Science.gov

Sample records for plant growth-promoting rhizobacteria

  1. Plant growth promotion rhizobacteria in onion production.

    PubMed

    Colo, Josip; Hajnal-Jafari, Timea I; Durić, Simonida; Stamenov, Dragana; Hamidović, Saud

    2014-01-01

    The aim of the research was to examine the effect of rhizospheric bacteria Azotobacter chroococcum, Pseudomonas fluorescens (strains 1 and 2) and Bacillus subtilis on the growth and yield of onion and on the microorganisms in the rhizosphere of onion. The ability of microorganisms to produce indole-acetic acid (IAA), siderophores and to solubilize tricalcium phosphate (TCP) was also assessed. The experiment was conducted in field conditions, in chernozem type of soil. Bacillus subtilis was the best producer of IAA, whereas Pseudomonas fluorescens strains were better at producing siderophores and solubilizing phosphates. The longest seedling was observed with the application of Azotobacter chroococcum. The height of the plants sixty days after sowing was greater in all the inoculated variants than in the control. The highest onion yield was observed in Bacillus subtilis and Azotobacter chroococcum variants. The total number of bacteria and the number of Azotobacter chroococcum were larger in all the inoculated variants then in the control. The number of fungi decreased in most of the inoculated variants, whereas the number of actinomycetes decreased or remained the same. PMID:25033667

  2. Cytokinin production by plant growth promoting rhizobacteria and selected mutants.

    PubMed

    García de Salamone, I E; Hynes, R K; Nelson, L M

    2001-05-01

    One of the proposed mechanisms by which rhizobacteria enhance plant growth is through the production of plant growth regulators. Five plant growth promoting rhizobacterial (PGPR) strains produced the cytokinin dihydrozeatin riboside (DHZR) in pure culture. Cytokinin production by Pseudomonas fluorescens G20-18, a rifampicin-resistant mutant (RIF), and two TnphoA-derived mutants (CNT1, CNT2), with reduced capacity to synthesize cytokinins, was further characterized in pure culture using immunoassay and thin layer chromatography. G20-18 produced higher amounts of three cytokinins, isopentenyl adenosine (IPA), trans-zeatin ribose (ZR), and DHZR than the three mutants during stationary phase. IPA was the major metabolite produced, but the proportion of ZR and DHZR accumulated by CNT1 and CNT2 increased with time. No differences were observed between strain G20-18 and the mutants in the amounts of indole acetic acid synthesized, nor were gibberellins detected in supernatants of any of the strains. Addition of 10(-5) M adenine increased cytokinin production in 96- and 168-h cultures of strain G20-18 by approximately 67%. G20-18 and the mutants CNT1 and CNT2 may be useful for determination of the role of cytokinin production in plant growth promotion by PGPR. PMID:11400730

  3. Plant Growth Promoting Rhizobacteria and Mycorrhizal Fungi in Sustainable Agriculture and Forestry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-growth promoting rhizobacteria (PGPR) encourage plant growth by producing growth regulators, facilitating nutrient uptake, accelerating mineralization, reducing plant stress, stimulating nodulation, providing nitrogen fixation, promoting mycorrhizal fungi, suppressing plant diseases, and funct...

  4. Plant growth-promoting rhizobacteria and root system functioning

    PubMed Central

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-01-01

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture. PMID:24062756

  5. Seed biopriming with plant growth promoting rhizobacteria: a review.

    PubMed

    Mahmood, Ahmad; Turgay, Oğuz Can; Farooq, Muhammad; Hayat, Rifat

    2016-08-01

    Beneficial microbes are applied to the soil and plant tissues directly or through seed inoculation, whereas soil application is preferred when there is risk of inhibitors or antagonistic microbes on the plant tissues. Insufficient survival of the microorganisms, hindrance in application of fungicides to the seeds and exposure to heat and sunlight in subsequent seed storage in conventional inoculation methods force to explore appropriate and efficient bacterial application method. Seed priming, where seeds are hydrated to activate metabolism without actual germination followed by drying, increases the germination, stand establishment and stress tolerance in different crops. Seed priming with living bacterial inoculum is termed as biopriming that involves the application of plant growth promoting rhizobacteria. It increases speed and uniformity of germination; also ensures rapid, uniform and high establishment of crops; and hence improves harvest quality and yield. Seed biopriming allows the bacteria to enter/adhere the seeds and also acclimatization of bacteria in the prevalent conditions. This review focuses on methods used for biopriming, and also the role in improving crop productivity and stress tolerance along with prospects of this technology. The comparison of methods being followed is also reviewed proposing biopriming as a promising technique for application of beneficial microbes to the seeds. PMID:27222220

  6. Increased Plant Uptake of Nitrogen from 15N Depleted Fertilizer Using Plant Growth-Promoting Rhizobacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The techniques of 15N isotope have been very useful for determining the behavior and fate of N in soil, including the use efficiency of applied N fertilizers by plants. Our objective in this study was to use 15N isotope techniques to demonstrate that a model plant growth-promoting rhizobacteria (PGP...

  7. A natural plant growth promoter calliterpenone from a plant Callicarpa macrophylla Vahl improves the plant growth promoting effects of plant growth promoting rhizobacteria (PGPRs).

    PubMed

    Maji, Deepamala; Barnawal, Deepti; Gupta, Aakansha; King, Shikha; Singh, A K; Kalra, A

    2013-05-01

    Experiments were conducted to evaluate the efficacy of calliterpenone, a natural plant growth promoter from a shrub Callicarpa macrophylla Vahl., in enhancing the growth and yield promoting effects of plant growth promoting rhizobacteria (PGPRs), in menthol mint (Mentha arvensis L).This study is based on our previous results indicating the microbial growth promotion by calliterpenone and assumption that application of calliterpenone along with PGPRs will improve the population of PGPRs resulting in higher impacts on plant growth and yield. Of the 15 PGPRs (identified as potent ones in our laboratory), 25 μl of 0.01 mM calliterpenone (8.0 μg/100 ml) was found to be useful in improving the population of nine PGPRs in culture media. The five selected strains of PGPRs exhibiting synergy with calliterpenone in enhancing growth of maize compared to PGPR or calliterpenone alone were selected and tested on two cultivars (cvs. Kosi and Kushal) of M. arvensis. Of the five strains, Bacillus subtilis P-20 (16S rDNA sequence homologous to Accession No NR027552) and B. subtilis Daz-26 (16SrDNA sequence homologuos to Accession No GU998816) were found to be highly effective in improving the herb and essential oil yield in the cultivars Kushal and Kosi respectively when co-treated with calliterpenone. The results open up the possibilities of using a natural growth promoter along with PGPRs as a bio-agri input for sustainable and organic agriculture. PMID:23271460

  8. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents

    PubMed Central

    Beneduzi, Anelise; Ambrosini, Adriana; Passaglia, Luciane M.P.

    2012-01-01

    Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are highly diverse and in this review we focus on rhizobacteria as biocontrol agents. Their effects can occur via local antagonism to soil-borne pathogens or by induction of systemic resistance against pathogens throughout the entire plant. Several substances produced by antagonistic rhizobacteria have been related to pathogen control and indirect promotion of growth in many plants, such as siderophores and antibiotics. Induced systemic resistance (ISR) in plants resembles pathogen-induced systemic acquired resistance (SAR) under conditions where the inducing bacteria and the challenging pathogen remain spatially separated. Both types of induced resistance render uninfected plant parts more resistant to pathogens in several plant species. Rhizobacteria induce resistance through the salicylic acid-dependent SAR pathway, or require jasmonic acid and ethylene perception from the plant for ISR. Rhizobacteria belonging to the genera Pseudomonas and Bacillus are well known for their antagonistic effects and their ability to trigger ISR. Resistance-inducing and antagonistic rhizobacteria might be useful in formulating new inoculants with combinations of different mechanisms of action, leading to a more efficient use for biocontrol strategies to improve cropping systems. PMID:23411488

  9. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion.

    PubMed

    Majeed, Afshan; Abbasi, M Kaleem; Hameed, Sohail; Imran, Asma; Rahim, Nasir

    2015-01-01

    The present study was conducted to characterize the native plant growth promoting (PGP) bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. Nine bacterial isolates were purified, screened in vitro for PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.). Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-supplemented medium; seven were nitrogen fixer, and four were able to solubilize inorganic phosphate in vitro. Four different morphotypes were genotypically identified based on IGS-RFLP fingerprinting and representative of each morphotype was identified by 16S rRNA gene sequencing analysis except Gram-positive putative Bacillus sp. Based on 16S rRNA gene sequence analysis, bacterial isolates AJK-3 and AJK-9 showing multiple PGP-traits were identified as Stenotrophomonas spp. while AJK-7 showed equal homologies to Acetobacter pasteurianus and Stenotrophomonas specie. Plant inoculation studies indicated that these Plant growth-promoting rhizobacteria (PGPR) strains provided a significant increase in shoot and root length, and shoot and root biomass. A significant increase in shoot N contents (up to 76%) and root N contents (up to 32%) was observed over the un-inoculated control. The study indicates the potential of these PGPR for inoculums production or biofertilizers for enhancing growth and nutrient content of wheat and other crops under field conditions. The study is the first report of wheat associated bacterial diversity in the Himalayan region of Rawalakot, AJK. PMID:25852661

  10. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion

    PubMed Central

    Majeed, Afshan; Hameed, Sohail; Imran, Asma; Rahim, Nasir

    2015-01-01

    The present study was conducted to characterize the native plant growth promoting (PGP) bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. Nine bacterial isolates were purified, screened in vitro for PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.). Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-supplemented medium; seven were nitrogen fixer, and four were able to solubilize inorganic phosphate in vitro. Four different morphotypes were genotypically identified based on IGS-RFLP fingerprinting and representative of each morphotype was identified by 16S rRNA gene sequencing analysis except Gram-positive putative Bacillus sp. Based on 16S rRNA gene sequence analysis, bacterial isolates AJK-3 and AJK-9 showing multiple PGP-traits were identified as Stenotrophomonas spp. while AJK-7 showed equal homologies to Acetobacter pasteurianus and Stenotrophomonas specie. Plant inoculation studies indicated that these Plant growth-promoting rhizobacteria (PGPR) strains provided a significant increase in shoot and root length, and shoot and root biomass. A significant increase in shoot N contents (up to 76%) and root N contents (up to 32%) was observed over the un-inoculated control. The study indicates the potential of these PGPR for inoculums production or biofertilizers for enhancing growth and nutrient content of wheat and other crops under field conditions. The study is the first report of wheat associated bacterial diversity in the Himalayan region of Rawalakot, AJK. PMID:25852661

  11. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils

    PubMed Central

    Wang, Xuefei; Mavrodi, Dmitri V; Ke, Linfeng; Mavrodi, Olga V; Yang, Mingming; Thomashow, Linda S; Zheng, Na; Weller, David M; Zhang, Jibin

    2015-01-01

    The aim of this study was to inventory the types of plant growth-promoting rhizobacteria (PGPR) present in the rhizosphere of plants grown in soils contaminated with heavy metals, recalcitrant organics, petroleum sewage or salinity in China. We screened 1223 isolates for antifungal activity and about 24% inhibited Rhizoctonia solani or Sclerotinia sclerotiorum. Twenty-four strains inhibitory to R. solani, Gaeumannomyces graminis var. tritici and/or S. sclerotiorum and representing the dominant morphotypes were assayed for PGPR activity. Seven strains contained phlD, prnD, pltC or phzF genes and produced the antibiotics 2,4-diacetylphloroglucinol, pyrrolnitrin, pyoluteorin and phenazines respectively. Six strains contained acdS, which encodes 1-aminocyclopropane-1-carboxylic acid deaminase. Phylogenetic analysis of 16S rDNA and phlD, phzF and acdS genes demonstrated that some strains identified as Pseudomonas were similar to model PGPR strains Pseudomonas protegens Pf-5, Pseudomonas chlororaphis subsp. aureofaciens 30–84 and P. brassicacearum Q8r1-96. Pseudomonas protegens- and P. chlororaphis-like strains had the greatest biocontrol activity against Rhizoctonia root rot and take-all of wheat. Pseudomonas protegens and P. brassicacearum-like strains showed the greatest promotion of canola growth. Our results indicate that strains from contaminated soils are similar to well-described PGPR found in agricultural soils worldwide. Growth-promoting rhizobacteria in polluted soils PMID:25219642

  12. Anatomical, morphological, and phytochemical effects of inoculation with plant growth- promoting rhizobacteria on peppermint (Mentha piperita).

    PubMed

    del Rosario Cappellari, Lorena; Santoro, Maricel Valeria; Reinoso, Herminda; Travaglia, Claudia; Giordano, Walter; Banchio, Erika

    2015-02-01

    Plant growth-promoting rhizobacteria (PGPR) generally exert their effects through enhancement of plant nutrient status and/or phytohormone production. The effects of PGPR on aromatic plant species are poorly known. We measured plant growth parameters, chlorophyll content, trichome density, stomatal density, and levels of secondary metabolites in peppermint (Mentha piperita) seedlings inoculated with PGPR strains Bacillus subtilis GB03, Pseudomonas fluorescens WCS417r, P. putida SJ04, or a combination of WCS417r + SJ04. The treated plants, in comparison with controls, showed increases in shoot biomass, root biomass, leaf area, node number, trichome density, and stomatal density, and marked qualitative and quantitative changes in monoterpene content. Improved knowledge of the factors that control or affect biosynthesis of secondary metabolites and monoterpene accumulation will lead to strategies for improved cultivation and productivity of aromatic plants and other agricultural crops without the use of chemical fertilizers or pesticides. PMID:25655927

  13. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes.

    PubMed

    Habib, Sheikh Hasna; Kausar, Hossain; Saud, Halimi Mohd

    2016-01-01

    Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT) and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR) were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress. PMID:26951880

  14. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes

    PubMed Central

    Habib, Sheikh Hasna; Kausar, Hossain; Saud, Halimi Mohd

    2016-01-01

    Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT) and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR) were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress. PMID:26951880

  15. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria.

    PubMed

    Vurukonda, Sai Shiva Krishna Prasad; Vardharajula, Sandhya; Shrivastava, Manjari; SkZ, Ali

    2016-03-01

    Drought is one of the major constraints on agricultural productivity worldwide and is likely to further increase. Several adaptations and mitigation strategies are required to cope with drought stress. Plant growth promoting rhizobacteria (PGPR) could play a significant role in alleviation of drought stress in plants. These beneficial microorganisms colonize the rhizosphere/endo-rhizosphere of plants and impart drought tolerance by producing exopolysaccharides (EPS), phytohormones, 1-aminocyclopropane- 1-carboxylate (ACC) deaminase, volatile compounds, inducing accumulation of osmolytes, antioxidants, upregulation or down regulation of stress responsive genes and alteration in root morphology in acquisition of drought tolerance. The term Induced Systemic Tolerance (IST) was coined for physical and chemical changes induced by microorganisms in plants which results in enhanced tolerance to drought stresses. In the present review we elaborate on the role of PGPR in helping plants to cope with drought stress. PMID:26856449

  16. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria.

    PubMed

    Wintermans, Paul C A; Bakker, Peter A H M; Pieterse, Corné M J

    2016-04-01

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium. Here, we performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis for the ability to profit from rhizobacteria-mediated plant growth-promotion. To this end, 302 Arabidopsis accessions were tested for root architecture characteristics and shoot fresh weight in response to exposure to WCS417r. Although virtually all Arabidopsis accessions tested responded positively to WCS417r, there was a large variation between accessions in the increase in shoot fresh weight, the extra number of lateral roots formed, and the effect on primary root length. Correlation analyses revealed that the bacterially-mediated increase in shoot fresh weight is related to alterations in root architecture. GWA mapping for WCS417r-stimulated changes in root and shoot growth characteristics revealed 10 genetic loci highly associated with the responsiveness of Arabidopsis to the plant growth-promoting activity of WCS417r. Several of the underlying candidate genes have been implicated in important plant growth-related processes. These results demonstrate that plants possess natural genetic variation for the capacity to profit from the plant growth-promoting function of a beneficial rhizobacterium in their rhizosphere. This knowledge is a promising starting point for sustainable breeding strategies for future crops that are better able to maximize profitable functions from their root microbiome. PMID:26830772

  17. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria.

    PubMed

    do Amaral, Fernanda P; Pankievicz, Vânia C S; Arisi, Ana Carolina M; de Souza, Emanuel M; Pedrosa, Fabio; Stacey, Gary

    2016-04-01

    Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots. PMID:26873699

  18. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas

    PubMed Central

    2013-01-01

    Background Some Pseudomonas strains function as predominant plant growth-promoting rhizobacteria (PGPR). Within this group, Pseudomonas chlororaphis and Pseudomonas fluorescens are non-pathogenic biocontrol agents, and some Pseudomonas aeruginosa and Pseudomonas stutzeri strains are PGPR. P. chlororaphis GP72 is a plant growth-promoting rhizobacterium with a fully sequenced genome. We conducted a genomic analysis comparing GP72 with three other pseudomonad PGPR: P. fluorescens Pf-5, P. aeruginosa M18, and the nitrogen-fixing strain P. stutzeri A1501. Our aim was to identify the similarities and differences among these strains using a comparative genomic approach to clarify the mechanisms of plant growth-promoting activity. Results The genome sizes of GP72, Pf-5, M18, and A1501 ranged from 4.6 to 7.1 M, and the number of protein-coding genes varied among the four species. Clusters of Orthologous Groups (COGs) analysis assigned functions to predicted proteins. The COGs distributions were similar among the four species. However, the percentage of genes encoding transposases and their inactivated derivatives (COG L) was 1.33% of the total genes with COGs classifications in A1501, 0.21% in GP72, 0.02% in Pf-5, and 0.11% in M18. A phylogenetic analysis indicated that GP72 and Pf-5 were the most closely related strains, consistent with the genome alignment results. Comparisons of predicted coding sequences (CDSs) between GP72 and Pf-5 revealed 3544 conserved genes. There were fewer conserved genes when GP72 CDSs were compared with those of A1501 and M18. Comparisons among the four Pseudomonas species revealed 603 conserved genes in GP72, illustrating common plant growth-promoting traits shared among these PGPR. Conserved genes were related to catabolism, transport of plant-derived compounds, stress resistance, and rhizosphere colonization. Some strain-specific CDSs were related to different kinds of biocontrol activities or plant growth promotion. The GP72 genome

  19. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana.

    PubMed

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W; Ryu, Choong-Min

    2015-09-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation. PMID:26361480

  20. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana

    PubMed Central

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W.; Ryu, Choong-Min

    2015-01-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation. PMID:26361480

  1. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review.

    PubMed

    Vejan, Pravin; Abdullah, Rosazlin; Khadiran, Tumirah; Ismail, Salmah; Nasrulhaq Boyce, Amru

    2016-01-01

    Plant growth promoting rhizobacteria (PGPR) shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism) of the PGPR for plant growth and the role of the PGPR as biofertilizer-thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability. PMID:27136521

  2. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean.

    PubMed

    Mahmood, Sajid; Daur, Ihsanullah; Al-Solaimani, Samir G; Ahmad, Shakeel; Madkour, Mohamed H; Yasir, Muhammad; Hirt, Heribert; Ali, Shawkat; Ali, Zahir

    2016-01-01

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha(-1)), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m(-1)). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha(-1) resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry. PMID:27379151

  3. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean

    PubMed Central

    Mahmood, Sajid; Daur, Ihsanullah; Al-Solaimani, Samir G.; Ahmad, Shakeel; Madkour, Mohamed H.; Yasir, Muhammad; Hirt, Heribert; Ali, Shawkat; Ali, Zahir

    2016-01-01

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry. PMID:27379151

  4. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils.

    PubMed

    Wang, Xuefei; Mavrodi, Dmitri V; Ke, Linfeng; Mavrodi, Olga V; Yang, Mingming; Thomashow, Linda S; Zheng, Na; Weller, David M; Zhang, Jibin

    2015-05-01

    The aim of this study was to inventory the types of plant growth-promoting rhizobacteria (PGPR) present in the rhizosphere of plants grown in soils contaminated with heavy metals, recalcitrant organics, petroleum sewage or salinity in China. We screened 1223 isolates for antifungal activity and about 24% inhibited Rhizoctonia solani or Sclerotinia sclerotiorum. Twenty-four strains inhibitory to R. solani, Gaeumannomyces graminis var. tritici and/or S. sclerotiorum and representing the dominant morphotypes were assayed for PGPR activity. Seven strains contained phlD, prnD, pltC or phzF genes and produced the antibiotics 2,4-diacetylphloroglucinol, pyrrolnitrin, pyoluteorin and phenazines respectively. Six strains contained acdS, which encodes 1-aminocyclopropane-1-carboxylic acid deaminase. Phylogenetic analysis of 16S rDNA and phlD, phzF and acdS genes demonstrated that some strains identified as Pseudomonas were similar to model PGPR strains Pseudomonas protegens Pf-5, Pseudomonas chlororaphis subsp. aureofaciens 30-84 and P. brassicacearum Q8r1-96. Pseudomonas protegens- and P. chlororaphis-like strains had the greatest biocontrol activity against Rhizoctonia root rot and take-all of wheat. Pseudomonas protegens and P. brassicacearum-like strains showed the greatest promotion of canola growth. Our results indicate that strains from contaminated soils are similar to well-described PGPR found in agricultural soils worldwide. PMID:25219642

  5. Physiological and biochemical characterization of Azospirillum brasilense strains commonly used as plant growth-promoting rhizobacteria.

    PubMed

    Di Salvo, Luciana P; Silva, Esdras; Teixeira, Kátia R S; Cote, Rosalba Esquivel; Pereyra, M Alejandra; García de Salamone, Inés E

    2014-12-01

    Azospirillum is a plant growth-promoting rhizobacteria (PGPR) genus vastly studied and utilized as agriculture inoculants. Isolation of new strains under different environmental conditions allows the access to the genetic diversity and improves the success of inoculation procedures. Historically, the isolation of this genus has been performed by the use of some traditional culture media. In this work we characterized the physiology and biochemistry of five different A. brasilense strains, commonly used as cereal inoculants. The aim of this work is to contribute to pose into revision some concepts concerning the most used protocols to isolate and characterize this bacterium. We characterized their growth in different traditional and non-traditional culture media, evaluated some PGPR mechanisms and characterized their profiles of fatty acid methyl esters and carbon-source utilization. This work shows, for the first time, differences in both profiles, and ACC deaminase activity of A. brasilense strains. Also, we show unexpected results obtained in some of the evaluated culture media. Results obtained here and an exhaustive knowledge revision revealed that it is not appropriate to conclude about bacterial species without analyzing several strains. Also, it is necessary to continue developing studies and laboratory techniques to improve the isolation and characterization protocols. PMID:25138314

  6. Biochar Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in Plant Growth Promoting Rhizobacteria

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan; Behrendt, Undine; Abd_Allah, Elsayed F.; Berg, Gabriele

    2016-01-01

    The application of biochar to soil is considered to have the potential for long-term soil carbon sequestration, as well as for improving plant growth and suppressing soil pathogens. In our study we evaluated the effect of biochar on the plant growth of soybeans, as well as on the community composition of root-associated bacteria with plant growth promoting traits. Two types of biochar, namely, maize biochar (MBC), wood biochar (WBC), and hydrochar (HTC) were used for pot experiments to monitor plant growth. Soybean plants grown in soil amended with HTC char (2%) showed the best performance and were collected for isolation and further characterization of root-associated bacteria for multiple plant growth promoting traits. Only HTC char amendment resulted in a statistically significant increase in the root and shoot dry weight of soybeans. Interestingly, rhizosphere isolates from HTC char amended soil showed higher diversity than the rhizosphere isolates from the control soil. In addition, a higher proportion of isolates from HTC char amended soil compared with control soil was found to express plant growth promoting properties and showed antagonistic activity against one or more phytopathogenic fungi. Our study provided evidence that improved plant growth by biochar incorporation into soil results from the combination of a direct effect that is dependent on the type of char and a microbiome shift in root-associated beneficial bacteria. PMID:26941730

  7. Biochar Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in Plant Growth Promoting Rhizobacteria.

    PubMed

    Egamberdieva, Dilfuza; Wirth, Stephan; Behrendt, Undine; Abd Allah, Elsayed F; Berg, Gabriele

    2016-01-01

    The application of biochar to soil is considered to have the potential for long-term soil carbon sequestration, as well as for improving plant growth and suppressing soil pathogens. In our study we evaluated the effect of biochar on the plant growth of soybeans, as well as on the community composition of root-associated bacteria with plant growth promoting traits. Two types of biochar, namely, maize biochar (MBC), wood biochar (WBC), and hydrochar (HTC) were used for pot experiments to monitor plant growth. Soybean plants grown in soil amended with HTC char (2%) showed the best performance and were collected for isolation and further characterization of root-associated bacteria for multiple plant growth promoting traits. Only HTC char amendment resulted in a statistically significant increase in the root and shoot dry weight of soybeans. Interestingly, rhizosphere isolates from HTC char amended soil showed higher diversity than the rhizosphere isolates from the control soil. In addition, a higher proportion of isolates from HTC char amended soil compared with control soil was found to express plant growth promoting properties and showed antagonistic activity against one or more phytopathogenic fungi. Our study provided evidence that improved plant growth by biochar incorporation into soil results from the combination of a direct effect that is dependent on the type of char and a microbiome shift in root-associated beneficial bacteria. PMID:26941730

  8. Complete genome sequence of Bacillus amyloliquefaciens L-H15, a plant growth promoting rhizobacteria isolated from cucumber seedling substrate.

    PubMed

    Qin, Yuxuan; Han, Yuzhu; Shang, QingMao; Li, Pinglan

    2015-04-20

    Bacillus amyloliquefaciens L-H15 is a plant growth promoting rhizobacteria (PGPR) isolated from the cucumber seedling substrate collected in Beijing, China. The complete genome of B. amyloliquefaciens L-H15 consists of one single circular chromosome (3,864,316 bp) without any plasmid. From the genome, we identified clusters responsible for non-ribosomal synthesis of secondary metabolites, and genes related to the plant growth promotion hormone such as indole-3-acetic acid (IAA) and acetoin secretion. In addition, genes that contribute to biofilm formation were also found on the genome of L-H15. Complete genome information enables further study on the beneficial interactions between B. amyloliquefaciens L-H15 and host plants, and the future application of B. amyloliquefaciens L-H15 as biofertilizer and biocide. PMID:25725457

  9. Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress.

    PubMed

    Kamran, Muhammad Aqeel; Eqani, Syed Ali Musstjab Akber Shah; Bibi, Sadia; Xu, Ren-kou; Amna; Monis, Muhammad Farooq Hussain; Katsoyiannis, Athanasios; Bokhari, Habib; Chaudhary, Hassan Javed

    2016-04-01

    Phytoremediation potential of plants can be enhanced in association with microbes. Further, many plant growth-promoting rhizobacteria can improve growth under stress. The present study was conducted to investigate the effect of Pseudomonas putida (P. putida) on nickel (Ni) uptake and on growth of Eruca sativa (E. sativa). Three different levels of Ni (low; 150 ug/g, medium; 250 ug/g and high; 500 ug/g) were applied to the soil containing E. sativa seedlings, with or without P. putida. Ni-toxicity was measured by metamorphic parameters including shoot length, root length, biomass, chlorophyll and proline and Ni contents. Inoculation with P. putida increased 34% and 41% in root and shoot length and 38% and 24% in fresh, dry weight respectively, as compared to non-inoculated plants. Similarly, Ni uptake increased by up to 46% following P. putida inoculation as compared to non-inoculated plants. Indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity in the growing media enhanced growth and Ni uptake in E. sativa. The present results offer insight on Plant Growth Promoting Rhizobacteria (PGPR), such as P. putida, for the potential to enhance the plant growth by inhibiting the adverse effects of Ni in E. sativa. PMID:26773835

  10. Isolation and Identification of Plant Growth Promoting Rhizobacteria from Cucumber Rhizosphere and Their Effect on Plant Growth Promotion and Disease Suppression

    PubMed Central

    Islam, Shaikhul; Akanda, Abdul M.; Prova, Ananya; Islam, Md. T.; Hossain, Md. M.

    2016-01-01

    Plant growth promoting rhizobacteria (PGPR) are the rhizosphere bacteria that may be utilized to augment plant growth and suppress plant diseases. The objectives of this study were to identify and characterize PGPR indigenous to cucumber rhizosphere in Bangladesh, and to evaluate their ability to suppress Phytophthora crown rot in cucumber. A total of 66 isolates were isolated, out of which 10 (PPB1, PPB2, PPB3, PPB4, PPB5, PPB8, PPB9, PPB10, PPB11, and PPB12) were selected based on their in vitro plant growth promoting attributes and antagonism of phytopathogens. Phylogenetic analysis of 16S rRNA sequences identified these isolates as new strains of Pseudomonas stutzeri, Bacillus subtilis, Stenotrophomonas maltophilia, and Bacillus amyloliquefaciens. The selected isolates produced high levels (26.78–51.28 μg mL-1) of indole-3-acetic acid, while significant acetylene reduction activities (1.79–4.9 μmole C2H4 mg-1 protein h-1) were observed in eight isolates. Cucumber plants grown from seeds that were treated with these PGPR strains displayed significantly higher levels of germination, seedling vigour, growth, and N content in root and shoot tissue compared to non-treated control plants. All selected isolates were able to successfully colonize the cucumber roots. Moreover, treating cucumber seeds with these isolates significantly suppressed Phytophthora crown rot caused by Phytophthora capsici, and characteristic morphological alterations in P. capsici hyphae that grew toward PGPR colonies were observed. Since these PGPR inoculants exhibited multiple traits beneficial to the host plants, they may be applied in the development of new, safe, and effective seed treatments as an alternative to chemical fungicides. PMID:26869996

  11. Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria

    PubMed Central

    Bruto, Maxime; Prigent-Combaret, Claire; Muller, Daniel; Moënne-Loccoz, Yvan

    2014-01-01

    The positive effects of root-colonizing bacteria cooperating with plants lead to improved growth and/or health of their eukaryotic hosts. Some of these Plant Growth-Promoting Rhizobacteria (PGPR) display several plant-beneficial properties, suggesting that the accumulation of the corresponding genes could have been selected in these bacteria. Here, this issue was targeted using 23 genes contributing directly or indirectly to established PGPR effects, based on genome sequence analysis of 304 contrasted Alpha- Beta- and Gammaproteobacteria. Most of the 23 genes studied were also found in non-PGPR Proteobacteria and none of them were common to all 25 PGPR genomes studied. However, ancestral character reconstruction indicated that gene transfers -predominantly ancient- resulted in characteristic gene combinations according to taxonomic subgroups of PGPR strains. This suggests that the PGPR-plant cooperation could have established separately in various taxa, yielding PGPR strains that use different gene assortments. The number of genes contributing to plant-beneficial functions increased along the continuum -animal pathogens, phytopathogens, saprophytes, endophytes/symbionts, PGPR- indicating that the accumulation of these genes (and possibly of different plant-beneficial traits) might be an intrinsic PGPR feature. This work uncovered preferential associations occurring between certain genes contributing to phytobeneficial traits and provides new insights into the emergence of PGPR bacteria. PMID:25179219

  12. Analysis of genes contributing to plant-beneficial functions in Plant Growth-Promoting Rhizobacteria and related Proteobacteria.

    PubMed

    Bruto, Maxime; Prigent-Combaret, Claire; Muller, Daniel; Moënne-Loccoz, Yvan

    2014-01-01

    The positive effects of root-colonizing bacteria cooperating with plants lead to improved growth and/or health of their eukaryotic hosts. Some of these Plant Growth-Promoting Rhizobacteria (PGPR) display several plant-beneficial properties, suggesting that the accumulation of the corresponding genes could have been selected in these bacteria. Here, this issue was targeted using 23 genes contributing directly or indirectly to established PGPR effects, based on genome sequence analysis of 304 contrasted Alpha- Beta- and Gammaproteobacteria. Most of the 23 genes studied were also found in non-PGPR Proteobacteria and none of them were common to all 25 PGPR genomes studied. However, ancestral character reconstruction indicated that gene transfers -predominantly ancient- resulted in characteristic gene combinations according to taxonomic subgroups of PGPR strains. This suggests that the PGPR-plant cooperation could have established separately in various taxa, yielding PGPR strains that use different gene assortments. The number of genes contributing to plant-beneficial functions increased along the continuum -animal pathogens, phytopathogens, saprophytes, endophytes/symbionts, PGPR- indicating that the accumulation of these genes (and possibly of different plant-beneficial traits) might be an intrinsic PGPR feature. This work uncovered preferential associations occurring between certain genes contributing to phytobeneficial traits and provides new insights into the emergence of PGPR bacteria. PMID:25179219

  13. Crop genotype and a novel symbiotic fungus influences the root endophytic colonization potential of plant growth promoting rhizobacteria.

    PubMed

    Singh, Geeta; Singh, N; Marwaha, T S

    2009-01-01

    Effect of plant genotype on the root endophytic colonization ability of a plant growth promoting rhizobacteria (PGPR), Pseudomonas striata was undertaken in this study. Use of a lac-Z tagged P. striata strain showed that, it can exist as an endophyte and the plant genotype determines the performance of the inoculated PGPR. The cultivars of Zea mays L. (maize) and Vigna radiata L. (mung bean) tested showed differential affinity to the PGPR (P. striata) as reflected by a significant variation in the root endophytic colonization ability of P. striata. Coinoculation with a novel symbiotic fungus Piriformospora indica was found to stimulate endophytic colonization of P. striata in both maize and mungbean. The root exudates of maize and mungbean cultivars showed variations in the total sugar and amino acid contents. However, no consistent relationship was recorded between the concentrations of these metabolites and endophytic colonization of the added PGPR. PMID:23572916

  14. Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils.

    PubMed

    Mishra, Vartika; Gupta, Antriksh; Kaur, Parvinder; Singh, Simranjeet; Singh, Nasib; Gehlot, Praveen; Singh, Joginder

    2016-07-01

    Three Arbuscular mycorrhizal fungi (AMF) from Glomus, Acaulospora and Scutellospora, and four plant growth promoting rhizobacteria (PGPR) isolates related to genera Streptomyces, Azotobacter, Pseudomonas and Paenibacillus were found to be effective in phytoremediation of Fe(3+) contaminated soil where Pennisetum glaucum and Sorghum bicolor were growing as host plants. Co-inoculation of AMF and PGPR showed better results in comparison to either, AMF and PGPR under pot conditions. Both AMF and PGPR were able to produce siderophores. AMF and PGPR associated to P. glaucum and S. bicolor plants increased the extent of iron absorption. AMF and PGPR combination exhibited superior (p < 0.01) phytoremediation efficiency with P. glaucum compared to S. bicolor. These findings warrant further investigations of these synergistic interactions and large-scale in situ studies for bioremediation of iron-contaminated soils. PMID:26682583

  15. Scouting contaminated estuaries: heavy metal resistant and plant growth promoting rhizobacteria in the native metal rhizoaccumulator Spartina maritima.

    PubMed

    Mesa, J; Mateos-Naranjo, E; Caviedes, M A; Redondo-Gómez, S; Pajuelo, E; Rodríguez-Llorente, I D

    2015-01-15

    Spartina maritima is a native endangered heavy metal rhizoaccumulator cordgrass naturally growing in southwest coasts of Spain, where is used as a biotool to rehabilitate degraded salt marshes. Fifteen bacterial strains were isolated from the rhizosphere of S. maritima growing in the estuary of the Tinto River, one of the most polluted areas in the world. A high proportion of bacteria were resistant towards several heavy metals. They also exhibited multiple plant growth promoting (PGP) properties, in the absence and the presence of Cu. Bacillus methylotrophicus SMT38, Bacillusaryabhattai SMT48, B. aryabhattai SMT50 and Bacilluslicheniformis SMT51 were selected as the best performing strains. In a gnobiotic assay, inoculation of Medicago sativa seeds with the selected isolates induced higher root elongation. The inoculation of S. maritima with these indigenous metal-resistant PGP rhizobacteria could be an efficient method to increase plant adaptation and growth in contaminated estuaries during restoration programs. PMID:25467875

  16. Isolation, screening, and molecular characterization of plant growth promoting rhizobacteria isolates of Azotobacter and Trichoderma and their beneficial activities

    PubMed Central

    Kasa, Parameswari; Modugapalem, Hemalatha; Battini, Kishori

    2015-01-01

    Objectives: The present study was conducted for isolation, screening, and identification of Azotobacter and Trichoderma from different soil samples. Methods: A total of 10 isolates of Azotobacter and Trichoderma were isolated from rhizospheric soils. The test isolates were biochemically characterized and screened in in-vitro conditions for their plant growth promoting properties. DNA polymorphism of isolates was studied using randomly amplified polymorphic DNA analysis. Results: A total of 41 bands were scored, out of which 35 bands were found to be 85.59% polymorphic in Azotobacter and in Trichoderma among total 37 bands scored of which 29 were found to be 78.37% polymorphic. The influence of isolated plant growth promoting rhizobacteria (PGPR) strains on plant growth was studied using different parameters such as height of the plant, number of leaves, and number of branches, and bio-control activity was studied. Conclusion: The present results concluded that the multiple beneficial activities of PGPR traits increase the plant growth and bio-control activity. PMID:26283830

  17. Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination.

    PubMed

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Manivasakan, Palanisamy; Yuvakkumar, Rathinam; Rajendran, Venkatachalam; Prabu, Periyasamy; Kannan, Narayanasamy

    2013-09-01

    The study was aimed at evaluating the effect of nanosilica and different sources of silicon on soil properties, total bacterial population and maize seed germination. Nanosilica was synthesised using rice husk and characterised. Silica powder was amorphous (50 nm) with >99.9% purity. Sodium silicate treated soil inhibited plant growth promoting rhizobacteria in contrast to nanosilica and other bulk sources. Surface property and effect of soil nutrient content of nanosilica treatment were improved. Colony forming unit (CFU) was doubled in the presence of nanosilica from 4 × 105 CFU (control) to 8 × 105 CFU per gram of soil. The silica and protein content of bacterial biomass clearly showed an increase in uptake of silica with an increase in nanosilica concentration. Nanosilica promoted seed germination percentage (100%) in maize than conventional Si sources. These studies show that nanosilica has favourable effect on beneficial bacterial population and nutrient value of soil. PMID:24028804

  18. Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings.

    PubMed

    Erturk, Yasar; Ercisli, Sezai; Haznedar, Ayhan; Cakmakci, Ramazan

    2010-01-01

    The effects of plant growth promoting rhizobacteria (PGPR) on the rooting and root growth of semi-hardwood and hardwood kiwifruit stem cuttings were investigated. The PGPR used were Bacillus RC23, Paenibacillus polymyxa RC05, Bacillus subtilis OSU142, Bacillus RC03, Comamonas acidovorans RC41, Bacillus megaterium RC01 and Bacillus simplex RC19. All the bacteria showed indole-3-acetic acid (IAA) producing capacity. Among the PGPR used, the highest rooting ratios were obtained at 47.50% for semi-hardwood stem cuttings from Bacillus RC03 and Bacillus simplex RC19 treatments and 42.50% for hardwood stem cuttings from Bacillus RC03. As well, Comamonas acidovorans RC41 inoculations indicated higher value than control treatments. The results suggest that these PGPR can be used in organic nursery material production and point to the feasibility of synthetic auxin (IBA) replacement by organic management based on PGPR. PMID:21157636

  19. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils.

    PubMed

    Ma, Y; Prasad, M N V; Rajkumar, M; Freitas, H

    2011-01-01

    Technogenic activities (industrial-plastic, textiles, microelectronics, wood preservatives; mining-mine refuse, tailings, smelting; agrochemicals-chemical fertilizers, farm yard manure, pesticides; aerosols-pyrometallurgical and automobile exhausts; biosolids-sewage sludge, domestic waste; fly ash-coal combustion products) are the primary sources of heavy metal contamination and pollution in the environment in addition to geogenic sources. During the last two decades, bioremediation has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Exclusively derived processes by plants alone (phytoremediation) are time-consuming. Further, high levels of pollutants pose toxicity to the remediating plants. This situation could be ameliorated and accelerated by exploring the partnership of plant-microbe, which would improve the plant growth by facilitating the sequestration of toxic heavy metals. Plants can bioconcentrate (phytoextraction) as well as bioimmobilize or inactivate (phytostabilization) toxic heavy metals through in situ rhizospheric processes. The mobility and bioavailability of heavy metal in the soil, particularly at the rhizosphere where root uptake or exclusion takes place, are critical factors that affect phytoextraction and phytostabilization. Developing new methods for either enhancing (phytoextraction) or reducing the bioavailability of metal contaminants in the rhizosphere (phytostabilization) as well as improving plant establishment, growth, and health could significantly speed up the process of bioremediation techniques. In this review, we have highlighted the role of plant growth promoting rhizo- and/or endophytic bacteria in accelerating phytoremediation derived benefits in extensive tables and elaborate schematic sketches. PMID:21147211

  20. Characterization of the bioactive metabolites from a plant growth-promoting rhizobacteria and their exploitation as antimicrobial and plant growth-promoting agents.

    PubMed

    George, Emrin; Kumar, S Nishanth; Jacob, Jubi; Bommasani, Bhaskara; Lankalapalli, Ravi S; Morang, P; Kumar, B S Dileep

    2015-05-01

    A plant growth-promoting bacterial strain, PM 105, isolated from a tea plantation soil from the North Eastern region of India was identified as Pseudomonas aeruginosa through classical and 16S ribosomal DNA (rDNA) gene sequencing. Further studies with this strain confirmed broad spectrum antifungal activity against ten human and plant pathogenic fungal pathogens viz. Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus tubingensis, Candida albicans, Colletotrichum gloeosporioides, Fusarium oxysporum, Pencillium expansum, Rhizoctonia solani, Trichophyton rubrum besides growth-promoting property in cowpea (Vigna unguiculata) and pigeon pea (Cajanus cajan). However, no antibacterial property was exhibited by this strain against the four test bacterial pathogens tested in agar overlay method. The crude bioactive metabolites produced by this strain were isolated with three different solvents that exhibited significant antimicrobial and plant growth-promoting activity. Chloroform extract recorded significant antimicrobial and plant growth-promoting activity. Three major compounds viz. 1-hydroxyphenazine, pyocyanin, and phenazine-1-carboxamide were purified and characterized from crude extracts of this strain by various spectral data. The purified compounds recorded prominent antimicrobial activity but failed to establish the plant growth promotion activity in test crop plants under gnotobiotic conditions. Pyocyanin recorded significant antimicrobial activity, and best activity was recorded against T. rubrum (29 mm), followed by P. expansum (28 mm). These results suggest the use of PM 105 as plant growth-promoting agent in crop plants after successful field trials. PMID:25832181

  1. Potential for Plant Growth Promotion of Rhizobacteria Associated with Salicornia Growing in Tunisian Hypersaline Soils

    PubMed Central

    Mapelli, Francesca; Marasco, Ramona; Rolli, Eleonora; Barbato, Marta; Cherif, Hanene; Guesmi, Amel; Ouzari, Imen; Daffonchio, Daniele; Borin, Sara

    2013-01-01

    Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres of Salicornia plants and bulk soils were collected from Sebkhet and Chott hypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated with Salicornia root system. A large collection of 475 halophilic and halotolerant bacteria was established from Salicornia rhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. Twenty Halomonas strains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activities in vitro at 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using a gfp-labelled strain it was possible to demonstrate that Halomonas is capable of successfully colonising Salicornia roots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands. PMID:23781499

  2. Effect of Compost on Rhizosphere Microflora of the Tomato and on the Incidence of Plant Growth-Promoting Rhizobacteria

    PubMed Central

    de Brito, Alvarez M. A.; Gagne, S.; Antoun, H.

    1995-01-01

    Four commercial composts were added to soil to study their effect on plant growth, total rhizosphere microflora, and incidence of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of tomato plants. Three of the compost treatments significantly improved plant growth, while one compost treatment significantly depressed it. Compost amendments caused only small variations in the total numbers of bacteria, actinomycetes, and fungi in the rhizosphere of tomato plants. A total of 709 bacteria were isolated from the four compost treatments and the soil control to determine the percentage of PGPR in each treatment. The PGPR tests measured antagonism to soilborne root pathogens, production of indoleacetic acid, cyanide, and siderophores, phosphate solubilization, and intrinsic resistance to antibiotics. Our results show that the addition of some composts to soil increased the incidence in the tomato rhizosphere of bacteria exhibiting antagonism towards Fusarium oxysporum f. sp. radicis-lycopersici, Pyrenochaeta lycopersici, Pythium ultimum, and Rhizoctonia solani. The antagonistic effects observed were associated with marked increases in the percentage of siderophore producers. No significant differences were observed in the percentage of cyanogens, whereas the percentages of phosphate solubilizers and indoleacetic acid producers were affected, respectively, by one and two compost treatments. Intrinsic resistance to antibiotics was only marginally different among the rhizobacterial populations. Our results suggest that compost may stimulate the proliferation of antagonists in the rhizosphere and confirm previous reports indicating that the use of composts in container media has the potential to protect plants from soilborne root pathogens. PMID:16534902

  3. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions.

    PubMed

    Kuan, Khing Boon; Othman, Radziah; Abdul Rahim, Khairuddin; Shamsuddin, Zulkifli H

    2016-01-01

    Plant growth-promoting rhizobacteria (PGPR) may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP) abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate), the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50) and ear harvest (D65). The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant-1) and 25.5% (304 mg N2 fixed plant-1) of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize treated with

  4. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions

    PubMed Central

    Kuan, Khing Boon; Othman, Radziah; Abdul Rahim, Khairuddin; Shamsuddin, Zulkifli H.

    2016-01-01

    Plant growth-promoting rhizobacteria (PGPR) may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP) abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate), the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50) and ear harvest (D65). The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant−1) and 25.5% (304 mg N2 fixed plant−1) of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize treated

  5. "In situ" phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria.

    PubMed

    Dary, M; Chamber-Pérez, M A; Palomares, A J; Pajuelo, E

    2010-05-15

    The aim of this work is the evaluation of metal phytostabilisation potential of Lupinus luteus inoculated with Bradyrhizobium sp. 750 and heavy metal resistant PGPRs (plant-growth promoting rhizobacteria), for in situ reclamation of multi-metal contaminated soil after a mine spill. Yellow lupines accumulated heavy metals mainly in roots (Cu, Cd and especially Pb were poorly translocated to shoots). This indicates a potential use of this plant in metal phytostabilisation. Furthermore, As accumulation was undetectable. On the other hand, zinc accumulation was 10-100 times higher than all other metals, both in roots and in shoots. Inoculation with Bradyrhizobium sp. 750 increased both biomass and nitrogen content, indicating that nitrogen fixation was effective in soils with moderate levels of contamination. Co-inoculation of lupines with a consortium of metal resistant PGPR (including Bradyrhizobium sp., Pseudomonas sp. and Ochrobactrum cytisi) produced an additional improvement of plant biomass. At the same time, a decrease in metal accumulation was observed, both in shoots and roots, which could be due to a protective effect exerted on plant rhizosphere. Our results indicate the usefulness of L. luteus inoculated with a bacterial consortium of metal resistant PGPRs as a method for in situ reclamation of metal polluted soils. PMID:20056325

  6. Isolation of N2 -fixing rhizobacteria from Lolium perenne and evaluating their plant growth promoting traits.

    PubMed

    Castellano-Hinojosa, Antonio; Correa-Galeote, David; Palau, Josep; Bedmar, Eulogio J

    2016-01-01

    Twenty one dinitrogen (N2 )-fixing bacteria were isolated from the rhizosphere of Lolium perenne grown for more than 10 years without N-fertilization. The nearly complete sequence of the 16S rRNA gene of each strain and pairwise alignments among globally aligned sequences of the 16S rRNA genes clustered them into nine different groups. Out of the 21 strains, 11 were members of genus Bacillus, 3 belonged to each one of genera Paenibacillus and Pseudoxanthomonas, and the remaining 2 strains to each one of genera Burkholderia and Staphylococcus, respectively. A representative strain from each group contained the nifH gene and fixed atmospheric N2 as determined by the acetylene-dependent ethylene production assay (acetylene reduction activity, ARA). The nine selected strains were also examined to behave as plant growth promoting bacteria (PGPRs) including their ability to act as a biocontrol agent. The nine representative strains produced indol acetic acid (IAA) and solubilized calcium triphosphate, five of them, strains C2, C3, C12, C15, and C16, had ACC deaminase activity, and strains C2, C3, C4, C12, C16, and C17 produced siderophores. Strains C13, C16, and C17 had the capability to control growth of the pathogen Fusarium oxysporum mycelial growth in vitro. PCA analysis of determined PGPR properties showed that ARA, ACC deaminase activity, and siderophore production were the most valuable as they had the maximal contribution to the total variance. PMID:26781208

  7. Differential Response of Potato Toward Inoculation with Taxonomically Diverse Plant Growth Promoting Rhizobacteria.

    PubMed

    Naqqash, Tahir; Hameed, Sohail; Imran, Asma; Hanif, Muhammad Kashif; Majeed, Afshan; van Elsas, Jan Dirk

    2016-01-01

    Rhizosphere engineering with beneficial plant growth promoting bacteria offers great promise for sustainable crop yield. Potato is an important food commodity that needs large inputs of nitrogen and phosphorus fertilizers. To overcome high fertilizer demand (especially nitrogen), five bacteria, i.e., Azospirillum sp. TN10, Agrobacterium sp. TN14, Pseudomonas sp. TN36, Enterobacter sp. TN38 and Rhizobium sp. TN42 were isolated from the potato rhizosphere on nitrogen-free malate medium and identified based on their 16S rRNA gene sequences. Three strains, i.e., TN10, TN38, and TN42 showed nitrogen fixation (92.67-134.54 nmol h(-1)mg(-1) protein), while all showed the production of indole-3-acetic acid (IAA), which was significantly increased by the addition of L-tryptophan. Azospirillum sp. TN10 produced the highest amount of IAA, as measured by spectrophotometry (312.14 μg mL(-1)) and HPLC (18.3 μg mL(-1)). Inoculation with these bacteria under axenic conditions resulted in differential growth responses of potato. Azospirillum sp. TN10 incited the highest increase in potato fresh and dry weight over control plants, along with increased N contents of shoot and roots. All strains were able to colonize and maintain their population densities in the potato rhizosphere for up to 60 days, with Azospirillum sp. and Rhizobium sp. showing the highest survival. Plant root colonization potential was analyzed by transmission electron microscopy of root sections inoculated with Azospirillum sp. TN10. Of the five test strains, Azospirillum sp. TN10 has the greatest potential to increase the growth and nitrogen uptake of potato. Hence, it is suggested as a good candidate for the production of potato biofertilizer for integrated nutrient management. PMID:26925072

  8. Differential Response of Potato Toward Inoculation with Taxonomically Diverse Plant Growth Promoting Rhizobacteria

    PubMed Central

    Naqqash, Tahir; Hameed, Sohail; Imran, Asma; Hanif, Muhammad Kashif; Majeed, Afshan; van Elsas, Jan Dirk

    2016-01-01

    Rhizosphere engineering with beneficial plant growth promoting bacteria offers great promise for sustainable crop yield. Potato is an important food commodity that needs large inputs of nitrogen and phosphorus fertilizers. To overcome high fertilizer demand (especially nitrogen), five bacteria, i.e., Azospirillum sp. TN10, Agrobacterium sp. TN14, Pseudomonas sp. TN36, Enterobacter sp. TN38 and Rhizobium sp. TN42 were isolated from the potato rhizosphere on nitrogen-free malate medium and identified based on their 16S rRNA gene sequences. Three strains, i.e., TN10, TN38, and TN42 showed nitrogen fixation (92.67–134.54 nmol h-1mg-1 protein), while all showed the production of indole-3-acetic acid (IAA), which was significantly increased by the addition of L-tryptophan. Azospirillum sp. TN10 produced the highest amount of IAA, as measured by spectrophotometry (312.14 μg mL-1) and HPLC (18.3 μg mL-1). Inoculation with these bacteria under axenic conditions resulted in differential growth responses of potato. Azospirillum sp. TN10 incited the highest increase in potato fresh and dry weight over control plants, along with increased N contents of shoot and roots. All strains were able to colonize and maintain their population densities in the potato rhizosphere for up to 60 days, with Azospirillum sp. and Rhizobium sp. showing the highest survival. Plant root colonization potential was analyzed by transmission electron microscopy of root sections inoculated with Azospirillum sp. TN10. Of the five test strains, Azospirillum sp. TN10 has the greatest potential to increase the growth and nitrogen uptake of potato. Hence, it is suggested as a good candidate for the production of potato biofertilizer for integrated nutrient management. PMID:26925072

  9. Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance.

    PubMed

    Nadeem, Sajid Mahmood; Ahmad, Maqshoof; Naveed, Muhammad; Imran, Muhammad; Zahir, Zahir Ahmad; Crowley, David E

    2016-05-01

    Phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase activity and production of siderophores and indole acetic acid (IAA) are well-known traits of plant growth-promoting rhizobacteria (PGPR). Here we investigated the expression of these traits as affected by salinity for three PGPR strains (Pseudomonas fluorescens, Bacillus megaterium and Variovorax paradoxus) at two salinity levels [2 and 5 % NaCl (w/v)]. Among the three strains, growth of B. megaterium was the least affected by high salinity. However, P. fluorescens was the best strain for maintaining ACC-deaminase activity, siderophore and IAA production under stressed conditions. V. paradoxus was the least tolerant to salts and had minimal growth and low PGPR trait expression under salt stress. Results of experiment examining the impact of bacterial inoculation on cucumber growth at three salinity levels [1 (normal), 7 and 10 dS m(-1)] revealed that P. fluorescens also had good rhizosphere competence and was the most effective for alleviating the negative impacts of salinity on cucumber growth. The results suggest that in addition to screening the PGPR regarding their effect on growth under salinity, PGPR trait expression is also an important aspect that may be useful for selecting the most promising PGPR bacterial strains for improving plant tolerance to salinity stress. PMID:26860842

  10. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus.

    PubMed

    Prapagdee, Benjaphorn; Chanprasert, Maesinee; Mongkolsuk, Skorn

    2013-07-01

    Micrococcus sp. MU1 and Klebsiella sp. BAM1, the cadmium-resistant plant growth-promoting rhizobacteria (PGPR), produce high levels of indole-3-acetic acid (IAA) during the late stationary phase of their growth. The ability of PGPR to promote root elongation, plant growth and cadmium uptake in sunflowers (Helianthus annuus) was evaluated. Both species of bacteria were able to remove cadmium ions from an aqueous solution and enhanced cadmium mobilization in contaminated soil. Micrococcus sp. and Klebsiella sp. use aminocyclopropane carboxylic acid as a nitrogen source to support their growth, and the minimum inhibitory concentrations of cadmium for Micrococcus sp. and Klebsiella sp. were 1000 and 800mM, respectively. These bacteria promoted root elongation in H. annuus seedlings in both the absence and presence of cadmium compared to uninoculated seedlings. Inoculation with these bacteria was found to increase the root lengths of H. annuus that had been planted in cadmium-contaminated soil. An increase in dry weight was observed for H. annuus inoculated with Micrococcus sp. Moreover, Micrococcus sp. enhanced the accumulation of cadmium in the root and leaf of H. annuus compared to untreated plants. The highest cadmium accumulation in the whole plant was observed when the plants were treated with EDTA following the treatment with Micrococcus sp. In addition, the highest translocation of cadmium from root to the above-ground tissues of H. annuus was found after treatment with Klebsiella sp. in the fourth week after planting. Our results show that plant growth and cadmium accumulation in H. annuus was significantly enhanced by cadmium-resistant PGPRs, and these bacterial inoculants are excellent promoters of phytoextraction for the rehabilitation of heavy metal-polluted environments. PMID:23478127

  11. Role of plant growth promoting rhizobacteria in modulating the efficiency of poultry litter composting with rock phosphate and its effect on growth and yield of wheat.

    PubMed

    Billah, Motsim; Bano, Asghari

    2015-01-01

    The present study was aimed to evaluate the role of Plant Growth Promoting Rhizobacteria (PGPR) in P solubilisation from rock phosphate through composting with poultry litter, and further to study the effects of prepared enriched composts on growth, yield, and phosphorus uptake of wheat crop. Various phosphorus-enriched composts were prepared from rock phosphate and poultry litter (1:10) with and without inoculation of plant growth promoting rhizobacterias (Pseudomonas sp. and Proteus sp.). Results showed that the rock-phosphate-added poultry litter had higher total phosphorus, available (Mehlic-3 extracted) phosphorus, microbial biomass (carbon and phosphorus), and lower total organic carbon, total nitrogen, and carbon/nitrogen ratio over poultry litter alone. Inoculation of Pseudomonas sp. with rock phosphate-added poultry litter showed maximum increase in available phosphorus (41% of total phosphorus) followed by Proteus sp. inoculation (30% of total phosphorus) over uninoculated treatment (23% of total phosphorus) on the 120th day of composting. Microbial biomass (carbon and phosphorus) increased up to Day 45 and tended to decrease till the 120th day of composting, irrespective of the treatments. However, in pot experiments, wheat seeds receiving inoculation with plant growth promoting rhizobacterias, subsequently treated with rock phosphate-enriched compost proved highly stimulatory to plant height, phosphorus uptake, grain yield, and seed phosphorus content over uninoculated untreated control. The plant growth promoting rhizobacterias inoculation can be a sustainable source releasing phosphorus from low grade rock phosphate through composting and application of rock phosphate-enriched compost can be an alternative to chemical fertilisers for better crop production. PMID:25423956

  12. Plant growth promoting traits of phosphate-solubilizing rhizobacteria isolated from apple trees in trans Himalayan region of Himachal Pradesh.

    PubMed

    Mehta, Preeti; Walia, Abhishek; Chauhan, Anjali; Shirkot, C K

    2013-05-01

    Two hundred and six phosphate-solubilizing rhizobacteria (PSB) were isolated from rhizosphere soil (RS) and root endosphere (ER) of apple trees from different sites of four locations viz., Chamba, Shimla, Kinnaur and Kullu of Himachal Pradesh, Northern India, and were screened for plant growth promoting traits (PGPTs) by using culture dependent procedures. Indole acetic acid (IAA) production was detected in 50 isolates (24.2 %), siderophore synthesis in 53 isolates (25.7 %), hydrocyanic acid (HCN) in 40 isolates (19.4 %) and percentage growth inhibition against Dematophora necatrix in 61 isolates (29.6 %). Overall, 54.3 % of PSB isolates from RS and 64.4 % from ER showed none of the PGPTs tested. Among the PSB showing PGPTs, 10.6 % had single trait and 30.6 % had multiple traits showing two (10.7 %), three (14.1 %) and four (5.8 %) types of PGPTs. The Shannon-Weaver diversity index (H') revealed that PGPT-possessing PSBs in RS were more abundant than ER. Clustering analysis by principal component analysis showed that ER was most important factor influencing the ecological distribution and physiological characterization of PGPT-possessing PSB. There was a positive correlation (0.94, p < 0.05) between HCN and antifungal activity producers, and IAA and antifungal activity producers (0.99, p < 0.05). Significant positive correlation (0.42, p < 0.05) between HCN producers and altitude was also noted. PMID:23503555

  13. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase.

    PubMed

    Belimov, A A; Safronova, V I; Sergeyeva, T A; Egorova, T N; Matveyeva, V A; Tsyganov, V E; Borisov, A Y; Tikhonovich, I A; Kluge, C; Preisfeld, A; Dietz, K J; Stepanok, V V

    2001-07-01

    Fifteen bacterial strains containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase were isolated from the rhizoplane of pea (Pisum sativum L.) and Indian mustard (Brassica juncea L.) grown in different soils and a long-standing sewage sludge contaminated with heavy metals. The isolated strains were characterized and assigned to various genera and species, such as Pseudomonas brassicacearum, Pseudomonas marginalis, Pseudomonas oryzihabitans, Pseudomonas putida, Pseudomonas sp., Alcaligenes xylosoxidans, Alcaligenes sp., Variovorax paradoxus, Bacillus pumilus, and Rhodococcus sp. by determination of 16S rRNA gene sequences. The root elongation of Indian mustard and rape (Brassica napus var. oleifera L.) germinating seedlings was stimulated by inoculation with 8 and 13 isolated strains, respectively. The bacteria were tolerant to cadmium toxicity and stimulated root elongation of rape seedlings in the presence of 300 microM CdCl2 in the nutrient solution. The effect of ACC-utilising bacteria on root elongation correlated with the impact of aminoethoxyvinylglycine and silver ions, chemical inhibitors of ethylene biosynthesis. A significant improvement in the growth of rape caused by inoculation with certain selected strains was also observed in pot experiments, when the plants were cultivated in cadmium-supplemented soil. The biomass of pea cv. Sparkle and its ethylene sensitive mutant E2 (sym5), in particular, was increased through inoculation with certain strains of ACC-utilising bacteria in pot experiments in quartz sand culture. The beneficial effect of the bacteria on plant growth varied significantly depending on individual bacterial strains, plant genotype, and growth conditions. The results suggest that plant growth promoting rhizobacteria containing ACC deaminase are present in various soils and offer promise as a bacterial inoculum for improvement of plant growth, particularly under unfavourable environmental conditions. PMID:11547884

  14. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil

    PubMed Central

    El-Sayed, Wael S.; Akhkha, Abdellah; El-Naggar, Moustafa Y.; Elbadry, Medhat

    2014-01-01

    The role of plant growth-promoting rhizobacteria (PGPR) in adaptation of plants in extreme environments is not yet completely understood. For this study native bacteria were isolated from rhizospeheric arid soils and evaluated for both growth-promoting abilities and antagonistic potential against phytopathogenic fungi and nematodes. The phylogentic affiliation of these representative isolates was also characterized. Rhizobacteria associated with 11 wild plant species from the arid soil of Almadinah Almunawarah, Kingdom of Saudi Arabia (KSA) were investigated. From a total of 531 isolates, only 66 bacterial isolates were selected based on their ability to inhibit Fusarium oxysporum, and Sclerotinia sclerotiorum. The selected isolates were screened in vitro for activities related to plant nutrition and plant growth regulation as well as for antifungal and nematicidal traits. Isolated bacteria were found to exhibit capabilities in fix atmospheric nitrogen, produce ammonia, indoleacetic acid (IAA), siderophores, solubilize phosphate and zinc, and showed an antagonistic potential against some phytopathogenic fungi and one nematode species (Meloidogyne incognita) to various extent. Isolates were ranked by their potential ability to function as PGPR. The 66 isolates were genotyped using amplified rDNA restriction analysis (ARDRA) and 16S rRNA gene sequence analysis. The taxonomic composition of the representative genotypes from both rhizosphere and rhizoplane comprised Bacillus, Enterobacter and Pseudomonas. Out of the 10 genotypes, three strains designated as PHP03, CCP05, and TAP02 might be regarded as novel strains based on their low similarity percentages and high bootstrap values. The present study clearly identified specific traits in the isolated rhizobacteria, which make them good candidates as PGPR and might contribute to plant adaption to arid environments. Application of such results in agricultural fields may improve and enhance plant growth in arid soils

  15. Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa.

    PubMed

    Kamran, Muhammad Aqeel; Syed, Jabir Hussain; Eqani, Syed Ali Musstjab Akber Shah; Munis, Muhammad Farooq Hussain; Chaudhary, Hassan Javed

    2015-06-01

    Microbe-assisted phyto-remediation approach is widely applied and appropriate choice to reduce the environmental risk of heavy metals originated from contaminated soils. The present study was designed to screen out the nested belongings of Eruca sativa plants and Pseudomonas putida (ATCC 39213) at varying cadmium (Cd) levels and their potential to deal with Cd uptake from soils. We carried out pot trial experiment by examining the soil containing E. sativa seedlings either treated with P. putida and/or untreated plants subjected to three different levels (ppm) of Cd (i.e., 150, 250, and 500). In all studied cases, we observed an increase in Cd uptake for E. sativa plants inoculated with P. putida than those of un-inoculated plants. Cd toxicity was assessed by recording different parameters including stunted shoot growth, poor rooting, and Cd residual levels in the plants that were not inoculated with P. putida. Significant difference (p < 0.05) of different growth parameters for inoculated vs non-inoculated plants was observed at all given treatments. However, among the different treatments, E. sativa exhibited increased values for different growth parameters (except proline contents) at lower Cd levels than those of their corresponding higher levels, shoot length (up to 27 %), root length (up to 32 %), whole fresh plant (up to 40 %), dry weight (up to 22 %), and chlorophyll contents (up to 26 %). Despite the hyperaccumulation of Cd in whole plant of E. sativa, P. putida improved the plant growth at varying levels of Cd supply than those of associated non-inoculated plants. Present results indicated that inoculation with P. putida enhanced the Cd uptake potential of E. sativa and favors the healthy growth under Cd stress. PMID:25592913

  16. Plant Growth-Promoting Rhizobacteria (PGPR) in Transplant Mixes - Benefits for Nematode Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many high-value crops including vegetables, melons, and strawberries are propagated from transplants. In the U.S., plug transplants are typically used for vegetables and melons, while strawberries are predominantly planted from bare-root material. However, use of strawberry plug transplants has the ...

  17. Novel mechanism of modulating natural antioxidants in functional foods: involvement of plant growth promoting Rhizobacteria NRRL B-30488.

    PubMed

    Nautiyal, Chandra Shekhar; Govindarajan, Raghavan; Lavania, Meeta; Pushpangadan, Palpu

    2008-06-25

    The significance of plant growth-promoting rhizobacteria (PGPR) mediated increase in antioxidant potential in vegetables is yet unknown. The plant growth-promoting bacterium Bacillus lentimorbus NRRL B-30488 (B-30488) mediated induction of dietary antioxidant in vegetables ( Trigonella foenum-graecum, Lactuca sativa, Spinacia oleracea, and Daucus carota) and fruit ( Citrus sinensis) after minimal processing (fresh, boiled, and frozen) was tested by estimating the total phenol content, level of antioxidant enzymes, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide scavenging activities along with integral radical scavenging capacity by photochemiluminescence assay and inhibition of lipid peroxidation. Minimal processing of vegetables showed that T. foenum-graecum had the highest phenol content in B-30488-treated plants followed by L. sativa, D. carota, and S. oleracea. Thermally treated vegetables T. foenum-graecum (26-114.5 GAE microg mg (-1)) had an exceptionally high total phenolic content, followed by D. carota (25.27-101.32 GAE microg mg (-1)), L. sativa (23.22-101.10 GAE microg mg (-1)), and S. oleracea (21.87-87.57 GAE microg mg (-1)). Among the vegetables and fruit used in this study for enzymatic estimation, induction of antioxidant enzymes, namely, polyphenol oxidase (PPO), ascorbate peroxidase (APX), catalase (CAT), and superoxidase dismutase (SOD), was observed in edible parts of T. foenum-graecum, L. sativa, S. oleracea, and D. carota, after inoculation with B-30488. The scavenging capacity of the vegetables treated with B-30488 against DPPH and superoxide anion radical activity was found to be significantly high as compared to nontreated control. Mild food processing had no adverse effect on radical scavenging capacity. Photochemiluminescence also ascertains the above findings. The ability of the plant extracts to protect against lipid peroxidation and its ability to prevent oxidation of reduced glutathione (GSH) was measured in rat liver

  18. Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop.

    PubMed

    Nehra, Vibha; Saharan, Baljeet Singh; Choudhary, Madhu

    2016-01-01

    The present investigation was undertaken to isolate, screen and evaluate a selected promising PGPR Brevibacillus brevis on cotton crop. Out of 156 bacterial isolates one of the most promising isolate was analyzed for the various PGP traits. A seed germination analysis was conducted with cotton seeds to evaluate the potential of the isolate to promote plant growth. The bacterial isolate was checked for its growth and survival at high temperatures. The isolate was also analyzed for the PGP traits exhibited after the heat treatment. To identify the isolate morphological, biochemical and molecular characterization was performed. The isolate was found positive for many of the PGP attributes like IAA, ARA, anti-fungal activity and ammonia production. Effect of seed bacterization on various plant growth parameters was used as an indicator. The isolate showed significant growth and exhibited various PGP traits at high temperature making it suitable as an inoculant for cotton crop. Isolate was identified as Brevibacillus brevis [SVC(II)14] based on phenotypic as well as genotypic attributes and after conducting this research we propose that the B. brevis which is reported for the first time for its PGP potential in cotton, exerts its beneficial effects on cotton crop through combined modes of actions. PMID:27386392

  19. Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO2

    NASA Astrophysics Data System (ADS)

    Nie, Ming; Bell, Colin; Wallenstein, Matthew D.; Pendall, Elise

    2015-03-01

    Increased plant productivity and decreased microbial respiratory C loss can potentially mitigate increasing atmospheric CO2, but we currently lack effective means to achieve these goals. Soil microbes may play critical roles in mediating plant productivity and soil C/N dynamics under future climate scenarios of elevated CO2 (eCO2) through optimizing functioning of the root-soil interface. By using a labeling technique with 13C and 15N, we examined the effects of plant growth-promoting Pseudomonas fluorescens on C and N cycling in the rhizosphere of a common grass species under eCO2. These microbial inoculants were shown to increase plant productivity. Although strong competition for N between the plant and soil microbes was observed, the plant can increase its capacity to store more biomass C per unit of N under P. fluorescens addition. Unlike eCO2 effects, P. fluorescens inoculants did not change mass-specific microbial respiration and accelerate soil decomposition related to N cycling, suggesting these microbial inoculants mitigated positive feedbacks of soil microbial decomposition to eCO2. The potential to mitigate climate change by optimizing soil microbial functioning by plant growth-promoting Pseudomonas fluorescens is a prospect for ecosystem management.

  20. Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO2

    PubMed Central

    Nie, Ming; Bell, Colin; Wallenstein, Matthew D.; Pendall, Elise

    2015-01-01

    Increased plant productivity and decreased microbial respiratory C loss can potentially mitigate increasing atmospheric CO2, but we currently lack effective means to achieve these goals. Soil microbes may play critical roles in mediating plant productivity and soil C/N dynamics under future climate scenarios of elevated CO2 (eCO2) through optimizing functioning of the root-soil interface. By using a labeling technique with 13C and 15N, we examined the effects of plant growth-promoting Pseudomonas fluorescens on C and N cycling in the rhizosphere of a common grass species under eCO2. These microbial inoculants were shown to increase plant productivity. Although strong competition for N between the plant and soil microbes was observed, the plant can increase its capacity to store more biomass C per unit of N under P. fluorescens addition. Unlike eCO2 effects, P. fluorescens inoculants did not change mass-specific microbial respiration and accelerate soil decomposition related to N cycling, suggesting these microbial inoculants mitigated positive feedbacks of soil microbial decomposition to eCO2. The potential to mitigate climate change by optimizing soil microbial functioning by plant growth-promoting Pseudomonas fluorescens is a prospect for ecosystem management. PMID:25784647

  1. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants.

    PubMed

    Yuan, Jun; Ruan, Yunze; Wang, Beibei; Zhang, Jian; Waseem, Raza; Huang, Qiwei; Shen, Qirong

    2013-04-24

    Bacillus amyloliquefaciens strain NJN-6 is an important plant growth-promoting rhizobacteria (PGPR) which can produce secondary metabolites antagonistic to several soil-borne pathogens. In this study, the ability of a bio-organic fertilizer (BIO) containing NJN-6 strain to promote the growth and suppress Fusarium wilt of banana plants was evaluated in a pot experiment. The results showed that the application of BIO significantly decreased the incidence of Fusarium wilt and promoted the growth of banana plants compared to that for the organic fertilizer (OF). To determine the beneficial mechanism of the strain, the colonization of NJN-6 strain on banana roots was evaluated using scanning electron microscopy (SEM). The plant growth-promoting hormones indole-3-acetic acid (IAA) and gibberellin A3 (GA3), along with antifungal lipopeptides iturin A, were detected when the NJN-6 strain was incubated in both Landy medium with additional l-tryptophan and in root exudates of banana plants. In addition, some antifungal volatile organic compounds and iturin A were also detected in BIO. In summary, strain NJN-6 could colonize the roots of banana plants after the application of BIO and produced active compounds which were beneficial for the growth of banana plants. PMID:23541032

  2. Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger.

    PubMed

    Dinesh, Raghavan; Anandaraj, Muthuswamy; Kumar, Aundy; Bini, Yogiyar Kundil; Subila, Kizhakke Purayil; Aravind, Ravindran

    2015-04-01

    In this study, 100 PGPR strains isolated from different varieties of ginger (Zingiber officinale Rosc.) were first characterized for their morphological, biochemical, and nutrient mobilization traits in vitro. The PGPR were also screened in vitro for inhibition of Pythium myriotylum causing soft rot in ginger. Results revealed that only five PGPR showed >70% suppression of P. myriotylum. These 5 PGPR viz., GRB (Ginger rhizobacteria) 25--Burkholderia cepacia, GRB35--Bacillus amyloliquefaciens; GRB58--Serratia marcescens; GRB68--S. marcescens; GRB91--Pseudomonas aeruginosa were used for further growth promotion and biocontrol studies in the green house and field. The green house study revealed that GRB35 (B. amyloliquefaciens) and GRB68 (S. marcescens) registered markedly higher sprouting (96.3%) and lower disease incidence (48.1%) and greater rhizome yield (365.6 g pot(-1) and 384.4 g pot(-1), respectively), while control registered the lowest sprouting (66%), maximum soft rot incidence (100%) and lowest rhizome yield (134.4 g pot(-1)). In the field experiments also, GRB68 (S. marcescens) and GRB35 (B. amyloliquefaciens) registered the greatest sprouting (80% each), markedly lower soft rot incidence (5.2% and 7.3%, respectively) and higher yield (5.0 and 4.3 kg(3)m(-2), respectively) compared to chemicals like Streptomycin sulphate (73.0%, 18.5% and 2.3 kg(3)m(-2), respectively), Metalaxyl-Mancozeb (73.0%, 14.0% and 3.8 kg(3)m(-2), respectively) and control (73.0%, 25.1% and 2.2 kg 3m(-2), respectively). Overall, the results suggested that for growth promotion and management of soft rot disease in ginger, GRB35 B. amyloliquefaciens and GRB68 S. marcescens could be good alternatives to chemical measures. Since, the latter has been reported to be an opportunistic human pathogen, we recommend the use of B. amyloliquefaciens for integration into nutrient and disease management schedules for ginger cultivation. PMID:25801969

  3. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.).

    PubMed

    Zahid, Mahwish; Abbasi, M Kaleem; Hameed, Sohail; Rahim, Nasir

    2015-01-01

    Introduction and exploitation of plant growth promoting rhizobacteria (PGPR) in agro-ecosystems enhance plant-microbes interactions that may affect ecosystems sustainability, agricultural productivity, and environmental quality. The present study was conducted to isolate and identify PGPRs associated with maize (Zea mays L.) from twenty sites of Himalayan region of Hajira-Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. A total of 100 isolates were isolated from these sites, out of which eight (HJR1, HJR2, HJR3, HJR4, HJR5, MR6, HJR7, HJR8) were selected in vitro for their plant growth promoting ability (PGPA) including phosphorus solubilization, indole-3-acetic acid (IAA) production and N2 fixation. The 16S rRNA gene sequencing technique was used for molecular identity and authentication. Isolates were then further tested for their effects on growth and nutrient contents of maize (Z. mays L.) under pouch and pot conditions. The 16S rRNA gene sequencing and phylogenetic analysis identified these isolates belong to Pseudomonas and Bacillus genera. The isolates promoted plant growth by solubilizing soil P which ranged between 19.2 and 35.6 μg mL(-1). The isolates HJR1, HJR2, HJR3, and HJR5 showed positive activity in acetylene reduction assay showing their N2-fixation potential. All eight isolates showed the potential to produce IAA in the range of 0.9-5.39 μg mL(-1) and promote plant growth. Results from a subsequent pot experiment indicated PGPRs distinctly increased maize shoot and root length, shoot and root dry weight, root surface area, leaf surface area, shoot and root N and P contents. Among the eight isolates, HR3 showed a marked P-solubilizing activity, plant growth-promoting attributes, and the potential to be developed as a biofertilizers for integrated nutrient management strategies. PMID:25852667

  4. Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity.

    PubMed

    Ullah, Sami; Bano, Asghari

    2015-04-01

    The present investigation was aimed to scrutinize the salt tolerance potential of plant-growth-promoting rhizobacteria (PGPR) isolated from rhizospheric soil of selected halophytes (Atriplex leucoclada, Haloxylon salicornicum, Lespedeza bicolor, Suaeda fruticosa, and Salicornica virginica) collected from high-saline fields (electrical conductivity 4.3-5.5) of District Mardan, Pakistan. Five PGPR strains were identified using 16S rRNA amplification and sequence analysis. Bacillus sp., isolated from rhizospheric soil of Atriplex leucoclada, and Arthrobacter pascens, isolated from rhizospheric soil of Suaeda fruticosa, are active phosphate solubilizers and bacteriocin and siderophore producers; hence, their inoculation and co-inoculation on maize ('Rakaposhi') under induced salinity stress enhanced shoot and root length and shoot and root fresh and dry mass. The accumulation of osmolytes, including sugar and proline, and the elevation of antioxidant enzymes activity, including superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, were enhanced in the maize variety when inoculated and co-inoculated with Bacillus sp. and Arthrobacter pascens. The PGPR (Bacillus sp. and A. pascens) isolated from the rhizosphere of the mentioned halophytes species showed reliability in growth promotion of maize crop in all the physiological parameters; hence, they can be used as bio-inoculants for the plants growing under salt stress. PMID:25776270

  5. Isolation and characterization of plant growth-promoting rhizobacteria and their effects on phytoremediation of petroleum-contaminated saline-alkali soil.

    PubMed

    Liu, Wuxing; Hou, Jinyu; Wang, Qingling; Ding, Linlin; Luo, Yongming

    2014-12-01

    This study aimed to isolate promising halotolerant and alkalotolerant plant growth-promoting rhizobacteria and to study their effects on the growth of tall fescue and phytodegradation efficiency in a petroleum-contaminated saline-alkaline soil. A total of 115 PGPR strains were isolated from the rhizosphere of tall fescue grown in petroleum-contaminated saline-alkaline soils. Of these, 5 strains indicating 1-aminocyclopropane-l-carboxylic acid deaminase activity>1.0M α-KB mg(-1)h(-1) were selected for further studies. The isolate D5A presented the highest plant-growth-promoting activity and was identified as Klebsiella sp. It grew well on the Luria-Bertani medium containing 9% NaCl and at a pH range of 4-10. A pot experiment was then conducted to study the effect of isolates on phytoremediation. The results showed that inoculation of D5A promoted tall fescue growth and enhanced remediation efficiency in petroleum-contaminated saline-alkaline soil. PMID:25128763

  6. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L.)

    PubMed Central

    Agbodjato, Nadège A.; Noumavo, Pacôme A.; Adjanohoun, Adolphe; Agbessi, Léonce; Baba-Moussa, Lamine

    2016-01-01

    This study aimed to assess the effects of three plant growth promoting rhizobacteria (PGPR) and chitosan either singly or in combination on maize seeds germination and growth and nutrient uptake. Maize seeds were treated with chitosan and bacterial solution. The germination and growth tests were carried out in square Petri dishes and plastic pots. The combination chitosan-A. lipoferum-P. fluorescens has increased the seeds vigor index up to 36.44% compared to the control. In comparison to the control, P. putida has significantly improved root weight (44.84%) and germinated seed weight (31.39%) whereas chitosan-P. putida has increased the shoot weight (65.67%). For the growth test, the maximal heights (17.66%) were obtained by plants treated with the combination A. lipoferum-P. fluorescens-P. putida. Chitosan-P. fluorescens induced the highest increases of leaves per plant (50.09%), aerial (84.66%), and underground biomass (108.77%) production. The plants inoculated with A. lipoferum had the large leaf areas with an increase of 54.08%, while combinations P. fluorescens-P. putida and chitosan-A. lipoferum improved the aerial and underground dry matter of plants to 26.35% and 18.18%. The nitrogen content of the plants was increased by chitosan-A. lipoferum-P. fluorescens-P. putida with an increasing of 41.61%. The combination of chitosan and PGPR can be used as biological fertilizers to increase maize production. PMID:26904295

  7. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L.).

    PubMed

    Agbodjato, Nadège A; Noumavo, Pacôme A; Adjanohoun, Adolphe; Agbessi, Léonce; Baba-Moussa, Lamine

    2016-01-01

    This study aimed to assess the effects of three plant growth promoting rhizobacteria (PGPR) and chitosan either singly or in combination on maize seeds germination and growth and nutrient uptake. Maize seeds were treated with chitosan and bacterial solution. The germination and growth tests were carried out in square Petri dishes and plastic pots. The combination chitosan-A. lipoferum-P. fluorescens has increased the seeds vigor index up to 36.44% compared to the control. In comparison to the control, P. putida has significantly improved root weight (44.84%) and germinated seed weight (31.39%) whereas chitosan-P. putida has increased the shoot weight (65.67%). For the growth test, the maximal heights (17.66%) were obtained by plants treated with the combination A. lipoferum-P. fluorescens-P. putida. Chitosan-P. fluorescens induced the highest increases of leaves per plant (50.09%), aerial (84.66%), and underground biomass (108.77%) production. The plants inoculated with A. lipoferum had the large leaf areas with an increase of 54.08%, while combinations P. fluorescens-P. putida and chitosan-A. lipoferum improved the aerial and underground dry matter of plants to 26.35% and 18.18%. The nitrogen content of the plants was increased by chitosan-A. lipoferum-P. fluorescens-P. putida with an increasing of 41.61%. The combination of chitosan and PGPR can be used as biological fertilizers to increase maize production. PMID:26904295

  8. Plant growth promoting potential of free-living diazotrophs and other rhizobacteria isolated from Northern Indian soil.

    PubMed

    Ahmad, Farah; Ahmad, Iqbal; Aqil, Farrukh; Ahmed Wani, Aijaz; Sousche, Yogesh S

    2006-10-01

    The viable count of free-living diazotrophic bacteria in different crop rhizospheres varied from 1.11 x 10(4) to 8.5 x 10(5) CFU/g of soil. The majority of the diazotrophs phenotypically belong to either Azotobacter chroococcum, non-A. chroococcum type and to a heterogenous group tentatively named putative nitrogen-fixing (PNF) bacteria. In this study, 25 isolates of the PNF group were screened for their multiple plant growth-promoting (PGP) traits and grouped into 5 PGP types. An isolate, PNF(11) showed promising PGP potential in vitro and was characterized as a species of Achromobacter by 16S rRNA analysis. The isolate PNF(11) along with three other previously isolated PGP bacteria, Azotobacter sp. (AZS(3)), fluorescent pseudomonas (Ps(5)), Bacillus sp. (Bc(1)) were selected for crop inoculation response in green house experiment on Vigna radiata var.T44. Plants from inoculated and control pots were sampled and analyzed at 30, 45 and 60 days after sowing for various vegetative, nodule-related data and yield parameters. The findings indicated that selected isolate of PNF bacteria, and other PGP isolates with multiple activities significantly improve the plant growth parameters, yield parameters of Vigna radiata T44 over control and also show good compatibility with Bradyrhizobium inoculation. PMID:17004301

  9. Priming of pathogenesis related-proteins and enzymes related to oxidative stress by plant growth promoting rhizobacteria on rice plants upon abiotic and biotic stress challenge.

    PubMed

    García-Cristobal, J; García-Villaraco, A; Ramos, B; Gutierrez-Mañero, J; Lucas, J A

    2015-09-01

    Two plant growth promoting rhizobacteria (PGPR) were tested to evaluate their capacity to prime rice seedlings against stress challenge (salt and Xanthomonas campestris infection). As is accepted that plants respond to biotic and abiotic stresses by generation of reactive oxygen species (ROS), enzyme activities related to oxidative stress (ascorbate peroxidase (APX, EC 1.11.1.11), guaiacol peroxidase (GPX, EC 1.11.1.7), glutathione reductase (GR, EC 1.6.4.2) and superoxide dismutase (SOD, EC 1.15.1.1)) as well as the pathogenesis-related proteins (PRs) ß-1,3-glucanase (PR2, EC 3.2.1.6) and chitinase (PR3, EC 3.2.1.14) were measured at 3 time points after stress challenge. In addition, photosynthetic parameters related with fluorescence emission of photosystem II (F0, Fv/Fm, ΦPSII and NPQ) were also measured although they were barely affected. Both strains were able to protect rice seedlings against salt stress. AMG272 reduced the salt symptoms over 47% with regard to control, and L81 over 90%. Upon pathogen challenge, 90% protection was achieved by both strains. All enzyme activities related to oxidative stress were modified by the two PGPR, especially APX and SOD upon salinity stress challenge, and APX and GR upon pathogen presence. Both bacteria induced chitinase activity 24 and 48 h after pathogen inoculation, and L81 induced ß-1,3-Glucanase activity 48 h after pathogen inoculation, evidencing the priming effect. These results indicate that these strains could be used as bio-fortifying agents in biotechnological inoculants in order to reduce the effects of different stresses, and indirectly reduce the use of agrochemicals. PMID:26439659

  10. Foliar Application of Plant Growth-Promoting Rhizobacteria Increases Antifungal Compounds in Pea (Pisum sativum) Against Erysiphe pisi

    PubMed Central

    Bahadur, A.; Sarma, B. K.; Singh, D. P.; Singh, K. P.; Singh, A.

    2007-01-01

    Systemic effect of two plant growth-promoting rhizobacterial (PGPR) strains,viz., Pseudomonas fluorescens (Pf4) and P. aeruginosa (Pag), was evaluated on pea (Pisum sativum) against the powdery mildew pathogen Erysiphe pisi. Foliar spray of the two PGPR strains was done on specific nodal leaves of pea and conidial germination of E. pisi was observed on other nodal leaves,distal to the treated ones. Conidial germination was reduced on distant leaves and at the same time,specific as well as total phenolic compounds increased in the leaves distal to those applied with PGPR strains,thereby indicating a positive correlation. The strains induced accumulation of phenolic compounds in pea leaves and the amount increased when such leaves were get inoculated with E. pisi conidia. Between the two strains, Pag was found to be more effective than Pf4 as its effect was more persistent in pea leaves. Foliar application of PGPR strains for the control of powdery mildew of pea is demonstrated in vitro while correlating it with the increased accumulation of plant phenolics. PMID:24015083

  11. The effect of plant growth-promoting rhizobacteria on asparagus seedlings and germinating seeds subjected to water stress under greenhouse conditions.

    PubMed

    Liddycoat, Scott M; Greenberg, Bruce M; Wolyn, David J

    2009-04-01

    Plant growth-promoting rhizobacteria (PGPR) can have positive effects on vigour and productivity, especially under stress conditions. In asparagus (Asparagus officinalis L.) field culture, seeds are planted in high-density nurseries, and 1-year-old crowns are transplanted to production fields. Performance can be negatively affected by water stress, transplant shock, and disease pressure on wounded roots. PGPR inoculation has the potential to alleviate some of the stresses incurred in the production system. In this study, the effects of PGPR (Pseudomonas spp.) treatment were determined on 3-week-old greenhouse-grown seedlings and germinating seeds of 2 asparagus cultivars. The pots were irrigated to a predetermined level that resulted in optimum growth or the plants were subjected to drought or flooding stress for 8 weeks. The cultivars responded differently to PGPR: single inoculations of seedlings enhanced growth of 'Guelph Millennium' under optimum conditions and 'Jersey Giant' seedlings under drought stress. Seed inoculations with PGPR resulted in a positive response only for 'Guelph Millennium', for which both single or multiple inoculations enhanced plant growth under drought stress. PMID:19396238

  12. Bioremediation of petroleum contaminated soil to combat toxicity on Withania somnifera through seed priming with biosurfactant producing plant growth promoting rhizobacteria.

    PubMed

    Das, Amar Jyoti; Kumar, Rajesh

    2016-06-01

    Soil contaminated by Petroleum oil cannot be utilized for agricultural purposes due to hydrocarbon toxicity. Oil contaminated soil induces toxicity affecting germination, growth and productivity. Several technologies have been proposed for bioremediation of oil contaminated sites, but remediation through biosurfactant producing plant growth promontory rhizobacteria (PGPR) is considered to be most promising methods. In the present study the efficacy of seed priming on growth and pigment of Withania somnifera under petroleum toxicity is explored. Seeds of W. somnifera were primed with biosurfactant producing Pseudomonas sp. AJ15 with plant growth promoting traits having potentiality to utilized petroleum as carbon source. Results indicates that plant arose from priming seeds under various petroleum concentration expressed high values for all the parameters studied namely germination, shoot length, root length, fresh and dry weight and pigments (chlorophyll and carotenoid) as compared to non primed seed. Hence, the present study signifies that petroleum degrarding biosurfactant producing PGPR could be further used for management and detoxification of petroleum contaminated soils for growing economically important crops. PMID:27016896

  13. Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation.

    PubMed

    Khan, Naeem; Bano, Asghari

    2016-01-01

    The investigation evaluated the role of plant growth promoting rhizobacteria (PGPR) and Ag-nano particle on the growth and metabolism of maize irrigated with municipal wastewater (MW). Three PGPR isolated from MW were identified on the basis of 16S-rRNA gene sequence analyses as Pseudomonas sp., Pseudomonas fluorescence, and Bacillus cereus. The municipal waste water was used to irrigate the maize seeds inoculated with 3 isolated PGPR. The isolated PGPR had catalase and oxidase enzymes, solubilize insoluble bound phosphate and exhibit antifungal and antibacterial activities. The colony forming unit (cfu) of the PGPR was inhibited by Ag-nano particle, but was stimulated by the municipal wastewater. The Ag-nano particles augmented the PGPR induced increase in root area and root length. The root-shoot ratio was also changed with the Ag-nano particles. The plants irrigated with municipal wastewater had higher activities of peroxidase and catalase which were further augmented by Ag-nano particle. The Ag- nano particle application modulated level of ABA (34%), IAA (55%), and GA (82%), increased proline production (70%) and encountered oxidative stress and augmented the bioremediation potential of PGPR for Pb, Cd, and Ni. Municipal wastewater needs to be treated with PGPR and Ag nano particle prior to be used for irrigation. This aims for the better growth of the plant and enhanced bioremediation of toxic heavy metals. PMID:26507686

  14. Screening of Rhizobacteria for Their Plant Growth Promotion Ability and Antagonism Against Damping off and Root Rot Diseases of Broad Bean (Vicia faba L.).

    PubMed

    Indira Devi, S; Talukdar, N C; Chandradev Sharma, K; Jeyaram, K; Rohinikumar, M

    2011-01-01

    Development of microbial inoculants from rhizobacterial isolates with potential for plant growth promotion and root disease suppression require rigorous screening. Fifty-four (54) fluorescent pseudomonads, out of a large collection of rhizobacteria from broad bean fields of 20 different locations within Imphal valley of Manipur, were initially screened for antifungal activity against Macrophomina phaseolina and Rhizoctonia solani, of diseased roots of broad bean and also three other reference fungal pathogens of plant roots. Fifteen fluorescent pseudomonas isolates produced inhibition zone (8-29 mm) of the fungal growth in dual plate assay and IAA like substances (24.1-66.7 μg/ml) and soluble P (12.7-56.80 μg/ml) in broth culture. Among the isolates, RFP 36 caused a marked increase in seed germination, seedling biomass and control of the root borne pathogens of broad bean. PCR-RAPD analysis of these isolates along with five MTCC reference fluorescent pseudomonas strains indicated that the RFP-36 belonged to a distinct cluster and the PCR of its genomic DNA with antibiotic specific primers Phenazine-1-carboxylic acid and 2, 4-diacetyl phloroglucinol suggested possible occurrence of gene for the potent antibiotics. Overall, the result of the study indicated the potential of the isolate RFP 36 as a microbial inoculant with multiple functions for broad bean. PMID:22282623

  15. [Characterization of growth-promoting rhizobacteria in Eucalyptus nitens seedlings].

    PubMed

    Angulo, Violeta C; Sanfuentes, Eugenio A; Rodríguez, Francisco; Sossa, Katherine E

    2014-01-01

    Rhizospheric and endophytic bacteria were isolated from the rizosphere and root tissue of Eucalyptus nitens. The objective of this work was to evaluate their capacity to promote growth in seedlings of the same species under greenhouse conditions. The isolates that improved seedling growth were identified and characterized by their capacity to produce indoleacetic acid (IAA), solubilize phosphates and increase 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. One hundred and five morphologically different strains were isolated, 15 of which promoted E. nitens seedling growth, significantly increasing the height (50%), root length (45%) as well as the aerial and root dry weight (142% and 135% respectively) of the plants. Bacteria belonged to the genus Arthrobacter, Lysinibacillus, Rahnella and Bacillus. Isolates A. phenanthrenivorans 21 and B. cereus 113 improved 3.15 times the emergence of E. nitens after 12 days, compared to control samples. Among isolated R. aquatilis, 78 showed the highest production of IAA (97.5±2.87 μg/ml) in the presence of tryptophan and the highest solubilizer index (2.4) for phosphorus, while B. amyloliquefaciens 60 isolate was positive for ACC deaminase activity. Our results reveal the potential of the studied rhizobacteria as promoters of emergence and seedling growth of E. nitens, and their possible use as PGPR inoculants, since they have more than one mechanism associated with plant growth promotion. PMID:25576419

  16. Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions.

    PubMed

    Zahir, Z A; Munir, A; Asghar, H N; Shaharoona, B; Arshad, M

    2008-05-01

    A series of experiments were conducted to assess the effectiveness of rhizobacteria containing 1-aminocyclopropane- 1-carboxylate (ACC) deaminase for growth promotion of peas under drought conditions. Ten rhizobacteria isolated from the rhizosphere of different crops (peas, wheat, and maize) were screened for their growth promoting ability in peas under axenic condition. Three rhizobacterial isolates, Pseudomonas fluorescens biotype G (ACC-5), P. fluorescens (ACC-14), and P. putida biotype A (Q-7), were selected for pot trial on the basis of their source, ACC deaminase activity, root colonization, and growth promoting activity under axenic conditions. Inoculated and uninoculated (control) seeds of pea cultivar 2000 were sown in pots (4 seeds/pot) at different soil moisture levels (25, 50, 75, and 100% of field capacity). Results revealed that decreasing the soil moisture levels from 100 to 25% of field capacity significantly decreased the growth of peas. However, inoculation of peas with rhizobacteria containing ACC deaminase significantly decreased the "drought stress imposed effects" on growth of peas, although with variable efficacy at different moisture levels. At the lowest soil moisture level (25% field capacity), rhizobacterial isolate Pseudomonas fluorescens biotype G (ACC-5) was found to be more promising compared with the other isolates, as it caused maximum increases in fresh weight, dry weight, root length, shoot length, number of leaves per plant, and water use efficiency on fresh and dry weight basis (45, 150, 92, 45, 140, 46, and 147%, respectively) compared with respective uninoculated controls. It is highly likely that rhizobacteria containing ACC deaminase might have decreased the drought-stress induced ethylene in inoculated plants, which resulted in better growth of plants even at low moisture levels. Therefore, inoculation with rhizobacteria containing ACC deaminase could be helpful in eliminating the inhibitory effects of drought stress on the

  17. Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress.

    PubMed

    Cardinale, Massimiliano; Ratering, Stefan; Suarez, Christian; Zapata Montoya, Ana Maria; Geissler-Plaum, Rita; Schnell, Sylvia

    2015-12-01

    From the rhizosphere of two salt tolerant plant species, Hordeum secalinum and Plantago winteri growing in a naturally salt meadow, 100 strains were isolation on enrichment media for various plant growth-promoting (PGP) functions (ACC deaminase activity, auxin synthesis, calcium phosphate mobilization and nitrogen fixation). Based on the taxonomic affiliation of the isolated bacteria and their enrichment medium 22 isolates were selected to test their growth promotion effect on the crop barley (Hordeum vulgare) under salt stress in pot experiment. In parallel the isolates were characterized in pure culture for their plant growth-promoting activities. Surprisingly the best promotors did not display a promising set of PGP activities. Isolates with multiple PGP-activities in pure culture like Microbacterium natoriense strain E38 and Pseudomonas brassicacearum strain E8 did not promote plant growth. The most effective isolate was strain E108 identified as Curtobacterium flaccumfaciens, which increased barley growth up to 300%. In pure culture strain E108 showed only two out of six plant growth promoting activities and would have been neglected. Our results highlight that screening based on pure culture assays may not be suitable for recognition of best plant growth promotion candidates and could preclude the detection of both new PGPR and new plant promotion mechanisms. PMID:26640049

  18. A possible mechanism of action of plant growth-promoting rhizobacteria (PGPR) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure.

    PubMed

    Kang, Yijun; Shen, Min; Wang, Huanli; Zhao, Qingxin

    2013-01-01

    According to the traditional view, establishment and maintenance of critical population densities in the rhizosphere was the premise of PGPR to exert growth-promoting effects. In light of the facts that soil bacterial community structures can be changed by some PGPR strains including Bacillus pumilus WP8, we hypothesize that regulation of soil bacterial community structure is one of the plant growth-promoting mechanisms of B. pumilus WP8, rather than depending on high-density cells in soil. In this study, denaturing gradient gel electrophoresis (PCR-DGGE) was performed to evaluate the relationship between changes in soil bacterial community structure and growth-promoting effect on the seedling growth of fava beans (Vicia faba L.) during three successive cultivations. We found that B. pumilus WP8 lacks capacity to reproduce in large enough numbers to survive in bulk soil more than 40 days, yet the bacterial community structures were gradually influenced by inoculation of WP8, especially on dominant populations. Despite WP8 being short-lived, it confers the ability of steadily promoting fava bean seedling growth on soil during the whole growing period for at least 90 days. Pseudomonas chlororaphis RA6, another tested PGPR strain, exists in large numbers for at least 60 days but less than 90 days, whilst giving rise to slight influence on bacterial community structure. In addition, along with the extinction of RA6 cells in bulk soils, the effect of growth promotion disappeared simultaneously. Furthermore, the increment of soil catalase activity from WP8 treatment implied the ability to stimulate soil microbial activity, which may be the reason why the dominant population changed and increased as time passed. Our study suggests that regulation of treated soil bacterial community structure may be another possible action mechanism. PMID:24005176

  19. Comparison of the bacterial community and characterization of plant growth-promoting rhizobacteria from different genotypes of Chrysopogon zizanioides (L.) Roberty (vetiver) rhizospheres.

    PubMed

    Monteiro, Juliana Mendes; Vollú, Renata Estebanez; Coelho, Marcia Reed Rodrigues; Alviano, Celuta Sales; Blank, Arie Fitzgerald; Seldin, Lucy

    2009-08-01

    Molecular approaches [PCR-denaturing gradient gel electrophoresis (DGGE)] were used to determine whether three different vetiver (Chrysopogon zizanioides) genotypes, commercially used in Brazil and considered economically important over the world, select specific bacterial populations to coexist in their rhizospheres. DGGE profiles revealed that the predominant rhizospheric bacterial community hardly varies regarding the vetiver genotype. Moreover, using traditional cultivation methods, bacterial strains were isolated from the different rhizospheres. Colonies presenting different morphologies (83) were selected for determining their potential for plant growth promotion. More than half of the strains tested (57.8%) were amplified by PCR using nifH-based primers, specific for the enzyme nitrogenase reductase. The production of siderophores was observed in 88% of the strains, while the production of antimicrobial substances was detected in only 14.5% of the isolates when Micrococcus sp. was used as the indicator strain. Production of indole-3-acetic acid and the solubilization of phosphate were observed in 55.4% and 59% of the isolates, respectively. In total, 44 strains (53%) presented at least three characteristics of plant growth promotion and were submitted to amplified ribosomal DNA restriction analysis. Twenty-four genetic groups were formed at 100% similarity and one representative of each group was selected for their identification by partial 16S rRNA gene sequencing. They were affiliated with the genera Acinetobacter, Comamonas, Chryseobacterium, Klebsiella, Enterobacter, Pantoea, Dyella, Burkholderia, or Pseudomonas. These strains can be considered of great importance as possible biofertilizers in vetiver. PMID:19763409

  20. Plant growth promoting rhizobacterium

    SciTech Connect

    Doktycz, Mitchel John; Pelletier, Dale A.; Schadt, Christopher Warren; Tuskan, Gerald A.; Weston, David

    2015-08-11

    The present invention is directed to the Pseudomonas fluorescens strain GM30 deposited under ATCC Accession No. PTA-13340, compositions containing the GM30 strain, and methods of using the GM30 strain to enhance plant growth and/or enhance plant resistance to pathogens.

  1. Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi.

    PubMed

    Moreira, Helena; Pereira, Sofia I A; Marques, Ana P G C; Rangel, António O S S; Castro, Paula M L

    2016-04-01

    The use of heavy metals (HM) contaminated soils to grow energy crops can diminish the negative impact of HM in the environment improving land restoration. The effect of two PGPR (B1--Chryseobacterium humi ECP37(T) and B2--Pseudomonas reactans EDP28) and an AMF (F--Rhizophagus irregularis) on growth, Cd and Zn accumulation, and nutritional status of energy maize plants grown in a soil collected from an area adjacent to a Portuguese mine was assessed in a greenhouse experiment. Both bacterial strains, especially when co-inoculated with the AMF, acted as plant growth-promoting inoculants, increasing root and shoot biomass as well as shoot elongation. Cadmium was not detected in the maize tissues and a decrease in Zn accumulation was observed for all microbial treatments in aboveground and belowground tissues--with inoculation of maize with AMF and strain B2 leading to maximum reductions in Zn shoot and root accumulation of up to 48 and 43%, respectively. Although microbial single inoculation generally did not increase N and P levels in maize plants, co-inoculation of the PGPR and the AMF improved substantially P accumulation in roots. The DGGE analysis of the bacterial rhizosphere community showed that the samples inoculated with the AMF clustered apart of those without the AMF and the Shannon-Wiener Index (H') increased over the course of the experiment when both inoculants were present. This work shows the benefits of combined inoculation of AMF and PGPR for the growth energy maize in metal contaminated soils and their potential for the application in phytomanagement strategies. PMID:26676544

  2. Assessment of Culturable Tea Rhizobacteria Isolated from Tea Estates of Assam, India for Growth Promotion in Commercial Tea Cultivars

    PubMed Central

    Dutta, Jintu; Handique, Pratap J.; Thakur, Debajit

    2015-01-01

    In the present study, 217 rhizobacterial isolates were obtained from six different tea estates of Assam, India and subjected to preliminary in vitro plant growth promotion (PGP) screening for indole acetic acid (IAA) production, phosphate solubilization, siderophore production and ammonia production. Fifty isolates showed all the PGP traits and five isolates did not exhibit any PGP traits. These 50 potential isolates were further analyzed for quantitative estimation of the PGP traits along with the aminocyclopropane-1-carboxylate (ACC) deaminase, protease and cellulose production. After several rounds of screening, four rhizobacteria were selected based on their maximum ability to produce in vitro PGP traits and their partial 16S rRNA gene sequence analysis revealed that they belong to Enterobacter lignolyticus strain TG1, Burkholderia sp. stain TT6, Bacillus pseudomycoides strain SN29 and Pseudomonas aeruginosa strain KH45. To evaluate the efficacy of these four rhizobacteria as plant growth promoters, three different commercially important tea clones TV1, TV19, and TV20 plants were inoculated with these rhizobacteria in greenhouse condition and compared to the uninoculated control plants. Though, all the rhizobacterial treatments showed an increase in plant growth compared to control but the multivariate PCA analysis confirmed more growth promotion by TG1 and SN29 strains than the other treatments in all three clones. To validate this result, the fold change analysis was performed and it revealed that the tea clone TV19 plants inoculated with the E. lignolyticus strain TG1 showed maximum root biomass production with an increase in 4.3-fold, shoot biomass with increase in 3.1-fold, root length by 2.2-fold and shoot length by 1.6-fold. Moreover, two way ANOVA analysis also revealed that rhizobacterial treatment in different tea clones showed the significant increase (P < 0.05) in growth promotion compared to the control. Thus, this study indicates that the

  3. Plant growth promoting bacteria from Crocus sativus rhizosphere.

    PubMed

    Ambardar, Sheetal; Vakhlu, Jyoti

    2013-12-01

    Present study deals with the isolation of rhizobacteria and selection of plant growth promoting bacteria from Crocus sativus (Saffron) rhizosphere during its flowering period (October-November). Bacterial load was compared between rhizosphere and bulk soil by counting CFU/gm of roots and soil respectively, and was found to be ~40 times more in rhizosphere. In total 100 bacterial isolates were selected randomly from rhizosphere and bulk soil (50 each) and screened for in-vitro and in vivo plant growth promoting properties. The randomly isolated bacteria were identified by microscopy, biochemical tests and sequence homology of V1-V3 region of 16S rRNA gene. Polyphasic identification categorized Saffron rhizobacteria and bulk soil bacteria into sixteen different bacterial species with Bacillus aryabhattai (WRF5-rhizosphere; WBF3, WBF4A and WBF4B-bulk soil) common to both rhizosphere as well as bulk soil. Pseudomonas sp. in rhizosphere and Bacillus and Brevibacterium sp. in the bulk soil were the predominant genera respectively. The isolated rhizobacteria were screened for plant growth promotion activity like phosphate solubilization, siderophore and indole acetic acid production. 50 % produced siderophore and 33 % were able to solubilize phosphate whereas all the rhizobacterial isolates produced indole acetic acid. The six potential PGPR showing in vitro activities were used in pot trial to check their efficacy in vivo. These bacteria consortia demonstrated in vivo PGP activity and can be used as PGPR in Saffron as biofertilizers.This is the first report on the isolation of rhizobacteria from the Saffron rhizosphere, screening for plant growth promoting bacteria and their effect on the growth of Saffron plant. PMID:23749248

  4. Multitrait plant growth promoting (PGP) rhizobacterial isolates from Brassica juncea rhizosphere : Keratin degradation and growth promotion.

    PubMed

    Anwar, Mohmmad Shahbaz; Siddique, Mohammad Tahir; Verma, Amit; Rao, Yalaga Rama; Nailwal, Tapan; Ansari, Mohammad; Pande, Veena

    2014-01-01

    Plant growth promoting (PGP) rhizobacteria, a beneficial microbe colonizing plant roots, enhanced crop productivity and offers an attractive way to replace chemical fertilizers, pesticides, and supplements. The keratinous waste which comprises feathers, hairs, nails, skin and wool creates problem of solid waste management due to presence of highly recalcitrant keratin. The multi traits rhizobacteria effective to remove both keratine from the environment by producing keratinase enzyme and to eradicate the chemical fertilizer by providing different PGP activity is novel achievement. In the present study, the effective PM2 strain of PGPR was isolated from rhizospheric soil of mustard (Brassica juncea) field, Pantnagar and they were identified on the basis of different biochemical tests as belonging to Bacillus genera. Different plant growth promoting activity, feather degradation and keratinolytic activity was performed and found very effective toward all the parameters. Furthermore, the efficient strain PM2 was identified on the basis of 16s rRNA sequencing and confirmed as Bacillus cereus. The strain PM2 might be used efficiently for keratinous waste management and PGP activity. Therefore, the present study suggests that Bacillus cereus have multi traits activity which extremely useful for different PGP activity and biotechnological process involving keratin hydrolysis, feather biodegradation or in the leather industry. PMID:24778758

  5. Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant growth-promoting rhizobacteria (PGPR) have garnered interest in agriculture due to their ability to influence the growth and production of host plants. ATP-binding cassette (ABC) transporters play important roles in plant-microbe interactions by modulating plant root exudation. The present stu...

  6. 22-Oxocholestanes as plant growth promoters.

    PubMed

    Zeferino-Diaz, Reyna; Hilario-Martinez, J Ciciolil; Rodriguez-Acosta, Maricela; Sandoval-Ramirez, Jesus; Fernandez-Herrera, Maria A

    2015-06-01

    The spirostanic steroidal side-chain of diosgenin and hecogenin was modified to produce 22-oxocholestane derivatives. This type of side-chain was obtained in good yields through a straightforward four-step pathway. These compounds show potent brassinosteroid-like growth promoting activity evaluated via the rice lamina joint inclination bioassay. This is the first report of steroidal skeletons bearing the 22-oxocholestane side-chain and preserving the basic structure (A-D rings) from their corresponding parent compounds acting as plant growth promoters. PMID:25795152

  7. Plant growth promotion and Penicillium citrinum

    PubMed Central

    Khan, Sumera Afzal; Hamayun, Muhammad; Yoon, Hyeokjun; Kim, Ho-Youn; Suh, Seok-Jong; Hwang, Seon-Kap; Kim, Jong-Myeong; Lee, In-Jung; Choo, Yeon-Sik; Yoon, Ung-Han; Kong, Won-Sik; Lee, Byung-Moo; Kim, Jong-Guk

    2008-01-01

    Background Endophytic fungi are known plant symbionts. They produce a variety of beneficial metabolites for plant growth and survival, as well as defend their hosts from attack of certain pathogens. Coastal dunes are nutrient deficient and offer harsh, saline environment for the existing flora and fauna. Endophytic fungi may play an important role in plant survival by enhancing nutrient uptake and producing growth-promoting metabolites such as gibberellins and auxins. We screened roots of Ixeris repenes (L.) A. Gray, a common dune plant, for the isolation of gibberellin secreting endophytic fungi. Results We isolated 15 endophytic fungi from the roots of Ixeris repenes and screened them for growth promoting secondary metabolites. The fungal isolate IR-3-3 gave maximum plant growth when applied to waito-c rice and Atriplex gemelinii seedlings. Analysis of the culture filtrate of IR-3-3 showed the presence of physiologically active gibberellins, GA1, GA3, GA4 and GA7 (1.95 ng/ml, 3.83 ng/ml, 6.03 ng/ml and 2.35 ng/ml, respectively) along with other physiologically inactive GA5, GA9, GA12, GA15, GA19, GA20 and, GA24. The plant growth promotion and gibberellin producing capacity of IR-3-3 was much higher than the wild type Gibberella fujikuroi, which was taken as control during present study. GA5, a precursor of bioactive GA3 was reported for the first time in fungi. The fungal isolate IR-3-3 was identified as a new strain of Penicillium citrinum (named as P. citrinum KACC43900) through phylogenetic analysis of 18S rDNA sequence. Conclusion Isolation of new strain of Penicillium citrinum from the sand dune flora is interesting as information on the presence of Pencillium species in coastal sand dunes is limited. The plant growth promoting ability of this fungal strain may help in conservation and revegetation of the rapidly eroding sand dune flora. Penicillium citrinum is already known for producing mycotoxin citrinin and cellulose digesting enzymes like cellulase and

  8. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production.

    PubMed

    Pérez-Montaño, F; Alías-Villegas, C; Bellogín, R A; del Cerro, P; Espuny, M R; Jiménez-Guerrero, I; López-Baena, F J; Ollero, F J; Cubo, T

    2014-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGPR may (i) promote the plant growth either by using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism (increasing the uptake of water and minerals), enhancing root development, increasing the enzymatic activity of the plant or "helping" other beneficial microorganisms to enhance their action on the plants; (ii) or may promote the plant growth by suppressing plant pathogens. These abilities are of great agriculture importance in terms of improving soil fertility and crop yield, thus reducing the negative impact of chemical fertilizers on the environment. The progress in the last decade in using PGPR in a variety of plants (maize, rice, wheat, soybean and bean) along with their mechanism of action are summarized and discussed here. PMID:24144612

  9. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria.

    PubMed

    Chakraborty, U; Chakraborty, B N; Chakraborty, A P; Dey, P L

    2013-05-01

    Soil microorganisms with potential for alleviation of abiotic stresses in combination with plant growth promotion would be extremely useful tools in sustainable agriculture. To this end, the present study was initiated where forty-five salt tolerant bacterial isolates with ability to grow in high salt medium were obtained from the rhizosphere of Triticum aestivum and Imperata cylindrica. These bacteria were tested for plant-growth-promoting rhizobacteria traits in vitro such as phosphate solubilization, siderophore, ACC deaminase and IAA production. Of the forty-five isolates, W10 from wheat rhizosphere and IP8 from blady grass rhizosphere, which tested positive in all the tests were identified by morpholological, biochemical and 16SrDNA sequencing as Bacillus safensis and Ochrobactrum pseudogregnonense respectively and selected for in vivo studies. Both the bacteria could promote growth in six varieties of wheat tested in terms of increase in root and shoot biomass, height of plants, yield, as well as increase in chlorophyll content. Besides, the wheat plants could withstand water stress more efficiently in presence of the bacteria as indicated by delay in appearance of wilting symptoms increases in relative water content of treated water stressed plants in comparison to untreated stressed ones, and elevated antioxidant responses. Enhanced antioxidant responses were evident as elevated activities of enzymes such as catalase, peroxidase, ascorbate peroxidase, superoxide dismutase and glutathione reductase as well as increased accumulation of antioxidants such as carotenoids and ascorbate. Results clearly indicate that the ability of wheat plants to withstand water stress is enhanced by application of these bacteria which also function as plant growth promoting rhizobacteria. PMID:23239372

  10. Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants.

    PubMed

    Salla, Tamiris Daros; da Silva, Ramos; Astarita, Leandro Vieira; Santarém, Eliane Romanato

    2014-12-01

    The genus Eucalyptus comprises economically important species, such as Eucalyptus grandis and Eucalyptus globulus, used especially as a raw material in many industrial sectors. Species of Eucalyptus are very susceptible to pathogens, mainly fungi, which leads to mortality of plant cuttings in rooting phase. One alternative to promote plant health and development is the potential use of microorganisms that act as agents for biological control, such as plant growth-promoting rhizobacteria (PGPR). Rhizobacteria Streptomyces spp have been considered as PGPR. This study aimed at selecting strains of Streptomyces with ability to promote plant growth and modulate secondary metabolism of E. grandis and E. globulus in vitro plants. The experiments assessed the development of plants (root number and length), changes in key enzymes in plant defense (polyphenol oxidase and peroxidase) and induction of secondary compounds(total phenolic and quercetinic flavonoid fraction). The isolate Streptomyces PM9 showed highest production of indol-3-acetic acid and the best potential for root induction. Treatment of Eucalyptus roots with Streptomyces PM9 caused alterations in enzymes activities during the period of co-cultivation (1-15 days), as well as in the levels of phenolic compounds and flavonoids. Shoots also showed alteration in the secondary metabolism, suggesting induced systemic response. The ability of Streptomyces sp. PM9 on promoting root growth, through production of IAA, and possible role on modulation of secondary metabolism of Eucalyptus plants characterizes this isolate as PGPR and indicates its potential use as a biological control in forestry. PMID:25394796

  11. Multitrait plant growth promoting (PGP) rhizobacterial isolates from Brassica juncea rhizosphere

    PubMed Central

    Anwar, Mohmmad Shahbaz; Siddique, Mohammad Tahir; Verma, Amit; Rao, Yalaga Rama; Nailwal, Tapan; Ansari, Mohammad; Pande, Veena

    2014-01-01

    Plant growth promoting (PGP) rhizobacteria, a beneficial microbe colonizing plant roots, enhanced crop productivity and offers an attractive way to replace chemical fertilizers, pesticides, and supplements. The keratinous waste which comprises feathers, hairs, nails, skin and wool creates problem of solid waste management due to presence of highly recalcitrant keratin. The multi traits rhizobacteria effective to remove both keratine from the environment by producing keratinase enzyme and to eradicate the chemical fertilizer by providing different PGP activity is novel achievement. In the present study, the effective PM2 strain of PGPR was isolated from rhizospheric soil of mustard (Brassica juncea) field, Pantnagar and they were identified on the basis of different biochemical tests as belonging to Bacillus genera. Different plant growth promoting activity, feather degradation and keratinolytic activity was performed and found very effective toward all the parameters. Furthermore, the efficient strain PM2 was identified on the basis of 16s rRNA sequencing and confirmed as Bacillus cereus. The strain PM2 might be used efficiently for keratinous waste management and PGP activity. Therefore, the present study suggests that Bacillus cereus have multi traits activity which extremely useful for different PGP activity and biotechnological process involving keratin hydrolysis, feather biodegradation or in the leather industry. PMID:24778758

  12. Do transgenic plants affect rhizobacteria populations?

    PubMed Central

    Filion, Martin

    2008-01-01

    Summary Plant genetic manipulation has led to the development of genetically modified plants (GMPs) expressing various traits. Since their first commercial use in 1996, GMPs have been increasingly used, reaching a global cultivating production area of 114.3 million hectares in 2007. The rapid development of agricultural biotechnology and release of GMPs have provided many agronomic and economic benefits, but has also raised concerns over the potential impact these plants might have on the environment. Among these environmental concerns, the unintentional impact that GMPs might have on soil‐associated microbes, especially rhizosphere‐inhabiting bacteria or rhizobacteria, represents one of the least studied and understood areas. As rhizobacteria are responsible for numerous key functions including nutrient cycling and decomposition, they have been defined as good indicator organisms to assess the general impact that GMPs might have on the soil environment. This minireview summarizes the results of various experiments that have been conducted to date on the impact of GMPs on rhizobacteria. Both biological and technical parameters are discussed and an attempt is made to determine if specific rhizobacterial responses exist for the different categories of GMPs developed to date. PMID:21261867

  13. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities.

    PubMed

    Ahmad, Farah; Ahmad, Iqbal; Khan, M S

    2008-01-01

    Plant growth promoting rhizobacteria (PGPR) are known to influence plant growth by various direct or indirect mechanisms. In search of efficient PGPR strains with multiple activities, a total of 72 bacterial isolates belonging to Azotobacter, fluorescent Pseudomonas, Mesorhizobium and Bacillus were isolated from different rhizospheric soil and plant root nodules in the vicinity of Aligarh. These test isolates were biochemically characterized. These isolates were screened in vitro for their plant growth promoting traits like production of indoleacetic acid (IAA), ammonia (NH(3)), hydrogen cyanide (HCN), siderophore, phosphate solubilization and antifungal activity. More than 80% of the isolates of Azotobacter, fluorescent Pseudomonas and Mesorhizobium ciceri produced IAA, whereas only 20% of Bacillus isolates was IAA producer. Solubilization of phosphate was commonly detected in the isolates of Bacillus (80%) followed by Azotobacter (74.47%), Pseudomonas (55.56%) and Mesorhizobium (16.67%). All test isolates could produce ammonia but none of the isolates hydrolyzed chitin. Siderophore production and antifungal activity of these isolates except Mesorhizobium were exhibited by 10-12.77% isolates. HCN production was more common trait of Pseudomonas (88.89%) and Bacillus (50%). On the basis of multiple plant growth promoting activities, eleven bacterial isolates (seven Azotobacter, three Pseudomonas and one Bacillus) were evaluated for their quantitative IAA production, and broad-spectrum (active against three test fungi) antifungal activity. Almost at all concentration of tryptophan (50-500 microg/ml), IAA production was highest in the Pseudomonas followed by Azotobacter and Bacillus isolates. Azotobacter isolates (AZT(3), AZT(13), AZT(23)), Pseudomonas (Ps(5)) and Bacillus (B(1)) showed broad-spectrum antifungal activity on Muller-Hinton medium against Aspergillus, one or more species of Fusarium and Rhizoctonia bataticola. Further evaluation of the isolates

  14. Soil-agrochemical aspects of remediation of a gray forest soil polluted with Pb upon the application of growth-promoting rhizobacteria

    NASA Astrophysics Data System (ADS)

    Shabaev, V. P.

    2012-05-01

    The effect of inoculation with growth-promoting rhizobacteria of the Pseudomonas genus on the growth and elemental composition of barley was examined in pot experiments with an artificially Pb-contaminated gray forest soil. The application of the bacteria to the contaminated soil enhanced the plant growth, increased the yield (including the grain yield) by 1.5 times, and considerably reduced the concentration of Pb in the plants without altering the soil reaction. The maximum effect was found upon the inoculation with the bacterium P. fluorescens 21, which ensures the same yield as that in the unpolluted soil without the application of bacteria and without changes in the grain quality (the protein content and the elemental composition). The positive effect of the bacteria was manifested to the greatest degree at the beginning and in the first half of the growing period and was associated with considerable binding of Pb in the soil compounds extractable with an ammonium acetate buffer solution. The elimination of the toxic effect and weakening of the Pb translocation in the barley plants after the inoculation with bacteria occurred due to the improvement in the mineral nutrition of the plants, the intensification of their barrier functions at the shoot-root and root-soil interfaces, the biological dilution caused by an increase in the plant biomass, and changes in the bioavailability of the metal (probably, under the influence of exometabolites produced by bacteria). The application of bacteria did not affect the removal of Pb from the soil by the plants (the biological remediation of the soil via phytoextraction of the toxicants).

  15. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants.

    PubMed

    Bal, Himadri Bhusan; Das, Subhasis; Dangar, Tushar K; Adhya, Tapan K

    2013-12-01

    Beneficial plant-associated bacteria play a key role in supporting and/or promoting plant growth and health. Plant growth promoting bacteria present in the rhizosphere of crop plants can directly affect plant metabolism or modulate phytohormone production or degradation. We isolated 355 bacteria from the rhizosphere of rice plants grown in the farmers' fields in the coastal rice field soil from five different locations of the Ganjam district of Odisha, India. Six bacteria producing both ACC deaminase (ranging from 603.94 to 1350.02 nmol α-ketobutyrate mg(-1)  h(-1) ) and indole acetic acid (IAA; ranging from 10.54 to 37.65 μM ml(-1) ) in pure cultures were further identified using polyphasic taxonomy including BIOLOG((R)) , FAME analysis and the 16S rRNA gene sequencing. Phylogenetic analyses of the isolates resulted into five major clusters to include members of the genera Bacillus, Microbacterium, Methylophaga, Agromyces, and Paenibacillus. Seed inoculation of rice (cv. Naveen) by the six individual PGPR isolates had a considerable impact on different growth parameters including root elongation that was positively correlated with ACC deaminase activity and IAA production. The cultures also had other plant growth attributes including ammonia production and at least two isolates produced siderophores. Study indicates that presence of diverse rhizobacteria with effective growth-promoting traits, in the rice rhizosphere, may be exploited for a sustainable crop management under field conditions. PMID:23681643

  16. Plant growth-promoting oligosaccharides produced from tomato waste.

    PubMed

    Suzuki, Toshisada; Tomita-Yokotani, Kaori; Tsubura, Hirokazu; Yoshida, Shigeki; Kusakabe, Isao; Yamada, Kosumi; Miki, Yoichi; Hasegawa, Koji

    2002-01-01

    Tomato juice waste was hydrolyzed with acid. Tomato juice waste (500 g; wet weight) was heated with 0.5 N HCl (2.5 l) at 70 degrees C for 4 h. After neutralization, the growth-promoting extracts (300 g; dry weight) in the plants were produced from the tomato waste. The acid extract significantly promoted the growth of cockscomb (Celosia argentea L.) and tomato (Lycopersicon esculentum L.) seedlings. We have recognized potent plant growth-promoting substances in the acid extract from tomato waste. The most effective components in the active fraction were almost all oligogalacturonic acids (DP 6-12). This paper is the first report that plant growth-promoting oligosaccharides can be directly produced from tomato juice waste. It is possible that the substances from the tomato waste can become useful plant growth regulators in the agriculture field in the future. PMID:11762911

  17. Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.).

    PubMed

    Kang, Seung Hoon; Cho, Hyun-Soo; Cheong, Hoon; Ryu, Choong-Min; Kim, Jihyun F; Park, Seung-Hwan

    2007-01-01

    Plant growth-promoting rhizobacteria (PGPR) have the potential to be used as microbial inoculants to reduce disease incidence and severity and to increase crop yield. Some of the PGPR have been reported to be able to enter plant tissues and establish endophytic populations. Here, we demonstrated an approach to screen bacterial endophytes that have the capacity to promote the growth of pepper seedlings and protect pepper plants against a bacterial pathogen. Initially, out of 150 bacterial isolates collected from healthy stems of peppers cultivated in the Chungcheong and Gyeongsang provinces of Korea, 23 putative endophytic isolates that were considered to be predominating and representative of each pepper sample were selected. By phenotypic characterization and partial 16S rDNA sequence analysis, the isolates were identified as species of Ochrobacterium, Pantoea, Pseudomonas, Sphingomonas, Janthinobacterium, Ralstonia, Arthrobacter, Clavibacter, Sporosarcina, Acidovorax, and Brevundimonas. Among them, two isolates, PS4 and PS27, were selected because they showed consistent colonizing capacity in pepper stems at the levels of 10(6)-10(7) CFU/g tissue, and were found to be most closely related to Pseudomonas rhodesiae and Pantoea ananatis, respectively, by additional analyses of their entire 16S rDNA sequences. Drenching application of the two strains on the pepper seedlings promoted significant growth of peppers, enhancing their root fresh weight by 73.9% and 41.5%, respectively. The two strains also elicited induced systemic resistance of plants against Xanthomonas axonopodis pv. vesicatoria. PMID:18051359

  18. Plant growth promotion by phosphate solubilizing bacteria.

    PubMed

    Zaidi, A; Khan, M S; Ahemad, M; Oves, M

    2009-09-01

    Most agronomic soils contain large reserves of total phosphorus [P], but the fixation and precipitation of P cause P deficiency, and in turn, restrict the growth of crops severely. Phosphorus replenishment, especially in sustainable production systems, remains a major challenge as it is mainly fertilizer-dependent. Though the use of chemical P fertilizers is obviously the best means to circumvent P deficiency in different agro-ecosystems, their use is always limited due to its spiralling cost. A greater interest has, therefore, been generated to find an alternative yet inexpensive technology that could provide sufficient P to plants while reducing the dependence on expensive chemical P fertilizers. Among the heterogeneous and naturally abundant microbes inhabiting the rhizosphere, the phosphate solubilizing microorganisms (PSM) including bacteria have provided an alternative biotechnological solution in sustainable agriculture to meet the P demands of plants. These organisms in addition to providing P to plants also facilitate plant growth by other mechanisms. Despite their different ecological niches and multiple functional properties, P-solubilizing bacteria have yet to fulfil their promise as commercial bio-inoculants. Current developments in our understanding of the functional diversity, rhizosphere colonizing ability, mode of actions and judicious application are likely to facilitate their use as reliable components in the management of sustainable agricultural systems. PMID:19789141

  19. Plant growth-promoting bacteria as inoculants in agricultural soils.

    PubMed

    Souza, Rocheli de; Ambrosini, Adriana; Passaglia, Luciane M P

    2015-12-01

    Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria. PMID:26537605

  20. Plant growth-promoting bacteria as inoculants in agricultural soils

    PubMed Central

    de Souza, Rocheli; Ambrosini, Adriana; Passaglia, Luciane M.P.

    2015-01-01

    Abstract Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria. PMID:26537605

  1. Growth-promotion of plants with depolymerized alginates by irradiation

    NASA Astrophysics Data System (ADS)

    Hien, Nguyen Quoc; Nagasawa, Naotsugu; Tham, Le Xuan; Yoshii, Fumio; Dang, Vo Huy; Mitomo, Hiroshi; Makuuchi, Keizo; Kume, Tamikazu

    2000-07-01

    Alginate has been degraded by gamma-ray irradiation from a Co-60 source in liquid state (aqueous solution) and in solid state (powder form). The irradiated alginate with a molecular weight less than 10 4 shows a strong effect on the growth-promotion of rice and peanut. Low concentration of degraded alginate from 4% solution irradiated at 100 kGy is effective for the growth-promotion of plants and the suitable concentrations are ca 50 ppm for rice and ca 100 ppm for peanut.

  2. Properties of Astragalus sp. microsymbionts and their putative role in plant growth promotion.

    PubMed

    Wdowiak-Wróbel, Sylwia; Małek, Wanda

    2016-10-01

    The plant growth-promoting rhizobacteria have developed many different (indirect and direct) mechanisms that have a positive effect on plant growth and development. Strains isolated from Astragalus cicer and Astragalus glycyphyllos root nodules were investigated for their plant growth-promoting properties such as production of indole-3-acetic acid (IAA) and siderophores, phosphate solubilization, ACC deaminase activity, and tolerance to heavy metals. IAA production and P-solubilization were frequent features in the analysed strains, while siderophores were not produced by any of them. In this work, we investigated the presence of the acdS genes and ACC deaminase activities in Astragalaus cicer and A. glycyphyllos microsymbionts, classified within the genus Mesorhizobium. The results demonstrated that the acdS gene is widespread in the genome of Astragalus sp. microsymbionts; however, none of the tested strains showed ACC deaminase activity. The acdS gene sequence similarity of the analysed strains to each other was in the range from 84 to 99 %. On the phylogram of acdS gene sequences of milkvetch, the symbionts clustered tightly with the genus Mesorhizobium bacteria. PMID:27209414

  3. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates

    PubMed Central

    Oteino, Nicholas; Lally, Richard D.; Kiwanuka, Samuel; Lloyd, Andrew; Ryan, David; Germaine, Kieran J.; Dowling, David N.

    2015-01-01

    The use of plant growth promoting bacterial inoculants as live microbial biofertilizers provides a promising alternative to chemical fertilizers and pesticides. Inorganic phosphate solubilization is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilize the phosphate complexes converting them into ortho-phosphate which is available for plant up-take and utilization. The study presented here describes the ability of endophytic bacteria to produce gluconic acid (GA), solubilize insoluble phosphate, and stimulate the growth of Pisum sativum L. plants. This study also describes the genetic systems within three of these endophyte strains thought to be responsible for their effective phosphate solubilizing abilities. The results showed that many of the endophytic strains produced GA (14–169 mM) and have moderate to high phosphate solubilization capacities (~400–1300 mg L−1). When inoculated into P. sativum L. plants grown in soil under soluble phosphate limiting conditions, the endophytes that produced medium-high levels of GA displayed beneficial plant growth promotion effects. PMID:26257721

  4. Plant Growth-Promoting Bacteria: Mechanisms and Applications

    PubMed Central

    Glick, Bernard R.

    2012-01-01

    The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise. PMID:24278762

  5. Plant growth promotion traits of phosphobacteria isolated from Puna, Argentina.

    PubMed

    Viruel, Emilce; Lucca, María E; Siñeriz, Faustino

    2011-07-01

    The ability of soil microorganisms to solubilize phosphate is an important trait of plant growth-promoting bacteria leading to increased yields and smaller use of fertilizers. This study presents the isolation and characterization of phosphobacteria from Puna, northwestern Argentina and the ability to produce phosphate solubilization, alkaline phosphatase, siderophores, and indole acetic acid. The P-solubilizing activity was coincidental with a decrease in pH values of the tricalcium phosphate medium for all strains after 72 h of incubation. All the isolates showed the capacity to produce siderophores and indoles. Identification by 16S rDNA sequencing and phylogenetic analysis revealed that these strains belong to the genera Pantoea, Serratia, Enterobacter, and Pseudomonas. These isolates appear attractive for exploring their plant growth-promoting activity and potential field application. PMID:21442320

  6. Isolation and Screening of Rhizosphere Bacteria from Grasses in East Kavango Region of Namibia for Plant Growth Promoting Characteristics.

    PubMed

    Haiyambo, D H; Chimwamurombe, P M; Reinhold-Hurek, B

    2015-11-01

    A diverse group of soil bacteria known as plant growth promoting rhizobacteria (PGPR) is able to inhabit the area close to plant roots and exert beneficial effects on plant growth. Beneficial interactions between rhizospheric bacteria and plants provide prospects for isolating culturable PGPR that can be used as bio-fertilizers for sustainable crop production in communities that cannot easily afford chemical fertilizers. This study was conducted with the aim of isolating rhizospheric bacteria from grasses along the Kavango River and screening the bacterial isolates for plant growth promoting characteristics. The bacteria were isolated from rhizospheres of Phragmites australis, Sporobolus sp., Vetiveria nigritana, Pennisetum glaucum and Sorghum bicolor. The isolates were screened for inorganic phosphate solubilization, siderophore production and indole-3-acetic acid (IAA) production. The nitrogen-fixing capability of the bacteria was determined by screening for the presence of the nifH gene. Up to 21 isolates were obtained from P. australis, Sporobolus sp., S. bicolor, P. glaucum and V. nigritana. The genera Bacillus, Enterobacter, Kocuria, Pseudomonas and Stenotrophomonas, identified via 16S rDNA were represented in the 13 PGPR strains isolated. The isolates exhibited more than one plant growth promoting trait and they were profiled as follows: three phosphate solubilizers, four siderophore producers, eight IAA producing isolates and five nitrogen-fixers. These bacteria can be used to develop bio-fertilizer inoculants for improved soil fertility management and sustainable production of local cereals. PMID:26254764

  7. Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species

    PubMed Central

    Xie, Jianbo; Shi, Haowen; Du, Zhenglin; Wang, Tianshu; Liu, Xiaomeng; Chen, Sanfeng

    2016-01-01

    Paenibacillus polymyxa has widely been studied as a model of plant-growth promoting rhizobacteria (PGPR). Here, the genome sequences of 9 P. polymyxa strains, together with 26 other sequenced Paenibacillus spp., were comparatively studied. Phylogenetic analysis of the concatenated 244 single-copy core genes suggests that the 9 P. polymyxa strains and 5 other Paenibacillus spp., isolated from diverse geographic regions and ecological niches, formed a closely related clade (here it is called Poly-clade). Analysis of single nucleotide polymorphisms (SNPs) reveals local diversification of the 14 Poly-clade genomes. SNPs were not evenly distributed throughout the 14 genomes and the regions with high SNP density contain the genes related to secondary metabolism, including genes coding for polyketide. Recombination played an important role in the genetic diversity of this clade, although the rate of recombination was clearly lower than mutation. Some genes relevant to plant-growth promoting traits, i.e. phosphate solubilization and IAA production, are well conserved, while some genes relevant to nitrogen fixation and antibiotics synthesis are evolved with diversity in this Poly-clade. This study reveals that both P. polymyxa and its closely related species have plant growth promoting traits and they have great potential uses in agriculture and horticulture as PGPR. PMID:26856413

  8. Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species.

    PubMed

    Xie, Jianbo; Shi, Haowen; Du, Zhenglin; Wang, Tianshu; Liu, Xiaomeng; Chen, Sanfeng

    2016-01-01

    Paenibacillus polymyxa has widely been studied as a model of plant-growth promoting rhizobacteria (PGPR). Here, the genome sequences of 9 P. polymyxa strains, together with 26 other sequenced Paenibacillus spp., were comparatively studied. Phylogenetic analysis of the concatenated 244 single-copy core genes suggests that the 9 P. polymyxa strains and 5 other Paenibacillus spp., isolated from diverse geographic regions and ecological niches, formed a closely related clade (here it is called Poly-clade). Analysis of single nucleotide polymorphisms (SNPs) reveals local diversification of the 14 Poly-clade genomes. SNPs were not evenly distributed throughout the 14 genomes and the regions with high SNP density contain the genes related to secondary metabolism, including genes coding for polyketide. Recombination played an important role in the genetic diversity of this clade, although the rate of recombination was clearly lower than mutation. Some genes relevant to plant-growth promoting traits, i.e. phosphate solubilization and IAA production, are well conserved, while some genes relevant to nitrogen fixation and antibiotics synthesis are evolved with diversity in this Poly-clade. This study reveals that both P. polymyxa and its closely related species have plant growth promoting traits and they have great potential uses in agriculture and horticulture as PGPR. PMID:26856413

  9. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study.

    PubMed

    Santoro, M V; Cappellari, L R; Giordano, W; Banchio, E

    2015-11-01

    Plant growth-promoting rhizobacteria (PGPR) affect growth of host plants through various direct and indirect mechanisms. Three native PGPR (Pseudomonas putida) strains isolated from rhizospheric soil of a Mentha piperita (peppermint) crop field near Córdoba, Argentina, were characterised and screened in vitro for plant growth-promoting characteristics, such as indole-3-acetic acid (IAA) production, phosphate solubilisation and siderophore production, effects of direct inoculation on plant growth parameters (shoot fresh weight, root dry weight, leaf number, node number) and accumulation and composition of essential oils. Each of the three native strains was capable of phosphate solubilisation and IAA production. Only strain SJ04 produced siderophores. Plants directly inoculated with the native PGPR strains showed increased shoot fresh weight, glandular trichome number, ramification number and root dry weight in comparison with controls. The inoculated plants had increased essential oil yield (without alteration of essential oil composition) and biosynthesis of major essential oil components. Native strains of P. putida and other PGPR have clear potential as bio-inoculants for improving productivity of aromatic crop plants. There have been no comparative studies on the role of inoculation with native strains on plant growth and secondary metabolite production (specially monoterpenes). Native bacterial isolates are generally preferable for inoculation of crop plants because they are already adapted to the environment and have a competitive advantage over non-native strains. PMID:26012535

  10. Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria--as revealed by different combinations

    SciTech Connect

    Jaderlund, Lotta; Arthurson, Veronica; Granhall, Ulf; Jansson, Janet K.

    2008-05-15

    The interactions between two plant growth promoting rhizobacteria (PGPR), Pseudomonas fluorescens SBW25 and Paenibacillus brasilensis PB177, two arbuscular mycorrhizal (AM) fungi (Glomus mosseae and G. intraradices) and one pathogenic fungus (Microdochium nivale) were investigated on winter wheat (Triticum aestivum cultivar Tarso) in a greenhouse trial. PB177, but not SBW25, had strong inhibitory effects on M. nivale in dual culture plate assays. The results from the greenhouse experiment show very specific interactions; e.g. the two AM fungi react differently when interacting with the same bacteria on plants. G. intraradices (single inoculation or together with SBW25) increased plant dry weight on M. nivale infested plants, suggesting that the pathogenic fungus is counteracted by G. intraradices, but PB177 inhibited this positive effect. This is an example of two completely different reactions between the same AM fungus and two species of bacteria, previously known to enhance plant growth and inhibit pathogens. When searching for plant growth promoting microorganisms it is therefore important to test for the most suitable combination of plant, bacteria and fungi in order to get satisfactory plant growth benefits.

  11. Bacterial structure and characterization of plant growth promoting and oil degrading bacteria from the rhizospheres of mangrove plants.

    PubMed

    do Carmo, Flávia Lima; dos Santos, Henrique Fragoso; Martins, Edir Ferreira; van Elsas, Jan Dirk; Rosado, Alexandre Soares; Peixoto, Raquel Silva

    2011-08-01

    Most oil from oceanic spills converges on coastal ecosystems, such as mangrove forests, which are threatened with worldwide disappearance. Particular bacteria that inhabit the rhizosphere of local plant species can stimulate plant development through various mechanisms; it would be advantageous if these would also be capable of degrading oil. Such bacteria may be important in the preservation or recuperation of mangrove forests impacted by oil spills. This study aimed to compare the bacterial structure, isolate and evaluate bacteria able to degrade oil and stimulate plant growth, from the rhizospheres of three mangrove plant species. These features are particularly important taking into account recent policies for mangrove bioreme-diation, implying that oil degradation as well as plant maintenance and health are key targets. Fifty-seven morphotypes were isolated from the mangrove rhizospheres on Bushneil-Haas (BH) medium supplemented with oil as the sole carbon source and tested for plant growth promotion. Of this strains, 60% potentially fixed nitrogen, 16% showed antimicrobial activity, 84% produced siderophores, 51% had the capacity to solubilize phosphate, and 33% produced the indole acetic acid hormone. Using gas chromatography, we evaluated the oil-degrading potential of ten selected strains that had different morphologies and showed Plant Growth Promoting Rhizobacteria (PGPR) features. The ten tested strains showed a promising degradation profile for at least one compound present in the oil. Among degrader strains, 46% had promising PGPR potential, having at least three of the above capacities. These strains might be used as a consortium, allowing the concomitant degradation of oil and stimulation of mangrove plant survival and maintenance. PMID:21887634

  12. Plant growth-promoting bacteria for phytostabilization of mine tailings.

    PubMed

    Grandlic, Christopher J; Mendez, Monica O; Chorover, Jon; Machado, Blenda; Maier, Raina M

    2008-03-15

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal contenttailings sample previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals. PMID:18409640

  13. Plant Growth-Promoting Bacteria for Phytostabilization of Mine Tailings

    SciTech Connect

    Grandlic, C.J.; Mendez, M.O.; Chorover, J.; Machado, B.; Maier, R.M.

    2009-05-19

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal content tailings sample previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.

  14. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth

    PubMed Central

    Singh, Mangal; Awasthi, Ashutosh; Soni, Sumit K.; Singh, Rakshapal; Verma, Rajesh K.; Kalra, Alok

    2015-01-01

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationships among bacterial species. Plant growth was found to increase linearly with inoculation of rhizospheric bacterial communities with increasing levels of species or plant growth promoting trait diversity. However, inoculation of diverse bacterial communities having single plant growth promoting trait, i.e., nitrogen fixation could not enhance plant growth over inoculation of single bacteria. Our results indicate that bacterial diversity in rhizosphere affect ecosystem functioning through complementary relationship among plant growth promoting traits and may play significant roles in delivering microbial services to plants. PMID:26503744

  15. Root Exudate-Induced Alterations in Bacillus cereus Cell Wall Contribute to Root Colonization and Plant Growth Promotion

    PubMed Central

    Dutta, Swarnalee; Rani, T. Swaroopa; Podile, Appa Rao

    2013-01-01

    The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs). We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430). There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE), compared to those exposed to groundnut-root exudates (GRE). In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2), in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion. PMID:24205213

  16. Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana.

    PubMed

    Poupin, María Josefina; Timmermann, Tania; Vega, Andrea; Zuñiga, Ana; González, Bernardo

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short-term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Here, we studied the effects of the PGPR bacterial model Burkholderiaphytofirmans PsJN on the whole life cycle of Arabidopsis thaliana plants. We reported that at different plant developmental points, strain PsJN can be found in the rhizosphere and also colonizing their internal tissues. In early ontogeny, strain PsJN increased several growth parameters and accelerated growth rate of the plants. Also, an Arabidopsis transcriptome analysis revealed that 408 genes showed differential expression in PsJN-inoculated plants; some of these genes are involved in stress response and hormone pathways. Specifically, genes implicated in auxin and gibberellin pathways were induced. Quantitative transcriptional analyses of selected genes in different developmental stages revealed that the beginning of these changes could be evidenced early in development, especially among the down-regulated genes. The inoculation with heat-killed bacteria provoked a more severe transcriptional response in plants, but was not able to induce plant growth-promotion. Later in ontogeny, the growth rates of inoculated plants decreased with respect to the non-inoculated group and, interestingly, the inoculation accelerated the flowering time and the appearance of senescence signs in plants; these modifications correlate with the early up-regulation of flowering control genes. Then, we show that a single inoculation with a PGPR could affect the whole life cycle of a plant, accelerating its growth rate and shortening its vegetative period, both effects relevant for most crops. Thus, these findings provide novel and interesting aspects of these relevant

  17. Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants.

    PubMed

    Gupta Sood, Sushma

    2003-08-01

    The chemotactic responses of the plant-growth-promoting rhizobacteria Azotobacter chroococcum and Pseudomonas fluorescens to roots of vesicular-arbuscular mycorrhizal (Glomus fasciculatum) tomato plants were determined. A significantly (P=0.05) greater number of bacterial cells of wild strains were attracted towards vesicular-arbuscular mycorrhizal tomato roots compared to non-vesicular-arbuscular mycorrhizal tomato roots. Substances exuded by roots served as chemoattractants for these bacteria. P. fluorescens was strongly attracted towards citric and malic acids, which were predominant constituents in root exudates of tomato plants. A. chroococcum showed a stronger response towards sugars than amino acids, but the response was weakest towards organic acids. The effects of temperature, pH, and soil water matric potential on bacterial chemotaxis towards roots were also investigated. In general, significantly (P=0.05) greater chemotactic responses of bacteria were observed at higher water matric potentials (0, -1, and -5 kPa), slightly acidic to neutral pH (6, 6.5 and 7), and at 20-30 degrees C (depending on the bacterium) than in other environmental conditions. It is suggested that chemotaxis of P. fluorescens and A. chroococcum towards roots and their exudates is one of the several steps in the interaction process between bacteria and vesicular-arbuscular mycorrhizal roots. PMID:19719591

  18. Bioprospecting glacial ice for plant growth promoting bacteria.

    PubMed

    Balcazar, Wilvis; Rondón, Johnma; Rengifo, Marcos; Ball, María M; Melfo, Alejandra; Gómez, Wileidy; Yarzábal, Luis Andrés

    2015-08-01

    Glaciers harbor a wide diversity of microorganisms, metabolically versatile, highly tolerant to multiple environmental stresses and potentially useful for biotechnological purposes. Among these, we hypothesized the presence of bacteria able to exhibit well-known plant growth promoting traits (PGP). These kinds of bacteria have been employed for the development of commercial biofertilizers; unfortunately, these biotechnological products have proven ineffective in colder climates, like the ones prevailing in mountainous ecosystems. In the present work, we prospected glacial ice collected from two small tropical glaciers, located above 4.900 m in the Venezuelan Andes, for cold-active PGP bacteria. The initial screening strategy allowed us to detect the best inorganic-P solubilizers at low temperatures, from a sub-sample of 50 bacterial isolates. Solubilization of tricalcium phosphate, aluminum- and iron-phosphate, occurred in liquid cultures at low temperatures and was dependent on medium acidification by gluconic acid production, when bacteria were supplied with an appropriate source of carbon. Besides, the isolates were psychrophilic and in some cases exhibited a broad range of growth-temperatures, from 4 °C to 30 °C. Additional PGP abilities, including phytohormone- and HCN production, siderophore excretion and inhibition of phytopathogens, were confirmed in vitro. Nucleotidic sequence analysis of 16S rRNA genes allowed us to place the isolates within the Pseudomonas genus. Our results support the possible use of these strains to develop cold-active biofertilizers to be used in mountainous agriculture. PMID:26211959

  19. Genome Sequence of Enterobacter radicincitans DSM16656T, a Plant Growth-Promoting Endophyte

    PubMed Central

    Witzel, Katja; Gwinn-Giglio, Michelle; Nadendla, Suvarna; Shefchek, Kent

    2012-01-01

    Enterobacter radicincitans sp. nov. DSM16656T represents a new species of the genus Enterobacter which is a biological nitrogen-fixing endophytic bacterium with growth-promoting effects on a variety of crop and model plant species. The presence of genes for nitrogen fixation, phosphorous mobilization, and phytohormone production reflects this microbe's potential plant growth-promoting activity. PMID:22965092

  20. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation.

    PubMed

    Barnawal, Deepti; Bharti, Nidhi; Maji, Deepamala; Chanotiya, Chandan Singh; Kalra, Alok

    2012-09-01

    Ocimum sanctum grown as rain-fed crop, is known to be poorly adapted to waterlogged conditions. Many a times the crop suffers extreme damages because of anoxia and excessive ethylene generation due to waterlogging conditions present under heavy rain. The usefulness of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing plant growth promoting rhizobacteria was investigated under waterlogging stress. The comparison of herb yield and stress induced biochemical changes of waterlogged and non-waterlogged plants with and without ACC deaminase-containing microbiological treatments were monitored in this study. Ten plant growth promoting rhizobacteria strains containing ACC-deaminase were isolated and characterized. Four selected isolates Fd2 (Achromobacter xylosoxidans), Bac5 (Serratia ureilytica), Oci9 (Herbaspirillum seropedicae) and Oci13 (Ochrobactrum rhizosphaerae) had the potential to protect Ocimum plants from flood induced damage under waterlogged glass house conditions. Pot experiments were conducted to evaluate the potential of these ACC deaminase-containing selected strains for reducing the yield losses caused by waterlogging conditions. Bacterial treatments protected plants from waterlogging induced detrimental changes like stress ethylene production, reduced chlorophyll concentration, higher lipid peroxidation, proline concentration and reduced foliar nutrient uptake. Fd2 (A. xylosoxidans) induced maximum waterlogging tolerance as treated waterlogged plants recorded maximum growth and herb yield (46.5% higher than uninoculated waterlogged plants) with minimum stress ethylene levels (53% lower ACC concentration as compared to waterlogged plants without bacterial inoculation) whereas under normal non-waterlogged conditions O. rhizosphaerae was most effective in plant growth promotion. PMID:22846334

  1. Gene expression regulation in the plant growth promoting Bacillus atrophaeus UCMB-5137 stimulated by maize root exudates.

    PubMed

    Mwita, Liberata; Chan, Wai Yin; Pretorius, Theresa; Lyantagaye, Sylvester L; Lapa, Svitlana V; Avdeeva, Lilia V; Reva, Oleg N

    2016-09-15

    Despite successful use of Plant Growth Promoting Rhizobacteria (PGPR) in agriculture, little is known about specific mechanisms of gene regulation facilitating the effective communication between bacteria and plants during plant colonization. Active PGPR strain Bacillus atrophaeus UCMB-5137 was studied in this research. RNA sequencing profiles were generated in experiments where root exudate stimulations were used to mimic interactions between bacteria and plants. It was found that the gene regulation in B. atrophaeus UCMB-5137 in response to the root exudate stimuli differed from the reported gene regulation at similar conditions in B. amyloliquefaciens FZB42, which was considered as a paradigm PGPR. This difference was explained by hypersensitivity of UCMB-5137 to the root exudate stimuli impelling it to a sessile root colonization behavior through the CcpA-CodY-AbrB regulation. It was found that the transcriptional factor DegU also could play an important role in gene regulations during plant colonization. A significant stress caused by the root exudates on in vitro cultivated B. atrophaeus UCMB-5137 was noticed and discussed. Multiple cases of conflicted gene regulations showed scantiness of our knowledge on the regulatory network in Bacillus. Some of these conflicted regulations could be explained by interference of non-coding RNA (ncRNA). Search through differential expressed intergenic regions revealed 49 putative loci of ncRNA regulated by the root exudate stimuli. Possible target mRNA were predicted and a general regulatory network of B. atrophaeus UCMB-5137 genome was designed. PMID:27259668

  2. Draft Genome Sequence of Plant Growth-Promoting Rhizobacterium Pantoea sp. Strain AS-PWVM4

    PubMed Central

    Khatri, Indu; Kaur, Sukhvir; Devi, Usha; Kumar, Navinder; Sharma, Deepak

    2013-01-01

    Nonpathogenic Pantoea spp. have been shown to confer biofertilizer and biocontrol activities, indicating their potential for increasing crop yield. Herein, we provide the high-quality genome sequence of Pantoea sp. strain AS-PWVM4, a Gram-negative motile plant growth-promoting rhizobacterium isolated from a pomegranate plant. The 4.9-Mb genome contains genes related to plant growth promotion and the synthesis of siderophores. PMID:24309733

  3. Suppressiveness to root-knot nematodes mediated by rhizobacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria that colonize the rhizosphere and plant roots resulting in enhancement of plant growth or protection against certain plant pathogens. Studies were conducted to test the hypothesis that induction of soil suppressiveness against Melo...

  4. Inoculation of tomato plants with rhizobacteria enhances the performance of the phloem-feeding insect Bemisia tabaci

    PubMed Central

    Shavit, Roee; Ofek-Lalzar, Maya; Burdman, Saul; Morin, Shai

    2013-01-01

    In their natural environment, plants experience multiple biotic interactions and respond to this complexity in an integrated manner. Therefore, plant responses to herbivory are flexible and depend on the context and complexity in which they occur. For example, plant growth promoting rhizobacteria (PGPR) can enhance plant growth and induce resistance against microbial pathogens and herbivorous insects by a phenomenon termed induced systemic resistance (ISR). In the present study, we investigated the effect of tomato (Solanum lycopersicum) pre-inoculation with the PGPR Pseudomonas fluorescens WCS417r, on the performance of the generalist phloem-feeding insect Bemisia tabaci. Based on the ability of P. fluorescens WCS417r to prime for ISR against generalists chewing insects and necrotrophic pathogens, we hypothesized that pre-inoculated plants will strongly resist B. tabaci infestation. In contrast, we discovered that the pre-inoculation treatment increased the tomato plant suitability for B. tabaci which was emphasized both by faster developmental rate and higher survivability of nymph stages on pre-inoculated plants. Our molecular and chemical analyses suggested that the phenomenon is likely to be related to: (I) the ability of the bacteria to reduce the activity of the plant induced defense systems; (II) a possible manipulation by P. fluorescens of the plant quality (in terms of suitability for B. tabaci) through an indirect effect on the rhizosphere bacterial community. The contribution of our study to the pattern proposed for other belowground rhizobacteria and mycorrhizal fungi and aboveground generalist phloem-feeders is discussed. PMID:23964283

  5. In Vitro Screening for Abiotic Stress Tolerance in Potent Biocontrol and Plant Growth Promoting Strains of Pseudomonas and Bacillus spp.

    PubMed Central

    Praveen Kumar, G.; Mir Hassan Ahmed, S. K.; Desai, Suseelendra; Leo Daniel Amalraj, E.; Rasul, Abdul

    2014-01-01

    Plant growth promoting rhizobacteria (PGPR) has been identified as a group of microbes that are used for plant growth enhancement and biocontrol for management of plant diseases. The inconsistency in performance of these bacteria from laboratory to field conditions is compounded due to the prevailing abiotic stresses in the field. Therefore, selection of bacterial strains with tolerance to abiotic stresses would benefit the end-user by successful establishment of the strain for showing desired effects. In this study we attempted to isolate and identify strains of Bacillus and Pseudomonas spp. with stress tolerance and proven ability to inhibit the growth of potential phytopathogenic fungi. Screening of bacterial strains for high temperature (50°C), salinity (7% NaCl), and drought (−1.2 MPa) showed that stress tolerance was pronounced less in Pseudomonas isolates than in Bacillus strains. The reason behind this could be the formation of endospores by Bacillus isolates. Tolerance to drought was high in Pseudomonas strains than the other two stresses. Three strains, P8, P20 and P21 showed both salinity and temperature tolerance. P59 strain possessed promising antagonistic activity and drought tolerance. The magnitude of antagonism shown by Bacillus isolates was also higher when compared to Pseudomonas strains. To conclude, identification of microbial candidate strains with stress tolerance and other added characteristic features would help the end-user obtain the desired beneficial effects. PMID:26904731

  6. Analysis of Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungus Phoma sp. GS8-3 for Growth Promotion Effects on Tobacco

    PubMed Central

    Naznin, Hushna Ara; Kimura, Minako; Miyazawa, Mitsuo; Hyakumachi, Mitsuro

    2013-01-01

    We extracted volatile organic compounds (VOCs) emitted by a plant growth-promoting fungus (PGPF) Phoma sp. GS8-3 by gas chromatography and identified them by mass spectrometry. All of the identified compounds belonged to C4-C8 hydrocarbons. Volatiles varied in number and quantity by the culture period of the fungus (in days). 2-Methyl-propanol and 3-methyl-butanol formed the main components of the volatile blends for all the culture periods of fungus. Growth-promoting effects of the identified synthetic compounds were analyzed individually and in blends using tobacco plants. We found that the mixture of volatiles extracted from 3-day-old culture showed significant growth promotion in tobacco in vitro. The volatile blend showed better growth promotion at lower than higher concentrations. Our results confirm the potential role of volatile organic compounds in the mechanism of growth enhancement by GS8-3. PMID:23080408

  7. DELETERIOUS RHIZOBACTERIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deleterious rhizobacteria (DRB) are predominantly saprophytic bacteria that aggressively colonize plant seeds, roots and rhizospheres and readily metabolize organic substances released by plant tissues. Unlike typical phytopathogens, DRB do not invade and parasitize vascular tissues; DRB that inhabi...

  8. Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN.

    PubMed

    Weilharter, Alexandra; Mitter, Birgit; Shin, Maria V; Chain, Patrick S G; Nowak, Jerzy; Sessitsch, Angela

    2011-07-01

    Burkholderia phytofirmans PsJN(T) is able to efficiently colonize the rhizosphere, root, and above-ground plant tissues of a wide variety of genetically unrelated plants, such as potatoes, canola, maize, and grapevines. Strain PsJN shows strong plant growth-promoting effects and was reported to enhance plant vigor and resistance to biotic and abiotic stresses. Here, we report the genome sequence of this strain, which indicates the presence of multiple traits relevant for endophytic colonization and plant growth promotion. PMID:21551308

  9. Variation in plant-mediated interactions between rhizobacteria and caterpillars: potential role of soil composition.

    PubMed

    Pangesti, N; Pineda, A; Dicke, M; van Loon, J J A

    2015-03-01

    Selected strains of non-pathogenic rhizobacteria can trigger induced systemic resistance (ISR) in plants against aboveground insect herbivores. However, the underlying mechanisms of plant-mediated interactions between rhizobacteria and herbivorous insects are still poorly understood. Using Arabidopsis thaliana Col-0-Pseudomonas fluorescens WCS417r as a model system, we investigated the performance and the molecular mechanisms underlying plant-mediated effects of rhizobacteria on the generalist caterpillar Mamestra brassicae and the specialist Pieris brassicae. Rhizobacteria colonisation of Arabidopsis roots resulted in decreased larval weight of M. brassicae, whereas no effect was observed on larval weight of P. brassicae. Using a jasmonic acid (JA)-impaired mutant (dde2-2), we confirmed the importance of JA in rhizobacteria-mediated ISR against M. brassicae. Interestingly, in some experiments we also observed rhizobacteria-induced systemic susceptibility to M. brassicae. The role of soil composition in the variable outcomes of microbe-plant-insect interactions was then assessed by comparing M. brassicae performance and gene transcription in plants grown in potting soil or a mixture of potting soil and sand in a 1:1 ratio. In a mixture of potting soil and sand, rhizobacteria treatment had a consistent negative effect on M. brassicae, whereas the effect was more variable in potting soil. Interestingly, at 24 h post-infestation (hpi) rhizobacteria treatment primed plants grown in a mixture of potting soil and sand for stronger expression of the JA- and ethylene-regulated genes PDF1.2 and HEL, respectively. Our study shows that soil composition can modulate rhizobacteria-plant-insect interactions, and is a factor that should be considered when studying these belowground-aboveground interactions. PMID:25244063

  10. Evaluation of Phytase Producing Bacteria for Their Plant Growth Promoting Activities

    PubMed Central

    Singh, Prashant; Agrawal, Sanjeev

    2014-01-01

    Bacterial inoculants are known to possess plant growth promoting abilities and have potential as liquid biofertilizer application. Four phytase producing bacterial isolates (phytase activity in the range of 0.076–0.174 U/mL), identified as Advenella species (PB-05, PB-06, and PB-10) and Cellulosimicrobium sp. PB-09, were analyzed for their plant growth promoting activities like siderophore production, IAA production, HCN production, ammonia production, phosphate solubilization, and antifungal activity. All isolates were positive for the above characteristics except for HCN production. The solubilization index for phosphorus on Pikovskaya agar plates was in the range of 2–4. Significant amount of IAA (7.19 to 35.03 μg/mL) production and solubilized phosphate (189.53 to 746.84 μg/mL) was noticed by these isolates at different time intervals. Besides that, a greenhouse study was also conducted with Indian mustard to evaluate the potential of these isolates to promote plant growth. Effect of seed bacterization on various plant growth parameters and P uptake by plant were used as indicators. The plant growth promoting ability of bacterial isolates in pot experiments was correlated to IAA production, phosphate solubilization, and other in vitro tests. On the basis of present findings, isolate PB-06 was most promising in plant growth promotion with multiple growth promoting characteristics. PMID:24669222

  11. Rhizobacteria in mycorrhizosphere improved plant health and yield of banana by offering proper nourishment and protection against diseases.

    PubMed

    Phirke, Niteen V; Kothari, Raman M; Chincholkar, Sudhir B

    2008-12-01

    The corporate R&D banana orchards of Musa paradisiaca (dwarf Cavendish AAA, var. shrimanti) on a medium black alluvial soil with low nutrients harboured diversified species of vesicular-arbuscular mycorrhizal (VAM) fungi. These fungi infected the roots severely (69.2%), showed elevated (69.8 g(-1) soil) spore density, increased soil bacterial density (245 x 10(8) cfu g(-1)), produced siderophores (58.2%) and reduced nematode population (2.3 g(-1)) in the mycorrhizosphere of plants for integrated plant nutrition management (IPNM) system as compared to traditional treatment of applying chemical fertilisers alone and other test treatments. The interactions of plant roots with native VAM and local and applied rhizobacteria in the matrix of soil conditioner enabled proper nourishment and protection of crop in IPNM treatment as compared to traditional way. Hence, exploitation of plant growth promoting rhizobacteria through judiciously designed IPNM system revealed the (a) relatively increased banana productivity (21.6%, 76 MT ha(-1)), (b) least occurrence of fusarial wilt and negligible evidence of Sigatoka, (c) saving of 50% chemical fertilisers and (d) permitted control over soil fertility in producer's favour over traditional cultivation practices. These findings are discussed in detail. PMID:18386183

  12. Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Bacillus amyloliquefaciens BS006.

    PubMed

    Gamez, Rocío M; Rodríguez, Fernando; Bernal, Johan F; Agarwala, Richa; Landsman, David; Mariño-Ramírez, Leonardo

    2015-01-01

    Bacillus amyloliquefaciens is an important plant growth-promoting rhizobacterium (PGPR). We report the first whole-genome sequence of PGPR Bacillus amyloliquefaciens evaluated in Colombian banana plants. The genome sequences encode genes involved in plant growth and defense, including bacteriocins, ribosomally synthesized antibacterial peptides, in addition to genes that provide resistance to toxic compounds. PMID:26607897

  13. Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Bacillus amyloliquefaciens BS006

    PubMed Central

    Gamez, Rocío M.; Rodríguez, Fernando; Bernal, Johan F.; Agarwala, Richa; Landsman, David

    2015-01-01

    Bacillus amyloliquefaciens is an important plant growth-promoting rhizobacterium (PGPR). We report the first whole-genome sequence of PGPR Bacillus amyloliquefaciens evaluated in Colombian banana plants. The genome sequences encode genes involved in plant growth and defense, including bacteriocins, ribosomally synthesized antibacterial peptides, in addition to genes that provide resistance to toxic compounds. PMID:26607897

  14. Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens PS006

    PubMed Central

    Gamez, Rocío M.; Rodríguez, Fernando; Ramírez, Sandra; Gómez, Yolanda; Agarwala, Richa; Landsman, David

    2016-01-01

    Pseudomonas fluorescens is a well-known plant growth-promoting rhizobacterium (PGPR). We report here the first whole-genome sequence of PGPR P. fluorescens evaluated in Colombian banana plants. The genome sequences contains genes involved in plant growth and defense, including bacteriocins, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, and genes that provide resistance to toxic compounds. PMID:27151797

  15. Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens PS006.

    PubMed

    Gamez, Rocío M; Rodríguez, Fernando; Ramírez, Sandra; Gómez, Yolanda; Agarwala, Richa; Landsman, David; Mariño-Ramírez, Leonardo

    2016-01-01

    Pseudomonas fluorescens is a well-known plant growth-promoting rhizobacterium (PGPR). We report here the first whole-genome sequence of PGPR P. fluorescens evaluated in Colombian banana plants. The genome sequences contains genes involved in plant growth and defense, including bacteriocins, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, and genes that provide resistance to toxic compounds. PMID:27151797

  16. Isolation of Pantoea ananatis from sugarcane and characterization of its potential for plant growth promotion.

    PubMed

    da Silva, J F; Barbosa, R R; de Souza, A N; da Motta, O V; Teixeira, G N; Carvalho, V S; de Souza, A L S R; de Souza Filho, G A

    2015-01-01

    Each year, approximately 170 million metric tons of chemical fertilizer are consumed by global agriculture. Furthermore, some chemical fertilizers contain toxic by-products and their long-term use may contaminate groundwater, lakes, and rivers. The use of plant growth-promoting bacteria may be a cost-effective strategy for partially replacing conventional chemical fertilizers, and may become an integrated plant nutrient solution for sustainable crop production. The main direct bacteria-activated mechanisms of plant growth promotion are based on improvement of nutrient acquisition, siderophore biosynthesis, nitrogen fixation, and hormonal stimulation. The aim of this study was to isolate and identify bacteria with growth-promoting activities from sugarcane. We extracted the bacterial isolate SCB4789F-1 from sugarcane leaves and characterized it with regard to its profile of growth-promoting activities, including its ability to colonize Arabidopsis thaliana. Based on its biochemical characteristics and 16S rDNA sequence analysis, this isolate was identified as Pantoea ananatis. The bacteria were efficient at phosphate and zinc solubilization, and production of siderophores and indole-3-acetic acid in vitro. The isolate was characterized by Gram staining, resistance to antibiotics, and use of carbon sources. This is the first report on zinc solubilization in vitro by this bacterium, and on plant growth promotion following its inoculation into A. thaliana. The beneficial effects to plants of this bacterium justify future analysis of inoculation of economically relevant crops. PMID:26634494

  17. Isolation and characterization of fluorescent pseudomonads and their effect on plant growth promotion.

    PubMed

    Anitha, G; Kumudini, B S

    2014-07-01

    Seven isolates of fluorescent pseudomonads were evaluated for their effect on plant growth promoting traits, both under normal and saline conditions using tomato plants. Fifteen rhizosphere samples from crop fields' of rice, chilly, ragi, beans and garden soils from different regions of India were collected and used for further study. They were characterized morphologically and biochemically which led to a conclusion that they may belong to genus Pseudomonas. They were also analyzed for their plant growth promoting activities such as production of indole acetic acid, siderophore, hydrogen cyanide and ammonia. It was observed that all the isolates were able to produce these compounds, but to varying extent. But, isolate JUPF37 produced highest followed by JUPF32. Study showed that out of seven isolates of fluorescent pseudomonads, JUPF37 showed highest plant growth promoting traits both under normal and saline conditions. PMID:25004745

  18. Pyrroloquinoline Quinone Is a Plant Growth Promotion Factor Produced by Pseudomonas fluorescens B161

    PubMed Central

    Choi, Okhee; Kim, Jinwoo; Kim, Jung-Gun; Jeong, Yeonhwa; Moon, Jae Sun; Park, Chang Seuk; Hwang, Ingyu

    2008-01-01

    Pseudomonas fluorescens B16 is a plant growth-promoting rhizobacterium. To determine the factors involved in plant growth promotion by this organism, we mutagenized wild-type strain B16 using ΩKm elements and isolated one mutant, K818, which is defective in plant growth promotion, in a rockwool culture system. A cosmid clone, pOK40, which complements the mutant K818, was isolated from a genomic library of the parent strain. Tn3-gusA mutagenesis of pOK40 revealed that the genes responsible for plant growth promotion reside in a 13.3-kb BamHI fragment. Analysis of the DNA sequence of the fragment identified 11 putative open reading frames, consisting of seven known and four previously unidentified pyrroloquinoline quinone (PQQ) biosynthetic genes. All of the pqq genes showed expression only in nutrient-limiting conditions in a PqqH-dependent manner. Electrospray ionization-mass spectrometry analysis of culture filtrates confirmed that wild-type B16 produces PQQ, whereas mutants defective in plant growth promotion do not. Application of wild-type B16 on tomato (Solanum lycopersicum) plants cultivated in a hydroponic culture system significantly increased the height, flower number, fruit number, and total fruit weight, whereas none of the strains that did not produce PQQ promoted tomato growth. Furthermore, 5 to 1,000 nm of synthetic PQQ conferred a significant increase in the fresh weight of cucumber (Cucumis sativus) seedlings, confirming that PQQ is a plant growth promotion factor. Treatment of cucumber leaf discs with PQQ and wild-type B16 resulted in the scavenging of reactive oxygen species and hydrogen peroxide, suggesting that PQQ acts as an antioxidant in plants. PMID:18055583

  19. Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants.

    PubMed

    Armendariz, Ana L; Talano, Melina A; Wevar Oller, Ana L; Medina, María I; Agostini, Elizabeth

    2015-07-01

    Bacterial ability to colonize the rhizosphere of plants in arsenic (As) contaminated soils is highly important for symbiotic and free-living plant growth-promoting rhizobacteria (PGPR) used as inoculants, since they can contribute to enhance plant As tolerance and limit metalloid uptake by plants. The aim of this work was to study the effect of As on growth, exopolysaccharide (EPS) production, biofilm formation and motility of two strains used as soybean inoculants, Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39. The metabolism of arsenate (As(V)) and arsenite (As(III)) and their removal and/or possible accumulation were also evaluated. The behavior of both bacteria under As treatment was compared and discussed in relation to their potential for colonizing plant rhizosphere with high content of the metalloid. B. japonicum E109 growth was reduced with As(III) concentration from 10 μM while A. brasilense Az39 showed a reduction of growth with As(III) from 500 μM. EPS and biofilm production increased significantly under 25 μM As(III) for both strains. Moreover, this was more notorious for Azospirillum under 500 μM As(III), where motility was seriously affected. Both bacterial strains showed a similar ability to reduce As(V). However, Azospirillum was able to oxidize more As(III) (around 53%) than Bradyrhizobium (17%). In addition, both strains accumulated As in cell biomass. The behavior of Azospirillum under As treatments suggests that this strain would be able to colonize efficiently As contaminated soils. In this way, inoculation with A. brasilense Az39 would positively contribute to promoting growth of different plant species under As treatment. PMID:26141894

  20. Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana.

    PubMed

    Kwon, Young Sang; Lee, Dong Yeol; Rakwal, Randeep; Baek, Seong-Bum; Lee, Jeom Ho; Kwak, Youn-Sig; Seo, Jong-Su; Chung, Woo Sik; Bae, Dong-Won; Kim, Sang Gon

    2016-01-01

    Plant growth-promoting rhizobacteria (PGPR) facilitate the plant growth and enhance their induced systemic resistance (ISR) against a variety of environmental stresses. In this study, we carried out integrative analyses on the proteome, transcriptome, and metabolome to investigate Arabidopsis root and shoot responses to the well-known PGPR strain Paenibacillus polymyxa (P. polymyxa) E681. Shoot fresh and root dry weights were increased, whereas root length was decreased by treatment with P. polymyxa E681. 2DE approach in conjunction with MALDI-TOF/TOF analysis revealed a total of 41 (17 spots in root, 24 spots in shoot) that were differentially expressed in response to P. polymyxa E681. Biological process- and molecular function-based bioinformatics analysis resulted in their classification into seven different protein groups. Of these, 36 proteins including amino acid metabolism, antioxidant, defense and stress response, photosynthesis, and plant hormone-related proteins were up-regulated, whereas five proteins including three carbohydrate metabolism- and one amino acid metabolism-related, and one unknown protein were down-regulated, respectively. A good correlation was observed between protein and transcript abundances for the 12 differentially expressed proteins during interactions as determined by qPCR analysis. Metabolite analysis using LC-MS/MS revealed highly increased levels of tryptophan, indole-3-acetonitrile (IAN), indole-3-acetic acid (IAA), and camalexin in the treated plants. Arabidopsis plant inoculated P. polymyxa E681 also showed resistance to Botrytis cinerea infection. Taken together these results suggest that P. polymyxa E681 may promote plant growth by induced metabolism and activation of defense-related proteins against fungal pathogen. PMID:26460066

  1. Complete Genome of the Plant Growth-Promoting Rhizobacterium Pseudomonas putida BIRD-1

    SciTech Connect

    Matilla, M.A.; van der Lelie, D.; Pizarro-Tobias, P.; Roca, A.; Fernandez, M.; Duque, E.; Molina, L.; Wu, X.; Gomez, M. J.; Segura, A.; Ramos, J.-L.

    2011-03-01

    We report the complete sequence of the 5.7-Mbp genome of Pseudomonas putida BIRD-1, a metabolically versatile plant growth-promoting rhizobacterium that is highly tolerant to desiccation and capable of solubilizing inorganic phosphate and iron and of synthesizing phytohormones that stimulate seed germination and plant growth.

  2. Foliar application of plant growth-promoting bacteria and humic acid increase maize yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant growth promoter bacteria (PGPB) can be used to reduce fertilizer inputs to crops. Seed inoculation is the main method of PGPB application, but competition with rhizosphere microorganisms reduces their effectiveness. Here we propose a new biotechnological tool for plant stimulation using endoph...

  3. Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray.

    PubMed

    Francis, Isolde M; Stes, Elisabeth; Zhang, Yucheng; Rangel, Diana; Audenaert, Kris; Vereecke, Danny

    2016-09-25

    Rhodococcus fascians is a phytopathogenic Gram-positive Actinomycete with a very broad host range encompassing especially dicotyledonous herbaceous perennials, but also some monocots, such as the Liliaceae and, recently, the woody crop pistachio. The pathogenicity of R. fascians strain D188 is known to be encoded by the linear plasmid pFiD188 and to be dictated by its capacity to produce a mixture of cytokinins. Here, we show that D188-5, the nonpathogenic plasmid-free derivative of the wild-type strain D188 actually has a plant growth-promoting effect. With the availability of the genome sequence of R. fascians, the chromosome of strain D188 was mined for putative plant growth-promoting functions and the functionality of some of these activities was tested. This analysis together with previous results suggests that the plant growth-promoting activity of R. fascians is due to production of plant growth modulators, such as auxin and cytokinin, combined with degradation of ethylene through 1-amino-cyclopropane-1-carboxylic acid deaminase. Moreover, R. fascians has several functions that could contribute to efficient colonization and competitiveness, but there is little evidence for a strong impact on plant nutrition. Possibly, the plant growth promotion encoded by the D188 chromosome is imperative for the epiphytic phase of the life cycle of R. fascians and prepares the plant to host the bacteria, thus ensuring proper continuation into the pathogenic phase. PMID:26877150

  4. Plant Growth-promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts to reduce fertilizer rates while increasing nutrient uptake to maintain high yields are very important due to the increasing cost of fertilizers and their potential negative environmental impacts. The objectives of this study were to determine (i) if reduced rates of inorganic fertilizer cou...

  5. Beneficial effects of plant growth promoting rhizobacteria in integrated nutrient management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The global crave to supplement soil fertility will continue in order to achieve high crop productivity. Integrated nutrient management (INM) systems is now imperative to insure sustainability in the use of chemical fertilizers and manures. Information on integrating specific natural and man-made s...

  6. Different Growth Promoting Effects of Endophytic Bacteria on Invasive and Native Clonal Plants

    PubMed Central

    Dai, Zhi-Cong; Fu, Wei; Wan, Ling-Yun; Cai, Hong-Hong; Wang, Ning; Qi, Shan-Shan; Du, Dao-Lin

    2016-01-01

    The role of the interactions between endophytes and alien plants has been unclear yet in plant invasion. We used a completely germ-free culture system to quantify the plant growth-promoting (PGP) effects of endophytic bacteria Bacillus sp. on aseptic seedlings of Wedelia trilobata and of its native clonal congener W. chinensis. The endophytic bacteria did not affect the growth of W. chinensis, but they significantly promoted the growth of W. trilobata. With the PGP effects of endophytic bacteria, relative change ratios of the clonal traits and the ramets’ growth traits of W. trilobata were significantly greater than those of W. chinensis. Our results indicate that the growth-promoting effects of endophytes may differ between invasive and native clonal plants, and the endophytes of invasive plant may be host-specific to facilitate plant invasion. PMID:27252722

  7. Different Growth Promoting Effects of Endophytic Bacteria on Invasive and Native Clonal Plants.

    PubMed

    Dai, Zhi-Cong; Fu, Wei; Wan, Ling-Yun; Cai, Hong-Hong; Wang, Ning; Qi, Shan-Shan; Du, Dao-Lin

    2016-01-01

    The role of the interactions between endophytes and alien plants has been unclear yet in plant invasion. We used a completely germ-free culture system to quantify the plant growth-promoting (PGP) effects of endophytic bacteria Bacillus sp. on aseptic seedlings of Wedelia trilobata and of its native clonal congener W. chinensis. The endophytic bacteria did not affect the growth of W. chinensis, but they significantly promoted the growth of W. trilobata. With the PGP effects of endophytic bacteria, relative change ratios of the clonal traits and the ramets' growth traits of W. trilobata were significantly greater than those of W. chinensis. Our results indicate that the growth-promoting effects of endophytes may differ between invasive and native clonal plants, and the endophytes of invasive plant may be host-specific to facilitate plant invasion. PMID:27252722

  8. Complete Genome Sequence of Bacillus methylotrophicus Strain B25, a Potential Plant Growth-Promoting Rhizobacterium

    PubMed Central

    Brutel, Aline; Lemainque, Arnaud; Mairey, Barbara; Médigue, Claudine; Vallenet, David; Lefort, Francois; Grizard, Damien

    2016-01-01

    The complete genome of Bacillus methylotrophicus strain B25, isolated in Switzerland, was sequenced. Its size is 3.85 Mb, and several genes that may contribute to plant growth-promoting activities were identified in silico. PMID:26966215

  9. Draft Genome Sequence of Acinetobacter calcoaceticus Strain P23, a Plant Growth-Promoting Bacterium of Duckweed

    PubMed Central

    Hosoyama, Akira; Yamazoe, Atsushi; Morikawa, Masaaki

    2015-01-01

    Acinetobacter calcoaceticus strain P23 is a plant growth-promoting bacterium, which was isolated from the surface of duckweed. We report here the draft genome sequence of strain P23. The genome data will serve as a valuable reference for understanding the molecular mechanism of plant growth promotion in aquatic plants. PMID:25720680

  10. Draft Genome Sequence of Acinetobacter calcoaceticus Strain P23, a Plant Growth-Promoting Bacterium of Duckweed.

    PubMed

    Sugawara, Masayuki; Hosoyama, Akira; Yamazoe, Atsushi; Morikawa, Masaaki

    2015-01-01

    Acinetobacter calcoaceticus strain P23 is a plant growth-promoting bacterium, which was isolated from the surface of duckweed. We report here the draft genome sequence of strain P23. The genome data will serve as a valuable reference for understanding the molecular mechanism of plant growth promotion in aquatic plants. PMID:25720680

  11. Survival and Plant Growth Promotion of Detergent-Adapted Pseudomonas fluorescens ANP15 and Pseudomonas aeruginosa 7NSK2

    PubMed Central

    Devliegher, W.; Arif, M.; Verstraete, W.

    1995-01-01

    Four detergents were tested as selective C sources for the plant growth-promoting rhizobacteria Pseudomonas aeruginosa 7NSK2 and Pseudomonas fluorescens ANP15. CO-720 (Igepal CO-720) or DOS (dioctyl sulfosuccinate), applied at 0.2% to the soil, increased the number of detergent-adapted, inoculated strains by almost 1.5 log units after 25 days, accounting for virtually the entire increase in total bacteria. The same dose of Tween 80 or N-laurylsarcosine, on the other hand, increased the indigenous populations by almost 2.5 log units, with only minor increases in the number of detergent-adapted inoculated strains. When CO-720 or DOS was initially supplied, the number of detergent-adapted 7NSK2 organisms was about 2 log units higher after 3 months of incubation than for the detergent-unadapted strain. This better survival resulted in a significantly higher root colonization of maize in a pot experiment with soil inoculation, with a significantly (P <= 0.05) higher shoot dry weight (18 to 33%). In a first field experiment with rhizosphere inoculation of 1-month-old maize plants, no effects on the height of two maize cultivars could be observed 1 month after inoculation. In a second field experiment, leaf and stem dry weights of yellow mustard and grass dry weight were increased in the treatments with seed and soil inoculation of the detergent-adapted 7NSK2 in combination with CO-720 application by, respectively, 7 to 8%, 19 to 23%, and 20 to 31%, although only the increases in grass dry weight were statistically significant at P <= 0.1. To some extent, 7NSK2 and DOS application also positively affected the mineral content of yellow mustard. PMID:16535159

  12. Determinants of Plant Growth-promoting Ochrobactrum lupini KUDC1013 Involved in Induction of Systemic Resistance against Pectobacterium carotovorum subsp. carotovorum in Tobacco Leaves

    PubMed Central

    Sumayo, Marilyn; Hahm, Mi-Seon; Ghim, Sa-Youl

    2013-01-01

    The plant growth-promoting rhizobacterium Ochrobactrum lupini KUDC1013 elicited induced systemic resistance (ISR) in tobacco against soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum. We investigated of its factors involved in ISR elicitation. To characterize the ISR determinants, KUDC1013 cell suspension, heat-treated cells, supernatant from a culture medium, crude bacterial lipopolysaccharide (LPS) and flagella were tested for their ISR activities. Both LPS and flagella from KUDC1013 were effective in ISR elicitation. Crude cell free supernatant elicited ISR and factors with the highest ISR activity were retained in the n-butanol fraction. Analysis of the ISR-active fraction revealed the metabolites, phenylacetic acid (PAA), 1-hexadecene and linoleic acid (LA), as elicitors of ISR. Treatment of tobacco with these compounds significantly decreased the soft rot disease symptoms. This is the first report on the ISR determinants by plant growth-promoting rhizobacteria (PGPR) KUDC1013 and identifying PAA, 1-hexadecene and LA as ISR-related compounds. This study shows that KUDC1013 has a great potential as biological control agent because of its multiple factors involved in induction of systemic resistance against phytopathogens. PMID:25288944

  13. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; van der Lelie, Daniel; Hoffman, Adam; Zhang, Yian-Biao; Walla, Michael D.; Vangronsveld, Jaco; Newman, Lee; Monchy, Sébastien

    2010-01-01

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa×deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT–PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  14. Genome Sequence of Arthrobacter koreensis 5J12A, a Plant Growth-Promoting and Desiccation-Tolerant Strain

    PubMed Central

    Narváez-Reinaldo, Juan Jesús; García-Fontana, Cristina; Vílchez, Juan Ignacio; González-López, Jesús

    2015-01-01

    Arthrobacter koreensis 5J12A is a desiccation-tolerant organism isolated from the Nerium oleander rhizosphere. Here, we report its genome sequence, which may shed light on its role in plant growth promotion. This is believed to be the first published genome of a desiccation-tolerant plant growth promoter from the genus Arthrobacter. PMID:26067978

  15. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens.

    PubMed

    Asari, Shashidar; Matzén, Staffan; Petersen, Mikael Agerlin; Bejai, Sarosh; Meijer, Johan

    2016-06-01

    Biotic interactions through volatile organic compounds (VOC) are frequent in nature. This investigation aimed to study the role of ITALIC! BacillusVOC for the beneficial effects on plants observed as improved growth and pathogen control. Four ITALIC! Bacillus amyloliquefacienssubsp. ITALIC! plantarumstrains were screened for VOC effects on ITALIC! Arabidopsis thalianaCol-0 seedlings and ITALIC! Brassicafungal phytopathogens. VOC from all four ITALIC! Bacillusstrains could promote growth of ITALIC! Arabidopsisplants resulting in increased shoot biomass but the effects were dependent on the growth medium. Dose response studies with UCMB5113 on MS agar with or without root exudates showed significant plant growth promotion even at low levels of bacteria. ITALIC! BacillusVOC antagonized growth of several fungal pathogens ITALIC! in vitro However, the plant growth promotion efficacy and fungal inhibition potency varied among the ITALIC! Bacillusstrains. VOC inhibition of several phytopathogens indicated efficient microbial antagonism supporting high rhizosphere competence of the ITALIC! Bacillusstrains. GC-MS analysis identified several VOC structures where the profiles differed depending on the growth medium. The ability of ITALIC! Bacillusstrains to produce both volatile and soluble compounds for plant growth promotion and disease biocontrol provides examples of rhizosphere microbes as an important ecosystem service with high potential to support sustainable crop production. PMID:27053756

  16. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea.

    PubMed

    Sreevidya, M; Gopalakrishnan, S; Kudapa, H; Varshney, R K

    2016-01-01

    The main objective of the present study was to isolate and characterize actinomycetes for their plant growth-promotion in chickpea. A total of 89 actinomycetes were screened for their antagonism against fungal pathogens of chickpea by dual culture and metabolite production assays. Four most promising actinomycetes were evaluated for their physiological and plant growth-promotion properties under in vitro and in vivo conditions. All the isolates exhibited good growth at temperatures from 20°C to 40°C, pH range of 7-11 and NaCl concentrations up to 8%. These were also found highly tolerant to Bavistin, slightly tolerant to Thiram and Captan (except VAI-7 and VAI-40) but susceptible to Benlate and Ridomil at field application levels and were found to produce siderophore, cellulase, lipase, protease, chitinase (except VAI-40), hydrocyanic acid (except VAI-7 and VAI-40), indole acetic acid and β-1,3-glucanase. When the four actinomycetes were evaluated for their plant growth-promotion properties under field conditions on chickpea, all exhibited increase in nodule number, shoot weight and yield. The actinomycetes treated plots enhanced total N, available P and organic C over the un-inoculated control. The scanning electron microscope studies exhibited extensive colonization by actinomycetes on the root surface of chickpea. The expression profiles for indole acetic acid, siderophore and β-1,3-glucanase genes exhibited up-regulation for all three traits and in all four isolates. The actinomycetes were identified as Streptomyces but different species in the 16S rDNA analysis. It was concluded that the selected actinomycetes have good plant growth-promotion and biocontrol potentials on chickpea. PMID:26887230

  17. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea

    PubMed Central

    Sreevidya, M.; Gopalakrishnan, S.; Kudapa, H.; Varshney, R.K.

    2016-01-01

    The main objective of the present study was to isolate and characterize actinomycetes for their plant growth-promotion in chickpea. A total of 89 actinomycetes were screened for their antagonism against fungal pathogens of chickpea by dual culture and metabolite production assays. Four most promising actinomycetes were evaluated for their physiological and plant growth-promotion properties under in vitro and in vivo conditions. All the isolates exhibited good growth at temperatures from 20 °C to 40 °C, pH range of 7–11 and NaCl concentrations up to 8%. These were also found highly tolerant to Bavistin, slightly tolerant to Thiram and Captan (except VAI-7 and VAI-40) but susceptible to Benlate and Ridomil at field application levels and were found to produce siderophore, cellulase, lipase, protease, chitinase (except VAI-40), hydrocyanic acid (except VAI-7 and VAI-40), indole acetic acid and β-1,3-glucanase. When the four actinomycetes were evaluated for their plant growth-promotion properties under field conditions on chickpea, all exhibited increase in nodule number, shoot weight and yield. The actinomycetes treated plots enhanced total N, available P and organic C over the un-inoculated control. The scanning electron microscope studies exhibited extensive colonization by actinomycetes on the root surface of chickpea. The expression profiles for indole acetic acid, siderophore and β-1,3-glucanase genes exhibited up-regulation for all three traits and in all four isolates. The actinomycetes were identified as Streptomyces but different species in the 16S rDNA analysis. It was concluded that the selected actinomycetes have good plant growth-promotion and biocontrol potentials on chickpea. PMID:26887230

  18. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    SciTech Connect

    Taghavi, S.; van der Lelie, D.; Hoffman, A.; Zhang, Y.-B.; Walla, M. D.; Vangronsveld, J.; Newman, L.; Monchy, S.

    2010-05-13

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa x deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  19. Plant powder teabags: a novel and practical approach to resolve culturability and diversity of rhizobacteria.

    PubMed

    Sarhan, Mohamed S; Mourad, Elhussein F; Hamza, Mervat A; Youssef, Hanan H; Scherwinski, Ann-Christin; El-Tahan, Mahmoud; Fayez, Mohamed; Ruppel, Silke; Hegazi, Nabil A

    2016-08-01

    We have developed teabags packed with dehydrated plant powders, without any supplements, for preparation of plant infusions necessary to develop media for culturing rhizobacteria. These bacteria are efficiently cultivated on such plant teabag culture media, with better progressive in situ recoverability compared to standard chemically synthetic culture media. Combining various plant-based culture media and incubation conditions enabled us to resolve unique denaturing gradient gel electrophoresis (DGGE) bands that were not resolved by tested standard culture media. Based on polymerase chain reaction PCR-DGGE of 16S rDNA fingerprints and sequencing, the plant teabag culture media supported higher diversity and significant increases in the richness of endo-rhizobacteria, namely Gammaproteobacteria (Enterobacteriaceae) and predominantly Alphaproteobacteria (Rhizobiaceae). This culminated in greater retrieval of the rhizobacteria taxa associated with the plant roots. We conclude that the plant teabag culture medium by itself, without any nutritional supplements, is sufficient and efficient for recovering and mirroring the complex and diverse communities of rhizobacteria. Our message to fellow microbial ecologists is: simply dehydrate your plant canopy, teabag it and soak it to prepare your culture media, with no need for any additional supplementary nutrients. PMID:27178359

  20. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper.

    PubMed

    Islam, Md Rashedul; Sultana, Tahera; Joe, M Melvin; Yim, Woojong; Cho, Jang-Cheon; Sa, Tongmin

    2013-12-01

    As a suitable alternative to chemical fertilizers, the application of plant growth-promoting rhizobacteria has been increasing in recent years due to their potential to be used as biofertilizers. In the present work, 13 nitrogen-fixing bacterial strains belonging to 11 different genera were tested for their PGP attributes. All of the strains were positive for 1-aminocyclopropane-1-carboxylate deaminase (ACCD), indole-3-acetic acid (IAA), salicylic acid, and ammonia production while negative for cellulase, pectinase, and hydrocyanic acid production. The strains Pseudomonas sp. RFNB3 and Serratia sp. RFNB14 were the most effective in solubilizing both tri-calcium phosphate and zinc oxide. In addition, all strains except Pseudomonas sp. RFNB3 were able to oxidize sulfur, and six strains were positive for siderophore synthesis. Each strain tested in this study possesses at least four PGP properties in addition to nitrogen fixation. Nine strains were selected based on their multiple PGP potential, particularly ACCD and IAA production, and evaluated for their effects on early growth of tomato and red pepper under gnotobiotic conditions. Bacterial inoculation considerably influenced root and shoot length, seedling vigor, and dry biomass of the two crop plants. Three strains that demonstrated substantial effects on plant performance were further selected for greenhouse trials with red pepper, and among them Pseudomonas sp. RFNB3 resulted in significantly higher plant height (26%) and dry biomass (28%) compared to control. The highest rate of nitrogen fixation, as determined by acetylene reduction assay, occurred in Novosphingobium sp. RFNB21 inoculated red pepper root (49.6 nM of ethylene/h/g of dry root) and rhizosphere soil (41.3 nM of ethylene/h/g of dry soil). Inoculation with nitrogen-fixing bacteria significantly increased chlorophyll content, and the uptake of different macro- and micro-nutrient contents enhancing also in red pepper shoots, in comparison with

  1. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea.

    PubMed

    Zaidi, Sabina; Usmani, Saima; Singh, Braj Raj; Musarrat, Javed

    2006-08-01

    In this study, a nickel (Ni)-tolerant Bacillus subtilis strain SJ-101 was characterized based on the 16SrDNA homology and phylogenetic analysis. The role of this strain ascertained in facilitating Ni accumulation in the Indian mustard plant (Brassica juncea [L]. Czern and Coss) var. Pusa Bold (DIR-50), to elucidate the potential of Ni phytoremediation in combination with metal-tolerant rhizobacteria. The data revealed that the plants exposed to NiCl2 (1750 mg kg(-1)) in soil bioaugmented with strain SJ-101 have accumulated 0.147% Ni vis-à-vis 0.094% accumulation in dry biomass of the plants grown in uninoculated soil. The strain SJ-101 has also exhibited the capability of producing indole acetic acid (IAA) (55 microg ml(-1)), and solubilizing inorganic phosphate (90 microg ml(-1)) in specific culture media. The pot culture experiments clearly demonstrated the beneficial effects of bioinoculant strain SJ-101 with significant increase (p<0.05) in the plant growth attributes in untreated control soil. Furthermore, the protective effect of the strain SJ-101 against Ni phytotoxicity was evident in plants grown in soil treated with NiCl2 in concentration range of 250-1750 mg kg(-1). Thus, it is suggested that the strain SJ-101 owing to its intrinsic abilities of plant growth promotion, and attenuation of soil Ni by biosorption and bioaccumulation, could be exploited for bacteria-assisted phytoaccumulation of this toxic heavy metal from contaminated sites. PMID:16487570

  2. Plant Growth Promotion Activity of Keratinolytic Fungi Growing on a Recalcitrant Waste Known as "Hair Waste".

    PubMed

    Cavello, Ivana A; Crespo, Juan M; García, Sabrina S; Zapiola, José M; Luna, María F; Cavalitto, Sebastián F

    2015-01-01

    Purpureocillium lilacinum (Thom) Samsom is one of the most studied fungi in the control of plant parasitic nematodes. However, there is not specific information on its ability to inhibit some pathogenic bacteria, fungi, or yeast. This work reports the production of several antifungal hydrolytic enzymes by a strain of P. lilacinum when it is grown in a medium containing hair waste. The growth of several plant-pathogenic fungi, Alternaria alternata, Aspergillus niger, and Fusarium culmorum, was considerably affected by the presence of P. lilacinum's supernatant. Besides antifungal activity, P. lilacinum demonstrates the capability to produce indoleacetic acid and ammonia during time cultivation on hair waste medium. Plant growth-promoting activity by cell-free supernatant was evidenced through the increase of the percentage of tomato seed germination from 71 to 85% after 48 hours. A 21-day plant growth assay using tomato plants indicates that crude supernatant promotes the growth of the plants similar to a reference fertilizer (p > 0.05). These results suggest that both strain and the supernatant may have potential to be considered as a potent biocontrol agent with multiple plant growth-promoting properties. To our knowledge, this is the first report on the antifungal, IAA production and tomato growth enhancing compounds produced by P. lilacinum LPSC #876. PMID:26697226

  3. Stimulatory Effects of Arsenic-Tolerant Soil Fungi on Plant Growth Promotion and Soil Properties

    PubMed Central

    Srivastava, Pankaj Kumar; Shenoy, Belle Damodara; Gupta, Manjul; Vaish, Aradhana; Mannan, Shivee; Singh, Nandita; Tewari, Shri Krishna; Tripathi, Rudra Deo

    2012-01-01

    Fifteen fungi were obtained from arsenic-contaminated agricultural fields in West Bengal, India and examined for their arsenic tolerance and removal ability in our previous study. Of these, the four best arsenic-remediating isolates were tested for plant growth promotion effects on rice and pea in the present study. A greenhouse-based pot experiment was conducted using soil inocula of individual fungi. The results indicated a significant (P<0.05) increase in plant growth and improvement of soil properties in inoculated soils compared to the control. A significant increase in plant growth was recorded in treated soils and varied from 16–293%. Soil chemical and enzymatic properties varied from 20–222% and 34–760%, respectively, in inoculated soil. Plants inoculated with inocula of Westerdykella and Trichoderma showed better stimulatory effects on plant growth and soil nutrient availability than Rhizopus and Lasiodiplodia. These fungi improved soil nutrient content and enhanced plant growth. These fungi may be used as bioinoculants for plant growth promotion and improved soil properties in arsenic-contaminated agricultural soils. PMID:23047145

  4. The metabolism of neonicotinoid insecticide thiamethoxam by soil enrichment cultures, and the bacterial diversity and plant growth-promoting properties of the cultured isolates.

    PubMed

    Zhou, Guang-Can; Wang, Ying; Ma, Yuan; Zhai, Shan; Zhou, Ling-Yan; Dai, Yi-Jun; Yuan, Sheng

    2014-01-01

    A soil enrichment culture (SEC) rapidly degraded 96% of 200 mg L(-1) neonicotinoid insecticide thiamethoxam (TMX) in MSM broth within 30 d; therefore, its metabolic pathway of TMX, bacterial diversity and plant growth-promoting rhizobacteria (PGPR) activities of the cultured isolates were studied. The SEC transformed TMX via the nitro reduction pathway to form nitrso, urea metabolites and via cleavage of the oxadiazine cycle to form a new metabolite, hydroxyl CLO-tri. In addition, 16S rRNA gene-denaturing gradient gel electrophoresis analysis revealed that uncultured rhizobacteria are predominant in the SEC broth and that 77.8% of the identified bacteria belonged to uncultured bacteria. A total of 31 cultured bacterial strains including six genera (Achromobacter, Agromyces, Ensifer, Mesorhizobium, Microbacterium and Pseudoxanthomonas) were isolated from the SEC broth. The 12 strains of Ensifer adhaerens have the ability to degrade TMX. All six selected bacteria showed PGPR activities. E. adhaerens TMX-23 and Agromyces mediolanus TMX-25 produced indole-3-acetic acid, whereas E. adhaerens TMX-23 and Mesorhizobium alhagi TMX-36 are N2-fixing bacteria. The six-isolated microbes were tolerant to 200 mg L(-1) TMX, and the growth of E. adhaerens was significantly enhanced by TMX, whereas that of Achromobacter sp. TMX-5 and Microbacterium sp.TMX-6 were enhanced slightly. The present study will help to explain the fate of TMX in the environment and its microbial degradation mechanism, as well as to facilitate future investigations of the mechanism through which TMX enhances plant vigor. PMID:24762175

  5. Whole Genome Sequencing and Analysis of Plant Growth Promoting Bacteria Isolated from the Rhizosphere of Plantation Crops Coconut, Cocoa and Arecanut

    PubMed Central

    Thomas, George V.; Manikandan, Vinu; Gajewski, John; Thomas, George; Seshagiri, Somasekar; Schuster, Stephan C.

    2014-01-01

    Coconut, cocoa and arecanut are commercial plantation crops that play a vital role in the Indian economy while sustaining the livelihood of more than 10 million Indians. According to 2012 Food and Agricultural organization's report, India is the third largest producer of coconut and it dominates the production of arecanut worldwide. In this study, three Plant Growth Promoting Rhizobacteria (PGPR) from coconut (CPCRI-1), cocoa (CPCRI-2) and arecanut (CPCRI-3) characterized for the PGP activities have been sequenced. The draft genome sizes were 4.7 Mb (56% GC), 5.9 Mb (63.6% GC) and 5.1 Mb (54.8% GB) for CPCRI-1, CPCRI-2, CPCRI-3, respectively. These genomes encoded 4056 (CPCRI-1), 4637 (CPCRI-2) and 4286 (CPCRI-3) protein-coding genes. Phylogenetic analysis revealed that both CPCRI-1 and CPCRI-3 belonged to Enterobacteriaceae family, while, CPCRI-2 was a Pseudomonadaceae family member. Functional annotation of the genes predicted that all three bacteria encoded genes needed for mineral phosphate solubilization, siderophores, acetoin, butanediol, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinase, phenazine, 4-hydroxybenzoate, trehalose and quorum sensing molecules supportive of the plant growth promoting traits observed in the course of their isolation and characterization. Additionally, in all the three CPCRI PGPRs, we identified genes involved in synthesis of hydrogen sulfide (H2S), which recently has been proposed to aid plant growth. The PGPRs also carried genes for central carbohydrate metabolism indicating that the bacteria can efficiently utilize the root exudates and other organic materials as energy source. Genes for production of peroxidases, catalases and superoxide dismutases that confer resistance to oxidative stresses in plants were identified. Besides these, genes for heat shock tolerance, cold shock tolerance and glycine-betaine production that enable bacteria to survive abiotic stress were also identified. PMID:25162593

  6. Complete genome sequence of the rapeseed plant-growth promoting Serratia plymuthica strain AS9

    SciTech Connect

    Neupane, Saraswoti; Hogberg, Nils; Alstrom, Sadhna; Lucas, Susan; Han, James; Lapidus, Alla L.; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Peters, Lin; Ovchinnikova, Galina; Lu, Megan; Han, Cliff; Detter, J. Chris; Tapia, Roxanne; Fiebig, Anne; Land, Miriam L; Hauser, Loren John; Kyrpides, Nikos C; Ivanova, N; Pagani, Ioanna; Klenk, Hans-Peter; Woyke, Tanja; Finlay, Roger D.

    2012-01-01

    Serratia plymuthica are plant-associated, plant beneficial species belonging to the family Enterobacteriaceae. The members of the genus Serratia are ubiquitous in nature and their life style varies from endophytic to free-living. S. plymuthica AS9 is of special interest for its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The genome of S. plymuthica AS9 comprises a 5,442,880 bp long circular chromosome that consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome is part of the project entitled Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens awarded through the 2010 DOE-JGI Community Sequencing Program (CSP2010).

  7. Complete genome sequence of the rapeseed plant-growth promoting Serratia plymuthica strain AS9

    PubMed Central

    Högberg, Nils; Alström, Sadhna; Lucas, Susan; Han, James; Lapidus, Alla; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Peters, Lin; Ovchinnikova, Galina; Lu, Megan; Han, Cliff; Detter, John C.; Tapia, Roxanne; Fiebig, Anne; Land, Miriam; Hauser, Loren; Kyrpides, Nikos C.; Ivanova, Natalia; Pagani, Ioanna; Klenk, Hans-Peter; Woyke, Tanja; Finlay, Roger D.

    2012-01-01

    Serratia plymuthica are plant-associated, plant beneficial species belonging to the family Enterobacteriaceae. The members of the genus Serratia are ubiquitous in nature and their life style varies from endophytic to free-living. S. plymuthica AS9 is of special interest for its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The genome of S. plymuthica AS9 comprises a 5,442,880 bp long circular chromosome that consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome is part of the project entitled “Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens” awarded through the 2010 DOE-JGI Community Sequencing Program (CSP2010). PMID:22675598

  8. Biosafety Test for Plant Growth-Promoting Bacteria: Proposed Environmental and Human Safety Index (EHSI) Protocol

    PubMed Central

    Vílchez, Juan I.; Navas, Alfonso; González-López, Jesús; Arcos, Susana C.; Manzanera, Maximino

    2016-01-01

    Plant growth-promoting bacteria (PGPB) colonize plants and enhance their growth by different mechanisms. Some of these microorganisms may represent a potential threat to human, animal or plant health; however, their use might be approved in parts of Europe if they have been recommended as plant growth enhancers. The current regulatory framework has resulted in a fragmented, contradictory system, and there is an urgent need to establish harmonized protocols for the predictability, efficiency, consistency and especially the safety of PGPB for human and animal health and for the environment. In response to current efforts to update biosafety policies and provide alternative methods to replace the use of vertebrate animals, we propose a panel of tests and an evaluation system to reliably determine the biosafety of bacterial strains used as PGPB. Based on the results of different tests, we propose a scoring system to evaluate the safety of candidates for PGPB within the limitations of the assays used. PMID:26779168

  9. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4.

    PubMed

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J; Glick, Bernard R

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated "housekeeping" genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524

  10. The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4

    PubMed Central

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J.; Glick, Bernard R.

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524

  11. Non-contiguous finished genome sequence of plant-growth promoting Serratia proteamaculans S4.

    PubMed

    Neupane, Saraswoti; Goodwin, Lynne A; Högberg, Nils; Kyrpides, Nikos C; Alström, Sadhna; Bruce, David; Quintana, Beverly; Munk, Christine; Daligault, Hajnalka; Teshima, Hazuki; Davenport, Karen; Reitenga, Krista; Green, Lance; Chain, Patrick; Erkkila, Tracy; Gu, Wei; Zhang, Xiaojing; Xu, Yan; Kunde, Yulia; Chertkov, Olga; Han, James; Han, Cliff; Detter, John C; Ivanova, Natalia; Pati, Amrita; Chen, Amy; Szeto, Ernest; Mavromatis, Kostas; Huntemann, Marcel; Nolan, Matt; Pitluck, Sam; Deshpande, Shweta; Markowitz, Victor; Pagani, Ioanna; Klenk, Hans-Peter; Woyke, Tanja; Finlay, Roger D

    2013-07-30

    Serratia proteamaculans S4 (previously Serratia sp. S4), isolated from the rhizosphere of wild Equisetum sp., has the ability to stimulate plant growth and to suppress the growth of several soil-borne fungal pathogens of economically important crops. Here we present the non-contiguous, finished genome sequence of S. proteamaculans S4, which consists of a 5,324,944 bp circular chromosome and a 129,797 bp circular plasmid. The chromosome contains 5,008 predicted genes while the plasmid comprises 134 predicted genes. In total, 4,993 genes are assigned as protein-coding genes. The genome consists of 22 rRNA genes, 82 tRNA genes and 58 pseudogenes. This genome is a part of the project "Genomics of four rapeseed plant growth-promoting bacteria with antagonistic effect on plant pathogens" awarded through the 2010 DOE-JGI's Community Sequencing Program. PMID:24501629

  12. Non-contiguous finished genome sequence of plant-growth promoting Serratia proteamaculans S4

    PubMed Central

    Goodwin, Lynne A.; Högberg, Nils; Kyrpides, Nikos C.; Alström, Sadhna; Bruce, David; Quintana, Beverly; Munk, Christine; Daligault, Hajnalka; Teshima, Hazuki; Davenport, Karen; Reitenga, Krista; Green, Lance; Chain, Patrick; Erkkila, Tracy; Gu, Wei; Zhang, Xiaojing; Xu, Yan; Kunde, Yulia; Chertkov, Olga; Han, James; Han, Cliff; Detter, John C.; Ivanova, Natalia; Pati, Amrita; Chen, Amy; Szeto, Ernest; Mavromatis, Kostas; Huntemann, Marcel; Nolan, Matt; Pitluck, Sam; Deshpande, Shweta; Markowitz, Victor; Pagani, Ioanna; Klenk, Hans-Peter; Woyke, Tanja; Finlay, Roger D.

    2013-01-01

    Serratia proteamaculans S4 (previously Serratia sp. S4), isolated from the rhizosphere of wild Equisetum sp., has the ability to stimulate plant growth and to suppress the growth of several soil-borne fungal pathogens of economically important crops. Here we present the non-contiguous, finished genome sequence of S. proteamaculans S4, which consists of a 5,324,944 bp circular chromosome and a 129,797 bp circular plasmid. The chromosome contains 5,008 predicted genes while the plasmid comprises 134 predicted genes. In total, 4,993 genes are assigned as protein-coding genes. The genome consists of 22 rRNA genes, 82 tRNA genes and 58 pseudogenes. This genome is a part of the project “Genomics of four rapeseed plant growth-promoting bacteria with antagonistic effect on plant pathogens” awarded through the 2010 DOE-JGI’s Community Sequencing Program. PMID:24501629

  13. Functional abilities of cultivable plant growth promoting bacteria associated with wheat (Triticum aestivum L.) crops.

    PubMed

    Moreira, Fernanda da S; Costa, Pedro B da; Souza, Rocheli de; Beneduzi, Anelise; Lisboa, Bruno B; Vargas, Luciano K; Passaglia, Luciane M P

    2016-03-01

    In the pursuit of sustainable agriculture, bioinoculants usage as providers of a crop's needs is a method to limit environmental damage. In this study, a collection of cultivable putative plant growth promoting (PGP) bacteria associated with wheat crops was obtained and this bacterial sample was characterized in relation to the functional diversity of certain PGP features. The isolates were obtained through classical cultivation methods, identified by partial 16S rRNA gene sequencing and characterized for PGP traits of interest. Functional diversity characterization was performed using Categorical Principal Component Analysis (CatPCA) and Multiple Correspondence Analysis (MCA). The most abundant genera found among the 346 isolates were Pseudomonas, Burkholderia, and Enterobacter. Occurrence of PGP traits was affected by genus, niche, and sampling site. A large number of genera grouped together with the ability to produce indolic compounds; phosphate solubilization and siderophores production formed a second group related to fewer genera, in which the genus Burkholderia has a great importance. The results obtained may help future studies aiming prospection of putative plant growth promoting bacteria regarding the desired organism and PGP trait. PMID:27007904

  14. Diversity, Biocontrol, and Plant Growth Promoting Abilities of Xylem Residing Bacteria from Solanaceous Crops

    PubMed Central

    Achari, Gauri A.

    2014-01-01

    Eggplant (Solanum melongena L.) is one of the solanaceous crops of economic and cultural importance and is widely cultivated in the state of Goa, India. Eggplant cultivation is severely affected by bacterial wilt caused by Ralstonia solanacearum that colonizes the xylem tissue. In this study, 167 bacteria were isolated from the xylem of healthy eggplant, chilli, and Solanum torvum Sw. by vacuum infiltration and maceration. Amplified rDNA restriction analysis (ARDRA) grouped these xylem residing bacteria (XRB) into 38 haplotypes. Twenty-eight strains inhibited growth of R. solanacearum and produced volatile and diffusible antagonistic compounds and plant growth promoting substances in vitro. Antagonistic strains XB86, XB169, XB177, and XB200 recorded a biocontrol efficacy greater than 85% against BW and exhibited 12%–22 % increase in shoot length in eggplant in the greenhouse screening. 16S rRNA based identification revealed the presence of 23 different bacterial genera. XRB with high biocontrol and plant growth promoting activities were identified as strains of Staphylococcus sp., Bacillus sp., Streptomyces sp., Enterobacter sp., and Agrobacterium sp. This study is the first report on identity of bacteria from the xylem of solanaceous crops having traits useful in cultivation of eggplant. PMID:24963298

  15. Functional abilities of cultivable plant growth promoting bacteria associated with wheat (Triticum aestivum L.) crops

    PubMed Central

    Moreira, Fernanda da S.; da Costa, Pedro B.; de Souza, Rocheli; Beneduzi, Anelise; Lisboa, Bruno B.; Vargas, Luciano K.; Passaglia, Luciane M. P.

    2016-01-01

    Abstract In the pursuit of sustainable agriculture, bioinoculants usage as providers of a crop's needs is a method to limit environmental damage. In this study, a collection of cultivable putative plant growth promoting (PGP) bacteria associated with wheat crops was obtained and this bacterial sample was characterized in relation to the functional diversity of certain PGP features. The isolates were obtained through classical cultivation methods, identified by partial 16S rRNA gene sequencing and characterized for PGP traits of interest. Functional diversity characterization was performed using Categorical Principal Component Analysis (CatPCA) and Multiple Correspondence Analysis (MCA). The most abundant genera found among the 346 isolates were Pseudomonas, Burkholderia, and Enterobacter. Occurrence of PGP traits was affected by genus, niche, and sampling site. A large number of genera grouped together with the ability to produce indolic compounds; phosphate solubilization and siderophores production formed a second group related to fewer genera, in which the genus Burkholderia has a great importance. The results obtained may help future studies aiming prospection of putative plant growth promoting bacteria regarding the desired organism and PGP trait. PMID:27007904

  16. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp.

    NASA Astrophysics Data System (ADS)

    Rodriguez, Hilda; Gonzalez, Tania; Goire, Isabel; Bashan, Yoav

    2004-11-01

    In vitro gluconic acid formation and phosphate solubilization from sparingly soluble phosphorus sources by two strains of the plant growth-promoting bacteria A. brasilense (Cd and 8-I) and one strain of A. lipoferum JA4 were studied. Strains of A. brasilense were capable of producing gluconic acid when grown in sparingly soluble calcium phosphate medium when their usual fructose carbon source is amended with glucose. At the same time, there is a reduction in pH of the medium and release of soluble phosphate. To a greater extent, gluconic acid production and pH reduction were observed for A. lipoferum JA4. For the three strains, clearing halos were detected on solid medium plates with calcium phosphate. This is the first report of in vitro gluconic acid production and direct phosphate solubilization by A. brasilense and the first report of P solubilization by A. lipoferum. This adds to the very broad spectrum of plant growth-promoting abilities of this genus.

  17. Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from solanaceous crops.

    PubMed

    Achari, Gauri A; Ramesh, Raman

    2014-01-01

    Eggplant (Solanum melongena L.) is one of the solanaceous crops of economic and cultural importance and is widely cultivated in the state of Goa, India. Eggplant cultivation is severely affected by bacterial wilt caused by Ralstonia solanacearum that colonizes the xylem tissue. In this study, 167 bacteria were isolated from the xylem of healthy eggplant, chilli, and Solanum torvum Sw. by vacuum infiltration and maceration. Amplified rDNA restriction analysis (ARDRA) grouped these xylem residing bacteria (XRB) into 38 haplotypes. Twenty-eight strains inhibited growth of R. solanacearum and produced volatile and diffusible antagonistic compounds and plant growth promoting substances in vitro. Antagonistic strains XB86, XB169, XB177, and XB200 recorded a biocontrol efficacy greater than 85% against BW and exhibited 12%-22 % increase in shoot length in eggplant in the greenhouse screening. 16S rRNA based identification revealed the presence of 23 different bacterial genera. XRB with high biocontrol and plant growth promoting activities were identified as strains of Staphylococcus sp., Bacillus sp., Streptomyces sp., Enterobacter sp., and Agrobacterium sp. This study is the first report on identity of bacteria from the xylem of solanaceous crops having traits useful in cultivation of eggplant. PMID:24963298

  18. Bioprospecting of plant growth promoting psychrotrophic Bacilli from the cold desert of north western Indian Himalayas.

    PubMed

    Yadav, Ajar Nath; Sachan, Shashwati Ghosh; Verma, Priyanka; Saxena, Anil Kumar

    2016-02-01

    The plant growth promoting psychrotrophic Bacilli were investigated from different sites in north western Indian Himalayas. A total of 247 morphotypes were obtained from different soil and water samples and were grouped into 43 clusters based on 16S rDNA-RFLP analysis with three restriction endonucleases. Sequencing of representative isolates has revealed that these 43 Bacilli belonged to different species of 11 genera viz., Desemzia, Exiguobacterium, Jeotgalicoccus, Lysinibacillus, Paenibacillus, Planococcus, Pontibacillus, Sinobaca, Sporosarcina, Staphylococcus and Virgibacillus. With an aim to develop microbial inoculants that can perform efficiently at low temperatures, all representative isolates were screened for different plant growth promoting traits at low temperatures (5-15 degrees C). Among the strains, variations were observed for production (%) of indole-3-acetic acid (20), ammonia (19), siderophores (11), gibberellic acid (4) and hydrogen cyanide (2); solubilisation (%) of zinc (14), phosphate (13) and potassium (7); 1-aminocyclopropane-1-carboxylate deaminase activity (6%) and biocontrol activity (4%) against Rhizoctonia solani and Macrophomina phaseolina. Among all the strains, Bacillus licheniformis, Bacillus muralis, Desemzia incerta, Paenibacillus tylopili and Sporosarcina globispora were found to be potent candidates to be developed as inoculants as they exhibited multiple PGP traits at low temperature. PMID:26934782

  19. Water soluble carbon nano-onions from wood wool as growth promoters for gram plants

    NASA Astrophysics Data System (ADS)

    Sonkar, Sumit Kumar; Roy, Manas; Babar, Dipak Gorakh; Sarkar, Sabyasachi

    2012-11-01

    Water-soluble carbon nano-onions (wsCNOs) isolated from wood wool--a wood-based pyrolysis waste product of wood, can enhance the overall growth rate of gram (Cicer arietinum) plants. Treatment of plants with upto 30 μg mL-1 of wsCNOs for an initial 10 day period in laboratory conditions led to an increase in the overall growth of the plant biomass. In order to examine the growth stimulating effects of wsCNOs under natural conditions, 10 day-old plants treated with and without wsCNOs were transplanted into soil of standard carbon and nitrogen composition. We observed an enhanced growth rate of the wsCNOs pre-treated plants in soil, which finally led to an increased productivity of plants in terms of a larger number of grams. On analyzing the carbon, hydrogen, and nitrogen (CHN) content for the shoot and fruit sections of the plants treated with and without wsCNOs, only a minor difference in the composition was noticed. However, a slight increase in the percentage of carbon and hydrogen in shoots reflects the synthesis of more organic biomass in the case of treated plants. This work shows that wsCNOs are non-toxic to plant cells and can act as efficient growth stimulants which can be used as benign growth promoters.

  20. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum

    PubMed Central

    Dodd, Ian C.

    2012-01-01

    Resolving the physiological mechanisms by which rhizobacteria enhance plant growth is difficult, since many such bacteria contain multiple plant growth-promoting properties. To understand further how the 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCd)-containing rhizobacterium Variovorax paradoxus 5C-2 affects plant growth, the flows and partitioning of mineral nutrients and abscisic acid (ABA) and ABA metabolism were studied in pea (Pisum sativum) plants following rhizosphere bacterial inoculation. Although root architecture was not affected, inoculation increased root and shoot biomass, and stomatal conductance, by 20, 15, and 24%, respectively, and increased N, P, K, Ca, and Mg uptake by 16, 81, 50, 46, and 58%, respectively. P deposition in inoculated plant roots was 4.9 times higher than that in uninoculated controls. Rhizobacterial inoculation increased root to shoot xylem flows and shoot to root phloem flows of K by 1.8- and 2.1-fold, respectively. In control plants, major sinks for K deposition were the roots and upper shoot (43% and 49% of total uptake, respectively), while rhizobacterial inoculation increased K distribution to the lower shoot at the expense of other compartments (xylem, phloem, and upper shoot). Despite being unable to metabolize ABA in vitro, V. paradoxus 5C-2 decreased root ABA concentrations and accumulation by 40–60%. Although inoculation decreased xylem ABA flows, phloem ABA flows increased. Whether bacterial ACCd attenuates root to shoot ABA signalling requires further investigation, since ABA is critical to maintain growth of droughted plants, and ACCd-containing organisms have been advocated as a means of minimizing growth inhibition of plants in drying soil. PMID:23136167

  1. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    PubMed

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum. PMID:25023078

  2. A reliable method for the selection and confirmation of transconjugants of plant growth-promoting bacteria especially plant-associated Burkholderia spp.

    PubMed

    Tariq, Mohsin; Lum, Michelle R; Chong, Allan W; Amirapu, Anjana B; Hameed, Sohail; Hirsch, Ann M

    2015-10-01

    Selectable markers, e.g., antibiotic resistance, for conjugation experiments are not always effective for slow-growing plant growth promoting bacteria such as Burkholderia. We used PCAT medium containing Congo Red for selecting Burkholderia transconjugants. This method allows for the reliable selection of transconjugants of these novel plant growth-promoting bacteria. PMID:26187775

  3. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters

    PubMed Central

    Martínez-Rodríguez, Julia del C.; la Mora-Amutio, Marcela De; Plascencia-Correa, Luis A.; Audelo-Regalado, Esmeralda; Guardado, Francisco R.; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J.; Escalante, Adelfo; Beltrán-García, Miguel J.; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. ‘Azul’ is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost. PMID:25763038

  4. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L.

    PubMed

    Singh, Namrata; Marwa, Naina; Mishra, Shashank K; Mishra, Jyoti; Verma, Praveen C; Rathaur, Sushma; Singh, Nandita

    2016-03-01

    Arsenic (As), a toxic metalloid adversely affects plant growth in polluted areas. In the present study, we investigated the possibility of improving phytostablization of arsenic through application of new isolated strain Brevundimonas diminuta (NBRI012) in rice plant [Oryza sativa (L.) Var. Sarju 52] at two different concentrations [10ppm (low toxic) and 50ppm (high toxic)] of As. The plant growth promoting traits of bacterial strains revealed the inherent ability of siderophores, phosphate solubilisation, indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production which may be associated with increased biomass, chlorophyll and MDA content of rice and thereby promoting plant growth. The study also revealed the As accumulation property of NBRI012 strain which could play an important role in As removal from contaminated soil. Furthermore, NBRI012 inoculation significantly restored the hampered root epidermal and cortical cell growth of rice plant and root hair elimination. Altogether our study highlights the multifarious role of B. diminuta in mediating stress tolerance and modulating translocation of As in edible part of rice plant. PMID:26650422

  5. Plant growth promoting potential of the fungus Discosia sp. FIHB 571 from tea rhizosphere tested on chickpea, maize and pea.

    PubMed

    Rahi, P; Vyas, P; Sharma, S; Gulati, Ashu; Gulati, Arvind

    2009-06-01

    The ITS region sequence of a phosphate-solubilizing fungus isolated from the rhizosphere of tea growing in Kangra valley of Himachal Pradesh showed 96% identity with Discosia sp. strain HKUCC 6626 ITS 1, 5.8S rRNA gene and ITS 2 complete sequence, and 28S rRNA gene partial sequence. The fungus exhibited the multiple plant growth promoting attributes of solubilization of inorganic phosphate substrates, production of phytase and siderophores, and biosynthesis of indole acetic acid (IAA)-like auxins. The fungal inoculum significantly increased the root length, shoot length and dry matter in the test plants of maize, pea and chickpea over the uninoculated control under the controlled environment. The plant growth promoting attributes have not been previously studied for the fungus. The fungal strain with its multiple plant growth promoting activities appears attractive towards the development of microbial inoculants. PMID:23100761

  6. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants

    PubMed Central

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10–32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these

  7. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants.

    PubMed

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10-32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these

  8. Screening of Rhizospheric Actinomycetes for Various In-vitro and In-vivo Plant Growth Promoting (PGP) Traits and for Agroactive Compounds

    PubMed Central

    Anwar, Sumaira; Ali, Basharat; Sajid, Imran

    2016-01-01

    In this study 98 rhizospheric actinomycetes were isolated from different wheat and tomato fields, Punjab, Pakistan. The isolates were characterized morphologically, biochemically, and genetically and were subjected to a comprehensive in vitro screening for various plant growth promoting (PGP) traits. About 30% of the isolates screened were found to be the promising PGP rhizobacteria (PGPRs), which exhibited maximum genetic similarity (up to 98–99%) with different species of the genus Streptomyces by using16S rRNA gene sequencing. The most active indole acetic acid (IAA) producer Streptomyces nobilis WA-3, Streptomyces Kunmingenesis WC-3, and Streptomyces enissocaesilis TA-3 produce 79.5, 79.23, and 69.26 μg/ml IAA respectively at 500 μg/ml L-tryptophan. The highest concentration of soluble phosphate was produced by Streptomyces sp. WA-1 (72.13 mg/100 ml) and S. djakartensis TB-4 (70.36 mg/100 ml). All rhizobacterial isolates were positive for siderophore, ammonia, and hydrogen cyanide production. Strain S. mutabilis WD-3 showed highest concentration of ACC-deaminase (1.9 mmol /l). For in-vivo screening, seed germination, and plant growth experiment were conducted by inoculating wheat (Triticum aestivum) seeds with the six selected isolates. Significant increases in shoot length was observed with S. nobilis WA-3 (65%), increased root length was recorded in case of S. nobilis WA-3 (81%) as compared to water treated control plants. Maximum increases in plant fresh weight were recorded with S. nobilis WA-3 (84%), increased plant dry weight was recorded in case of S. nobilis WA-3 (85%) as compared to water treated control plants. In case of number of leaves, significant increase was recorded with S. nobilis WA-3 (27%) and significant increase in case of number of roots were recorded in case of strain S. nobilis WA-3 (30%) as compared to control plants. Over all the study revealed that these rhizospheric PGP Streptomyces are good candidates to be developed as

  9. Screening of Rhizospheric Actinomycetes for Various In-vitro and In-vivo Plant Growth Promoting (PGP) Traits and for Agroactive Compounds.

    PubMed

    Anwar, Sumaira; Ali, Basharat; Sajid, Imran

    2016-01-01

    In this study 98 rhizospheric actinomycetes were isolated from different wheat and tomato fields, Punjab, Pakistan. The isolates were characterized morphologically, biochemically, and genetically and were subjected to a comprehensive in vitro screening for various plant growth promoting (PGP) traits. About 30% of the isolates screened were found to be the promising PGP rhizobacteria (PGPRs), which exhibited maximum genetic similarity (up to 98-99%) with different species of the genus Streptomyces by using16S rRNA gene sequencing. The most active indole acetic acid (IAA) producer Streptomyces nobilis WA-3, Streptomyces Kunmingenesis WC-3, and Streptomyces enissocaesilis TA-3 produce 79.5, 79.23, and 69.26 μg/ml IAA respectively at 500 μg/ml L-tryptophan. The highest concentration of soluble phosphate was produced by Streptomyces sp. WA-1 (72.13 mg/100 ml) and S. djakartensis TB-4 (70.36 mg/100 ml). All rhizobacterial isolates were positive for siderophore, ammonia, and hydrogen cyanide production. Strain S. mutabilis WD-3 showed highest concentration of ACC-deaminase (1.9 mmol /l). For in-vivo screening, seed germination, and plant growth experiment were conducted by inoculating wheat (Triticum aestivum) seeds with the six selected isolates. Significant increases in shoot length was observed with S. nobilis WA-3 (65%), increased root length was recorded in case of S. nobilis WA-3 (81%) as compared to water treated control plants. Maximum increases in plant fresh weight were recorded with S. nobilis WA-3 (84%), increased plant dry weight was recorded in case of S. nobilis WA-3 (85%) as compared to water treated control plants. In case of number of leaves, significant increase was recorded with S. nobilis WA-3 (27%) and significant increase in case of number of roots were recorded in case of strain S. nobilis WA-3 (30%) as compared to control plants. Over all the study revealed that these rhizospheric PGP Streptomyces are good candidates to be developed as

  10. Complete genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium of Calendula officinalis

    SciTech Connect

    Koeberl, Martina; White, Richard A.; Erschen, Sabine; Spanberger, Nora; El-Arabi, Tarek F.; Jansson, Janet K.; Berg, Gabriele

    2015-08-13

    The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activities against plant pathogenic fungi, bacteria and nematodes, consists of a single 3.9 Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties.

  11. Complete Genome Sequence of Bacillus amyloliquefaciens Strain Co1-6, a Plant Growth-Promoting Rhizobacterium of Calendula officinalis

    PubMed Central

    White, Richard A.; Erschen, Sabine; Spanberger, Nora; El-Arabi, Tarek F.; Jansson, Janet K.; Berg, Gabriele

    2015-01-01

    The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activity against plant-pathogenic fungi, bacteria, and nematodes, consists of a single 3.9-Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties. PMID:26272562

  12. Complete genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium of Calendula officinalis

    DOE PAGESBeta

    Köberl, Martina; White, Richard A.; Erschen, Sabine; Spanberger, Nora; El-Arabi, Tarek F.; Jansson, Janet K.; Berg, Gabriele

    2015-08-13

    The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activity against plant-pathogenic fungi, bacteria, and nematodes, consists of a single 3.9-Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties.

  13. Draft Genome Sequence of Bacillus amyloliquefaciens XK-4-1, a Plant Growth-Promoting Endophyte with Antifungal Activity.

    PubMed

    Sun, Zhengxiang; Hsiang, Tom; Zhou, Yi; Zhou, Jinglong

    2015-01-01

    Here, we report the draft genome sequence of a bacterial plant-growth-promoting endophyte, Bacillus amyloliquefaciens XK-4-1, which consists of one circular chromosome of 3,941,805 bp with 3,702 coding sequences (CDSs). The data presented highlight multiple sets of functional genes associated with its plant-beneficial characteristics. PMID:26564038

  14. Complete Genome Sequence of Bacillus amyloliquefaciens Strain Co1-6, a Plant Growth-Promoting Rhizobacterium of Calendula officinalis.

    PubMed

    Köberl, Martina; White, Richard A; Erschen, Sabine; Spanberger, Nora; El-Arabi, Tarek F; Jansson, Janet K; Berg, Gabriele

    2015-01-01

    The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activity against plant-pathogenic fungi, bacteria, and nematodes, consists of a single 3.9-Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties. PMID:26272562

  15. Draft Genome Sequence of Bacillus amyloliquefaciens XK-4-1, a Plant Growth-Promoting Endophyte with Antifungal Activity

    PubMed Central

    Hsiang, Tom; Zhou, Yi; Zhou, Jinglong

    2015-01-01

    Here, we report the draft genome sequence of a bacterial plant-growth-promoting endophyte, Bacillus amyloliquefaciens XK-4-1, which consists of one circular chromosome of 3,941,805 bp with 3,702 coding sequences (CDSs). The data presented highlight multiple sets of functional genes associated with its plant-beneficial characteristics. PMID:26564038

  16. Draft Genome Sequence of Arthrobacter sp. Strain SPG23, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium

    PubMed Central

    Gkorezis, Panagiotis; Bottos, Eric M.; Van Hamme, Jonathan D.; Thijs, Sofie; Rineau, Francois; Balseiro-Romero, Maria; Weyens, Nele

    2015-01-01

    We report here the 4.7-Mb draft genome of Arthrobacter sp. SPG23, a hydrocarbonoclastic Gram-positive bacterium belonging to the Actinobacteria, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain SPG23 is a potent plant growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. PMID:26701084

  17. A Model to Explain Plant Growth Promotion Traits: A Multivariate Analysis of 2,211 Bacterial Isolates

    PubMed Central

    da Costa, Pedro Beschoren; Granada, Camille E.; Ambrosini, Adriana; Moreira, Fernanda; de Souza, Rocheli; dos Passos, João Frederico M.; Arruda, Letícia; Passaglia, Luciane M. P.

    2014-01-01

    Plant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening. The soil richness of the isolate's origin was classified by a Principal Component Analysis. A Categorical Principal Component Analysis was used to classify the soil richness according to isolate's indolic compound production, siderophores production and phosphate solubilization abilities, and bacterial genera composition. Multiple patterns and relationships were found and verified with nonparametric hypothesis testing. Including niche colonization in the analysis, we proposed a model to explain the expression of bacterial plant growth-promoting traits according to the soil nutritional status. Our model shows that plants favor interaction with growth hormone producers under rich nutrient conditions but favor nutrient solubilizers under poor conditions. We also performed several comparisons among the different genera, highlighting interesting ecological interactions and limitations. Our model could be used to direct plant growth-promoting bacteria bioprospection and metagenomic sampling. PMID:25542031

  18. A model to explain plant growth promotion traits: a multivariate analysis of 2,211 bacterial isolates.

    PubMed

    da Costa, Pedro Beschoren; Granada, Camille E; Ambrosini, Adriana; Moreira, Fernanda; de Souza, Rocheli; dos Passos, João Frederico M; Arruda, Letícia; Passaglia, Luciane M P

    2014-01-01

    Plant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening. The soil richness of the isolate's origin was classified by a Principal Component Analysis. A Categorical Principal Component Analysis was used to classify the soil richness according to isolate's indolic compound production, siderophores production and phosphate solubilization abilities, and bacterial genera composition. Multiple patterns and relationships were found and verified with nonparametric hypothesis testing. Including niche colonization in the analysis, we proposed a model to explain the expression of bacterial plant growth-promoting traits according to the soil nutritional status. Our model shows that plants favor interaction with growth hormone producers under rich nutrient conditions but favor nutrient solubilizers under poor conditions. We also performed several comparisons among the different genera, highlighting interesting ecological interactions and limitations. Our model could be used to direct plant growth-promoting bacteria bioprospection and metagenomic sampling. PMID:25542031

  19. Optimization of Plant Growth-Promoting Bacteria-Assisted Phytostabilization of Mine Tailings

    PubMed Central

    Grandlic, Christopher J.; Palmer, Michael W.; Maier, Raina M.

    2009-01-01

    Recent studies have indicated that plant growth-promoting bacteria (PGPB) can improve revegetation of arid mine tailings as measured by increased biomass production. The goals of the present study were first to evaluate how mode of application of known PGPB affects plant growth, and second to evaluate the effect of this inoculation on rhizosphere microbial community structure. PGPB application strategies investigated include preliminary surface sterilization of seeds (a common practice in phytoremediation trials) followed by a comparison of two application methods; immersion and alginate encapsulation. Results with two native desert plant species, Atriplex lentiformis and Buchloe dactyloides, suggest that seed surface sterilization prior to inoculation is not necessary to achieve beneficial effects of introduced PGPB. Both PGPB application techniques generally enhanced plant growth although results were both plant and PGPB specific. These results demonstrate that alginate encapsulation, which allows for long-term storage and easier application to seeds, is an effective way to inoculate PGPB. In addition, the influence of PGPB application on B. dactyloides rhizosphere community structure was evaluated using PCR-DGGE (denaturing gradient gel electrophoresis) analysis of bacterial DNA extracted from rhizosphere samples collected 75 d following planting. A comparative analysis of DGGE profiles was performed using canonical correspondence analysis (CCA). DGGE-CCA showed that rhizosphere community profiles from PGPB-inoculated treatments are significantly different from both uninoculated tailings rhizosphere profiles and profiles from the compost used to amend the tailings. Further, community profiles from B. dactyloides inoculated with the best performing PGPB (Arthro mix) were significantly different from two other PGPB tested. These results suggest that introduced PGPB have the potential to influence the development of the rhizosphere community structure found in

  20. Optimization of Plant Growth-Promoting Bacteria-Assisted Phytostabilization of Mine Tailings.

    PubMed

    Grandlic, Christopher J; Palmer, Michael W; Maier, Raina M

    2009-08-01

    Recent studies have indicated that plant growth-promoting bacteria (PGPB) can improve revegetation of arid mine tailings as measured by increased biomass production. The goals of the present study were first to evaluate how mode of application of known PGPB affects plant growth, and second to evaluate the effect of this inoculation on rhizosphere microbial community structure. PGPB application strategies investigated include preliminary surface sterilization of seeds (a common practice in phytoremediation trials) followed by a comparison of two application methods; immersion and alginate encapsulation. Results with two native desert plant species, Atriplex lentiformis and Buchloe dactyloides, suggest that seed surface sterilization prior to inoculation is not necessary to achieve beneficial effects of introduced PGPB. Both PGPB application techniques generally enhanced plant growth although results were both plant and PGPB specific. These results demonstrate that alginate encapsulation, which allows for long-term storage and easier application to seeds, is an effective way to inoculate PGPB. In addition, the influence of PGPB application on B. dactyloides rhizosphere community structure was evaluated using PCR-DGGE (denaturing gradient gel electrophoresis) analysis of bacterial DNA extracted from rhizosphere samples collected 75 d following planting. A comparative analysis of DGGE profiles was performed using canonical correspondence analysis (CCA). DGGE-CCA showed that rhizosphere community profiles from PGPB-inoculated treatments are significantly different from both uninoculated tailings rhizosphere profiles and profiles from the compost used to amend the tailings. Further, community profiles from B. dactyloides inoculated with the best performing PGPB (Arthro mix) were significantly different from two other PGPB tested. These results suggest that introduced PGPB have the potential to influence the development of the rhizosphere community structure found in

  1. Characterization of plant-growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia strain LD-11.

    PubMed

    Huang, Gui-Hai; Tian, Hui-Hui; Liu, Hai-Ying; Fan, Xian-Wei; Liang, Yu; Li, You-Zhi

    2013-01-01

    Plant-growth-promoting (PGP) bacteria especially with the resistance to multiple heavy metals are helpful to phytoremediation. Further development of PGP bacteria is very necessary because of the extreme diversity of plants, soils, and heavy metal pollution. A Burkholderia sp. strain, numbered LD-11, was isolated, which showed resistances to multiple heavy metals and antibiotics. It can produce indole-3-acetic acid, 1-aminocyclopropane-1-carboxylic acid deaminase and siderophores. Inoculation with the LD-11 improved germination of seeds of the investigated vegetable plants in the presence of Cu, promoted elongation of roots and hypocotyledonary axes, enhanced the dry weights of the plants grown in the soils polluted with Cu and/or Pb, and increased activity of the soil urease and the rhizobacteria diversity. Inoculation with the LD-11 significantly enhanced Cu and/or Pb accumulation especially in the roots of the plants grown in the polluted soils. Notably, LD-11 could produce siderophores in the presence of Cu. Conclusively, the PGP effects and concurrent heavy metal accumulation in the plant tissues results from combined effects of the above-mentioned multiple factors. Cu is an important element that represses production of the siderophore by the bacteria. Phytoremediation by synergistic use of the investigated plants and the bacterial strain LD-11 is a phytoextraction process. PMID:23819291

  2. Plant Growth Promotion and Suppression of Bacterial Leaf Blight in Rice by Inoculated Bacteria

    PubMed Central

    Zaka, Abha; Imran, Asma; Zahid, Muhammad Awais; Yousaf, Sumaira; Rasul, Ghulam; Arif, Muhammad; Mirza, Muhammad Sajjad

    2016-01-01

    The present study was conducted to evaluate the potential of rice rhizosphere associated antagonistic bacteria for growth promotion and disease suppression of bacterial leaf blight (BLB). A total of 811 rhizospheric bacteria were isolated and screened against 3 prevalent strains of BLB pathogen Xanthomonas oryzae pv. oryzae (Xoo) of which five antagonistic bacteria, i.e., Pseudomonas spp. E227, E233, Rh323, Serratia sp. Rh269 and Bacillus sp. Rh219 showed antagonistic potential (zone of inhibition 1–19 mm). Production of siderophores was found to be the common biocontrol determinant and all the strains solubilized inorganic phosphate (82–116 μg mL-1) and produced indole acetic acid (0.48–1.85 mg L-1) in vitro. All antagonistic bacteria were non-pathogenic to rice, and their co-inoculation significantly improved plant health in terms of reduced diseased leaf area (80%), improved shoot length (31%), root length (41%) and plant dry weight (60%) as compared to infected control plants. Furthermore, under pathogen pressure, bacterial inoculation resulted in increased activity of defense related enzymes including phenylalanine ammonia-lyase and polyphenol oxidase, along with 86% increase in peroxidase and 53% increase in catalase enzyme activities in plants inoculated with Pseudomonas sp. Rh323 as well as co-inoculated plants. Bacterial strains showed good colonization potential in the rice rhizosphere up to 21 days after seed inoculation. Application of bacterial consortia in the field resulted in an increase of 31% in grain yield and 10% in straw yield over non-inoculated plots. Although, yield increase was statistically non-significant but was accomplished with overall saving of 20% chemical fertilizers. The study showed that Pseudomonas sp. Rh323 can be used to develop dual-purpose inoculum which can serve not only to suppress BLB but also to promote plant growth in rice. PMID:27532545

  3. Plant Growth Promotion and Suppression of Bacterial Leaf Blight in Rice by Inoculated Bacteria.

    PubMed

    Yasmin, Sumera; Zaka, Abha; Imran, Asma; Zahid, Muhammad Awais; Yousaf, Sumaira; Rasul, Ghulam; Arif, Muhammad; Mirza, Muhammad Sajjad

    2016-01-01

    The present study was conducted to evaluate the potential of rice rhizosphere associated antagonistic bacteria for growth promotion and disease suppression of bacterial leaf blight (BLB). A total of 811 rhizospheric bacteria were isolated and screened against 3 prevalent strains of BLB pathogen Xanthomonas oryzae pv. oryzae (Xoo) of which five antagonistic bacteria, i.e., Pseudomonas spp. E227, E233, Rh323, Serratia sp. Rh269 and Bacillus sp. Rh219 showed antagonistic potential (zone of inhibition 1-19 mm). Production of siderophores was found to be the common biocontrol determinant and all the strains solubilized inorganic phosphate (82-116 μg mL-1) and produced indole acetic acid (0.48-1.85 mg L-1) in vitro. All antagonistic bacteria were non-pathogenic to rice, and their co-inoculation significantly improved plant health in terms of reduced diseased leaf area (80%), improved shoot length (31%), root length (41%) and plant dry weight (60%) as compared to infected control plants. Furthermore, under pathogen pressure, bacterial inoculation resulted in increased activity of defense related enzymes including phenylalanine ammonia-lyase and polyphenol oxidase, along with 86% increase in peroxidase and 53% increase in catalase enzyme activities in plants inoculated with Pseudomonas sp. Rh323 as well as co-inoculated plants. Bacterial strains showed good colonization potential in the rice rhizosphere up to 21 days after seed inoculation. Application of bacterial consortia in the field resulted in an increase of 31% in grain yield and 10% in straw yield over non-inoculated plots. Although, yield increase was statistically non-significant but was accomplished with overall saving of 20% chemical fertilizers. The study showed that Pseudomonas sp. Rh323 can be used to develop dual-purpose inoculum which can serve not only to suppress BLB but also to promote plant growth in rice. PMID:27532545

  4. Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Radziah, Othman; Shamshuddin, Jusop; Razi, Ismail Mohd

    2015-01-01

    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase. PMID:25710843

  5. Tools for genetic manipulation of the plant growth-promoting bacterium Azospirillum amazonense

    PubMed Central

    2011-01-01

    Background Azospirillum amazonense has potential to be used as agricultural inoculant since it promotes plant growth without causing pollution, unlike industrial fertilizers. Owing to this fact, the study of this species has gained interest. However, a detailed understanding of its genetics and physiology is limited by the absence of appropriate genetic tools for the study of this species. Results Conjugation and electrotransformation methods were established utilizing vectors with broad host-replication origins (pVS1 and pBBR1). Two genes of interest - glnK and glnB, encoding PII regulatory proteins - were isolated. Furthermore, glnK-specific A. amazonense mutants were generated utilizing the pK19MOBSACB vector system. Finally, a promoter analysis protocol based on fluorescent protein expression was optimized to aid genetic regulation studies on this bacterium. Conclusion In this work, genetic tools that can support the study of A. amazonense were described. These methods could provide a better understanding of the genetic mechanisms of this species that underlie its plant growth promotion. PMID:21575234

  6. Draft Genome Sequence of Bacillus methylotrophicus FKM10, a Plant Growth-Promoting Rhizobacterium Isolated from Apple Rhizosphere

    PubMed Central

    Wang, Chengqiang; Hu, Xiuna; Liu, Kai; Hou, Qihui; Yang, Qianqian

    2016-01-01

    Bacillus methylotrophicus FKM10 is a strain of plant growth-promoting rhizobacterium with antimicrobial activity, which was isolated from apple rhizosphere. Here, we present the genome sequence of B. methylotrophicus FKM10. Two scaffolds were finally assembled, and several functional genes related to its antimicrobial activity were discovered. PMID:26868409

  7. Draft Genome Sequence of Delftia tsuruhatensis MTQ3, a Strain of Plant Growth-Promoting Rhizobacterium with Antimicrobial Activity.

    PubMed

    Hou, Qihui; Wang, Chengqiang; Guo, Haimeng; Xia, Zhilin; Ye, Jiangping; Liu, Kai; Yang, Yanan; Hou, Xiaoyang; Liu, Hu; Wang, Jun; Du, Binghai; Ding, Yanqin

    2015-01-01

    Delftia tsuruhatensis MTQ3 is a plant growth-promoting rhizobacterium (PGPR) isolated from tobacco rhizosphere. Here, we report the draft genome sequence of D. tsuruhatensis MTQ3. Several functional genes related to antimicrobial activity and environment adaption have been found in the genome. This is the first genome sequence of D. tsuruhatensis related to PGPR. PMID:26251486

  8. Draft Genome Sequence of Brevibacillus brevis DZQ7, a Plant Growth-Promoting Rhizobacterium with Broad-Spectrum Antimicrobial Activity.

    PubMed

    Hou, Qihui; Wang, Chengqiang; Hou, Xiaoyang; Xia, Zhilin; Ye, Jiangping; Liu, Kai; Liu, Hu; Wang, Jun; Guo, Haimeng; Yu, Xiaoning; Yang, Yanan; Du, Binghai; Ding, Yanqin

    2015-01-01

    Brevibacillus brevis DZQ7 is a plant growth-promoting rhizobacterium (PGPR) isolated from tobacco rhizosphere. Here, we report the draft genome sequence of B. brevis DZQ7. Several functional genes related to antimicrobial activity were identified in the genome. PMID:26294619

  9. Draft Genome Sequence of Bacillus methylotrophicus FKM10, a Plant Growth-Promoting Rhizobacterium Isolated from Apple Rhizosphere.

    PubMed

    Wang, Chengqiang; Hu, Xiuna; Liu, Kai; Hou, Qihui; Yang, Qianqian; Ding, Yanqin; Du, Binghai

    2016-01-01

    Bacillus methylotrophicus FKM10 is a strain of plant growth-promoting rhizobacterium with antimicrobial activity, which was isolated from apple rhizosphere. Here, we present the genome sequence of B. methylotrophicus FKM10. Two scaffolds were finally assembled, and several functional genes related to its antimicrobial activity were discovered. PMID:26868409

  10. Characterization of Salmonella enterica isolates from turkeys in commercial processing plants for resistance to antibiotics, disinfectants, and a growth promoter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovars isolated from turkeys in commercial processing plants were characterized for susceptibility to antibiotics, disinfectants, disinfectant components, and the organoarsenical growth promotant 4-hydroxy-3-nitrophenylarsonic acid (3-NHPAA) and its metabolites NaAsO2 (As[III])...

  11. Determination of cypermethrin degradation potential of soil bacteria along with plant growth-promoting characteristics.

    PubMed

    Akbar, Shamsa; Sultan, Sikander; Kertesz, Michael

    2015-01-01

    The pyrethroid insecticide cypermethrin is in extensive use since 1980s for insect control. However, its toxicity toward aquatic animals and humans requires its complete removal from contaminated areas that can be done using indigenous microbes through bioremediation. In this study, three bacterial strains isolated from agricultural soil and identified as Acinetobacter calcoaceticus MCm5, Brevibacillus parabrevis FCm9, and Sphingomonas sp. RCm6 were found highly efficient in degrading cypermethrin and other pyrethroids. These bacterial strains were able to degrade more than 85 % of cypermethrin (100 mg L(-1)) within 10 days. Degradation kinetics of cypermethrin (200 mg kg(-1)) in soils inoculated with isolates MCm5, FCm9, and RCm6 suggested time-dependent disappearance of cypermethrin with rate constants of 0.0406, 0.0722, and 0.0483 d(-1) following first-order rate kinetics. Enzyme assays for Carboxylesterase, 3-PBA dioxygenase, Phenol hydroxylase, and Catechol-1,2 dioxygenase showed higher activities with cypermethrin treated cell-free extracts compared to non-treated cell-free extracts. Meanwhile, SDS-PAGE analysis showed upregulation of some bands in cypermethrin-treated cells. This might suggest that cypermethrin degradation in these strains involves inducible enzymes. Besides, the isolates displayed substantial plant growth-promoting traits such as phosphate solubilization, Indole acetic acid production, and ammonia production. Implying the efficient biodegradation potential along with multiple biological properties, these isolates can be valuable candidates for the development of bioremediation strategies. PMID:25194282

  12. Genome Sequencing of a Mung Bean Plant Growth Promoting Strain of P. aeruginosa with Biocontrol Ability

    PubMed Central

    Illakkiam, Devaraj; Shankar, Manoharan; Ponraj, Paramasivan; Rajendhran, Jeyaprakash

    2014-01-01

    Pseudomonas aeruginosa PGPR2 is a mung bean rhizosphere strain that produces secondary metabolites and hydrolytic enzymes contributing to excellent antifungal activity against Macrophomina phaseolina, one of the prevalent fungal pathogens of mung bean. Genome sequencing was performed using the Ion Torrent Personal Genome Machine generating 1,354,732 reads (6,772,433 sequenced bases) achieving ~25-fold coverage of the genome. Reference genome assembly using MIRA 3.4.0 yielded 198 contigs. The draft genome of PGPR2 encoded 6803 open reading frames, of which 5314 were genes with predicted functions, 1489 were genes of known functions, and 80 were RNA-coding genes. Strain specific and core genes of P. aeruginosa PGPR2 that are relevant to rhizospheric habitat were identified by pangenome analysis. Genes involved in plant growth promoting function such as synthesis of ACC deaminase, indole-3-acetic acid, trehalose, mineral scavenging siderophores, hydrogen cyanide, chitinases, acyl homoserine lactones, acetoin, 2,3-butanediol, and phytases were identified. In addition, niche-specific genes such as phosphate solubilising 3-phytase, adhesins, pathway-specific transcriptional regulators, a diguanylate cyclase involved in cellulose synthesis, a receptor for ferrienterochelin, a DEAD/DEAH-box helicase involved in stress tolerance, chemotaxis/motility determinants, an HtpX protease, and enzymes involved in the production of a chromanone derivative with potent antifungal activity were identified. PMID:25184130

  13. Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium.

    PubMed

    Chen, Yawen; Shen, Xuemei; Peng, Huasong; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2015-06-01

    Pseudomonas chlororaphis HT66, a plant growth-promoting rhizobacterium that produces phenazine-1-carboxamide with high yield, was compared with three genomic sequenced P. chlororaphis strains, GP72, 30-84 and O6. The genome sizes of four strains vary from 6.66 to 7.30 Mb. Comparisons of predicted coding sequences indicated 4833 conserved genes in 5869-6455 protein-encoding genes. Phylogenetic analysis showed that the four strains are closely related to each other. Its competitive colonization indicates that P. chlororaphis can adapt well to its environment. No virulence or virulence-related factor was found in P. chlororaphis. All of the four strains could synthesize antimicrobial metabolites including different phenazines and insecticidal protein FitD. Some genes related to the regulation of phenazine biosynthesis were detected among the four strains. It was shown that P. chlororaphis is a safe PGPR in agricultural application and could also be used to produce some phenazine antibiotics with high-yield. PMID:26484173

  14. Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes.

    PubMed

    Yadav, Ajar Nath; Sachan, Shashwati Ghosh; Verma, Priyanka; Saxena, Anil Kumar

    2015-06-01

    Microbial communities in different samples collected from cold deserts of north western Himalayas, India, were analyzed using 16S rRNA gene sequencing and phospholipid fatty acids (PLFA) analysis. A total of 232 bacterial isolates were characterized employing 16S rDNA-Amplified Ribosomal DNA Restriction Analysis with the three restriction endonucleases Alu I, Msp I and Hae III, which led to formation of 29-54 groups for the different sites, adding up to169 groups. 16S rRNA gene based phylogenetic analysis, revealed that 82 distinct species of 31 different genera, belonged to four phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. PLFA profiling was performed for concerned samples which gave an estimate of microbial communities without cultivating the microorganisms. PLFA analysis led to characterization of diverse group of microbes in different samples such as gram-negative, gram-positive bacteria, actinomycetes, cyanobacteria, anaerobic bacteria, sulphate reducing bacteria and fungi. The representative strains were screened for their plant growth promoting attributes, which included production of ammonia, HCN, gibberellic acid, IAA and siderophore; solubilization of phosphorus and activity of ACC deaminase. In vitro antifungal activity assay was performed against Rhizoctonia solani and Macrophomina phaseolina. Cold adapted microorganisms may serve as inoculants for crops growing under cold climatic conditions. To our knowledge, this is the first report for the presence of Arthrobacter nicotianae, Brevundimonas terrae, Paenibacillus tylopili and Pseudomonas cedrina in cold deserts and exhibit multifunctional PGP attributes at low temperatures. PMID:25575970

  15. Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium

    PubMed Central

    Chen, Yawen; Shen, Xuemei; Peng, Huasong; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2015-01-01

    Pseudomonas chlororaphis HT66, a plant growth-promoting rhizobacterium that produces phenazine-1-carboxamide with high yield, was compared with three genomic sequenced P. chlororaphis strains, GP72, 30–84 and O6. The genome sizes of four strains vary from 6.66 to 7.30 Mb. Comparisons of predicted coding sequences indicated 4833 conserved genes in 5869–6455 protein-encoding genes. Phylogenetic analysis showed that the four strains are closely related to each other. Its competitive colonization indicates that P. chlororaphis can adapt well to its environment. No virulence or virulence-related factor was found in P. chlororaphis. All of the four strains could synthesize antimicrobial metabolites including different phenazines and insecticidal protein FitD. Some genes related to the regulation of phenazine biosynthesis were detected among the four strains. It was shown that P. chlororaphis is a safe PGPR in agricultural application and could also be used to produce some phenazine antibiotics with high-yield. PMID:26484173

  16. Colonization of root cells and plant growth promotion by Piriformospora indica occurs independently of plant common symbiosis genes

    PubMed Central

    Banhara, Aline; Ding, Yi; Kühner, Regina; Zuccaro, Alga; Parniske, Martin

    2015-01-01

    Arbuscular mycorrhiza (AM) fungi (Glomeromycota) form symbiosis with and deliver nutrients via the roots of most angiosperms. AM fungal hyphae are taken up by living root epidermal cells, a program which relies on a set of plant common symbiosis genes (CSGs). Plant root epidermal cells are also infected by the plant growth-promoting fungus Piriformospora indica (Basidiomycota), raising the question whether this interaction relies on the AM-related CSGs. Here we show that intracellular colonization of root cells and intracellular sporulation by P. indica occurred in CSG mutants of the legume Lotus japonicus and in Arabidopsis thaliana, which belongs to the Brassicaceae, a family that has lost the ability to form AM as well as a core set of CSGs. A. thaliana mutants of homologs of CSGs (HCSGs) interacted with P. indica similar to the wild-type. Moreover, increased biomass of A. thaliana evoked by P. indica was unaltered in HCSG mutants. We conclude that colonization and growth promotion by P. indica are independent of the CSGs and that AM fungi and P. indica exploit different host pathways for infection. PMID:26441999

  17. Promoter-trap identification of wheat seed extract-induced genes in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245.

    PubMed

    Pothier, Joël F; Wisniewski-Dyé, Florence; Weiss-Gayet, Michèle; Moënne-Loccoz, Yvan; Prigent-Combaret, Claire

    2007-10-01

    Azospirillum strains have been used as plant-growth-promoting rhizobacteria (PGPR) of cereal crops, but their adaptation to the root remains poorly understood. Here, we used a global approach based on differential fluorescence induction (DFI) promoter trapping to identify genes of the wheat isolate Azospirillum brasilense Sp245 that are induced in the presence of spring wheat seed extracts. Fluorescence-based flow cytometry sorting of Sp245 cells was validated using PlacZ, PsbpA and PnifH promoters and egfp. A random promoter library was constructed by cloning 1-3 kb Sp245 fragments upstream of a promoterless version of egfp in the promoter-trap plasmid pOT1e (genome coverage estimated at threefold). Exposure to spring wheat seed extracts obtained using a methanol solution led to the detection of 300 induced DFI clones, and upregulation by seed extracts was confirmed in vitro for 46 clones. Sequencing of 21 clones enabled identification of seven promoter regions. Five of them displayed upregulation once inoculated onto spring wheat seedlings. Their downstream sequence was similar to (i) a predicted transcriptional regulator, (ii) a serine/threonine protein kinase, (iii) two conserved hypothetical proteins, or (iv) the copper-containing dissimilatory nitrite reductase NirK. Two of them were also upregulated when inoculated on winter wheat and pea but not on maize, whereas the three others (including PnirK) were upregulated on the three hosts. The amounts of nitrate and/or nitrite present in spring wheat seed extracts were sufficient for PnirK upregulation. Overall, DFI promoter trapping was useful to reveal Azospirillum genes involved in the interaction with the plant. PMID:17906157

  18. Analysis of Plant Growth-Promoting Effects of Fluorescent Pseudomonas Strains Isolated from Mentha piperita Rhizosphere and Effects of Their Volatile Organic Compounds on Essential Oil Composition.

    PubMed

    Santoro, Maricel V; Bogino, Pablo C; Nocelli, Natalia; Cappellari, Lorena Del Rosario; Giordano, Walter F; Banchio, Erika

    2016-01-01

    Many species or strains of the genus Pseudomonas have been characterized as plant growth promoting rhizobacteria (PGPR). We used a combination of phenotypic and genotypic techniques to analyze the community of fluorescent Pseudomonas strains in the rhizosphere of commercially grown Mentha piperita (peppermint). Biochemical techniques, Amplified rDNA Restriction Analysis (ARDRA), and 16S rRNA gene sequence analysis revealed that the majority of the isolated native fluorescent strains were P. putida. Use of two Repetitive Sequence-based PCR (rep-PCR) techniques, BOX-PCR and ERIC-PCR, allowed us to evaluate diversity among the native strains and to more effectively distinguish among them. PGPR activity was tested for the native strains and reference strain P. fluorescens WCS417r. Micropropagated M. piperita plantlets were exposed to microbial volatile organic compounds (mVOCs) emitted by the bacterial strains, and plant biomass parameters and production of essential oils (EOs) were measured. mVOCs from 11 of the native strains caused an increase in shoot fresh weight. mVOCs from three native strains (SJ04, SJ25, SJ48) induced changes in M. pierita EO composition. The mVOCs caused a reduction of metabolites in the monoterpene pathway, for example menthofuran, and an increase in menthol production. Menthol production is the primary indicator of EO quality. The mVOCs produced by native strains SJ04, SJ25, SJ48, and strain WCS417r were analyzed. The obtained mVOC chromatographic profiles were unique for each of the three native strains analyzed, containing varying hydrocarbon, aromatic, and alogenic compounds. The differential effects of the strains were most likely due to the specific mixtures of mVOCs emitted by each strain, suggesting a synergistic effect occurs among the compounds present. PMID:27486441

  19. Analysis of Plant Growth-Promoting Effects of Fluorescent Pseudomonas Strains Isolated from Mentha piperita Rhizosphere and Effects of Their Volatile Organic Compounds on Essential Oil Composition

    PubMed Central

    Santoro, Maricel V.; Bogino, Pablo C.; Nocelli, Natalia; Cappellari, Lorena del Rosario; Giordano, Walter F.; Banchio, Erika

    2016-01-01

    Many species or strains of the genus Pseudomonas have been characterized as plant growth promoting rhizobacteria (PGPR). We used a combination of phenotypic and genotypic techniques to analyze the community of fluorescent Pseudomonas strains in the rhizosphere of commercially grown Mentha piperita (peppermint). Biochemical techniques, Amplified rDNA Restriction Analysis (ARDRA), and 16S rRNA gene sequence analysis revealed that the majority of the isolated native fluorescent strains were P. putida. Use of two Repetitive Sequence-based PCR (rep-PCR) techniques, BOX-PCR and ERIC-PCR, allowed us to evaluate diversity among the native strains and to more effectively distinguish among them. PGPR activity was tested for the native strains and reference strain P. fluorescens WCS417r. Micropropagated M. piperita plantlets were exposed to microbial volatile organic compounds (mVOCs) emitted by the bacterial strains, and plant biomass parameters and production of essential oils (EOs) were measured. mVOCs from 11 of the native strains caused an increase in shoot fresh weight. mVOCs from three native strains (SJ04, SJ25, SJ48) induced changes in M. pierita EO composition. The mVOCs caused a reduction of metabolites in the monoterpene pathway, for example menthofuran, and an increase in menthol production. Menthol production is the primary indicator of EO quality. The mVOCs produced by native strains SJ04, SJ25, SJ48, and strain WCS417r were analyzed. The obtained mVOC chromatographic profiles were unique for each of the three native strains analyzed, containing varying hydrocarbon, aromatic, and alogenic compounds. The differential effects of the strains were most likely due to the specific mixtures of mVOCs emitted by each strain, suggesting a synergistic effect occurs among the compounds present. PMID:27486441

  20. Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L.

    PubMed

    De La Torre-Ruiz, Neyser; Ruiz-Valdiviezo, Víctor Manuel; Rincón-Molina, Clara Ivette; Rodríguez-Mendiola, Martha; Arias-Castro, Carlos; Gutiérrez-Miceli, Federico Antonio; Palomeque-Dominguez, Héctor; Rincón-Rosales, Reiner

    2016-01-01

    The effect of plant growth-promoting bacteria inoculation on plant growth and the sugar content in Agave americana was assessed. The bacterial strains ACO-34A, ACO-40, and ACO-140, isolated from the A. americana rhizosphere, were selected for this study to evaluate their phenotypic and genotypic characteristics. The three bacterial strains were evaluated via plant inoculation assays, and Azospirillum brasilense Cd served as a control strain. Phylogenetic analysis based on the 16S rRNA gene showed that strains ACO-34A, ACO-40 and ACO-140 were Rhizobium daejeonense, Acinetobacter calcoaceticus and Pseudomonas mosselii, respectively. All of the strains were able to synthesize indole-3-acetic acid (IAA), solubilize phosphate, and had nitrogenase activity. Inoculation using the plant growth-promoting bacteria strains had a significant effect (p<0.05) on plant growth and the sugar content of A. americana, showing that these native plant growth-promoting bacteria are a practical, simple, and efficient alternative to promote the growth of agave plants with proper biological characteristics for agroindustrial and biotechnological use and to increase the sugar content in this agave species. PMID:27268113

  1. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum).

    PubMed

    Orhan, Furkan

    2016-01-01

    In the current study, 18 halotolerant and halophilic bacteria have been investigated for their plant growth promoting abilities in vitro and in a hydroponic culture. The bacterial strains have been investigated for ammonia, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate-deaminase production, phosphate solubilisation and nitrogen fixation activities. Of the tested bacteria, eight were inoculated with Triticum aestivum in a hydroponic culture. The investigated bacterial strains were found to have different plant-growth promoting activities in vitro. Under salt stress (200mM NaCl), the investigated bacterial strains significantly increased the root and shoot length and total fresh weight of the plants. The growth rates of the plants inoculated with bacterial strains ranged from 62.2% to 78.1%. Identifying of novel halophilic and halotolerant bacteria that promote plant growth can be used as alternatives for salt sensitive plants. Extensive research has been conducted on several halophilic and halotolerant bacterial strains to investigate their plant growth promoting activities. However, to the best of my knowledge, this is the first study to inoculate these bacterial strains with wheat. PMID:27133557

  2. Biocontrol efficacy and plant growth promoting activity of Bacillus altitudinis isolated from Darjeeling hills, India.

    PubMed

    Sunar, Kiran; Dey, Pannalal; Chakraborty, Usha; Chakraborty, Bishwanath

    2015-01-01

    A total of 18 bacterial isolates were obtained from the rhizosphere of Sechium edule growing in the lower foothills of Darjeeling, India. The bacterial isolates were tested for PGPR traits in vitro such as phosphate solubilization, HCN, siderophore, IAA, chitinase, protease production as well as inhibition of pthytopathogens. Of all the bacterial isolates, one bacterium designated as BRHS/S-73 was found to possess all the tested characters which was identified on the basis of 16S rRNA gene sequence analysis as Bacillus altitudinis and was selected for in vivo studies. A significant improvement in growth measured in terms of increase in root length, shoot length, and increase in root and shoot biomass was observed when seeds of Vigna radiata, Cicer arietinum, and Glycine max were bacterized prior to sowing in field condition. Besides, the bacterium could also solubilize soil phosphate. Apart form growth promotion, root rot disease of Vigna radiata caused by Thanatephorus cucumeris was also significantly reduced by 74% when the bacterium was applied to the rhizosphere prior to pathogen challenge. The biocontrol efficacy of the bacterium was found to be 66.6% even after 30 days of pathogen inoculation. Activities of key defense related enzymes such as phenylalanine ammonia lyase, peroxidase, β-1,3-glucanase, and chitinase in both roots and leaves of treated plants were also enhanced. Results clearly suggest that B. altitudinis (BRHS/S-73) is a potential PGPR which can be used as efficient microorganism for enhancement of plant growth and suppression of fungal disease. PMID:23996212

  3. Biocontrol and Plant Growth Promotion Characterization of Bacillus Species Isolated from Calendula officinalis Rhizosphere.

    PubMed

    Ait Kaki, Asma; Kacem Chaouche, Noreddine; Dehimat, Laid; Milet, Asma; Youcef-Ali, Mounia; Ongena, Marc; Thonart, Philippe

    2013-12-01

    The phenotypic and genotypic diversity of the plant growth promoting Bacillus genus have been widely investigated in the rhizosphere of various agricultural crops. However, to our knowledge this is the first report on the Bacillus species isolated from the rhizosphere of Calendula officinalis. 15 % of the isolated bacteria were screened for their important antifungal activity against Fusarium oxysporum, Botrytis cinerea, Aspergillus niger, Cladosporium cucumerinium and Alternaria alternata. The bacteria identification based on 16S r-RNA and gyrase-A genes analysis, revealed strains closely related to Bacillus amyloliquefaciens, B. velezensis, B. subtilis sub sp spizezenii and Paenibacillus polymyxa species. The electro-spray mass spectrometry coupled to liquid chromatography (ESI-LC MS) analysis showed that most of the Bacillus isolates produced the three lipopeptides families. However, the P. polymyxa (18SRTS) didn't produce any type of lipopeptides. All the tested Bacillus isolates produced cellulase but the protease activity was observed only in the B. amyloliquefaciens species (9SRTS). The Salkowsky colorimetric test showed that the screened bacteria synthesized 6-52 μg/ml of indole 3 acetic acid. These bacteria produced siderophores with more than 10 mm wide orange zones on chromazurol S. The greenhouse experiment using a naturally infested soil with Sclerotonia sclerotiorum showed that the B. amyloliquefaciens (9SRTS) had no significant (P > 0.05) effect on the pre-germination of the chickpea seeds. However, it increased the size of the chickpea plants and reduced the stem rot disease (P < 0.05).These results suggested that the Bacillus strains isolated in this work may be further used as bioinoculants to improve the production of C. officinalis and other crop systems. PMID:24426149

  4. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China.

    PubMed

    Xie, Pin; Hao, Xiuli; Herzberg, Martin; Luo, Yantao; Nies, Dietrich H; Wei, Gehong

    2015-01-01

    To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF (Cation Diffusion Facilitator), HupE/UreJ and CHR (chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter, assisted with putative CzcD, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion, indicating a potential in-site phytoremediation usage in the mining tailing regions of China. PMID:25597676

  5. Draft Genome Sequence of Bacillus licheniformis Strain GB2, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium

    PubMed Central

    Gkorezis, Panagiotis; Van Hamme, Jonathan; Bottos, Eric; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Sillen, Wouter

    2016-01-01

    We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. PMID:27340073

  6. Draft Genome Sequence of Bacillus licheniformis Strain GB2, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium.

    PubMed

    Gkorezis, Panagiotis; Van Hamme, Jonathan; Bottos, Eric; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Sillen, Wouter; Vangronsveld, Jaco

    2016-01-01

    We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. PMID:27340073

  7. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    SciTech Connect

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-21

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Lastly, targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.

  8. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    DOE PAGESBeta

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-21

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involvedmore » in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Lastly, targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.« less

  9. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-01

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability. PMID:25607953

  10. Draft Genome Sequence of the Biocontrol and Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens strain UM270.

    PubMed

    Hernández-Salmerón, Julie E; Hernández-León, Rocio; Orozco-Mosqueda, Ma Del Carmen; Valencia-Cantero, Eduardo; Moreno-Hagelsieb, Gabriel; Santoyo, Gustavo

    2016-01-01

    The Pseudomonas fluorescens strain UM270 was isolated form the rhizosphere of wild Medicago spp. A previous work has shown that this pseudomonad isolate was able to produce diverse diffusible and volatile compounds involved in plant protection and growth promotion. Here, we present the draft genome sequence of the rhizobacterium P. fluorescens strain UM270. The sequence covers 6,047,974 bp of a single chromosome, with 62.66 % G + C content and no plasmids. Genome annotations predicted 5,509 genes, 5,396 coding genes, 59 RNA genes and 110 pseudogenes. Genome sequence analysis revealed the presence of genes involved in biological control and plant-growth promoting activities. We anticipate that the P. fluorescens strain UM270 genome will contribute insights about bacterial plant protection and beneficial properties through genomic comparisons among fluorescent pseudomonads. PMID:26767092

  11. Evaluation of insect associated and plant growth promoting fungi in the control of cabbage root flies.

    PubMed

    Razinger, Jaka; Lutz, Matthias; Schroers, Hans-Josef; Urek, Gregor; Grunder, Jürg

    2014-08-01

    Delia radicum L. or cabbage maggot is an important pest for Brassicaceous crops. There are currently no registered chemical control agents for its control in Slovenia. Fungal control agents for cabbage maggot were therefore sought among nine rhizosphere-compatible and plant growth-promoting, soil-adapted, and entomopathogenic species to cabbage maggots and were assayed in in vitro and soil laboratory bioassays. In the in vitro tests, the conidial suspensions were applied directly to cabbage maggot eggs. The soil tests mimicked pathways of natural exposure of various insect life stages to the fungal strains. Conidial concentrations used in soil tests were comparable to economic rates for in-furrow application. The following fungi were tested: Trichoderma atroviride P. Karst. (2 isolates), Trichoderma koningiopsis Samuels, C. Suárez & H.C. Evans (1), Trichoderma gamsii Samuels & Druzhin. (3), Beauveria brongniartii (Saccardo) Petch (1), Beauveria bassiana (Balsamo-Crivelli) Vuillemin (2), Metarhizium robertsii J.F. Bisch., Rehner & Humber (1), Metarhizium anisopliae (Metschn.) Sorokin (4), Purpureocillium lilacinum (Thom) Luangsa-ard, Houbraken, Hywel-Jones & Samson (2), and Clonostachys solani f. nigrovirens (J.F.H. Beyma) Schroers (2). Abbott's corrected mortality in the in vitro tests ranged from 0.0 +/- 18.9 to 47.6 +/- 9.0% and in the soil test from 2.4 +/- 13.0 to 68.2 +/- 21.5%. Seven isolates (B. bassiana [isolate 1174], C. solani [1828], M. anisopliae [1154 and 1868], T. atroviride [1872], T. koningiopsis [1874], and T. gamsii [1876]) caused significant cabbage maggot mortality in either in vitro or soil tests. The importance of fungal ecology as a criterion during the screening of potential biological control agents is discussed. PMID:25195421

  12. Antifungal, insecticidal, and plant growth promoting potential of Streptomyces hydrogenans DH16.

    PubMed

    Kaur, Talwinder; Manhas, Rajesh Kumari

    2014-11-01

    In the present study, an actinobacterium strain, possessing antagonistic activity against different fungal phytopathogens viz. Colletotrichum acutatum, Cladosporium herbarum, Alternaria brassicicola, Exserohilum sp., Alternaria mali, Colletotrichum gleospoiroides, Alternaria alternata, Cercospora sp., Fusarium oxysporum f.sp. dianthi and Fusarium moniliformae, was isolated from soil and identified as Streptomyces hydrogenans DH16. Application of culture supernatant (5%)/cells (10(7)  cfu ml(-1) ), 2 h post inoculation with A. brassicicola (10(5)  spores ml(-1) ), resulted in 85.95 and 93.75% suppression of black leaf spot of Raphanus sativus, respectively on detached leaves. Whereas cells/culture supernatant (above 5%) completely suppressed the disease incidence when co inoculated with fungal pathogen. The crude extract containing antifungal components was completely stable at 70 °C for 1 h retaining 90 and 67.67% activity after boiling (for 1 h) and autoclaving (121 °C for 30 min), respectively. No loss in activity was observed when treated with proteinase K and on exposure to sun and UV light and found to be active over a wide range of pH (2 to 14). Bioautography of the solvent extract against test phytopathogens revealed the presence of three active components. Ethyl acetate extract of DH16 also demonstrated insecticidal activity against Spodoptera litura, causing 40% larval mortality and extension of larval period. In addition, it produced 30 µg ml(-1) of Indole Acetic Acid (IAA) in a medium containing tryptophan which promoted lateral root formation in Vigna radiata (green gram). These results indicate that Streptomyces hydrogenans holds the potential to be used as antifungal, insecticidal, and plant growth promoting agent. PMID:23765423

  13. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites.

    PubMed

    Berthelot, Charlotte; Leyval, Corinne; Foulon, Julie; Chalot, Michel; Blaudez, Damien

    2016-10-01

    Numerous studies address the distribution and the diversity of dark septate endophytes (DSEs) in the literature, but little is known about their ecological role and their effect on host plants, especially in metal-polluted soils. Seven DSE strains belonging to Cadophora, Leptodontidium, Phialophora and Phialocephala were isolated from roots of poplar trees from metal-polluted sites. All strains developed on a wide range of carbohydrates, including cell-wall-related compounds. The strains evenly colonized birch, eucalyptus and ryegrass roots in re-synthesis experiments. Root and shoot growth promotion was observed and was both plant and strain dependent. Two Phialophora and Leptodontidium strains particularly improved plant growth. However, there was no correlation between the level of root colonization by DSEs and the intensity of growth promotion. All strains produced auxin and six also stimulated plant growth through the release of volatile organic compounds (VOCs). SPME-GC/MS analyses revealed four major VOCs emitted by Cadophora and Leptodontidium The strains exhibited growth at high concentrations of several metals. The ability of metal-resistant DSE strains to produce both soluble and volatile compounds for plant growth promotion indicates interesting microbial resources with high potential to support sustainable production of bioenergy crops within the context of the phytomanagement of metal-contaminated sites. PMID:27364359

  14. Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The aim of this study was to evaluate effects of PGPR (Plant Growth Promoting Rhizobacteria) isolated from rainforest on different plants under limited nitrogen conditions. Methods and Results: Bacterial isolates from a Peruvian rainforest soil were screened for plant growth promoting effects...

  15. Sphingomonas taxi, Isolated from Cucurbita pepo, Proves to Be a DDE-Degrading and Plant Growth-Promoting Strain.

    PubMed

    Eevers, Nele; Van Hamme, Jonathan D; Bottos, Eric M; Weyens, Nele; Vangronsveld, Jaco

    2015-01-01

    The draft genome of Sphingomonas taxi, a strain of the Sphingomonadaceae isolated from Cucurbita pepo root tissue, is presented. This Gram-negative bacterium shows 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (DDE)-degrading potential and plant growth-promoting capacities. An analysis of its 3.9-Mb draft genome will enhance the understanding of DDE-degradation pathways and phytoremediation applications for DDE-contaminated soils. PMID:25977415

  16. Draft Genome Sequence of Methylobacterium radiotolerans, a DDE-Degrading and Plant Growth-Promoting Strain Isolated from Cucurbita pepo

    PubMed Central

    Eevers, Nele; Van Hamme, Jonathan D.; Bottos, Eric M.; Weyens, Nele

    2015-01-01

    We announce the draft genome of Methylobacterium radiotolerans, a Gram-negative bacterium isolated from Cucurbita pepo roots. This strain shows 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (DDE)-degrading potential and plant growth-promoting capacities. Analyses of its 6.8-Mb genome will improve our understanding of DDE-degradation pathways and aid in the deployment of phytoremediation technologies to remediate DDE-contaminated soils. PMID:25977414

  17. Sphingomonas taxi, Isolated from Cucurbita pepo, Proves to Be a DDE-Degrading and Plant Growth-Promoting Strain

    PubMed Central

    Eevers, Nele; Van Hamme, Jonathan D.; Bottos, Eric M.; Weyens, Nele

    2015-01-01

    The draft genome of Sphingomonas taxi, a strain of the Sphingomonadaceae isolated from Cucurbita pepo root tissue, is presented. This Gram-negative bacterium shows 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (DDE)-degrading potential and plant growth-promoting capacities. An analysis of its 3.9-Mb draft genome will enhance the understanding of DDE-degradation pathways and phytoremediation applications for DDE-contaminated soils. PMID:25977415

  18. Draft Genome Sequence of Enterobacter aerogenes, a DDE-Degrading and Plant Growth-Promoting Strain Isolated from Cucurbita pepo

    PubMed Central

    Eevers, Nele; Van Hamme, Jonathan D.; Bottos, Eric M.; Weyens, Nele

    2015-01-01

    We report here the draft genome of Enterobacter aerogenes, a Gram-negative bacterium of the Enterobacteriaceae isolated from Cucurbita pepo root tissue. This bacterium shows 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (DDE)-degrading potential and plant growth-promoting capacity. An analysis of its 4.5-Mb draft genome will enhance the understanding of DDE degradation pathways and phytoremediation applications for DDE-contaminated soils. PMID:25883299

  19. Complete genome sequence of Kibdelosporangium phytohabitans KLBMP 1111(T), a plant growth promoting endophytic actinomycete isolated from oil-seed plant Jatropha curcas L.

    PubMed

    Qin, Sheng; Feng, Wei-Wei; Xing, Ke; Bai, Juan-Luan; Yuan, Bo; Liu, Wei-Jie; Jiang, Ji-Hong

    2015-12-20

    Kibdelosporangium phytohabitans KLBMP 1111(T) is a plant growth promoting endophytic actinomycete isolated from the oil-seed plant Jatropha curcas L. collected from dry-hot valley, in Sichuan, China. The complete genome sequence of this actinomycete consists of one chromosome (11,759,770bp) with no plasmid. From the genome, we identified gene clusters responsible for polyketide and nonribosomal peptide synthesis of natural products, and genes related to the plant growth promoting, such as zeatin, 1-aminocyclopropane-1-carboxylate deaminase (ACCD) and siderophore. The complete genome information may be useful to understand the beneficial interactions between K. phytohabitans KLBMP 1111(T) and host plants. PMID:26516119

  20. The effect of gamma irradiation on chitosan and its application as a plant growth promoter in Chinese kale (Brassica alboglabra)

    NASA Astrophysics Data System (ADS)

    Isa, Mohd Hafez Mohd; Yasir, Muhamad Samudi; Hasan, Abu Bakar; Fadilah, Nur Izzah Md; Hassan, Abdul Rahman

    2016-01-01

    This research project was conducted to study the effects of irradiation on chitosan and its potential application as a plant growth promoter. Chitosan in the form of flakes was irradiated with gamma rays at irradiation dosage of 50 kGy, 100 kGy, 200 kGy and 400 kGy. The effect of irradiation on chitosan in terms of intrinsic viscosity and average molecular weight was measured using Ubbelohde capillary viscometry technique and the results obtained showed irradiation at doses of up to 50 kGy had caused an extremely significant reduction of both parameters and this trend continued at higher irradiation doses, although the decrease were not significant. The effect of various concentrations of chitosan and irradiated chitosan on growth promotion of Chinese kale (Brassica alboglabra) was hydroponically grown and cultivated for 50 days. Statistical analysis showed addition of 10 ppm of irradiated chitosan of 200 kGy and 400 kGy, respectively, resulted in an extremely significant increase in the percentage weight gain of Chinese kale (Brassica alboglabra). Results obtained in this study showed the potential use of irradiated chitosan as a plant growth promoter for plants grown hydroponically.

  1. Biodegradation of 4-nitroaniline by plant-growth promoting Acinetobacter sp. AVLB2 and toxicological analysis of its biodegradation metabolites.

    PubMed

    Silambarasan, Sivagnanam; Vangnai, Alisa S

    2016-01-25

    4-nitroaniline (4-NA) is one of the major priority pollutants generated from industrial productions and pesticide transformation; however very limited biodegradation details have been reported. This work is the first to report 4-NA biodegradation kinetics and toxicity reduction using a newly isolated plant-growth promoting bacterium, Acinetobacter sp. AVLB2. The 4-NA-dependent growth kinetics parameters: μmax, Ks and Ki, were determined to be 0.039 h(-1), 6.623 mg L(-1) and 25.57 mg L(-1), respectively using Haldane inhibition model, while the maximum biodegradation rate (Vmax) of 4-NA was at 0.541 mg L(-1) h(-1) and 0.551 mg L(-1) h(-1), following Michaelis-Menten and Hanes-Woolf models, respectively. Biodegradation pathway of 4-NA by Acinetobacter sp. AVLB2 was proposed, and successfully led to the reduction of 4-NA toxicity according to the following toxicity assessments: microbial toxicity using Escherichia coli DH5α, phytotoxicity with Vigna radiata and Crotalaria juncea, and cytogenotoxicity with Allium cepa root-tip cells. In addition, Acinetobacter sp. AVLB2 possess important plant-growth promoting traits, both in the presence and absence of 4-NA. This study has provided a new insight into 4-NA biodegradation ability and concurrent plant-growth promoting activities of Acinetobacter sp. AVLB2, which may indicate its potential role for rhizoremediation, while sustaining crop production even under 4-NA stressed environment. PMID:26489917

  2. Draft Genome Sequence of the Plant Growth-Promoting Cupriavidus gilardii Strain JZ4 Isolated from the Desert Plant Tribulus terrestris

    PubMed Central

    Lafi, Feras F.; Bokhari, Ameerah; Alam, Intikhab; Bajic, Vladimir B.

    2016-01-01

    We isolated the plant endophytic bacterium Cupriavidus gilardii strain JZ4 from the roots of the desert plant Tribulus terrestris, collected from the Jizan region, Saudi Arabia. We report here the draft genome sequence of JZ4, together with several enzymes related to plant growth-promoting activity, environmental adaption, and antifungal activity. PMID:27469951

  3. Draft Genome Sequence of the Plant Growth-Promoting Cupriavidus gilardii Strain JZ4 Isolated from the Desert Plant Tribulus terrestris.

    PubMed

    Lafi, Feras F; Bokhari, Ameerah; Alam, Intikhab; Bajic, Vladimir B; Hirt, Heribert; Saad, Maged M

    2016-01-01

    We isolated the plant endophytic bacterium Cupriavidus gilardii strain JZ4 from the roots of the desert plant Tribulus terrestris, collected from the Jizan region, Saudi Arabia. We report here the draft genome sequence of JZ4, together with several enzymes related to plant growth-promoting activity, environmental adaption, and antifungal activity. PMID:27469951

  4. Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation, and carbon sequestration

    SciTech Connect

    Wu, C.H.; Bernard, S.; Andersen, G.L.; Chen, W.

    2009-03-01

    Interactions between plants and microbes are an integral part of our terrestrial ecosystem. Microbe-plant interactions are being applied in many areas. In this review, we present recent reports of applications in the areas of plant-growth promotion, biocontrol, bioactive compound and biomaterial production, remediation and carbon sequestration. Challenges, limitations and future outlook for each field are discussed.

  5. Plant-Dependent Genotypic and Phenotypic Diversity of Antagonistic Rhizobacteria Isolated from Different Verticillium Host Plants

    PubMed Central

    Berg, Gabriele; Roskot, Nicolle; Steidle, Anette; Eberl, Leo; Zock, Angela; Smalla, Kornelia

    2002-01-01

    To study the effect of plant species on the abundance and diversity of bacterial antagonists, the abundance, the phenotypic diversity, and the genotypic diversity of rhizobacteria isolated from potato, oilseed rape, and strawberry and from bulk soil which showed antagonistic activity towards the soilborne pathogen Verticillium dahliae Kleb. were analyzed. Rhizosphere and soil samples were taken five times over two growing seasons in 1998 and 1999 from a randomized field trial. Bacterial isolates were obtained after plating on R2A (Difco, Detroit, Mich.) or enrichment in microtiter plates containing high-molecular-weight substrates followed by plating on R2A. A total of 5,854 bacteria isolated from the rhizosphere of strawberry, potato, or oilseed rape or bulk soil from fallow were screened by dual testing for in vitro antagonism towards Verticillium. The proportion of isolates with antagonistic activity was highest for strawberry rhizosphere (9.5%), followed by oilseed rape (6.3%), potato (3.7%), and soil (3.3%). The 331 Verticillium antagonists were identified by their fatty acid methyl ester profiles. They were characterized by testing their in vitro antagonism against other pathogenic fungi; their glucanolytic, chitinolytic, and proteolytic activities; and their BOX-PCR fingerprints. The abundance and composition of Verticillium antagonists was plant species dependent. A rather high proportion of antagonists from the strawberry rhizosphere was identified as Pseudomonas putida B (69%), while antagonists belonging to the Enterobacteriaceae (Serratia spp., Pantoea agglomerans) were mainly isolated from the rhizosphere of oilseed rape. For P. putida A and B plant-specific genotypes were observed, suggesting that these bacteria were specifically enriched in each rhizosphere. PMID:12089011

  6. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants.

    PubMed

    Berg, Gabriele; Roskot, Nicolle; Steidle, Anette; Eberl, Leo; Zock, Angela; Smalla, Kornelia

    2002-07-01

    To study the effect of plant species on the abundance and diversity of bacterial antagonists, the abundance, the phenotypic diversity, and the genotypic diversity of rhizobacteria isolated from potato, oilseed rape, and strawberry and from bulk soil which showed antagonistic activity towards the soilborne pathogen Verticillium dahliae Kleb. were analyzed. Rhizosphere and soil samples were taken five times over two growing seasons in 1998 and 1999 from a randomized field trial. Bacterial isolates were obtained after plating on R2A (Difco, Detroit, Mich.) or enrichment in microtiter plates containing high-molecular-weight substrates followed by plating on R2A. A total of 5,854 bacteria isolated from the rhizosphere of strawberry, potato, or oilseed rape or bulk soil from fallow were screened by dual testing for in vitro antagonism towards VERTICILLIUM: The proportion of isolates with antagonistic activity was highest for strawberry rhizosphere (9.5%), followed by oilseed rape (6.3%), potato (3.7%), and soil (3.3%). The 331 Verticillium antagonists were identified by their fatty acid methyl ester profiles. They were characterized by testing their in vitro antagonism against other pathogenic fungi; their glucanolytic, chitinolytic, and proteolytic activities; and their BOX-PCR fingerprints. The abundance and composition of Verticillium antagonists was plant species dependent. A rather high proportion of antagonists from the strawberry rhizosphere was identified as Pseudomonas putida B (69%), while antagonists belonging to the Enterobacteriaceae (Serratia spp., Pantoea agglomerans) were mainly isolated from the rhizosphere of oilseed rape. For P. putida A and B plant-specific genotypes were observed, suggesting that these bacteria were specifically enriched in each rhizosphere. PMID:12089011

  7. Draft genome sequence of Pantoea ananatis B1-9, a nonpathogenic plant growth-promoting bacterium.

    PubMed

    Kim, Hyun Jung; Lee, Jin Hee; Kang, Beom Ryong; Rong, Xiaoqing; McSpadden Gardener, Brian B; Ji, Hyung Jin; Park, Chang-Seuk; Kim, Young Cheol

    2012-02-01

    Pantoea ananatis B1-9 is an endophytic Gram-negative rhizobacterium that was isolated for its ability to promote plant growth and improve crop yield in the field. Here we report the draft genome sequence of P. ananatis B1-9. Comparison of this sequence to the sequenced genome of a plant-pathogenic P. ananatis strain, LMG20103, indicated that the pathogenesis-related genes were absent, but a subset of gene functions that may be related to its plant growth promotion were present. PMID:22247529

  8. Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings

    PubMed Central

    de-Bashan, Luz E.; Hernandez, Juan-Pablo; Bashan, Yoav; Maier, Raina

    2014-01-01

    Three plant growth-promoting bacteria (PGPB; Bacillus pumilus ES4, B. pumilus RIZO1, and Azospirillum brasilense Cd) were tested for their ability to enhance plant growth and development of the native Sonoran Desert shrub quailbush (Atriplex lentiformis) and for their effect on the native bacterial community in moderately acidic, high-metal content (AHMT) and in neutral, low metal content natural tailings (NLMT) in controlled greenhouse experiments. Inoculation of quailbush with all three PGPB significantly enhanced plant growth parameters, such as germination, root length, dry weight of shoots and roots, and root/shoot ratio in both types of tailings. The effect of inoculation on the indigenous bacterial community by the most successful PGPB Bacillus pumilus ES4 was evaluated by denaturating gradient gel electrophoresis (PCR-DGGE) fingerprinting and root colonization was followed by specific fluorescent in situ hybridization (FISH). Inoculation with this strain significantly changed the bacterial community over a period of 60 days. FISH analysis showed that the preferred site of colonization was the root tips and root elongation area. This study shows that inoculation of native perennial plants with PGPB can be used for developing technologies for phytostabilizing mine tailings. PMID:25009362

  9. Induction of Drought Tolerance in Cucumber Plants by a Consortium of Three Plant Growth-Promoting Rhizobacterium Strains

    PubMed Central

    Wang, Chao; Gu, Chun; Niu, Dong-Dong; Liu, Hong-Xia; Wang, Yun-Peng; Guo, Jian-Hua

    2012-01-01

    Our previous work showed that a consortium of three plant growth-promoting rhizobacterium (PGPR) strains (Bacillus cereus AR156, Bacillus subtilis SM21, and Serratia sp. XY21), termed as BBS for short, was a promising biocontrol agent. The present study investigated its effect on drought tolerance in cucumber plants. After withholding watering for 13 days, BBS-treated cucumber plants had much darker green leaves and substantially lighter wilt symptoms than control plants. Compared to the control, the BBS treatment decreased the leaf monodehydroascorbate (MDA) content and relative electrical conductivity by 40% and 15%, respectively; increased the leaf proline content and the root recovery intension by 3.45-fold and 50%, respectively; and also maintained the leaf chlorophyll content in cucumber plants under drought stress. Besides, in relation to the control, the BBS treatment significantly enhanced the superoxide dismutase (SOD) activity and mitigated the drought-triggered down-regulation of the expression of the genes cAPX, rbcL, and rbcS encoding cytosolic ascorbate peroxidase, and ribulose-1,5-bisphosphate carboxy/oxygenase (Rubisco) large and small subunits, respectively, in cucumber leaves. However, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity was undetected in none of the culture solutions of three BBS constituent strains. These results indicated that BBS conferred induced systemic tolerance to drought stress in cucumber plants, by protecting plant cells, maintaining photosynthetic efficiency and root vigor and increasing some of antioxidase activities, without involving the action of ACC deaminase to lower plant ethylene levels. PMID:23285089

  10. Plant Growth Promotion Activity of Keratinolytic Fungi Growing on a Recalcitrant Waste Known as “Hair Waste”

    PubMed Central

    Cavello, Ivana A.; Crespo, Juan M.; García, Sabrina S.; Zapiola, José M.; Luna, María F.; Cavalitto, Sebastián F.

    2015-01-01

    Purpureocillium lilacinum (Thom) Samsom is one of the most studied fungi in the control of plant parasitic nematodes. However, there is not specific information on its ability to inhibit some pathogenic bacteria, fungi, or yeast. This work reports the production of several antifungal hydrolytic enzymes by a strain of P. lilacinum when it is grown in a medium containing hair waste. The growth of several plant-pathogenic fungi, Alternaria alternata, Aspergillus niger, and Fusarium culmorum, was considerably affected by the presence of P. lilacinum's supernatant. Besides antifungal activity, P. lilacinum demonstrates the capability to produce indoleacetic acid and ammonia during time cultivation on hair waste medium. Plant growth-promoting activity by cell-free supernatant was evidenced through the increase of the percentage of tomato seed germination from 71 to 85% after 48 hours. A 21-day plant growth assay using tomato plants indicates that crude supernatant promotes the growth of the plants similar to a reference fertilizer (p > 0.05). These results suggest that both strain and the supernatant may have potential to be considered as a potent biocontrol agent with multiple plant growth-promoting properties. To our knowledge, this is the first report on the antifungal, IAA production and tomato growth enhancing compounds produced by P. lilacinum LPSC #876. PMID:26697226

  11. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab.

    PubMed

    Fu, Shih-Feng; Sun, Pei-Feng; Lu, Hsueh-Yu; Wei, Jyuan-Yu; Xiao, Hong-Su; Fang, Wei-Ta; Cheng, Bai-You; Chou, Jui-Yu

    2016-03-01

    Microorganisms can promote plant growth through direct and indirect mechanisms. Compared with the use of bacteria and mycorrhizal fungi, the use of yeasts as plant growth-promoting (PGP) agents has not been extensively investigated. In this study, yeast isolates from the phyllosphere and rhizosphere of the medicinally important plant Drosera spatulata Lab. were assessed for their PGP traits. All isolates were tested for indole-3-acetic acid-, ammonia-, and polyamine-producing abilities, calcium phosphate and zinc oxide solubilizing ability, and catalase activity. Furthermore, the activities of siderophore, 1-aminocyclopropane-1-carboxylate deaminase, and fungal cell wall-degrading enzymes were assessed. The antagonistic action of yeasts against pathogenic Glomerella cingulata was evaluated. The cocultivation of Nicotiana benthamiana with yeast isolates enhanced plant growth, indicating a potential yeast-plant interaction. Our study results highlight the potential use of yeasts as plant biofertilizers under controlled and field conditions. PMID:26895872

  12. Plant-based culture media: Efficiently support culturing rhizobacteria and correctly mirror their in-situ diversity.

    PubMed

    Youssef, Hanan H; Hamza, Mervat A; Fayez, Mohamed; Mourad, Elhussein F; Saleh, Mohamed Y; Sarhan, Mohamed S; Suker, Ragab M; Eltahlawy, Asmaa A; Nemr, Rahma A; El-Tahan, Mahmod; Ruppel, Silke; Hegazi, Nabil A

    2016-03-01

    Our previous publications and the data presented here provide evidences on the ability of plant-based culture media to optimize the cultivability of rhizobacteria and to support their recovery from plant-soil environments. Compared to the tested chemically-synthetic culture media (e.g. nutrient agar and N-deficient combined-carbon sources media), slurry homogenates, crude saps, juices and powders of cactus (Opuntia ficus-indica) and succulent plants (Aloe vera and Aloe arborescens) were rich enough to support growth of rhizobacteria. Representative isolates of Enterobacter spp., Klebsiella spp., Bacillus spp. and Azospirillum spp. exhibited good growth on agar plates of such plant-based culture media. Cell growth and biomass production in liquid batch cultures were comparable to those reported with the synthetic culture media. In addition, the tested plant-based culture media efficiently recovered populations of rhizobacteria associated to plant roots. Culturable populations of >10(6)-10(8) cfu g(-1) were recovered from the ecto- and endo-rhizospheres of tested host plants. More than 100 endophytic culture-dependent isolates were secured and subjected to morphophysiological identification. Factor and cluster analyses indicated the unique community structure, on species, genera, class and phyla levels, of the culturable population recovered with plant-based culture media, being distinct from that obtained with the chemically-synthetic culture media. Proteobacteria were the dominant (78.8%) on plant-based agar culture medium compared to only 31% on nutrient agar, while Firmicutes prevailed on nutrient agar (69%) compared to the plant-based agar culture media (18.2%). Bacteroidetes, represented by Chryseobacterium indologenes, was only reported (3%) among the culturable rhizobacteria community of the plant-based agar culture medium. PMID:26966571

  13. Plant-based culture media: Efficiently support culturing rhizobacteria and correctly mirror their in-situ diversity

    PubMed Central

    Youssef, Hanan H.; Hamza, Mervat A.; Fayez, Mohamed; Mourad, Elhussein F.; Saleh, Mohamed Y.; Sarhan, Mohamed S.; Suker, Ragab M.; Eltahlawy, Asmaa A.; Nemr, Rahma A.; El-Tahan, Mahmod; Ruppel, Silke; Hegazi, Nabil A.

    2015-01-01

    Our previous publications and the data presented here provide evidences on the ability of plant-based culture media to optimize the cultivability of rhizobacteria and to support their recovery from plant-soil environments. Compared to the tested chemically-synthetic culture media (e.g. nutrient agar and N-deficient combined-carbon sources media), slurry homogenates, crude saps, juices and powders of cactus (Opuntia ficus-indica) and succulent plants (Aloe vera and Aloe arborescens) were rich enough to support growth of rhizobacteria. Representative isolates of Enterobacter spp., Klebsiella spp., Bacillus spp. and Azospirillum spp. exhibited good growth on agar plates of such plant-based culture media. Cell growth and biomass production in liquid batch cultures were comparable to those reported with the synthetic culture media. In addition, the tested plant-based culture media efficiently recovered populations of rhizobacteria associated to plant roots. Culturable populations of >106–108 cfu g−1 were recovered from the ecto- and endo-rhizospheres of tested host plants. More than 100 endophytic culture-dependent isolates were secured and subjected to morphophysiological identification. Factor and cluster analyses indicated the unique community structure, on species, genera, class and phyla levels, of the culturable population recovered with plant-based culture media, being distinct from that obtained with the chemically-synthetic culture media. Proteobacteria were the dominant (78.8%) on plant-based agar culture medium compared to only 31% on nutrient agar, while Firmicutes prevailed on nutrient agar (69%) compared to the plant-based agar culture media (18.2%). Bacteroidetes, represented by Chryseobacterium indologenes, was only reported (3%) among the culturable rhizobacteria community of the plant-based agar culture medium. PMID:26966571

  14. Identification of Plant Growth-Promoting Bacteria Using Titanium Dioxide Photocatalysis-Assisted Photoacoustic Technique

    NASA Astrophysics Data System (ADS)

    Gordillo-Delgado, F.; Marín, E.; Calderón, A.

    2013-09-01

    The effect of titanium dioxide photocatalysis against bacteria that are dangerous for human health has been investigated in the past, suggesting the possibility of using a specific behavior for each microorganism during this process for its discrimination. In this study, the behavior of some plants’ growth promoting bacteria ( Burkholderia unamae (Strain MTI 641), Acetobacter diazotrophicus (Strain PAl 5T), A. diazotrophicus (Strain CFN-Cf 52), and B. unamae (Strain TATl-371)) interacting with light and bactericidal titanium dioxide films have been analyzed using the photoacoustic technique. The monitoring of these interactions shows particular characteristics that could serve for identifying these species.

  15. Diversity and Plant Growth Promoting Capacity of Endophytic Fungi Associated with Halophytic Plants from the West Coast of Korea

    PubMed Central

    Khalmuratova, Irina; Kim, Hyun; Nam, Yoon-Jong; Oh, Yoosun; Jeong, Min-Ji; Choi, Hye-Rim; You, Young-Hyun; Choo, Yeon-Sik; Lee, In-Jung; Shin, Jae-Ho

    2015-01-01

    Five halophytic plant species, Suaeda maritima, Limonium tetragonum, Suaeda australis, Phragmites australis, and Suaeda glauca Bunge, which are native to the Muan salt marsh of South Korea, were examined for fungal endophytes by sequencing the internal transcribed spacer (ITS) region containing ITS1, 5.8S rRNA, and ITS2. In total, 160 endophytic fungal strains were isolated and identified from the roots of the 5 plant species. Taxonomically, all 160 strains belonged to the phyla Ascomycota, Basidiomycota, and Zygomycota. The most dominant genus was Fusarium, followed by the genera Penicillium and Alternaria. Subsequently, using 5 statistical methods, the diversity indices of the endophytes were determined at genus level. Among these halophytic plants, P. australis was found to host the greatest diversity of endophytic fungi. Culture filtrates of endophytic fungi were treated to Waito-C rice seedlings for plant growth-promoting effects. The fungal strain Su-3-4-3 isolated from S. glauca Bunge provide the maximum plant length (20.1 cm) in comparison with wild-type Gibberella fujikuroi (19.6 cm). Consequently, chromatographic analysis of the culture filtrate of Su-3-4-3 showed the presence of physiologically active gibberellins, GA1 (0.465 ng/mL), GA3 (1.808 ng/mL) along with other physiologically inactive GA9 (0.054 ng/mL) and GA24 (0.044 ng/mL). The fungal isolate Su-3-4-3 was identified as Talaromyces pinophilus. PMID:26839496

  16. Diversity and Plant Growth Promoting Capacity of Endophytic Fungi Associated with Halophytic Plants from the West Coast of Korea.

    PubMed

    Khalmuratova, Irina; Kim, Hyun; Nam, Yoon-Jong; Oh, Yoosun; Jeong, Min-Ji; Choi, Hye-Rim; You, Young-Hyun; Choo, Yeon-Sik; Lee, In-Jung; Shin, Jae-Ho; Yoon, Hyeokjun; Kim, Jong-Guk

    2015-12-01

    Five halophytic plant species, Suaeda maritima, Limonium tetragonum, Suaeda australis, Phragmites australis, and Suaeda glauca Bunge, which are native to the Muan salt marsh of South Korea, were examined for fungal endophytes by sequencing the internal transcribed spacer (ITS) region containing ITS1, 5.8S rRNA, and ITS2. In total, 160 endophytic fungal strains were isolated and identified from the roots of the 5 plant species. Taxonomically, all 160 strains belonged to the phyla Ascomycota, Basidiomycota, and Zygomycota. The most dominant genus was Fusarium, followed by the genera Penicillium and Alternaria. Subsequently, using 5 statistical methods, the diversity indices of the endophytes were determined at genus level. Among these halophytic plants, P. australis was found to host the greatest diversity of endophytic fungi. Culture filtrates of endophytic fungi were treated to Waito-C rice seedlings for plant growth-promoting effects. The fungal strain Su-3-4-3 isolated from S. glauca Bunge provide the maximum plant length (20.1 cm) in comparison with wild-type Gibberella fujikuroi (19.6 cm). Consequently, chromatographic analysis of the culture filtrate of Su-3-4-3 showed the presence of physiologically active gibberellins, GA1 (0.465 ng/mL), GA3 (1.808 ng/mL) along with other physiologically inactive GA9 (0.054 ng/mL) and GA24 (0.044 ng/mL). The fungal isolate Su-3-4-3 was identified as Talaromyces pinophilus. PMID:26839496

  17. Effect of arbuscular mycorrhizal (AM) fungus and plant growth promoting rhizomicroorganisms (PGPR's) on medicinal plant Solanum viarum seedlings.

    PubMed

    Hemashenpagam, N; Selvaraj, T

    2011-09-01

    A green house nursery study was conducted to assess the interaction between arbuscular mycorrhizal (AM) fungus, Glomus aggregatum and some plant growth promoting rhizomicrooganisms (PGPR's), Bacillus coagulans and Trichoderma harzianum, in soil and their consequent effect on growth, nutrition and content of secondary metabolities of Solanum viarum seedlings. Triple inoculation of G. aggregatum+B. coagulans+T. harzainum with Solanum viarum in a green house nursery study resulted in maximum plant biomass (plant height 105 cm and plant dry weight 12.17 g), P, Fe, Zn, Cu and Mn and secondary metabolities [total phenols (129.6 microg g(-1) f.wt.), orthodihydroxy phenols (90.6 microg g(-1) f.wt.), flavonoids (3.94 microg g(-1) f.wt.), alkaloids (5.05 microg g(-1) f.wt.), saponins (5.05 microg g(-1) f.wt.) and tannins (0.324 microg g(-1) f.wt.)] of S. viarum seedlings. The mycorrhizal root colonization and spore numbers in the root zone soil of the inoculated plants increased. The enzyme activity namely acid phosphatase (53.44 microg PNP g(-1) soil), alkaline phosphatase (40.95 microg PNP g(-1) soil) and dehydrogenase (475.5 microg PNP g(-1) soil) and total population of B. coagulans (12.5x10(4) g(-1)) and T. harzianum (12.4 x 10(4) g(-1)), in the root zone soil was found high in the triple inoculation with G. aggregatum+B. coagulans+T. harzianum that proved to be the best microbial consortium. PMID:22319872

  18. Proteomic analysis of the response of the plant growth-promoting bacterium Pseudomonas putida UW4 to nickel stress

    PubMed Central

    Cheng, Zhenyu; Wei, Yi-Yun C; Sung, Wilson WL; Glick, Bernard R; McConkey, Brendan J

    2009-01-01

    Background Plant growth-promoting bacteria can alleviate the inhibitory effects of various heavy metals on plant growth, via decreasing levels of stress-induced ethylene. However, little has been done to detect any mechanisms specific for heavy metal resistance of this kind of bacteria. Here, we investigate the response of the wild-type plant growth-promoting bacterium Pseudomonas putida UW4 to nickel stress using proteomic approaches. The mutant strain P. putida UW4/AcdS-, lacking a functional 1-aminocyclopropane-1-carboxylic acid deaminase gene, was also assessed for its response to nickel stress. Results Two dimensional difference in-gel electrophoresis (DIGE) was used to detect significantly up- or down- regulated proteins (p < 0.05, | ratio | > 1.5) in P. putida in response to the presence of 2 mM Ni. Out of a total number of 1,702 proteins detected on the analytical gels for P. putida UW4, the expression levels of 82 (4.82%) proteins increased significantly while the expression of 81 (4.76%) proteins decreased significantly. Of 1,575 proteins detected on the analytical gels for P. putida UW4/AcdS-, the expression levels of 74 (4.70%) proteins increased and 51 (3.24%) proteins decreased significantly. Thirty-five proteins whose expression was altered were successfully identified by mass spectrometry and sequence comparisons with related species. Nineteen of the identified proteins were detected as differentially expressed in both wild-type and mutant expression profiles. Conclusion Functional assessment of proteins with significantly altered expression levels revealed several mechanisms thought to be involved in bacterial heavy metal detoxification, including general stress adaptation, anti-oxidative stress and heavy metal efflux proteins. This information may contribute to the development of plant growth-promoting bacteria mediated phytoremediation processes. PMID:19422705

  19. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa

    PubMed Central

    Khalifa, Ashraf Y.Z.; Alsyeeh, Abdel-Moneium; Almalki, Mohammed A.; Saleh, Farag A.

    2015-01-01

    The aim of the present study was to characterize the endophytic bacterial strain designated MSR1 that was isolated from inside the non-nodulating roots of Medicago sativa after surface-sterilization. MSR1 was identified as Enterobacter cloacae using both 16S rDNA gene sequence analysis and API20E biochemical identification system (Biomerieux, France). Furthermore, this bacterium was characterized using API50CH kit (Biomerieux, France) and tested for antibacterial activities against some food borne pathogens. The results showed that E. cloacae consumed certain carbohydrates such as glycerol, d-xylose, d-maltose and esculin melibiose as a sole carbon source and certain amino acids such as arginine, tryptophan ornithine as nitrogen source. Furthermore, MSR1 possessed multiple plant-growth promoting characteristics; phosphate solubility, production of phytohormones acetoin and bioactive compounds. Inoculation of Pisum sativum with MSR1 significantly improved the growth parameters (the length and dry weight) of this economically important grain legume compared to the non-treated plants. To our knowledge, this is the first report addressing E. cloacae which exist in roots of alfalfa growing in Al-Ahsaa region. The results confirmed that E. cloacae exhibited traits for plant growth promoting and could be developed as an eco-friendly biofertilizer for P. sativum and probably for other important plant species in future. PMID:26858542

  20. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa.

    PubMed

    Khalifa, Ashraf Y Z; Alsyeeh, Abdel-Moneium; Almalki, Mohammed A; Saleh, Farag A

    2016-01-01

    The aim of the present study was to characterize the endophytic bacterial strain designated MSR1 that was isolated from inside the non-nodulating roots of Medicago sativa after surface-sterilization. MSR1 was identified as Enterobacter cloacae using both 16S rDNA gene sequence analysis and API20E biochemical identification system (Biomerieux, France). Furthermore, this bacterium was characterized using API50CH kit (Biomerieux, France) and tested for antibacterial activities against some food borne pathogens. The results showed that E. cloacae consumed certain carbohydrates such as glycerol, d-xylose, d-maltose and esculin melibiose as a sole carbon source and certain amino acids such as arginine, tryptophan ornithine as nitrogen source. Furthermore, MSR1 possessed multiple plant-growth promoting characteristics; phosphate solubility, production of phytohormones acetoin and bioactive compounds. Inoculation of Pisum sativum with MSR1 significantly improved the growth parameters (the length and dry weight) of this economically important grain legume compared to the non-treated plants. To our knowledge, this is the first report addressing E. cloacae which exist in roots of alfalfa growing in Al-Ahsaa region. The results confirmed that E. cloacae exhibited traits for plant growth promoting and could be developed as an eco-friendly biofertilizer for P. sativum and probably for other important plant species in future. PMID:26858542

  1. Draft Genome Sequence of a Natural Root Isolate, Bacillus subtilis UD1022, a Potential Plant Growth-Promoting Biocontrol Agent.

    PubMed

    Bishnoi, Usha; Polson, Shawn W; Sherrier, D Janine; Bais, Harsh P

    2015-01-01

    Bacillus subtilis, which belongs to the phylum Firmicutes, is the most widely studied Gram-positive model organism. It is found in a wide variety of environments and is particularly abundant in soils and in the gastrointestinal tracts of ruminants and humans. Here, we present the complete genome sequence of the newly described B. subtilis strain UD1022. The UD1022 genome consists of a 4.025-Mbp chromosome, and other major findings from our analysis will provide insights into the genomic basis of it being a plant growth-promoting rhizobacterium (PGPR) with biocontrol potential. PMID:26159522

  2. Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion.

    PubMed

    Saravanan, V S; Madhaiyan, M; Osborne, Jabez; Thangaraju, M; Sa, T M

    2008-01-01

    Gluconacetobacter diazotrophicus has a long-standing history of bacterial-plant interrelationship as a symbiotic endophyte capable of fixing atmospheric nitrogen. In low nitrogen fertilized sugarcane fields it plays a significant role and its occurrence was realised in most of the sugarcane growing countries. In this mini review, the association of G. diazotrophicus with sugarcane, other crop plants and with various hosts is discussed. The factors affecting survival in the rhizosphere and the putative soil mode of transmission are emphasized. In addition, other N(2)-fixing Acetobacteraceae members, including Gluconacetobacter azotocaptans, Gluconacetobacter johannae and Swaminathania salitolerans, occurring in coffee, corn and rice plants are also covered. Lastly, the plant-growth-promoting traits identified in this group of bacteria, including N(2) fixation, phytohormone synthesis, P and Zn solubilization and biocontrol, are analysed. PMID:17574542

  3. In vitro evaluation of Pseudomonas bacterial isolates from rice phylloplane for biocontrol of Rhizoctonia solani and plant growth promoting traits.

    PubMed

    Akter, Shamima; Kadir, Jugah; Juraimi, Abdul Shukor; Saud, Halimi Mohd

    2016-07-01

    The ability for biocontrol and plant growth promotion of three Pseudomonas bacterial isolates namely Pseudomonas fluorescens (UMB20), Pseudomonas aeruginosa (KMB25) and Pseudomonas asplenii (BMB42) obtained from rice plants was investigated. Fungal growth inhibition by the isolates ranged from 86.85 to 93.15% in volatile and 100% in diffusible metabolites test. Among the isolates, BMB42 showed fungal growth inhibition significantly in the volatile metabolite test. Isolates UMB20 and BMB42 were able to synthesis chitinase with chitinolytic indices of 13.66 and 13.50, respectively. In case of -1,3-glucanase, all the isolates showed activity to produce this enzyme at varied levels and isolate KMB25 showed significantly highest activity (53.53 ppm). Among the three isolates, KMB25 showed positive response to protease production and all of them were negative to pectinase and lipase and positive to the production of siderophore, and HCN, and were able to solubilize tricalcium phosphate. All the three bacterial isolates were capable of forming biofilm at different levels. Above results suggest that phylloplane Pseudomonas bacterial isolates have potential for antifungal activities and plant growth promotion. PMID:27498507

  4. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata.

    PubMed

    Xu, Jia-Yi; Han, Yong-He; Chen, Yanshan; Zhu, Ling-Jia; Ma, Lena Q

    2016-02-01

    The ability of As-resistant endophytic bacteria in As transformation and plant growth promotion was determined. The endophytes were isolated from As-hyperaccumulator Pteris vittata (PV) after growing for 60 d in a soil containing 200 mg kg(-1) arsenate (AsV). They were isolated in presence of 10 mM AsV from PV roots, stems, and leaflets, representing 4 phyla and 17 genera. All endophytes showed at least one plant growth promoting characteristics including IAA synthesis, siderophore production and P solubilization. The root endophytes had higher P solubilization ability than the leaflet (60.0 vs. 18.3 mg L(-1)). In presence of 10 mM AsV, 6 endophytes had greater growth than the control, suggesting As-stimulated growth. Furthermore, root endophytes were more resistant to AsV while the leaflet endophytes were more tolerant to arsenite (AsIII), which corresponded to the dominant As species in PV tissues. Bacterial As resistance was positively correlated to their ability in AsV reduction but not AsIII oxidation. The roles of those endophytes in promoting plant growth and As resistance in P. vittata warrant further investigation. PMID:26469935

  5. Draft Genome Sequence of Burkholderia ambifaria RZ2MS16, a Plant Growth-Promoting Rhizobacterium Isolated from Guarana, a Tropical Plant.

    PubMed

    Batista, Bruna Durante; Taniguti, Lucas Mitsuo; Monteiro-Vitorello, Claudia Barros; Azevedo, João Lúcio; Quecine, Maria Carolina

    2016-01-01

    Burkholderia ambifaria strain RZ2MS16 was isolated from the rhizosphere of Amazon guarana in Brazil. This bacterium exhibits a remarkable capacity to promote the growth of corn and soybean. Here, we report the draft genome sequence of RZ2MS16 and some genes related to multiple traits involved in plant growth promotion. PMID:26988044

  6. Draft Genome Sequence of Burkholderia ambifaria RZ2MS16, a Plant Growth-Promoting Rhizobacterium Isolated from Guarana, a Tropical Plant

    PubMed Central

    Batista, Bruna Durante; Taniguti, Lucas Mitsuo; Monteiro-Vitorello, Claudia Barros; Azevedo, João Lúcio

    2016-01-01

    Burkholderia ambifaria strain RZ2MS16 was isolated from the rhizosphere of Amazon guarana in Brazil. This bacterium exhibits a remarkable capacity to promote the growth of corn and soybean. Here, we report the draft genome sequence of RZ2MS16 and some genes related to multiple traits involved in plant growth promotion. PMID:26988044

  7. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties

    PubMed Central

    Sura-de Jong, Martina; Reynolds, Ray J. B.; Richterova, Klara; Musilova, Lucie; Staicu, Lucian C.; Chocholata, Iva; Cappa, Jennifer J.; Taghavi, Safiyh; van der Lelie, Daniel; Frantik, Tomas; Dolinova, Iva; Strejcek, Michal; Cochran, Alyssa T.; Lovecka, Petra; Pilon-Smits, Elizabeth A. H.

    2015-01-01

    Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5–1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties. PMID:25784919

  8. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties.

    PubMed

    Sura-de Jong, Martina; Reynolds, Ray J B; Richterova, Klara; Musilova, Lucie; Staicu, Lucian C; Chocholata, Iva; Cappa, Jennifer J; Taghavi, Safiyh; van der Lelie, Daniel; Frantik, Tomas; Dolinova, Iva; Strejcek, Michal; Cochran, Alyssa T; Lovecka, Petra; Pilon-Smits, Elizabeth A H

    2015-01-01

    Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5-1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties. PMID:25784919

  9. Complete genome sequence of Bacillus amyloliquefaciens L-S60, a plant growth-promoting and antifungal bacterium.

    PubMed

    Qin, Yuxuan; Han, Yuzhu; Yu, Yaqiong; Shang, Qingmao; Zhang, Bao; Li, Pinglan

    2015-10-20

    Bacillus amyloliquefaciens L-S60, a gram-positive plant-associated bacterium, which could stimulate plant growth and shows strong antifungal function, was isolated from the turfy soil in Beijing, China. The genome of B. amyloliquefaciens L-S60 comprises a 3903,017bp long circular chromosome that consists of 3909 protein-coding genes and 117 RNA genes. Based on genomic analysis, we identified gene clusters responsible for the biosynthesis of numerous bioactive metabolites with well-established in-vitro activity such as surfactin, iturin and fengycins. Additionally, we also found functionally related genes in the genome of L-S60, which play key roles in the process of plant growth promotion hormone secretion, biofilm formation and volatile compounds production. PMID:26297906

  10. Production of Thermostable Organic Solvent Tolerant Keratinolytic Protease from Thermoactinomyces sp. RM4: IAA Production and Plant Growth Promotion

    PubMed Central

    Verma, Amit; Singh, Hukum; Anwar, Mohammad S.; Kumar, Shailendra; Ansari, Mohammad W.; Agrawal, Sanjeev

    2016-01-01

    There are several reports about the optimization of protease production, but only few have optimized the production of organic solvent tolerant keratinolytic proteases that show remarkable exploitation in the development of the non-polluting processes in biotechnological industries. The present study was carried with aim to optimize the production of a thermostable organic solvent tolerant keratinolytic protease Thermoactinomyces sp. RM4 utilizing chicken feathers. Thermoactinomyces sp. RM4 isolated from the soil sample collected from a rice mill wasteyard site near Kashipur, Uttrakhand was identified on the basis of 16S rDNA analysis. The production of organic solvent tolerant keratinolytic protease enzyme by Thermoactinomyces sp. RM4 was optimized by varying physical culture conditions such as pH (10.0), temperature (60°C), inoculum percentage (2%), feather concentration (2%) and agitation rate (2 g) for feather degradation. The result showed that Thermoactinomyces sp. RM4 potentially produces extra-cellular thermostable organic solvent tolerant keratinolytic protease in the culture medium. Further, the feather hydrolysate from keratinase production media showed plant growth promoting activity by producing indole-3-acetic acid itself. The present findings suggest that keratinolytic protease from Thermoactinomyces sp. RM4 offers enormous industrial applications due to its organic solvent tolerant property in peptide synthesis, practical role in feather degradation and potential function in plant growth promoting activity, which might be a superior candidate to keep ecosystem healthy and functional. PMID:27555836

  11. Bioprospecting of Plant Growth Promoting Bacilli and Related Genera Prevalent in Soils of Pristine Sacred Groves: Biochemical and Molecular Approach

    PubMed Central

    Lyngwi, Nathaniel A.; Nongkhlaw, Macmillan; Kalita, Debajit; Joshi, Santa Ram

    2016-01-01

    Bacillus spp. and related genera native to soils of the pristine sacred groves from Meghalaya, India were characterized using biochemical and 16S rRNA gene analysis which revealed dominance of Bacillus, Paenibacillus, Lysinibacillus and Viridibacillus in the groves. Biochemical estimation was carried out for in vitro testing of plant growth promoting traits present in these isolates. PCR screening were performed for plant growth-promoting related genes involved in the biosynthesis of acid phosphatase (AcPho), indolepyruvate decarboxylase (ipdC), 1-aminocyclopropane-1-carboxylate deaminase (accd) and siderophore biosynthesis protein (asbA). 76% of the sacred grove isolates gave an amplified fragment for AcPho. Three of the isolates gave an amplified fragment for IpdC gene. Apart from 2 isolates, all the other isolates including the reference strains were positive for the amplification of the accd gene indicating their potential to produce ACC deaminase enzyme. 42% of the isolates gave an amplified fragment for asbA gene indicating the potential ability of these isolates to produce the catechol type siderophore, petrobactin. Overall findings indicated multiple PGP genetic traits present in these isolates which suggested that these isolates are capable of expressing multiple PGP traits. Phylogenetic and sequence analysis of accd and asbA genes from the isolates revealed that asbA genes from Paenibacillus taichungiensis SG3 and Paenibacillus tylopili SG24 indicated the occurrence of intergeneric horizontal transfer between Paenibacillus and Bacillus. PMID:27111883

  12. Production of Thermostable Organic Solvent Tolerant Keratinolytic Protease from Thermoactinomyces sp. RM4: IAA Production and Plant Growth Promotion.

    PubMed

    Verma, Amit; Singh, Hukum; Anwar, Mohammad S; Kumar, Shailendra; Ansari, Mohammad W; Agrawal, Sanjeev

    2016-01-01

    There are several reports about the optimization of protease production, but only few have optimized the production of organic solvent tolerant keratinolytic proteases that show remarkable exploitation in the development of the non-polluting processes in biotechnological industries. The present study was carried with aim to optimize the production of a thermostable organic solvent tolerant keratinolytic protease Thermoactinomyces sp. RM4 utilizing chicken feathers. Thermoactinomyces sp. RM4 isolated from the soil sample collected from a rice mill wasteyard site near Kashipur, Uttrakhand was identified on the basis of 16S rDNA analysis. The production of organic solvent tolerant keratinolytic protease enzyme by Thermoactinomyces sp. RM4 was optimized by varying physical culture conditions such as pH (10.0), temperature (60°C), inoculum percentage (2%), feather concentration (2%) and agitation rate (2 g) for feather degradation. The result showed that Thermoactinomyces sp. RM4 potentially produces extra-cellular thermostable organic solvent tolerant keratinolytic protease in the culture medium. Further, the feather hydrolysate from keratinase production media showed plant growth promoting activity by producing indole-3-acetic acid itself. The present findings suggest that keratinolytic protease from Thermoactinomyces sp. RM4 offers enormous industrial applications due to its organic solvent tolerant property in peptide synthesis, practical role in feather degradation and potential function in plant growth promoting activity, which might be a superior candidate to keep ecosystem healthy and functional. PMID:27555836

  13. Comprehensive proteomic analysis of canola leaf inoculated with a plant growth-promoting bacterium, Pseudomonas fluorescens, under salt stress.

    PubMed

    Banaei-Asl, Farzad; Farajzadeh, Davoud; Bandehagh, Ali; Komatsu, Setsuko

    2016-09-01

    Plant growth-promoting bacteria can improve the tolerance of canola to salt stress. To better understand the effects of plant growth-promoting bacterium on the protein profiles of canola under salt stress condition, proteomics was performed. Salt-sensitive (Sarigol) and -tolerant (Hyola308) canola cultivars were inoculated with Pseudomonas fluorescens FY32, and the protein profiles of canola leaves were compared using a PEG-fractionation method. Cluster analysis of canola cultivars based on a stress tolerance index of several morphological parameters was used to confirm that Sarigol and Hyola308 were salt-sensitive and -tolerant cultivars, respectively. Using a gel-free proteomic technique, 154 and 94 proteins in Hyola308 and 100 and 144 proteins in Sarigol were uniquely identified in non-inoculated and bacterial-inoculated cultivars, respectively. By PEG fractionation, a total of 132 and 207 proteins were identified in non-inoculated and inoculated Hyola308, respectively. Notably, the abundance of copper/zinc superoxide dismutase 1 was significantly increased in inoculated Hyola308 under severe salt stress and decreased under moderate salt stress. In addition, the enzyme activity of delta-1-pyrroline-5-carboxylate synthase was significantly increased non-inoculated Hyola308 and the activity of succinate dehydrogenase was increased in inoculated Hyola308 leaves exposed to salt stress. Taken together, these results suggest that the bacterial inoculation of canola increases salt tolerance by inducing an increase in the abundance of proteins related to glycolysis, tricarboxylic acid cycle, and amino acid metabolism. PMID:27137672

  14. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation.

    PubMed

    Ma, Ying; Oliveira, Rui S; Wu, Longhua; Luo, Yongming; Rajkumar, Mani; Rocha, Inês; Freitas, Helena

    2015-01-01

    A plant growth-promoting bacterial (PGPB) strain SC2b was isolated from the rhizosphere of Sedum plumbizincicola grown in lead (Pb)/zinc (Zn) mine soils and characterized as Bacillus sp. based on (1) morphological and biochemical characteristics and (2) partial 16S ribosomal DNA sequencing analysis. Strain SC2b exhibited high levels of resistance to cadmium (Cd) (300 mg/L), Zn (730 mg/L), and Pb (1400 mg/L). This strain also showed various plant growth-promoting (PGP) features such as utilization of 1-aminocyclopropane-1-carboxylate, solubilization of phosphate, and production of indole-3-acetic acid and siderophore. The strain mobilized high concentration of heavy metals from soils and exhibited different biosorption capacity toward the tested metal ions. Strain SC2b was further assessed for PGP activity by phytagar assay with a model plant Brassica napus. Inoculation of SC2b increased the biomass and vigor index of B. napus. Considering such potential, a pot experiment was conducted to assess the effects of inoculating the metal-resistant PGPB SC2b on growth and uptake of Cd, Zn and Pb by S. plumbizincicola in metal-contaminated agricultural soils. Inoculation with SC2b elevated the shoot and root biomass and leaf chlorophyll content of S. plumbizincicola. Similarly, plants inoculated with SC2b demonstrated markedly higher Cd and Zn accumulation in the root and shoot system, indicating that SC2b enhanced Cd and Zn uptake by S. plumbizincicola through metal mobilization or plant-microbial mediated changes in chemical or biological soil properties. Data demonstrated that the PGPB Bacillus sp. SC2b might serve as a future biofertilizer and an effective metal mobilizing bioinoculant for rhizoremediation of metal polluted soils. PMID:26167758

  15. Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.).

    PubMed

    Tariq, Mohsin; Hameed, Sohail; Yasmeen, Tahira; Zahid, Mehwish; Zafar, Marriam

    2014-02-01

    Root nodule accommodates various non-nodulating bacteria at varying densities. Present study was planned to identify and characterize the non-nodulating bacteria from the pea plant. Ten fast growing bacteria were isolated from the root nodules of cultivated pea plants. These bacterial isolates were unable to nodulate pea plants in nodulation assay, which indicate the non-rhizobial nature of these bacteria. Bacterial isolates were tested in vitro for plant growth promoting properties including indole acetic acid (IAA) production, nitrogen fixation, phosphate solubilization, root colonization and biofilm formation. Six isolates were able to produce IAA at varying level from 0.86 to 16.16 μg ml(-1), with the isolate MSP9 being most efficient. Only two isolates, MSP2 and MSP10, were able to fix nitrogen. All isolates were able to solubilize inorganic phosphorus ranging from 5.57 to 11.73 μg ml(-1), except MSP4. Bacterial isolates showed considerably better potential for colonization on pea roots. Isolates MSP9 and MSP10 were most efficient in biofilm formation on polyvinyl chloride, which indicated their potential to withstand various biotic and abiotic stresses, whereas the remaining isolates showed a very poor biofilm formation ability. The most efficient plant growth promoting agents, MSP9 and MSP10, were phylogenetically identified by 16S rRNA gene sequence analysis as Ochrobactrum and Enterobacter, respectively, with 99% similarity. It is suggested the potential endophytic bacterial strains, Ochrobactrum sp. MSP9 and Enterobacter sp. MSP10, can be used as biofertilizers for various legume and non-legume crops after studying their interaction with the host crop and field evaluation. PMID:24072498

  16. Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings.

    PubMed

    Puente, M E; Li, C Y; Bashan, Y

    2004-09-01

    Four bacterial species isolated from the rhizoplane of cacti growing in bare lava rocks were assessed for growth promotion of giant cardon cactus seedlings (Pachycereus pringlei). These bacteria fixed N(2), dissolved P, weathered extrusive igneous rock, marble, and limestone, and significantly mobilized useful minerals, such as P, K, Mg, Mn, Fe, Cu, and Zn in rock minerals. Cardon cactus seeds inoculated with these bacteria were able to sprout and grow normally without added nutrients for at least 12 months in pulverized extrusive igneous rock (ancient lava flows) mixed with perlite. Cacti that were not inoculated grew less vigorously and some died. The amount of useful minerals (P, K, Fe, Mg) for plant growth extracted from the pulverized lava, measured after cultivation of inoculated plants, was significant. This study shows that rhizoplane bacteria isolated from rock-growing cacti promote growth of a cactus species, and can help supply essential minerals for a prolonged period of time. PMID:15375736

  17. Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas.

    PubMed

    Gulati, Arvind; Vyas, Pratibha; Rahi, Praveen; Kasana, Ramesh Chand

    2009-04-01

    A phosphate-solubilizing bacterial strain BIHB 723 isolated from the rhizosphere of Hippophae rhamnoides was identified as Acinetobacter rhizosphaerae on the basis of phenotypic characteristics, carbon source utilization pattern, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The strain exhibited the plant growth-promoting attributes of inorganic and organic phosphate solubilization, auxin production, 1-aminocyclopropane-1-carboxylate deaminase activity, ammonia generation, and siderophore production. A significant increase in the growth of pea, chickpea, maize, and barley was recorded for inoculations under controlled conditions. Field testing with the pea also showed a significant increment in plant growth and yield. The rifampicin mutant of the bacterial strain effectively colonized the pea rhizosphere without adversely affecting the resident microbial populations. PMID:19137371

  18. Waste materials derived bio-effectors used as growth promoters for strawberry plants. An agronomic and metabolomic study

    NASA Astrophysics Data System (ADS)

    Vasileva, Brankica; Chami, Ziad Al; De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2015-04-01

    Recently, a novel concept of bio-effectors has emerged to describe a group of products that are able to improve plant performance more than fertilizers. In this study, three different agro-industrial residues, i.e. brewers' spent grain (BSG), fennel processing residues (FPR) and lemon processing residues (LPR) were chosen as potential bio-effectors. A greenhouse soilless pot experiment was conducted on strawberry plants (Fragaria x ananassa var. Festival) in order to study the effect of BSG, FPR and LPR water extracts, at different concentrations, on plant growth and fruit quality. Their effect was compared with humic-like substances as a positive/reference control (Ctrl+) and with Hoagland solution as a negative control (Ctrl-). Agronomic parameters and the nutrient uptake were measured on shoots, roots and fruits. Metabolomic profiling tests were carried out on leaves, roots and fruit juices through the NMR technique. Plants treated with the FPR extract showed better vegetative growth, while plants treated with the BSG extract gave higher yield and better fruit size. Metabolomic profiling showed that fruits and roots of plants treated with FPR and LPR extracts had higher concentrations of sucrose, malate and acetate, while BSG treated plants had higher concentrations of citrate and β-glucose. In conclusion, according to the results achieved, the bio-effectors used in this study promote plant growth and fruit quality regardless of their nutritional content. Keywords: bio-effectors, agro-industrial waste, nuclear magnetic resonance (NMR), strawberry, growth promotion, fruit quality.

  19. Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters.

    PubMed

    Mwajita, Mwashasha Rashid; Murage, Hunja; Tani, Akio; Kahangi, Esther M

    2013-01-01

    Rice (Oryza sativa L.) is the most important staple food crop in many developing countries, and is ranked third in Kenya after maize and wheat. Continuous cropping without replenishing soil nutrients is a major problem in Kenya resulting to declining soil fertility. The use of chemical fertilizers to avert the problem of low soil fertility is currently limited due to rising costs and environmental concerns. Many soil micro-organisms are able to solubilize the unavailable phosphorus, increase uptake of nitrogen and also synthesize growth promoting hormones including auxin. The aim of this study was to isolate and characterize phyllosphere, rhizoplane and rhizosphere micro-organisms from Kenyan rice with growth promoting habits. In this study whole plant rice samples were collected from different rice growing regions of Kenya. 76.2%, over 80% and 38.5% of the bacterial isolates were positive for phosphate solubilization, nitrogenase activity and IAA production whereas 17.5% and 5% of the fungal isolates were positive for phosphate solubilization and IAA production respectively. Hence these micro-organisms have potential for utilization as bio-fertilizers in rice production. PMID:24349944

  20. Comparative study of the fungicide Benomyl toxicity on some plant growth promoting bacteria and some fungi in pure cultures

    PubMed Central

    Osman, Awad G.; Sherif, Ashraf M.; Elhussein, Adil A.

    2014-01-01

    Six laboratory experiments were carried out to investigate the effect of the fungicide Benomyl on pure cultures of some plant growth promoting bacteria (PGPB) and some fungi. The highest LD50 was recorded for Bacillus circulans and proved to be the most resistant to the fungicide, followed by Azospirillum braziliense, while Penicillium sp. was the most affected microorganism. LD50 values for the affected microorganisms were in 21–240 orders of magnitude lower in comparison with the LD50 value for Azospirillum braziliense. The results indicate a strong selectivity for Benomyl against Rhizobium meliloti and Penicillium sp. when compared to other microorganisms tested. The highest safety coefficient was recorded for Bacillus circulans followed by Azospirillum braziliense, while Rhizobium meliloti, showed the lowest safety coefficient value compared to other bacteria. The lowest toxicity index was recorded for Bacillus circulans and Azospirillum braziliense. The slope of the curves for Bacillus sp. and Rhizobium meliloti was steeper than that of the other curves, suggesting that even a slight increase of the dose of the fungicide can cause a very strong negative effect. In conclusion, Benomyl could be applied without restriction when using inocula based on growth promoting bacteria such as symbiotic nitrogen fixers (Rhizobium meliloti), non-symbiotic nitrogen fixers (Azospirillum braziliense) or potassium solibilizers (Bacillus circulans), given that the fungicide is applied within the range of the recommended field dose. PMID:26038670

  1. Comparative study of the fungicide Benomyl toxicity on some plant growth promoting bacteria and some fungi in pure cultures.

    PubMed

    Elslahi, Randa H; Osman, Awad G; Sherif, Ashraf M; Elhussein, Adil A

    2014-03-01

    Six laboratory experiments were carried out to investigate the effect of the fungicide Benomyl on pure cultures of some plant growth promoting bacteria (PGPB) and some fungi. The highest LD50 was recorded for Bacillus circulans and proved to be the most resistant to the fungicide, followed by Azospirillum braziliense, while Penicillium sp. was the most affected microorganism. LD50 values for the affected microorganisms were in 21-240 orders of magnitude lower in comparison with the LD50 value for Azospirillum braziliense. The results indicate a strong selectivity for Benomyl against Rhizobium meliloti and Penicillium sp. when compared to other microorganisms tested. The highest safety coefficient was recorded for Bacillus circulans followed by Azospirillum braziliense, while Rhizobium meliloti, showed the lowest safety coefficient value compared to other bacteria. The lowest toxicity index was recorded for Bacillus circulans and Azospirillum braziliense. The slope of the curves for Bacillus sp. and Rhizobium meliloti was steeper than that of the other curves, suggesting that even a slight increase of the dose of the fungicide can cause a very strong negative effect. In conclusion, Benomyl could be applied without restriction when using inocula based on growth promoting bacteria such as symbiotic nitrogen fixers (Rhizobium meliloti), non-symbiotic nitrogen fixers (Azospirillum braziliense) or potassium solibilizers (Bacillus circulans), given that the fungicide is applied within the range of the recommended field dose. PMID:26038670

  2. Humus bacteria of Norway spruce stands: plant growth promoting properties and birch, red fescue and alder colonizing capacity.

    PubMed

    Elo; Maunuksela; Salkinoja-Salonen; Smolander; Haahtela

    2000-02-01

    We studied the potential of the humus layer of the Norway spruce stands to supply beneficial rhizobacteria to birch (Betula pendula), alder (Alnus incana) and fescue grass (Festuca rubra), representatives of pioneer vegetation after clear-cutting of the coniferous forest. Axenically grown seedlings of these species were inoculated with the acid spruce humus, pH 3.7-5.3. Actinorhizal propagules, capable of nodulating alder, were present in high density (10(3) g(-1)) in humus of long-term limed plots, whereas plots with nitrogen fertilization contained almost none (plant pathogenic Rhizoctonia sp., Botrytis cinerea and Fusarium culmorum. The antagonistic isolates also commonly produced siderophores and/or cell wall degrading enzymes. PMID:10640667

  3. Chromium reduction, plant growth-promoting potentials, and metal solubilizatrion by Bacillus sp. isolated from alluvial soil.

    PubMed

    Wani, Parvaze Ahmad; Khan, Mohammad Saghir; Zaidi, Almas

    2007-03-01

    The plant growth-promoting potentials, production of siderophore and solubilization of insoluble phosphorus (P) and zinc and lead by the chromium (vi) -reducing Bacillus species, PSB 1, PSB 7, and PSB 10, was assessed both in the presence and absence of chromium under in vitro conditions. The Bacillus strains tolerated chromium up to the concentration of 500 (PSB1), 400 (PSB7), and 550 microg ml(-1) (PSB10), respectively, on nutrient agar plates. Bacillus sp. PSB 10 reduced Cr (vi) by 87% at pH 7, which was followed by Bacillus sp. PSB 1 (83%) and PSB 7 (74%) in nutrient broth after 120 h of incubation. A concentration of 50 microg ml(-1) of Cr (vi) was completely reduced by Bacillus sp. PSB 1 and PSB 10 (after 100 h) and PSB 7 (after 120 h). The Bacillus strains PSB 1, PSB 7, and PSB 10 produced 19.3, 17.7, and 17.4 microg ml(-1) of indole acetic acid, respectively, in luria bertani broth at 100 microg ml(-1) of tryptophan, which consistently decreased with an increase in chromium concentration. The Bacillus strains were positive for siderophore, HCN, and ammonia both in the absence and presence of chromium. The Bacillus strains solubilized 375 (PSB 1), 340 (PSB 7), and 379 (PSB 10) microg ml(-1) P, respectively, in Pikovskaya broth devoid of chromium. In contrast, chromium at 150 microg ml(-1) reduced the amount of P solubilized by 17 (PSB 1), 15 (PSB 7), and 9% (PSB 10) compared to control. The tested bacterial strains solubilized a considerable amount of zinc and lead in nutrient broth both in the absence and presence of chromium. Generally, the chromium reduction and the plant growth-promoting potentials of chromium-reducing Bacillus were strongly correlated at the tested concentration of chromium. The present observations demonstrated that the chromium-reducing, metal-solubilizing, and plant growth-promoting potentials of the Bacillus strains PSB1, PSB 7, and PSB10 were not adversely affected by the chromium application and, hence, may be applied for raising

  4. PRODUCTION OF PLANT GROWTH PROMOTING SUBSTANCES IN BACTERIAL ISOLATES FROM THE SEAGRASS RHIZOSPHERE

    EPA Science Inventory

    Plants and rhizosphere bacteria have evolved chemical signals that enable their mutual growth. These relationships have been well investigated with agriculturally important plants, but not in seagrasses, which are important to the stability of estuaries. Seagrasses are rooted in ...

  5. Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules

    PubMed Central

    Zhao, Long Fei; Xu, Ya Jun; Ma, Zhan Qiang; Deng, Zhen Shan; Shan, Chang Juan; Wei, Ge Hong

    2013-01-01

    The endophytic strain Zong1 isolated from root nodules of the legume Sophora alopecuroides was characterized by conducting physiological and biochemical tests employing gfp-marking, observing their plant growth promoting characteristics (PGPC) and detecting plant growth parameters of inoculation assays under greenhouse conditions. Results showed that strain Zong1 had an effective growth at 28 ºC after placed at 4–60 ºC for 15 min, had a wide range pH tolerance of 6.0–11.0 and salt tolerance up to 5% of NaCl. Zong1 was resistant to the following antibiotics (μg/mL): Phosphonomycin (100), Penicillin (100) and Ampicillin (100). It could grow in the medium supplemented with 1.2 mmol/L Cu, 0.1% (w/v) methylene blue and 0.1–0.2% (w/v) methyl red, respectively. Zong1 is closely related to Pseudomonas chlororaphis based on analysis the sequence of 16S rRNA gene. Its expression of the gfp gene indicated that strain Zong1 may colonize in root or root nodules and verified by microscopic observation. Furthermore, co-inoculation with Zong1 and SQ1 (Mesorhizobium sp.) showed significant effects compared to single inoculation for the following PGPC parameters: siderophore production, phosphate solubilization, organic acid production, IAA production and antifungal activity in vitro. These results suggest strains P. chlororaphi Zong1 and Mesorhizobium sp. SQ1 have better synergistic or addictive effect. It was noteworthy that each growth index of co-inoculated Zong1+SQ1 in growth assays under greenhouse conditions is higher than those of single inoculation, and showed a significant difference (p < 0.05) when compared to a negative control. Therefore, as an endophyte P. chlororaphis Zong1 may play important roles as a potential plant-growth promoting agent. PMID:24294262

  6. Phytohormonal basis for the plant growth promoting action of naturally occurring biostimulators.

    PubMed

    Kurepin, Leonid V; Zaman, Mohammad; Pharis, Richard P

    2014-07-01

    There is increasing interest in the use of naturally occurring 'biostimulators' for enhancing the growth of agricultural and horticultural crops. Bacteria, fungi and protozoa, as well as marine algae-based seaweed extracts, can produce or contain biostimulators. The activity of biostimulators to promote plant growth is often attributed to their ability to directly or indirectly provide mineral nutrients (mostly N, but also P, S and other macro- and micro-nutrients) to plants. Alternatively, biostimulators are postulated to increase the plant's ability to assimilate these mineral nutrients, often in return for photo-assimilates (as occurs with certain bacteria and fungi associations). Although optimal growth of plants depends on the availability of adequate mineral nutritients, that growth (and also development, including reproduction) is also regulated by plant hormones (phytohormones), including gibberellins, auxins and cytokinins. This review describes and discusses the evidence that the presence or application of biostimulators also increases plant growth directly via phytohormone action and also influences the plant's ability to control its own hormone biosynthesis and homeostasis. Finally, it discusses the need for a better understanding of the role(s) that are played by the naturally occurring biostimulators associated with the plant in the crop field. It is suggested that better understanding will allow for optimal crop yield returns, since disruptions of phytohormone homeostasis in plant organs and tissues can yield either beneficial or sub-optimal outcomes. PMID:24375470

  7. Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits.

    PubMed

    Pacwa-Płociniczak, Magdalena; Płociniczak, Tomasz; Iwan, Joanna; Żarska, Monika; Chorążewski, Mirosław; Dzida, Marzena; Piotrowska-Seget, Zofia

    2016-03-01

    Forty-two hydrocarbon-degrading bacterial strains were isolated from the soil heavily contaminated with petroleum hydrocarbons. Forty-one strains were identified based on their whole-cell fatty acid profiles using the MIDI-MIS method. Thirty-three of them belong to species Rhodococcus erythropolis, while the others to the genera Rahnella (4), Serratia (3) and Proteus (1). Isolates were screened for their ability to produce biosurfactants/bioemulsifiers. For all of them the activity of several mechanisms characteristic for plant growth-promoting bacteria was also determined. In order to investigate surface active and emulsifying abilities of isolates following methods: oil-spreading, blood agar, methylene blue agar and determination of emulsification index, were used. Among studied bacteria 12 strains (CD 112, CD 126, CD 131, CD 132, CD 135, CD 147, CD 154, CD 155, CD 158, CD 161, CD 166 and CD 167) have been chosen as promising candidates for the production of biosurfactants and/or bioemulsifiers. Among them 2 strains (R. erythropolis CD 126 and Rahnella aquatilis CD 132) had the highest potential to be used in the bioaugmentation of PH-contaminated soil. Moreover, 15 of tested strains (CD 105, CD 106, CD 108, CD 111, CD 116, CD 120, CD 124, CD 125, CD 130, CD 132, CD 134, CD 154, CD 156, CD 161 and CD 170) showed the activity of four mechanisms (ACC deaminase activity, IAA and siderophore production, phosphate solubilization) considered to be characteristic for plant growth-promoting bacteria. Two of them (R. erythropolis CD 106 and R. erythropolis CD 111) showed the highest activity of above-mentioned mechanisms and thus are considered as promising agents in microbe assisted phytoremediation. PMID:26708648

  8. Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice.

    PubMed

    Gopalakrishnan, Subramaniam; Vadlamudi, Srinivas; Bandikinda, Prakash; Sathya, Arumugam; Vijayabharathi, Rajendran; Rupela, Om; Kudapa, Himabindu; Katta, Krishnamohan; Varshney, Rajeev Kumar

    2014-01-20

    Six actinomycetes, CAI-13, CAI-85, CAI-93, CAI-140, CAI-155 and KAI-180, isolated from six different herbal vermi-composts were characterized for in vitro plant growth-promoting (PGP) properties and further evaluated in the field for PGP activity in rice. Of the six actinomycetes, CAI-13, CAI-85, CAI-93, CAI-140 and CAI-155 produced siderophores; CAI-13, CAI-93, CAI-155 and KAI-180 produced chitinase; CAI-13, CAI-140, CAI-155 and KAI-180 produced lipase; CAI-13, CAI-93, CAI-155 and KAI-180 produced protease; and CAI-13, CAI-85, CAI-140 and CAI-155 produced ß-1-3-glucanase whereas all the six actinomycetes produced cellulase, hydrocyanic acid and indole acetic acid (IAA). The actinomycetes were able to grow in NaCl concentrations of up to 8%, at pH values between 7 and 11, temperatures between 20 and 40 °C and compatible with fungicide bavistin at field application levels. In the rice field, the actinomycetes significantly enhanced tiller numbers, panicle numbers, filled grain numbers and weight, stover yield, grain yield, total dry matter, root length, volume and dry weight over the un-inoculated control. In the rhizosphere, the actinomycetes also significantly enhanced total nitrogen, available phosphorous, % organic carbon, microbial biomass carbon and nitrogen and dehydrogenase activity over the un-inoculated control. Sequences of 16S rDNA gene of the actinomycetes matched with different Streptomyces species in BLAST analysis. Of the six actinomycetes, CAI-85 and CAI-93 were found superior over other actinomycetes in terms of PGP properties, root development and crop productivity. qRT-PCR analysis on selected plant growth promoting genes of actinomycetes revealed the up-regulation of IAA genes only in CAI-85 and CAI-93. PMID:24113511

  9. Draft Genome Sequences of Pseudomonas fluorescens Strains SF39a and SF4c, Potential Plant Growth Promotion and Biocontrol Agents

    PubMed Central

    Ly, Lindsey K.; Underwood, Grace E.; McCully, Lucy M.; Bitzer, Adam S.; Godino, Agustina; Bucci, Vanni; Brigham, Christopher J.; Príncipe, Analía; Fischer, Sonia E.

    2015-01-01

    Pseudomonas fluorescens SF4c and SF39a, strains isolated from wheat rhizosphere, have potential applications in plant growth promotion and biocontrol of fungal diseases of crop plants. We report the draft genome sequences of SF4c and SF39a with estimated sizes of 6.5 Mb and 5.9 Mb, respectively. PMID:25814613

  10. Complete genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium of Calendula officinalis

    SciTech Connect

    Köberl, Martina; White, Richard A.; Erschen, Sabine; Spanberger, Nora; El-Arabi, Tarek F.; Jansson, Janet K.; Berg, Gabriele

    2015-08-13

    The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activity against plant-pathogenic fungi, bacteria, and nematodes, consists of a single 3.9-Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties.

  11. Developing microbe–plant interactions for applications in plant‐growth promotion and disease control, production of useful compounds, remediation and carbon sequestration

    PubMed Central

    Wu, Cindy H.; Bernard, Stéphanie M.; Andersen, Gary L.; Chen, Wilfred

    2009-01-01

    Summary Interactions between plants and microbes are an integral part of our terrestrial ecosystem. Microbe–plant interactions are being applied in many areas. In this review, we present recent reports of applications in the areas of plant‐growth promotion, biocontrol, bioactive compound and biomaterial production, remediation and carbon sequestration. Challenges, limitations and future outlook for each field are discussed. PMID:21255275

  12. Characterization of low molecular weight fragments from gamma irradiated κ-carrageenan used as plant growth promoter

    NASA Astrophysics Data System (ADS)

    Abad, Lucille V.; Aurigue, Fernando B.; Relleve, Lorna S.; Montefalcon, Djowel Recto V.; Lopez, Girlie Eunice P.

    2016-01-01

    Radiation degraded κ-carrageenan (1% solution at absorbed doses of 20 kGy and 30 kGy) were tested for its plant growth promoter (PGP) effect on pechay plants under hydroponics condition. Results revealed that higher PGP effects were found in κ-carrageenan irradiated at an absorbed dose of 30 kGy. Mw of irradiated κ-carrageenan as measured by GPC were determined to be 7362 Da and 6762 Da for 20 kGy and 30 kGy, respectively. Fractionation of the irradiated κ-carrageenan (30 kGy) was done to separate different Mw fractions using Mw cut-off filters of 1 kDa, 3 kDa, and 5 kDa. The PGP effect of the different retentates showed that biological activity in plants followed the order of 5 kDa>3 kDa>1 kDa using hydroponics condition but the reverse was observed in the order of 1 kDa>3 kDa>5 kDa when absorbed in plants by foliar spraying. GPC chromatogram indicated at least three (3) low molecular weight (LMW) fragments from radiation modified κ-carrageenan solution with an Mw<2000 Da. A fragment has also been identified with an Mw of as low as 160 Da which was produced under acidic (un-neutralized) condition. This may be attributed to the formation of 5-hydroxymethylfurfural (5-HMF).

  13. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation

    PubMed Central

    Shrivastava, Pooja; Kumar, Rajesh

    2014-01-01

    Salinity is one of the most brutal environmental factors limiting the productivity of crop plants because most of the crop plants are sensitive to salinity caused by high concentrations of salts in the soil, and the area of land affected by it is increasing day by day. For all important crops, average yields are only a fraction – somewhere between 20% and 50% of record yields; these losses are mostly due to drought and high soil salinity, environmental conditions which will worsen in many regions because of global climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome salinity stress. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for salinity stress management, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we exploit their unique properties such as tolerance to saline conditions, genetic diversity, synthesis of compatible solutes, production of plant growth promoting hormones, bio-control potential, and their interaction with crop plants. PMID:25737642

  14. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25.

    PubMed

    Sulochana, M B; Jayachandra, S Y; Kumar, S Anil; Parameshwar, A B; Reddy, K Mohan; Dayanand, A

    2014-09-01

    Siderophores scavenges Fe(+3) from the vicinity of the roots of plants, and thus limit the amount of iron required for the growth of pathogens such as Fusarium oxysporum, Pythium ultimum, and Fusarium udum, which cause wilt and root rot disease in crops. The ability of Pseudomonas to grow and to produce siderophore depends upon the iron content, pH, and temperature. Maximum yield of siderophore of 130 μM was observed at pH 7.0 ± 0.2 and temperature of 30 °C at 30 h. The threshold level of iron was 50 μM, which increases up to 150 μM, favoring growth but drastically affecting the production of siderophore by Pseudomonas aeruginosa JAS-25. The seeds of agricultural crops like Cicer arietinum (chick pea), Cajanus cajan (pigeon pea), and Arachis hypogaea (ground nut) were treated with P. aeruginosa JAS-25, which enhanced the seed germination, root length, shoot length, and dry weight of chick pea, pigeon pea, and ground nut plants under pot studies. The efficient growth of the plants was not only due to the biocontrol activity of the siderophore produced by P. aeruginosa JAS-25 but also may be by the production of indole acetic acid (IAA), which influences the growth of the plants as phytohormones. PMID:25062779

  15. Plant Growth Promotion Potential Is Equally Represented in Diverse Grapevine Root-Associated Bacterial Communities from Different Biopedoclimatic Environments

    PubMed Central

    Fusi, Marco; Cherif, Ameur; Abou-Hadid, Ayman; El-Bahairy, Usama; Sorlini, Claudia; Daffonchio, Daniele

    2013-01-01

    Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP) potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P = 0.03) and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23%) presented in vitro multiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%), insoluble phosphate solubilisation (61%), and ammonia production (70%). The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root. PMID:23878810

  16. The date palm tree rhizosphere is a niche for plant growth promoting bacteria in the oasis ecosystem.

    PubMed

    Ferjani, Raoudha; Marasco, Ramona; Rolli, Eleonora; Cherif, Hanene; Cherif, Ameur; Gtari, Maher; Boudabous, Abdellatif; Daffonchio, Daniele; Ouzari, Hadda-Imene

    2015-01-01

    In arid ecosystems environmental factors such as geoclimatic conditions and agricultural practices are of major importance in shaping the diversity and functionality of plant-associated bacterial communities. Assessing the influence of such factors is a key to understand (i) the driving forces determining the shape of root-associated bacterial communities and (ii) the plant growth promoting (PGP) services they provide. Desert oasis environment was chosen as model ecosystem where agriculture is possible by the microclimate determined by the date palm cultivation. The bacterial communities in the soil fractions associated with the root system of date palms cultivated in seven oases in Tunisia were assessed by culture-independent and dependent approaches. According to 16S rRNA gene PCR-DGGE fingerprinting, the shapes of the date palm rhizosphere bacterial communities correlate with geoclimatic features along a north-south aridity transect. Despite the fact that the date palm root bacterial community structure was strongly influenced by macroecological factors, the potential rhizosphere services reflected in the PGP traits of isolates screened in vitro were conserved among the different oases. Such services were exerted by the 83% of the screened isolates. The comparable numbers and types of PGP traits indicate their importance in maintaining the plant functional homeostasis despite the different environmental selection pressures. PMID:25866759

  17. The Date Palm Tree Rhizosphere Is a Niche for Plant Growth Promoting Bacteria in the Oasis Ecosystem

    PubMed Central

    Gtari, Maher; Boudabous, Abdellatif; Daffonchio, Daniele; Ouzari, Hadda-Imene

    2015-01-01

    In arid ecosystems environmental factors such as geoclimatic conditions and agricultural practices are of major importance in shaping the diversity and functionality of plant-associated bacterial communities. Assessing the influence of such factors is a key to understand (i) the driving forces determining the shape of root-associated bacterial communities and (ii) the plant growth promoting (PGP) services they provide. Desert oasis environment was chosen as model ecosystem where agriculture is possible by the microclimate determined by the date palm cultivation. The bacterial communities in the soil fractions associated with the root system of date palms cultivated in seven oases in Tunisia were assessed by culture-independent and dependent approaches. According to 16S rRNA gene PCR-DGGE fingerprinting, the shapes of the date palm rhizosphere bacterial communities correlate with geoclimatic features along a north-south aridity transect. Despite the fact that the date palm root bacterial community structure was strongly influenced by macroecological factors, the potential rhizosphere services reflected in the PGP traits of isolates screened in vitro were conserved among the different oases. Such services were exerted by the 83% of the screened isolates. The comparable numbers and types of PGP traits indicate their importance in maintaining the plant functional homeostasis despite the different environmental selection pressures. PMID:25866759

  18. Plant growth promotion potential is equally represented in diverse grapevine root-associated bacterial communities from different biopedoclimatic environments.

    PubMed

    Marasco, Ramona; Rolli, Eleonora; Fusi, Marco; Cherif, Ameur; Abou-Hadid, Ayman; El-Bahairy, Usama; Borin, Sara; Sorlini, Claudia; Daffonchio, Daniele

    2013-01-01

    Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP) potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P = 0.03) and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23%) presented in vitro multiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%), insoluble phosphate solubilisation (61%), and ammonia production (70%). The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root. PMID:23878810

  19. Plant Growth Promoting of Endophytic Sporosarcina aquimarina SjAM16103 Isolated from the Pneumatophores of Avicennia marina L.

    PubMed Central

    Janarthine, S. Rylo Sona; Eganathan, P.

    2012-01-01

    Endophytic Sporosarcina aquimarina SjAM16103 was isolated from the inner tissues of pneumatophores of mangrove plant Avicennia marina along with Bacillus sp. and Enterobacter sp. Endophytic S. aquimarina SjAM16103 was Gram variable, and motile bacterium measured 0.6–0.9 μm wide by 1.7–2.0 μm long and light orange-brown coloured in 3-day cultures on tryptone broth at 26°C. Nucleotide sequence of this strain has been deposited in the GenBank under accession number GU930359. This endophytic bacterium produced 2.37 μMol/mL of indole acetic acid and siderophore as it metabolites. This strain could solubilize phosphate molecules and fixes atmospheric nitrogen. Endophytic S. aquimarina SjAM16103 was inoculated into four different plants under in vitro method to analyse its growth-promoting activity and role inside the host plants. The growth of endophytic S. aquimarina SjAM16103 inoculated explants were highly significant than the uninoculated control explants. Root hairs and early root development were observed in the endophytic S. aquimarina SjAM16103 inoculated explants. PMID:22811715

  20. Plant Growth Promoting of Endophytic Sporosarcina aquimarina SjAM16103 Isolated from the Pneumatophores of Avicennia marina L.

    PubMed

    Janarthine, S Rylo Sona; Eganathan, P

    2012-01-01

    Endophytic Sporosarcina aquimarina SjAM16103 was isolated from the inner tissues of pneumatophores of mangrove plant Avicennia marina along with Bacillus sp. and Enterobacter sp. Endophytic S. aquimarina SjAM16103 was Gram variable, and motile bacterium measured 0.6-0.9 μm wide by 1.7-2.0 μm long and light orange-brown coloured in 3-day cultures on tryptone broth at 26°C. Nucleotide sequence of this strain has been deposited in the GenBank under accession number GU930359. This endophytic bacterium produced 2.37 μMol/mL of indole acetic acid and siderophore as it metabolites. This strain could solubilize phosphate molecules and fixes atmospheric nitrogen. Endophytic S. aquimarina SjAM16103 was inoculated into four different plants under in vitro method to analyse its growth-promoting activity and role inside the host plants. The growth of endophytic S. aquimarina SjAM16103 inoculated explants were highly significant than the uninoculated control explants. Root hairs and early root development were observed in the endophytic S. aquimarina SjAM16103 inoculated explants. PMID:22811715

  1. Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal.

    PubMed

    Rajkumar, Mani; Ma, Ying; Freitas, Helena

    2008-12-01

    A metal-resistant bacterial strain SM3 isolated from a serpentine soil in the north-east of Portugal was characterized as Bacillus weihenstephanensis based on the morphological and biochemical characteristics and on the comparative analysis of the partial 16S ribosomal DNA sequence. Bacillus weihenstephanensis SM3 showed a high degree of resistance to nickel (1500 mg l(-1)), copper (500 mg l(-1)) and zinc (700 mg l(-1)) and also to antibiotics (ampicillin, penicillin, kanamycin and streptomycin). Strain SM3 has also exhibited the capability of solubilizing phosphate and producing indole-3-acetic acid (IAA) both in the absence and in the presence of metals (Ni, Cu and Zn). A pot experiment was conducted to elucidate the effects of strain SM3 on plant growth and uptake of Ni, Cu or Zn by Helianthus annuus. Inoculation with strain SM3 increased the shoot and root biomass of H. annuus grown in both non-contaminated and contaminated soil. Furthermore, strain SM3 increased the accumulation of Cu and Zn in the root and shoot systems. A batch experiment was also conducted to assess the metal mobilization potential of strain SM3 in soil. Inoculation with this strain increased the concentrations of water soluble Ni, Cu and Zn in soil. Metal solubilization by this bacterial strain may be an important process to promote the uptake of heavy metals by plants. This study elucidates the multifarious role of strain SM3 in plant growth promotion and its metal mobilizing potential. PMID:18785659

  2. Plant growth promotion by inoculation with selected bacterial strains versus mineral soil supplements.

    PubMed

    Wernitznig, S; Adlassnig, W; Sprocati, A R; Turnau, K; Neagoe, A; Alisi, C; Sassmann, S; Nicoara, A; Pinto, V; Cremisini, C; Lichtscheidl, I

    2014-01-01

    In the process of remediation of mine sites, the establishment of a vegetation cover is one of the most important tasks. This study tests two different approaches to manipulate soil properties in order to facilitate plant growth. Mine waste from Ingurtosu, Sardinia, Italy rich in silt, clay, and heavy metals like Cd, Cu, and Zn was used in a series of greenhouse experiments. Bacteria with putative beneficial properties for plant growth were isolated from this substrate, propagated and consortia of ten strains were used to inoculate the substrate. Alternatively, sand and volcanic clay were added. On these treated and untreated soils, seeds of Helianthus annuus, of the native Euphorbia pithyusa, and of the grasses Agrostis capillaris, Deschampsia flexuosa and Festuca rubra were germinated, and the growth of the seedlings was monitored. The added bacteria established well under all experimental conditions and reduced the extractability of most metals. In association with H. annuus, E. pithyusa and D. flexuosa bacteria improved microbial activity and functional diversity of the original soil. Their effect on plant growth, however, was ambiguous and usually negative. The addition of sand and volcanic clay, on the other hand, had a positive effect on all plant species except E. pithyusa. Especially the grasses experienced a significant benefit. The effects of a double treatment with both bacteria and sand and volcanic clay were rather negative. It is concluded that the addition of mechanical support has great potential to boost revegetation of mining sites though it is comparatively expensive. The possibilities offered by the inoculation of bacteria, on the other hand, appear rather limited. PMID:23990253

  3. Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops

    PubMed Central

    Farrar, Kerrie; Bryant, David; Cope-Selby, Naomi

    2014-01-01

    Plant production systems globally must be optimized to produce stable high yields from limited land under changing and variable climates. Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. In contrast to crops that have been bred for food, many bioenergy crops are largely undomesticated, and so there is an opportunity to harness beneficial plant–microbe relationships which may have been inadvertently lost through intensive crop breeding. Plant–microbe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plant–microbe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications. PMID:25431199

  4. The plant growth-promoting bacteria Azospirillum amazonense: genomic versatility and phytohormone pathway.

    PubMed

    Cecagno, Ricardo; Fritsch, Tiago Ebert; Schrank, Irene Silveira

    2015-01-01

    The rhizosphere bacterium Azospirillum amazonense associates with plant roots to promote plant growth. Variation in replicon numbers and rearrangements is common among Azospirillum strains, and characterization of these naturally occurring differences can improve our understanding of genome evolution. We performed an in silico comparative genomic analysis to understand the genomic plasticity of A. amazonense. The number of A. amazonense-specific coding sequences was similar when compared with the six closely related bacteria regarding belonging or not to the Azospirillum genus. Our results suggest that the versatile gene repertoire found in A. amazonense genome could have been acquired from distantly related bacteria from horizontal transfer. Furthermore, the identification of coding sequence related to phytohormone production, such as flavin-monooxygenase and aldehyde oxidase, is likely to represent the tryptophan-dependent TAM pathway for auxin production in this bacterium. Moreover, the presence of the coding sequence for nitrilase indicates the presence of the alternative route that uses IAN as an intermediate for auxin synthesis, but it remains to be established whether the IAN pathway is the Trp-independent route. Future investigations are necessary to support the hypothesis that its genomic structure has evolved to meet the requirement for adaptation to the rhizosphere and interaction with host plants. PMID:25866821

  5. Structural and functional diversity of rhizobacteria associated with Rauwolfia spp. across the Western Ghat regions of Karnataka, India.

    PubMed

    Prasanna Kumar, S P; Hariprasad, P; Brijesh Singh, S; Gowtham, H G; Niranjana, S R

    2014-01-01

    The present study carried out with denaturing gradient gel electrophoresis of DNA extracted from rhizosphere soils of Rauwolfia spp. collected from Western Ghat (WG) regions of Karnataka indicated that Pseudomonas sp. was prevalently found followed by Methylobacterium sp., Bacillus sp. and uncultured bacteria. A total of 200 rhizobacteria were isolated from 58 rhizosphere soil samples comprising of 15 different bacterial genera. The Shannon Weaver diversity index (H') and Simpson's diversity index (D) were found to be 2.57 and 0.91 for cultivable bacteria, respectively. The total species richness of cultivable rhizobacteria was high in Coorg district comprising 15 bacterial genera while in Mysore district, four bacterial genera were recorded. Rarefaction curve analysis also indicated the presence of higher species richness in samples of Shimoga and Coorg. All the rhizobacteria were screened for their multiple plant growth promotion and disease suppression traits. The results revealed that 70% of the isolates colonized tomato roots, 42% produced indole acetic acid, 55% solubilized phosphorus, while 43, 22, 27, 19, 40, 15 and 44% produced siderophore, salicylic acid, hydrogen cyanide, chitinase, phytase, cellulase and protease, respectively. Rhizobacterial isolates showing antagonistic activity against Fusarium oxysporum and Aspergillus flavus were 53 and 33%, respectively. Plant growth promotion studies revealed that most of the isolates increased percent germination with significantly higher vigour index as compared to untreated control. Most predominant rhizobacteria found in the rhizospheres of Rauwolfia spp. of WG regions are potential PGPR which can serve as biofertilizers and biopesticides. PMID:23864441

  6. Association of plant growth-promoting Serratia spp. with the root nodules of chickpea.

    PubMed

    Zaheer, Ahmad; Mirza, Babur S; Mclean, Joan E; Yasmin, Sumera; Shah, Tariq Mahmud; Malik, Kauser A; Mirza, M Sajjad

    2016-01-01

    Serratia species-affiliated DNA sequences have recently been discovered in the root nodules of two chickpea cultivars; however, little is known about their potential influence on chickpea plant growth. All Serratia-affiliated sequences (1136) could be grouped into two clusters at 98% DNA similarity. The major cluster, represented by 96% of sequences, was closely associated with Serratia marcescens sequences from GenBank. In the current study, we isolated two Serratia strains, 5D and RTL100, from root nodules of a field-grown Desi cultivar from Faisalabad and Thal areas, respectively. In vitro, strain 5D showed significantly higher phosphate (P) solubilization and lactic acid production than RTL100, whereas a comparable concentration of phytohormone was produced by both isolates. The application of Serratia strain 5D as an inoculum resulted in 25.55% and 30.85% increases in the grain yield of crops grown on fertile soil in irrigated areas and nutrient-deficient soil in rainfed areas, respectively, compared to the non-inoculated control. Results of plant inoculations indicated that Serratia sp. 5D and RTL100 can serve as effective microbial inoculants, particularly in nutrient-deficient soils in rainfed areas, where chickpea is the only major crop grown during the entire year. PMID:27117242

  7. Mechanisms of plant growth promotion and disease suppression by Pseudomonas aeruginosa strain 2apa.

    PubMed

    Hariprasad, P; Chandrashekar, S; Singh, S Brijesh; Niranjana, S R

    2014-08-01

    A new Pseudomonas strain, designated as 2apa was isolated from tomato rhizosphere and identified as a member of species Pseudomonas aeruginosa based on its morphology, conventional, biochemical, cell wall fatty acid methyl ester analysis, and 16S rRNA gene sequence analysis. The strain 2apa was positive for root colonization, indole acetic acid (IAA), salicylic acid and siderophore production and inhibited the growth of wide range of microorganisms. Antimicrobial substances produced by this strain with further purification and structure elucidation proved to be phenazine. Under laboratory and greenhouse conditions the strain promoted plant growth and suppressed a wide range of foliar and root pathogens in tomato. The protection offered by strain 2apa to foliar pathogens is considered as induced systemic resistance and was further confirmed by enhanced accumulation of phenolics, elicitation of lipoxygenas activity, and jasmonic acid levels. The broad-spectrum antimicrobial and induced systemic resistance exhibiting strain P. aeruginosa 2apa can be used as an effective biological control candidate against devastating fungal and bacterial pathogens, which attack both root and foliar portions of tomato plant. Production of other functional traits such as IAA and siderophore may enhance its potential as biofertilizer. PMID:23681707

  8. Contrasting colonization and plant growth promoting capacity between wild type and gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar

    SciTech Connect

    Weyens N.; van der Lelie D.; Boulet, J.; Adriaensen, D.; Timmermans, J.-P.; Prinsen, E.; Van Oevelen, S.; D"Haen, J.; Smeets, K.; Taghavi, S.; Vangronsveld, J.

    2011-06-09

    This study aims to investigate the colonization of poplar by the endophyte Pseudomonas putida W619 and its capacity to promote plant growth. Poplar cuttings were inoculated with P. putida W619 (wild-type or gfp-labelled). The colonization of both strains was investigated and morphological, physiological and biochemical parameters were analyzed to evaluate plant growth promotion. Inoculation with P. putida W619 (wild-type) resulted in remarkable growth promotion, decreased activities of antioxidative defence related enzymes, and reduced stomatal resistance, all indicative of improved plant health and growth in comparison with the non-inoculated cuttings. In contrast, inoculation with gfp-labelled P. putida W619 did not promote growth; it even had a negative effect on plant health and growth. Furthermore, compared to the wildtype strain, colonization by the gfp-labelled P. putida W619::gfp1 was much lower; it only colonized the rhizosphere and root cortex while the wild-type strain also colonized the root xylem vessels. Despite the strong plant growth promoting capacity of P. putida W619 (wild-type), after gfp labelling its growth promoting characteristics disappeared and its colonization capacity was strongly influenced; for these reasons gfp labelling should be applied with sufficient caution.

  9. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (lepidoptera: plutellidae).

    PubMed

    Indiragandhi, P; Anandham, R; Madhaiyan, M; Sa, T M

    2008-04-01

    Eight bacterial isolates from the larval guts of Diamondback moths (Plutella xylostella) were tested for their plant growth-promoting (PGP) traits and effects on early plant growth. All of the strains tested positive for nitrogen fixation and indole 3-acetic acid (IAA) and salicylic acid production but negative for hydrogen cyanide and pectinase production. In addition, five of the isolates exhibited significant levels of tricalcium phosphate and zinc oxide solubilization; six isolates were able to oxidize sulfur in growth media; and four isolates tested positive for chitinase and beta-1,3-glucanase activities. Based on their IAA production, six strains including four that were 1-aminocyclopropane-1-carboxylate (ACC) deaminase positive and two that were ACC deaminase negative were tested for PGP activity on the early growth of canola and tomato seeds under gnotobiotic conditions. Acinetobacter sp. PSGB04 significantly increased root length (41%), seedling vigor, and dry biomass (30%) of the canola test plants, whereas Pseudomonas sp. PRGB06 inhibited the mycelial growth of Botrytis cinerea, Colletotrichum coccodes, C. gleospoiroides, Rhizoctonia solani, and Sclerotia sclerotiorum under in vitro conditions. A significant increase, greater than that of the control, was also noted for growth parameters of the tomato test plants when the seeds were treated with PRGB06. Therefore, the results of the present study suggest that bacteria associated with insect larval guts possess PGP traits and positively influence plant growth. Therefore, insect gut bacteria as effective PGP agents represent an unexplored niche and may broaden the spectrum of beneficial bacteria available for crop production. PMID:18172718

  10. Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A

    PubMed Central

    Liu, Wuxing; Wang, Qingling; Hou, Jinyu; Tu, Chen; Luo, Yongming; Christie, Peter

    2016-01-01

    This research undertook the systematic analysis of the Klebsiella sp. D5A genome and identification of genes that contribute to plant growth-promoting (PGP) traits, especially genes related to salt tolerance and wide pH adaptability. The genome sequence of isolate D5A was obtained using an Illumina HiSeq 2000 sequencing system with average coverages of 174.7× and 200.1× using the paired-end and mate-pair sequencing, respectively. Predicted and annotated gene sequences were analyzed for similarity with the Kyoto Encyclopedia of Genes and Genomes (KEGG) enzyme database followed by assignment of each gene into the KEGG pathway charts. The results show that the Klebsiella sp. D5A genome has a total of 5,540,009 bp with 57.15% G + C content. PGP conferring genes such as indole-3-acetic acid (IAA) biosynthesis, phosphate solubilization, siderophore production, acetoin and 2,3-butanediol synthesis, and N2 fixation were determined. Moreover, genes putatively responsible for resistance to high salinity including glycine-betaine synthesis, trehalose synthesis and a number of osmoregulation receptors and transport systems were also observed in the D5A genome together with numerous genes that contribute to pH homeostasis. These genes reveal the genetic adaptation of D5A to versatile environmental conditions and the effectiveness of the isolate to serve as a plant growth stimulator. PMID:27216548

  11. Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A.

    PubMed

    Liu, Wuxing; Wang, Qingling; Hou, Jinyu; Tu, Chen; Luo, Yongming; Christie, Peter

    2016-01-01

    This research undertook the systematic analysis of the Klebsiella sp. D5A genome and identification of genes that contribute to plant growth-promoting (PGP) traits, especially genes related to salt tolerance and wide pH adaptability. The genome sequence of isolate D5A was obtained using an Illumina HiSeq 2000 sequencing system with average coverages of 174.7× and 200.1× using the paired-end and mate-pair sequencing, respectively. Predicted and annotated gene sequences were analyzed for similarity with the Kyoto Encyclopedia of Genes and Genomes (KEGG) enzyme database followed by assignment of each gene into the KEGG pathway charts. The results show that the Klebsiella sp. D5A genome has a total of 5,540,009 bp with 57.15% G + C content. PGP conferring genes such as indole-3-acetic acid (IAA) biosynthesis, phosphate solubilization, siderophore production, acetoin and 2,3-butanediol synthesis, and N2 fixation were determined. Moreover, genes putatively responsible for resistance to high salinity including glycine-betaine synthesis, trehalose synthesis and a number of osmoregulation receptors and transport systems were also observed in the D5A genome together with numerous genes that contribute to pH homeostasis. These genes reveal the genetic adaptation of D5A to versatile environmental conditions and the effectiveness of the isolate to serve as a plant growth stimulator. PMID:27216548

  12. Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea.

    PubMed

    Dastager, Syed G; Deepa, C K; Pandey, Ashok

    2010-12-01

    A phosphate-solubilizing bacterial strain NII-0909 isolated from the Western ghat forest soil in India was identified as Micrococcus sp on the basis of phenotypic characteristics, carbon source utilization pattern, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The strain exhibited the plant growth-promoting attributes of phosphate solubilization, auxin production, 1-aminocyclopropane-1-carboxylate deaminase activity, and siderophore production. It was able to solubilize (122.4μg of Ca(3)PO(4) ml(-1)), and produce IAA (109μgml(-1)) at 30°C. P-solubilizing activity of the strain NII-0909 was associated with the release of organic acids and a drop in the pH of the NBRIP medium. HPLC analysis detected two organic acids in the course of P-solubilization. A significant increase in the growth of cow pea was recorded for inoculations under controlled conditions. Scanning electron microscopic study revealed the root colonization of strain on cow pea seedlings. These results demonstrate that isolates NII-0909 has the promising PGPR attributes to be develop as a biofertilizer to enhance soil fertility and promote the plant growth. PMID:20951599

  13. Differential effects of salinity and osmotic stress on the plant growth-promoting bacterium Gluconacetobacter diazotrophicus PAL5.

    PubMed

    De Oliveira, Marcos Vinicius V; Intorne, Aline C; Vespoli, Luciano de S; Madureira, Hérika C; Leandro, Mariana R; Pereira, Telma N S; Olivares, Fábio L; Berbert-Molina, Marília A; De Souza Filho, Gonçalo A

    2016-04-01

    Plant growth-promoting bacteria (PGPB) represent a promising alternative to the massive use of industrial fertilizers in agriculture. Gluconacetobacter diazotrophicus is a PGPB that colonizes several plant species. Although this bacterium is able to grow at high sucrose concentrations, its response to environmental stresses is poorly understood. The present study evaluated G. diazotrophicus PAL5 response to stresses caused by sucrose, PEG 400, NaCl, KCl, Na2SO4 and K2SO4. Morphological, ultrastructural and cell growth analysis revealed that G. diazotrophicus PAL5 is more sensitive to salt than osmotic stress. Growth inhibition and strong morphological changes were caused by salinity, in consequence of Cl ion-specific toxic effect. Interestingly, low osmotic stress levels were beneficial for bacterial multiplication, which was able to tolerate high sucrose concentrations, Na2SO4 and K2SO4. Our data show that G. diazotrophicus PAL5 has differential response to osmotic and salinity stress, which may influence its use as inoculant in saline environments. PMID:26809283

  14. Characterization of type IV pilus genes in plant growth-promoting Pseudomonas putida WCS358.

    PubMed Central

    de Groot, A; Heijnen, I; de Cock, H; Filloux, A; Tommassen, J

    1994-01-01

    In a search for factors that could contribute to the ability of the plant growth-stimulating Pseudomonas putida WCS358 to colonize plant roots, the organism was analyzed for the presence of genes required for pilus biosynthesis. The pilD gene of Pseudomonas aeruginosa, which has also been designated xcpA, is involved in protein secretion and in the biogenesis of type IV pili. It encodes a peptidase that processes the precursors of the pilin subunits and of several components of the secretion apparatus. Prepilin processing activity could be demonstrated in P. putida WCS358, suggesting that this nonpathogenic strain may contain type IV pili as well. A DNA fragment containing the pilD (xcpA) gene of P. putida was cloned and found to complement a pilD (xcpA) mutation in P. aeruginosa. Nucleotide sequencing revealed, next to the pilD (xcpA) gene, the presence of two additional genes, pilA and pilC, that are highly homologous to genes involved in the biogenesis of type IV pili. The pilA gene encodes the pilin subunit, and pilC is an accessory gene, required for the assembly of the subunits into pili. In comparison with the pil gene cluster in P. aeruginosa, a gene homologous to pilB is lacking in the P. putida gene cluster. Pili were not detected on the cell surface of P. putida itself, not even when pilA was expressed from the tac promoter on a plasmid, indicating that not all the genes required for pilus biogenesis were expressed under the conditions tested. Expression of pilA of P. putida in P. aeruginosa resulted in the production of pili containing P. putida PilA subunits. Images PMID:7905475

  15. Plant growth-promoting and antifungal activity of yeasts from dark chestnut soil.

    PubMed

    Ignatova, Lyudmila V; Brazhnikova, Yelena V; Berzhanova, Ramza Z; Mukasheva, Togzhan D

    2015-06-01

    538 yeast strains were isolated from dark chestnut soil collected from under the plants of the legume family (Fabaceae). The greatest number of microorganisms is found at soil depth 10-20 cm. Among the 538 strains of yeast 77 (14.3%) strains demonstrated the ability to synthesize IAA. 15 strains were attributed to high IAA-producing yeasts (above 10 μg/ml). The most active strains were YA05 with 51.7 ± 2.1 μg/ml of IAA and YR07 with 45.3 ± 1.5 μg/ml. In the study of effect of incubation time on IAA production the maximum accumulation of IAA coincided with maximum rates of biomass: at 120 h for YR07 and at 144 h for strain YA05. IAA production increased when medium was supplemented with the L-tryptophan. 400 μg/ml of L-tryptophan showed maximum IAA production. 10 strains demonstrated the ability to inhibit the growth and development of phytopathogenic fungi. YA05 and YR07 strains formed the largest zones of inhibition compared to the other strains--from 21.6 ± 0.3 to 30.6 ± 0.5 mm. Maximum zone of inhibition was observed for YA05 against Phytophtora infestans and YR07 strains against Fusarium graminearum. YA05 and YR07 strains were identified as Aureobasidium pullulans YA05 (GenBank accession No JF160955) and Rhodotorula mucilaginosa YR07 (GenBank accession No JF160956). PMID:25843007

  16. Systemic Resistance Induced by Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungi in Arabidopsis thaliana

    PubMed Central

    Naznin, Hushna Ara; Kiyohara, Daigo; Kimura, Minako; Miyazawa, Mitsuo; Shimizu, Masafumi; Hyakumachi, Mitsuro

    2014-01-01

    Volatile organic compounds (VOC) were extracted and identified from plant growth-promoting fungi (PGPF), Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography–mass spectrometry (GC-MS). Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp.) significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst). Subsequently, m-cresol and methyl benzoate (MeBA) were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR) against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA) or Jasmonic acid (JA)/ethylene (ET) signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases. PMID:24475190

  17. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana.

    PubMed

    Naznin, Hushna Ara; Kiyohara, Daigo; Kimura, Minako; Miyazawa, Mitsuo; Shimizu, Masafumi; Hyakumachi, Mitsuro

    2014-01-01

    Volatile organic compounds (VOC) were extracted and identified from plant growth-promoting fungi (PGPF), Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography-mass spectrometry (GC-MS). Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp.) significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst). Subsequently, m-cresol and methyl benzoate (MeBA) were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR) against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA) or Jasmonic acid (JA)/ethylene (ET) signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases. PMID:24475190

  18. Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria.

    PubMed

    Sun, Leni; Wang, Xiaohan; Li, Ya

    2016-05-01

    The effects of inoculation with two metal-resistant and plant growth-promoting endophytic bacteria (Burkholderia sp. GL12 and Bacillus megaterium JL35) were evaluated on the plant growth and Cu uptake in their host Elsholtzia splendens and non-host Brassica napus plants grown in natural Cu-contaminated soil. The two strains showed a high level of ACC deaminase activities. In pot experiments, inoculation with strain GL12 significantly increased root and above-ground tissue dry weights of both plants, consequently increasing the total Cu uptake of E. splendens and Brassica napus by 132% and 48.2% respectively. Inoculation with strain JL35 was found to significantly increase not only the biomass of B. napus, consequently increasing the total Cu uptake of B. napus by 31.3%, but Cu concentration of E. splendens for above-ground tissues by 318% and roots by 69.7%, consequently increasing the total Cu uptake of E. splendens by 223%. The two strains could colonize the rhizosphere soils and root interiors of both plants. Notably, strain JL35 could colonize the shoot tissues and significantly increase the translocation factors and bioaccumulation factors of E. splendens. These results suggested that Burkholderia sp. GL12 and B. megaterium JL35 were valuable bacterial resource which had the potential in improving the efficiency of Cu phytoextraction by E. splendens and B. napus in a natural Cu-contaminated soil. PMID:26587767

  19. The smaller, the better? The size effect of alginate beads carrying plant growth-promoting bacteria for seed coating.

    PubMed

    Berninger, Teresa; Mitter, Birgit; Preininger, Claudia

    2016-03-01

    A range of lab-scale methods for encapsulation of plant growth-promoting bacteria in alginate beads intended for seed coating was evaluated: contact-spotting, extrusion through syringe with/without vibration, ejection by robotic liquid handler, extrusion by centrifugal force and commercial devices (nanodispenser, aerodynamically assisted jetting, encapsulator). Two methods were selected based on throughput (encapsulator: 1.5-5 mL/min; syringe with subsequent pulverisation: 5 mL/min). Four bead sizes (55 ± 39 μm, 104 ± 23 μm, 188 ± 16 μm and 336 ± 20 μm after lyophilisation) were produced. Bacterial viability, release, bead morphology, seed surface coverage and attrition were investigated. Release from the smallest bead size was approximately 10 times higher than from the largest. Seed surface coverage was highest (69 ± 3%) when alginate beads produced with nozzle size 80 μm were applied. Pulverised macro-beads are an alternative option, if high throughput is top priority. PMID:26791103

  20. Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth-promoting bacterium Azospirillum brasilense REC3.

    PubMed

    Guerrero-Molina, M F; Lovaisa, N C; Salazar, S M; Martínez-Zamora, M G; Díaz-Ricci, J C; Pedraza, R O

    2015-05-01

    The plant growth-promoting strain REC3 of Azospirillum brasilense, isolated from strawberry roots, prompts growth promotion and systemic protection against anthracnose disease in this crop. Hence, we hypothesised that A. brasilense REC3 can induce different physiological, structural and molecular responses in strawberry plants. Therefore, the aim of this work was to study these traits activated in Azospirillum-colonised strawberry plants, which have not been assessed until now. Healthy, in vitro micropropagated plants were root-inoculated with REC3 under hydroponic conditions; root and leaf tissues were sampled at different times, and oxidative burst, phenolic compound content, malondialdehyde (MDA) concentration, callose deposition, cell wall fortification and gene expression were evaluated. Azospirillum inoculation enhanced levels of soluble phenolic compounds after 12 h post-inoculation (hpi), while amounts of cell wall bound phenolics were similar in inoculated and control plants. Other early responses activated by REC3 (at 24 hpi) were a decline of lipid peroxidation and up-regulation of strawberry genes involved in defence (FaPR1), bacterial recognition (FaFLS2) and H₂O₂ depuration (FaCAT and FaAPXc). The last may explain the apparent absence of oxidative burst in leaves after bacterial inoculation. Also, REC3 inoculation induced delayed structural responses such as callose deposition and cell wall fortification (at 72 hpi). Results showed that A. brasilense REC3 is capable of exerting beneficial effects on strawberry plants, reinforcing their physiological and cellular characteristics, which in turns contribute to improve plant performance. PMID:25280241

  1. Plant growth promoting properties of Halobacillus sp. and Halomonas sp. in presence of salinity and heavy metals.

    PubMed

    Desale, Prithviraj; Patel, Bhargav; Singh, Sukrit; Malhotra, Aakshi; Nawani, Neelu

    2014-08-01

    Salinity and heavy metal stress are challenging problems in agriculture. Here we report the plant growth promoting ability of three moderate halophiles, Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6, in presence of both salinity and heavy metal stress. Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6 can tolerate 25, 21, and 29% NaCl, respectively and grow in presence of 1 mM cobalt, cadmium, and nickel and 0.04 mM mercury and 0.03 mM silver. Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6 produced 152.5, 95.3, and 167.3 µg/ml indole acetic acid (IAA) and could solubilize 61, 53, and 75 parts per million (ppm) phosphate, respectively in the presence of 15% NaCl. The production of IAA and solubilization of phosphate was well retained in the presence of salinity and heavy metals like 1 mM cadmium, 0.7 mM nickel, 0.04 mM mercury, and 0.03 mM silver. Besides, the strains showed amylase and protease activities and could produce hydrogen cyanide and ammonia in presence of salinity and heavy metals. A mixture of three strains enhanced the root growth of Sesuvium portulacastrum under saline and heavy metal stress, where the root length increased nearly 4.5 ± 0.6 times and root dry weight increased 5.4 ± 0.5 times as compared to control. These strains can thus be useful in microbial assisted phytoremediation of polluted saline soils. PMID:23775888

  2. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense.

    PubMed

    Palacios, Oskar A; Gomez-Anduro, Gracia; Bashan, Yoav; de-Bashan, Luz E

    2016-06-01

    During synthetic mutualistic interactions between the microalga Chlorella sorokiniana and the plant growth-promoting bacterium (PGPB) Azospirillum brasilense, mutual exchange of resources involved in producing and releasing the phytohormone indole-3-acetic acid (IAA) by the bacterium, using tryptophan and thiamine released by the microalga, were measured. Although increased activities of tryptophan synthase in C. sorokiniana and indole pyruvate decarboxylase (IPDC) in A. brasilense were observed, we could not detect tryptophan or IAA in the culture medium when both organisms were co-immobilized. This indicates that no extra tryptophan or IAA is produced, apart from the quantities required to sustain the interaction. Over-expression of the ipdC gene occurs at different incubation times: after 48 h, when A. brasilense was immobilized alone and grown in exudates of C. sorokiniana and at 96 h, when A. brasilense was co-immobilized with the microalga. When A. brasilense was cultured in exudates of C. sorokiniana, increased expression of the ipdC gene, corresponding increase in activity of IPDC encoded by the ipdC gene, and increase in IAA production were measured during the first 48 h of incubation. IAA production and release by A. brasilense was found only when tryptophan and thiamine were present in a synthetic growth medium (SGM). The absence of thiamine in SGM yielded no detectable IAA. In summary, this study demonstrates that C. sorokiniana can exude sufficient tryptophan and thiamine to allow IAA production by a PGPB during their interaction. Thiamine is essential for IAA production by A. brasilense and these three metabolites are part of a communication between the two microorganisms. PMID:27090758

  3. Endophytic Colonization of Vitis vinifera L. by Plant Growth-Promoting Bacterium Burkholderia sp. Strain PsJN

    PubMed Central

    Compant, Stéphane; Reiter, Birgit; Sessitsch, Angela; Nowak, Jerzy; Clément, Christophe; Ait Barka, Essaïd

    2005-01-01

    Patterns of colonization of Vitis vinifera L. cv. Chardonnay plantlets by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN, were studied under gnotobiotic conditions. Wild-type strain PsJN and genetically engineered derivatives of this strain tagged with gfp (PsJN::gfp2x) or gusA (PsJN::gusA11) genes were used to enumerate and visualize tissue colonization. The rhizospheres of 4- to 5-week-old plantlets with five developed leaves were inoculated with bacterial suspensions. Epiphytic and endophytic colonization patterns were then monitored by dilution plating assays and microscopic observation of organ sections. Bacteria were chronologically detected first on root surfaces, then in root internal tissues, and finally in the fifth internode and the tissues of the fifth leaf. Analysis of the PsJN colonization patterns showed that this strain colonizes grapevine root surfaces, as well as cell walls and the whole surface of some rhizodermal cells. Cells were also abundant at lateral root emergence sites and root tips. Furthermore, cell wall-degrading endoglucanase and endopolygalacturonase secreted by PsJN explained how the bacterium gains entry into root internal tissues. Host defense reactions were observed in the exodermis and in several cortical cell layers. Bacteria were not observed on stem and leaf surfaces but were found in xylem vessels of the fifth internode and the fifth leaf of plantlets. Moreover, bacteria were more abundant in the fifth leaf than in the fifth internode and were found in substomatal chambers. Thus, it seems that Burkholderia sp. strain PsJN induces a local host defense reaction and systemically spreads to aerial parts through the transpiration stream. PMID:15811990

  4. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea.

    PubMed

    Shagol, Charlotte C; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sundaram, Subbiah; Sa, Tongmin

    2014-01-01

    The Janghang smelter in Chungnam, South Korea started in 1936 was subsequently shutdown in 1989 due to heavy metal (loid) pollution concerns in the vicinity. Thus, there is a need for the soil in the area to be remediated to make it usable again especially for agricultural purposes. The present study was conducted to exploit the potential of arsenic (As)-tolerant bacteria thriving in the vicinity of the smelter-polluted soils to enhance phytoremediation of hazardous As. We studied the genetic and taxonomic diversity of 21 As-tolerant bacteria isolated from soils nearer to and away from the smelter. These isolates belonging to the genera Brevibacterium, Pseudomonas, Microbacterium, Rhodococcus, Rahnella, and Paenibacillus, could tolerate high concentrations of arsenite (As(III)) and arsenate (As(V)) with the minimum inhibitory concentration ranging from 3 to >20 mM for NaAsO2 and 140 to 310 mM NaH2AsO4 · 7H2O, respectively. All isolates exhibited As(V) reduction except Pseudomonas koreensis JS123, which exhibited both oxidation and reduction of As. Moreover, all the 21 isolates produced indole acetic acid (IAA), 13 isolates exhibited 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, 12 produced siderophore, 17 solubilized phosphate, and 13 were putative nitrogen fixers under in vitro conditions. Particularly, Rhodococcus aetherivorans JS2210, P. koreensis JS2214, and Pseudomonas sp. JS238 consistently increased root length of maize in the presence of 100 and 200 μM As(V). Possible utilization of these As-tolerant plant-growth-promoting bacteria can be a potential strategy in increasing the efficiency of phytoremediation in As-polluted soils. PMID:24737020

  5. Plant growth promoting capability and genetic diversity of bacteria isolated from mud volcano and lime cave of Andaman and Nicobar Islands

    PubMed Central

    Venkadesaperumal, Gopu; Amaresan, Natrajan; Kumar, Krishna

    2014-01-01

    Twenty four bacterial strains from four different regions of mud volcano and lime cave were isolated to estimate their diversity, plant growth promoting and biocontrol activities to use them as inoculant strains in the fields. An excellent antagonistic effect against four plant pathogens and plant growth promoting properties such as IAA production, HCN production, phosphate solubilization, siderophore production, starch hydrolysis and hydrolytic enzymes syntheses were identified in OM5 (Pantoea agglomerans) and EM9 (Exiguobacterium sp.) of 24 studied isolates. Seeds (Chili and tomato) inoculation with plant growth promoting strains resulted in increased percentage of seedling emergence, root length and plant weight. Results indicated that co-inoculation gave a more pronounced effects on seedling emergence, secondary root numbers, primary root length and stem length, while inoculation by alone isolate showed a lower effect. Our results suggest that the mixed inocula of OM5 and EM9 strains as biofertilizers could significantly increase the production of food crops in Andaman archipelago by means of sustainable and organic agricultural system. PMID:25763031

  6. Plant growth promoting capability and genetic diversity of bacteria isolated from mud volcano and lime cave of Andaman and Nicobar Islands.

    PubMed

    Venkadesaperumal, Gopu; Amaresan, Natrajan; Kumar, Krishna

    2014-01-01

    Twenty four bacterial strains from four different regions of mud volcano and lime cave were isolated to estimate their diversity, plant growth promoting and biocontrol activities to use them as inoculant strains in the fields. An excellent antagonistic effect against four plant pathogens and plant growth promoting properties such as IAA production, HCN production, phosphate solubilization, siderophore production, starch hydrolysis and hydrolytic enzymes syntheses were identified in OM5 (Pantoea agglomerans) and EM9 (Exiguobacterium sp.) of 24 studied isolates. Seeds (Chili and tomato) inoculation with plant growth promoting strains resulted in increased percentage of seedling emergence, root length and plant weight. Results indicated that co-inoculation gave a more pronounced effects on seedling emergence, secondary root numbers, primary root length and stem length, while inoculation by alone isolate showed a lower effect. Our results suggest that the mixed inocula of OM5 and EM9 strains as biofertilizers could significantly increase the production of food crops in Andaman archipelago by means of sustainable and organic agricultural system. PMID:25763031

  7. The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress.

    PubMed

    Singh, Rajnish Prakash; Jha, Prameela; Jha, Prabhat Nath

    2015-07-20

    Plant-growth-promoting bacteria (PGPB) with 1-aminocyclopropane-1-carboxylatedeaminase (ACCD) activity can protect plants from the deleterious effects of abioticstressors. An ACCD bacterial strain, SBP-8, identified as Klebsiella sp., also having other plant-growth-promoting activities, was isolated from Sorghum bicolor growing in the desertregion of Rajasthan, India. ACCD activity of SBP-8 was characterized at biochemical, physiological, and molecular levels. The presence of AcdS, a structural gene for ACCD, was confirmed by the polymerase chain reaction. Strain SBP-8 showed optimum growth and ACCD activity at increased salt (NaCl) concentrations of up to 6%, indicating its potential to survive and associate with plants growing in saline soil. Inoculation of wheat plants with SBP-8 when grow in the presence of salt (150-200 mM) and temperature (30-40 °C) stressors resulted inamelioration of stress conditions by increasing plant biomass and chlorophyll content, and are duction in plant growth inhibition (10-100%) occurred due to salt and temperature stressors. Moreover, strain SBP-8 also caused Na(+) exclusion (65%) and increased uptake of K(+) (84.21%) in the host plant. This property can protect plants from adverse effects of Na(+) on plant growth and physiology. Thus, SBP-8 improves growth of the host plant and protects from salt stressors through more than one mechanism including an effect of ACCD activity and on K(+)/Na(+) ratio in plants. The colonization efficiency of strain SBP-8 was confirmedby CFU (colony-forming unit) count, microscopy, and ERIC-PCR based DNA-finger-printing approach. Therefore, and the use of efficient colonizing plant-growth-promoting bacteria may provideinsights into possible biotechnological approaches to decrease the impact of salinity and other stressors. PMID:26217911

  8. Methylobacterium populi VP2: Plant Growth-Promoting Bacterium Isolated from a Highly Polluted Environment for Polycyclic Aromatic Hydrocarbon (PAH) Biodegradation

    PubMed Central

    Piccolo, Alessandro; Carotenuto, Rita; Pepe, Olimpia

    2014-01-01

    The use of microorganisms to accelerate the natural detoxification processes of toxic substances in the soil represents an alternative ecofriendly and low-cost method of environmental remediation compared to harmful incineration and chemical treatments. Fourteen strains able to grow on minimal selective medium with a complex mixture of different classes of xenobiotic compounds as the sole carbon source were isolated from the soil of the ex-industrial site ACNA (Aziende Chimiche Nazionali Associate) in Cengio (Savona, Italy). The best putative degrading isolate, Methylobacterium populi VP2, was identified using a polyphasic approach on the basis of its phenotypic, biochemical, and molecular characterisation. Moreover, this strain also showed multiple plant growth promotion activities: it was able to produce indole-3-acetic acid (IAA) and siderophores, solubilise phosphate, and produce a biofilm in the presence of phenanthrene and alleviate phenanthrene stress in tomato seeds. This is the first report on the simultaneous occurrence of the PAH-degrading ability by Methylobacterium populi and its multiple plant growth-promoting activities. Therefore, the selected indigenous strain, which is naturally present in highly contaminated soils, is good candidate for plant growth promotion and is capable of biodegrading xenobiotic organic compounds to remediate contaminated soil alone and/or soil associated with plants. PMID:25152928

  9. Increased Growth of the Microalga Chlorella vulgaris when Coimmobilized and Cocultured in Alginate Beads with the Plant-Growth-Promoting Bacterium Azospirillum brasilense†

    PubMed Central

    Gonzalez, Luz E.; Bashan, Yoav

    2000-01-01

    Coimmobilization of the freshwater microalga Chlorella vulgaris and the plant-growth-promoting bacterium Azospirillum brasilense in small alginate beads resulted in a significantly increased growth of the microalga. Dry and fresh weight, total number of cells, size of the microalgal clusters (colonies) within the bead, number of microalgal cells per cluster, and the levels of microalgal pigments significantly increased. Light microscopy revealed that both microorganisms colonized the same cavities inside the beads, though the microalgae tended to concentrate in the more aerated periphery while the bacteria colonized the entire bead. The effect of indole-3-acetic acid addition to microalgal culture prior to immobilization of microorganisms in alginate beads partially imitated the effect of A. brasilense. We propose that coimmobilization of microalgae and plant-growth-promoting bacteria is an effective means of increasing microalgal populations within confined environments. PMID:10742237

  10. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    PubMed

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems. PMID:26796423

  11. Complete Genome Sequence of the Rhizobacterium Pseudomonas trivialis Strain IHBB745 with Multiple Plant Growth-Promoting Activities and Tolerance to Desiccation and Alkalinity.

    PubMed

    Gulati, Arvind; Swarnkar, Mohit Kumar; Vyas, Pratibha; Rahi, Praveen; Thakur, Rishu; Thakur, Namika; Singh, Anil Kumar

    2015-01-01

    The complete genome sequence of 6.45 Mb is reported here for Pseudomonas trivialis strain IHBB745 (MTCC 5336), which is an efficient, stress-tolerant, and broad-spectrum plant growth-promoting rhizobacterium. The gene-coding clusters predicted the genes for phosphate solubilization, siderophore production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole-3-acetic acid (IAA) production, and stress response. PMID:26337878

  12. Draft Genome Sequence of Pantoea ananatis Strain AMG521, a Rice Plant Growth-Promoting Bacterial Endophyte Isolated from the Guadalquivir Marshes in Southern Spain.

    PubMed

    Megías, Esaú; Megías, Manuel; Ollero, Francisco Javier; Hungria, Mariangela

    2016-01-01

    The rice endophyte Pantoea ananatis AMG521 shows several plant growth-promoting properties and promotes rice yield increases. Its draft genome was estimated at 4,891,568 bp with 4,704 coding sequences (CDS). The genome encodes genes for N-acylhomoserine lactone (AHL) synthases, AHL hydrolases, hyperadherence (yidQ, yidP, and yidR), fusaric acid resistance, and oxidation of lignin, highlighting its biotechnological potential. PMID:26893418

  13. Draft Genome Sequence of Pantoea ananatis Strain AMG521, a Rice Plant Growth-Promoting Bacterial Endophyte Isolated from the Guadalquivir Marshes in Southern Spain

    PubMed Central

    Megías, Esaú; Megías, Manuel; Ollero, Francisco Javier

    2016-01-01

    The rice endophyte Pantoea ananatis AMG521 shows several plant growth-promoting properties and promotes rice yield increases. Its draft genome was estimated at 4,891,568 bp with 4,704 coding sequences (CDS). The genome encodes genes for N-acylhomoserine lactone (AHL) synthases, AHL hydrolases, hyperadherence (yidQ, yidP, and yidR), fusaric acid resistance, and oxidation of lignin, highlighting its biotechnological potential. PMID:26893418

  14. A Novel Interaction between Plant-Beneficial Rhizobacteria and Roots: Colonization Induces Corn Resistance against the Root Herbivore Diabrotica speciosa

    PubMed Central

    Santos, Franciele; Peñaflor, Maria Fernanda G. V.; Paré, Paul W.; Sanches, Patrícia A.; Kamiya, Aline C.; Tonelli, Mateus; Nardi, Cristiane; Bento, José Mauricio S.

    2014-01-01

    A number of soil-borne microorganisms, such as mycorrhizal fungi and rhizobacteria, establish mutualistic interactions with plants, which can indirectly affect other organisms. Knowledge of the plant-mediated effects of mutualistic microorganisms is limited to aboveground insects, whereas there is little understanding of what role beneficial soil bacteria may play in plant defense against root herbivory. Here, we establish that colonization by the beneficial rhizobacterium Azospirillum brasilense affects the host selection and performance of the insect Diabrotica speciosa. Root larvae preferentially orient toward the roots of non-inoculated plants versus inoculated roots and gain less weight when feeding on inoculated plants. As inoculation by A. brasilense induces higher emissions of (E)-β-caryophyllene compared with non-inoculated plants, it is plausible that the non-preference of D. speciosa for inoculated plants is related to this sesquiterpene, which is well known to mediate belowground insect-plant interactions. To the best of our knowledge, this is the first study showing that a beneficial rhizobacterium inoculant indirectly alters belowground plant-insect interactions. The role of A. brasilense as part of an integrative pest management (IPM) program for the protection of corn against the South American corn rootworm, D. speciosa, is considered. PMID:25405495

  15. Plant growth promoting bacteria Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 in mineralization of endosulfan.

    PubMed

    Abraham, Jayanthi; Silambarasan, Sivagnanam

    2015-04-01

    Endosulfan and their metabolites can be detected in soils with a history of endosulfan application. Microbial degradation offers an effective approach to remove toxicants, and in this study, Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 were isolated through enrichment technique. The biodegradation of endosulfan and its metabolites rate constant (k) and DT50 were determined through first-order kinetic models. E. asburiae JAS5 degraded the endosulfan, and its metabolites in liquid medium was characterized by the k which was 0.382 day(-1) (α-endosulfan), 0.284 day(-1) (β-endosulfan) and 0.228 day(-1) (endosulfan sulphate), and DT50 was 1.8 day (α-endosulfan), 2.4 days (β-endosulfan) and 3.0 days (endosulfan sulphate). The α-endosulfan, β-endosulfan and endosulfan sulphate metabolites were present in the liquid medium that was degraded by E. cloacae JAS7 which was characterized by the k of 0.391, 0.297 day(-1) and 0.273 day(-1), and DT50 was 1.7, 2.3 and 2.5 days, respectively. The infrared spectrum of endosulfan degraded sample in the aqueous medium by E. asburiae JAS5 and E. cloacae JAS7 showed a band at 1402 cm(-1) which is the characteristics of COOH group. E. asburiae JAS5 and E. cloacae JAS7 strains also showed the ability of plant growth promoting traits such as indole-3-acetic acid (IAA) production, organic acids production and solubilization of various inorganic phosphates. E. asburiae JAS5 solubilized 324 ± 2 μg ml(-1) of tricalcium phosphate, 296 ± 6 μg ml(-1) of dicalcium phosphate and 248 ± 5 μg ml(-1) of zinc phosphate, whereas E. cloacae JAS7 solubilized 338 ± 5, 306 ± 4 and 268 ± 3 μg ml(-1) of tricalcium phosphate, dicalcium phosphate and zinc phosphate, respectively. The IAA production by JAS5 and JAS7 strains were estimated to be 38.6 ± 0.3 and 46.6 ± 0.5 μg ml(-1), respectively. These bacterial strains form a potential candidate for bioremediation of pesticide-contaminated agricultural

  16. A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion.

    PubMed

    de Melo Pereira, Gilberto Vinícius; Magalhães, Karina Teixeira; Lorenzetii, Emi Rainildes; Souza, Thiago Pereira; Schwan, Rosane Freitas

    2012-02-01

    This study used a multiphasic approach, characterized by the simultaneous use of culture-dependent and culture-independent methods, to investigate endophytic bacterial communities in strawberry (Fragaria ananassa) fruit. A total of 92 bacterial endophytes were isolated and initially grouped by their repetitive extragenic palindromic (rep)-PCR banding pattern and biochemical features. Phylogenetic analysis of the 16S rRNA gene sequences of 45 representatives showed that the isolates belonged to the species Bacillus subtilis (eight isolates), Bacillus sp. (seven isolates), Enterobacter sp. (seven isolates), Enterobacter ludwigii (six isolates), Lactobacillus plantarum (six isolates), Pseudomonas sp. (five isolates), Pantoea punctata (three isolates), and Curtobacterium citreum (three isolates). Nucleic acids were extracted from the strawberry fruit and subjected to 16S rRNA gene directed polymerase chain reaction denaturing gradient gel electrophoresis (16S rRNA PCR-DGGE). The species B. subtilis, Enterobacter sp., and Pseudomonas sp. were detected both by isolation and DGGE. The DGGE fingerprints of total bacterial DNA did not exhibit bands corresponding to several of the representative species isolated in the extinction dilution (L. plantarum, C. citreum, and P. punctata). In contrast, bands in the DGGE profile that were identified as relatives of Arthrobacter sp. and one uncultivable Erythrobacter sp. were not recovered by cultivation techniques. After isolation, the nitrogen fixation ability and the in vitro production of indole-3-acetic acid (IAA) equivalents and siderophores were evaluated. A high percentage of isolates were found to possess the ability to produce siderophores and IAA equivalents; however, only a few isolates belonging to the genera Pseudomonas and Enterobacter showed the ability to fix nitrogen. Plant growth promotion was evaluated under greenhouse conditions and revealed the ability of the Bacillus strains to enhance the number of leaves

  17. Effects of EDDS and plant-growth-promoting bacteria on plant uptake of trace metals and PCBs from e-waste-contaminated soil.

    PubMed

    Luo, Chunling; Wang, Shaorui; Wang, Yan; Yang, Renxiu; Zhang, Gan; Shen, Zhenguo

    2015-04-01

    The present study investigated the effects of the biodegradable chelant S,S-ethylenediaminedisuccinic acid (EDDS) and the plant-growth-promoting bacterium DGS6 on pollutant uptake by corn from e-waste-contaminated soils. The highest concentration and total uptake of Cu and Zn in corn shoots were observed in the presence of EDDS and DGS6+EDDS, respectively. The ΣPCB concentrations in shoots ranged from 0.53 to 0.72 ng g(-1), and the highest PCB concentration was observed in the presence of EDDS. This could be ascribed to the enhanced dissolved organic carbon, increased dissolution and efficient translocation of PCBs from roots to shoots, as well as potential root damage due to increased soluble metal levels in soil solution. In contrast, the highest total uptake of PCBs in shoots was observed in the presence of DGS6, likely due to enhanced shoot biomass and high levels of air deposition. PMID:25658198

  18. Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases.

    PubMed

    Romero, Fernando M; Marina, María; Pieckenstain, Fernando L

    2016-04-01

    This work aimed to characterize potentially endophytic culturable bacteria from leaves of cultivated tomato and analyze their potential for growth promotion and biocontrol of diseases caused by Botrytis cinerea and Pseudomonas syringae. Bacteria were obtained from inner tissues of surface-disinfected tomato leaves of field-grown plants. Analysis of 16S rRNA gene sequences identified bacterial isolates related to Exiguobacterium aurantiacum (isolates BT3 and MT8), Exiguobacterium spp. (isolate GT4), Staphylococcus xylosus (isolate BT5), Pantoea eucalypti (isolate NT6), Bacillus methylotrophicus (isolate MT3), Pseudomonas veronii (isolates BT4 and NT2), Pseudomonas rhodesiae (isolate BT2) and Pseudomonas cichorii (isolate NT3). After seed inoculation, BT2, BT4, MT3, MT8, NT2 and NT6 were re-isolated from leaf extracts. NT2, BT2, MT3 and NT6 inhibited growth of Botrytis cinerea and Pseudomonas syringae pv. tomato in vitro, produced antimicrobial compounds and reduced leaf damage caused by B. cinerea. Some of these isolates also promoted growth of tomato plants, produced siderophores, the auxin indole-3-acetic and solubilized inorganic phosphate. Thus, bacterial communities of leaves from field-grown tomato plants were found to harbor potentially endophytic culturable beneficial bacteria capable of antagonizing pathogenic microorganisms and promoting plant growth, which could be used as biological control agents and biofertilizers/biostimulators for promotion of tomato plant growth. PMID:26654914

  19. First high quality draft genome sequence of a plant growth promoting and cold active enzyme producing psychrotrophic Arthrobacter agilis strain L77.

    PubMed

    Singh, Ram N; Gaba, Sonam; Yadav, Ajar N; Gaur, Prakhar; Gulati, Sneha; Kaushik, Rajeev; Saxena, Anil K

    2016-01-01

    Arthrobacter agilis strain L77, is a plant growth promoting and cold active hydrolytic enzymes producing psychrotrophic bacterium, isolated from Pangong Lake, a subglacial lake in north western Himalayas, India. Genome analysis revealed metabolic versatility with genes involved in metabolism and cold shock adaptation, utilization and biosynthesis of diverse structural and storage polysaccharides such as plant based carbon polymers. The genome of Arthrobacter agilis strain L77 consists of 3,608,439 bp (3.60 Mb) of a circular chromosome. The genome comprises of 3316 protein coding genes and 74 RNA genes, 725 hypothetical proteins, 25 pseudo-genes and 1404 unique genes. PMID:27570579

  20. Isolation of Endophytic Plant Growth-Promoting Bacteria Associated with the Halophyte Salicornia europaea and Evaluation of their Promoting Activity Under Salt Stress.

    PubMed

    Zhao, Shuai; Zhou, Na; Zhao, Zheng-Yong; Zhang, Ke; Wu, Guo-Hua; Tian, Chang-Yan

    2016-10-01

    Several reports have highlighted that many plant growth-promoting endophytic bacteria (PGPE) can assist their host plants in coping with various biotic and abiotic stresses. However, information about the PGPE colonizing in the halophytes is still scarce. This study was designed to isolate and characterize PGPE from salt-accumulating halophyte Salicornia europaea grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion. A total of 105 isolates were obtained from the surface-sterilized roots, stems, and assimilation twigs of S. europaea. Thirty-two isolates were initially selected for their ability to produce 1-aminocyclopropane-1-carboxylate deaminase as well as other properties such as production of indole-3-acetic acid and phosphate-solubilizing activities. The 16S rRNA gene-sequencing analysis revealed that these isolates belong to 13 different genera and 19 bacterial species. For these 32 strains, seed germination and seedling growth in axenically grown S. europaea seedlings at different NaCl concentrations (50-500 mM) were quantified. Five isolates possessing significant stimulation of the host plant growth were obtained. The five isolates were identified as Bacillus endophyticus, Bacillus tequilensis, Planococcus rifietoensis, Variovorax paradoxus, and Arthrobacter agilis. All the five strains could colonize and can be reisolated from the host plant interior tissues. These results demonstrate that habitat-adapted PGPE isolated from halophyte could enhance plant growth under saline stress conditions. PMID:27447799

  1. Saprotrophic competitiveness and biocontrol fitness of a genetically modified strain of the plant-growth-promoting fungus Trichoderma hamatum GD12.

    PubMed

    Ryder, Lauren S; Harris, Beverley D; Soanes, Darren M; Kershaw, Michael J; Talbot, Nicholas J; Thornton, Christopher R

    2012-01-01

    Trichoderma species are ubiquitous soil fungi that hold enormous potential for the development of credible alternatives to agrochemicals and synthetic fertilizers in sustainable crop production. In this paper, we show that substantial improvements in plant productivity can be met by genetic modification of a plant-growth-promoting and biocontrol strain of Trichoderma hamatum, but that these improvements are obtained in the absence of disease pressure only. Using a quantitative monoclonal antibody-based ELISA, we show that an N-acetyl-β-d-glucosaminidase-deficient mutant of T. hamatum, generated by insertional mutagenesis of the corresponding gene, has impaired saprotrophic competitiveness during antagonistic interactions with Rhizoctonia solani in soil. Furthermore, its fitness as a biocontrol agent of the pre-emergence damping-off pathogen Sclerotinia sclerotiorum is significantly reduced, and its ability to promote plant growth is constrained by the presence of both pathogens. This work shows that while gains in T. hamatum-mediated plant-growth-promotion can be met through genetic manipulation of a single beneficial trait, such a modification has negative impacts on other aspects of its biology and ecology that contribute to its success as a saprotrophic competitor and antagonist of soil-borne pathogens. The work has important implications for fungal morphogenesis, demonstrating a clear link between hyphal architecture and secretory potential. Furthermore, it highlights the need for a holistic approach to the development of genetically modified Trichoderma strains for use as crop stimulants and biocontrol agents in plant agriculture. PMID:21835878

  2. Induction of defense responses in cucumber plants by using the cell-free filtrate of the plant growth-promoting fungus Penicillium simplicissimum GP17-2.

    PubMed

    Shimizu, Kaori; Hossain, Mohamed Motaher; Kato, Kimihiko; Kubota, Mashaharu; Hyakumachi, Mitsuro

    2013-01-01

    Penicillium simplicissimum GP17-2 is a plant growth-promoting fungus (PGPF) and an inducer of systemic defense responses. The mechanisms underlying the effect of GP17-2 on the reduction of cucumber leaf damage caused by the anthracnose pathogen Colletotrichum orbiculare were investigated. Cucumber leaves treated with the culture filtrate (CF) of GP17-2 exhibited a clear systemic resistance against subsequent infection with C. orbiculare. The number and size of lesions caused by the disease were reduced in CF-treated plants, in comparison with that in the control plants. The results showed that CF treatment could trigger a set of defense responses, including the production of hydrogen peroxide, formation of lignin, emission of ultra-weak photons, accumulation of salicylic acid, and increase in the transcription of the genes for the defense-related enzymes chitinase and peroxidase. Furthermore, subsequent inoculation of CF-pretreated plants with C. orbiculare resulted in higher systemic expression of the genes for chitinase, β-1,3-glucanase, and peroxidase relative to nontreated, inoculated plants; this indicated that CF mediates a potentiation state in the plant, enabling it to mount a rapid and effective response on infection by C. orbiculare. Our results indicate that the ability of CF of GP17-2 to stimulate active oxygen species, lignification, SA accumulation, and defense gene activation and potentiation in the host is the possible mode of action of the GP17-2 elicitor and inducer of induced systemic resistance against C. orbiculare infection in cucumber plants. PMID:23985491

  3. Restoration of Degraded Soil in the Nanmangalam Reserve Forest with Native Tree Species: Effect of Indigenous Plant Growth-Promoting Bacteria

    PubMed Central

    Ramachandran, Andimuthu; Radhapriya, Parthasarathy

    2016-01-01

    Restoration of a highly degraded forest, which had lost its natural capacity for regeneration, was attempted in the Nanmangalam Reserve Forest in Eastern Ghats of India. In field experiment, 12 native tree species were planted. The restoration included inoculation with a consortium of 5 native plant growth-promoting bacteria (PGPB), with the addition of small amounts of compost and a chemical fertilizer (NPK). The experimental fields were maintained for 1080 days. The growth and biomass varied depending on the plant species. All native plants responded well to the supplementation with the native PGPB. The plants such as Pongamia pinnata, Tamarindus indica, Gmelina arborea, Wrightia tinctoria, Syzygium cumini, Albizia lebbeck, Terminalia bellirica, and Azadirachta indica performed well in the native soil. This study demonstrated, by using native trees and PGPB, a possibility to restore the degraded forest. PMID:27195310

  4. Restoration of Degraded Soil in the Nanmangalam Reserve Forest with Native Tree Species: Effect of Indigenous Plant Growth-Promoting Bacteria.

    PubMed

    Ramachandran, Andimuthu; Radhapriya, Parthasarathy

    2016-01-01

    Restoration of a highly degraded forest, which had lost its natural capacity for regeneration, was attempted in the Nanmangalam Reserve Forest in Eastern Ghats of India. In field experiment, 12 native tree species were planted. The restoration included inoculation with a consortium of 5 native plant growth-promoting bacteria (PGPB), with the addition of small amounts of compost and a chemical fertilizer (NPK). The experimental fields were maintained for 1080 days. The growth and biomass varied depending on the plant species. All native plants responded well to the supplementation with the native PGPB. The plants such as Pongamia pinnata, Tamarindus indica, Gmelina arborea, Wrightia tinctoria, Syzygium cumini, Albizia lebbeck, Terminalia bellirica, and Azadirachta indica performed well in the native soil. This study demonstrated, by using native trees and PGPB, a possibility to restore the degraded forest. PMID:27195310

  5. Bacteria as growth-promoting agents for citrus rootstocks.

    PubMed

    Giassi, Valdionei; Kiritani, Camila; Kupper, Katia Cristina

    2016-09-01

    The microbial community plays an essential role in maintaining the ecological balance of soils. Interactions between microorganisms and plants have a major influence on the nutrition and health of the latter, and growth-promoting rhizobacteria can be used to improve plant development through a wide range of mechanisms. Therefore, the objective of the present study was to evaluate bacteria as growth-promoting agents for citrus rootstocks. A total of 30 bacterial isolates (11 of Bacillus spp., 11 actinobacteria, and 8 lactic acid bacteria) were evaluated in vitro for indoleacetic acid production, phosphate solubilization, and nitrogen (N) fixation. In vivo testing consisted of growth promotion trials of the bacterial isolates that yielded the best results on in vitro tests with three rootstocks: Swingle citrumelo [Citrus×paradisi Macfad cv. Duncan×Poncirus trifoliata (L.) Raf.], Sunki mandarin (Citrus sunki Hort. ex Tan), and rangpur (Citrus×limonia Osbeck). The parameters of interest were height, number of leaves, stem diameter, shoot and root dry mass, and total dry mass at 150days after germination. The results showed that most bacterial isolates were capable of IAA production. Only one lactic acid bacterium isolate (BL06) solubilized phosphate, with a high solubilization index (PSI>3). In the actinobacteria group, isolates ACT01 (PSI=2.09) and ACT07 (PSI=2.01) exhibited moderate phosphate-solubilizing properties. Of the Bacillus spp. isolates, only CPMO6 and BM17 solubilized phosphate. The bacterial isolates that most fixated nitrogen were BM17, ACT11, and BL24. In the present study, some bacteria were able to promote growth of citrus rootstocks; however, this response was dependent on plant genotype and isolate. Bacillus spp. BM16 and CPMO4 were able to promote growth of Swingle citrumelo. In Sunki mandarin plants, the best treatment results were obtained with BM17 (Bacillus sp.) and ACT11 (actinobacteria). For Rangpur lime rootstock, only BM05 (Bacillus sp

  6. Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth.

    PubMed

    Myresiotis, Charalampos K; Vryzas, Zisis; Papadopoulou-Mourkidou, Euphemia

    2012-04-01

    A laboratory study was conducted to investigate the influence of four PGPR strains on the degradation of five soil applied pesticides and their effects on bacterial growth. Interactions of Bacillus subtilis GB03, Bacillus subtilis FZB24, Bacillus amyloliquefaciens IN937a and Bacillus pumilus SE34 with two concentrations of acibenzolar-S-methyl, metribuzin, napropamide, propamocarb hydrochloride and thiamethoxam in liquid culture and soil microcosm were studied. The degradation of acibenzolar-S-methyl by all PGPR tested in low and high concentration, was 5.4 and 5.7 times, respectively, faster than that in non-inoculated liquid culture medium. At the end of the 72-h liquid cultured experiments, 8-18, 9-11, 15-36 and 11-22% of metribuzin, napropamide, propamocarb hydrochloride and thiamethoxam, respectively, had disappeared from PGPR inoculated medium. Under the soil microcosm experimental conditions, the half-lives of acibenzolar-S-methyl incubated in the presence of PGPR strains spiked at 1.0 and 10.0 mg kg(-1) were 10.3-16.4 and 9.2-15.9 days, respectively, markedly lower compared with >34.2 days in the control. From the rest pesticides studied degradation of propamocarb hydrochloride and thiamethoxam was enhanced in the presence of B. amyloliquefaciens IN937a and B. pumilus SE34. Acibenzolar-S-methyl, propamocarb hydrochloride and thiamethoxam significantly increased the PGPR growth. However, the stimulatory effect was related to the level of pesticide spiked. PMID:21870159

  7. Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India.

    PubMed

    Verma, Priyanka; Yadav, Ajar Nath; Khannam, Kazy Sufia; Kumar, Sanjay; Saxena, Anil Kumar; Suman, Archna

    2016-01-01

    The diversity of culturable Bacilli was investigated in six wheat cultivating agro-ecological zones of India viz: northern hills, north western plains, north eastern plains, central, peninsular, and southern hills. These agro-ecological regions are based on the climatic conditions such as pH, salinity, drought, and temperature. A total of 395 Bacilli were isolated by heat enrichment and different growth media. Amplified ribosomal DNA restriction analysis using three restriction enzymes AluI, MspI, and HaeIII led to the clustering of these isolates into 19-27 clusters in the different zones at >70% similarity index, adding up to 137 groups. Phylogenetic analysis based on 16S rRNA gene sequencing led to the identification of 55 distinct Bacilli that could be grouped in five families, Bacillaceae (68%), Paenibacillaceae (15%), Planococcaceae (8%), Staphylococcaceae (7%), and Bacillales incertae sedis (2%), which included eight genera namely Bacillus, Exiguobacterium, Lysinibacillus, Paenibacillus, Planococcus, Planomicrobium, Sporosarcina, and Staphylococcus. All 395 isolated Bacilli were screened for their plant growth promoting attributes, which included direct-plant growth promoting (solubilization of phosphorus, potassium, and zinc; production of phytohormones; 1-aminocyclopropane-1-carboxylate deaminase activity and nitrogen fixation), and indirect-plant growth promotion (antagonistic, production of lytic enzymes, siderophore, hydrogen cyanide, and ammonia). To our knowledge, this is the first report for the presence of Bacillus endophyticus, Paenibacillus xylanexedens, Planococcus citreus, Planomicrobium okeanokoites, Sporosarcina sp., and Staphylococcus succinus in wheat rhizosphere and exhibit multifunctional PGP attributes. These niche-specific and multifarious PGP Bacilli may serve as inoculants for crops growing in respective climatic conditions. PMID:26567901

  8. Restoration of eroded soil in the Sonoran Desert with native leguminous trees using plant growth-promoting microorganisms and limited amounts of compost and water.

    PubMed

    Bashan, Yoav; Salazar, Bernardo G; Moreno, Manuel; Lopez, Blanca R; Linderman, Robert G

    2012-07-15

    Restoration of highly eroded desert land was attempted in the southern Sonoran Desert that had lost its natural capacity for self-revegetation. In six field experiments, the fields were planted with three native leguminous trees: mesquite amargo Prosopis articulata, and yellow and blue palo verde Parkinsonia microphylla and Parkinsonia florida. Restoration included inoculation with two of plant growth-promoting bacteria (PGPB; Azospirillum brasilense and Bacillus pumilus), native arbuscular mycorrhizal (AM) fungi, and small quantities of compost. Irrigation was applied, when necessary, to reach a rainy year (300 mm) of the area. The plots were maintained for 61 months. Survival of the trees was marginally affected by all supplements after 30 months, in the range of 60-90%. This variation depended on the plant species, where all young trees were established after 3 months. Plant density was a crucial variable and, in general, low plant density enhanced survival. High planting density was detrimental. Survival significantly declined in trees 61 months after planting. No general response of the trees to plant growth-promoting microorganisms and compost was found. Mesquite amargo and yellow palo verde responded well (height, number of branches, and diameter of the main stem) to inoculation with PGPB, AM fungi, and compost supplementation after three months of application. Fewer positive effects were recorded after 30 months. Blue palo verde did not respond to most treatments and had the lowest survival. Specific plant growth parameters were affected to varying degrees to inoculations or amendments, primarily depending on the tree species. Some combinations of tree/inoculant/amendment resulted in small negative effects or no response when measured after extended periods of time. Using native leguminous trees, this study demonstrated that restoration of severely eroded desert lands was possible. PMID:22425876

  9. Citricoccus zhacaiensis B-4 (MTCC 12119) a novel osmotolerant plant growth promoting actinobacterium enhances onion (Allium cepa L.) seed germination under osmotic stress conditions.

    PubMed

    Selvakumar, Govindan; Bhatt, Ravindra M; Upreti, Kaushal K; Bindu, Gurupadam Hema; Shweta, Kademani

    2015-05-01

    The water potential of rhizospheric soil is a key parameter that determines the availability of water, oxygen, and nutrients to plants and microbes. Recent global warming trends and erratic precipitation patterns have resulted in the emergence of drought as a major constraint of agricultural productivity. Though several strategies are being evaluated to address this issue, a novel approach is the utilization of microbes for alleviation of drought stress effects in crops. Citricoccus zhacaiensis B-4 is an osmotolerant actinobacterium isolated from banana rhizosphere on mannitol supplemented medium (-2.92 MPa osmotic potential). This isolate expressed plant growth promotion traits viz, IAA, GA3 production, phosphate, zinc solubilization, ACC deaminase activity and ammonia production under PEG induced osmotic stress and non-stress conditions. Under in vitro osmotic conditions, biopriming with the actinobacterium improved the percent germination, seedling vigour and germination rate of onion seeds (cv. Arka Kalyan) at osmotic potentials up to -0.8 MPa. Considering its novelty, osmotolerance and plant growth promoting traits, biopriming with C. zhacaiensis is suggested as a viable option for the promotion of onion seed germination under drought stressed environments. PMID:25758141

  10. IAA-producing rhizobacteria from chickpea (Cicer arietinum L.) induce changes in root architecture and increase root biomass.

    PubMed

    Fierro-Coronado, Rosario Alicia; Quiroz-Figueroa, Francisco Roberto; García-Pérez, Luz María; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Maldonado-Mendoza, Ignacio Eduardo

    2014-10-01

    Rhizobacteria promote and have beneficial effects on plant growth, making them useful to agriculture. Nevertheless, the rhizosphere of the chickpea plant has not been extensively examined. The aim of the present study was to select indole-3-acetic acid (IAA) producing rhizobacteria from the rhizosphere of chickpea plants for their potential use as biofertilizers. After obtaining a collection of 864 bacterial isolates, we performed a screen using the Salkowski reaction for the presence of auxin compounds (such as IAA) in bacterial Luria-Bertani supernatant (BLBS). Our results demonstrate that the Salkowski reaction has a greater specificity for detecting IAA than other tested auxins. Ten bacterial isolates displaying a wide range of auxin accumulation were selected, producing IAA levels of 5 to 90 μmol/L (according to the Salkowski reaction). Bacterial isolates were identified on the basis of 16S rDNA partial sequences: 9 isolates belonged to Enterobacter, and 1 isolate was classified as Serratia. The effect of BLBS on root morphology was evaluated in Arabidopsis thaliana. IAA production by rhizobacteria was confirmed by means of a DR5::GFP construct that is responsive to IAA, and also by HPLC-GC/MS. Finally, we observed that IAA secreted by rhizobacteria (i) modified the root architecture of A. thaliana, (ii) caused an increase in chickpea root biomass, and (iii) activated the green fluorescent protein (GFP) reporter gene driven by the DR5 promoter. These findings provide evidence that these novel bacterial isolates may be considered as putative plant-growth-promoting rhizobacteria modifying root architecture and increasing root biomass. PMID:25231840

  11. Culturable Heavy Metal-Resistant and Plant Growth Promoting Bacteria in V-Ti Magnetite Mine Tailing Soil from Panzhihua, China

    PubMed Central

    Zhang, Chu; Liu, Huiying; Liu, Jin; Zheng, Wenwen; Kang, Xia; Leng, Xuejun; Zhao, Ke; Gu, Yunfu; Zhang, Xiaoping; Xiang, Quanju; Chen, Qiang

    2014-01-01

    To provide a basis for using indigenous bacteria for bioremediation of heavy metal contaminated soil, the heavy metal resistance and plant growth-promoting activity of 136 isolates from V-Ti magnetite mine tailing soil were systematically analyzed. Among the 13 identified bacterial genera, the most abundant genus was Bacillus (79 isolates) out of which 32 represented B. subtilis and 14 B. pumilus, followed by Rhizobium sp. (29 isolates) and Ochrobactrum intermedium (13 isolates). Altogether 93 isolates tolerated the highest concentration (1000 mg kg−1) of at least one of the six tested heavy metals. Five strains were tolerant against all the tested heavy metals, 71 strains tolerated 1,000 mg kg−1 cadmium whereas only one strain tolerated 1,000 mg kg−1 cobalt. Altogether 67% of the bacteria produced indoleacetic acid (IAA), a plant growth-promoting phytohormone. The concentration of IAA produced by 53 isolates was higher than 20 µg ml−1. In total 21% of the bacteria produced siderophore (5.50–167.67 µg ml−1) with two Bacillus sp. producing more than 100 µg ml−1. Eighteen isolates produced both IAA and siderophore. The results suggested that the indigenous bacteria in the soil have beneficial characteristics for remediating the contaminated mine tailing soil. PMID:25188470

  12. Screening of plant growth-promoting traits in arsenic-resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation.

    PubMed

    Das, Suvendu; Jean, Jiin-Shuh; Kar, Sandeep; Chou, Mon-Lin; Chen, Chien-Yen

    2014-05-15

    Twelve arsenic (As)-resistant bacteria (minimum inhibitory concentration ranging from 10 to 30mM and 150 to 320mM for As(III) and As(V), respectively) were isolated from the agricultural soil of the Chianan Plain in southwestern Taiwan using enrichment techniques. Eight isolates capable of oxidizing As(III) (rate of oxidation from 0.029 to 0.059μMh(-1) 10(-9) cell) and exhibiting As(III)-oxidase enzyme activity belong to Pseudomonas, Acinetobacter, Klebsiella and Comamonas genera, whereas four isolates that did not show As(III)-oxidizing activity belong to Geobacillus, Bacillus, Paenibacillus, and Enterobacter genera. Assessment of the parameters of plant growth promotion revealed that Pseudomonas sp. ASR1, ASR2 and ASR3, Geobacillus sp. ASR4, Bacillus sp. ASR5, Paenibacillus sp. ASR6, Enterobacter sp. ASR10 and Comamonas sp. ASR11, and ASR12 possessed some or all of the studied plant growth-promoting traits, including phosphate-solubilization, siderophore, IAA-like molecules and ACC deaminase production. In addition, the ability of As-resistant isolates to grow over wide ranges of pH and temperatures signify their potential application for sustainable bioremediation of As in the environment. PMID:24685527

  13. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera.

    PubMed

    Sgroy, Verónica; Cassán, Fabricio; Masciarelli, Oscar; Del Papa, María Florencia; Lagares, Antonio; Luna, Virginia

    2009-11-01

    This study was designed to isolate and characterize endophytic bacteria from halophyte Prosopis strombulifera grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion or stress homeostasis regulation. Isolates obtained from P. strombulifera were compared genotypically by BOX-polymerase chain reaction, grouped according to similarity, and identified by amplification and partial sequences of 16S DNAr. Isolates were grown until exponential growth phase to evaluate the atmospheric nitrogen fixation, phosphate solubilization, siderophores, and phytohormones, such as indole-3-acetic acid, zeatin, gibberellic acid and abscisic acid production, as well as antifungal, protease, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. A total of 29 endophytic strains were grouped into seven according to similarity. All bacteria were able to grow and to produce some phytohormone in chemically defined medium with or without addition of a nitrogen source. Only one was able to produce siderophores, and none of them solubilized phosphate. ACC deaminase activity was positive for six strains. Antifungal and protease activity were confirmed for two of them. In this work, we discuss the possible implications of these bacterial mechanisms on the plant growth promotion or homeostasis regulation in natural conditions. PMID:19655138

  14. Growth promotion of Xanthium italicum by application of rhizobacterial isolates of Bacillus aryabhattai in microcosm soil.

    PubMed

    Lee, Sol; Ka, Jong-Ok; Song, Hong-Gyu

    2012-02-01

    This study was conducted using rhizobacteria, which are able to exert beneficial effects upon plant growth in the infertile soil collected from barren lakeside areas. Four strains of plant growth promoting bacteria were isolated from the rhizosphere of a common wild plant, Erigeron canadensis. Isolated strains LS9, LS11, LS12, and LS15 were identified as Bacillus aryabhattai by 16S rDNA sequence analysis. B. aryabhattai LS9, LS11, LS12, and LS15 could solubilize 577.9, 676.8, 623.6, and 581.3 mg/L of 0.5% insoluble calcium phosphate within 2 days of incubation. Production of indole acetic acid, a typical growth promoting phytohormone auxin, by strain LS15 was 471.3 mg/L in 2 days with the addition of auxin precursor L-tryptophan. All the strains also produced other phytohormones such as indole butyric acid, gibberellins, and abscisic acid, and strain LS15 showed the highest production rate of gibberellin (GA(3)), 119.0 μg/mg protein. Isolated bacteria were used in a microcosm test for growth of wild plant Xanthium italicum, which can be utilized as a pioneer plant in barren lands. Seed germination was facilitated, and the lengths of roots, and shoots and the dry weights of germinated seedlings after 16 days were higher than those of the uninoculated control plants. Root lengths of seedlings of X. italicum increased by 121.1% in LS11-treated samples after 16 days. This plant growth-promoting capability of B. aryabhattai strains may be utilized as an environmentally friendly means of revegetating barren lands, especially sensitive areas such as lakeside lands. PMID:22367936

  15. Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Pseudomonads Increases Anthocyanin Concentration in Strawberry Fruits (Fragaria x ananassa var. Selva) in Conditions of Reduced Fertilization

    PubMed Central

    Lingua, Guido; Bona, Elisa; Manassero, Paola; Marsano, Francesco; Todeschini, Valeria; Cantamessa, Simone; Copetta, Andrea; D’Agostino, Giovanni; Gamalero, Elisa; Berta, Graziella

    2013-01-01

    Anthocyanins are a group of common phenolic compounds in plants. They are mainly detected in flowers and fruits, are believed to play different important roles such as in the attraction of animals and seed dispersal, and also in the increase of the antioxidant response in tissues directly or indirectly affected by biotic or abiotic stress factors. As a major group of secondary metabolites in plants commonly consumed as food, they are of importance in both the food industry and human nutrition. It is known that arbuscular mycorrhizal (AM) fungi can influence the plant secondary metabolic pathways such as the synthesis of essential oils in aromatic plants, of secondary metabolites in roots, and increase flavonoid concentration. Plant Growth-Promoting Bacteria (PGPB) are able to increase plant growth, improving plant nutrition and supporting plant development under natural or stressed conditions. Various studies confirmed that a number of bacterial species living on and inside the root system are beneficial for plant growth, yield and crop quality. In this work it is shown that inoculation with AM fungi and/or with selected and tested Pseudomonas strains, under conditions of reduced fertilization, increases anthocyanin concentration in the fruits of strawberry. PMID:23924942

  16. The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp. in chickpea.

    PubMed

    Gopalakrishnan, Subramaniam; Srinivas, Vadlamudi; Alekhya, Gottumukkala; Prakash, Bandikinda; Kudapa, Himabindu; Rathore, Abhishek; Varshney, Rajeev Kumar

    2015-01-01

    The physiological and molecular responses of five strains of Streptomyces sp. (CAI-17, CAI-68, CAI-78, KAI-26 and KAI-27), with their proven potential for charcoal rot disease control in sorghum and plant growth-promotion (PGP) in sorghum and rice, were studied to understand the mechanisms causing the beneficial effects. In this investigation, those five strains were evaluated for their PGP capabilities in chickpea in the 2012-13 and 2013-14 post-rainy seasons. All of the Streptomyces sp. strains exhibited enhanced nodule number, nodule weight, root weight and shoot weight at 30 days after sowing (DAS) and pod number, pod weight, leaf area, leaf weight and stem weight at 60 DAS in both seasons over the un-inoculated control. At crop maturity, the Streptomyces strains had enhanced stover yield, grain yield, total dry matter and seed number plant(-1) in both seasons over the un-inoculated control. In the rhizosphere, the Streptomyces sp. also significantly enhanced microbial biomass carbon, dehydrogenase activity, total nitrogen, available phosphorous and organic carbon in both seasons over the un-inoculated control. Of the five strains of Streptomyces sp., CAI-17, CAI-68 and CAI-78 were superior to KAI-26 and KAI-27 in terms of their effects on root and shoot development, nodule formation and crop productivity. Scanning electron microscopy (SEM) micrographs had revealed the success in colonization of the chickpea roots by all five strains. Quantitative real-time PCR (qRT-PCR) analysis of selected PGP genes of actinomycetes revealed the selective up-regulation of indole-3-acetic acid (IAA)-related and siderophore-related genes by CAI-68 and of β-1,3-glucanase genes by KAI-26. PMID:25646153

  17. Isolation of plant-growth-promoting and metal-resistant cultivable bacteria from Arthrocnemum macrostachyum in the Odiel marshes with potential use in phytoremediation.

    PubMed

    Navarro-Torre, S; Mateos-Naranjo, E; Caviedes, M A; Pajuelo, E; Rodríguez-Llorente, I D

    2016-09-15

    Arthrocnemum macrostachyum is a halophyte naturally growing in southwest coasts of Spain that can tolerate and accumulate heavy metals. A total of 48 bacteria (30 endophytes and 18 from the rhizosphere) were isolated from A. macrostachyum growing in the Odiel River marshes, an ecosystem with high levels of contamination. All the isolates exhibited plant-growth-promoting (PGP) properties and most of them were multiresistant to heavy metals. Although the presence of heavy metals reduced the capability of the isolates to exhibit PGP properties, several strains were able to maintain their properties or even enhance them in the presence of concrete metals. Two bacterial consortia with the best-performing endophytic or rhizospheric strains were selected for further experiments. Bacterial inoculation accelerated germination of A. macrostachyum seeds in both the absence and presence of heavy metals. These results suggest that inoculation of A. macrostachyum with the selected bacteria could ameliorate plant establishment and growth in contaminated marshes. PMID:27349383

  18. Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce).

    PubMed

    Suzuki, Wakako; Sugawara, Masayuki; Miwa, Kyoko; Morikawa, Masaaki

    2014-07-01

    Acinetobacter calcoaceticus P23 is a plant growth-promoting bacterium that was isolated from the surface of duckweed (Lemna aoukikusa). The bacterium was observed to colonize on the plant surfaces and increase the chlorophyll content of not only the monocotyledon Lemna minor but also the dicotyledon Lactuca sativa in a hydroponic culture. This effect on the Lactuca sativa was significant in nutrient-poor (×1/100 dilution of H2 medium) and not nutrient-rich (×1 or ×1/10 dilutions of H2 medium) conditions. Strain P23 has the potential to play a part in the future development of fertilizers and energy-saving hydroponic agricultural technologies. PMID:24468072

  19. A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities.

    PubMed

    Jain, Rahul; Pandey, Anita

    2016-09-01

    The genus Pseudomonas is known to comprise a huge diversity of species with the ability to thrive in different habitats, including those considered as extreme environments. In the present study, a psychrotolerant, wide pH tolerant and halotolerant strain of Pseudomonas chlororaphis GBPI_507 (MCC2693), isolated from the wheat rhizosphere growing in a mountain location in Indian Himalayan Region (IHR), has been investigated for its antimicrobial potential with particular reference to phenazine production and plant growth promoting traits. GBPI_507 showed phenazine production at the temperatures ranged from 14 to 25°C. The benzene extracted compound identified as phenazine-1-carboxylic acid (PCA) through GC-MS exhibited antimicrobial properties against Gram positive bacteria and actinomycetes. The inhibition of phytopathogens in diffusible biocontrol assays was recorded in an order: Alternaria alternata>Phytophthora sp.>Fusarium solani>F. oxysporum. In volatile metabolite assays, all the pathogens, except Phytophthora sp. produced distorted colonies, characterized by restricted sporulation. The isolate also possessed other growth promoting and biocontrol traits including phosphate solubilization and production of siderophores, HCN, ammonia, and lytic enzymes (lipase and protease). Molecular studies confirmed production of PCA by the bacterium GBPI_507 through presence of phzCD and phzE genes in its genome. The polyextremophilic bacterial strain possesses various important characters to consider it as a potential agent for field applications, especially in mountain ecosystem, for sustainable and eco-friendly crop production. PMID:27394000

  20. Endophytic colonization of barley (Hordeum vulgare) roots by the nematophagous fungus Pochonia chlamydosporia reveals plant growth promotion and a general defense and stress transcriptomic response.

    PubMed

    Larriba, Eduardo; Jaime, María D L A; Nislow, Corey; Martín-Nieto, José; Lopez-Llorca, Luis Vicente

    2015-07-01

    Plant crop yields are negatively conditioned by a large set of biotic and abiotic factors. An alternative to mitigate these adverse effects is the use of fungal biological control agents and endophytes. The egg-parasitic fungus Pochonia chlamydosporia has been traditionally studied because of its potential as a biological control agent of plant-parasitic nematodes. This fungus can also act as an endophyte in monocot and dicot plants, and has been shown to promote plant growth in different agronomic crops. An Affymetrix 22K Barley GeneChip was used in this work to analyze the barley root transcriptomic response to P. chlamydosporia root colonization. Functional gene ontology (GO) and gene set enrichment analyses showed that genes involved in stress response were enriched in the barley transcriptome under endophytism. An 87.5% of the probesets identified within the abiotic stress response group encoded heat shock proteins. Additionally, we found in our transcriptomic analysis an up-regulation of genes implicated in the biosynthesis of plant hormones, such as auxin, ethylene and jasmonic acid. Along with these, we detected induction of brassinosteroid insensitive 1-associated receptor kinase 1 (BR1) and other genes related to effector-triggered immunity (ETI) and pattern-triggered immunity (PTI). Our study supports at the molecular level the growth-promoting effect observed in plants endophytically colonized by P. chlamydosporia, which opens the door to further studies addressing the capacity of this fungus to mitigate the negative effects of biotic and abiotic factors on plant crops. PMID:25982739

  1. Isolation and identification by 16S rRNA sequence analysis of plant growth-promoting azospirilla from the rhizosphere of wheat.

    PubMed

    Ayyaz, Khadija; Zaheer, Ahmad; Rasul, Ghulam; Mirza, Muhammad Sajjad

    2016-01-01

    The main objective of the present study was to isolate phytohormone-producing, phosphate-solubilizing strains of Azospirillum from wheat to be used as inoculants for plant growth promotion. Five Azospirillum strains were isolated from the rhizosphere of field-grown wheat (Triticum aestivum L.), and it was confirmed by BOX-polymerase chain reaction (PCR) that the isolates were different and not re-isolates of the same strain. Sequence analysis of the PCR-amplified 16S rRNA gene indicated that four isolates showed maximum similarity to Azospirillum brasilense and one isolate showed maximum similarity to Azospirillum zeae. This is the first report indicating the presence of an A. zeae like isolate in the wheat rhizosphere in Pakistan. The bacterial isolates were characterized for their plant growth-promoting traits, phosphate solubilization, and indole-3-acetic acid (IAA) production. None of the isolates showed phosphate solubilization activity in the commonly used Pikovskaya medium. However, all strains (except AzoK4) exhibited ability to solubilize tricalcium phosphate (TCP) in modified Pikovskaya medium in which sucrose was replaced by Na-malate, as well as in TCP-supplemented Luria-Bertani (LB) medium. Organic acids, such as acetic, citric, lactic, malic, and succinic acids, were detected in culture supernatants of the tested Azospirillum strains. All strains exhibited ability to produce IAA in the growth medium, except Azospirillum sp. AzoK1. Among the strains tested, the maximum IAA production (30.49±1.04mgL(-1)) and phosphate solubilization (105.50±4.93mgL(-1)) were shown by a pure culture of Azospirillum sp. AzoK2. In pot experiments, single-strain inocula of Azospirillum sp. AzoK1 and AzoK2 improved wheat plant growth. PMID:27133558

  2. Enhanced Degradation of Diesel in the Rhizosphere of after Inoculation with Diesel-Degrading and Plant Growth-Promoting Bacterial Strains.

    PubMed

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Vangronsveld, Jaco; Monterroso, Carmen

    2016-05-01

    The association of plants and rhizospheric bacteria provides a successful strategy to clean up contaminated soils. The purpose of this work was to enhance diesel degradation in rhizosphere by inoculation with selected bacterial strains: a diesel degrader (D), plant growth-promoting (PGP) strains, or a combination (D+PGP). Plants were set up in pots with the A or B horizon of an umbric Cambisol (A and B) spiked with diesel (1.25%, w/w). After 1 mo, the dissipation of diesel range organics (DRO) with respect to = 0 (i.e., 1 wk after preparing the pots with the seedlings) concentration was significantly higher in inoculated than in noninoculated (NI) pots: The highest DRO losses were found in A D+PGP pots (close to 15-20% higher than NI) and in B D pots (close to 10% higher). The water-extractable DRO fraction was significantly higher at = 30 d (15-25%) compared with = 0 (<5%), probably due to the effects of plant root exudates and biosurfactants produced by the degrader strain. The results of this experiment reflect the importance of the partnerships between plants and bacterial inoculants and demonstrate the relevance of the effect of bacterial biosurfactants and plant root exudates on contaminant bioavailability, a key factor for enhancing diesel rhizodegradation. The association of lupine with D and PGP strains resulted in a promising combination for application in the rhizoremediation of soils with moderate diesel contamination. PMID:27136159

  3. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation.

    PubMed

    Xun, Feifei; Xie, Baoming; Liu, Shasha; Guo, Changhong

    2015-01-01

    To investigate the effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on phytoremediation in saline-alkali soil contaminated by petroleum, saline-alkali soil samples were artificially mixed with different amount of oil, 5 and 10 g/kg, respectively. Pot experiments with oat plants (Avena sativa) were conducted under greenhouse condition for 60 days. Plant biomass, physiological parameters in leaves, soil enzymes, and degradation rate of total petroleum hydrocarbon were measured. The result demonstrated that petroleum inhibited the growth of the plant; however, inoculation with PGPR in combination with AMF resulted in an increase in dry weight and stem height compared with noninoculated controls. Petroleum stress increased the accumulation of malondialdehyde (MDA) and free proline and the activities of the antioxidant enzyme such as superoxide dismutase, catalase, and peroxidase. Application of PGPR and AMF augmented the activities of three enzymes compared to their respective uninoculated controls, but decreased the MDA and free proline contents, indicating that PGPR and AMF could make the plants more tolerant to harmful hydrocarbon contaminants. It also improved the soil quality by increasing the activities of soil enzyme such as urease, sucrase, and dehydrogenase. In addition, the degradation rate of total petroleum hydrocarbon during treatment with PGPR and AMF in moderately contaminated soil reached a maximum of 49.73%. Therefore, we concluded the plants treated with a combination of PGPR and AMF had a high potential to contribute to remediation of saline-alkali soil contaminated with petroleum. PMID:25091168

  4. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters

    PubMed Central

    Zhao, Longfei; Xu, Yajun; Lai, Xin-He; Shan, Changjuan; Deng, Zhenshan; Ji, Yuliang

    2015-01-01

    Abstract A total of 48 endophytic bacteria were isolated from surface-sterilized tissues of the medicinal plant Lonicera japonica, which is grown in eastern China; six strains were selected for further study based on their potential ability to promote plant growth in vitro (siderophore and indoleacetic acid production). The bacteria were characterized by phylogenetically analyzing their 16S rRNA gene similarity, by examining their effect on the mycelial development of pathogenic fungi, by testing their potential plant growth-promoting characteristics, and by measuring wheat growth parameters after inoculation. Results showed that the number of endophytic bacteria in L. japonica varied among different tissues, but it remained relatively stable in the same tissues from four different plantation locations. Among the three endophytic strains, strains 122 and 124 both had high siderophore production, with the latter showing the highest phosphate solubilization activity (45.6 mg/L) and aminocyclopropane-1-carboxylic acid deaminase activity (47.3 nmol/mg/h). Strain 170 had the highest indoleacetic acid (IAA) production (49.2 mg/L) and cellulase and pectinase activities. After inoculation, most of the six selected isolates showed a strong capacity to promote wheat growth. Compared with the controls, the increase in the shoot length, root length, fresh weight, dry weight, and chlorophyll content was most remarkable in wheat seedlings inoculated with strain 130. The positive correlation between enzyme (cellulose and pectinase) activity and inhibition rate on Fusarium oxysporum, the IAA production, and the root length of wheat seedlings inoculated with each tested endophytic strain was significant in regression analysis. Deformity of pathogenic fungal mycelia was observed under a microscope after the interaction with the endophytic isolates. Such deformity may be directly related to the production of hydrolytic bacterial enzymes (cellulose and pectinase). The six endophytic

  5. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters.

    PubMed

    Zhao, Longfei; Xu, Yajun; Lai, Xin-He; Shan, Changjuan; Deng, Zhenshan; Ji, Yuliang

    2015-01-01

    A total of 48 endophytic bacteria were isolated from surface-sterilized tissues of the medicinal plant Lonicera japonica, which is grown in eastern China; six strains were selected for further study based on their potential ability to promote plant growth in vitro (siderophore and indoleacetic acid production). The bacteria were characterized by phylogenetically analyzing their 16S rRNA gene similarity, by examining their effect on the mycelial development of pathogenic fungi, by testing their potential plant growth-promoting characteristics, and by measuring wheat growth parameters after inoculation. Results showed that the number of endophytic bacteria in L. japonica varied among different tissues, but it remained relatively stable in the same tissues from four different plantation locations. Among the three endophytic strains, strains 122 and 124 both had high siderophore production, with the latter showing the highest phosphate solubilization activity (45.6 mg/L) and aminocyclopropane-1-carboxylic acid deaminase activity (47.3 nmol/mg/h). Strain 170 had the highest indoleacetic acid (IAA) production (49.2 mg/L) and cellulase and pectinase activities. After inoculation, most of the six selected isolates showed a strong capacity to promote wheat growth. Compared with the controls, the increase in the shoot length, root length, fresh weight, dry weight, and chlorophyll content was most remarkable in wheat seedlings inoculated with strain 130. The positive correlation between enzyme (cellulose and pectinase) activity and inhibition rate on Fusarium oxysporum, the IAA production, and the root length of wheat seedlings inoculated with each tested endophytic strain was significant in regression analysis. Deformity of pathogenic fungal mycelia was observed under a microscope after the interaction with the endophytic isolates. Such deformity may be directly related to the production of hydrolytic bacterial enzymes (cellulose and pectinase). The six endophytic bacterial

  6. Studies on Plant Growth Promoting Properties of Fruit-Associated Bacteria from Elettaria cardamomum and Molecular Analysis of ACC Deaminase Gene.

    PubMed

    Jasim, B; Anish, Mathew Chacko; Shimil, Vellakudiyan; Jyothis, Mathew; Radhakrishnan, E K

    2015-09-01

    Endophytic microorganisms have been reported to have diverse plant growth promoting mechanisms including phosphate solubilization, N2 fixation, production of phyto-hormones and ACC (1-aminocyclopropane-1-carboxylate) deaminase and antiphyto-pathogenic properties. Among these, ACC deaminase production is very important because of its regulatory effect on ethylene which is a stress hormone with precise role in the control of fruit development and ripening. However, distribution of these properties among various endophytic bacteria associated with fruit tissue and its genetic basis is least investigated. In the current study, 11 endophytic bacteria were isolated and identified from the fruit tissue of Elettaria cardamomum and were studied in detail for various plant growth promoting properties especially ACC deaminase activity using both culture-based and PCR-based methods. PCR-based screening identified the isolates EcB 2 (Pantoea sp.), EcB 7 (Polaromonas sp.), EcB 9 (Pseudomonas sp.), EcB 10 (Pseudomonas sp.) and EcB 11 (Ralstonia sp.) as positive for ACC deaminase. The PCR products were further subjected to sequence analysis which proved the similarity of the sequences identified in the study with ACC deaminase sequences reported from other sources. The detailed bioinformatic analysis of the sequence including homology-based modelling and molecular docking confirmed the sequences to have ACC deaminase activity. The docking of the modelled proteins was done using patch dock, and the detailed scrutiny of the protein ligand interaction revealed conservation of key amino acids like Lys51, Ser78, Tyr268 and Tyr294 which play important role in the enzyme activity. These suggest the possible regulatory effect of these isolates on fruit physiology. PMID:26164855

  7. Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency.

    PubMed

    Scagliola, M; Pii, Y; Mimmo, T; Cesco, S; Ricciuti, P; Crecchio, C

    2016-10-01

    Plant Growth Promoting Bacteria (PGPB) are considered a promising approach to replace the conventional agricultural practices, since they have been shown to affect plant nutrient-acquisition processes by influencing nutrient availability in the rhizosphere and/or those biochemical processes determining the uptake at root level of nitrogen (N), phosphorus (P), and iron (Fe), that represent the major constraints for crop productivity worldwide. We have isolated novel bacterial strains from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) plants, previously grown in hydroponic solution (either Fe deficient or Fe sufficient) and subsequently transferred onto an agricultural calcareous soil. PGPB have been identified by molecular tools and characterized for their capacity to produce siderophores and indole-3-acetic acid (IAA), and to solubilize phosphate. Selected bacterial isolates, showing contemporarily high levels of the three activities investigated, were finally tested for their capacity to induce Fe reduction in cucumber roots two isolates, from barley and tomato plants under Fe deficiency, significantly increased the root Fe-chelate reductase activity; interestingly, another isolate enhanced the reduction of Fe-chelate reductase activity in cucumber plant roots, although grown under Fe sufficiency. PMID:27295343

  8. Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil.

    PubMed

    Babu, A Giridhar; Shim, Jaehong; Bang, Keuk-Soo; Shea, Patrick J; Oh, Byung-Taek

    2014-01-01

    A heavy metal-tolerant fungus, Trichoderma virens PDR-28, was isolated from rhizosphere soil and evaluated for use in remediating mine tailing soil and for plant biomass production. PDR-28 exhibited plant growth-promoting traits, including 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, acid phosphatase and phytase activity, siderophore production, and P solubilization. HMs were more available in mine tailing soil inoculated soil with PDR-28 than in uninoculated soil; the order of HM bioleaching was Cd > As > Zn > Pb > Cu. PDR-28 effectively removed HMs in the order of Pb > Cd > As > Zn > Cu from liquid media containing 100 mg HM L(-1). Inoculating HM-contaminated mine tailing soil with the fungus significantly increased the dry biomass of maize roots (64%) and shoots (56%). Chlorophyll, total soluble sugars (reducible and nonreducible), starch, and protein contents increased by 46%, 28%, 30%, and 29%, respectively, compared to plants grown in uninoculated soil. Inoculation increased heavy metal concentrations in maize roots by 25% (Cu) to 62% (Cd) and in shoots by 35% (Cu) to 64% (Pb) compared to uninoculated plants. Results suggest that PDR-28 would be beneficial for phytostabilization and plant biomass production as a potential source of biofuel in the quest for renewable energy. PMID:24291586

  9. Rhizobacteria activates (+)-δ-cadinene synthase genes and induces systemic resistance in cotton against beet armyworm (Spodoptera exigua).

    PubMed

    Zebelo, Simon; Song, Yuanyuan; Kloepper, Joseph W; Fadamiro, Henry

    2016-04-01

    Gossypol is an important allelochemical produced by the subepidermal glands of some cotton varieties and important for their ability to respond to changing biotic stress by exhibiting antibiosis against some cotton pests. Plant growth-promoting rhizobacteria (PGPR) are root-colonizing bacteria that increase plant growth and often elicit defence against plant pathogens and insect pests. Little is known about the effect of PGPR on cotton plant-insect interactions and the potential biochemical and molecular mechanisms by which PGPR enhance cotton plant defence. Here, we report that PGPR (Bacillus spp.) treated cotton plants showed significantly higher levels of gossypol compared with untreated plants. Similarly, the transcript levels of the genes (i.e. (+)-δ-cadinene synthase gene family) involved in the biosynthesis of gossypol were higher in PGPR-treated plants than in untreated plants. Furthermore, the levels of jasmonic acid, an octadecanoid-derived defence-related phytohormone and the transcript level of jasmonic acid responsive genes were higher in PGPR-treated plants than in untreated plants. Most intriguingly, Spodoptera exigua showed reduced larval feeding and development on PGPR-treated plants. These findings demonstrate that treatment of plants with rhizobacteria may induce significant biochemical and molecular changes with potential ramifications for plant-insect interactions. PMID:26715260

  10. Plant growth-promoting fungus Penicillium spp. GP15-1 enhances growth and confers protection against damping-off and anthracnose in the cucumber.

    PubMed

    Hossain, Md Motaher; Sultana, Farjana; Miyazawa, Mitsuo; Hyakumachi, Mitsuro

    2014-01-01

    Plant growth-promoting fungi (PGPF) have the potential to confer several benefits to plants in terms of growth and protection against pests and pathogens. In the present study, we tested whether a PGPF isolate, Penicillium spp. GP15-1 (derived from zoysiagrass rhizospheres), stimulates growth and disease resistance in the cucumber plant. The use of the barley grain inoculum GP15-1 significantly enhanced root and shoot growth and biomass of cucumber plants. A root colonization study revealed that GP15-1 was a very rapid and efficient root colonizer and was isolated in significantly higher frequencies from the upper root parts than from the middle and lower root parts during the first 14 d of seedling growth. Inoculating the cucumber seedlings with GP15-1 significantly reduced the damping-off disease caused by Rhizoctonia solani, and the disease suppression effects of GP15-1 were considerably influenced by the inoculum potential of both GP15-1 and the pathogen. Treatment with the barley grain inoculum or a cell-free filtrate of GP15-1 increased systemic resistance against leaf infection by the anthracnose pathogen Colletotrichum orbiculare, resulting in a significant decrease in lesion number and size. Molecular and phylogenetic analyses of internal transcribed spacer sequences of the genomic DNA of GP15-1 revealed that the fungal isolate is a strain of either Penicillium neoechinulatum or Penicillium viridicatum. PMID:24671024

  11. Involvement of the salicylic acid signaling pathway in the systemic resistance induced in Arabidopsis by plant growth-promoting fungus Fusarium equiseti GF19-1.

    PubMed

    Kojima, Hanae; Hossain, Md Motaher; Kubota, Mayumi; Hyakumachi, Mitsuro

    2013-01-01

    Plant growth-promoting fungi (PGPF) are effective biocontrol agents for a number of soil-borne diseases and are known for their ability to trigger induced systemic resistance (ISR). In this study, we investigated the mechanisms triggered by PGPF Fusarium equiseti GF19-1, which is known to increase pathogen resistance in plants, by using GF19-1 spores and the culture filtrate (CF) to treat the roots of Arabidopsis thaliana. Subsequently, the leaves were challenged with Pseudomonas syringae pv tomato DC3000 (Pst) bacteria. Arabidopsis plants treated with GF19-1 spores or the CF elicited ISR against the Pst pathogen, resulting in a restriction of disease severity and suppression of pathogen proliferation. Examination of ISR in various signaling mutants and transgenic plants showed that GF19-1-induced protection was observed in the jasmonate response mutant jar1 and the ethylene response mutant etr1, whereas it was blocked in Arabidopsis plants expressing the NahG transgene or demonstrating a disruption of the NPR1 gene (npr1). Analysis of systemic gene expression revealed that GF19-1 modulates the expression of salicylic acid (SA)-responsive PR-1, PR-2, and PR-5 genes. Moreover, transient accumulation of SA was observed in GF19-1-treated plant, whereas the level was further enhanced after Pst infection of GF19-1-pretreated plants, indicating that accumulation of SA was potentiated when Arabidopsis plants were primed for disease resistance by GF19-1. In conclusion, these findings imply that the induced protective effect conferred by F. equiseti GF19-1 against the leaf pathogen Pst requires responsiveness to an SA-dependent pathway. PMID:23728333

  12. Draft Genome Sequence of Plant Growth-Promoting Rhizobium Mesorhizobium amorphae, Isolated from Zinc-Lead Mine Tailings

    PubMed Central

    Hao, Xiuli; Lin, Yanbing; Johnstone, Laurel; Baltrus, David A.; Miller, Susan J.

    2012-01-01

    Here, we describe the draft genome sequence of Mesorhizobium amorphae strain CCNWGS0123, isolated from nodules of Robinia pseudoacacia growing on zinc-lead mine tailings. A large number of metal(loid) resistance genes, as well as genes reported to promote plant growth, were identified, presenting a great future potential for aiding phytoremediation in metal(loid)-contaminated soil. PMID:22247533

  13. Formulations of polymeric biodegradable low-cost foam by melt extrusion to deliver plant growth-promoting bacteria in agricultural systems.

    PubMed

    Marcelino, Paulo Ricardo Franco; Milani, Karina Maria Lima; Mali, Suzana; Santos, Odair José Andrade Pais Dos; de Oliveira, André Luiz Martinez

    2016-08-01

    The extrusion technology of blends formed by compounds with different physicochemical properties often results in new materials that present properties distinctive from its original individual constituents. Here, we report the use of melt extrusion of blends made from low-cost materials to produce a biodegradable foam suitable for use as an inoculant carrier of plant growth-promoting bacteria (PGPB). Six formulations were prepared with variable proportions of the raw materials; the resulting physicochemical and structural properties are described, as well as formulation performance in the maintenance of bacterial viability during 120 days of storage. Differences in blend composition influenced foam density, porosity, expansion index, and water absorption. Additionally, differences in the capability of sustaining bacterial viability for long periods of time were more related to the foam composition than to the resulting physicochemical characteristics. Microscopic analyses showed that the inoculant bacteria had firmly attached to the extruded material by forming biofilms. Inoculation assays using maize plants demonstrated that the bacteria attached to the extruded foams could survive in the soil for up to 10 days before maize sowing, without diminishing its ability to promote plant growth. The results presented demonstrate the viability of the new matrix as a biotechnological material for bacterial delivery not only in agriculture but also in other biotechnological applications, according to the selected bacterial strains. PMID:27147530

  14. Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza sativa L.: Implications for mitigation of arsenic contamination in paddies.

    PubMed

    Das, Suvendu; Jean, Jiin-Shuh; Chou, Mon-Lin; Rathod, Jagat; Liu, Chia-Chuan

    2016-01-25

    Arsenite-oxidizing bacteria exhibiting plant growth promoting (PGP) traits can have the advantages of reducing As-uptake by rice and promoting plant growth in As-stressed soil. A gram-positive bacterium Bacillus flexus ASO-6 resistant to high levels of As (32 and 280 mM for arsenite and arsenate, respectively) and exhibiting elevated rates of As(III) oxidation (Vmax=1.34 μM min(-1) 10(-7) cell) was isolated from rhizosphere of rice. The presence of aoxB gene and exhibition of As(III)-oxidase enzyme activity of this strain was observed. The ability of the strain to produce siderophore, IAA, ACC-deaminase and to solubilize phosphate was verified. The rice seed treated with the strain exhibited significantly improved seed germination and seedling vigor compared with the un-inoculated seeds. The bacterial inoculation significantly increased root biomass, straw yield, grain yield, chlorophyll and carotenoid in the rice plant. Moreover, As uptake from root to shoot and As accumulation in straw and grain decreased significantly as a result of the bacterial inoculation. Noteworthy, the inoculation effect is more prominent in non-flooded soil than it is in flooded soil. Owing to its wide action spectrum, this As(III)-oxidizing PGPB could serve as a potential bio-inoculant for mitigation of As in paddies and sustainable rice production in As-contaminated areas. PMID:26448489

  15. Plant growth-promoting Pseudomonas sp. Strains reduce natural occurrence of anthracnose in soybean (Glycine max L.) in central Himalayan region.

    PubMed

    Tripathi, Manisha; Johri, Bhavdish N; Sharma, Alok

    2006-05-01

    Biological control is an accepted important component of current plant disease management strategies. Introduction of bacterized seeds carrying bacterial isolates with proven growth-promotion capabilities and antagonistic characteristics offer a valid alternative to chemical protectants. Root colonization of disease-susceptible (PS 1024) and moderately resistant (PS1042) varieties of soyabean (Glycine Max L) by fluorescent pseudomonad (FLPs) strains GRP3, PEn-4, PRS1, and WRS-24 was studied in relation to natural occurrence of anthracnose caused by Colletotrichum dematium (Pers Ex Fr.) Grove. Rhizoplane population of FLPs was maintained at a critical level (5.3 cfu) up to 30 days of plant growth, followed by a steep decline. Indigenous FLPs population, however, remained nearly unchanged (3.0 to 2.4 log g(-1) root) between 30 days and 75 days of plant growth. The relative FLPs population in rhizosphere was lower than that in rhizoplane. Although intervarietal difference was observed, the root/shoot length remained unaffected. Compared to nonbacterized control, dry root weight was improved by FLPs treatment. Severity of foliar anthracnose was reduced significantly after FLPs treatment in the variety PS 1042. Because the point of FLPs treatment (seed bacterization) was away from the site of disease appearance (leaf), operation of induced systemic resistance in strains PEn-4 and GRP3 appears imminent. PMID:16604418

  16. Potential for plant growth promotion by a consortium of stress-tolerant 2,4-dinitrotoluene-degrading bacteria: isolation and characterization of a military soil

    PubMed Central

    Thijs, Sofie; Weyens, Nele; Sillen, Wouter; Gkorezis, Panagiotis; Carleer, Robert; Vangronsveld, Jaco

    2014-01-01

    The presence of explosives in soils and the interaction with drought stress and nutrient limitation are among the environmental factors that severely affect plant growth on military soils. In this study, we seek to isolate and identify the cultivable bacteria of a 2,4-dinitrotoluene (DNT) contaminated soil (DS) and an adjacent grassland soil (GS) of a military training area aiming to isolate new plant growth-promoting (PGP) and 2,4-DNT-degrading strains. Metabolic profiling revealed disturbances in Ecocarbon use in the bare DS; isolation of cultivable strains revealed a lower colony-forming-unit count and a less diverse community associated with DS in comparison with GS. New 2,4-DNT-tolerant strains were identified by selective enrichments, which were further characterized by auxanography for 2,4-DNT use, resistance to drought stress, cold, nutrient starvation and PGP features. By selecting multiple beneficial PGP and abiotic stress-resistant strains, efficient 2,4-DNT-degrading consortia were composed. After inoculation, consortium UHasselt Sofie 3 with seven members belonging to Burkholderia, Variovorax, Bacillus, Pseudomonas and Ralstonia species was capable to successfully enhance root length of Arabidopsis under 2,4-DNT stress. After 9 days, doubling of main root length was observed. Our results indicate that beneficial bacteria inhabiting a disturbed environment have the potential to improve plant growth and alleviate 2,4-DNT stress. PMID:24467368

  17. Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant growth promoting bacteria.

    PubMed

    Fatnassi, Imen Challougui; Chiboub, Manel; Saadani, Omar; Jebara, Moez; Jebara, Salwa Harzalli

    2015-03-01

    There is a need to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programs. This article suggest a consortium of bacteria combining Rhizobium sp. CCNWSX0481, Rhizobium leguminosarum bv. viciae, Enterobacter cloacae and Pseudomonas sp. 2(2010) that was examined for the ability to promote Vicia faba.L. growth when cultivated on the vineyard of soil moderately contaminated with copper. Data showed that inoculation was significant in nodulation; it increases the number and the weight of nodules of 50%. Co-inoculation was also found to positively influence growth and seed yield, through increasing fresh shoot and fresh root weights by 33 and 26%, respectively, and through rising numbers of seed per pod and pods per plant. In contrast, co-inoculation produced a significant reduction of accumulated copper in roots attending 35%, however, the treatment revealed no significant effects on the copper contents in pods and seeds. The tested inoculum could be an option to promote V. faba growth and to enhance soil fertilization in moderate copper contaminated soils. Further studies on the influence of co-inoculation practices on copper migration in soil-plant systems are recommended to acquire more information for evaluation of this legume safety. PMID:24338717

  18. New auxin analogs with growth-promoting effects in intact plants reveal a chemical strategy to improve hormone delivery

    PubMed Central

    Savaldi-Goldstein, Sigal; Baiga, Thomas J.; Pojer, Florence; Dabi, Tsegeye; Butterfield, Cristina; Parry, Geraint; Santner, Aaron; Dharmasiri, Nihal; Tao, Yi; Estelle, Mark; Noel, Joseph P.; Chory, Joanne

    2008-01-01

    Plant growth depends on the integration of environmental cues and phytohormone-signaling pathways. During seedling emergence, elongation of the embryonic stem (hypocotyl) serves as a readout for light and hormone-dependent responses. We screened 10,000 chemicals provided exogenously to light-grown seedlings and identified 100 compounds that promote hypocotyl elongation. Notably, one subset of these chemicals shares structural characteristics with the synthetic auxins, 2,4-dichlorophenoxyacetic acid (2,4-D), and 1-naphthaleneacetic acid (1-NAA); however, traditional auxins (e.g., indole-3-acetic acid [IAA], 2,4-D, 1-NAA) have no effect on hypocotyl elongation. We show that the new compounds act as “proauxins” akin to prodrugs. Our data suggest that these compounds diffuse efficiently to the hypocotyls, where they undergo cleavage at varying rates, releasing functional auxins. To investigate this principle, we applied a masking strategy and designed a pro-2,4-D. Unlike 2,4-D alone, this pro-2,4-D enhanced hypocotyl elongation. We further demonstrated the utility of the proauxins by characterizing auxin responses in light-grown hypocotyls of several auxin receptor mutants. These new compounds thus provide experimental access to a tissue previously inaccessible to exogenous application of auxins. Our studies exemplify the combined power of chemical genetics and biochemical analyses for discovering and refining prohormone analogs with selective activity in specific plant tissues. In addition to the utility of these compounds for addressing questions related to auxin and light-signaling interactions, one can envision using these simple principles to study other plant hormone and small molecule responses in temporally and spatially controlled ways. PMID:18818305

  19. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria.

    PubMed

    Carlos, Mendoza-Hernández José; Stefani, Perea-Vélez Yazmin; Janette, Arriola-Morales; Melani, Martínez-Simón Sara; Gabriela, Pérez-Osorio

    2016-01-01

    This study poses a methodology in order to simultaneously quantify ACC deaminase and IAA levels in the same culture medium. Ten bacterial strains isolated from plant rhizosphere naturally settled in mining residues were chosen. These bacterial strains were characterized as PGPB, and all of them showed at least three characteristics (indole-3 acetic acid and siderophore production, ACC deaminase enzyme activity, and inorganic phosphate solubilization). Taxonomic identification showed that the strains belong to Enterobacter, Serratia, Klebsiella, and Escherichia genera. Similarly, both the ACC deaminase enzyme activity and the IAA synthesis in the presence of Cu, As, Pb, Ni, Cd, and Mn were measured. The results showed that both the ACC deaminase enzyme activity and the IAA synthesis were higher with the Pb, As, and Cu treatments than with the Escherichia N16, Enterobacter K131, Enterobacter N9, and Serratia K120 control treatments. On the other hand, Ni, Cd, and Mn negatively affected both the ACC deaminase enzyme activity and the IAA production on every bacterium except on the Klebsiella Mc173 strain. Serratia K120 bacterium got a positive correlation between ACC deaminase and IAA in the presence of every heavy metal, and it also promoted Helianthus annuus plant growth, showing a potential use in phytoremediation systems. PMID:27296962

  20. A ceramide and cerebroside from the starfish asterias amurensis Lütken and their plant-growth promotion activities.

    PubMed

    Ishii, Takahiro; Okino, Tatsufumi; Mino, Yosuke

    2006-07-01

    The new phytosphingosine-type ceramide asteriaceramide A (1) and glucocerebroside asteriacerebroside G (2), together with two known cerebrosides, asteriacerebrosides A and B, were isolated from lipophilic fractions of the whole bodies of the Northern Pacific starfish Asterias amurensis Lütken. The water-soluble fraction afforded two known asterosaponins, glycoside B(2) and asterosaponin-1. The structures of 1 and 2 were determined on the basis of chemical and spectroscopic evidence as (2S,3S,4R,13Z)-2-[(2'R)-2-hydroxyhexadecanoylamino]-13-docosene-1,3,4-triol (1) and 1-O-(beta-d-glucopyranosyl)-(2S,3R,4E,13Z)-2-[(2'R)-2-hydroxytetradecanoylamino]-4,13-docosadiene-1,3-diol (2). Compounds 1, 2, and asteriacerebrosides A and B promoted plant growth in sprouts of Brassica campestris. PMID:16872149

  1. The plant growth promoting substance, lumichrome, mimics starch, and ethylene-associated symbiotic responses in lotus and tomato roots.

    PubMed

    Gouws, Liezel M; Botes, Eileen; Wiese, Anna J; Trenkamp, Sandra; Torres-Jerez, Ivone; Tang, Yuhong; Hills, Paul N; Usadel, Björn; Lloyd, James R; Fernie, Alisdair R; Kossmann, Jens; van der Merwe, Margaretha J

    2012-01-01

    Symbiosis involves responses that maintain the plant host and symbiotic partner's genetic program; yet these cues are far from elucidated. Here we describe the effects of lumichrome, a flavin identified from Rhizobium spp., applied to lotus (Lotus japonicus) and tomato (Solanum lycopersicum). Combined transcriptional and metabolite analyses suggest that both species shared common pathways that were altered in response to this application under replete, sterile conditions. These included genes involved in symbiosis, as well as transcriptional and metabolic responses related to enhanced starch accumulation and altered ethylene metabolism. Lumichrome priming also resulted in altered colonization with either Mesorhizobium loti (for lotus) or Glomus intraradices/G. mossea (for tomato). It enhanced nodule number but not nodule formation in lotus; while leading to enhanced hyphae initiation and delayed arbuscule maturation in tomato. PMID:22701462

  2. The Plant Growth Promoting Substance, Lumichrome, Mimics Starch, and Ethylene-Associated Symbiotic Responses in Lotus and Tomato Roots

    PubMed Central

    Gouws, Liezel M.; Botes, Eileen; Wiese, Anna J.; Trenkamp, Sandra; Torres-Jerez, Ivone; Tang, Yuhong; Hills, Paul N.; Usadel, Björn; Lloyd, James R.; Fernie, Alisdair R.; Kossmann, Jens; van der Merwe, Margaretha J.

    2012-01-01

    Symbiosis involves responses that maintain the plant host and symbiotic partner’s genetic program; yet these cues are far from elucidated. Here we describe the effects of lumichrome, a flavin identified from Rhizobium spp., applied to lotus (Lotus japonicus) and tomato (Solanum lycopersicum). Combined transcriptional and metabolite analyses suggest that both species shared common pathways that were altered in response to this application under replete, sterile conditions. These included genes involved in symbiosis, as well as transcriptional and metabolic responses related to enhanced starch accumulation and altered ethylene metabolism. Lumichrome priming also resulted in altered colonization with either Mesorhizobium loti (for lotus) or Glomus intraradices/G. mossea (for tomato). It enhanced nodule number but not nodule formation in lotus; while leading to enhanced hyphae initiation and delayed arbuscule maturation in tomato. PMID:22701462

  3. Bio-effectors from waste materials as growth promoters for tomato plants, an agronomic and metabolomic study

    NASA Astrophysics Data System (ADS)

    Abou Chehade, Lara; Chami, Ziad Al; De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2015-04-01

    In organic farming, where nutrient management is constrained and sustainability is claimed, bio-effectors pave their way. Considering selected bio-effectors, this study integrates metabolomics to agronomy in depicting induced relevant phenomena. Extracts of three agro-industrial wastes (Lemon processing residues, Fennel processing residues and Brewer's spent grain) are being investigated as sources of bio-effectors for the third trial consequently. Corresponding individual and mixture aqueous extracts are assessed for their synergistic and/or single agronomic and qualitative performances on soil-grown tomato, compared to both a control and humic acid treatments. A metabolomic profiling of tomato fruits via the Proton Nuclear Magnetic Resonance (NMR) spectroscopy, as holistic indicator of fruit quality and extract-induced responses, complements crop productivity and organoleptic/nutritional qualitative analyses. Results are expected to show mainly an enhancement of the fruit qualitative traits, and to confirm partly the previous results of better crop productivity and metabolism enhancement. Waste-derived bio-effectors could be, accordingly, demonstrated as potential candidates of plant-enhancing substances. Keywords: bio-effectors, organic farming, agro-industrial wastes, nuclear magnetic resonance (NMR), tomato.

  4. Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil.

    PubMed

    Sayyed, R Z; Patel, P R; Shaikh, S S

    2015-02-01

    The heavy metal resistant bacterium isolated from field soil and identified as Enterobacter sp. RZS5 tolerates a high concentration (100-2000 μM) of various heavy metal ions such as Mn2+, Ni2+, Zn2+, Cu2+, CO2+ and Fe2+ when grown in such environment and produces exopolysaccharides (EPS). Here, we have demonstrated EPS production by Enterobacter sp. RZS5 during 60 h of growth in yeast extract mannitol broth (YEMB). The yield increased by two fold after the addition of 60 μM of Ca2+; 50 μM of Fe2+ and 60 μM of Mg2+ ions in YEMB, and the optimization of physico-chemical parameters. EPS was extracted with 30% (v/v) of isopropanol as against the commonly used 50% (v/v) isopropanol method. EPS-rich broth promoted seed germination, shoot height, root length, number of leaves and chlorophyll content of wheat (Triticum aestivum) seed and peanut (Arachis hypogaea) seed. The higher colony-forming unit of Enterobacter sp. in soil inoculated with EPS rich broth of Enterobacter sp. indicated the root colonizing potential and rhizosphere competence of the isolate. The FTIR spectra of the EPS extract confirmed the presence of the functional group characteristics of EPS known to exhibit a high binding affinity towards certain metal ions. This overall growth and vigour in plants along with the effective root colonization, reflected the potential of the isolate as an efficient bio-inoculant in bioremediation. PMID:25757243

  5. Endophytic Bacteria Associated with Hieracium piloselloides: Their Potential for Hydrocarbon-Utilizing and Plant Growth-Promotion.

    PubMed

    Pawlik, Małgorzata; Piotrowska-Seget, Zofia

    2015-01-01

    The aim of this study was to assess the potential of 18 crude-oil-degrading endophytic bacteria for removal of hydrocarbons and promotion of plant growth. Strains were isolated from Hieracium piloselloides (tall hawkweed), which grows in soil heavily polluted with petroleum hydrocarbons. Bacteria from the genus Pseudomonas were abundant among the isolates. The potential for hydrocarbon degradation was evaluated by polymerase chain reaction (PCR) analyses of the genes alkB, alkH, C23O, P450, and pah. It was found that 88.89% of the endophytic bacteria contained gene-encoding polycyclic aromatic hydrocarbon (PAH) initial dioxygenase, 61% possessed the 2,3-catechol dioxygenase gene, and 39% of strains that were tested had the cytochrome P-450 hydroxylase gene. All isolates were capable of producing indole-3-acetic acid (1.8-76.4 μg/ml). Only 17% of them were able to produce siderophores, excrete cellulase, and solubilize phosphate. Hydrogen cyanide synthesis occurred in 33% of endophytic bacteria. The 1-aminocyclopropane-1-carboxylate deaminase activity in isolates that were screened was in the range of 2.6 to 74.1 μmol α-ketobutyrate/mg/h. This feature of the bacteria indicated that isolates may enhance the phytoremediation process. Data suggest that crude-oil-degrading endophytic bacteria possess potential to be promising candidates for enhancement of phytoremediation of hydrocarbon-contaminated soil. Further evaluation of these bacteria is needed in order to assess the role played in the degradation of petroleum hydrocarbons. PMID:26167752

  6. Draft Genome Sequence of Acinetobacter oleivorans PF1, a Diesel-Degrading and Plant-Growth-Promoting Endophytic Strain Isolated from Poplar Trees Growing on a Diesel-Contaminated Plume

    PubMed Central

    Gkorezis, Panagiotis; Rineau, Francois; Van Hamme, Jonathan; Daghio, Matteo; Thijs, Sofie; Weyens, Nele

    2015-01-01

    We report the 3.7-Mb draft genome of Acinetobacter oleivorans strain PF1, a hydrocarbonoclastic Gram-negative bacterium in the class Gammaproteobacteria, isolated from poplar trees growing on a diesel-contaminated plume at the Ford Motor Company site in Genk, Belgium. Strain PF1 is a potent plant-growth promoter, useful for diesel fuel phytoremediation applications. PMID:25657268

  7. Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3.

    PubMed

    Lee, Sook-Kuan; Lur, Huu-Sheng; Lo, Kai-Jiun; Cheng, Kuan-Chen; Chuang, Chun-Chao; Tang, Shiueh-Jung; Yang, Zhi-Wei; Liu, Chi-Te

    2016-09-01

    Biofertilizers can help improve soil quality, promote crop growth, and sustain soil health. The photosynthetic bacterium Rhodopseudomonas palustris strain PS3 (hereafter, PS3), which was isolated from Taiwanese paddy soil, can not only exert beneficial effects on plant growth but also enhance the efficiency of nutrient uptake from applied fertilizer. To produce this elite microbial isolate for practical use, product development and formulation are needed to permit the maintenance of the high quality of the inoculant during storage. The aim of this study was to select a suitable formulation that improves the survival and maintains the beneficial effects of the PS3 inoculant. Six additives (alginate, polyethylene glycol [PEG], polyvinylpyrrolidone-40 [PVP], glycerol, glucose, and horticultural oil) were used in liquid-based formulations, and their capacities for maintaining PS3 cell viability during storage in low, medium, and high temperature ranges were evaluated. Horticultural oil (0.5 %) was chosen as a potential additive because it could maintain a relatively high population and conferred greater microbial vitality under various storage conditions. Furthermore, the growth-promoting effects exerted on Chinese cabbage by the formulated inoculants were significantly greater than those of the unformulated treatments. The fresh and dry weights of the shoots were significantly increased, by 10-27 and 22-40 %, respectively. Horticultural oil is considered a safe, low-cost, and easy-to-process material, and this formulation would facilitate the practical use of strain PS3 in agriculture. PMID:27150383

  8. Synergistic effects of plant growth-promoting Neorhizobium huautlense T1-17 and immobilizers on the growth and heavy metal accumulation of edible tissues of hot pepper.

    PubMed

    Chen, Ling; He, Lin-Yan; Wang, Qi; Sheng, Xia-Fang

    2016-07-15

    A plant growth-promoting Neorhizobium huautlense T1-17 was evaluated for its immobilization of Cd and Pb in solution. Meanwhile, the impacts of T1-17, immobilizers (vermiculite and peat) and their combination on the fruit biomass and heavy metal accumulation of hot pepper were characterized. T1-17 could significantly reduced water-soluble Cd and Pb in solution. T1-17, vermiculite+T1-17, peat, and peat+T1-17 significantly increased the fruit biomass (ranging from 45% to 269%) and decreased the fruit Cd (ranging from 66% to 87%) and Pb (ranging from 30% to 56%) contents and water-soluble Cd and Pb (ranging from 23% to 59%) contents of the rhizosphere soils compared to the controls. T1-17+vermiculite or peat had higher ability to increase the fruit biomass than T1-17 or vermiculite or peat. Furthermore, T1-17+peat had higher ability to reduce the water-soluble Cd and Pb contents of the rhizosphere soil and the fruit Pb uptake of hot pepper. The results showed that T1-17 and the immobilizers alleviated the heavy metal toxicity and decreased the fruit heavy metal uptake of hot pepper. The results also showed the synergistic effects of T1-17 and the immobilizers on the growth and Cd and Pb accumulation of hot pepper. PMID:27017398

  9. Applying carbon dioxide, plant growth-promoting rhizobacterium and EDTA can enhance the phytoremediation efficiency of ryegrass in a soil polluted with zinc, arsenic, cadmium and lead.

    PubMed

    Guo, Junkang; Feng, Renwei; Ding, Yongzhen; Wang, Ruigang

    2014-08-01

    This study was conducted to investigate the use of elevated carbon dioxide (CO2), plant growth-promoting rhizobacterium Burkholderia sp. D54 (PGPR) and ethylenediaminetetraacetic acid (EDTA) to enhance the phytoextraction efficiency of ryegrass in response to multiple heavy metal (or metalloid)-polluted soil containing zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb). All of the single or combined CO2, PGPR and EDTA treatments promoted ryegrass growth. The stimulation of ryegrass growth by CO2 and PGPR could primarily be attributed to the regulation of photosynthesis rather than decreased levels of Zn, As and Cd in the shoots. Most treatments seemed to reduce the Zn, As and Cd contents in the shoots, which might be associated with enhanced shoot biomass, thus causing a "dilution effect" regarding their levels. The combined treatments seemed to perform better than single treatments in removing Zn, As, Cd and Pb from soil, judging from the larger biomass and relatively higher total amounts (TAs) of Zn, As, Cd and Pb in both the shoots and roots. Therefore, we suggest that the CO2 plus PGPR treatment will be suitable for removing Zn, As, Cd and Pb from heavy metal (or metalloid)-polluted soils using ryegrass as a phytoremediation material. PMID:24762567

  10. Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils.

    PubMed

    Pereira, S I A; Castro, P M L

    2014-12-01

    In this study, we evaluated the phylogenetic diversity of culturable bacterial endophytes of Zea mays plants growing in an agricultural soil contaminated with Zn and Cd. Endophytic bacterial counts were determined in roots and shoots, and isolates were grouped by random amplified polymorphic DNA and identified by 16S ribosomal RNA (rRNA) gene sequencing. Endophytes were further characterized for the production of plant growth-promoting (PGP) substances, such as NH3, siderophores, indol-3-acetic acid (IAA), hydrogen cyanide and extracellular enzymes, and for the capacity to solubilize phosphate. The endophytes producing higher amounts of IAA were screened for their tolerance to Zn and Cd and used as bioinoculants for maize seedlings grown in the Zn/Cd-contaminated soil. The counts of endophytes varied between plant tissues, being higher in roots (6.48 log10 g(-1) fresh weight) when compared to shoots (5.77 log10 g(-1) fresh weight). Phylogenetic analysis showed that endophytes belong to three major groups: α-Proteobacteria (31 %), γ-Proteobacteria (26 %) and Actinobacteria (26 %). Pseudomonas, Agrobacterium, Variovorax and Curtobacterium were among the most represented genera. Endophytes were well-adapted to high Zn/Cd concentrations (up to 300 mg Cd l(-1) and 1,000 mg Zn l(-1)) and showed ability to produce several PGP traits. Strains Ochrobactrum haematophilum ZR 3-5, Acidovorax oryzae ZS 1-7, Frigoribacterium faeni ZS 3-5 and Pantoea allii ZS 3-6 increased root elongation and biomass of maize seedlings grown in soil contaminated with Cd and Zn. The endophytes isolated in this study have potential to be used in bioremediation/phytoremediation strategies. PMID:25053283

  11. Protein Quantity and Quality of Safflower Seed Improved by NP Fertilizer and Rhizobacteria (Azospirillum and Azotobacter spp.).

    PubMed

    Nosheen, Asia; Bano, Asghari; Yasmin, Humaira; Keyani, Rumana; Habib, Rabia; Shah, Syed T A; Naz, Rabia

    2016-01-01

    HIGHLIGHTS Rhizobacteria (Azotobacter spp.) have improved the quality and quantity of safflower seed protein.Protein quality was confirmed by SDS-PAGE and new bands were found in response to different combinations of rhizobacteria and lower doses of fertilizers.The PGPR application has reduced the use of fertilizers upto 50%. Protein is an essential part of the human diet. The aim of this present study was to improve the protein quality of safflower seed by the application of plant growth promoting rhizobacteria (PGPR) in combination with conventional nitrogen and phosphate (NP) fertilizers. The seeds of two safflower cultivars Thori and Saif-32, were inoculated with Azospirillum and Azotobacter and grown under field conditions. Protein content and quality was assessed by crude protein, amino acid analysis, and SDS-PAGE. Seed crude protein and amino acids (methionine, phenylalanine, and glutamic acid) showed significant improvements (55-1250%) by Azotobacter supplemented with a quarter dose of fertilizers (BTQ) at P ≤ 0.05. Additional protein bands were induced in Thori and Saif-32 by BTQ and BTH (Azotobacter supplemented with a half dose of fertilizer) respectively. The Azospirillum in combination with half dose of fertilizer (SPH) and BTQ enhanced both indole acetic acid (IAA) (90%) and gibberellic acid (GA) (23-27%) content in safflower leaf. Taken together, these data suggest that Azospirillum and Azotobacter along with significantly reduced (up to 75%) use of NP fertilizers could improve the quality and quantity of safflower seed protein. PMID:26941744

  12. Protein Quantity and Quality of Safflower Seed Improved by NP Fertilizer and Rhizobacteria (Azospirillum and Azotobacter spp.)

    PubMed Central

    Nosheen, Asia; Bano, Asghari; Yasmin, Humaira; Keyani, Rumana; Habib, Rabia; Shah, Syed T. A.; Naz, Rabia

    2016-01-01

    HIGHLIGHTS Rhizobacteria (Azotobacter spp.) have improved the quality and quantity of safflower seed protein.Protein quality was confirmed by SDS-PAGE and new bands were found in response to different combinations of rhizobacteria and lower doses of fertilizers.The PGPR application has reduced the use of fertilizers upto 50%. Protein is an essential part of the human diet. The aim of this present study was to improve the protein quality of safflower seed by the application of plant growth promoting rhizobacteria (PGPR) in combination with conventional nitrogen and phosphate (NP) fertilizers. The seeds of two safflower cultivars Thori and Saif-32, were inoculated with Azospirillum and Azotobacter and grown under field conditions. Protein content and quality was assessed by crude protein, amino acid analysis, and SDS-PAGE. Seed crude protein and amino acids (methionine, phenylalanine, and glutamic acid) showed significant improvements (55–1250%) by Azotobacter supplemented with a quarter dose of fertilizers (BTQ) at P ≤ 0.05. Additional protein bands were induced in Thori and Saif-32 by BTQ and BTH (Azotobacter supplemented with a half dose of fertilizer) respectively. The Azospirillum in combination with half dose of fertilizer (SPH) and BTQ enhanced both indole acetic acid (IAA) (90%) and gibberellic acid (GA) (23–27%) content in safflower leaf. Taken together, these data suggest that Azospirillum and Azotobacter along with significantly reduced (up to 75%) use of NP fertilizers could improve the quality and quantity of safflower seed protein. PMID:26941744

  13. A Complex Molecular Interplay of Auxin and Ethylene Signaling Pathways Is Involved in Arabidopsis Growth Promotion by Burkholderia phytofirmans PsJN.

    PubMed

    Poupin, María J; Greve, Macarena; Carmona, Vicente; Pinedo, Ignacio

    2016-01-01

    Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR). However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1) or auxin (axr1-5) signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2), indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control. PMID:27148317

  14. A Complex Molecular Interplay of Auxin and Ethylene Signaling Pathways Is Involved in Arabidopsis Growth Promotion by Burkholderia phytofirmans PsJN

    PubMed Central

    Poupin, María J.; Greve, Macarena; Carmona, Vicente; Pinedo, Ignacio

    2016-01-01

    Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR). However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1) or auxin (axr1–5) signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2), indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control. PMID:27148317

  15. Disruption of Gene pqqA or pqqB Reduces Plant Growth Promotion Activity and Biocontrol of Crown Gall Disease by Rahnella aquatilis HX2

    PubMed Central

    Hale, Lauren; Wu, Wenliang; Guo, Yanbin

    2014-01-01

    Rahnella aquatilis strain HX2 has the ability to promote maize growth and suppress sunflower crown gall disease caused by Agrobacterium vitis, A. tumefaciens, and A. rhizogenes. Pyrroloquinoline quinone (PQQ), a cofactor of aldose and alcohol dehydrogenases, is required for the synthesis of an antibacterial substance, gluconic acid, by HX2. Mutants of HX2 unable to produce PQQ were obtained by in-frame deletion of either the pqqA or pqqB gene. In this study, we report the independent functions of pqqA and pqqB genes in relation to PQQ synthesis. Interestingly, both the pqqA and pqqB mutants of R. aquatilis eliminated the ability of strain HX2 to produce antibacterial substance, which in turn, reduced the effectiveness of the strain for biological control of sunflower crown gall disease. The mutation also resulted in decreased mineral phosphate solubilization by HX2, which reduced the efficacy of this strain as a biological fertilizer. These functions were restored by complementation with the wild-type pqq gene cluster. Additionally, the phenotypes of HX2 derivatives, including colony morphology, growth dynamic, and pH change of culture medium were impacted to different extents. Our findings suggested that pqqA and pqqB genes individually play important functions in PQQ biosynthesis and are required for antibacterial activity and phosphorous solubilization. These traits are essential for R. aquatilis efficacy as a biological control and plant growth promoting strain. This study enhances our fundamental understanding of the biosynthesis of an environmentally significant cofactor produced by a promising biocontrol and biological fertilizer strain. PMID:25502691

  16. Disruption of gene pqqA or pqqB reduces plant growth promotion activity and biocontrol of crown gall disease by Rahnella aquatilis HX2.

    PubMed

    Li, Lei; Jiao, Ziwei; Hale, Lauren; Wu, Wenliang; Guo, Yanbin

    2014-01-01

    Rahnella aquatilis strain HX2 has the ability to promote maize growth and suppress sunflower crown gall disease caused by Agrobacterium vitis, A. tumefaciens, and A. rhizogenes. Pyrroloquinoline quinone (PQQ), a cofactor of aldose and alcohol dehydrogenases, is required for the synthesis of an antibacterial substance, gluconic acid, by HX2. Mutants of HX2 unable to produce PQQ were obtained by in-frame deletion of either the pqqA or pqqB gene. In this study, we report the independent functions of pqqA and pqqB genes in relation to PQQ synthesis. Interestingly, both the pqqA and pqqB mutants of R. aquatilis eliminated the ability of strain HX2 to produce antibacterial substance, which in turn, reduced the effectiveness of the strain for biological control of sunflower crown gall disease. The mutation also resulted in decreased mineral phosphate solubilization by HX2, which reduced the efficacy of this strain as a biological fertilizer. These functions were restored by complementation with the wild-type pqq gene cluster. Additionally, the phenotypes of HX2 derivatives, including colony morphology, growth dynamic, and pH change of culture medium were impacted to different extents. Our findings suggested that pqqA and pqqB genes individually play important functions in PQQ biosynthesis and are required for antibacterial activity and phosphorous solubilization. These traits are essential for R. aquatilis efficacy as a biological control and plant growth promoting strain. This study enhances our fundamental understanding of the biosynthesis of an environmentally significant cofactor produced by a promising biocontrol and biological fertilizer strain. PMID:25502691

  17. Draft Genome Sequence of Pseudomonas sp. Strain BMS12, a Plant Growth-Promoting and Protease-Producing Bacterium, Isolated from the Rhizosphere Sediment of Phragmites karka of Chilika Lake, India

    PubMed Central

    Mishra, Samir R.; Panda, Ananta Narayan; Ray, Lopamudra; Sahu, Neha; Mishra, Gayatri; Jadhao, Sudhir; Suar, Mrutyunjay; Adhya, Tapan Kumar; Rastogi, Gurdeep; Pattnaik, Ajit Kumar

    2016-01-01

    We report the 4.51 Mb draft genome of Pseudomonas sp. strain BMS12, a Gram-negative bacterium in the class of Gammaproteobacteria, isolated from the rhizospheric sediment of Phragmites karka, an invasive weed in Chilika Lake, Odisha, India. The Pseudomonas sp. strain BMS12 is capable of producing proteases and is also an efficient plant growth promoter that can be useful for various phytoremedial and industrial applications.

  18. Draft Genome Sequence of Acinetobacter sp. Strain BMW17, a Cellulolytic and Plant Growth-Promoting Bacterium Isolated from the Rhizospheric Region of Phragmites karka of Chilika Lake, India

    PubMed Central

    Mishra, Samir R.; Ray, Lopamudra; Panda, Ananta Narayan; Sahu, Neha; Xess, Sonal S.; Jadhao, Sudhir; Suar, Mrutyunjay; Adhya, Tapan Kumar; Rastogi, Gurdeep; Pattnaik, Ajit Kumar

    2016-01-01

    We report the 3.16 Mb draft genome of Acinetobacter sp. strain BMW17, a Gram-negative bacterium in the class of Gammaproteobacteria, isolated from the rhizospheric region of Phragmites karka, an invasive weed in Chilika Lake, Odisha, India. The strain BMW17T is capable of degrading cellulose and is also an efficient plant growth promoter that can be useful for various phytoremedial and commercial applications. PMID:27365343

  19. Draft Genome Sequence of Pseudomonas sp. Strain BMS12, a Plant Growth-Promoting and Protease-Producing Bacterium, Isolated from the Rhizosphere Sediment of Phragmites karka of Chilika Lake, India

    PubMed Central

    Mishra, Samir R.; Panda, Ananta Narayan; Ray, Lopamudra; Sahu, Neha; Mishra, Gayatri; Jadhao, Sudhir; Suar, Mrutyunjay; Adhya, Tapan Kumar; Rastogi, Gurdeep; Pattnaik, Ajit Kumar

    2016-01-01

    We report the 4.51 Mb draft genome of Pseudomonas sp. strain BMS12, a Gram-negative bacterium in the class of Gammaproteobacteria, isolated from the rhizospheric sediment of Phragmites karka, an invasive weed in Chilika Lake, Odisha, India. The Pseudomonas sp. strain BMS12 is capable of producing proteases and is also an efficient plant growth promoter that can be useful for various phytoremedial and industrial applications. PMID:27365340

  20. Draft Genome Sequence of Pseudomonas sp. Strain BMS12, a Plant Growth-Promoting and Protease-Producing Bacterium, Isolated from the Rhizosphere Sediment of Phragmites karka of Chilika Lake, India.

    PubMed

    Mishra, Samir R; Panda, Ananta Narayan; Ray, Lopamudra; Sahu, Neha; Mishra, Gayatri; Jadhao, Sudhir; Suar, Mrutyunjay; Adhya, Tapan Kumar; Rastogi, Gurdeep; Pattnaik, Ajit Kumar; Raina, Vishakha

    2016-01-01

    We report the 4.51 Mb draft genome of Pseudomonas sp. strain BMS12, a Gram-negative bacterium in the class of Gammaproteobacteria, isolated from the rhizospheric sediment of Phragmites karka, an invasive weed in Chilika Lake, Odisha, India. The Pseudomonas sp. strain BMS12 is capable of producing proteases and is also an efficient plant growth promoter that can be useful for various phytoremedial and industrial applications. PMID:27365340

  1. Draft Genome Sequence of Acinetobacter sp. Strain BMW17, a Cellulolytic and Plant Growth-Promoting Bacterium Isolated from the Rhizospheric Region of Phragmites karka of Chilika Lake, India.

    PubMed

    Mishra, Samir R; Ray, Lopamudra; Panda, Ananta Narayan; Sahu, Neha; Xess, Sonal S; Jadhao, Sudhir; Suar, Mrutyunjay; Adhya, Tapan Kumar; Rastogi, Gurdeep; Pattnaik, Ajit Kumar; Raina, Vishakha

    2016-01-01

    We report the 3.16 Mb draft genome of Acinetobacter sp. strain BMW17, a Gram-negative bacterium in the class of Gammaproteobacteria, isolated from the rhizospheric region of Phragmites karka, an invasive weed in Chilika Lake, Odisha, India. The strain BMW17(T) is capable of degrading cellulose and is also an efficient plant growth promoter that can be useful for various phytoremedial and commercial applications. PMID:27365343

  2. Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice

    PubMed Central

    Chung, Eu Jin; Hossain, Mohammad Tofajjal; Khan, Ajmal; Kim, Kyung Hyun; Jeon, Che Ok; Chung, Young Ryun

    2015-01-01

    Biological control of major rice diseases has been attempted in several rice-growing countries in Asia during the last few decades and its application using antagonistic bacteria has proved to be somewhat successful for controlling various fungal diseases in field trials. Two novel endophytic Bacillus species, designated strains YC7007 and YC7010T, with anti-microbial, plant growth-promoting, and systemic resistance-inducing activities were isolated from the roots of rice in paddy fields at Jinju, Korea, and their multifunctional activities were analyzed. Strain YC7007 inhibited mycelial growth of major rice fungal pathogens strongly in vitro. Bacterial blight and panicle blight caused by Xanthomonas oryzae pv. oryzae (KACC 10208) and Burkholderia glumae (KACC 44022), respectively, were also suppressed effectively by drenching a bacterial suspension (107 cfu/ml) of strain YC7007 on the rhizosphere of rice. Additionally, strain YC7007 promoted the growth of rice seedlings with higher germination rates and more tillers than the untreated control. The taxonomic position of the strains was also investigated. Phylogenetic analyses based on 16S rRNA gene sequences indicated that both strains belong to the genus Bacillus, with high similarity to the closely related strains, Bacillus siamensis KACC 15859T (99.67%), Bacillus methylotrophicus KACC 13105T (99.65%), Bacillus amyloliquefaciens subsp. plantarum KACC 17177T (99.60%), and Bacillus tequilensis KACC 15944T (99.45%). The DNA-DNA relatedness value between strain YC7010T and the most closely related strain, B. siamensis KACC 15859T was 50.4±3.5%, but it was 91.5±11.0% between two strains YC7007 and YC7010T, indicating the same species. The major fatty acids of two strains were anteiso-C15:0 and iso C15:0. Both strains contained MK-7 as a major respiratory quinone system. The G+C contents of the genomic DNA of two strains were 50.5 mol% and 51.2 mol%, respectively. Based on these polyphasic studies, the two strains YC

  3. Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents

    PubMed Central

    Etesami, Hassan; Alikhani, Hossein Ali; Hosseini, Hossein Mirseyed

    2015-01-01

    Plants select plant growth promoting rhizobacteria (PGPR) that are competitively fit to occupy compatible niches without causing pathological stress on them. However, when screening bacteria for plant growth promoting (PGP) agents, it is better to select bacteria for achieving the most promising isolates having suitable colonization and PGP traits. In most researches, it has been seen that following incubation, bacterial flora are taken at random from petri dishes for further study. However, this type of selection may remove some superior bacteria in terms of PGP traits and high colonization ability. Therefore, it is essential to study all the isolated bacteria in an economic way and select the best bacteria in terms of PGP traits and high colonization rate. A simple screening method to detect endophytic and rhizosphere bacteria, isolated from the plants in rotation with rice, for rice PGP agents based on a root colonization bioassay and a PGP trait is characterized. • Selected bacterial isolates based on their IAA producing trait have the potential for more PGP and colonization of rice plant. • IAA may be the first PGP trait for screening bacteria isolated from plant rotated with rice for rice PGP agents. • The screening procedure appears to be very effective and less time consuming. PMID:26150974

  4. Ameliorating Effects of Biochar Derived from Poultry Manure and White Clover Residues on Soil Nutrient Status and Plant growth Promotion--Greenhouse Experiments.

    PubMed

    Abbasi, M Kaleem; Anwar, Ahsan Ali

    2015-01-01

    Biochar application to agricultural soils is rapidly emerging as a new management strategy for its potential role in carbon sequestration, soil quality improvements, and plant growth promotion. The aim of our study was to investigate the effects of biochars derived from white clover residues and poultry manure on soil quality characteristics, growth and N accumulation in maize (Zea mays L.) and wheat (Triticum aestivum L.) grown in a loam soil under greenhouse conditions. Treatments comprised of: untreated control; mineral N fertilizer (urea N, UN) at the rate of 200, and 100 mg N kg(-1), white clover residues biochar (WCRB), poultry manure biochar (PMB) at 30 Mg ha(-1), and the possible combinations of WCRB+PMB (50:50), UN+WCRB (50:50), UN+PMB (50:50), and UN+WCRB+PMB (50:25:25). The treatments were arranged in a completely randomized design with three replications. Results indicated a significant increase in the growth and biomass production of maize and wheat supplemented with biochars alone or mixed with N fertilizer. Biochars treatments showed varying impact on plant growth depended upon the type of the biochar, and in general plant growth under PMB was significantly higher than that recorded under WCRB. The growth characteristics in the combined treatments (half biochar+half N) were either higher or equivalent to that recorded under full fertilizer N treatment (N200). The biochar treatments WCRB, PMB, and WCRB+PMB (50:50) increased maize shoot N by 18, 26 and 21%, respectively compared to the control while wheat shoot N did not show positive response. The N-uptake by maize treated with WCRB, PMB, and WCRB+PMB (50:50) was 54, 116, and 90 mg g(-1) compared to the 33 mg g(-1) in the control while the N-uptake by wheat was 41, 60, and 53 mg g(-1) compared to 24 mg g(-1) in the control. The mixed treatments (half biochar+half N) increased N-uptake by 2.3 folds in maize and 1.7 to 2.5 folds in wheat compared to the N100 showing increasing effect of biochar on N

  5. Ameliorating Effects of Biochar Derived from Poultry Manure and White Clover Residues on Soil Nutrient Status and Plant growth Promotion - Greenhouse Experiments

    PubMed Central

    Abbasi, M. Kaleem; Anwar, Ahsan Ali

    2015-01-01

    Biochar application to agricultural soils is rapidly emerging as a new management strategy for its potential role in carbon sequestration, soil quality improvements, and plant growth promotion. The aim of our study was to investigate the effects of biochars derived from white clover residues and poultry manure on soil quality characteristics, growth and N accumulation in maize (Zea mays L.) and wheat (Triticum aestivum L.) grown in a loam soil under greenhouse conditions. Treatments comprised of: untreated control; mineral N fertilizer (urea N, UN) at the rate of 200, and 100 mg N kg-1, white clover residues biochar (WCRB), poultry manure biochar (PMB) at 30 Mg ha–1, and the possible combinations of WCRB+PMB (50:50), UN+WCRB (50:50), UN+PMB (50:50), and UN+WCRB+PMB (50:25:25). The treatments were arranged in a completely randomized design with three replications. Results indicated a significant increase in the growth and biomass production of maize and wheat supplemented with biochars alone or mixed with N fertilizer. Biochars treatments showed varying impact on plant growth depended upon the type of the biochar, and in general plant growth under PMB was significantly higher than that recorded under WCRB. The growth characteristics in the combined treatments (half biochar+half N) were either higher or equivalent to that recorded under full fertilizer N treatment (N200). The biochar treatments WCRB, PMB, and WCRB+PMB (50:50) increased maize shoot N by 18, 26 and 21%, respectively compared to the control while wheat shoot N did not show positive response. The N-uptake by maize treated with WCRB, PMB, and WCRB+PMB (50:50) was 54, 116, and 90 mg g-1 compared to the 33 mg g-1 in the control while the N-uptake by wheat was 41, 60, and 53 mg g-1 compared to 24 mg g-1 in the control. The mixed treatments (half biochar+half N) increased N-uptake by 2.3folds in maize and 1.7 to 2.5folds in wheat compared to the N100 showing increasing effect of biochar on N use efficiency

  6. Draft Genome Sequence of Pantoea ananatis GB1, a Plant-Growth-Promoting Hydrocarbonoclastic Root Endophyte, Isolated at a Diesel Fuel Phytoremediation Site Planted with Populus.

    PubMed

    Gkorezis, Panagiotis; Van Hamme, Jonathan D; Bottos, Eric M; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Vangronsveld, Jaco

    2016-01-01

    We report the 4.76-Mb draft genome of Pantoea ananatis GB1, a Gram-negative bacterium of the family Enterobacteriaceae, isolated from the roots of poplars planted for phytoremediation of a diesel-contaminated plume at the Ford Motor Company site in Genk, Belgium. Strain GB1 promotes plant growth in various hosts and metabolizes hydrocarbons. PMID:26950324

  7. Draft Genome Sequence of Pantoea ananatis GB1, a Plant-Growth-Promoting Hydrocarbonoclastic Root Endophyte, Isolated at a Diesel Fuel Phytoremediation Site Planted with Populus

    PubMed Central

    Gkorezis, Panagiotis; Van Hamme, Jonathan D.; Bottos, Eric M.; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele

    2016-01-01

    We report the 4.76-Mb draft genome of Pantoea ananatis GB1, a Gram-negative bacterium of the family Enterobacteriaceae, isolated from the roots of poplars planted for phytoremediation of a diesel-contaminated plume at the Ford Motor Company site in Genk, Belgium. Strain GB1 promotes plant growth in various hosts and metabolizes hydrocarbons. PMID:26950324

  8. Elemental composition of strawberry plants inoculated with the plant growth-promoting bacterium Azospirillum brasilense REC3, assessed with scanning electron microscopy and energy dispersive X-ray analysis.

    PubMed

    Guerrero-Molina, M F; Lovaisa, N C; Salazar, S M; Díaz-Ricci, J C; Pedraza, R O

    2014-07-01

    The elemental composition of strawberry plants (Fragaria ananassa cv. Macarena) inoculated with the plant growth-promoting bacterium Azospirillum brasilense REC3, and non-inoculated controls, was studied using scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analysis. This allowed simultaneous semi-quantification of different elements in a small, solid sample. Plants were inoculated and grown hydroponically in 50% or 100% Hoagland solution, corresponding to limited or optimum nutrient medium, respectively. Bacteria-inoculated plants increased the growth index 45% and 80% compared to controls when grown in 100% and 50% Hoagland solution, respectively. Thus, inoculation with A. brasilense REC3 in a nutrient-limited medium had the strongest effect in terms of increasing both shoot and root biomass and growth index, as already described for Azospirillum inoculated into nutrient-poor soils. SEM-EDS spectra and maps showed the elemental composition and relative distribution of nutrients in strawberry tissues. Leaves contained C, O, N, Na, P, K, Ca and Cu, while roots also had Si and Cl. The organic fraction (C, O and N) accounted for over 96.3% of the total chemical composition; of the mineral fraction, Na had higher accumulation in both leaves and roots. Azospirillum-inoculated and control plants had similar elemental quantities; however, in bacteria-inoculated roots, P was significantly increased (34.33%), which constitutes a major benefit for plant nutrition, while Cu content decreased (35.16%). PMID:24148195

  9. Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera.

    PubMed Central

    Schloter, M; Wiehe, W; Assmus, B; Steindl, H; Becke, H; Höflich, G; Hartmann, A

    1997-01-01

    Monospecific polyclonal antisera raised against Rhizobium leguminosarum bv. trifolii R39, a bacterium which was isolated originally from red clover nodules, were used to study the colonization of roots of leguminous and nonleguminous plants (Pisum sativum, Lupinus albus, Triticúm aestivum, and Zea mays) after inoculation. Eight weeks after inoculation of soil-grown plants, between 0.1 and 1% of the total bacterial population in the rhizospheres of all inoculated plants were identified as R. leguminosarum bv. trifolii R39. To characterize the associative colonization of the nonleguminous plants by R.leguminosarum bv. trifolii R39 in more detail, a time course study was performed with inoculated roots of Z. mays. R. leguminosarum bv. trifolii R39 was found almost exclusively in the rhizosphere soil and on the rhizoplane 4 weeks after inoculation. Colonization of inner root tissues was detected only occasionally at this time. During the process of attachment of R. leguminosarum bv. trifolii R39 to the rhizoplane, bacterial lipopolysaccharides were overexpressed, and this may be important for plant-microbe interaction. Fourteen weeks after inoculation, microcolonies of R. leguminosarum bv. trifolii R39 were detected in lysed cells of the root cortex as well as in intracellular space of central root cylinder cells. At the beginning of flowering (18 weeks after inoculation), the number of R. leguminosarum bv. trifolii R39 organisms decreased in the rhizosphere soil, rhizoplane, and inner root tissue. PMID:9143133

  10. Growth and (137)Cs uptake of four Brassica species influenced by inoculation with a plant growth-promoting rhizobacterium Bacillus pumilus in three contaminated farmlands in Fukushima prefecture, Japan.

    PubMed

    Aung, Han Phyo; Djedidi, Salem; Oo, Aung Zaw; Aye, Yi Swe; Yokoyama, Tadashi; Suzuki, Sohzoh; Sekimoto, Hitoshi; Bellingrath-Kimura, Sonoko Dorothea

    2015-07-15

    The effectiveness of the plant growth-promoting rhizobacterium Bacillus pumilus regarding growth promotion and radiocesium ((137)Cs) uptake was evaluated in four Brassica species grown on different (137)Cs contaminated farmlands at Fukushima prefecture in Japan from June to August 2012. B. pumilus inoculation did not enhance growth in any of the plants, although it resulted in a significant increase of (137)Cs concentration and higher (137)Cs transfer from the soil to plants. The Brassica species exhibited different (137)Cs uptake abilities in the order Komatsuna>turnip>mustard>radish. TF values of (137)Cs ranged from 0.018 to 0.069 for all vegetables. Komatsuna possessed the largest root surface area and root volume, and showed a higher (137)Cs concentration in plant tissue and higher (137)Cs TF values (0.060) than the other vegetables. Higher (137)Cs transfer to plants was prominent in soil with a high amount of organic matter and an Al-vermiculite clay mineral type. PMID:25847170

  11. Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas.

    PubMed

    Gulati, Arvind; Sharma, Natasha; Vyas, Pratibha; Sood, Swati; Rahi, Praveen; Pathania, Vijaylata; Prasad, Ramdeen

    2010-11-01

    An efficient phosphate-solubilizing plant growth-promoting Acinetobacter rhizosphaerae strain BIHB 723 exhibited significantly higher solubilization of tricalcium phosphate (TCP) than Udaipur rock phosphate (URP), Mussoorie rock phosphate (MRP) and North Carolina rock phosphate (NCRP). Qualitative and quantitative differences were discerned in the gluconic, oxalic, 2-keto gluconic, lactic, malic and formic acids during the solubilization of various inorganic phosphates by the strain. Gluconic acid was the main organic acid produced during phosphate solubilization. Formic acid production was restricted to TCP solubilization and oxalic acid production to the solubilization of MRP, URP and NCRP. A significant increase in plant height, shoot fresh weight, shoot dry weight, root length, root dry weight, and root, shoot and soil phosphorus (P) contents was recorded with the inoculated treatments over the uninoculated NP(0)K or NP(TCP)K treatments. Plant growth promotion as a function of phosphate solubilization suggested that the use of bacterial strain would be a beneficial addition to the agriculture practices in TCP-rich soils in reducing the application of phosphatic fertilizers. PMID:20821196

  12. Micropropagation of photinia employing rhizobacteria to promote root development.

    PubMed

    Larraburu, Ezequiel E; Carletti, Susana M; Rodríguez Cáceres, Enrique A; Llorente, Berta E

    2007-06-01

    An alternative protocol was developed for in vitro propagation of photinia (Photinia x fraseri Dress), an ornamental shrub, using the plant growth-promoting rhizobacteria (PGPR) Azospirillum brasilense and Azotobacter chroococcum during rhizogenesis. Shoot tips from four-year-old mature plants, cut in spring and summer, were used as initial explants. They were cultured on Murashige-Skoog (MS) medium with Gamborg's vitamins, N(6)-benzyladenine (BA: 11.1 microM) and gibberellic acid (GA(3): 1.3 microM), obtaining 63% of established explants. The highest shoot length (22.9 mm) and multiplication rate (4.3) was achieved by cultivating for four weeks in the same basal medium supplemented with 4.4 microM BA. Both auxin induction and bacterial inoculation were used for rooting. Elongated shoots were treated with two concentrations of indole-3-butyric acid (IBA: 4.9 or 49.2 microM) during 6 days for auxin induction. Then, the shoots were transferred to an auxin-free medium and inoculated with A. brasilense Cd, Sp7 or A. chroococcum (local strain). Bacterial inoculation induced earlier rooting of photinia shoots. A. brasilense Cd with 49.2 microM IBA pulse showed a significant increase (P plants. PMID:17205338

  13. Streptomyces as a plant's best friend?

    PubMed

    Viaene, Tom; Langendries, Sarah; Beirinckx, Stien; Maes, Martine; Goormachtig, Sofie

    2016-08-01

    Here we discuss the advantages of the majority of this versatile and diverse group of microorganisms for plant health and growth as demonstrated by their contribution to disease-suppressive soils, their antifungal and antibacterial activities, their ability to produce volatile compounds and their capacity to enhance plant biomass. Although much is still to be discovered about the colonization strategies and molecular interactions between plant roots and these microorganisms, they are destined to become important players in the field of plant growth-promoting rhizobacteria for agriculture. PMID:27279415

  14. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium.

    PubMed

    Montero-Calasanz, Maria del Carmen; Göker, Markus; Rohde, Manfred; Spröer, Cathrin; Schumann, Peter; Busse, Hans-Jürgen; Schmid, Michael; Tindall, Brian J; Klenk, Hans-Peter; Camacho, Maria

    2013-12-01

    A novel non-motile, Gram-staining-negative, yellow-pigmented bacterium, designated AG13(T), isolated from a rain water pond at a plant nursery in Spain and characterized as a plant-growth-promoting bacterium, was investigated to determine its taxonomic status. The isolate grew best over a temperature range of 15-40 °C, at pH 5.0-8.0 and with 0-4 % (w/v) NaCl. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Chryseobacterium. The DNA G+C content of the novel strain was 37.2 mol%. The strain had a polyamine pattern with sym-homospermidine as the major compound and produced flexirubin-type pigments. MK-6 was the dominant menaquinone and the major cellular fatty acids were iso-C15 : 0, C17 : 1ω9c and iso-C17 : 0 3-OH. The main polar lipids were phosphatidylethanolamine, aminolipids and several unidentified lipids. The 16S rRNA gene showed 92.0-97.2 % sequence similarity with those of the members of the genus Chryseobacterium. Based on chemotaxonomic and phenotypic traits, and DNA-DNA hybridizations with the type strains of the most closely related species, the isolate is proposed to represent a novel species, Chryseobacterium hispalense, type strain AG13(T) ( = DSM 25574(T) = CCUG 63019(T)). Emended descriptions of the species Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium are also provided. PMID:23907217

  15. Phytochemical Variations and Enhanced Efficiency of Antioxidant and Antimicrobial Ingredients in Salvia officinalis as Inoculated with Different Rhizobacteria.

    PubMed

    Ghorbanpour, Mansour; Hatami, Mehrnaz; Kariman, Khalil; Abbaszadeh Dahaji, Payman

    2016-03-01

    Plants produce a variety of secondary metabolites to improve their performance upon exposure to pathogens, pests, herbivores, or environmental stresses. Secondary metabolism in plants is, therefore, highly regulated by presence of biotic or abiotic elicitors in the environment. The present research was undertaken to characterize plant growth-promoting attributes of four plant growth-promoting rhizobacteria (PGPR) including two Pseudomonas fluorescens (Pf Ap1, Pf Ap18) and two P. putida (Pp Ap9, Pp Ap14) strains, and to determine their role (individually or in consortium) on growth of Salvia officialis, and biosynthesis of secondary metabolites such as essential oils (EOs), total phenolics, and flavonoids. The antioxidant and antibacterial properties of the extracts and EOs obtained from the inoculated plants were also investigated. The PGPR inoculum was applied to soil, cuttings, and foliage. Results indicated that different PGPR strains varied in their efficiency for production of auxin, siderophore, 1-aminocyclopropane-1-carboxylate deaminase, and phosphate solubilization. All individually inoculated plants had significantly higher shoot and root biomass, leaf P content, EOs yield, total phenolics, and flavonoids content compared to uninoculated control plants. The major constituents of EOs, cis-thujene, camphor, and 1,8-cineol, increased following inoculation with reference PGPRs. Although the extract from all inoculated plants had improved antioxidant activity, it was remarkable for the Pf Ap18 strain, which had the lowest IC50 value across treatments. Antibacterial assay of various EOs and their major constituents against pathogenic bacteria showed that the highest activity was observed against Staphylococcus aureus using EOs of Pp Ap14 source. Based on our findings, we suggest that individual inoculation with effective PGPR strains can substantially improve plant growth and secondary metabolism in S. officinalis plants. PMID:26916832

  16. The effects of bacterial volatile emissions on plant abiotic stress tolerance

    PubMed Central

    Liu, Xiao-Min; Zhang, Huiming

    2015-01-01

    Plant growth-promoting rhizobacteria (PGPR) are beneficial plant symbionts that have been successfully used in agriculture to increase seedling emergence, plant weight, crop yield, and disease resistance. Some PGPR strains release volatile organic compounds (VOCs) that can directly and/or indirectly mediate increases in plant biomass, disease resistance, and abiotic stress tolerance. This mini-review focuses on the enhancement of plant abiotic stress tolerance by bacterial VOCs. The review considers how PGPR VOCs induce tolerance to salinity and drought stress and also how they improve sulfur and iron nutrition in plants. The potential complexities in evaluating the effects of PGPR VOCs are also discussed. PMID:26442083

  17. Auxin-mediated relationships between apple plants and root inhabiting fungi: impact on root pathogens and potentialities of growth-promoting populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted to examine the symbiotic relationship between plant hosts and endophytic fungi recovered in multi-generation replanted apple orchard soils. Based upon results obtained, subsequent studies were oriented toward investigating fungal populations showing a mutualistic symbiotic rel...

  18. Bioaugmentation with Petroleum-Degrading Consortia Has a Selective Growth-Promoting Impact on Crop Plants Germinated in Diesel Oil-Contaminated Soil.

    PubMed

    Graj, Weronika; Lisiecki, Piotr; Szulc, Alicja; Chrzanowski, Lukasz; Wojtera-Kwiczor, Joanna

    2013-01-01

    Rhizoremediation is a complex type of green clean-up technology that involves both plants and the rhizosphere-associated microorganisms to decompose hazardous compounds. The success of the strategy strongly depends on plant tolerance towards the pollutant, as well as plant's interactions with the rhizospheric microbes. The microorganisms may be stimulated by the secreted root exudates, which results in an increased breakdown of contaminants in the rhizosphere. The main goal of this study was to establish a potential rhizoremediation combination for a diesel-polluted site. Inoculation of plant roots or seeds with indigenous rhizospheric populations is a common approach in the rhizoremediation. However, we introduced hydrocarbon-degrading consortia (M10, R3, and K52) that were previously isolated from crude oil-contaminated soil instead of indigenous microbes. Bioaugmentation with these petroleum degraders was applied to screen four high biomass crop species (Indian mustard, alfalfa, high erucic acid rapeseed, HEAR, and low erucic acid rapeseed, LEAR) for their tolerance towards diesel oil. At no pollution, a promoting effect of M10 bacteria could be observed on germination and root elongation of all plant species. Moreover, M10 consortiums increased the germination index at 6,000 mg diesel oil per kilogram dry soil in the case of Indian mustard, alfalfa, and HEAR. The latter species was found to increment its dry weight upon bioaugmentation with M10 bacteria and all diesel oil treatments (6,000 and 24,000 mg diesel oil per kilogram dry soil). The initial results indicate HEAR and the M10 bacterial consortium as a promising plant-microbe tandem for a long-term rhizoremediation process. PMID:24078757

  19. Genome of Pseudomonas sp. FeS53a, a Putative Plant Growth-Promoting Bacterium Associated with Rice Grown in Iron-Stressed Soils.

    PubMed

    de Souza, Rocheli; Sant'Anna, Fernando Hayashi; Ambrosini, Adriana; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, Fabio Oliveira; Souza, Emanuel Maltempi; Passaglia, Luciane M P

    2015-01-01

    Pseudomonas sp. FeS53a was isolated from the roots of rice plants cultivated in one area with a well-established history of iron toxicity. The FeS53a genome sequence provides the genetic basis for understanding its lifestyle and survival in association with rice in conditions of iron toxicity. PMID:25838496

  20. Genome of Pseudomonas sp. FeS53a, a Putative Plant Growth-Promoting Bacterium Associated with Rice Grown in Iron-Stressed Soils

    PubMed Central

    de Souza, Rocheli; Sant’Anna, Fernando Hayashi; Ambrosini, Adriana; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, Fabio Oliveira; Souza, Emanuel Maltempi

    2015-01-01

    Pseudomonas sp. FeS53a was isolated from the roots of rice plants cultivated in one area with a well-established history of iron toxicity. The FeS53a genome sequence provides the genetic basis for understanding its lifestyle and survival in association with rice in conditions of iron toxicity. PMID:25838496

  1. Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF 267 isolated from the rhizosphere of coconut palms (Cocos nucifera L.).

    PubMed

    George, Priya; Gupta, Alka; Gopal, Murali; Thomas, Litty; Thomas, George V

    2013-01-01

    Two plant growth promoting bacteria designated as KiSII and RNF 267 isolated from the rhizosphere of coconut palms were identified as Serratia marcescens and Enterobacter sp. based on their phenotypic features, BIOLOG studies and 16S rRNA gene sequence analysis. Both bacteria exhibited phosphate solubilization, ammonification, and production of indole acetic acid, β-1, 3 glucanase activities and 1-aminocyclopropane-1-carboxylate-deaminase activity. They could also tolerate a range of pH conditions, low temperature and salinity (NaCl). In addition, S. marcescens KiSII exhibited N- fixation potential, chitinase activity, siderophore production and antibiotics production. Seed bacterization with these bacteria increased the growth parameters of test plants such as paddy and cowpea over uninoculated control in green house assay. In coconut seedlings, significant increase in growth and nutrient uptake accompanied with higher populations of plant beneficial microorganisms in their rhizospheres were recorded on inoculation with both the PGPRs. The present study clearly revealed that PGPRs can aid in production of healthy and vigorous seedlings of coconut palm which are hardy perennial crops. They offer a scope to be developed into novel PGPR based bioinoculants for production of elite seedlings that can benefit the coconut farming community and the coconut based ecology. PMID:22948479

  2. Genome Sequence of Serratia plymuthica Strain S13, an Endophyte with Germination- and Plant-Growth-Promoting Activity from the Flower of Styrian Oil Pumpkin

    PubMed Central

    Fürnkranz, Michael; Grube, Martin; Berg, Gabriele

    2013-01-01

    The bacterium Serratia plymuthica strain S13 was demonstrated to colonize various plant-associated microhabitats and to suppress damping-off diseases. The completed genome sequence has a size of 5.5 Mb, containing 4,957 putative protein-encoding regions, and will be used to identify genetic determinants enabling the bacterium to escort a plant’s entire life cycle. PMID:23929484

  3. Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control.

    PubMed

    Andreolli, Marco; Lampis, Silvia; Zapparoli, Giacomo; Angelini, Elisa; Vallini, Giovanni

    2016-02-01

    This study represents the first investigation on ecology of endophytic bacteria isolated from 3 and 15 year-old vine stems of Vitis vinifera cv. Corvina. The analysis was performed by means of culture-dependent techniques. The obtained results showed that new grapevine endophytic genera are being discovered. Moreover, Bacilli and Actinobacteria are frequently isolated from 3 year-old plants, whereas Alpha- and Gamma- Proteobacteria classes are more prevalent in the 15 year-old plants. Shannon-Wiener (H) index and analysis of rarefaction curves revealed greater genus richness in young grapevine plants. Furthermore, results evidenced an increase of genotypic group number within specific genera (e.g., Rhizobium and Pantoea). Among isolated strains from 3 and 15 year-old stems, respectively, 34 and 39% produce siderophores; 22 and 15% secrete ammonia; 22 and 21% produce indole-3-acetic acid; 8.7 and 41% solubilize phosphate. Besides, two strains isolated from 15 year-old grapevines showed 1-aminocyclopropane-1-carboxylate deaminase activity. Antifungal activity analysis evidenced that two Bacillus strains possess growth antagonistic effect toward all the tested fungal strains. Therefore, the present study extends our knowledge of the diversity of the endophytic bacteria by providing new insights into the complexity of the grapevine microbiome. PMID:26805617

  4. Simultaneous production of l-lactic acid with high optical activity and a soil amendment with food waste that demonstrates plant growth promoting activity.

    PubMed

    Kitpreechavanich, Vichien; Hayami, Arisa; Talek, Anfal; Chin, Clament Fui Seung; Tashiro, Yukihiro; Sakai, Kenji

    2016-07-01

    A unique method to produce highly optically-active l-lactic acid and soil amendments that promote plant growth from food waste was proposed. Three Bacillus strains Bacillus subtilis KBKU21, B. subtilis N3-9 and Bacillus coagulans T27, were used. Strain KBKU21 accumulated 36.9 g/L l-lactic acid with 95.7% optical activity and 98.2% l-lactic acid selectivity when fermented at 43°C for 84 h in a model kitchen refuse (MKR) medium. Residual precipitate fraction (anaerobically-fermented MKR (AFM) compost) analysis revealed 4.60%, 0.70% and 0.75% of nitrogen (as N), phosphorous (as P2O5), and potassium (as K2O), respectively. Additionally, the carbon to nitrogen ratio decreased from 13.3 to 10.6. AFM compost with KBKU21 promoted plant growth parameters, including leaf length, plant height and fresh weight of Brassica rapa (Komatsuna), than that by chemical fertilizers or commercial compost. The concept provides an incentive for the complete recycling of food waste, contributing towards a sustainable production system. PMID:26819060

  5. Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance.

    PubMed

    Yaish, Mahmoud W; Antony, Irin; Glick, Bernard R

    2015-06-01

    Endophytic bacteria were isolated from date palm (Phoenix dactylifera L.) seedling roots, characterized and tested for their ability to help plants grow under saline conditions. Molecular characterization showed that the majority of these strains belonged to the genera Bacillus and Enterobacter and had different degrees of resistance to various antibiotics. Some of these strains were able to produce the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and the plant growth regulatory hormone indole-3-acetic acid (IAA). Some strains were also able to chelate ferric iron (Fe(3+)) and solubilize potassium (K(+)), phosphorus (PO 4 (3-) ) and zinc (Zn(2+)), and produce ammonia. The results also showed that ACC deaminase activity and IAA production was slightly increased in some strains in response to an increase in NaCl concentration in the growth media. Consistent with these results, selected strains such as PD-R6 (Paenibacillus xylanexedens) and PD-P6 (Enterobacter cloacae) were able to enhance canola root elongation when grown under normal and saline conditions as demonstrated by a gnotobiotic root elongation assay. These results suggest that the isolated and characterized endophytic bacteria can alter ethylene and IAA levels and also facilitate nutrient uptake in roots and therefore have the potential role to promote the growth and development of date palm trees growing under salinity stress. PMID:25860542

  6. Complete genome sequences of the Serratia plymuthica strains 3Rp8 and 3Re4-18, two rhizosphere bacteria with antagonistic activity towards fungal phytopathogens and plant growth promoting abilities.

    PubMed

    Adam, Eveline; Müller, Henry; Erlacher, Armin; Berg, Gabriele

    2016-01-01

    The Serratia plymuthica strains 3Rp8 and 3Re4-18 are motile, Gram-negative, non-sporulating bacteria. Strain 3Rp8 was isolated from the rhizosphere of Brassica napus L. and strain 3Re4-18 from the endorhiza of Solanum tuberosum L. Studies have shown in vitro activity against the soil-borne fungi Verticillium dahliae Kleb., Rhizoctonia solani Kühn, and Sclerotinia sclerotiorum. Here, we announce and describe the complete genome sequence of S. plymuthica 3Rp8 consisting of a single circular chromosome of 5.5 Mb that encodes 4954 protein-coding and 108 RNA-only encoding genes and of S. plymuthica 3Re4-18 consisting of a single circular chromosome of 5.4 Mb that encodes 4845 protein-coding and 109 RNA-only encoding genes. The whole genome sequences and annotations are available in NCBI under the locus numbers CP012096 and CP012097, respectively. The genome analyses revealed genes putatively responsible for the promising plant growth promoting and biocontrol properties including predicting factors such as secretion systems, iron scavenging siderophores, chitinases, secreted proteases, glucanases and non-ribosomal peptide synthetases, as well as unique genomic islands. PMID:27602183

  7. Hydrolytic Amino Acids Employed as a Novel Organic Nitrogen Source for the Preparation of PGPF-Containing Bio-Organic Fertilizer for Plant Growth Promotion and Characterization of Substance Transformation during BOF Production.

    PubMed

    Zhang, Fengge; Meng, Xiaohui; Feng, Chenglong; Ran, Wei; Yu, Guanghui; Zhang, Yingjun; Shen, Qirong

    2016-01-01

    Opportunity costs seriously limit the large-scale production of bio-organic fertilizers (BOFs) both in China and internationally. This study addresses the utilization of amino acids resulting from the acidic hydrolysis of pig corpses as organic nitrogen sources to increase the density of TrichodermaharzianumT-E5 (a typical plant growth-promoting fungi, PGPF). This results in a novel, economical, highly efficient and environmentally friendly BOF product. Fluorescence excitation-emission matrix (EEM) spectroscopy combined with fluorescence regional integration (FRI) was employed to monitor compost maturity levels, while pot experiments were utilized to test the effects of this novel BOF on plant growth. An optimization experiment, based on response surface methodologies (RSMs), showed that a maximum T-E5 population (3.72 × 108 ITS copies g-1) was obtained from a mixture of 65.17% cattle manure compost (W/W), 19.33% maggot manure (W/W), 15.50% (V/W)hydrolytic amino acid solution and 4.69% (V/W) inoculum at 28.7°C after a 14 day secondary solid fermentation. Spectroscopy analysis revealed that the compost transformation process involved the degradation of protein-like substances and the formation of fulvic-like and humic-like substances. FRI parameters (PI, n, PII, n, PIII, n and PV, n) were used to characterize the degree of compost maturity. The BOF resulted in significantly higher increased chlorophyll content, shoot length, and shoot and root dry weights of three vegetables (cucumber, tomato and pepper) by 9.9%~22.4%, 22.9%~58.5%, 31.0%~84.9%, and 24.2%~34.1%, respectively. In summary, this study presents an operational means of increasing PGPF T-E5 populations in BOF to promote plant growth with a concomitant reduction in production cost. In addition, a BOF compost maturity assessment using fluorescence EEM spectroscopy and FRI ensured its safe field application. PMID:26974549

  8. Hydrolytic Amino Acids Employed as a Novel Organic Nitrogen Source for the Preparation of PGPF-Containing Bio-Organic Fertilizer for Plant Growth Promotion and Characterization of Substance Transformation during BOF Production

    PubMed Central

    Feng, Chenglong; Ran, Wei; Yu, Guanghui; Zhang, Yingjun; Shen, Qirong

    2016-01-01

    Opportunity costs seriously limit the large-scale production of bio-organic fertilizers (BOFs) both in China and internationally. This study addresses the utilization of amino acids resulting from the acidic hydrolysis of pig corpses as organic nitrogen sources to increase the density of TrichodermaharzianumT-E5 (a typical plant growth-promoting fungi, PGPF). This results in a novel, economical, highly efficient and environmentally friendly BOF product. Fluorescence excitation-emission matrix (EEM) spectroscopy combined with fluorescence regional integration (FRI) was employed to monitor compost maturity levels, while pot experiments were utilized to test the effects of this novel BOF on plant growth. An optimization experiment, based on response surface methodologies (RSMs), showed that a maximum T-E5 population (3.72 × 108 ITS copies g−1) was obtained from a mixture of 65.17% cattle manure compost (W/W), 19.33% maggot manure (W/W), 15.50% (V/W)hydrolytic amino acid solution and 4.69% (V/W) inoculum at 28.7°C after a 14 day secondary solid fermentation. Spectroscopy analysis revealed that the compost transformation process involved the degradation of protein-like substances and the formation of fulvic-like and humic-like substances. FRI parameters (PI, n, PII, n, PIII, n and PV, n) were used to characterize the degree of compost maturity. The BOF resulted in significantly higher increased chlorophyll content, shoot length, and shoot and root dry weights of three vegetables (cucumber, tomato and pepper) by 9.9%~22.4%, 22.9%~58.5%, 31.0%~84.9%, and 24.2%~34.1%, respectively. In summary, this study presents an operational means of increasing PGPF T-E5 populations in BOF to promote plant growth with a concomitant reduction in production cost. In addition, a BOF compost maturity assessment using fluorescence EEM spectroscopy and FRI ensured its safe field application. PMID:26974549

  9. The future of growth-promoting therapy.

    PubMed

    Rosenfeld, Ron G

    2016-06-01

    Growth hormone (GH) has been in use for 50years in children with short stature. Recent developments suggest that our traditional approaches to growth-promoting therapy will be challenged in the following areas. PMID:26654694

  10. Effect of immobilized rhizobacteria and organic amendment in bulk and rhizospheric soil of Cistus albidus L.

    NASA Astrophysics Data System (ADS)

    Mengual, Carmen Maria; del Mar Alguacil, Maria; Roldan, Antonio; Schoebitz, Mauricio

    2013-04-01

    A field experiment was carried out to assess the effectiveness of the immobilized microbial inoculant and the addition of organic olive residue. The microbial inoculant contained two rhizobacterial species identified as Azospirillum brasilense and Pantoea dispersa immobilized in a natural inert support. Bacterial population densities were 3.5×109 and 4.1×109 CFU g-1 of A. brasilense M3 and P. dispersa C3, respectively. The amendment used was the organic fraction extracted with KOH from composted "alperujo". The raw material was collected from an olive-mill and mixed with fresh cow bedding as bulking agent for composting. The inoculation of rhizobacteria and the addition of organic residue were employed for plant growth promotion of Cistus albidus L. and enhancement of soil physicochemical, biochemical and biological properties in a degraded semiarid Mediterranean area. One year after planting, the available phosphorus and potassium content in the amended soils was about 100 and 70% respectively higher than in the non-amended soil. Microbial inoculant and their interaction with organic residue increased the aggregate stability of the rhizosphere soil of C. albidus (by 12% with respect to control soil) while the organic residue alone not increased the aggregate stability of the rhizosphere of C. albidus. Microbial biomass C content and enzyme activities (dehydrogenase, urease, protease-BAA and alkaline phosphatase) of the rhizosphere of C. albidus were increased by microbial inoculant and organic residue interaction but not by microbial inoculation alone. The microbial inoculant and organic residue interaction were the most effective treatment for stimulating the roots dry weight of C. albidus (by 133% with respect to control plants) and microbial inoculant was the most effective treatment for increase the shoot dry weigh of plants (by 106% with respect to control plants). The combined treatment, involving microbial inoculant and addition of the organic residue

  11. dRNA-Seq Reveals Genomewide TSSs and Noncoding RNAs of Plant Beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42

    PubMed Central

    Fan, Ben; Förstner, Konrad; Vogel, Jörg; Borriss, Rainer; Wu, Xiao-Qin

    2015-01-01

    Bacillus amyloliquefaciens subsp. plantarum FZB42 is a representative of Gram-positive plant-growth-promoting rhizobacteria (PGPR) that inhabit plant root environments. In order to better understand the molecular mechanisms of bacteria-plant symbiosis, we have systematically analyzed the primary transcriptome of strain FZB42 grown under rhizosphere-mimicking conditions using differential RNA sequencing (dRNA-seq). Our analysis revealed 4,877 transcription start sites for protein-coding genes, identified genes differentially expressed under different growth conditions, and corrected many previously mis-annotated genes. We also identified a large number of riboswitches and cis-encoded antisense RNAs, as well as trans-encoded small noncoding RNAs that may play important roles in the gene regulation of Bacillus. Overall, our analyses provided a landscape of Bacillus primary transcriptome and improved the knowledge of rhizobacteria-host interactions. PMID:26540162

  12. [Agriculture microbiology and microbe interaction with plants].

    PubMed

    Caballero-Mellado, Jesús

    2006-01-01

    About the characterization and distribution of novel nitrogen-fixing Burkholderia species associated with maize and other plants and their potential use on the plant growth was presented in this symposium. The symposium included studies directed to the revegetation of eroded areas by using plant growth promoting rhizo-bacteria and mycorrizal fungi associated with desert plants, as well as studies related with the resistance of arbuscular mycorrhizal fungi to heavy metals associated with the environmental pollution. In addition, the identification and characterization of a 31-kb chromosomal fragment from Pseudomonas syringae pv. phaseolicola was presented; such a fragment, involved with the phaseolotoxin synthesis, showed characteristic features of a bacterial pathogenicity island. PMID:17578087

  13. Genome Sequence of Bacillus mycoides B38V, a Growth-Promoting Bacterium of Sunflower.

    PubMed

    Ambrosini, Adriana; Sant'Anna, Fernando Hayashi; de Souza, Rocheli; Tadra-Sfeir, Michele; Faoro, Helisson; Alvarenga, Samuel M; Pedrosa, Fabio Oliveira; Souza, Emanuel Maltempi; Passaglia, Luciane M P

    2015-01-01

    Bacillus mycoides B38V is a bacterium isolated from the sunflower rhizosphere that is able to promote plant growth and N uptake. The genome of the isolate has approximately 5.80 Mb and presents sequence codifiers for plant growth-promoting characteristics, such as nitrate reduction and ammonification and iron-siderophore uptake. PMID:25838494

  14. Genome Sequence of Bacillus mycoides B38V, a Growth-Promoting Bacterium of Sunflower

    PubMed Central

    Ambrosini, Adriana; Sant’Anna, Fernando Hayashi; de Souza, Rocheli; Tadra-Sfeir, Michele; Faoro, Helisson; Alvarenga, Samuel M.; Pedrosa, Fabio Oliveira; Souza, Emanuel Maltempi

    2015-01-01

    Bacillus mycoides B38V is a bacterium isolated from the sunflower rhizosphere that is able to promote plant growth and N uptake. The genome of the isolate has approximately 5.80 Mb and presents sequence codifiers for plant growth-promoting characteristics, such as nitrate reduction and ammonification and iron-siderophore uptake. PMID:25838494

  15. Draft Genome Sequence of Mesorhizobium sp. UFLA 01-765, a Multitolerant, Efficient Symbiont and Plant Growth-Promoting Strain Isolated from Zn-Mining Soil Using Leucaena leucocephala as a Trap Plant

    PubMed Central

    Thijs, Sofie; Weyens, Nele; Vangronsveld, Jaco; Van Hamme, Jonathan D.; Bottos, Eric M.; Rineau, Francois

    2016-01-01

    We report the 7.4-Mb draft genome sequence of Mesorhizobium sp. strain UFLA 01-765, a Gram-negative bacterium of the Phyllobacteriaceae isolated from Zn-mining soil in Minas Gerais, Brazil. This strain promotes plant growth, efficiently fixes N2 in symbiosis with Leucaena leucocephala on multicontaminated soil, and has potential for application in bioremediation of marginal lands. PMID:26966214

  16. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds.

    PubMed

    Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M; Park, Kyungseok

    2015-05-29

    Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens SS101 (Pf.SS101) have not been precisely elucidated. The effects of Pf.SS101 and its VOCs on augmentation of plant growth promotion were investigated in vitro and in planta. A significant growth promotion was observed in plants exposed Pf.SS101 under both conditions, suggesting that its VOCs play a key role in promoting plant growth. Solid-phase micro-extraction (SPME) and a gas chromatography-mass spectrophotometer (GC-MS) system were used to characterize the VOCs emitted by Pf.SS101 and 11 different compounds were detected in samples inoculated this bacterium, including 13-Tetradecadien-1-ol, 2-butanone and 2-Methyl-n-1-tridecene. Application of these compounds resulted in enhanced plant growth. This study suggests that Pf.SS101 promotes the growth of plants via the release of VOCs including 13-Tetradecadien-1-ol, 2-butanone and 2-Methyl-n-1-tridecene, thus increasing understanding of the role of VOCs in plant-bacterial inter-communication. PMID:25892516

  17. Bacterial-Plant-Interactions: Approaches to Unravel the Biological Function of Bacterial Volatiles in the Rhizosphere

    PubMed Central

    Kai, Marco; Effmert, Uta; Piechulla, Birgit

    2016-01-01

    Rhizobacteria produce an enormous amount of volatile compounds, however, the function of these metabolites is scarcely understood. Investigations evaluating influences on plants performed in various laboratories using individually developed experimental setups revealed different and often contradictory results, e.g., ranging from a significant plant growth promotion to a dramatic suppression of plant development. In addition to these discrepancies, these test systems neglected properties and complexity of the rhizosphere. Therefore, to pursue further investigations of the role of bacterial volatiles in this underground habitat, the applied methods have to simulate its natural characteristics as much as possible. In this review, we will describe and discuss pros and cons of currently used bioassays, give insights into rhizosphere characteristics, and suggest improvements for test systems that would consider in natura conditions and would allow gaining further knowledge of the potential function and significance of rhizobacterial volatiles in plant life. PMID:26903987

  18. Evaluation of hair growth promoting activity of Phyllanthus niruri

    PubMed Central

    Patel, Satish; Sharma, Vikas; S. Chauhan, Nagendra; Thakur, Mayank; Dixit, Vinod Kumar

    2015-01-01

    Objective: This study was designed to investigate the potential Phyllanthus niruri (P. niruri ) extracts in promotion of hair growth. Materials and Methods: Here, we studied the hair growth promoting activity of petroleum ether extract of P. niruri following its topical administration. Alopecia was induced in albino rats by subcutaneous administration of testosterone for 21 days. Evaluation of hair loss inhibition was done by concurrent administration of extract and monitoring parameters like follicular density, anagen/telogen (A/T) ratio and histological observation of animal skin sections. Finasteride solution was applied topically as standard. In vitro experiments were also performed to study the effect of extract on the activity of 5α-reductase enzyme Results: Groups treated with petroleum ether extract of plant showed hair re-growth as reflected by follicular density, A/T ratio and skin sections. Histopathology and morphologic observations of hair re-growth at shaved sites showed active follicular proliferation. In vitro experiments results showed inhibitory activity of petroleum ether extract on type-2 5α-reductase enzyme and an increase in the amount of testosterone with increasing concentrations. Conclusion: It could be concluded that petroleum ether extracts of P. niruri might be useful in the treatment of testosterone-induced alopecia in the experimental animal by inhibiting 5α-reductase enzyme. PMID:26693408

  19. Growth and cesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on cesium contaminated soil to elevated CO2 or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54, or in combination.

    PubMed

    Tang, Shirong; Liao, Shangqiang; Guo, Junkang; Song, Zhengguo; Wang, Ruigang; Zhou, Xiaomin

    2011-12-30

    Growth and cesium uptake responses of plants to elevated CO(2) and microbial inoculation, alone or in combination, can be explored for clean-up of contaminated soils, and this induced phytoextraction may be better than the natural process. The present study used open-top chambers to investigate combined effects of Burkholderia sp. D54 inoculation and elevated CO(2) (860 μL L(-1)) on growth and Cs uptake by Phytolacca americana and Amaranthus cruentus grown on soil spiked with various levels of Cs (0-1000 mg kg(-1)). Elevated CO(2) and bacterial inoculation, alone or in combination, significantly increased biomass production with increased magnitude, ranging from 22% to 139% for P. americana, and 14% to 254% for A. cruentus. Total tissue Cs in both plants was significantly greater for bacterial inoculation treatment singly, and combined treatments of bacterial inoculation and elevated CO(2) than for the control treatment in most cases. Regardless of CO(2) concentrations and bacterial inoculation, A. cruentus had higher tissue Cs concentration, Cs transfer factors and concentration ratios than P. americana, but they had slightly different contents of antioxidant enzymes. It is concluded that combined effects of elevated CO(2) and microbial inoculation with regard to plant ability to grow and remove radionuclides from soil can be explored for CO(2)- and microbe-assisted phytoextraction technology. PMID:22074893

  20. Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils

    PubMed Central

    White, James F.; Chen, Qiang; Torres, Mónica S.; Mattera, Robert; Irizarry, Ivelisse; Tadych, Mariusz; Bergen, Marshall

    2015-01-01

    Plants require nitrogen (N) to make proteins, nucleic acids and other biological molecules. It is widely accepted that plants absorb inorganic forms of N to fill their needs. However, recently it has become clear that plants also have the capacity to absorb organic N from soils. In this paper we describe a new kind of symbiosis involving seed-vectored rhizobacteria and grasses that is targeted at enhancing acquisition of organic N from soils. Our proposal is based on results of experiments on seedlings of grass species Festuca arundinacea Schreb., Lolium perenne L. and Poa annua L. that suggest: (i) seed-vectored rhizobacteria colonize seedling roots and influence their development; (ii) reactive oxygen secretion by seedling roots plays a role in organic N procurement by denaturing microbial proteins in the vicinity of roots (daytime activity); and (iii) plant root and microbial proteases degrade denatured proteins prior to absorption by roots (night-time activity). This research involved the following types of studies: (i) seedling root development experiments with and without rhizobacteria on a variety of substrates in agarose media and (ii) isotopic N-tracking experiments to evaluate the absorption into seedlings of N obtained from degradation of proteins. We hypothesize that grasses, in particular, are adapted to scavenge organic N from soils through application of this ‘oxidative nitrogen scavenging’ symbiosis with rhizobacteria, and their soil-permeating root systems. This newly discovered symbiosis in grass species could lead to new ways to cultivate and manage grasses to enhance efficiency of N utilization and reduce applications of inorganic fertilizers. PMID:25564515

  1. Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils.

    PubMed

    White, James F; Chen, Qiang; Torres, Mónica S; Mattera, Robert; Irizarry, Ivelisse; Tadych, Mariusz; Bergen, Marshall

    2015-01-01

    Plants require nitrogen (N) to make proteins, nucleic acids and other biological molecules. It is widely accepted that plants absorb inorganic forms of N to fill their needs. However, recently it has become clear that plants also have the capacity to absorb organic N from soils. In this paper we describe a new kind of symbiosis involving seed-vectored rhizobacteria and grasses that is targeted at enhancing acquisition of organic N from soils. Our proposal is based on results of experiments on seedlings of grass species Festuca arundinacea Schreb., Lolium perenne L. and Poa annua L. that suggest: (i) seed-vectored rhizobacteria colonize seedling roots and influence their development; (ii) reactive oxygen secretion by seedling roots plays a role in organic N procurement by denaturing microbial proteins in the vicinity of roots (daytime activity); and (iii) plant root and microbial proteases degrade denatured proteins prior to absorption by roots (night-time activity). This research involved the following types of studies: (i) seedling root development experiments with and without rhizobacteria on a variety of substrates in agarose media and (ii) isotopic N-tracking experiments to evaluate the absorption into seedlings of N obtained from degradation of proteins. We hypothesize that grasses, in particular, are adapted to scavenge organic N from soils through application of this 'oxidative nitrogen scavenging' symbiosis with rhizobacteria, and their soil-permeating root systems. This newly discovered symbiosis in grass species could lead to new ways to cultivate and manage grasses to enhance efficiency of N utilization and reduce applications of inorganic fertilizers. PMID:25564515

  2. Bioinformatics based structural characterization of glucose dehydrogenase (gdh) gene and growth promoting activity of Leclercia sp. QAU-66

    PubMed Central

    Naveed, Muhammad; Ahmed, Iftikhar; Khalid, Nauman; Mumtaz, Abdul Samad

    2014-01-01

    Glucose dehydrogenase (GDH; EC 1.1. 5.2) is the member of quinoproteins group that use the redox cofactor pyrroloquinoline quinoine, calcium ions and glucose as substrate for its activity. In present study, Leclercia sp. QAU-66, isolated from rhizosphere of Vigna mungo, was characterized for phosphate solubilization and the role of GDH in plant growth promotion of Phaseolus vulgaris. The strain QAU-66 had ability to solubilize phosphorus and significantly (p ≤ 0.05) promoted the shoot and root lengths of Phaseolus vulgaris. The structural determination of GDH protein was carried out using bioinformatics tools like Pfam, InterProScan, I-TASSER and COFACTOR. These tools predicted the structural based functional homology of pyrroloquinoline quinone domains in GDH. GDH of Leclercia sp. QAU-66 is one of the main factor that involved in plant growth promotion and provides a solid background for further research in plant growth promoting activities. PMID:25242947

  3. Bioinformatics based structural characterization of glucose dehydrogenase (gdh) gene and growth promoting activity of Leclercia sp. QAU-66.

    PubMed

    Naveed, Muhammad; Ahmed, Iftikhar; Khalid, Nauman; Mumtaz, Abdul Samad

    2014-01-01

    Glucose dehydrogenase (GDH; EC 1.1. 5.2) is the member of quinoproteins group that use the redox cofactor pyrroloquinoline quinoine, calcium ions and glucose as substrate for its activity. In present study, Leclercia sp. QAU-66, isolated from rhizosphere of Vigna mungo, was characterized for phosphate solubilization and the role of GDH in plant growth promotion of Phaseolus vulgaris. The strain QAU-66 had ability to solubilize phosphorus and significantly (p ≤ 0.05) promoted the shoot and root lengths of Phaseolus vulgaris. The structural determination of GDH protein was carried out using bioinformatics tools like Pfam, InterProScan, I-TASSER and COFACTOR. These tools predicted the structural based functional homology of pyrroloquinoline quinone domains in GDH. GDH of Leclercia sp. QAU-66 is one of the main factor that involved in plant growth promotion and provides a solid background for further research in plant growth promoting activities. PMID:25242947

  4. Natural attenuation of weathered oil using aquatic plants in a farm in Southeast Mexico.

    PubMed

    Rivera-Cruz, María Del Carmen; Trujillo-Narcía, Antonio; Trujillo-Rivera, Eduardo A; Arias-Trinidad, Alfredo; Mendoza-López, María Remedios

    2016-09-01

    An experiment was conducted in field for three years to assess the sustainability of aquatic plants Leersia hexandra, Cyperus articulatus, and Eleocharis palustris for use in the removal of total hydrocarbons of weathered oil in four areas contaminated with 60916-119373 mg/kg of hydrocarbons. The variables evaluated were coverage of plant, dry matter, density of plant growth-promoting rhizobacteria, and the removal of total weathered oil. The variables showed statistical differences (p = 0.05) due to the effects of time and the amount of oil in the soil. The three aquatic plants survived on the farm during the 36-month evaluation. The grass L. hexandra yielded the greatest coverage of plant but was inhibited by the toxicity of the oil, which, in contrast, stimulated the coverage of C. articulatus. The rhizosphere of L. hexandra in control soil was more densely colonized by N-fixing bacteria, while the density of phosphate and potassium solubilizing rhizobacteria was stimulated by exposure to oil. C. articulatus coverage showed positive relationship with the removal of weathered oil; positive effect between rhizosphere and L. hexandra grass coverage was also identified. These results contributed to the removal of weathered oil in Gleysols flooded and affected by chronic discharges of crude oil. PMID:26939740

  5. Phosphorus release capacity of soluble P fertilizers and insoluble rock phosphate in response to phosphate solubilizing bacteria and poultry manure and their effect on plant growth promotion and P utilization efficiency of chilli (Capsicum annuum L.)

    NASA Astrophysics Data System (ADS)

    Abbasi, M. K.; Musa, N.; Manzoor, M.

    2015-01-01

    The ability of soil microorganisms and organic manures to convert insoluble phosphorus (P) to an accessible form offers a biological rescue system for improving P solubilization and utilization in soil-plant systems. Our objective was to examine the P supplying capacity of soluble P fertilizers (SPF) i.e. single super phosphate (SSP) and di-ammonium phosphate (DAP) and insoluble rock phosphate (RP) after adding phosphate solubilizing bacteria (PSB) and poultry manure (PM) and their subsequent effect on the growth, yield and P-utilization efficiency (PUE) of chill (Capsicum annuum L.). An incubation study was carried-out on a sandy loam neutral soil with twelve treatments including T0: control; T1: RP; T2: SSP; T3: DAP; T4: PM; T5: 1/2 RP + 1/2 SSP; T6: 1/2 RP + 1/2 DAP; T7: 1/2 RP + 1/2 PM; T8: RP + PSB; T9: 1/2 RP + 1/2 SSP + PSB; T10: 1/2 RP + 1/2 DAP + PSB; T11: 1/2 RP + 1/2 PM + PSB. Phosphorus release capacity of added amendments was measured by analyzing extractable P from the amended soil incubated under controlled condition at 25 °C for 0, 5, 15, 25, 35, 60 days period. To complement the incubation study, a greenhouse experiment was conducted in pots with chilli (Capsicum annuum L.) used as a test crop. Growth, yield, P-uptake and PUE of the chilli was determined during the study. Results indicated that P release capacity of soil amended with RP varied between 6.0 and 11.5 mg kg-1 while the soluble P fertilizers i.e. SSP and DAP displayed a maximum of 73 and 68 mg P kg-1 at the start of the experiment (day 0). However, the P released tendency from SSP and DAP declined during incubation and at the end 82 and 79% of P initially present had been lost from the mineral pool. Integrated use of PSB and PM with RP in 1/2 RP + 1/2 PM + PSB treatment stimulated P mineralization by releasing a maximum of 25 mg P kg-1 that was maintained at high levels without any loss. Application of PSB tended to decrease pH showing an acidifying effect on soil. In the greenhouse

  6. Hair Growth Promotion Activity and Its Mechanism of Polygonum multiflorum

    PubMed Central

    Li, Yunfei; Han, Mingnuan; Lin, Pei; He, Yanran; Yu, Jie; Zhao, Ronghua

    2015-01-01

    Polygonum multiflorum Radix (PMR) has long history in hair growth promotion and hair coloring in clinical applications. However, several crucial problems in its clinic usage and mechanisms are still unsolved or lack scientific evidences. In this research, C57BL/6J mice were used to investigate hair growth promotion activity and possible mechanism of PMR and Polygonum multiflorum Radix Preparata (PMRP). Hair growth promotion activities were investigated by hair length, hair covered skin ratio, the number of follicles, and hair color. Regulation effects of several cytokines involved in the hair growth procedure were tested, such as fibroblast growth factor (FGF-7), Sonic Hedgehog (SHH), β-catenin, insulin-like growth factor-1 (IGF-1), and hepatocyte growth factor (HGF). Oral PMR groups had higher hair covered skin ratio (100 ± 0.00%) than oral PMRP groups (48%~88%). However, topical usage of PMRP had about 90% hair covered skin ratio. Both oral administration of PMR and topically given PMRP showed hair growth promotion activities. PMR was considered to be more suitable for oral administration, while PMRP showed greater effects in external use. The hair growth promotion effect of oral PMR was most probably mediated by the expression of FGF-7, while topical PMRP promoted hair growth by the stimulation of SHH expression. PMID:26294926

  7. Characterization and identification of productivity-associated rhizobacteria in wheat.

    PubMed

    Anderson, Michael; Habiger, Joshua

    2012-06-01

    The rhizosphere is populated by a numerous and diverse array of rhizobacteria, and many impact productivity in largely unknown ways. Here we characterize the rhizobacterial community in a wheat variety categorized according to shoot biomass using 16S rRNA pyrosequencing abundance data. Plants were grown in homogenized field soil under greenhouse conditions, and DNA was extracted and pyrosequenced, resulting in 29,007 quality sequences. Operational taxonomic units (OTUs) that were significantly associated with biomass productivity were identified using an exact test adjusted for the false-discovery rate. The productivity deviation expressed as a percentage of the total mean square for regression (PMSR) was determined for each OTU. Out of 719 OTUs, 42 showed significant positive associations and 39 showed significant negative associations (q value, ≤0.05). OTUs with the greatest net positive associations, by genus, were as follows: Duganella, OTU 43 and OTU 3; Janthinobacterium, OTU 278; Pseudomonas, OTU 588; and Cellvibrio, OTU 1847. Those with negative associations were as follows: Bacteria, OTU 273; Chryseobacterium, OTU 508; Proteobacteria, OTU 249; and Enterobacter, OTU 357. Shoot biomass productivity was strongly correlated with the balance between the overall abundances of positive- and negative-productivity-associated OTUs. High-productivity rhizospheres contained 9.2 significant positives for every negatively associated rhizobacterium, while low-productivity rhizospheres showed 2.3 significant negatives for every positively associated rhizobacterium. Overall rhizobacterial community diversity as measured by the Chao1, Shannon, and Simpson indexes was nonlinearly related to productivity, closely fitting a wavelike cubic equation. We conclude that shoot biomass productivity is strongly related to the ratio of positive- to negative-productivity-associated rhizobacteria in the rhizosphere. This study identifies significant OTUs composing the productive and

  8. Growth-Promoting Relationships with Children and Youth

    ERIC Educational Resources Information Center

    Spencer, Renée; Rhodes, Jean E.

    2014-01-01

    At the heart of afterschool programs are the relationships that form between the children and youth who participate in these programs and the adults who lead them. To be effective, adults working in afterschool settings must be able to engage youth in growth-promoting relationships. This article identifies and describes four foundational ways of…

  9. Red clover: An alternative to antibiotic growth promoters?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments were conducted at the Forage-Animal Production Research Unit to discover a growth-promoting natural product from red clover (Trifolium pratense). Previously published work included a bioassay for antimicrobial activity of phytochemicals. The bioassay was used to discover th...

  10. [Antibiotic growth promoters for the view of animal nutrition].

    PubMed

    Kamphues, J

    1999-01-01

    From 01. 07./09. 1999 on six further antibiotic growth promoters have been banned--with only four substances remaining in this group of feed additives. Therefore, the discussion on a possible induction of bacterial resistance by antibiotic growth promoters, especially in potentially pathogenic bacteria, will sooner or later come to an end which is not least in the interest of the reputation of animal husbandry and food of animal origin. Unfortunately, no short-term solution for health problems by legislation--especially in the gastrointestinal tract--during rearing and the beginning of the fattening period is possible as experiences in Sweden have distinctively shown. Anyway, growth promoting feed additives were not a cure-all of rearing problems, in spite of their use considerable amounts of antibiotics were prescribed during this period. But growth promoters (especially chinoxalines) were most suitable for the prophylaxis of a microbial imbalance in the gastrointestinal tract. Therefore, after the ban of these effective representatives of feed additives the amount of prescribed antimicrobial drugs for metaphylaxis and therapy should be critically observed. The questions of practicable alternatives will be primarily addressed to the fields of animal nutrition, veterinary medicine and feed industry. To answer these questions and to evolve new solutions (as well as to check their suitability in practice) is considerably more intricate than simply to ban these substances which is more attractive for the media, however. It is no progressive solution to give up antimicrobial growth promoters as feed additives and to use the same substances (for example olaquindox) as therapeutics now (prescribed by veterinarians) or to switch to zincoxide or copper (in a dosage high above all nutrient requirements) in order to prevent postweaning problems due to E. coli. But one has to take into consideration the reasons for the use of antibiotics (growth promoters and therapeutics) or

  11. Rhizobacteria of Cotton and Their Repression of Seedling Disease Pathogens

    PubMed Central

    Hagedorn, C.; Gould, W. D.; Bardinelli, T. R.

    1989-01-01

    During the 1983 field season, the rhizobacteria (including organisms from rhizosphere soil and the root rhizoplane) of cotton plants at one location in Mississippi were inventoried at different plant growth stages. Isolates (1,000) were identified to the genus level and characterized for repression of Pythium ultimum and Rhizoctonia solani. Cotton seedlings were initially colonized by bacteria of many different genera, and populations quickly reached 108 CFU/g of root tissue. As the season progressed, the bacterial populations declined as root mass increased and the roots became more woodlike in consistency. Fluorescent pseudomonads were the most numerous gram-negative rhizobacterial isolates of those that were randomly collected and identified, and they provided the largest number of isolates with fungal repressive activity. Several other gram-negative bacterial genera were recovered throughout the growing season, and some gram-positive bacteria were also isolated routinely, but at lower numbers. There was no correlation between the proportion of rhizobacterial isolates that possessed fungal repressive activity and the plant growth stage from which the isolates were obtained. Approximately twice as many bacterial isolates demonstrated fungal repression in the agar assay compared with the inplanta assay, and isolates were found more frequently with fungal repressive activity against P. ultimum than against R. solai. PMID:16348043

  12. Brassica napus hairy roots and rhizobacteria for phenolic compounds removal.

    PubMed

    González, Paola S; Ontañon, Ornella M; Armendariz, Ana L; Talano, Melina A; Paisio, Cintia E; Agostini, Elizabeth

    2013-03-01

    Phenolic compounds are contaminants frequently found in water and soils. In the last years, some technologies such as phytoremediation have emerged to remediate contaminated sites. Plants alone are unable to completely degrade some pollutants; therefore, their association with rhizospheric bacteria has been proposed to increase phytoremediation potential, an approach called rhizoremediation. In this work, the ability of two rhizobacteria, Burkholderia kururiensis KP 23 and Agrobacterium rhizogenes LBA 9402, to tolerate and degrade phenolic compounds was evaluated. Both microorganisms were capable of tolerating high concentrations of phenol, 2,4-dichlorophenol (2,4-DCP), guaiacol, or pentachlorophenol (PCP), and degrading different concentrations of phenol and 2,4-DCP. Association of these bacterial strains with B. napus hairy roots, as model plant system, showed that the presence of both rhizospheric microorganisms, along with B. napus hairy roots, enhanced phenol degradation compared to B. napus hairy roots alone. These findings are interesting for future applications of these strains in phenol rhizoremediation processes, with whole plants, providing an efficient, economic, and sustainable remediation technology. PMID:22961561

  13. Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.).

    PubMed

    Shweta, Bhatia; Maheshwari, Dinesh Kumar; Dubey, Ramesh Chand; Arora, Daljit Singh; Bajpai, Vivek K; Kang, Sun Chul

    2008-09-01

    Rhizobacteria are used as inoculants to enhance crop yield and for biological control of fungal pathogens. Fluorescent pseudomonads isolated from the rhizosphere of groundnut showed suppression of the phytopathogen Macrophomina phaseolina that causes charcoal rot of groundnut, an economically important agroproduct. Two strains of fluorescent pseudomonads, designated as PS1 and PS2, were selected as a result of in vitro antifungal activity. After 5 days of incubation at 28+/-1 degrees , both PS1 and PS2 caused clear inhibition zones in dual cultures, restricting the growth of M. phaseolina by 71% and 74%, respectively. Both the strains were capable of producing siderophores, indole acetic acid, and hydrocyanic acid, and causing phosphate solubilization under normal growth conditions. These strains, when used as inoculants in groundnut, enhanced germination up to 15% and 30% with subsequent increase in grain yield by 66% and 77%, respectively. Conversely, when the pathogen alone was testeds 57% decrease in yield was recorded. Thus the studies revealed the potential of the two pseudomonads not only as biocontrol agents against M. phaseolina, but also as a good growth promoter for groundnut. PMID:18852515

  14. Sugarcane Growth Promotion by the Endophytic Bacterium Pantoea agglomerans 33.1

    PubMed Central

    Rossetto, P. B.; Ferreira, A.; Tsui, S.; Lacava, P. T.; Mondin, M.; Azevedo, J. L.; Pizzirani-Kleiner, A. A.

    2012-01-01

    The promotion of sugarcane growth by the endophytic Pantoea agglomerans strain 33.1 was studied under gnotobiotic and greenhouse conditions. The green fluorescent protein (GFP)-tagged strain P. agglomerans 33.1::pNKGFP was monitored in vitro in sugarcane plants by microscopy, reisolation, and quantitative PCR (qPCR). Using qPCR and reisolation 4 and 15 days after inoculation, we observed that GFP-tagged strains reached similar density levels both in the rhizosphere and inside the roots and aerial plant tissues. Microscopic analysis was performed at 5, 10, and 18 days after inoculation. Under greenhouse conditions, P. agglomerans 33.1-inoculated sugarcane plants presented more dry mass 30 days after inoculation. Cross-colonization was confirmed by reisolation of the GFP-tagged strain. These data demonstrate that 33.1::pNKGFP is a superior colonizer of sugarcane due to its ability to colonize a number of different plant parts. The growth promotion observed in colonized plants may be related to the ability of P. agglomerans 33.1 to synthesize indoleacetic acid and solubilize phosphate. Additionally, this strain may trigger chitinase and cellulase production by plant roots, suggesting the induction of a plant defense system. However, levels of indigenous bacterial colonization did not vary between inoculated and noninoculated sugarcane plants under greenhouse conditions, suggesting that the presence of P. agglomerans 33.1 has no effect on these communities. In this study, different techniques were used to monitor 33.1::pNKGFP during sugarcane cross-colonization, and our results suggested that this plant growth promoter could be used with other crops. The interaction between sugarcane and P. agglomerans 33.1 has important benefits that promote the plant's growth and fitness. PMID:22865062

  15. Growth promoting effects of some lichen metabolites on probiotic bacteria.

    PubMed

    Gaikwad, Subhash; Verma, Neeraj; Sharma, B O; Behera, B C

    2014-10-01

    In the present study, the extract of four natural lichen species Canoparmelia eruptens, Everniastrum cirrhatum, Parmotrema austrosinense and Rimelia cetrata were studied for the source of natural antioxidant and their purified secondary metabolites were evaluated for growth promoting effects on probiotic bacteria Lactobacillus casei. The methanolic fraction of lichen species showed moderate to high antioxidant activity in the order P. austrosinense > E. cirrhatum > C. eruptens > R. cetrata. The lichen metabolites showed antioxidant activity with an IC50 values (μg/ml); lecanoric acid 79-95, salazinic 88-108, atranorin 100-116 and consalazinic acid 119-125. As far as the growth promoting effects of lichen metabolites on L. casei is concerned, lecanoric acid at 100 μg/ml conc. showed high growth stimulating activity in terms of increased dry matter of biomass (56.08 mg) of L. casei. Other lichen metabolites; salazinic acid, atranorin and consalazinic acid produced relatively less dry biomass 43.98 mg, 41.1 mg, 40.68 mg, respectively. However, standard antioxidants butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and Trolox after 36 h produced 39.04-47.81 mg dry biomass. At lower pH the growth promoting activity of lichen metabolites was found stable. PMID:25328204

  16. Growth-promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation

    PubMed Central

    Yang, Suijuan; Zhang, Xinghai; Cao, Zhaoyun; Zhao, Kaipeng; Wang, Sai; Chen, Mingxue; Hu, Xiufang

    2014-01-01

    Growth-promoting Sphingomonas paucimobilis ZJSH1, associated with Dendrobium officinale, a traditional Chinese medicinal plant, was characterized. At 90 days post-inoculation, strain ZJSH1 significantly promoted the growth of D. officinale seedlings, with increases of stems by 8.6% and fresh weight by 7.5%. Interestingly, the polysaccharide content extracted from the inoculated seedlings was 0.6% higher than that of the control. Similar growth promotion was observed with the transplants inoculated with strain ZJSH1. The mechanism of growth promotion was attributed to a combination of phytohormones and nitrogen fixation. Strain ZJSH1 was found using the Kjeldahl method to have a nitrogen fixation activity of 1.15 mg l−1, which was confirmed by sequencing of the nifH gene. Using high-performance liquid chromatography-mass spectrometry, strain ZJSH1 was found to produce various phytohormones, including salicylic acid (SA), indole-3-acetic acid (IAA), Zeatin and abscisic acid (ABA). The growth curve showed that strain ZJSH1 grew well in the seedlings, especially in the roots. Accordingly, much higher contents of SA, ABA, IAA and c-ZR were detected in the inoculated seedlings, which may play roles as both phytohormones and ‘Systemic Acquired Resistance’ drivers. Nitrogen fixation and secretion of plant growth regulators (SA, IAA, Zeatin and ABA) endow S. paucimobilis ZJSH1 with growth-promoting properties, which provides a potential for application in the commercial growth of D. officinale. PMID:25142808

  17. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna.

    PubMed

    Hameeda, B; Harini, G; Rupela, O P; Wani, S P; Reddy, Gopal

    2008-01-01

    Five bacterial strains with phosphate-solubilizing ability and other plant growth promoting traits increased the plant biomass (20-40%) by paper towel method. Glasshouse and field experiments were conducted using two efficient strains Serratia marcescens EB 67 and Pseudomonas sp. CDB 35. Increase in plant biomass (dry weight) was 99% with EB 67 and 94% with CDB 35 under glasshouse conditions. Increase in plant biomass at 48 and 96 days after sowing was 66% and 50% with EB 67 and 51% and 18% with CDB 35 under field conditions. Seed treatment with EB 67 and CDB 35 increased the grain yield of field-grown maize by 85% and 64% compared to the uninoculated control. Population of EB 67 and CDB 35 were traced back from the rhizosphere of maize on buffered rock phosphate (RP) medium and both the strains survived up to 96 days after sowing. PMID:16831538

  18. Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng

    PubMed Central

    Fan, Ze-Yan; Miao, Cui-Ping; Qiao, Xin-Guo; Zheng, You-Kun; Chen, Hua-Hong; Chen, You-Wei; Xu, Li-Hua; Zhao, Li-Xing; Guan, Hui-Lin

    2015-01-01

    Background Rhizobacteria play an important role in plant defense and could be promising sources of biocontrol agents. This study aimed to screen antagonistic bacteria and develop a biocontrol system for root rot complex of Panax notoginseng. Methods Pure-culture methods were used to isolate bacteria from the rhizosphere soil of notoginseng plants. The identification of isolates was based on the analysis of 16S ribosomal RNA (rRNA) sequences. Results A total of 279 bacteria were obtained from rhizosphere soils of healthy and root-rot notoginseng plants, and uncultivated soil. Among all the isolates, 88 showed antagonistic activity to at least one of three phytopathogenic fungi, Fusarium oxysporum, Fusarium solani, and Phoma herbarum mainly causing root rot disease of P. notoginseng. Based on the 16S rRNA sequencing, the antagonistic bacteria were characterized into four clusters, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetesi. The genus Bacillus was the most frequently isolated, and Bacillus siamensis (Hs02), Bacillus atrophaeus (Hs09) showed strong antagonistic activity to the three pathogens. The distribution pattern differed in soil types, genera Achromobacter, Acidovorax, Brevibacterium, Brevundimonas, Flavimonas, and Streptomyces were only found in rhizosphere of healthy plants, while Delftia, Leclercia, Brevibacillus, Microbacterium, Pantoea, Rhizobium, and Stenotrophomonas only exist in soil of diseased plant, and Acinetobacter only exist in uncultivated soil. Conclusion The results suggest that diverse bacteria exist in the P. notoginseng rhizosphere soil, with differences in community in the same field, and antagonistic isolates may be good potential biological control agent for the notoginseng root-rot diseases caused by F. oxysporum, Fusarium solani, and Panax herbarum. PMID:27158229

  19. Bioformulation of Burkholderia sp. MSSP with a multispecies consortium for growth promotion of Cajanus cajan.

    PubMed

    Pandey, Piyush; Maheshwari, D K

    2007-02-01

    The present work was undertaken to formulate an effective bioformulation using Burkholderia sp. strain MSSP, a known plant-growth-promoting rhizobacterium. MSSP was tagged with the reporter gene of green fluorescent protein (gfp) to monitor its population in cost-effective solid carriers, including sugarcane-bagasse, sawdust, cocoa peat, rice husk, wheat bran, charcoal, and rock phosphate, and paneer-whey as liquid carrier. Physical and chemical properties of different low-cost carrier materials were studied. The viability of the green fluorescent tagged variant of MSSP was estimated in different sterile carrier materials. Whey and wheat bran proved to be efficient carrier materials for the bioformulation. Sawdust, rock phosphate, rice husk, and cocoa peat were average, while charcoal and sugarcane-bagasse proved to be inferior carriers. The viability of strain MSSP was also assessed in wheat bran and whey-based consortium, having three other bacterial strains, namely Sinorhizobium meliloti PP3, Rhizobium leguminosarum Pcc, and Bacillus sp. strain B1. Presence of other plant-growth-promoting bacteria did not have any detrimental effect on the viability of MSSP. Efficiency of the wheat-bran-based multispecies consortium was studied on the growth of pigeonpea in field conditions. A considerable increase in plant biomass, nodule number and weight, and number of pods was recorded as compared with individual trials and with the control. PMID:17496969

  20. An update on alternatives to antimicrobial growth promoters for broilers.

    PubMed

    Huyghebaert, Gerard; Ducatelle, Richard; Van Immerseel, Filip

    2011-02-01

    Livestock performance and feed efficiency are closely interrelated with the qualitative and quantitative microbial load of the animal gut, the morphological structure of the intestinal wall and the activity of the immune system. Antimicrobial growth promoters have made a tremendous contribution to profitability in intensive husbandry, but as a consequence of the increasing concern about the potential for antibiotic resistant strains of bacteria, the European Commission decided to ban all commonly used feed antibiotics. There are a number of non-therapeutic alternatives, including enzymes, (in)organic acids, probiotics, prebiotics, etheric oils and immunostimulants. Their efficacy and mode of action are briefly described in this review. PMID:20382054

  1. A biosensor for organoarsenical herbicides and growth promoters

    PubMed Central

    Chen, Jian; Sun, Samio; Li, Chen-Zhong; Zhu, Yong-Guan; Rosen, Barry P.

    2014-01-01

    The toxic metalloid arsenic is widely distributed in food, water, and soil. While inorganic arsenic enters the environment primarily from geochemical sources, methylarsenicals either result from microbial biotransformation of inorganic arsenic or are introduced anthropogenically. Methylarsenicals such as monosodium methylarsonic acid (MSMA) have been extensively utilized as herbicides, and aromatic arsenicals such as roxarsone (Rox) are used as growth promoters for poultry and swine. Organoarsenicals are degraded to inorganic arsenic. The toxicological effects of arsenicals depend on their oxidation state, chemical composition, and bioavailability. Here we report that the active forms are the trivalent arsenic-containing species. We constructed a whole-cell biosensor utilizing a modified ArsR repressor that is highly selective toward trivalent methyl and aromatic arsenicals, with essentially no response to inorganic arsenic. The biosensor was adapted for in vitro detection of organoarsenicals using fluorescence anisotropy of ArsR-DNA interactions. It detects bacterial biomethylation of inorganic arsenite both in vivo and in vitro with detection limits of 10−7 M and linearity to 10−6 M for phenylarsenite and 5×10−6 M for methylarsenite. The biosensor detects reduced forms of MSMA and roxarsone and offers a practical, low cost method for detecting activate forms and breakdown products of organoarsenical herbicides and growth promoters. PMID:24359149

  2. Growth promotion effect of steelmaking slag on Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Nogami, R.; Tam, L. T.; Anh, H. T. L.; Quynh, H. T. H.; Thom, L. T.; Nhat, P. V.; Thu, N. T. H.; Hong, D. D.; Wakisaka, M.

    2016-04-01

    A growth promotion effect of steelmaking slag on Spirulina platensis M135 was investigated. The growth promotion effect was obtained that was 1.27 times greater than that obtained by the control by adding 500 mg L‑1 of steelmaking slag and culturing for 60 days. The lipid content decreased in a concentration-dependent manner with steelmaking slag, whereas the carbohydrate content remained constant. The protein content of S. platensis M135 increased in a concentration-dependent manner with steelmaking slag when cultured at day 45. The superoxide dismutase activity of S. platensis M135 exhibited a decreasing trend in a time-dependent manner and an increasing trend in the control. The superoxide dismutase activity was lower than that of the control at day 1 but was higher at day 30. No genetic damage was observed up to 500 mg L‑1 of steelmaking slag at 30 days of culture. Recovery from genetic damage was observed at 1,000 mg L‑1 of steelmaking slag but not at higher concentrations.

  3. Chromatographic analysis of banned antibacterial growth promoters in animal feed.

    PubMed

    Samanidou, Victoria F; Evaggelopoulou, Evaggelia N

    2008-06-01

    The issue of antimicrobial use in animals used as food is of global concern. Antimicrobials are used in animal agriculture to improve health and welfare of animals, meat quality, the economic efficiency of growth and production and public health by decreasing shedding of zoonotic pathogens. However, large quantities are often used without professional supervision. The growth-promotant (now reclassified as zootechnical feed additives) effect of low levels of antibiotics in animal feeds was first described in the late 1940s. Already in 1969 the Swann Committee recommended that use of antibiotics as a supplement in animal feedstuff should be restricted to those with little or no application as therapeutic agents for humans and animals, which would not impair the efficacy of therapeutic antibiotics through the development of resistant strains of organisms. Antimic