprehensive roles in the process of sexual plant reproduction, although little is known about cystatin family genes in the processes. Here, 10 cystatin family genes in Nicotiana tabacum were identified using an expressed sequence tag (EST)-based gene clone strategy. Analysis of their biochemical properties showed that nine of them have the potency to inhibit the activities of both commercial cathepsin L-like proteases and extracted cysteine proteases from seeds, but with different K i values depending on the types of proteases and the developmental stages of the seed tested. This suggests that cystatin-dependent cathepsin L-like proteolytic pathways are probably important for early seed development. Comprehensive expression profile analysis revealed that cystatin family genes showed manifold variations in their transcription levels in different plant cell types, including the sperm, egg, and zygote, especially in the embryo and seed at different developmental stages. More interestingly, intracellular localization analysis of each cystatin revealed that most members of cystatin families are recognized as secretory proteins with signal peptides that direct them to the endoplasmic reticulum. These results suggest their widespread roles in cell fate determination and cell–cell communication in the process of sexual reproduction, especially in gamete and embryo development, as well as in seed formation. PMID:24996653

  6. Plant isoflavone and isoflavanone O-methyltransferase genes

    DOEpatents

    Broeckling, Bettina E.; Liu, Chang-Jun; Dixon, Richard A.

    2014-08-19

    The invention provides enzymes that encode O-methyltransferases (OMTs) from Medicago truncatula that allow modification to plant (iso)flavonoid biosynthetic pathways. In certain aspects of the invention, the genes encoding these enzymes are provided. The invention therefore allows the modification of plants for isoflavonoid content. Transgenic plants comprising such enzymes are also provided, as well as methods for improving disease resistance in plants. Methods for producing food and nutraceuticals, and the resulting compositions, are also provided.

  7. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    PubMed

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes. PMID:25481634

  8. Evolution of immunoglobulin genes: VH families in the amphibian Xenopus.

    PubMed Central

    Hsu, E; Schwager, J; Alt, F W

    1989-01-01

    We have isolated multiple independent cDNA clones that represent mRNA sequences of immunoglobulin heavy chains from the spleen of adult Xenopus laevis. These cDNA clones contained constant (C) region sequences that were either Cmu or a separate C region sequence believed to be Cnu. In individual cDNA clones the C region sequences were associated with independent heavy-chain variable region (VH) sequences that were classifiable into five distinct families. Genomic Southern blotting analyses with family-specific probes indicated that the haploid genome contains a minimum of 80 VH gene segments, a number similar to that found in various mammalian species. Multiple JH and putative DH segments were also identified (J, joining; D, diversity). Analyses of 13 independent VHDJH junctions suggest that combinatorial and junctional diversification mechanisms probably arose early in vertebrate evolution. Finally, comparison of Xenopus VH sequences to those from other vertebrates indicated conservation of V region framework residues that are responsible for the tertiary structure of the Fv throughout evolution. Images PMID:2510156

  9. The HIN-200 family: More than interferon-inducible genes?

    SciTech Connect

    Ludlow, Louise E.A. [Cancer Immunology Division, Sir Donald and Lady Trescowthick Laboratories, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, 8006, Victoria (Australia); Johnstone, Ricky W. [Cancer Immunology Division, Sir Donald and Lady Trescowthick Laboratories, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, 8006, Victoria (Australia); Clarke, Christopher J.P. [Cancer Immunology Division, Sir Donald and Lady Trescowthick Laboratories, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, 8006, Victoria (Australia)]. E-mail: chris.clarke@petermac.org

    2005-08-01

    The HIN-200 family was initially grouped together based on their hemopoietic expression, interferon-inducibility, nuclear localization, and characteristic 200 amino-acid domains. In this review, we performed a comprehensive search of genome databases and determined the location of previously characterized and predicted genes within the human, mouse, and rat HIN-200 loci. Several novel proteins were predicted in the mouse and rat. We also discuss recent advances in our understanding of this family of proteins and highlight the most important findings. In addition to a role in interferon biology, there is now good evidence supporting a role for these proteins as regulators of cell proliferation and differentiation. The activity of HIN-200 proteins is not restricted to the hemopoietic system as they are expressed and can function in a variety of other cells and tissues. The importance of HIN-200 proteins in disease now is beginning to be understood as they appear to be involved in autoimmunity and may act as tumor suppressor proteins.

  10. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns

    PubMed Central

    2012-01-01

    Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that seven UGTs were flax diverged. Conclusions Flax has a large number of UGT genes including few flax diverged ones. Phylogenetic analysis and expression profiles of these genes identified tissue and condition specific repertoire of UGT genes from this crop. This study would facilitate precise selection of candidate genes and their further characterization of substrate specificities and in planta functions. PMID:22568875

  11. Members of the Hyposoter didymator Ichnovirus repeat element gene family are differentially expressed in Spodoptera frugiperda

    Microsoft Academic Search

    L Galibert; G Devauchelle; F Cousserans; J Rocher; P Cérutti; M Barat-Houari; P Fournier; AN Volkoff

    2006-01-01

    BACKGROUND: The abundance and the conservation of the repeated element (rep) genes in Ichnoviruses genomes suggest that this gene family plays an important role in viral cycles. In the Ichnovirus associated with the wasp Hyposoter didymator, named HdIV, 10 rep genes were identified to date. In this work, we report a relative quantitative transcription study of these HdIV rep genes

  12. Molecular evolution of glycinin and ?-conglycinin gene families in soybean (Glycine max L. Merr.)

    PubMed Central

    Li, C; Zhang, Y-M

    2011-01-01

    There are two main classes of multi-subunit seed storage proteins, glycinin (11S) and ?-conglycinin (7S), which account for approximately 70% of the total protein in a typical soybean seed. The subunits of these two protein classes are encoded by a number of genes. The genomic organization of these genes follows a complex evolutionary history. This research was designed to describe the origin and maintenance of genes in each of these gene families by analyzing the synteny, phylogenies, selection pressure and duplications of the genes in each gene family. The ancestral glycinin gene initially experienced a tandem duplication event; then, the genome underwent two subsequent rounds of whole-genome duplication, thereby resulting in duplication of the glycinin genes, and finally a tandem duplication likely gave rise to the Gy1 and Gy2 genes. The ?-conglycinin genes primarily originated through the more recent whole-genome duplication and several tandem duplications. Purifying selection has had a key role in the maintenance of genes in both gene families. In addition, positive selection in the glycinin genes and a large deletion in a ?-conglycinin exon contribute to the diversity of the duplicate genes. In summary, our results suggest that the duplicated genes in both gene families prefer to retain similar function throughout evolution and therefore may contribute to phenotypic robustness. PMID:20668431

  13. In Silico Mining of RAS Gene Family Expression Data in Human Thyroid Cancer

    Microsoft Academic Search

    Zoya Khalid; Sheema Sameen; Shaukat Iqbal Malik

    2011-01-01

    Gene expression analysis has become known as the most powerful predictor in mining the diseased genes. It includes various experimental and in silico techniques for the evaluation of gene expression level. The recent molecular analysis of papillary thyroid carcinoma revealed the presence of high frequency of BRAF mutation whereas the RAS gene family mutation accounts for comparatively lower frequencies. The

  14. The lipoxygenase gene family: a genomic fossil of shared polyploidy between Glycine max and Medicago truncatula

    PubMed Central

    Shin, Jin Hee; Van, Kyujung; Kim, Dong Hyun; Kim, Kyung Do; Jang, Young Eun; Choi, Beom-Soon; Kim, Moon Young; Lee, Suk-Ha

    2008-01-01

    Background Soybean lipoxygenases (Lxs) play important roles in plant resistance and in conferring the distinct bean flavor. Lxs comprise a multi-gene family that includes GmLx1, GmLx2 and GmLx3, and many of these genes have been characterized. We were interested in investigating the relationship between the soybean lipoxygenase isozymes from an evolutionary perspective, since soybean has undergone two rounds of polyploidy. Here we report the tetrad genome structure of soybean Lx regions produced by ancient and recent polyploidy. Also, comparative genomics with Medicago truncatula was performed to estimate Lxs in the common ancestor of soybean and Medicago. Results Two Lx regions in Medicago truncatula showing synteny with soybean were analyzed. Differential evolutionary rates between soybean and Medicago were observed and the median Ks values of Mt-Mt, Gm-Mt, and Gm-Gm paralogs were determined to be 0.75, 0.62, and 0.46, respectively. Thus the comparison of Gm-Mt paralogs (Ks = 0.62) and Gm-Mt orthologs (Ks = 0.45) supports the ancient duplication of Lx regions in the common ancestor prior to the Medicago-Glycine split. After speciation, no Lx regions generated by another polyploidy were identified in Medicago. Instead tandem duplication of Lx genes was observed. On the other hand, a lineage-specific duplication occurred in soybean resulting in two pairs of Lx regions. Each pair of soybean regions was co-orthologous to one Lx region in Medicago. A total of 34 Lx genes (15 MtLxs and 19 GmLxs) were divided into two groups by phylogenetic analysis. Our study shows that the Lx gene family evolved from two distinct Lx genes in the most recent common ancestor. Conclusion This study analyzed two pairs of Lx regions generated by two rounds of polyploidy in soybean. Each pair of soybean homeologous regions is co-orthologous to one region of Medicago, demonstrating the quartet structure of the soybean genome. Differential evolutionary rates between soybean and Medicago were observed; thus optimized rates of Ks per year should be applied for accurate estimation of coalescence times to each case of comparison: soybean-soybean, soybean-Medicago, or Medicago-Medicago. In conclusion, the soybean Lx gene family expanded by ancient polyploidy prior to taxon divergence, followed by a soybean- specific duplication and tandem duplications, respectively. PMID:19105811

  15. Diversification of the plant-specific hybrid glycine-rich protein (HyGRP) genes in cereals

    PubMed Central

    Fujino, Kenji; Obara, Mari; Sato, Koji

    2014-01-01

    Plant-specific hybrid proline- or glycine-rich proteins (HyP/GRPs) are involved in diverse gene functions including plant development and responses to biotic and abiotic stresses. The quantitative trait locus, qLTG3-1, enhances seed germination in rice under low-temperature conditions and encodes a member with a glycine-rich motif of the HyP/GRP family. The function of this gene may be related to the weakening of tissue covering the embryo during seed germination. In the present study, the diversification of the HyP/GRP gene family was elucidated in rice based on phylogenetic relationships and gene expression levels. At least 21 members of the HyP/GRP family have been identified in the rice genome and clustered in five regions on four chromosomes by tandem and chromosomal duplications. Of these, OsHyPRP05 (qLTG3-1) and its paralogous gene, OsHyPRP21, had a glycine-rich motif. Furthermore, orthologous genes with a glycine-rich motif and the HyP/GRP gene family were detected in four genome-sequenced monocots: 12 in barley, 10 in Brachypodium, 20 in maize, and 28 in sorghum, using a BLAST search of qLTG3-1 as the query. All members of the HyP/GRP family in these five species were classified into seven main groups, which were clustered together in these species. These results suggested that the HyP/GRP gene family was formed in the ancestral genome before the divergence of these species. The collinearity of chromosomal regions around qLTG3-1 and its orthologous genes were conserved among rice, Brachypodium, sorghum, and maize, indicating that qLTG3-1 and orthologous genes conserve gene function during seed germination. PMID:25309566

  16. Appearance and elaboration of the ethylene receptor family during land plant evolution.

    PubMed

    Gallie, Daniel R

    2015-03-01

    Ethylene is perceived following binding to endoplasmic reticulum-localized receptors, which in Arabidopsis thaliana, include ETR1, ERS1, EIN4, ETR2, and ERS2. These receptors fall into two subfamilies based on conservation of features within their histidine kinase domain. Subfamily 1 contains ETR1 and ERS1 whereas subfamily 2 contains EIN4, ETR2, and ERS2. Because ethylene receptors are found only in plants, this raises questions of when each receptor evolved. Here it is shown that subfamily 1 receptors encoded by a multigene family are present in all charophytes examined, these being most homologous to ETR1 based on their evolutionary relationship as well as containing histidine kinase and receiver domains. In charophytes and Physcomitrella patens, one or more gene family members contain the intron characteristic of subfamily 2 genes, indicating the first step in subfamily 2 receptor evolution. ERS1 homologs appear in basal angiosperm species after Amborella trichopoda and, in some early and basal angiosperm species and monocots in general, it is the only subfamily 1 receptor present. Distinct EIN4 and ETR2 homologs appear only in core eudicots and ERS2 homologs appear only in the Brassicaceae, suggesting it is the most recent receptor to evolve. These findings show that a subfamily 1 receptor had evolved and a subfamily 2 receptor had begun to evolve in plants prior to the colonization of land and only these two existed up to the appearance of the first basal angiosperm. The appearance of ERS2 in the Brassicaceae suggests ongoing evolution of the ethylene receptor family. PMID:25682121

  17. Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates

    PubMed Central

    Fumasoni, Irene; Meani, Natalia; Rambaldi, Davide; Scafetta, Gaia; Alcalay, Myriam; Ciccarelli, Francesca D

    2007-01-01

    Background Progressive diversification of paralogs after gene expansion is essential to increase their functional specialization. However, mode and tempo of this divergence remain mostly unclear. Here we report the comparative analysis of PRDM genes, a family of putative transcriptional regulators involved in human tumorigenesis. Results Our analysis assessed that the PRDM genes originated in metazoans, expanded in vertebrates and further duplicated in primates. We experimentally showed that fast-evolving paralogs are poorly expressed, and that the most recent duplicates, such as primate-specific PRDM7, acquire tissue-specificity. PRDM7 underwent major structural rearrangements that decreased the number of encoded Zn-Fingers and modified gene splicing. Through internal duplication and activation of a non-canonical splice site (GC-AG), PRDM7 can acquire a novel intron. We also detected an alternative isoform that can retain the intron in the mature transcript and that is predominantly expressed in human melanocytes. Conclusion Our findings show that (a) molecular evolution of paralogs correlates with their expression pattern; (b) gene diversification is obtained through massive genomic rearrangements; and (c) splicing modification contributes to the functional specialization of novel genes. PMID:17916234

  18. Rapid Mutation Scanning of Genes Associated with Familial Cancer Syndromes Using Denaturing High-Performance Liquid Chromatography

    Microsoft Academic Search

    Deborah J. Marsh; George Theodosopoulos; Viive Howell; Anne-Louise Richardson; Diana E. Benn; Anne L. Proos; Charis Eng; Bruce G Robinson

    2001-01-01

    Germline mutations in tumor suppressor genes, or less frequently oncogenes, have been identified in up to 19 familial cancer syndromes including Li -Fraumeni syn- drome, familial paraganglioma, familial adenomatous polyposis coli and breast and ovarian cancers. Multiple genes have been associated with some syndromes as approximately 26 genes have been linked to the devel- opment of these familial cancers. With

  19. Comprehensive High-Resolution Analysis of the Role of an Arabidopsis Gene Family in RNA Editing

    PubMed Central

    Bentolila, Stéphane; Oh, Julyun; Hanson, Maureen R.; Bukowski, Robert

    2013-01-01

    In flowering plants, mitochondrial and chloroplast mRNAs are edited by C-to-U base modification. In plant organelles, RNA editing appears to be generally a correcting mechanism that restores the proper function of the encoded product. Members of the Arabidopsis RNA editing-Interacting Protein (RIP) family have been recently shown to be essential components of the plant editing machinery. We report the use of a strand- and transcript-specific RNA-seq method (STS-PCRseq) to explore the effect of mutation or silencing of every RIP gene on plant organelle editing. We confirm RIP1 to be a major editing factor that controls the editing extent of 75% of the mitochondrial sites and 20% of the plastid C targets of editing. The quantitative nature of RNA sequencing allows the precise determination of overlapping effects of RIP factors on RNA editing. Over 85% of the sites under the influence of RIP3 and RIP8, two moderately important mitochondrial factors, are also controlled by RIP1. Previously uncharacterized RIP family members were found to have only a slight effect on RNA editing. The preferential location of editing sites controlled by RIP7 on some transcripts suggests an RNA metabolism function for this factor other than editing. In addition to a complete characterization of the RIP factors for their effect on RNA editing, our study highlights the potential of RNA-seq for studying plant organelle editing. Unlike previous attempts to use RNA-seq to analyze RNA editing extent, our methodology focuses on sequencing of organelle cDNAs corresponding to known transcripts. As a result, the depth of coverage of each editing site reaches unprecedented values, assuring a reliable measurement of editing extent and the detection of numerous new sites. This strategy can be applied to the study of RNA editing in any organism. PMID:23818871

  20. Developmental Regulation of Diacylglycerol Acyltransferase Family Gene Expression in Tung Tree Tissues

    PubMed Central

    Cao, Heping; Shockey, Jay M.; Klasson, K. Thomas; Chapital, Dorselyn C.; Mason, Catherine B.; Scheffler, Brian E.

    2013-01-01

    Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tung tree (Vernicia fordii), whose novel seed TAGs are useful in a wide range of industrial applications. The objective of this study was to understand the developmental regulation of DGAT family gene expression in tung tree. To this end, we first cloned a tung tree gene encoding DGAT3, a putatively soluble form of DGAT that possesses 11 completely conserved amino acid residues shared among 27 DGAT3s from 19 plant species. Unlike DGAT1 and DGAT2 subfamilies, DGAT3 is absent from animals. We then used TaqMan and SYBR Green quantitative real-time PCR, along with northern and western blotting, to study the expression patterns of the three DGAT genes in tung tree tissues. Expression results demonstrate that 1) all three isoforms of DGAT genes are expressed in developing seeds, leaves and flowers; 2) DGAT2 is the major DGAT mRNA in tung seeds, whose expression profile is well-coordinated with the oil profile in developing tung seeds; and 3) DGAT3 is the major form of DGAT mRNA in tung leaves, flowers and immature seeds prior to active tung oil biosynthesis. These results suggest that DGAT2 is probably the major TAG biosynthetic isoform in tung seeds and that DGAT3 gene likely plays a significant role in TAG metabolism in other tissues. Therefore, DGAT2 should be a primary target for tung oil engineering in transgenic organisms. PMID:24146944

  1. CRISPR-Cas9-Mediated Single-Gene and Gene Family Disruption in Trypanosoma cruzi

    PubMed Central

    Peng, Duo; Kurup, Samarchith P.; Yao, Phil Y.; Minning, Todd A.

    2014-01-01

    ABSTRACT Trypanosoma cruzi is a protozoan parasite of humans and animals, affecting 10 to 20 million people and innumerable animals, primarily in the Americas. Despite being the largest cause of infection-induced heart disease worldwide, even among the neglected tropical diseases (NTDs) T. cruzi is considered one of the least well understood and understudied. The genetic complexity of T. cruzi as well as the limited set of efficient techniques for genome engineering contribute significantly to the relative lack of progress in and understanding of this pathogen. Here, we adapted the CRISPR-Cas9 system for the genetic engineering of T. cruzi, demonstrating rapid and efficient knockout of multiple endogenous genes, including essential genes. We observed that in the absence of a template, repair of the Cas9-induced double-stranded breaks (DSBs) in T. cruzi occurs exclusively by microhomology-mediated end joining (MMEJ) with various-sized deletions. When a template for DNA repair is provided, DSB repair by homologous recombination is achieved at an efficiency several orders of magnitude higher than that in the absence of CRISPR-Cas9-induced DSBs. We also demonstrate the high multiplexing capacity of CRISPR-Cas9 in T. cruzi by knocking down expression of an enzyme gene family consisting of 65 members, resulting in a significant reduction of enzymatic product with no apparent off-target mutations. Lastly, we show that Cas9 can mediate disruption of its own coding sequence, rescuing a growth defect in stable Cas9-expressing parasites. These results establish a powerful new tool for the analysis of gene functions in T. cruzi, enabling the study of essential genes and their functions and analysis of the many large families of related genes that occupy a substantial portion of the T. cruzi genome. PMID:25550322

  2. Angiotensin converting enzyme gene polymorphism in familial hypertrophic cardiomyopathy patients

    SciTech Connect

    Yu, B; Peric, S.; Ross, D. [Royal Prince Alfred Hospital, Campertown (Australia)] [and others

    1994-09-01

    An insertion/deletion (I/D) polymorphism of the angiotensin I converting enzyme (ACE) gene is a useful predictor of human plasma ACE levels. ACE levels tend to be lowest in subjects with ACE genotype DD and intermediate in subjects with ACE genotype ID. Angiotensin II (Ang II) as a product of ACE is a cardiac growth factor and produces a marked hypertrophy of the chick myocyte in cell culture. Rat experiments also suggest that a small dose of ACE inhibitor that does not affect the afterload results in prevention or regression of cardiac hypertrophy. In order to study the relationship of ACE and the severity of hypertrophy, the ACE genotype has been determined in 28 patients with a clinical diagnosis of familial hypertrophic cardiomyopathy (FHC) and 51 normal subjects. The respective frequencies of I and D alleles were: 0.52 and 0.48 (in FHC patients) and 0.44 and 0.56 (in the normal controls). There was no significant difference in the allele frequencies between FHC and normal subjects ({chi}{sup 2}=0.023, p>0.05). The II, ID, and DD genotypes were present in 7, 15, and 6 FHC patients, respectively. The averages of maximal thickness of the interventricular septum measured by echocardiography or at autopsy were 18 {plus_minus}3, 19{plus_minus}4, and 19{plus_minus}3 mm in II, ID and DD genotypes, respectively. The ACE gene polymorphism did not correlate with the severity of left ventricular hypertrophy in FHC patients (r{sub s}=0.231, p>0.05). These results do not necessarily exclude the possible effect of Ang II on the hypertrophy since the latter may be produced through the action of chymase in the human ventricles. However, ACE gene polymorphism is not a useful predictor of the severity of myocardial hypertrophy in FHC patients.

  3. Comprehensive Variant Screening of the UGT Gene Family

    PubMed Central

    Kim, Jason Yongha; Cheong, Hyun Sub; Park, Byung Lae; Kim, Lyoung Hyo; Namgoong, Suhg; Kim, Ji On; Kim, Hae Deun; Kim, Young Hoon; Chung, Myeon Woo; Han, Soon Young

    2014-01-01

    Purpose UGT1A1, UGT2B7, and UGT2B15 are well-known pharmacogenes that belong to the uridine diphosphate glucuronyltransferase gene family. For personalized drug treatment, it is important to study differences in the frequency of core markers across various ethnic groups. Accordingly, we screened single nucleotide polymorphisms (SNPs) of these three genes and analyzed differences in their frequency among five ethnic groups, as well as attempted to predict the function of novel SNPs. Materials and Methods We directly sequenced 288 subjects consisting of 96 Korean, 48 Japanese, 48 Han Chinese, 48 African American, and 48 European American subjects. Subsequently, we analyzed genetic variability, linkage disequilibrium (LD) structures and ethnic differences for each gene. We also conducted in silico analysis to predict the function of novel SNPs. Results A total of 87 SNPs were detected, with seven pharmacogenetic core SNPs and 31 novel SNPs. We observed that the frequencies of UGT1A1 *6 (rs4148323), UGT1A1 *60 (rs4124874), UGT1A1 *93 (rs10929302), UGT2B7 *2 (rs7439366), a part of UGT2B7 *3 (rs12233719), and UGT2B15 *2 (rs1902023) were different between Asian and other ethnic groups. Additional in silico analysis results showed that two novel promoter SNPs of UGT1A1 -690G>A and -689A>C were found to potentially change transcription factor binding sites. Moreover, 673G>A (UGT2B7), 2552T>C, and 23269C>T (both SNPs from UGT2B15) changed amino acid properties, which could cause structural deformation. Conclusion Findings from the present study would be valuable for further studies on pharmacogenetic studies of personalized medicine and drug response. PMID:24339312

  4. Identification of genes from pattern formation, tyrosine kinase, and potassium channel families by DNA amplification

    SciTech Connect

    Kamb, A.; Weir, M.; Rudy, B.; Varmus, H.; Kenyon, C. (Univ. of California, San Francisco (USA))

    1989-06-01

    The study of gene family members has been aided by the isolation of related genes on the basis of DNA homology. The authors have adapted the polymerase chain reaction to screen animal genomes very rapidly and reliably for likely gene family members. Using conserved amino acid sequences to design degenerate oligonucleotide primers, they have shown that the genome of the nematode Caenorhabditis elegans contains sequences homologous to many Drosophila genes involved in pattern formation, including the segment polarity gene wingless (vertebrate int-1), and homeobox sequences characteristic of the Antennapedia, engrailed, and paired families. In addition, they have used this method to show that C. elegans contains at least five different sequences homologous to genes in the tyrosine kinase family. Lastly, they have isolated six potassium channel sequences from humans, a result that validates the utility of the method with large genomes and suggests that human potassium channel gene diversity may be extensive.

  5. Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees

    PubMed Central

    2010-01-01

    Background Class III Homeodomain Leucine Zipper (HD-Zip III) proteins have been implicated in the regulation of cambium identity, as well as primary and secondary vascular differentiation and patterning in herbaceous plants. They have been proposed to regulate wood formation but relatively little evidence is available to validate such a role. We characterised and compared HD-Zip III gene family in an angiosperm tree, Populus spp. (poplar), and the gymnosperm Picea glauca (white spruce), representing two highly evolutionarily divergent groups. Results Full-length cDNA sequences were isolated from poplar and white spruce. Phylogenetic reconstruction indicated that some of the gymnosperm sequences were derived from lineages that diverged earlier than angiosperm sequences, and seem to have been lost in angiosperm lineages. Transcript accumulation profiles were assessed by RT-qPCR on tissue panels from both species and in poplar trees in response to an inhibitor of polar auxin transport. The overall transcript profiles HD-Zip III complexes in white spruce and poplar exhibited substantial differences, reflecting their evolutionary history. Furthermore, two poplar sequences homologous to HD-Zip III genes involved in xylem development in Arabidopsis and Zinnia were over-expressed in poplar plants. PtaHB1 over-expression produced noticeable effects on petiole and primary shoot fibre development, suggesting that PtaHB1 is involved in primary xylem development. We also obtained evidence indicating that expression of PtaHB1 affected the transcriptome by altering the accumulation of 48 distinct transcripts, many of which are predicted to be involved in growth and cell wall synthesis. Most of them were down-regulated, as was the case for several of the poplar HD-Zip III sequences. No visible physiological effect of over-expression was observed on PtaHB7 transgenic trees, suggesting that PtaHB1 and PtaHB7 likely have distinct roles in tree development, which is in agreement with the functions that have been assigned to close homologs in herbaceous plants. Conclusions This study provides an overview of HD-zip III genes related to woody plant development and identifies sequences putatively involved in secondary vascular growth in angiosperms and in gymnosperms. These gene sequences are candidate regulators of wood formation and could be a source of molecular markers for tree breeding related to wood properties. PMID:21143995

  6. Mini review roles of the bZIP gene family in rice.

    PubMed

    E, Z G; Zhang, Y P; Zhou, J H; Wang, L

    2014-01-01

    The basic leucine zipper (bZIP) genes encode transcription factors involved in the regulation of various biological processes. Similar to WRKY, basic helix-loop-helix, and several other groups of proteins, the bZIP proteins form a superfamily of transcription factors that mediate plant stress responses. In this review, we present the roles of bZIP proteins in multiple biological processes that include pathogen defense; responses to abiotic stresses; seed development and germination; senescence; and responses to salicylic, jasmonic, and abscisic acids in rice. We also examined the characteristics of the bZIP proteins and their genetic composition. To ascertain the evolutionary changes in and functions of this supergene family, we performed an exhaustive comparison among the 89 rice bZIP genes that were previously described and those more recently listed in the MSU Rice Genome Annotation Project Database using a Hidden Markov Model. We excluded 3 genes from the list, resulting in a total of 86 bZIP genes in japonica rice. PMID:24782137

  7. The same or not the same: lineage-specific gene expansions and homology relationships in multigene families in nematodes.

    PubMed

    Markov, Gabriel V; Baskaran, Praveen; Sommer, Ralf J

    2015-01-01

    Homology is a fundamental concept in comparative biology and a crucial tool for the analysis of character distribution. Introduced by Owen in 1843 (Lectures on comparative anatomy and physiology of the invertebrate animals, Longman, Brown, Green and Longman, London) in a morphological context, homology can similarly be applied to protein-coding genes. However, in molecular biology the proper distinction between orthology and paralogy was long limited by the absence of whole-genome sequencing data. By now, genome-wide sequencing allows comprehensive analyses of the homology of genes and gene families at the level of an entire phylum. Here, we analyze a manually curated dataset of more than 2,000 proteins from the genomes of 11 nematode species of seven different genera, including free-living and animal and plant parasites to study the principles of homology assignments in gene families. Using all sequenced species as an extensive outgroup, we specifically focus on the two model species Caenorhabditis elegans and Pristionchus pacificus and compare enzymes involved in detoxification of xenobiotics and synthesis of fatty acids. We find that only a small proportion of genes in these families are one-to-one orthologs and that their history is shaped by massive duplication events. Of a total of 349 and 528 genes from C. elegans and P. pacificus, respectively, only 39 are one-to-one orthologs. Thus, frequent amplifications and losses are a widespread phenomenon in nematode lineages. We also report variation in birth and death rates depending on gene families and nematode lineages. Finally, we discuss the consequence of the near absence of one-to-one orthology in related organisms for the application of the homology concept to protein-coding genes in the era of whole-genome sequencing data. PMID:25323991

  8. Gene Flow and the Measurement of Dispersal in Plant Populations.

    ERIC Educational Resources Information Center

    Nicholls, Marc S.

    1986-01-01

    Reviews methods of estimating pollen and seed dispersals and discusses the extent and frequency of gene exchange within and between populations. Offers suggestions for designing exercises suitable for estimating dispersal distances in natural plant populations. (ML)

  9. AtSIG6 and other members of the sigma gene family jointly but differentially determine plastid target gene expression in Arabidopsis thaliana

    PubMed Central

    Bock, Sylvia; Ortelt, Jennifer; Link, Gerhard

    2014-01-01

    Plants contain a nuclear gene family for plastid sigma factors, i.e., proteins that associate with the “bacterial-type” organellar RNA polymerase and confer the ability for correct promoter binding and transcription initiation. Questions that are still unresolved relate to the “division of labor” among members of the sigma family, both in terms of their range of target genes and their temporal and spatial activity during development. Clues to the in vivo role of individual sigma genes have mainly come from studies of sigma knockout lines. Despite its obvious strengths, however, this strategy does not necessarily trace-down causal relationships between mutant phenotype and a single sigma gene, if other family members act in a redundant and/or compensatory manner. We made efforts to reduce the complexity by genetic crosses of Arabidopsis single mutants (with focus on a chlorophyll-deficient sig6 line) to generate double knockout lines. The latter typically had a similar visible phenotype as the parental lines, but tended to be more strongly affected in the transcript patterns of both plastid and sigma genes. Because triple mutants were lethal under our growth conditions, we exploited a strategy of transformation of single and double mutants with RNAi constructs that contained sequences from the unconserved sigma region (UCR). These RNAi/knockout lines phenotypically resembled their parental lines, but were even more strongly affected in their plastid transcript patterns. Expression patterns of sigma genes revealed both similarities and differences compared to the parental lines, with transcripts at reduced or unchanged amounts and others that were found to be present in higher (perhaps compensatory) amounts. Together, our results reveal considerable flexibility of gene activity at the levels of both sigma and plastid gene expression. A (still viable) “basal state” seems to be reached, if 2–3 of the 6 Arabidopsis sigma genes are functionally compromised. PMID:25505479

  10. Expression of streptavidin gene in bacteria and plants

    SciTech Connect

    Guan, Xueni; Wurtele, E.S.; Nikolau, B.J. (Iowa State Univ., Ames (USA))

    1990-05-01

    Six biotin-containing proteins are present in plants, representing at least four different biotin enzymes. The physiological function of these biotin enzymes is not understood. Streptavidin, a protein from Streptomyces avidinii, binds tightly and specifically to biotin causing inactivation of biotin enzymes. One approach to elucidating the physiological function of biotin enzymes in plant metabolism is to create transgenic plants expressing the streptavidin gene. A plasmid containing a fused streptavidin-beta-galactosidase gene has been expressed in E. coli. We also have constructed various fusion genes that include an altered CaMV 35S promoter, signal peptides to target the streptavidin protein to specific organelles, and the streptavidin coding gene. We are examining the expression of these genes in cells of carrot.

  11. Analysis of the hli gene family in marine and freshwater cyanobacteria

    E-print Network

    cyanobacteria [11], red algae [12] and vascular plants [6]. The pattern of expression of hli genes in cyanobacteria and vascular plants is similar to that of the genes encoding ELIPs; hli mRNAs and encoded illumination the cells lost all variable £uorescence and died [13]. By analogy to vascular plant ELIPs

  12. Analysis of the hli gene family in marine and freshwater cyanobacteria

    Microsoft Academic Search

    Devaki Bhaya; Alexis Dufresne; Daniel Vaulot; Arthur Grossman

    2002-01-01

    Certain cyanobacteria thrive in natural habitats in which light intensities can reach 2000 Wmol photon m32 s31 and nutrient levels are extremely low. Recently, a family of genes designated hli was demonstrated to be important for survival of cyanobacteria during exposure to high light. In this study we have identified members of the hli gene family in seven cyanobacterial genomes,

  13. Accepted mutations in a gene family: Evolutionary diversification of duplicated DNA

    Microsoft Academic Search

    C. Weldon Jones; Fotis C. Kafatos

    1982-01-01

    Summary We report and compare the DNA sequences of 14 silkmoth (Antheraea polyphemus) chorion genes, derived from either cDNA or chromosomal DNA clones. Seven of these genes are members of the A multigene family, and seven are members of the B family. Where available, the previously reported (Jones and Kafatos 1980) intronic and extragenic flanking DNA sequences are also considered.

  14. Characterization and functional divergence of the 1-adrenoceptor gene family: insights from rainbow trout (Oncorhynchus mykiss)

    E-print Network

    Aris-Brosou, Stéphane

    members in the regulation of blood pressure in a fish model system: the rainbow trout. On the basisCharacterization and functional divergence of the 1-adrenoceptor gene family: insights from rainbow- terization and functional divergence of the 1-adrenoceptor gene family: insights from rainbow trout

  15. Genome-wide identification and transcriptional profiling analysis of auxin response-related gene families in cucumber

    PubMed Central

    2014-01-01

    Background Auxin signaling has a vital function in the regulation of plant growth and development, both which are known to be mediated by auxin-responsive genes. So far, significant progress has been made toward the identification and characterization of auxin-response genes in several model plants, while no systematic analysis for these families was reported in cucumber (Cucumis sativus L.), a reference species for Cucurbitaceae crops. The comprehensive analyses will help design experiments for functional validation of their precise roles in plant development and stress responses. Results A genome-wide search for auxin-response gene homologues identified 16 auxin-response factors (ARFs), 27 auxin/indole acetic acids (Aux/IAAs), 10 Gretchen Hagen 3 (GH3s), 61 small auxin-up mRNAs (SAURs), and 39 lateral organ boundaries (LBDs) in cucumber. Sequence analysis together with the organization of putative motifs indicated the potential diverse functions of these five auxin-related family members. The distribution and density of auxin response-related genes on chromosomes were not uniform. Evolutionary analysis showed that the chromosomal segment duplications mainly contributed to the expansion of the CsARF, CsIAA, CsGH3, and CsLBD gene families. Quantitative real-time RT-PCR analysis demonstrated that many ARFs, AUX/IAAs, GH3s, SAURs, and LBD genes were expressed in diverse patterns within different organs/tissues and during different development stages. They were also implicated in IAA, methyl jasmonic acid, or salicylic acid response, which is consistent with the finding that a great number of diverse cis-elements are present in their promoter regions involving a variety of signaling transduction pathways. Conclusion Genome-wide comparative analysis of auxin response-related family genes and their expression analysis provide new evidence for the potential role of auxin in development and hormone response of plants. Our data imply that the auxin response genes may be involved in various vegetative and reproductive developmental processes. Furthermore, they will be involved in different signal pathways and may mediate the crosstalk between various hormone responses. PMID:24708619

  16. Ortho2ExpressMatrix—a web server that interprets cross-species gene expression data by gene family information

    PubMed Central

    2011-01-01

    Background The study of gene families is pivotal for the understanding of gene evolution across different organisms and such phylogenetic background is often used to infer biochemical functions of genes. Modern high-throughput experiments offer the possibility to analyze the entire transcriptome of an organism; however, it is often difficult to deduct functional information from that data. Results To improve functional interpretation of gene expression we introduce Ortho2ExpressMatrix, a novel tool that integrates complex gene family information, computed from sequence similarity, with comparative gene expression profiles of two pre-selected biological objects: gene families are displayed with two-dimensional matrices. Parameters of the tool are object type (two organisms, two individuals, two tissues, etc.), type of computational gene family inference, experimental meta-data, microarray platform, gene annotation level and genome build. Family information in Ortho2ExpressMatrix bases on computationally different protein family approaches such as EnsemblCompara, InParanoid, SYSTERS and Ensembl Family. Currently, respective all-against-all associations are available for five species: human, mouse, worm, fruit fly and yeast. Additionally, microRNA expression can be examined with respect to miRBase or TargetScan families. The visualization, which is typical for Ortho2ExpressMatrix, is performed as matrix view that displays functional traits of genes (differential expression) as well as sequence similarity of protein family members (BLAST e-values) in colour codes. Such translations are intended to facilitate the user's perception of the research object. Conclusions Ortho2ExpressMatrix integrates gene family information with genome-wide expression data in order to enhance functional interpretation of high-throughput analyses on diseases, environmental factors, or genetic modification or compound treatment experiments. The tool explores differential gene expression in the light of orthology, paralogy and structure of gene families up to the point of ambiguity analyses. Results can be used for filtering and prioritization in functional genomic, biomedical and systems biology applications. The web server is freely accessible at http://bioinf-data.charite.de/o2em/cgi-bin/o2em.pl. PMID:21970648

  17. PRGdb: a bioinformatics platform for plant resistance gene analysis

    PubMed Central

    Sanseverino, Walter; Roma, Guglielmo; De Simone, Marco; Faino, Luigi; Melito, Sara; Stupka, Elia; Frusciante, Luigi; Ercolano, Maria Raffaella

    2010-01-01

    PRGdb is a web accessible open-source (http://www.prgdb.org) database that represents the first bioinformatic resource providing a comprehensive overview of resistance genes (R-genes) in plants. PRGdb holds more than 16 000 known and putative R-genes belonging to 192 plant species challenged by 115 different pathogens and linked with useful biological information. The complete database includes a set of 73 manually curated reference R-genes, 6308 putative R-genes collected from NCBI and 10463 computationally predicted putative R-genes. Thanks to a user-friendly interface, data can be examined using different query tools. A home-made prediction pipeline called Disease Resistance Analysis and Gene Orthology (DRAGO), based on reference R-gene sequence data, was developed to search for plant resistance genes in public datasets such as Unigene and Genbank. New putative R-gene classes containing unknown domain combinations were discovered and characterized. The development of the PRG platform represents an important starting point to conduct various experimental tasks. The inferred cross-link between genomic and phenotypic information allows access to a large body of information to find answers to several biological questions. The database structure also permits easy integration with other data types and opens up prospects for future implementations. PMID:19906694

  18. Diversity and linkage of genes in the self-incompatibility gene family in Arabidopsis lyrata.

    PubMed Central

    Charlesworth, Deborah; Mable, Barbara K; Schierup, Mikkel H; Bartolomé, Carolina; Awadalla, Philip

    2003-01-01

    We report studies of seven members of the S-domain gene family in Arabidopsis lyrata, a member of the Brassicaceae that has a sporophytic self-incompatibility (SI) system. Orthologs for five loci are identifiable in the self-compatible relative A. thaliana. Like the Brassica stigmatic incompatibility protein locus (SRK), some of these genes have kinase domains. We show that several of these genes are unlinked to the putative A. lyrata SRK, Aly13. These genes have much lower nonsynonymous and synonymous polymorphism than Aly13 in the S-domains within natural populations, and differentiation between populations is higher, consistent with balancing selection at the Aly13 locus. One gene (Aly8) is linked to Aly13 and has high diversity. No departures from neutrality were detected for any of the loci. Comparing different loci within A. lyrata, sites corresponding to hypervariable regions in the Brassica S-loci (SLG and SRK) and in comparable regions of Aly13 have greater replacement site divergence than the rest of the S-domain. This suggests that the high polymorphism in these regions of incompatibility loci is due to balancing selection acting on sites within or near these regions, combined with low selective constraints. PMID:12930757

  19. Genomic organization of the human NSP gene, prototype of a novel gene family encoding reticulons

    SciTech Connect

    Roebroek, A.J.M.; Ayoubi, T.A.Y.; Velde, H.J.K. van de; Schoenmakers, E.F.P.M.; Pauli, I.G.L.; Van De Ven, W.J.M. [Univ. of Leuven and Flanders Institute for Biotechnology, Herestraat (Belgium)] [Univ. of Leuven and Flanders Institute for Biotechnology, Herestraat (Belgium)

    1996-03-01

    Recently, cDNA cloning and expression of three mRNA variants of the human NSP gene were described. This neuroendocrine-specific gene encodes three NSP protein isoforms with unique amino-terminal parts, but common carboxy-terminal parts. The proteins, with yet unknown function, are associated with the endoplasmic reticulum and therefore are named NSP reticulons. Potentially, these proteins are neuroendocrine markers of a novel category in human lung cancer diagnosis. Here, the genomic organization of this gene was studied by analysis of genomic clones isolated from lambda phage and YAC libraries. The NSP exons were found to be dispersed over a genomic region of about 275 kb. The present elucidation of the genomic organization of the NSP gene explains the generation of NSP mRNA variants encoding NSP protein isoforms. Multiple promoters rather than alternative splicing of internal exons seem to be involved in this diversity. Furthermore, comparison of NSP genomic and cDNA sequences with databank nucleotide sequences resulted in the discovery of other human members of this novel family of reticulons encoding genes. 25 refs., 4 figs.

  20. Ancient divergence of animal protein tyrosine kinase genes demonstrated by a gene family tree including choanoflagellate genes

    Microsoft Academic Search

    Hiroshi Suga; Go Sasaki; Kei-ichi Kuma; Hiromi Nishiyori; Nozomi Hirose; Zhi-Hui Su; Naoyuki Iwabe; Takashi Miyata

    2008-01-01

    Animal-specific gene families involved in cell–cell communication and developmental control comprise many subfamilies with distinct domain structures and functions. They diverged by subfamily-generating duplications and domain shufflings before the parazoan–eumetazoan split. Here, we have cloned 40 PTK cDNAs from choanoflagellates, Monosiga ovata, Stephanoeca diplocostata and Codosiga gracilis, the closest relatives to animals. A phylogeny-based analysis of PTKs revealed that 40

  1. Genome-Wide Identification, Evolution and Expression Analysis of the Grape (Vitis vinifera L.) Zinc Finger-Homeodomain Gene Family

    PubMed Central

    Wang, Hao; Yin, Xiangjing; Li, Xiaoqin; Wang, Li; Zheng, Yi; Xu, Xiaozhao; Zhang, Yucheng; Wang, Xiping

    2014-01-01

    Plant zinc finger-homeodomain (ZHD) genes encode a family of transcription factors that have been demonstrated to play an important role in the regulation of plant growth and development. In this study, we identified a total of 13 ZHD genes (VvZHD) in the grape genome that were further classified into at least seven groups. Genome synteny analysis revealed that a number of VvZHD genes were present in the corresponding syntenic blocks of Arabidopsis, indicating that they arose before the divergence of these two species. Gene expression analysis showed that the identified VvZHD genes displayed distinct spatiotemporal expression patterns, and were differentially regulated under various stress conditions and hormone treatments, suggesting that the grape VvZHDs might be also involved in plant response to a variety of biotic and abiotic insults. Our work provides insightful information and knowledge about the ZHD genes in grape, which provides a framework for further characterization of their roles in regulation of stress tolerance as well as other aspects of grape productivity. PMID:24705465

  2. Beating the Biological Clock: The Compressed Family Life Cycle of Young Women with BRCA Gene Alterations

    Microsoft Academic Search

    Allison Werner-Lin

    2008-01-01

    Empirical and clinical literature suggests a temporal thread running through family narratives of hereditary disease, linking past experiences to current beliefs about risk. This study asked young women with elevated risk of developing hereditary breast or ovarian cancer (HBOC) how their family histories with cancer and their gene status inform meaning construction around cancer risk and family development. Twenty-three women

  3. Alteration of plant meristem function by manipulation of the Retinoblastoma-like plant RRB gene

    DOEpatents

    Durfee, Tim (Madison, WI); Feiler, Heidi (Albany, CA); Gruissem, Wilhelm (Forch, CH); Jenkins, Susan (Martinez, CA); Roe, Judith (Manhattan, KS); Zambryski, Patricia (Berkeley, CA)

    2007-01-16

    This invention provides methods and compositions for altering the growth, organization, and differentiation of plant tissues. The invention is based on the discovery that, in plants, genetically altering the levels of Retinoblastoma-related gene (RRB) activity produces dramatic effects on the growth, proliferation, organization, and differentiation of plant meristem.

  4. Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship.

    PubMed

    Perotto, Silvia; Rodda, Marco; Benetti, Alex; Sillo, Fabiano; Ercole, Enrico; Rodda, Michele; Girlanda, Mariangela; Murat, Claude; Balestrini, Raffaella

    2014-06-01

    Orchids fully depend on symbiotic interactions with specific soil fungi for seed germination and early development. Germinated seeds give rise to a protocorm, a heterotrophic organ that acquires nutrients, including organic carbon, from the mycorrhizal partner. It has long been debated if this interaction is mutualistic or antagonistic. To investigate the molecular bases of the orchid response to mycorrhizal invasion, we developed a symbiotic in vitro system between Serapias vomeracea, a Mediterranean green meadow orchid, and the rhizoctonia-like fungus Tulasnella calospora. 454 pyrosequencing was used to generate an inventory of plant and fungal genes expressed in mycorrhizal protocorms, and plant genes could be reliably identified with a customized bioinformatic pipeline. A small panel of plant genes was selected and expression was assessed by real-time quantitative PCR in mycorrhizal and non-mycorrhizal protocorm tissues. Among these genes were some markers of mutualistic (e.g. nodulins) as well as antagonistic (e.g. pathogenesis-related and wound/stress-induced) genes. None of the pathogenesis or wound/stress-related genes were significantly up-regulated in mycorrhizal tissues, suggesting that fungal colonization does not trigger strong plant defence responses. In addition, the highest expression fold change in mycorrhizal tissues was found for a nodulin-like gene similar to the plastocyanin domain-containing ENOD55. Another nodulin-like gene significantly more expressed in the symbiotic tissues of mycorrhizal protocorms was similar to a sugar transporter of the SWEET family. Two genes coding for mannose-binding lectins were significantly up-regulated in the presence of the mycorrhizal fungus, but their role in the symbiosis is unclear. PMID:24760407

  5. Ecdysone Receptor-Based Gene Switches for Applications in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are a number of circumstances in which it is advantageous to use an inducible gene regulation system, the most obvious being when introducing transgenes whose constitutive expression is detrimental or even lethal to the host plants. The selective induction of gene expression is typically accom...

  6. Genetic diversity, plant adaptation regions, and gene pools of switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass is a perennial grass native to the North American tallgrass prairie and broadly adapted to the central and eastern USA. Movement of plant materials throughout this region creates the potential of contaminating local gene pools with genes that are not native to a locale. The objective o...

  7. Morphological alterations by ectopic expression of the rice OsMADS4 gene in tobacco plants.

    PubMed

    Kang, Hong-Gyu; An, Gynheung

    2005-05-01

    OsMADS4, a rice MADS-box gene, is a member of the GLO/PI family that specifies the identity of petals and stamens in combination with other MADS-box genes. We report here the ectopic expression of OsMADS4 fused to the CaMV 35S promoter in tobacco plants. Transgenic plants carrying the CaMV 35S promoter::OsMADS4 construct generated mutant flowers with a mosaic carpel, in which the tissue around the nectary was elongated and the styles reduced. The fruits were distorted, but viable seeds did develop. These phenotypes mimicked those of transgenic tobacco plants that ectopically express Antirrhinum GLO. However, unlike GLO, OsMADS4 did not cause any homeotic change in the first whorl of the transgenic flowers. These results suggest that the functional role of OsMADS4 in the outer whorls has diverged from that of its dicot counterparts. PMID:15703945

  8. Evolution of the Schlafen genes, a gene family associated with embryonic lethality, meiotic drive, immune processes and orthopoxvirus virulence.

    PubMed

    Bustos, Olivia; Naik, Saijal; Ayers, Gayle; Casola, Claudio; Perez-Lamigueiro, Maria A; Chippindale, Paul T; Pritham, Ellen J; de la Casa-Esperón, Elena

    2009-11-01

    Genes of the Schlafen family, first discovered in mouse, are expressed in hematopoietic cells and are involved in immune processes. Previous results showed that they are candidate genes for two major phenomena: meiotic drive and embryonic lethality (DDK syndrome). However, these genes remain poorly understood, mostly due to the limitations imposed by their similarity, close location and the potential functional redundancy of the gene family members. Here we use genomic and phylogenetic studies to investigate the evolution and role of this family of genes. Our results show that the Schlafen family is widely distributed in mammals, where we recognize four major clades that experienced lineage-specific expansions or contractions in various orders, including primates and rodents. In addition, we identified members of the Schlafen family in Chondrichthyes and Amphibia, indicating an ancient origin of these genes. We find evidence that positive selection has acted on many Schlafen genes. Moreover, our analyses indicate that a member of the Schlafen family was horizontally transferred from murine rodents to orthopoxviruses, where it is hypothesized to play a role in allowing the virus to survive host immune defense mechanisms. The functional relevance of the viral Schlafen sequences is further underscored by our finding that they are evolving under purifying selection. This is of particular importance, since orthopoxviruses infect mammals and include variola, the causative agent of smallpox, and monkeypox, an emerging virus of great concern for human health. PMID:19619625

  9. A novel frameshift mutation in the cylindromatosis (CYLD) gene in a Chinese family with multiple familial trichoepithelioma.

    PubMed

    Wu, J W; Xiao, S X; Huo, J; An, J G; Ren, J W

    2014-11-01

    Multiple familial trichoepithelioma (MFT) (OMIM: 601606) is an autosomal dominantly inherited disorder characterized by numerous, skin-colored papules and nodules with pilar differentiation. Recently, several mutations in the cylindromatosis (CYLD) gene have been reported in MFT. In this study, a mutation analysis of the CYLD was conducted in a Chinese pedigree of typical MFT. Affected individuals were identified through probands from Shanxi Province, China. Lesional skin biopsy of the proband revealed the typical histopathological characteristics of trichoepithelioma. Individuals belonging to five consecutive generations were similarly affected, which indicated an autosomal dominant inheritance pattern. Genomic DNA was extracted from peripheral blood lymphocytes using standard phenol/chloroform extraction method. All the coding exons (4-20) and exon-intron boundaries of the CYLD gene were amplified by polymerase chain reaction (PCR). Direct sequencing of all PCR products amplified from the complete coding regions of the CYLD gene was performed to identify mutations. Sequencing of the CYLD gene was performed in a further 100 unrelated, unaffected control individuals to exclude the possibility of polymorphism. A novel heterozygous frameshift mutation c.1169_1170delCA (p.Thr390Argfs) was identified in exon 10 of the CYLD gene in the affected family members. This mutation was also detected in unaffected family members, but not in the unrelated, healthy individuals who were also analyzed. Our study expands the database on the CYLD gene mutations in MFT and should be useful in providing genetic counseling and prenatal diagnosis for families affected by MFT. PMID:25234269

  10. Expression Profile of the REG Gene Family in Colorectal Carcinoma

    PubMed Central

    Zheng, Hua-chuan; Sugawara, Akira; Okamoto, Hiroshi; Takasawa, Shin; Takahashi, Hiroyuki; Masuda, Shinji; Takano, Yasuo

    2011-01-01

    Regenerating (REG) gene family belongs to the calcium-dependent lectin gene superfamily and encodes small multifunctional secretory proteins, which might be involved in cell proliferation, differentiation, and carcinogenesis. To clarify REG expression profile in colorectal carcinoma (CRC), the authors examined the expression of REG I?, I?, III, HIP/PAP, and REG IV by immunohistochemistry on tissue microarray. The expression of REG I?, III, and HIP/PAP was more frequently observed in the CRCs than adjacent non-neoplastic mucosa (p < 0.001), whereas it was the converse for REG I? and IV (p < 0.001). The expression of REG I?, I?, III, and HIP/PAP was negatively correlated with the depth of invasion of CRCs (p < 0.05). The REG I? and HIP/PAP were less expressed in CRCs with than without venous invasion (p < 0.05). The positive rates of REG I? and HIP/PAP were significantly higher in CRCs without than with lymph node metastasis (p < 0.05). Mucinous carcinoma more frequently expressed REG IV protein than well- and moderately differentiated ones (p < 0.05). There was a positive relationship between REG I?, I?, III, and HIP/PAP expression (p < 0.05). Survival analysis indicated the REG I? or HIP/PAP expression was positively linked to favorable prognosis of carcinoma patients (p < 0.05). This study indicated that aberrant REG expression might be closely linked to the pathogenesis, invasion, or lymph node metastasis of CRCs. REG I? and HIP/PAP could be considered reliable markers of favorable prognosis of CRC patients. PMID:21339177

  11. Characterization of Resistance Gene Analogues (RGAs) in Apple (Malus × domestica Borkh.) and Their Evolutionary History of the Rosaceae Family

    PubMed Central

    Baldo, Angela; Righetti, Laura; Bailey, Aubrey; Fontana, Paolo; Velasco, Riccardo; Malnoy, Mickael

    2014-01-01

    The family of resistance gene analogues (RGAs) with a nucleotide-binding site (NBS) domain accounts for the largest number of disease resistance genes and is one of the largest gene families in plants. We have identified 868 RGAs in the genome of the apple (Malus × domestica Borkh.) cultivar ‘Golden Delicious’. This represents 1.51% of the total number of predicted genes for this cultivar. Several evolutionary features are pronounced in M. domestica, including a high fraction (80%) of RGAs occurring in clusters. This suggests frequent tandem duplication and ectopic translocation events. Of the identified RGAs, 56% are located preferentially on six chromosomes (Chr 2, 7, 8, 10, 11, and 15), and 25% are located on Chr 2. TIR-NBS and non-TIR-NBS classes of RGAs are primarily exclusive of different chromosomes, and 99% of non-TIR-NBS RGAs are located on Chr 11. A phylogenetic reconstruction was conducted to study the evolution of RGAs in the Rosaceae family. More than 1400 RGAs were identified in six species based on their NBS domain, and a neighbor-joining analysis was used to reconstruct the phylogenetic relationships among the protein sequences. Specific phylogenetic clades were found for RGAs of Malus, Fragaria, and Rosa, indicating genus-specific evolution of resistance genes. However, strikingly similar RGAs were shared in Malus, Pyrus, and Prunus, indicating high conservation of specific RGAs and suggesting a monophyletic origin of these three genera. PMID:24505246

  12. Phylogenetic and expression analysis of ZnF-AN1 genes in plants.

    PubMed

    Jin, Ying; Wang, Meng; Fu, Junjie; Xuan, Ning; Zhu, Yun; Lian, Yun; Jia, Zhiwei; Zheng, Jun; Wang, Guoying

    2007-08-01

    In plants, ZnF-AN1 genes are part of a multigene family with 13 members in Arabidopsis thaliana, 19 members in Populus trichocarpa, 17 members in Oryza sativa, at least 11 members in Zea mays, and 2 members in Chlamydomonas reinhardtii. All ZnF-AN1 genes contain the ZnF-AN1 domain. According to the phylogenetic analysis of the ZnF-AN1 domain, we divided plant ZnF-AN1 genes into two types. The coding sequences of most type I members do not possess any introns, while most type II members do possess intron(s). Through Northern blot analysis of maize members and digital Northern analysis of Arabidopsis members, we found that most ZnF-AN1 genes are involved in responses to abiotic stresses. The evolutionary analysis indicated that the expansion rate of type I was higher than that of type II. After expansion, some ZnF-AN1 genes may have gained new functions, some may have lost their functions, and some were specialized to perform their functions in stress-specific or tissue-specific modes. In addition, we propose an evolutionary model of type II ZnF-AN1 genes in plants. PMID:17524611

  13. A novel Twinkle (PEO1) gene mutation in a Chinese family with adPEO

    Microsoft Academic Search

    Zhirong Liu; Yao Ding; Ailian Du; Baorong Zhang; Guohua Zhao; Meiping Ding

    Purpose: Autosomal dominant progressive external ophthalmoplegia (adPEO) is a genetically heterogeneous, adult-onset disease. Thus far, disease loci have been identified on four different nuclear genes. The purpose of this study is to identify the gene responsible for causing adPEO in a Chinese family. Methods: Clinical data and genomic DNA of a Chinese adPEO family were collected following informed consent. Gene

  14. Atypical familial juvenile hyperuricemic nephropathy associated with a hepatocyte nuclear factor-1? gene mutation

    Microsoft Academic Search

    Coralie Bingham; Sian Ellard; William G van't Hoff; H Anne Simmonds; Anthony M Marinaki; Michael K Badman; Peter H Winocour; Amanda Stride; Christopher R Lockwood; Anthony J Nicholls; Katharine R Owen; Ghislaine Spyer; Ewan R Pearson; Andrew T Hattersley

    2003-01-01

    Atypical familial juvenile hyperuricemic nephropathy associated with a hepatocyte nuclear factor-1? gene mutation.BackgroundFamilial juvenile hyperuricemic nephropathy (FJHN) is a dominantly inherited condition characterized by young-onset hyperuricemia, gout, and renal disease. The etiologic genes are unknown, although a locus on chromosome 16 has been identified in some kindreds. Mutations in the gene encoding hepatocyte nuclear factor (HNF)-1? have been associated with

  15. Chloroplast gene sequences and the study of plant evolution.

    PubMed Central

    Clegg, M T

    1993-01-01

    A large body of sequence data has accumulated for the chloroplast-encoded gene ribulose-1,5-biphosphate carboxylase/oxygenase (rbcL) as the result of a cooperative effort involving many laboratories. The data span all seed plants, including most major lineages from the angiosperms, and as such they provide an unprecedented opportunity to study plant evolutionary history. The full analysis of this large data set poses many problems and opportunities for plant evolutionary biologists and for biostatisticians. PMID:8421667

  16. Familial genes in sporadic disease: Common variants of ?-Synuclein gene associate with Parkinson’s disease

    PubMed Central

    Ross, Owen A.; Gosal, David; Stone, Jeremy T.; Lincoln, Sarah J.; Heckman, Michael G.; Irvine, Brent G.; Johnston, Janet A.; Gibson, J. Mark; Farrer, Matthew J.; Lynch, Timothy

    2007-01-01

    Genetic variation of the ?-synuclein gene (SNCA) is known to cause familial parkinsonism, however the role of SNCA variants in sporadic Parkinson’s disease (PD) remains elusive. The present study identifies an association of common SNCA polymorphisms with disease susceptibility in a series of Irish PD patients. There is evidence for association with alternate regions, of protection and risk which may act independently/synergistically, within the promoter region (Rep1; OR: 0.59, 95% CI: 0.37 – 0.84) and the 3?UTR of the gene (rs356165; OR: 1.67, 95% CI: 1.08 – 2.58). Given previous reports of association a collaborative effort is required which may exploit global linkage disequilibrium patterns for SNCA and standardise polymorphic markers used in each population. It is now crucial to identify the susceptibility allele and elucidate its functionality which may generate a therapeutic target for PD. PMID:17531291

  17. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.)

    PubMed Central

    2014-01-01

    Background Canola (Brassica napus L.) is one of the most important oil-producing crops in China and worldwide. The yield and quality of canola is frequently threatened by environmental stresses including drought, cold and high salinity. Calcium is a ubiquitous intracellular secondary messenger in plants. Calcineurin B-like proteins (CBLs) are Ca2+ sensors and regulate a group of Ser/Thr protein kinases called CBL-interacting protein kinases (CIPKs). Although the CBL-CIPK network has been demonstrated to play crucial roles in plant development and responses to various environmental stresses in Arabidopsis, little is known about their function in canola. Results In the present study, we identified seven CBL and 23 CIPK genes from canola by database mining and cloning of cDNA sequences of six CBLs and 17 CIPKs. Phylogenetic analysis of CBL and CIPK gene families across a variety of species suggested genome duplication and diversification. The subcellular localization of three BnaCBLs and two BnaCIPKs were determined using green fluorescence protein (GFP) as the reporter. We also demonstrated interactions between six BnaCBLs and 17 BnaCIPKs using yeast two-hybrid assay, and a subset of interactions were further confirmed by bimolecular fluorescence complementation (BiFC). Furthermore, the expression levels of six selected BnaCBL and 12 BnaCIPK genes in response to salt, drought, cold, heat, ABA, methyl viologen (MV) and low potassium were examined by quantitative RT-PCR and these CBL or CIPK genes were found to respond to multiple stimuli, suggesting that the canola CBL-CIPK network may be a point of convergence for several different signaling pathways. We also performed a comparison of interaction patterns and expression profiles of CBL and CIPK in Arabidospsis, canola and rice, to examine the differences between orthologs, highlighting the importance of studying CBL-CIPK in canola as a prerequisite for improvement of this crop. Conclusions Our findings indicate that CBL and CIPK family members may form a dynamic complex to respond to different abiotic or hormone signaling. Our comparative analyses of the CBL-CIPK network between canola, Arabidopsis and rice highlight functional differences and the necessity to study CBL-CIPK gene functions in canola. Our data constitute a valuable resource for CBL and CPK genomics. PMID:24397480

  18. PlantGSEA: a gene set enrichment analysis toolkit for plant community

    PubMed Central

    Yi, Xin; Du, Zhou; Su, Zhen

    2013-01-01

    Gene Set Enrichment Analysis (GSEA) is a powerful method for interpreting biological meaning of a list of genes by computing the overlaps with various previously defined gene sets. As one of the most widely used annotations for defining gene sets, Gene Ontology (GO) system has been used in many enrichment analysis tools. EasyGO and agriGO, two GO enrichment analysis toolkits developed by our laboratory, have gained extensive usage and citations since their releases because of their effective performance and consistent maintenance. Responding to the increasing demands of more comprehensive analysis from the users, we developed a web server as an important component of our bioinformatics analysis toolkit, named PlantGSEA, which is based on GSEA method and mainly focuses on plant organisms. In PlantGSEA, 20 290 defined gene sets deriving from different resources were collected and used for GSEA analysis. The PlantGSEA currently supports gene locus IDs and Affymatrix microarray probe set IDs from four plant model species (Arabidopsis thaliana, Oryza sativa, Zea mays and Gossypium raimondii). The PlantGSEA is an efficient and user-friendly web server, and now it is publicly accessible at http://structuralbiology.cau.edu.cn/PlantGSEA. PMID:23632162

  19. Characterization of the multicopper oxidase gene family in Anopheles gambiae.

    PubMed

    Gorman, Maureen J; Dittmer, Neal T; Marshall, Jeremy L; Kanost, Michael R

    2008-09-01

    The multicopper oxidase (MCO) family of enzymes includes laccases, which oxidize a broad range of substrates including diphenols, and several oxidases with specific substrates such as iron, copper or ascorbic acid. We have identified five putative MCO genes in the genome of Anopheles gambiae and have cloned cDNAs encompassing the full coding region for each gene. MCO1 mRNA was detected in all developmental stages and in all of the larval and adult tissues tested. We observed an increase in MCO1 transcript abundance in the midguts and Malphighian tubules of adult females following a blood meal and in adult abdominal carcasses in response to an immune challenge. Two alternatively spliced isoforms of MCO2 mRNA were identified. The A isoform of MCO2 was previously detected in larval and pupal cuticle where it probably catalyzes sclerotization reactions (He, N., Botelho, J.M.C., McNall, R.J., Belozerov, V., Dunn, W.A., Mize, T., Orlando, R., Willis, J.H., 2007. Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect Biochem. Mol. Biol. 37, 135-146). The B isoform was transcriptionally upregulated in ovaries in response to a blood meal. MCO3 mRNA was detected in the adult midgut, Malpighian tubules, and male reproductive tissues; like MCO1, it was upregulated in response to an immune challenge or a blood meal. MCO4 and MCO5 were observed primarily in eggs and in the abdominal carcass of larvae. A phylogenetic analysis of insect MCO genes identified putative orthologs of MCO1 and MCO2 in all of the insect genomes tested, whereas MCO3, MCO4 and MCO5 were found only in the two mosquito species analyzed. MCO2 orthologs have especially high sequence similarity, suggesting that they are under strong purifying selection; the A isoforms are more conserved than the B isoforms. The mosquito specific group shares a common ancestor with MCO2. This initia