Science.gov

Sample records for plant model quarterly

  1. Coal demonstration plants. Quarterly report, July-September 1979

    SciTech Connect

    1980-07-01

    The status of two coal liquefaction demonstration plants and of four coal gasification demonstration plants is reviewed under the following headings: company involved, contract number, funding, process name, process description, flowsheet, schedule, history and progress during the July-September quarter, 1979. Supporting projects in coal feeding systems, valves, grinding equipment, instrumentation, process control and water treatment are discussed in a similar way. Conceptual design work on commercial plants for coal to methanol and for a HYGAS high BTU gas plant were continued. (LTN)

  2. The Savannah River Plant's Groundwater Monitoring Program, fourth quarter 1987

    SciTech Connect

    Not Available

    1987-01-01

    The Savannah River Plant's Groundwater Monitoring Program is administered by the Environmental Monitoring Group of the Health Protection Department. During the fourth quarter of 1987 (October--December), routine monitoring was performed on monitoring wells and drinking water locations. This quarterly report includes the radioactive monitoring data from drinking water. These data were collected from SRP drinking water systems supplied by wells. Two sets of flagging criteria were established in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels but are intended to aid personnel in sample scheduling, interpretation of data, and trend identification. The first-level flagging criteria are based on detection limits or background levels in SRP groundwater. The second-level flagging criteria are based on various water standards or levels significantly above background. During the fourth quarter of 1987, Priority Pollutant analyses were conducted on LFW wells and Appendix IX analyses were conducted on FSB point-of-compliance wells. Also during this quarter, one drinking water sample exceeded the first-level flagging criteria.

  3. Coal demonstration plants. Quarterly report, April-June 1979

    SciTech Connect

    1980-04-01

    The objective of the US DOE demonstration program is to demonstrate and verify second-generation technologies and validate the economic, environmental and productive capacity of a near commercial-size plant by integrating and operating a modular unit using commercial size equipment. These facilities are the final stage in the RD and D process aimed at accelerating and reducing the risks of industrial process implementation. Under the DOE program, contracts for the design, construction, and operation of the demonstration plants are awarded through competitive procedures and are cost shared with the industrial partner. The conceptual design phase is funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded between industry and the government. The government share of the cost involved for a demonstration plant depends on the plant size, location, and the desirability and risk of the process to be demonstrated. The various plants and programs are discussed: Description and status, funding, history, flowsheet and progress during the current quarter. (LTN)

  4. The Savannah River Plant`s Groundwater Monitoring Program, fourth quarter 1987

    SciTech Connect

    Not Available

    1987-12-31

    The Savannah River Plant`s Groundwater Monitoring Program is administered by the Environmental Monitoring Group of the Health Protection Department. During the fourth quarter of 1987 (October--December), routine monitoring was performed on monitoring wells and drinking water locations. This quarterly report includes the radioactive monitoring data from drinking water. These data were collected from SRP drinking water systems supplied by wells. Two sets of flagging criteria were established in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels but are intended to aid personnel in sample scheduling, interpretation of data, and trend identification. The first-level flagging criteria are based on detection limits or background levels in SRP groundwater. The second-level flagging criteria are based on various water standards or levels significantly above background. During the fourth quarter of 1987, Priority Pollutant analyses were conducted on LFW wells and Appendix IX analyses were conducted on FSB point-of-compliance wells. Also during this quarter, one drinking water sample exceeded the first-level flagging criteria.

  5. Modeling of integrated environmental control systems for coal-fired power plants: Conventional froth flotation for the IEC coal cleaning plant model. Quarterly progress report, [October 1, 1988--December 31, 1988

    SciTech Connect

    Rubin, E.S.

    1989-01-01

    This report describes the addition of a conventional froth flotation circuit into the FORTRAN coal cleaning module of the Integrated Environmental Control (IEC) model. The purpose of this modification is to include froth flotation as an option to clean the coal fines. The current model has three beneficiation: levels (2, 3, and 4) in which different streams are washed by specific gravity equipment. Level 2 washes only the coarse stream. Level 3 washes the coarse and medium streams. Level 4 washes the coarse, medium, and fine streams. This modification adds a fifth level, which uses specific gravity equipment to wash the coarse and medium streams and froth flotation equipment for the fine stream. The specific size fractions in each stream are specified by the model user. As before, the model optimizes the yield of each circuit in order to achieve a target coal quality for the cleaned coal product.

  6. Coal demonstration plants. Quarterly report, January-March 1979. [US DOE-supported

    SciTech Connect

    1980-01-01

    Progress in US DOE-supported demonstration plants for the gasification and liquefaction of coal is reported: company, contract number, process description and flowsheet, history and progress in the current quarter. Related projects involve coal feeders, lock hoppers, values, etc. for feeding coal into high pressure systems, coal grinding equipment and measuring and process control instrumentation. (LTN)

  7. Development of the integrated environmental control model. Quarterly progress report, April 1995--June 1995

    SciTech Connect

    Kalagnanam, J.R.; Rubin, E.S.

    1995-06-01

    The purpose of this contract is to develop and refine the Integrated Environmental Control Model (IECM). In its current configuration, the IECM provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integrated into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of different costs and performance results. The work in this contract is divided into two phases. Phase I deals with further developing the existing version of the IECM and training PETC personnel on the effective use of the model. Phase H deals with creating new technology modules, linking the IECM with PETC databases, and training PETC personnel on the effective use of the updated model. The present report summarizes recent progress on the Phase I effort during the period April 1, 1995 through June 30, 1995. This report presents additional revisions to the new cost models of flue gas desulfurization (FGD) technology initially reported in our fourth quarterly report. For convenience, the complete description of the revised FGD models are presented here.

  8. One-dimensional Kondo lattice model at quarter filling

    NASA Astrophysics Data System (ADS)

    Xavier, J. C.; Miranda, E.

    2008-10-01

    We revisit the problem of the quarter-filled one-dimensional Kondo lattice model, for which the existence of a dimerized phase and a nonzero charge gap had been reported by Xavier [Phys. Rev. Lett. 90, 247204 (2003)]. Recently, some objections were raised claiming that the system is neither dimerized nor has a charge gap. In the interest of clarifying this important issue, we show that these objections are based on results obtained under conditions in which the dimer order is artificially suppressed. We use the incontrovertible dimerized phase of the Majumdar-Ghosh point of the J1-J2 Heisenberg model as a paradigm with which to illustrate this artificial suppression. Finally, by means of extremely accurate density-matrix renormalization-group calculations, we show that the charge gap is indeed nonzero in the dimerized phase.

  9. Modeling plant morphogenesis.

    PubMed

    Prusinkiewicz, Przemyslaw; Rolland-Lagan, Anne-Gaëlle

    2006-02-01

    Applications of computational techniques to developmental plant biology include the processing of experimental data and the construction of simulation models. Substantial progress has been made in these areas over the past few years. Complex image-processing techniques are used to integrate sequences of two-dimensional images into three-dimensional descriptions of development over time and to extract useful quantitative traits. Large amounts of data are integrated into empirical models of developing plant organs and entire plants. Mechanistic models link molecular-level phenomena with the resulting phenotypes. Several models shed light on the possible properties of active auxin transport and its role in plant morphogenesis. PMID:16376602

  10. Entanglement entropies of the quarter filled Hubbard model

    NASA Astrophysics Data System (ADS)

    Calabrese, Pasquale; Essler, Fabian H. L.; Läuchli, Andreas M.

    2014-09-01

    We study Rényi and von Neumann entanglement entropies in the ground state of the one dimensional quarter-filled Hubbard model with periodic boundary conditions. We show that they exhibit an unexpected dependence on system size: for L = 4mod 8 the results are in agreement with expectations based on conformal field theory, while for L = 0mod 8 additional contributions arise. We show that these can be understood in terms of a ‘shell-filling’ effect and we develop a conformal field theory approach to calculate the additional contributions to the entropies. These analytic results are found to be in excellent agreement with density matrix renormalization group computations for weak Hubbard interactions. We argue that for larger interactions the presence of a marginal irrelevant operator in the spin sector strongly affects the entropies at the finite sizes accessible numerically and we present an effective way to take them into account.

  11. The Savannah River Plant`s Groundwater Monitoring Program - second quarter 1987

    SciTech Connect

    1996-10-01

    This report is a summary of the groundwater monitoring program conducted by the Environmental Monitoring Group of the Health Protection Department in the second quarter of 1987 and includes the analytical results, field data, and detailed documentation for this program. The purpose of this report is twofold. First, the report provides a historical record of the activities and the rationale of the program; second, it provides an official document of the analytical results.

  12. Development of kineto-dynamic quarter-car model for synthesis of a double wishbone suspension

    NASA Astrophysics Data System (ADS)

    Balike, K. P.; Rakheja, S.; Stiharu, I.

    2011-02-01

    Linear or nonlinear 2-degrees of freedom (DOF) quarter-car models have been widely used to study the conflicting dynamic performances of a vehicle suspension such as ride quality, road holding and rattle space requirements. Such models, however, cannot account for contributions due to suspension kinematics. Considering the proven simplicity and effectiveness of a quarter-car model for such analyses, this article presents the formulation of a comprehensive kineto-dynamic quarter-car model to study the kinematic and dynamic properties of a linkage suspension, and influences of linkage geometry on selected performance measures. An in-plane 2-DOF model was formulated incorporating the kinematics of a double wishbone suspension comprising an upper control arm, a lower control arm and a strut mounted on the lower control arm. The equivalent suspension and damping rates of the suspension model are analytically derived that could be employed in a conventional quarter-car model. The dynamic responses of the proposed model were evaluated under harmonic and bump/pothole excitations, idealised by positive/negative rounded pulse displacement and compared with those of the linear quarter-car model to illustrate the contributions due to suspension kinematics. The kineto-dynamic model revealed considerable variations in the wheel and damping rates, camber and wheel-track. Owing to the asymmetric kinematic behaviour of the suspension system, the dynamic responses of the kineto-dynamic model were observed to be considerably asymmetric about the equilibrium. The proposed kineto-dynamic model was subsequently applied to study the influences of links geometry in an attempt to seek reduced suspension lateral packaging space without compromising the kinematic and dynamic performances.

  13. Plant Innate Immunity Multicomponent Model.

    PubMed

    Andolfo, Giuseppe; Ercolano, Maria R

    2015-01-01

    Our understanding of plant-pathogen interactions is making rapid advances in order to address issues of global importance such as improving agricultural productivity and sustainable food security. Innate immunity has evolved in plants, resulting in a wide diversity of defense mechanisms adapted to specific threats. The postulated PTI/ETI model describes two perception layers of plant innate immune system, which belong to a first immunity component of defense response activation. To better describe the sophisticated defense system of plants, we propose a new model of plant immunity. This model considers the plant's ability to distinguish the feeding behavior of their many foes, such as a second component that modulates innate immunity. This hypothesis provides a new viewpoint highlighting the relevance of hormone crosstalk and primary metabolism in regulating plant defense against the different behaviors of pathogens with the intention to stimulate further interest in this research area. PMID:26617626

  14. Plant response to FBC waste-coal slurry solid mixtures. [Quarterly] technical report, September 1--November 30, 1993

    SciTech Connect

    Darmody, R.G.; Dunker, R.E.; Dreher, G.B.; Roy, W.R.; Steel, J.D.

    1994-03-01

    The goal of this project is to test the feasibility of stabilizing coal slurry solids (CSS) wastes by directly seeding plants into the waste. This is not done conventionally because the waste can generate toxic amounts of sulfuric acid. Our approach is to neutralize the potential acidity by mixing fluidized bed combustion (FBC) waste into the slurry. If successful, this approach would both help dispose of FBC wastes while providing a more economical slurry stabilization technique. The project involves growing forage plants in CSS-FBC mixtures in the greenhouse. This is the first quarter of the project. We have designed the experiment, secured greenhouse space, purchased the seeds, collected and dried the FBC and CSS samples. The samples represent a typical range of properties. We retrieved two FBC and two CSS samples. One CSS sample appears to have a higher pyrite content than the other.

  15. Characterization of air toxics from a laboratory coal-fired combustor and utility scale power plants. Quarterly progress report No. 14, January--March, 1995

    SciTech Connect

    1995-05-01

    This report summarized progress on Task 3, Power Plant Studies, and Task 4, Technical Management and Reporting. Task 3 this quarter involved sampling of flue gas from Units 6 and 7 of the host power plant. The operating parameters during the sampling period are given. Laboratory analyses are in progress. Under Task 4, internal and external QA/QC audits were conducted. A data base management system was prepared. An appendix contains a data compilation of plant operating data.

  16. Plant Innate Immunity Multicomponent Model

    PubMed Central

    Andolfo, Giuseppe; Ercolano, Maria R.

    2015-01-01

    Our understanding of plant–pathogen interactions is making rapid advances in order to address issues of global importance such as improving agricultural productivity and sustainable food security. Innate immunity has evolved in plants, resulting in a wide diversity of defense mechanisms adapted to specific threats. The postulated PTI/ETI model describes two perception layers of plant innate immune system, which belong to a first immunity component of defense response activation. To better describe the sophisticated defense system of plants, we propose a new model of plant immunity. This model considers the plant’s ability to distinguish the feeding behavior of their many foes, such as a second component that modulates innate immunity. This hypothesis provides a new viewpoint highlighting the relevance of hormone crosstalk and primary metabolism in regulating plant defense against the different behaviors of pathogens with the intention to stimulate further interest in this research area. PMID:26617626

  17. [Geothermal system temperature-depth database and model for data analysis]. 5. quarterly technical progress report

    SciTech Connect

    Blackwell, D.D.

    1998-04-25

    During this first quarter of the second year of the contract activity has involved several different tasks. The author has continued to work on three tasks most intensively during this quarter: the task of implementing the data base for geothermal system temperature-depth, the maintenance of the WWW site with the heat flow and gradient data base, and finally the development of a modeling capability for analysis of the geothermal system exploration data. The author has completed the task of developing a data base template for geothermal system temperature-depth data that can be used in conjunction with the regional data base that he had already developed and is now implementing it. Progress is described.

  18. Plant canopy specular reflectance model

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Grant, L.

    1985-01-01

    A model is derived for the amount of light specularly reflected and polarized by a plant canopy. The model is based on the morphological and phenological characteristics of the canopy and upon the Fresnel equations of optics. The theory demonstrates that the specular reflectance of the plant canopy is a function of the angle of incidence and potentially contains information to help discriminate between species. The theory relates the specular reflectance to botanical condition of the canopy - to factors such as development stage, plant vigor, and leaf area index (LAI).

  19. Salmonella prevalence and characterization in a free-range pig processing plant: tracking in trucks, lairage, slaughter line and quartering.

    PubMed

    Hernández, Manuela; Gómez-Laguna, Jaime; Luque, Inmaculada; Herrera-León, Silvia; Maldonado, Alfonso; Reguillo, Lucía; Astorga, Rafael J

    2013-03-01

    New consumer tendencies are focused on products derived from systems which allow both a high animal welfare condition and a high food safety level. However, sometimes animal welfare regulations make the adoption of adequate bio-security measures difficult, representing a barrier for animal health and food safety. Thus the aim of this study was to determine the prevalence of Salmonella at different points of the pig slaughtering process (Trucks, Lairage, Slaughter line and Quartering, TLSQ) from pigs reared in free-range systems. From eight samplings a total of 126 Salmonella isolates out of 1160 different samples were recovered (10.86%). The highest percentage of isolates was detected at the points of pre-scalding (29/80, 36.25%), trucks (13/56, 23.21%), cecal contents (17/80, 21.25%), tonsils (14/80, 17.50%), ileocecal lymph nodes (13/80, 16.25%) and lairage (9/64, 14.06%). Furthermore, eighteen isolates were obtained from different environmental samples from slaughter line and quartering plant (knives and surface of tables) (5.63%) and three isolates at the quartering plant samples (ham, shoulder and loin) (3.75%). Fourteen different serotypes were isolated: Bredeney, Rissen, Derby, Typhimurium, Montevideo, Israel, Anatum, Emek, Monophasic Salmonella Typhimurium (mST), Choleraesuis, Durban, Kentucky, London and Sandiego. S. Typhimurium phage types U311, 193, 104b and UT were identified. Moreover, mST strain was phage typed as U311. From TLSQ1, TLSQ2 and TLSQ4, different strains of S. Derby, S. Rissen and S. Bredeney serotypes were isolated from pig and environmental samples, pointing to a potential cross contamination. Molecular typing (Pulsed-Field Gel Electrophoresis, PFGE) of these strains confirmed the cross contamination. In the remaining samplings, different serotypes were obtained in each sampled point of the chain, assuming that the isolated serotypes belonged to different epidemiological origins. Our results show the isolation of different serotypes of

  20. Striped Multiferroic Phase in Double-Exchange Model for Quarter-Doped Manganites

    SciTech Connect

    Dong, Shuai; Yu, Rong; Liu, J.-M.; Dagotto, Elbio R

    2009-01-01

    The phase diagram of quarter-hole-doped perovskite manganites is investigated using the doubleexchange model. An exotic striped type-II multiferroic phase, where 25% of the nearest-neighbor spin couplings are orthogonal to each other, is found in the narrow-bandwidth region. Comparing with the spiral-spin ordering phase of undoped manganites, the multiferroic Curie temperature of the new phase is estimated to be 4 times higher, while the ferroelectric polarization is similar in magnitude. Our study provides a path for noncollinear spin multiferroics based on electronic self-organization, different from the traditional approach based on superexchange frustration.

  1. Development of the integrated environmental control model: Cost models of selective catalytic reduction (SCR) NO{sub x} control systems. Quarterly progress report, October--December 1993

    SciTech Connect

    Frey, H.C.; Rubin, E.S.

    1994-01-31

    Selective catalytic reduction (SCR) is a process for the post-combustion removal of NO{sub x} from the flue gas of fossil-fuel-fired power plants. SCR is capable of NO{sub x} reduction efficiencies of up to 80 or 90 percent. SCR technology has been applied for treatment of flue gases from a variety of emission sources, including natural gas- and oil-fired gas turbines, process steam boilers in refineries, and coal-fired power plants. SCR applications to coal-fired power plants have occurred in Japan and Germany. Full-scale SCR systems have not been applied to coal-fired power plants in the U.S., although there have been small-scale demonstration projects. Increasingly strict NO{sub x} control requirements are being imposed by various state and local regulatory agencies in the U.S. These requirements may lead to U.S. SCR applications, particularly for plants burning low sulfur coals (Robie et al.). Furthermore, implicit in Title IV of the 1990 Clean Air Act Amendment is a national NO{sub x} emission reduction of 2 million tons per year. Thus, there may be other incentives to adapt SCR technology more generally to U.S. coal-fired power plants with varying coal sulfur contents. However, concern remains over the applicability of SCR technology to U.S. plants burning high sulfur coals or coals with significantly different fly ash characteristics than those burned in Germany and Japan. There is also concern regarding the application of SCR to peaking units due to potential startup and shutdown problems (Lowe et al.). In this report, new capital cost models of two SCR systems are developed. These are {open_quotes}hot-side high-dust{close_quotes} and {open_quotes}tail-end low-dust{close_quotes} options. In a previous quarterly report, performance models for these two systems were developed.

  2. Pipeline gas demonstration plant, Phase I. Quarterly technical progress report for September 1980-November 1980

    SciTech Connect

    Eby, R.J.

    1980-12-01

    Work was performed in the following tasks in Phase I of the Pipeline Gas Demonstration Plant Program: Site Evaluation and Selection; Demonstration Plant Environmental Analysis; Feedstock Plans, Licenses, Permits and Easements; Demonstration Plant Definitive Design; Construction Planning; Economic Reassessment; Technical Support; Long Lead Procurement List; and Project Management. The Preliminary Construction Schedule was delivered to the Government on October 3, 1980, constituting an early delivery of the construction schedule called for in the scope of work for Task VI. The major work activity continues to be the effort in Task VI, Demonstration Plant Definitive Design, with two 30% Design Review meetings being held with the Government. Work in Task VII, Construction Planning, was initiated. Work has progressed satisfactorily in the other tasks in support of the Demonstration Plant Program. A Cost Change Proposal was submitted because of an increase in the scope of work and an extension of the schedule for Phase I to 47 months.

  3. Plant response to FBC waste-coal slurry solid mixtures. [Quarterly] technical report, December 1--February 28, 1994

    SciTech Connect

    Darmody, R.G.; Dunker, R.E.; Dreher, G.B.; Roy, W.R.; Steel, J.D.

    1994-06-01

    The goal of this project is to test the feasibility of stabilizing coal slurry solids (CSS) wastes by directly seeding plants into the waste. This is not done conventionally because the waste can generate toxic amounts of sulfuric acid. Our approach is to neutralize the potential acidity by mixing fluidized bed combustion (FBC) waste into the slurry. If successful this approach would both help dispose of FBC wastes while providing a more economical slurry stabilization technique. The project involves growing forage plants in CSS-FBC mixtures in the greenhouse. This is the second quarter of the project. We have designed the experiment, secured greenhouse space, purchased the seeds, collected, dried, and are analyzing the FBC and CSS samples. The samples represent a typical range of properties. We retrieved two FBC and two CSS samples. One CSS sample had a relatively high CaCO{sub 3} content relative to the pyrite content and will require no FBC to neutralize the potential acidity. The other CSS sample will require from 4.2 to 2.7% FBC material to neutralize its potential acidity.

  4. Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 2, January 1-March 31, 1980

    SciTech Connect

    Healy, H. C.; Sanderson, R. A.; Wertheim, F. J.; Farris, P. F.; Mientek, A. P.; Maricle, D. L.; Briggs, T. A.; Preston, Jr., J. L.; Louis, G. A.; Abrams, M. L.; Bushnell, C. L.; Nickols, R. C.; Gelting, R. L.; Katz, M.; Stewart, R. C.; Kunz, H. R.; Gruver, G. A.; Bregoli, L. J.; Steuernagel, W. H.; Smith, R.; Smith, S. W.; Szymanski, S. T.

    1980-08-01

    The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of 1990's competitive coal-fired electrical utility central station or industrial cogeneration power plants. During this quarter, effort was continued in all four major task areas: Task 1 - system studies to define the reference power plant design; Task 2 - cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - developing the capability for operation of stacks on coal-derived gas. In the system study activity of Task 1, preliminary module and cell stack design requirements were completed. Fuel processor characterization has been completed by Bechtel National, Inc. Work under Task 2 defined design approaches for full-scale stack busbars and electrical isolation of reactant manifolds and reactant piping. Preliminary design requirements were completed for the anode. Conductive nickel oxide for cathode fabrication has been made by oxidation and lithiation of porous nickel sheet stock. A method of mechanizing the tape casting process for increased production rates was successfully demonstrated under Task 3. In Task 4, theoretical calculations indicated that hydrogen cyanide and ammonia, when present as impurities in the stack fuel gas, will have no harmful effects. Laboratory experiments using higher than anticipated levels of ethylene showed no harmful effects. Components for the mobile test facility are being ordered.

  5. Short-term energy outlook. Quarterly projections, second quarter 1996

    SciTech Connect

    1996-04-01

    The Energy Information Administration prepares quarterly, short-term energy supply, demand, and price projections. The forecasts in this issue cover the second quarter of 1996 through the fourth quarter of 1997. Changes to macroeconomic measures by the Bureau of Economic Analysis have been incorporated into the STIFS model used.

  6. Identification and validation of heavy metal and radionuclide accumulating terrestrial plant species. Quarterly technical progress report, June 21, 1995--September 20, 1995

    SciTech Connect

    Kochian, L.

    1995-12-31

    This quarterly report describes experiments on uptake of a variety of heavy metals by plants. Titles of report sections are (1) Alleviation of heavy-metal induced micronutrient deficiency through foliar fertilization, (2) Second screen for Zn, Cu, and Cd accumulation, (3) Characterization of the root Zn hyperaccumulation by Thlaspi caerulescens, (4) Comparison of commercial Brassica accessions obtained from the Iowa seed bank, (5) Second screening experiment for the accumulation of Cs and Sr by plants, (6) Effect of Ca on Cs and Sr accumulation by selected dicot species, and (7) Preliminary investigations into the forms of uranium taken up by plants.

  7. Development of the integrated environmental control model: Performance and cost models for the NOXSO process. Quarterly progress report

    SciTech Connect

    Kalagnanam, J.R.; Rubin, E.S.

    1995-12-01

    This Quarterly Report documents research efforts carried out under Contract No. DE-AC22-92PC91346 from the US Department of Energy. lie purpose of this contract is to develop and refine the Integrated Environmental Control Model (IECM) created and enhanced by Carnegie Mellon University (CMU) for the US Department of Energy`s Pittsburgh Energy Technology Center (DOE/PETC) under contract Numbers DE-FG2283PC60271 and DE-AC22-87PC79864. The work in this contract is divided into two phases. Phase I deals with further developing the existing version of the IECM and training PETC personnel on the effective use of the model. Phase II deals with creating new technology modules, linking the IECM with PETC databases, and training PETC personnel on the effective use of the updated model. The present report summarizes recent progress on the Phase I effort during the period July 1, 1995 through September 30, 1995. This report presents additional details on the new performance models of the NOXSO process. For convenience, the complete description of the NOXSO performance model is presented here, including information previously presented in the Quarterly Report submitted in April 1995. Also included in this report is a newly developed cost model for the NOXSO process. Illustrative results are presented using the new performance and cost models as implemented in the IECM.

  8. (Development of advanced models of the MCC full expansion (quiet) engine): First quarterly report

    SciTech Connect

    Not Available

    1988-01-01

    This is the first quarterly report to the Department of Energy on the progress associated with the development of advanced models of the MCC full expansion (quiet) engine. These models will be evaluated in successive steps and eventually incorporated into a lawn mower for the purpose of commercializing the engine for small wheeled lawn and garden applications. During the first three months of the program (July 1 thru Sept 30), the Phase I design was basically completed with the exception of some engine/lawn mower interface hardware which will be completed during the final stages of the development program after we have selected a lawn mower deck. Rick Erickson, the design engineer for the program, completed the initial parts drawings utilizing the computer drafting system together with guidance from Fredrick Erickson, the program principal engineer and Jeff Erickson, who is in charge of manufacturing the engines. A miniature copy of these drawings is included in the appendix for your review.

  9. Pipeline gas demonstration plant, Phase I. Quarterly technical progress report, December 1980-February 1981

    SciTech Connect

    Eby, R.J.

    1981-03-01

    Work was performed in the following areas of the Pipeline Gas Demonstration Plant Program: site evaluation and selection; demonstration plant environmental analysis; feedstock plans, licenses, permits and easements; demonstration plant definitive design; construction planning; economic reassessment; technical support; long lead procurement list; and project management. Major work activity continued to be the effort on Demonstration Plant Definitive Design. A Construction Readiness Audit was held on January 14 to 16, 1981 by a Government/Procon team to review the project and assess the readiness of the project to proceed into the construction phase. Documents for the 60% Design Review were prepared for ICGG review and submitted to the Contracting Officer's authorized representative prior to transmittal to the Corps of Engineers for review. The Corps of Engineers conducted a design audit. The primary objective of the audit was to prepare an independent estimate of the work remaining to complete Phase I of the project. Work continued on the production of a single bid package for the Demonstration Plant, suitable for release to a single constructor, and organized so it can be easily broken down into subpackages by construction specialty. A formal audit of the ICGG R/QA Plan and implementation thereof was performed February 11-12, 1981 by the Corps of Engineers. The Contract Deliverable Final Feedstock-Product-Waste Disposal Plan was delivered to the Government on February 25, 1981.

  10. An Evaluation of the Plant Density Estimator the Point-Centred Quarter Method (PCQM) Using Monte Carlo Simulation

    PubMed Central

    Khan, Md Nabiul Islam; Hijbeek, Renske; Berger, Uta; Koedam, Nico; Grueters, Uwe; Islam, S. M. Zahirul; Hasan, Md Asadul; Dahdouh-Guebas, Farid

    2016-01-01

    Background In the Point-Centred Quarter Method (PCQM), the mean distance of the first nearest plants in each quadrant of a number of random sample points is converted to plant density. It is a quick method for plant density estimation. In recent publications the estimator equations of simple PCQM (PCQM1) and higher order ones (PCQM2 and PCQM3, which uses the distance of the second and third nearest plants, respectively) show discrepancy. This study attempts to review PCQM estimators in order to find the most accurate equation form. We tested the accuracy of different PCQM equations using Monte Carlo Simulations in simulated (having ‘random’, ‘aggregated’ and ‘regular’ spatial patterns) plant populations and empirical ones. Principal Findings PCQM requires at least 50 sample points to ensure a desired level of accuracy. PCQM with a corrected estimator is more accurate than with a previously published estimator. The published PCQM versions (PCQM1, PCQM2 and PCQM3) show significant differences in accuracy of density estimation, i.e. the higher order PCQM provides higher accuracy. However, the corrected PCQM versions show no significant differences among them as tested in various spatial patterns except in plant assemblages with a strong repulsion (plant competition). If N is number of sample points and R is distance, the corrected estimator of PCQM1 is 4(4N − 1)/(π ∑ R2) but not 12N/(π ∑ R2), of PCQM2 is 4(8N − 1)/(π ∑ R2) but not 28N/(π ∑ R2) and of PCQM3 is 4(12N − 1)/(π ∑ R2) but not 44N/(π ∑ R2) as published. Significance If the spatial pattern of a plant association is random, PCQM1 with a corrected equation estimator and over 50 sample points would be sufficient to provide accurate density estimation. PCQM using just the nearest tree in each quadrant is therefore sufficient, which facilitates sampling of trees, particularly in areas with just a few hundred trees per hectare. PCQM3 provides the best density estimations for all

  11. Environmental restoration at the Pantex Plant. Quarterly progress report, April 12, 1995--June 30, 1995

    SciTech Connect

    Charbeneau, R.J.

    1995-06-19

    This report summarizes the Work Plans for activities associated with Environmental Restoration of the perched aquifer and contaminated soils at the Pantex Plant. The Higher Education Consortium/Pantex Research Laboratory is participating in the Consortium Grant to evaluate subsurface remediation alternatives for the perched aquifer at the Pantex Plant. Research activities will develop site characterization data and evaluate remediation alternatives for the perched aquifer and the overlying vadose zone. The work plans cover research activities for the remainder of FY95, and proposed activities for FY96 and thereafter. A separate document will present more detailed plans for FY96 activities and budget requirements.

  12. Development of molten carbonate fuel cell power plant. Quarterly progress report, February 1, 1982-April 30, 1982

    SciTech Connect

    Not Available

    1982-06-16

    Work proceeded this quarter mainly under three program tasks. Under Task 1.0, work was started on preparing a description of the reference Steam Injection System. It is planned to lay out the plant in power unit trains rated at a nominal 100 MW(e). Under Task 2.0, work continued on anode, cathode, current collector, and electrolyte tile develoment and stack design and analysis. Corrosion test results of various current collector materials after 3500 hours exposure are reported. Sintering data at 6000 hours were obtained on twelve different material samples tested to evaluate the effects of chromium and ceramic addition to state-of-the-art and in-house fabricated electrodes. The 6000 hour data showed no change in porosity or pore distribution from the 5000 hour data. The electroless-plated ceramic plaques demonstrated good stability and porosities. Two cells containing dual porosity anodes using all metal-plated-ceramic material, were tested. Although testing was terminated due to cracked tiles, the cell results are encouraging for the experimental anodes. Under Task 4.0, work continued on installation and debugging of the atmospheric bench scale single cell test facility, and operation of a cell started on April 20, 1982. Progress is detailed. (WHK)

  13. Optimization of a quarter-car suspension model coupled with the driver biomechanical effects

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Alexey; Mammadov, Musa; Sultan, Ibrahim; Hajilarov, Eldar

    2011-06-01

    In this paper a Human-Vehicle-Road (HVR) model, comprising a quarter-car and a biomechanical representation of the driver, is employed for the analysis. Differential equations are provided to describe the motions of various masses under the influence of a harmonic road excitation. These equations are, subsequently, solved to obtain a closed form mathematical expression for the steady-state vertical acceleration measurable at the vehicle-human interface. The solution makes it possible to find optimal parameters for the vehicle suspension system with respect to a specified ride comfort level. The quantitative definition given in the ISO 2631 standard for the ride comfort level is adopted in this paper for the optimization procedure. Numerical examples, based on actually measured road profiles, are presented to prove the validity of the proposed approach and its suitability for the problem at hand.

  14. Pilot plant testing of Illinois coal for blast furnace injection. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect

    Crelling, J.C.

    1995-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1993--94 period. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900{degrees}C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter there were two major accomplishments.

  15. Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 5, October 1, 1980-December 31, 1980

    SciTech Connect

    Not Available

    1980-01-01

    The overall objective of this program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive coal-fired electrical utility central station or industrial cogeneratin power plants. During this quarter, activity continued in all four task areas: Task 1 - system studies to define the reference power plant design; Task 2 - cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - development of the capability to operate stacks on coal-derived gas.

  16. Modelling meristem development in plants.

    PubMed

    Heisler, Marcus G; Jönsson, Henrik

    2007-02-01

    Meristems continually supply new cells for post-embryonic plant development and coordinate the initiation of new organs, such as leaves and flowers. Meristem function is regulated by a large and interconnected dynamic system that includes transcription networks, intercellular protein signalling, polarized transport of hormones and a constantly changing cellular topology. Mathematical modelling, in which the dynamics of a system are simulated using explicitly defined interactions, can serve as a powerful tool for examining the expected behaviour of such a system given our present knowledge and assumptions. Modelling can also help to investigate new hypotheses in silico both to validate ideas and to obtain inspiration for new experiments. Several recent studies have used new molecular data together with modelling and computational techniques to investigate meristem function. PMID:17140844

  17. Establishing the SECME Model in the District of Columbia. Third quarter report, April 1, 1994--June 30, 1994

    SciTech Connect

    Vickers, R.G.

    1995-12-31

    This report contains a description of the planning and activities completed for the third quarter report (April - June 1994) of the 1993-1994 United States Department of Energy/Southeastern Consortium for Minorities in Engineering (SECME) grant for {open_quotes}Establishing the SECME Model in the District of Columbia.{close_quotes} The program continues to have outstanding success in Establishing the SECME Model in the District of Columbia Public Schools. Exhibits of supporting documentation are included.

  18. Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model Fourth Quarter 2008

    SciTech Connect

    JH Mather; DA Randall; CJ Flynn

    2008-09-30

    In 2008, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties. The first quarter milestone was the initial formulation of the algorithm for retrieval of these properties. The second quarter milestone included the time series of ARM-retrieved cloud properties and a year-long CCPP control simulation. The third quarter milestone included the time series of ARM-retrieved aerosol optical depth and a three-year CCPP control simulation. This final fourth quarter milestone includes the time-series of aerosol and dust properties and a decade-long CCPP control simulation.

  19. Modeling, design, and life performance prediction for energy production from geothermal reservoirs. Quarterly report, January--March 1998

    SciTech Connect

    Swenson, D.

    1998-01-01

    The objective of this project is to maintain and transfer existing Hot Dry Rock two-dimensional fractured reservoir analysis capability to the geothermal industry and to extend the analysis concepts to three dimensions. The project start date was May 22, 1997 and it runs through May 21, 1998. This is the quarterly progress report for January through March of 1998. In this quarter, the primary focus has been on development of the Geocrack3D model, presenting initial results to the industry, and maintenance of Geocrack2D. It is important to emphasize that the modeling is complementary to current industry modeling, in that they focus on the user interface, flow in fractured rock, and the coupled effect of thermal cooling changing fracture aperture.

  20. Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 9, October 1, 1981-December 31, 1981

    SciTech Connect

    Not Available

    1981-01-01

    The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive coal-fired electrical utility central station or industrial cogeneration power plants. During this quarter, activity continued in three of the four task areas: Task 2-cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - development of the capability to operate stacks on coal-derived gas. Progress is reported. (WHK)

  1. Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model - First Quarter 2008

    SciTech Connect

    JH Mather; D Randall

    2007-12-30

    In 2008, the Atmospheric Radiation Measurement (ARM) program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties. The first quarter milestone is ‘initial formulation of the algorithm to produce and make available, new continuous time series of retrieved cloud , aerosol and dust properties, based on results from the ARM Mobile Facility deployment in Niger, Africa. The first quarter milestone has been achieved.

  2. Modeling Tritium Life cycle in Nuclear Plants

    SciTech Connect

    Hussey, D.; Saunders, P.; Morey, D.; Pitt, N.; Wilson, J.; Claes, B.

    2006-07-01

    The mathematical development of a tritium model for nuclear power plants is presented. The model requires that the water and tritium material balance be satisfied throughout normal operations and shutdown. The model results obtained at the time of publishing include the system definitions and comparison of the model predictions of tritium generations compared to the observed plant data of the Braidwood station. A scenario that models using ion exchange resin to remove coolant boron demonstrates the tritium concentration levels are manageable. (authors)

  3. Modeling, design, and life performance prediction for energy production from geothermal reservoirs. Quarterly progress report, October--December, 1997

    SciTech Connect

    Swenson, D.

    1997-01-01

    The objective of this project is to maintain and transfer existing Hot Dry Rock two-dimensional fractured reservoir analysis capability to the geothermal industry and to extend the analysis concepts to three dimensions. In this quarter, the primary focus has been on interaction with industry, development of the Geocrack3D model, and maintenance of Geocrack2D. It is important to emphasize that the modeling is complementary to current industry modeling, in that the authors focus on flow in fractured rock and on the coupled effect of thermal cooling.

  4. Plant Growth Models Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  5. Nutrient-contaminant (Pu) plant accumulation model

    SciTech Connect

    Cowan, C.E.; Jenne, E.A.; Simpson, J.C.; Cataldo, D.A.

    1981-12-01

    A model was developed which simulates the movement and daily accumulation of nutrients and contaminants in crop plants resulting from known physiological processes in the plant. In the model, the daily contaminant accumulation is governed by daily increase in plant biomass derived from photosynthesis and by the specified thermodynamic activity of the bioavailable contaminant species in soil or hydroponic solutin. Total accumulation and resulting concentration in the plant's root, stem and branch, leaf, and reproductive compartments can be simulated any time during the growing season. Parameters were estimated from data on plutonium accumulation in soybeans and the model was calibrated against this same data set. The plutonium distribution in the plant was found to be most sensitive to parameters related to leaf accumulation. Contamination at different times during the growing season resulted in a large change in predicted leaf accumulation but very little change in predicted accumulation in other plant parts except when contamination occurred very late in the growing season.

  6. Modeling of accelerator systems and experimental verification of Quarter-Wave Resonator steering

    NASA Astrophysics Data System (ADS)

    Benatti, Carla

    Increasingly complicated accelerator systems depend more and more on computing power and computer simulations for their operation as progress in the field has led to cutting-edge advances that require finer control and better understanding to achieve optimal performance. Greater ambitions coupled with the technical complexity of today's state-of-the-art accelerators necessitate corresponding advances in available accelerator modeling resources. Modeling is a critical component of any field of physics, accelerator physics being no exception. It is extremely important to not only understand the basic underlying physics principles but to implement this understanding through the development of relevant modeling tools that provide the ability to investigate and study various complex effects. Moreover, these tools can lead to new insight and applications that facilitate control room operations and enable advances in the field that would not otherwise be possible. The ability to accurately model accelerator systems aids in the successful operation of machines designed specifically to deliver beams to experiments across a wide variety of fields, ranging from material science research to nuclear astrophysics. One such accelerator discussed throughout this work is the ReA facility at the National Superconducting Cyclotron Laboratory (NSCL) which re-accelerates rare isotope beams for nuclear astrophysics experiments. A major component of the ReA facility, as well as the future Facility for Rare Isotope Beams (FRIB) among other accelerators, is the Quarter-Wave Resonator (QWR), a coaxial accelerating cavity convenient for efficient acceleration of low-velocity particles. This device is very important to model accurately as it operates in the critical low-velocity region where the beam's acceleration gains are proportionally larger than they are through the later stages of acceleration. Compounding this matter, QWRs defocus the beam, and are also asymmetric with respect to the

  7. Patterns, determinants and models of woody plant diversity in China

    PubMed Central

    Wang, Zhiheng; Fang, Jingyun; Tang, Zhiyao; Lin, Xin

    2011-01-01

    What determines large-scale patterns of species richness remains one of the most controversial issues in ecology. Using the distribution maps of 11 405 woody species in China, we compared the effects of habitat heterogeneity, human activities and different aspects of climate, particularly environmental energy, water–energy dynamics and winter frost, and explored how biogeographic affinities (tropical versus temperate) influence richness–climate relationships. We found that the species richness of trees, shrubs, lianas and all woody plants strongly correlated with each other, and more strongly correlated with the species richness of tropical affinity than with that of temperate affinity. The mean temperature of the coldest quarter was the strongest predictor of species richness, and its explanatory power for species richness was significantly higher for tropical affinity than for temperate affinity. These results suggest that the patterns of woody species richness mainly result from the increasing intensity of frost filtering for tropical species from the equator/lowlands towards the poles/highlands, and hence support the freezing-tolerance hypothesis. A model based on these results was developed, which explained 76–85% of species richness variation in China, and reasonably predicted the species richness of woody plants in North America and the Northern Hemisphere. PMID:21147804

  8. Thirteen challenges in modelling plant diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The underlying structure of epidemiological models, and the questions that models can be used to address, do not necessarily depend on the identity of the host. This means that certain preoccupations of plant disease modelers are similar to those of modelers of diseases in animals and humans. Howeve...

  9. Coulomb-induced pairing in a quarter-filled band model for κ-(BEDT-TTF)2X

    NASA Astrophysics Data System (ADS)

    de Silva, W. Wasanthi; Gomes, Niladri; Mazumdar, Sumit; Clay, R. Torsten

    κ -(BEDT-TTF)2X is a two dimensional organic charge transfer solid superconductor with a hole density of one half per (BEDT-TTF) molecule. With one hole per dimer of molecules, the material is frequently described using an effective 1 / 2 -filled band Hubbard model on an anisotropic triangular lattice. Within this effective model a metal to antiferromagnetic (AFM) semiconductor phase transition is found. Calculations beyond the mean field level, however, have shown absence of superconductivity within the model. We present the results of correlated-electron calculations on the κ-lattice for up to 64 BEDT-TTF molecules using the Constrained Path Monte Carlo (CPMC) and Path Integral Renormalization Group (PIRG) methods over a wide range of carrier density. We show that superconducting pair-pair correlations in this model are enhanced by electron-electron (e-e) interactions for d-wave pairing symmetry uniquely for hole density close to quarter-filling. Our results indicate that this enhancement of superconductivity is not related to the presence of AFM order, but to the strong tendency to spin-singlet formation in the quarter-filled band. Supported by DOE Grant DE-FG02-06ER46315 and NSF-CHE-151475.

  10. Development of phenomenological model for coal slurry atomization. Quarterly technical progress report

    SciTech Connect

    Dooher, J.

    1996-10-01

    Atomization tests on simulated fluids are being performed. For each sample tested, {Delta}P{sub c} is being determined as described in the last quarterly report. The results will be reported when the coal slurry testing is completed for comparative purposes. The viscoelastic properties on the simulated fluids and coal water slurries are being determined using the Adelphi Stresstech Viscometer. A discussion of viscoelastic properties and their relationship to atomization is presented.

  11. (Shippingport Atomic Power Station). Quarterly operating report, third quarter 1980

    SciTech Connect

    Zagorski, J. F.

    1980-01-01

    At the beginning of the third quarter of 1980, the Shippingport Atomic Power Station was operating with the 1A, 1B, 1C, and 1D reactor coolant loops and the 1AC and 1BD purification loops in service. During the quarter, the Station was operated for Duquesne Light Company System grid including base load and swing load operation. Twelve (12) planned swing load operations were performed on the LWBR Core this quarter to complete the LWBR operating plan of fifty (50) during this operating phase. The Station was shutdown on September 12 for the Fall 1980 Shutdown and remained in this mode through the end of the quarter. The LWBR Core has generated 18,297.98 EFPH from start-up through the end of the quarter. There were no radioactive liquid discharges from the Radioactive Waste Processing System to the river this quarter. The radioactive liquid waste effluent line to the river remained blanked off to prevent inadvertent radioactive liquid waste discharges. During the quarter, approximately 0.001 curies of Xe 133 activity were released from the station. The radioactivity released from Shippingport Station is far too small to have any measurable effect on the general background environmental radioactivity outside the plant.

  12. Models of plant populations and communities

    SciTech Connect

    Huston, M.

    1990-01-01

    This document is the overview of the plant section in the book, {und Individual-Based Models and Approaches in Ecology}. A brief description of each of the chapters is provided, as well as a comparison of the models presented in each chapter. Four of the six chapters deal with single species interactions, one dealt with a two species system (plants and pollinators) and one deals with multispecies interactions. Both i-state distribution models and i-state configuration models are discussed. (MHB)

  13. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles

    PubMed Central

    Abid, Haider J.; Chen, Jie; Nassar, Ameen A.

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system. PMID:27351020

  14. Estimating solar radiation for plant simulation models

    NASA Technical Reports Server (NTRS)

    Hodges, T.; French, V.; Leduc, S.

    1985-01-01

    Five algorithms producing daily solar radiation surrogates using daily temperatures and rainfall were evaluated using measured solar radiation data for seven U.S. locations. The algorithms were compared both in terms of accuracy of daily solar radiation estimates and terms of response when used in a plant growth simulation model (CERES-wheat). Requirements for accuracy of solar radiation for plant growth simulation models are discussed. One algorithm is recommended as being best suited for use in these models when neither measured nor satellite estimated solar radiation values are available.

  15. Tertiary model of a plant cellulose synthase

    PubMed Central

    Sethaphong, Latsavongsakda; Haigler, Candace H.; Kubicki, James D.; Zimmer, Jochen; Bonetta, Dario; DeBolt, Seth; Yingling, Yaroslava G.

    2013-01-01

    A 3D atomistic model of a plant cellulose synthase (CESA) has remained elusive despite over forty years of experimental effort. Here, we report a computationally predicted 3D structure of 506 amino acids of cotton CESA within the cytosolic region. Comparison of the predicted plant CESA structure with the solved structure of a bacterial cellulose-synthesizing protein validates the overall fold of the modeled glycosyltransferase (GT) domain. The coaligned plant and bacterial GT domains share a six-stranded β-sheet, five α-helices, and conserved motifs similar to those required for catalysis in other GT-2 glycosyltransferases. Extending beyond the cross-kingdom similarities related to cellulose polymerization, the predicted structure of cotton CESA reveals that plant-specific modules (plant-conserved region and class-specific region) fold into distinct subdomains on the periphery of the catalytic region. Computational results support the importance of the plant-conserved region and/or class-specific region in CESA oligomerization to form the multimeric cellulose–synthesis complexes that are characteristic of plants. Relatively high sequence conservation between plant CESAs allowed mapping of known mutations and two previously undescribed mutations that perturb cellulose synthesis in Arabidopsis thaliana to their analogous positions in the modeled structure. Most of these mutation sites are near the predicted catalytic region, and the confluence of other mutation sites supports the existence of previously undefined functional nodes within the catalytic core of CESA. Overall, the predicted tertiary structure provides a platform for the biochemical engineering of plant CESAs. PMID:23592721

  16. Phytophthora parasitica: a model oomycete plant pathogen

    PubMed Central

    Meng, Yuling; Zhang, Qiang; Ding, Wei; Shan, Weixing

    2014-01-01

    Oomycetes are eukaryotic microorganisms morphologically similar to but phylogenetically distant from true fungi. Most species in the genus Phytophthora of oomycetes are devastating plant pathogens, causing damages to both agricultural production and natural ecosystems. Tremendous progress has been achieved in recent years in diversity, evolution and lifestyles of oomycete plant pathogens, as well as on the understanding of genetic and molecular basis of oomycete-plant interactions. Phytophthora parasitica is a soilborne pathogen with a wide range of host plants and represents most species in the genus Phytophthora. In this review, we present some recent progress of P. parasitica research by highlighting important features that make it emerge as a model species of oomycete pathogens. The emerged model pathogen will facilitate improved understanding of oomycete biology and pathology that are crucial to the development of novel disease-control strategies and improved disease-control measures. PMID:24999436

  17. An analytical model of memristors in plants

    PubMed Central

    Markin, Vladislav S; Volkov, Alexander G; Chua, Leon

    2014-01-01

    The memristor, a resistor with memory, was postulated by Chua in 1971 and the first solid-state memristor was built in 2008. Recently, we found memristors in vivo in plants. Here we propose a simple analytical model of 2 types of memristors that can be found within plants. The electrostimulation of plants by bipolar periodic waves induces electrical responses in the Aloe vera and Mimosa pudica with fingerprints of memristors. Memristive properties of the Aloe vera and Mimosa pudica are linked to the properties of voltage gated K+ ion channels. The potassium channel blocker TEACl transform plant memristors to conventional resistors. The analytical model of a memristor with a capacitor connected in parallel exhibits different characteristic behavior at low and high frequency of applied voltage, which is the same as experimental data obtained by cyclic voltammetry in vivo. PMID:25482769

  18. New concepts for dynamic plant uptake models.

    PubMed

    Rein, A; Legind, C N; Trapp, S

    2011-03-01

    Models for the prediction of chemical uptake into plants are widely applied tools for human and wildlife exposure assessment, pesticide design and for environmental biotechnology such as phytoremediation. Steady-state considerations are often applied, because they are simple and have a small data need. However, often the emission pattern is non-steady. Examples are pesticide spraying, or the application of manure and sewage sludge on agricultural fields. In these scenarios, steady-state solutions are not valid, and dynamic simulation is required. We compared different approaches for dynamic modelling of plant uptake in order to identify relevant processes and timescales of processes in the soil-plant-air system. Based on the outcome, a new model concept for plant uptake models was developed, approximating logistic growth and coupling transpiration to growing plant mass. The underlying system of differential equations was solved analytically for the inhomogenous case, i.e. for constant input. By superposition of the results of n periods, changes in emission and input data between periods are considered. This combination allows to mimic most input functions that are relevant in practice. The model was set up, parameterized and tested for uptake into growing crops. The outcome was compared with a numerical solution, to verify the mathematical structure. PMID:21391147

  19. A Comparison of Model Short-Range Forecasts and the ARM Microbase Data Fourth Quarter ARM Science Metric

    SciTech Connect

    Hnilo, J.

    2006-09-19

    For the fourth quarter ARM metric we will make use of new liquid water data that has become available, and called the “Microbase” value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Tropical West Pacific (TWP) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both TWP and NSA. The Microbase data have been averaged to 35 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3hourly data for direct comparison to our model output.

  20. Modeling Production Plant Forming Processes

    SciTech Connect

    Rhee, M; Becker, R; Couch, R; Li, M

    2004-09-22

    Engineering has simulation tools and experience in modeling forming processes. Y-12 personnel have expressed interest in validating our tools and experience against their manufacturing process activities such as rolling, casting, and forging etc. We have demonstrated numerical capabilities in a collaborative DOE/OIT project with ALCOA that is nearing successful completion. The goal was to use ALE3D to model Alcoa's slab rolling process in order to demonstrate a computational tool that would allow Alcoa to define a rolling schedule that would minimize the probability of ingot fracture, thus reducing waste and energy consumption. It is intended to lead to long-term collaboration with Y-12 and perhaps involvement with other components of the weapons production complex. Using simulations to aid in design of forming processes can: decrease time to production; reduce forming trials and associated expenses; and guide development of products with greater uniformity and less scrap.

  1. Safeguards and security modeling for electrochemical plants

    SciTech Connect

    Cipiti, B.B.; Duran, F.A.; Mendoza, L.A.; Parks, M.J.; Dominguez, D.; Le, T.D.

    2013-07-01

    Safeguards and security design for reprocessing plants can lead to excessive costs if not incorporated early in the design process. The design for electrochemical plants is somewhat uncertain since these plants have not been built at a commercial scale in the past. The Separation and Safeguards Performance Model (SSPM), developed at Sandia National Laboratories, has been used for safeguards design and evaluation for multiple reprocessing plant types. The SSPM includes the following capabilities: -) spent fuel source term library, -) mass tracking of elements 1-99 and bulk solid/liquids, -) tracking of heat load and activity, -) customisable measurement points, -) automated calculation of ID and error propagation, -) alarm conditions and statistical tests, and -) user-defined diversion scenarios. Materials accountancy and process monitoring data can provide more timely detection of material loss specifically to protect against the insider threat. While the SSPM is capable of determining detection probabilities and examining detection times for material loss scenarios, it does not model the operations or spatial effects for a plant design. The STAGE software was chosen to model the physical protection system. STAGE provides a framework to create end-to-end scalable force-on-force combat simulations. It allows for a complete 3D model of a facility to be designed along with the design of physical protection elements. This software, then, can be used to model operations and response for various material loss scenarios. The future integration of the SSPM model data with the STAGE software will provide a more complete analysis of diversion scenarios to assist plant designers.

  2. A pilot plant scale reactor/separator for ethanol from cellulosics. ERIP/DOE quarterly report no. 3 and 4

    SciTech Connect

    Dale, M.C.; Moelhman, M.; Butters, R.

    1998-12-01

    The objective of this project is to develop and demonstrate a continuous, low energy process for the conversion of cellulosics to ethanol. This process involves a pretreatment step followed by enzymatic release of sugars and the consecutive simultaneous saccharification/fermentation (SSF) of cellulose (glucans) followed by hemi-cellulose (pentosans) in a multi-stage continuous stirred reactor separator (CSRS). During quarters 3 and 4, we have completed a literature survey on cellulase production, activated one strain of Trichoderma reesei. We continued developing our proprietary Steep Delignification (SD) process for biomass pretreatment. Some problems with fermentations were traces to bad cellulase enzyme. Using commercial cellulase enzymes from Solvay & Genecor, SSF experiments with wheat straw showed 41 g/L ethanol and free xylose of 20 g/L after completion of the fermentation. From corn stover, we noted 36 g/L ethanol production from the cellulose fraction of the biomass, and 4 g/L free xylose at the completion of the SSF. We also began some work with paper mill sludge as a cellulose source, and in some preliminary experiments obtained 23 g/L ethanol during SSF of the sludge. During year 2, a 130 L process scale unit will be operated to demonstrate the process using straw or cornstalks. Co-sponsors of this project include the Indiana Biomass Grants Program, Bio-Process Innovation.

  3. Gas Centrifuge Enrichment Plant Safeguards System Modeling

    SciTech Connect

    Elayat, H A; O'Connell, W J; Boyer, B D

    2006-06-05

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for potential U.S. use in designing and evaluating safeguards systems used in enrichment facilities. This research focuses on analyzing the effectiveness of the safeguards in protecting against the range of safeguards concerns for enrichment plants, including diversion of attractive material and unauthorized modes of use. We developed an Extend simulation model for a generic medium-sized centrifuge enrichment plant. We modeled the material flow in normal operation, plant operational upset modes, and selected diversion scenarios, for selected safeguards systems. Simulation modeling is used to analyze both authorized and unauthorized use of a plant and the flow of safeguards information. Simulation tracks the movement of materials and isotopes, identifies the signatures of unauthorized use, tracks the flow and compilation of safeguards data, and evaluates the effectiveness of the safeguards system in detecting misuse signatures. The simulation model developed could be of use to the International Atomic Energy Agency IAEA, enabling the IAEA to observe and draw conclusions that uranium enrichment facilities are being used only within authorized limits for peaceful uses of nuclear energy. It will evaluate improved approaches to nonproliferation concerns, facilitating deployment of enhanced and cost-effective safeguards systems for an important part of the nuclear power fuel cycle.

  4. Plant Nitrogen Uptake in Terrestrial Biogeochemical Models

    NASA Astrophysics Data System (ADS)

    Marti Donati, A.; Cox, P.; Smith, M. J.; Purves, D.; Sitch, S.; Jones, C. D.

    2013-12-01

    Most terrestrial biogeochemical models featured in the last Intergovernmental Panel on Climate Change (IPPC) Assessment Report highlight the importance of the terrestrial Carbon sequestration and feedbacks between the terrestrial Carbon cycle and the climate system. However, these models have been criticized for overestimating predicted Carbon sequestration and its potential climate feedback when calculating the rate of future climate change because they do not account for the Carbon sequestration constraints caused by nutrient limitation, particularly Nitrogen (N). This is particularly relevant considering the existence of a substantial deficit of Nitrogen for plants in most areas of the world. To date, most climate models assume that plants have access to as much Nitrogen as needed, but ignore the nutrient requirements for new vegetation growth. Determining the natural demand and acquisition for Nitrogen and its associated resource optimization is key when accounting for the Carbon sequestration constrains caused by nutrient limitation. The few climate models that include C-N dynamics have illustrated that the stimulation of plant growth over the coming century may be significantly smaller than previously predicted. However, models exhibit wide differences in their predictive accuracy and lead to widely diverging and inconsistent projections accounting for an uncertain Carbon sequestration decrease due to Nitrogen limitation ranging from 7 to 64%. This reduction in growth is partially offset by an increase in the availability of nutrients resulting from an accelerated rate of decomposition of dead plants and other organic matter that occurring with a rise in temperature. However, this offset does not counterbalance the reduced level of plant growth calculated by natural nutrient limitations. Additionally, Nitrogen limitation is also expected to become more pronounced in some ecosystems as atmospheric CO2 concentration increases; resulting in less new growth and

  5. Numerical flow modeling of power plant windboxes

    SciTech Connect

    LaRose, J.A.; Hopkins, M.W.

    1995-12-31

    Numerical flow modeling has become an increasingly important design and analysis tool for improving the air distribution to power plant burners. Uniform air distribution allows the burners to perform as designed to achieve the lowest possible emissions and best fuel burn-out. Modifications can be made internal to the existing windbox to improve the burner-to-burner and burner peripheral air distributions. These modifications can include turning vanes, flow splitters, perforated plate, and burner shrouding. Numerical modeling allows the analysis of design trade-offs between adding flow resistance, fan power, and windbox modification construction cost. Numerical modeling has advantages over physical modeling in that actual geometric scales and air temperatures are used. Advantages over a field data based study include the ability to quickly and cheaply analyze a variety of design options without actually modifying the windbox, and the availability of significantly more data with which to interpret the results. Costs to perform a numerical study are generally one-half to one-third of the cost to perform a physical flow model and can be one-forth of the cost to perform a field study. The continued development of affordable, high speed, large memory workstations and reliable, commercially available computation fluid dynamics (CFD) software allows practical analyses of power plant windboxes. This paper discusses (1) the impact of air distribution on burner performance, (2) the methodology used to perform numerical flow modeling of power plant windboxes, and (3) the results from several windbox analyses including available post-modification observations.

  6. Plant adaptive behaviour in hydrological models (Invited)

    NASA Astrophysics Data System (ADS)

    van der Ploeg, M. J.; Teuling, R.

    2013-12-01

    Models that will be able to cope with future precipitation and evaporation regimes need a solid base that describes the essence of the processes involved [1]. Micro-behaviour in the soil-vegetation-atmosphere system may have a large impact on patterns emerging at larger scales. A complicating factor in the micro-behaviour is the constant interaction between vegetation and geology in which water plays a key role. The resilience of the coupled vegetation-soil system critically depends on its sensitivity to environmental changes. As a result of environmental changes vegetation may wither and die, but such environmental changes may also trigger gene adaptation. Constant exposure to environmental stresses, biotic or abiotic, influences plant physiology, gene adaptations, and flexibility in gene adaptation [2-6]. Gene expression as a result of different environmental conditions may profoundly impact drought responses across the same plant species. Differences in response to an environmental stress, has consequences for the way species are currently being treated in models (single plant to global scale). In particular, model parameters that control root water uptake and plant transpiration are generally assumed to be a property of the plant functional type. Assigning plant functional types does not allow for local plant adaptation to be reflected in the model parameters, nor does it allow for correlations that might exist between root parameters and soil type. Models potentially provide a means to link root water uptake and transport to large scale processes (e.g. Rosnay and Polcher 1998, Feddes et al. 2001, Jung 2010), especially when powered with an integrated hydrological, ecological and physiological base. We explore the experimental evidence from natural vegetation to formulate possible alternative modeling concepts. [1] Seibert, J. 2000. Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences 4(2): 215

  7. A model for plant lighting system selection

    NASA Technical Reports Server (NTRS)

    Ciolkosz, D. E.; Albright, L. D.; Sager, J. C.; Langhans, R. W.

    2002-01-01

    A decision model is presented that compares lighting systems for a plant growth scenario and chooses the most appropriate system from a given set of possible choices. The model utilizes a Multiple Attribute Utility Theory approach, and incorporates expert input and performance simulations to calculate a utility value for each lighting system being considered. The system with the highest utility is deemed the most appropriate system. The model was applied to a greenhouse scenario, and analyses were conducted to test the model's output for validity. Parameter variation indicates that the model performed as expected. Analysis of model output indicates that differences in utility among the candidate lighting systems were sufficiently large to give confidence that the model's order of selection was valid.

  8. Ozone levels in the Empty Quarter of Saudi Arabia--application of adaptive neuro-fuzzy model.

    PubMed

    Rahman, Syed Masiur; Khondaker, A N; Khan, Rouf Ahmad

    2013-05-01

    In arid regions, primary pollutants may contribute to the increase of ozone levels and cause negative effects on biotic health. This study investigates the use of adaptive neuro-fuzzy inference system (ANFIS) for ozone prediction. The initial fuzzy inference system is developed by using fuzzy C-means (FCM) and subtractive clustering (SC) algorithms, which determines the important rules, increases generalization capability of the fuzzy inference system, reduces computational needs, and ensures speedy model development. The study area is located in the Empty Quarter of Saudi Arabia, which is considered as a source of huge potential for oil and gas field development. The developed clustering algorithm-based ANFIS model used meteorological data and derived meteorological data, along with NO and NO₂ concentrations and their transformations, as inputs. The root mean square error and Willmott's index of agreement of the FCM- and SC-based ANFIS models are 3.5 ppbv and 0.99, and 8.9 ppbv and 0.95, respectively. Based on the analysis of the performance measures and regression error characteristic curves, it is concluded that the FCM-based ANFIS model outperforms the SC-based ANFIS model. PMID:23111771

  9. Combustion characterization of coal fines recovered from the handling plant. Quarterly report, April 1, 1996--June 30, 1996

    SciTech Connect

    Masudi, H.; Samudrala, S.R.; Reid, E.

    1996-07-01

    The coal-water slurry fuel, plant coal, recovered coal fines and ash deposits are analyzed for elemental oxides. SiO{sub 2} oxide was found to be the most dominating oxide element with more than 55 percent by weight in all cases. Additionally, the slurry fuel and its feedstocks were studied for particle size distribution. The maximum percentage of the particles by weight was found to be in the size range of 36 to 88 microns, 3 to 27 microns and 9 to 77 microns for plant coal, recovered coal fines and coal-water slurry respectively.

  10. SRC-1 quarterly technical report, April-June 1981. [Review of analytical methods needed in SRC Demonstration plants

    SciTech Connect

    Not Available

    1981-10-01

    Twenty-three papers involving the design, materials and equipment for the SRC-1 demonstration coal liquefaction plant near Newman, Daviess County, Kentucky, have been entered individually into EDB and ERA. A number of the papers deal also with the analytical methodology required for the plant, including a rather detailed evaluation of the accuracy requirements and careful evaluation of several methods such as gas chromatography, mass spectroscopy, nuclear magnetic resonance, etc. Flexibility of design is stressed so that products can be optimized for the market and charged if the market requires different products. (LTN)

  11. Extended step characteristic model for quarter-core gamma heating calculations

    SciTech Connect

    DeHart, M.D.; Webb, R.L. )

    1993-01-01

    Discrete ordinates codes are seldom used in lattice or core calculation, because of their limitation to simple geometries, which can be represented using an orthogonal mesh in a given coordinate system. Rough geometric approximations are often applied to obtain an estimate for a flux distribution. However, other methods, such as integral transport or Monte Carlo approaches, are generally more suited to irregular geometries. Each of these methods has its own weaknesses: integral transport methods are limited to problems in which the angular variation of the flux is isotropic or linearly anisotropic; Monte Carlo methods can be time consuming. The extended step characteristic (ESC) method has been developed to apply the discrete ordinates approximation to complicated geometries for which other methods provide less satisfactory solutions. The CENTAUR code has been developed to solve the two-dimensional transport equation using the ESC approach. This paper presents results of CENTAUR calculations for a quarter-core gamma redistribution problem for the Savannah River site (SRS) K reactor, under drained tank conditions following a postulated double-ended guillotine break loss-of-coolant accident. The calculations were used to confirm TWOTRAN calculations, which were based on a coarse approximation of the core geometry. A comparison of the results serves to demonstrate the capabilities and efficiency of the ESC approach.

  12. Putting the Plants Back into Plant Ecology: Six Pragmatic Models for Understanding and Conserving Plant Diversity

    PubMed Central

    KEDDY, PAUL

    2005-01-01

    • Background There is a compelling need to protect natural plant communities and restore them in degraded landscapes. Activities must be guided by sound scientific principles, practical conservation tools, and clear priorities. With perhaps one-third of the world's flora facing extinction, scientists and conservation managers will need to work rapidly and collaboratively, recognizing each other's strengths and limitations. As a guide to assist managers in maintaining plant diversity, six pragmatic models are introduced that are already available. Although theoretical models continue to receive far more space and headlines in scientific journals, more managers need to understand that pragmatic, rather than theoretical, models have the most promise for yielding results that can be applied immediately to plant communities. • Six Pragmatic Models For each model, key citations and an array of examples are provided, with particular emphasis on wetlands, since ‘wet and wild’ was my assigned theme for the Botanical Society of America in 2003. My own work may seem rather prominent, but the application and refinement of these models has been a theme for me and my many students over decades. The following models are reviewed: (1) species–area: larger areas usually contain more species; (2) species–biomass: plant diversity is maximized at intermediate levels of biomass; (3) centrifugal organization: multiple intersecting environmental gradients maintain regional landscape biodiversity; (4) species–frequency: a few species are frequent while most are infrequent; (5) competitive hierarchies: in the absence of constraints, large canopy-forming species dominate patches of landscape, reducing biological diversity; and (6) intermediate disturbance: perturbations such as water level fluctuations, fire and grazing are essential for maintaining plant diversity. • Conclusions The good news is that managers faced with protecting or restoring landscapes already have this

  13. A discrete control model of PLANT

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M.

    1985-01-01

    A model of the PLANT system using the discrete control modeling techniques developed by Miller is described. Discrete control models attempt to represent in a mathematical form how a human operator might decompose a complex system into simpler parts and how the control actions and system configuration are coordinated so that acceptable overall system performance is achieved. Basic questions include knowledge representation, information flow, and decision making in complex systems. The structure of the model is a general hierarchical/heterarchical scheme which structurally accounts for coordination and dynamic focus of attention. Mathematically, the discrete control model is defined in terms of a network of finite state systems. Specifically, the discrete control model accounts for how specific control actions are selected from information about the controlled system, the environment, and the context of the situation. The objective is to provide a plausible and empirically testable accounting and, if possible, explanation of control behavior.

  14. Measurement and modeling of advanced coal conversion processes. Twenty-second quarterly report, January 2, 1992--March 31, 1992

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S.

    1992-12-01

    The objectives of this proposed study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. This report describes progress during twenty second quarter of the program. Specifically, the paper discusses progress in three task areas: (1) Submodel development and evaluation: coal to char chemistry submodel; fundamental high-pressure reaction rate data; secondary reaction of pyrolysis product and burnout submodels; ash physics and chemistry submodel; large particle submodels; large char particle oxidation at high pressures; and SO{sub x}-NO{sub x} submodel development and evaluation; (2) Comprehensive model development and evaluation: integration of advanced submodels into entrained-flow code, with evaluation and documentation; comprehensive fixed-bed modeling review, development evaluation and implementation; and generalized fuels feedstock submodel; and (3) Application of integrated codes: application of generalized pulverized coal comprehensive code and application of fixed-bed code.

  15. A model of plant canopy polarization

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.

    1980-01-01

    A model for the amount of linearly polarized light reflected by the shiny leaves of grain crops is based on the morphological and phenological characteristics of the plant canopy and upon the Fresnel equations which describe the light reflection process at the smooth boundary separating two dielectrics. The theory used demonstrates that, potentially, measurements of the linearly polarized light from a crop canopy may be used as an additional feature to discriminate between crops such as wheat and barley, two crops which are so spectrally similar that they are misclassified with unacceptable frequency. Examination of the model suggests that, potentially, satellite polarization measurements may be used to monitor crop development stage, leaf water content, leaf area index, hail damage, and certain plant diseases. The information content of these measurements is needed to evaluate the proposed polarization sensor for the satellite-borne multispectral resource sampler.

  16. Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 1, October 1, 1979-December 31, 1979

    SciTech Connect

    Healy, H. C.; Sanderson, R. A.; Wertheim, R. J.; Farris, P. F.; Mientek, A. P.; Nickols, R. C.; Katz, M.; Iczkowski, R. P.; Fredley, R. R.; Stewart, R. C.; Kunz, H. R.; Gruver, G. A.; Bregoli, L. J.; Smith, S. W.; Steuernagel, W. H.; Szymanski, S. T.

    1980-03-01

    The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of 1990's competitive coal-fired electrical utility central station or industrial cogeneration power plants. During the first quarter, effort was initiated in all four major task areas: Task 1 - system studies to define the reference power plant design; Task 2 - cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task-4 developing the capability for operation of stacks on coal-derived gas. In the system study task, a study baseline fuel cell system and module configuration were established. Studies to determine user requirements and to characterize the fuel cell power block and coal gasifier subsystems were initiated. Cell stack design was initiated with completion of preliminary design requirements for the cell cathodes. Laboratory tests were also initiated to identify alternative materials for separator plates, reactant manifold seals, and electrolyte tile fillers. A mechanical tape casting technique for producing 18 x 24 inch sheets of electrolyte matrix tape was successfully demonstrated in Task 3. In Task 4, theoretical and experimental studies were initiated to define the effects of known sulfur contaminants on cell performance. A literature survey was initiated to identify other possible contaminants. Planning and design efforts for construction of a mobile cell test unit were initiated. The mobile unit will be used to verify the molten carbonate cell's ability to operate on gasified coal by tests at a gasifier site.

  17. In-plant testing of a novel coal cleaning circuit using advanced technologies, Quarterly report, March 1 - May 31, 1996

    SciTech Connect

    Honaker, R.Q.; Reed, S.; Mohanty, M.K.

    1996-12-31

    Research conducted at Southern Illinois University at Carbondale over the past two years has identified highly efficient methods for treating fine coal (i.e., -28 mesh). In this study, a circuit comprised of the three advanced fine coal cleaning technologies is being tested in an operating preparation plant to evaluate circuit performance and to compare the performance with the current technologies used to treat -16 mesh fine coal. The circuit integrated a Floatex hydrosizer, a Falcon concentrator and a Jameson froth flotation cell. The Floatex hydrosizer is being used as a primary cleaner for the nominally -16 mesh Illinois No. 5 fine coal circuit feed. The overflow of the Floatex is screened at 48 mesh using a Sizetec vibratory screen to produce a clean coal product from the screen overflow. The screen overflow is further treated by the Falcon and Jameson Cell. During this reporting period, tests were initiated on the fine coal circuit installed at the Kerr-McGee Galatia preparation plant. The circuit was found to reduce both the ash content and the pyritic sulfur content. Additional in-plant circuitry tests are ongoing.

  18. Short-term energy outlook: Quarterly projections. Second quarter 1995

    SciTech Connect

    1995-05-02

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent projections with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the second quarter of 1995 through the fourth quarter of 1996. Values for the first quarter of 1995, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the second quarter 1995 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service.

  19. Short-term energy outlook. Quarterly projections, third quarter 1996

    SciTech Connect

    1996-07-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in January, April, July, and October in the Outlook. The forecast period for this issue of the Outlook extends from the third quarter of 1996 through the fourth quarter of 1997. Values for the second quarter of 1996, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled in the third quarter 1996 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service.

  20. Coal gasification. Quarterly report, January-March 1979. [US DOE supported

    SciTech Connect

    1980-01-01

    Progress in DOE-supported coal gasification pilot plant projects is reported: company, location, contract number, funding, process description, history and progress in the current quarter. Two support projects are discussed: preparation of a technical data book and mathematical modeling of gasification reactors. (LTN)

  1. Establishing the SECME Model in the District of Columbia. Quarterly report, September 1, 1993--December 31, 1993

    SciTech Connect

    Not Available

    1993-12-31

    Technical progress and Federal Cash Transaction reports are presented for the first quarter. The work has been valuable in providing opportunities for greater academic achievement in mathematics and science for minority students in the District of Columbia.

  2. Representing plant hydraulics in a global Earth system model.

    NASA Astrophysics Data System (ADS)

    Kennedy, D.; Gentine, P.

    2015-12-01

    Earth system models need improvement to reproduce observed seasonal and diurnal cycles of photosynthesis and respiration. Model water stress parameterizations lag behind the plant physiology literature. A plant hydraulics model is developed and deployed in a global Earth system model (NCAR CESM 1.2.2 with CLM 4.5). Assimilation and transpiration are attenuated according to literature cavitation curves. Water stress is evaluated based on plant functional type hydraulic parameters forced by soil moisture and atmospheric conditions. Resolving the plant water status allows for modelling divergent strategies for water stress. The case of isohydric versus anisohydric species is presented, showing that including plant hydraulic traits alter modelled photosynthesis and transpiration.

  3. Plant parameters for plant functional groups of western rangelands to enable process-based simulation modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regional environmental assessments with process-based models require realistic estimates of plant parameters for the primary plant functional groups in the region. “Functional group” in this context is an operational term, based on similarities in plant type and in plant parameter values. Likewise...

  4. Towards a reference plant trait ontology for modeling knowledge of plant traits and phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ontology engineering and knowledge modeling for the plant sciences is expected to contribute to the understanding of the basis of plant traits that determine phenotypic expression in a given environment. Several crop- or clade-specific plant trait ontologies have been developed to describe plant tr...

  5. A model of plant canopy polarization response

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.

    1980-01-01

    Sensors to remotely measure the linear polarization of ground scenes have been proposed for the Multispectral Resource Sampler (MRS), a satellite sensor system proposed to complement the Thematic Mapper. At present justification for a sensor on MRS to measure scene polarization is limited. This paper discusses a model for the amount of linearly polarized light reflected by the shiny leaves of such crops as wheat, corn, and sorghum. The theory demonstrates that, potentially, measurements of the linearly polarized light from a crop canopy may be used as an additional feature to discriminate between crops. Examination of the model suggests that, potentially, satellite polarization measurements may be used to monitor crop development stage, leaf water content, leaf area index, hail damage, and certain plant diseases. The model adds to the understanding of the potential information content of scene polarization measurements acquired by future satellite sensor systems such as MRS.

  6. Non-dimensionalised closed-form parametric analysis of semi-active vehicle suspensions using a quarter-car model

    NASA Astrophysics Data System (ADS)

    Ahmadian, Mehdi; Blanchard, Emmanuel

    2011-02-01

    This article provides a non-dimensionalised closed-form analysis of semi-active vehicle suspensions, using a quarter-car model. The derivation of the closed-form solutions for three indices that can be used for ride comfort, vehicle handling, and stability are presented based on non-dimensionalised suspension parameters. The behaviour of semi-active vehicle suspensions is evaluated using skyhook, groundhook, and hybrid control policies, and compared with passive suspensions. The relationship between vibration isolation, suspension deflection, and road holding is studied, using three performance indices based on the mean square of the sprung mass acceleration, rattle space, and tyre deflection, respectively. The results of the study indicate that the hybrid control policy yields significantly better comfort than a passive suspension, without reducing the road-holding quality or increasing the suspension displacement for typical passenger cars. The results also indicate that for typical passenger cars, the hybrid control policy results in a better compromise between comfort, road holding and suspension travel requirements than both the skyhook and groundhook control methods.

  7. Quarterly coal report, January--March 1993

    SciTech Connect

    Not Available

    1993-08-20

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada.

  8. Pipeline-gas Demonstration Plant: Phase I. Quarterly technical process report, 1 January 1981 - 31 March 1981. [Proprietary process for coal gasification plants

    SciTech Connect

    DiFulgentiz, R. A.

    1981-01-01

    Contract No EF-77-C-01-2542 between Conoco Inc. and the U.S. Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coal into clean pipeline quality gas. During the reporting period of January 1, 1981, through March 31, 1981, the major work effort of the project was focused on Task VI, Demonstration Plant Engineering and Design, and on Task VII, Construction Planning. Work continued on plans for obtaining coal, catalysts, chemicals, and flux, and on plans for sale of the products and by-products. Work on Task VIII, Economic Reassessment, was started during the reporting period. The design phase of the project, Phase I, is scheduled for completion on June 30, 1981. Conoco Inc. expects to meet all major milestone dates and complete Phase I on schedule.

  9. Short-term energy outlook: Quarterly projections, fourth quarter 1997

    SciTech Connect

    1997-10-14

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for printed publication in January, April, July, and October in the Short-Term Energy Outlook. The details of these projections, as well as monthly updates on or about the 6th of each interim month, are available on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The forecast period for this issue of the Outlook extends from the fourth quarter of 1997 through the fourth quarter of 1998. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the fourth quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. 19 tabs.

  10. Plant actin cytoskeleton re-modeling by plant parasitic nematodes.

    PubMed

    Engler, Janice de Almeida; Rodiuc, Natalia; Smertenko, Andrei; Abad, Pierre

    2010-03-01

    The cytoskeleton is an important component of the plant's defense mechanism against the attack of pathogenic organisms. Plants however, are defenseless against parasitic root-knot and cyst nematodes and respond to the invasion by the development of a special feeding site that supplies the parasite with nutrients required for the completion of its life cycle. Recent studies of nematode invasion under treatment with cytoskeletal drugs and in mutant plants where normal functions of the cytoskeleton have been affected, demonstrate the importance of the cytoskeleton in the establishment of a feeding site and successful nematode reproduction. It appears that in the case of microfilaments, nematodes hijack the intracellular machinery that regulates actin dynamics and modulate the organization and properties of the actin filament network. Intervening with this process reduces the nematode infection efficiency and inhibits its life cycle. This discovery uncovers a new pathway that can be exploited for the protection of plants against nematodes. PMID:20038822

  11. Functional–structural plant models: a growing paradigm for plant studies

    PubMed Central

    Sievänen, Risto; Godin, Christophe; DeJong, Theodore M.; Nikinmaa, Eero

    2014-01-01

    A number of research groups in various areas of plant biology as well as computer science and applied mathematics have addressed modelling the spatiotemporal dynamics of growth and development of plants. This has resulted in development of functional–structural plant models (FSPMs). In FSPMs, the plant structure is always explicitly represented in terms of a network of elementary units. In this respect, FSPMs are different from more abstract models in which a simplified representation of the plant structure is frequently used (e.g. spatial density of leaves, total biomass, etc.). This key feature makes it possible to build modular models and creates avenues for efficient exchange of model components and experimental data. They are being used to deal with the complex 3-D structure of plants and to simulate growth and development occurring at spatial scales from cells to forest areas, and temporal scales from seconds to decades and many plant generations. The plant types studied also cover a broad spectrum, from algae to trees. This special issue of Annals of Botany features selected papers on FSPM topics such as models of morphological development, models of physical and biological processes, integrated models predicting dynamics of plants and plant communities, modelling platforms, methods for acquiring the 3-D structures of plants using automated measurements, and practical applications for agronomic purposes. PMID:25469374

  12. Functional-structural plant models: a growing paradigm for plant studies.

    PubMed

    Sievänen, Risto; Godin, Christophe; DeJong, Theodore M; Nikinmaa, Eero

    2014-09-01

    A number of research groups in various areas of plant biology as well as computer science and applied mathematics have addressed modelling the spatiotemporal dynamics of growth and development of plants. This has resulted in development of functional-structural plant models (FSPMs). In FSPMs, the plant structure is always explicitly represented in terms of a network of elementary units. In this respect, FSPMs are different from more abstract models in which a simplified representation of the plant structure is frequently used (e.g. spatial density of leaves, total biomass, etc.). This key feature makes it possible to build modular models and creates avenues for efficient exchange of model components and experimental data. They are being used to deal with the complex 3-D structure of plants and to simulate growth and development occurring at spatial scales from cells to forest areas, and temporal scales from seconds to decades and many plant generations. The plant types studied also cover a broad spectrum, from algae to trees. This special issue of Annals of Botany features selected papers on FSPM topics such as models of morphological development, models of physical and biological processes, integrated models predicting dynamics of plants and plant communities, modelling platforms, methods for acquiring the 3-D structures of plants using automated measurements, and practical applications for agronomic purposes. PMID:25469374

  13. A Quarter-Century of the Transactional Model: How Have Things Changed?

    ERIC Educational Resources Information Center

    Sameroff, Arnold J.; MacKenzie, Michael J.

    2003-01-01

    In this article, the creator of the transactional model and a colleague give an overview of how the model emerged as well as its principal elements. For most of the 20th century, scientists believed that brain damage was the cause of a child's cognitive, social, or emotional problems. Later, researchers found that babies were likely to have…

  14. Waste isolation pilot plant disposal room model

    SciTech Connect

    Butcher, B.M.

    1997-08-01

    This paper describes development of the conceptual and mathematical models for the part of the Waste Isolation Pilot Plant (WIPP) repository performance assessment that is concerned with what happens to the waste over long times after the repository is decommissioned. These models, collectively referred to as the {open_quotes}Disposal Room Model,{close_quotes} describe the repository closure process during which deformation of the surrounding salt consolidates the waste. First, the relationship of repository closure to demonstration of compliance with the Environmental Protection Agency (EPA) standard (40 CFR 191 Appendix C) and how sensitive performance results are to it are examined. Next, a detailed description is provided of the elements of the disposal region, and properties selected for the salt, waste, and other potential disposal features such as backfill. Included in the discussion is an explanation of how the various models were developed over time. Other aspects of closure analysis, such as the waste flow model and method of analysis, are also described. Finally, the closure predictions used in the final performance assessment analysis for the WIPP Compliance Certification Application are summarized.

  15. Plant growth and architectural modelling and its applications

    PubMed Central

    Guo, Yan; Fourcaud, Thierry; Jaeger, Marc; Zhang, Xiaopeng; Li, Baoguo

    2011-01-01

    Over the last decade, a growing number of scientists around the world have invested in research on plant growth and architectural modelling and applications (often abbreviated to plant modelling and applications, PMA). By combining physical and biological processes, spatially explicit models have shown their ability to help in understanding plant–environment interactions. This Special Issue on plant growth modelling presents new information within this topic, which are summarized in this preface. Research results for a variety of plant species growing in the field, in greenhouses and in natural environments are presented. Various models and simulation platforms are developed in this field of research, opening new features to a wider community of researchers and end users. New modelling technologies relating to the structure and function of plant shoots and root systems are explored from the cellular to the whole-plant and plant-community levels. PMID:21638797

  16. Modelled glacier dynamics over the last quarter of a century at Jakobshavn Isbræ

    NASA Astrophysics Data System (ADS)

    Muresan, Ioana S.; Khan, Shfaqat A.; Aschwanden, Andy; Khroulev, Constantine; Van Dam, Tonie; Bamber, Jonathan; van den Broeke, Michiel R.; Wouters, Bert; Kuipers Munneke, Peter; Kjær, Kurt H.

    2016-03-01

    Observations over the past 2 decades show substantial ice loss associated with the speed-up of marine-terminating glaciers in Greenland. Here we use a regional three-dimensional outlet glacier model to simulate the behaviour of Jakobshavn Isbræ (JI) located in western Greenland. Our approach is to model and understand the recent behaviour of JI with a physical process-based model. Using atmospheric forcing and an ocean parametrization we tune our model to reproduce observed frontal changes of JI during 1990-2014. In our simulations, most of the JI retreat during 1990-2014 is driven by the ocean parametrization used and the glacier's subsequent response, which is largely governed by bed geometry. In general, the study shows significant progress in modelling the temporal variability of the flow at JI. Our results suggest that the overall variability in modelled horizontal velocities is a response to variations in terminus position. The model simulates two major accelerations that are consistent with observations of changes in glacier terminus. The first event occurred in 1998 and was triggered by a retreat of the front and moderate thinning of JI prior to 1998. The second event, which started in 2003 and peaked in the summer 2004, was triggered by the final break-up of the floating tongue. This break-up reduced the buttressing at the JI terminus that resulted in further thinning. As the terminus retreated over a reverse bed slope into deeper water, sustained high velocities over the last decade have been observed at JI. Our model provides evidence that the 1998 and 2003 flow accelerations are most likely initiated by the ocean parametrization used but JI's subsequent dynamic response was governed by its own bed geometry. We are unable to reproduce the observed 2010-2012 terminus retreat in our simulations. We attribute this limitation to either inaccuracies in basal topography or to misrepresentations of the climatic forcings that were applied. Nevertheless, the

  17. The research on Virtual Plants Growth Based on DLA Model

    NASA Astrophysics Data System (ADS)

    Zou, YunLan; Chai, Bencheng

    This article summarizes the separated Evolutionary Algorithm in fractal algorithm of Diffusion Limited Aggregation model (i.e. DLA model) and put forward the virtual plant growth realization in computer based on DLA model. The method is carried out in the VB6.0 environment to achieve and verify the plant growth based on DLA model.

  18. Crop plants as models for understanding plant adaptation and diversification

    PubMed Central

    Olsen, Kenneth M.; Wendel, Jonathan F.

    2013-01-01

    Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkable transformations of plant phenotypes. Unlike evolution in natural settings, descendent and antecedent conditions for crop plants are often both extant, providing opportunities for direct comparisons through crossing and other experimental approaches. Moreover, since domestication has repeatedly generated a suite of “domestication syndrome” traits that are shared among crops, opportunities exist for gaining insight into the genetic and developmental mechanisms that underlie parallel adaptive evolution. Advances in our understanding of the genetic architecture of domestication-related traits have emerged from combining powerful molecular technologies with advanced experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies may be combined with high-throughput evaluations of the various “omics” involved in trait transformation, revealing a diversity of underlying causative mutations affecting phenotypes and their downstream propagation through biological networks. We summarize the state of our knowledge of the mutational spectrum that generates phenotypic novelty in domesticated plant species, and our current understanding of how domestication can reshape gene expression networks and emergent phenotypes. An exploration of traits that have been subject to similar selective pressures across crops (e.g., flowering time) suggests that a diversity of targeted genes and causative mutational changes can underlie parallel adaptation in the context of crop evolution. PMID:23914199

  19. Crop plants as models for understanding plant adaptation and diversification.

    PubMed

    Olsen, Kenneth M; Wendel, Jonathan F

    2013-01-01

    Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkable transformations of plant phenotypes. Unlike evolution in natural settings, descendent and antecedent conditions for crop plants are often both extant, providing opportunities for direct comparisons through crossing and other experimental approaches. Moreover, since domestication has repeatedly generated a suite of "domestication syndrome" traits that are shared among crops, opportunities exist for gaining insight into the genetic and developmental mechanisms that underlie parallel adaptive evolution. Advances in our understanding of the genetic architecture of domestication-related traits have emerged from combining powerful molecular technologies with advanced experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies may be combined with high-throughput evaluations of the various "omics" involved in trait transformation, revealing a diversity of underlying causative mutations affecting phenotypes and their downstream propagation through biological networks. We summarize the state of our knowledge of the mutational spectrum that generates phenotypic novelty in domesticated plant species, and our current understanding of how domestication can reshape gene expression networks and emergent phenotypes. An exploration of traits that have been subject to similar selective pressures across crops (e.g., flowering time) suggests that a diversity of targeted genes and causative mutational changes can underlie parallel adaptation in the context of crop evolution. PMID:23914199

  20. Hydroacoustic Studies Using HydroCAM - Station-centric Integration of Models and Observations Quarterly Report No.4 July 2003 - September 2003

    SciTech Connect

    Upton, Zachary, M.; Pulli, Jay, J.

    2003-10-13

    OAK B272 Quarterly technical report summarizing BBN's efforts to improve DOE's hydroacoustic modeling and analysis capability for nuclear explosion monitoring. BBN's work during the third quarter of 2003 was focused on preparations for and participation in the 2003 Seismic Research Review Meeting, unit testing and bug fixes to HydroCAM 4.1, data collection and analysis, and procuring high-resolution bathymetric data. In an attempt to save money, BBN scaled back its labor in the third quarter, delaying some deliverables but saving contract funding in case our next increment is delayed. We have succeeded in finding the correct Naval contact that can help us procure high-resolution bathymetry data. Although these data may require the release of a classified version of HydroCAM, we are optimistic that we will be able to acquire and integrate high-resolution bathymetric data near the Indian Ocean IMS stations. HydroCAM 4.1, which includes the ability to make blockage predictions using varying resolution bathymetric data, has completed unit testing and is now under integration (release) testing. We hope to deliver that functionality to DOE and AFTAC in November. BBN improved its database of hydroacoustic events in the Indian Ocean by including meta-data for associated arrivals. For each earthquake event, BBN is now picking the direct arrival at each station (Diego Garcia North and South, and Cape Leeuwin) and associating that arrival with the origin information that we are compiling. The data for 2001, 2002 and 2003 (to date) will be delivered to LLNL for integration into the Knowledge Base during the fourth quarter of 2003.

  1. Predictive modelling of boiler fouling. Quarterly technical progress report, July 1, 1991--September 30, 1991

    SciTech Connect

    Not Available

    1991-12-31

    The primary objective of this work is the development of a comprehensive numerical model describing the time evolution of fouling under realistic heat exchanger conditions. As fouling is a complex interaction of gas flow, mineral transport and adhesion mechanisms, understanding and subsequently improved controlling of fouling achieved via appropriate manipulation of the various coupled, nonlinear processes in a complex fluid mechanics environment will undoubtedly help reduce the substantial operating costs incurred by the utilities annually, as well as afford greater flexibility in coal selection and reduce the emission of various pollutants. In a more specialized context, the numerical model to be developed as part of this activity will be used as a tool to address the interaction of the various mechanisms controlling deposit development in specific regimes or correlative relationships. These should prove of direct use to the coal burning industry.

  2. Predictive modelling of boiler fouling. Quarterly technical progress report, October 1, 1991--January 31, 1992

    SciTech Connect

    Not Available

    1992-06-01

    The primary objective of this work is the development of a comprehensive numerical model describing the time evolution of fouling under realistic heat exchanger conditions. As fouling is complex interaction of gas flow, mineral transport and adhesion mechanisms, understanding and subsequently improved controlling of fouling achieved via appropriate manipulation of the various coupled, nonlinear processes in a complex fluid mechanics environment will undoubtedly help reduce the substantial operating costs incurred by the utilities annually, as well as afford greater flexibility in coal selection and reduce the emission of various pollutants. In a more specialized context, the numerical model to be developed as part of this activity will be used as a tool to address the interaction of the various mechanisms controlling deposit development in specific regimes or correlative relationships. These should prove of direct use to the coal burning industry.

  3. Predictive modelling of boiler fouling. Quarterly technical progress report, April 1, 1991--June 30, 1991

    SciTech Connect

    Not Available

    1991-12-31

    The primary objective of this work is the development of a comprehensive numerical model describing the time evolution of fouling under realistic heat exchanger conditions. As fouling is a complex interaction of gas flow, mineral transport and adhesion mechanisms, understanding and subsequently improved controlling of fouling achieved via appropriate manipulation of the various coupled, nonlinear processes in a complex fluid mechanics environment will undoubtedly help reduce the substantial operating costs incurred by the utilities annually, as well as afford greater flexibility in coal selection and reduce the emission of various pollutants. In a more specialized context, the numerical model to be developed as part of this activity will be used as a tool to address the interaction of the various mechanisms controlling deposit development in specific regimes or correlative relationships. These should prove of direct use to the coal burning industry.

  4. Finite Element Modeling of Deployment, and Foam Rigidization of Struts and Quarter Scale Shooting Star Experiment

    NASA Technical Reports Server (NTRS)

    Leigh, Larry, Jr.

    2002-01-01

    Inflated cylindrical struts constructed of kapton polyimide film and rigidized with foam have considerable practical application and potential for use as components of inflatable concentrator assemblies, antenna structures and space power systems, Because of their importance, it is of great interest to characterize the dynamic behavior of these components and structures both experimentally and analytically. It is very helpful to take a building-block approach to modeling and understanding inflatable assemblies by first investigating in detail the behavior of the components such as the struts. The foam material used for rigidization of such cylinders has varying modulus, which is a function of different factors, such as density of the foam. Thus, the primary motivation of the tests and analytical modeling efforts was to determine and understand the response of foam-rigidized cylinders for different densities, sizes, and construction methods, In recent years, inflatable structures have been the subject of renewed interest for space applications such as communications antennae, solar thermal propulsion, and space solar power. A major advantage of using inflatable structures in space is that they are extremely lightweight. This makes inflatables a perfect match for solar thermal propulsion because of the low thrust levels available. An obvious second advantage is on-orbit deployability and subsequent space savings in launch configuration. It can be seen that inflatable cylindrical struts and torus are critical components of structural assemblies. In view of this importance, structural dynamic and static behaviors of typical rigidized polyimide struts are investigated in this paper. The paper will focus on the finite element models that were used to model the behavior of the complete solar collector structure, and the results that they provided, as compared to test data.

  5. Short-term energy outlook. Quarterly projections, first quarter 1996

    SciTech Connect

    1996-02-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Outlook. The forecast period for this issue of the Outlook extends from the first quarter of 1996 through the fourth quarter of 1997. Values for the fourth quarter of 1995, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the first quarter 1996 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The cases are produced using the Short-Term Integrated Forecasting System (STIFS). The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook.

  6. Short-term energy outlook: Quarterly projections, second quarter 1997

    SciTech Connect

    1997-04-01

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for publication in January, April, July, and October in the Outlook. The forecast period for this issue of the Outlook extends from the second quarter of 1997 through the fourth quarter of 1998. Values for the first quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the second quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the Short-Term Integrated Forecasting System (STIFS). 34 figs., 19 tabs.

  7. Modeling of advanced fossil fuel power plants

    NASA Astrophysics Data System (ADS)

    Zabihian, Farshid

    The first part of this thesis deals with greenhouse gas (GHG) emissions from fossil fuel-fired power stations. The GHG emission estimation from fossil fuel power generation industry signifies that emissions from this industry can be significantly reduced by fuel switching and adaption of advanced power generation technologies. In the second part of the thesis, steady-state models of some of the advanced fossil fuel power generation technologies are presented. The impacts of various parameters on the solid oxide fuel cell (SOFC) overpotentials and outputs are investigated. The detail analyses of operation of the hybrid SOFC-gas turbine (GT) cycle when fuelled with methane and syngas demonstrate that the efficiencies of the cycles with and without anode exhaust recirculation are close, but the specific power of the former is much higher. The parametric analysis of the performance of the hybrid SOFC-GT cycle indicates that increasing the system operating pressure and SOFC operating temperature and fuel utilization factor improves cycle efficiency, but the effects of the increasing SOFC current density and turbine inlet temperature are not favourable. The analysis of the operation of the system when fuelled with a wide range of fuel types demonstrates that the hybrid SOFC-GT cycle efficiency can be between 59% and 75%, depending on the inlet fuel type. Then, the system performance is investigated when methane as a reference fuel is replaced with various species that can be found in the fuel, i.e., H2, CO2, CO, and N 2. The results point out that influence of various species can be significant and different for each case. The experimental and numerical analyses of a biodiesel fuelled micro gas turbine indicate that fuel switching from petrodiesel to biodiesel can influence operational parameters of the system. The modeling results of gas turbine-based power plants signify that relatively simple models can predict plant performance with acceptable accuracy. The unique

  8. Modelling soil-plant-atmosphere interactions by coupling the regional weather model WRF to mechanistic plant models

    NASA Astrophysics Data System (ADS)

    Klein, C.; Hoffmann, P.; Priesack, E.

    2012-04-01

    Climate change causes altering distributions of meteorological factors influencing plant growth and its interactions between the land surface and the atmosphere. Recent studies show, that uncertainties in regional and global climate simulations are also caused by lacking descriptions of the soil-plant-atmosphere system. Therefore, we couple a mechanistic soil-plant model to a regional climate and forecast model. The detailed simulation of the water and energy exchanges, especially the transpiration of grassland and forests stands, are the key features of the modelling framework. The Weather Research and Forecasting model (WRF) (Skamarock 2008) is an open source mesoscale numerical weather prediction model. The WRF model was modified in a way, to either choose its native, static land surface model NOAH or the mechanistic eco-system model Expert-N 5.0 individually for every single grid point within the simulation domain. The Expert-N 5.0 modelling framework provides a highly modular structure, enabling the development and use of a large variety of different plant and soil models, including heat transfer, nitrogen uptake/turnover/transport as well as water uptake/transport and crop management. To represent the key landuse types grassland and forest, we selected two mechanistic plant models: The Hurley Pasture model (Thornley 1998) and a modified TREEDYN3 forest simulation model (Bossel 1996). The models simulate plant growth, water, nitrogen and carbon flows for grassland and forest stands. A mosaic approach enables Expert-N to use high resolution land use data e.g. CORINE Land Cover data (CLC, 2006) for the simulation, making it possible to simulate different land use distributions within a single grid cell. The coupling results are analyzed for plausibility and compared with the results of the default land surface model NOAH (Fei Chen and Jimy Dudhia 2010). We show differences between the mechanistic and the static model coupling, with focus on the feedback effects

  9. Development of a phenomenological model for coal slurry atomization. Quarterly technical progress report, July--September, 1995

    SciTech Connect

    Dooher, J.

    1995-10-01

    In the quarterly report of January 1995, atomization was described in terms of fragmentation of ligaments and subsequent breakup of drops into a fine spray. In this way, atomization can be considered a form of comminution. In this report, an analysis is presented which applies probability theory to atomization. In future work, the predictions of this analysis will be examined experimentally.

  10. Development of the integrated environmental control model: Performance and cost models for fabric filters. Quarterly progress report, January--March 1994

    SciTech Connect

    Kalagnanam, J.R.; Rubin, E.S.

    1994-04-27

    The present report summarizes recent progress on the Phase I effort during the period January 1, 1994 through March 30, 1994. This report summarizes progress to date in refining the existing analytical models implemented in the IECM. In this report, the authors described the development of analytical models for the performance and costs of high-performance particulate control technologies, focusing on fabric filters. They pay special attention to developing models which can be used to estimate costs for systems whose performance is up to a factor of three below the present NSPS standards of 0.03 lb/MMBtu. Typically, the cost models relate the capital costs and the operating and maintenance (O&M) costs to process parameters and the costs of labor and materials. The capital cost models are anchored to a base capital cost for a specific size unit and adjusted according to the actual or design parameters. The performance models are constructed to estimate the process parameters for a desired level of emission control. The primary motivation for these models is to estimate the costs of complying with environmental standards on a basis which reflects recent advances in control technology. Finally, the authors incorporate the uncertainties in various process parameters and inputs costs so as to allow a more rational and robust basis for comparing different technologies. In the following sections the authors discuss the initial development of the performance and cost models for fabric filters followed by a numerical example which illustrates the use of these new models. The next quarterly report will provide a similar update of the IECM electrostatic precipitator models, plus a brief discussion of the comparative advantages of different particulate control.

  11. Predictive modelling of boiler fouling. Quarterly technical progress report, January 1, 1992--March 31, 1992

    SciTech Connect

    Not Available

    1992-12-01

    In this reporting period, efforts were initiated to supplement the comprehensive flow field description obtained from the RNG-Spectral Element Simulations by incorporating, in a general framework, appropriate modules to model particle and condensable species transport to the surface. Specifically, a brief survey of the literature revealed the following possible mechanisms for transporting different ash constituents from the host gas to boiler tubes as deserving prominence in building the overall comprehensive model: (1) Flame-volatilized species, chiefly sulfates, are deposited on cooled boiler tubes via the mechanism of classical vapor diffusion. This mechanism is more efficient than the particulate ash deposition, and as a result there is usually an enrichment of condensable salts, chiefly sulfates, in boiler deposits; (2) Particle diffusion (Brownian motion) may account for deposition of some fine particles below 0. 1 mm in diameter in comparison with the mechanism of vapor diffusion and particle depositions, however, the amount of material transported to the tubes via this route is probably small. (3) Eddy diffusion, thermophoretic and electrophoretic deposition mechanisms are likely to have a marked influence in transporting 0.1 to 5{mu}m particles from the host gas to cooled boiler tubes; (4) Inertial impaction is the dominant mechanism in transporting particles above 5{mu}m in diameter to water and steam tubes in pulverized coal fired boiler, where the typical flue gas velocity is between 10 to 25 m/s. Particles above 10{mu}m usually have kinetic energies in excess of what can be dissipated at impact (in the absence of molten sulfate or viscous slag deposit), resulting in their entrainment in the host gas.

  12. Modelling of nuclear power plant decommissioning financing.

    PubMed

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. PMID:25979740

  13. Short-term energy outlook, quarterly projections, first quarter 1998

    SciTech Connect

    1998-01-01

    The forecast period for this issue of the Outlook extends from the first quarter of 1998 through the fourth quarter of 1999. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the first quarter 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are adjusted by EIA to reflect EIA assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 24 figs., 19 tabs.

  14. Working toward integrated models of alpine plant distribution

    PubMed Central

    Carlson, Bradley Z.; Randin, Christophe F.; Boulangeat, Isabelle; Lavergne, Sébastien; Thuiller, Wilfried; Choler, Philippe

    2014-01-01

    Species distribution models (SDMs) have been frequently employed to forecast the response of alpine plants to global changes. Efforts to model alpine plant distribution have thus far been primarily based on a correlative approach, in which ecological processes are implicitly addressed through a statistical relationship between observed species occurrences and environmental predictors. Recent evidence, however, highlights the shortcomings of correlative SDMs, especially in alpine landscapes where plant species tend to be decoupled from atmospheric conditions in micro-topographic habitats and are particularly exposed to geomorphic disturbances. While alpine plants respond to the same limiting factors as plants found at lower elevations, alpine environments impose a particular set of scale-dependent and hierarchical drivers that shape the realized niche of species and that require explicit consideration in a modelling context. Several recent studies in the European Alps have successfully integrated both correlative and process-based elements into distribution models of alpine plants, but for the time being a single integrative modelling framework that includes all key drivers remains elusive. As a first step in working toward a comprehensive integrated model applicable to alpine plant communities, we propose a conceptual framework that structures the primary mechanisms affecting alpine plant distributions. We group processes into four categories, including multi-scalar abiotic drivers, gradient dependent species interactions, dispersal and spatial–temporal plant responses to disturbance. Finally, we propose a methodological framework aimed at developing an integrated model to better predict alpine plant distribution. PMID:24790594

  15. Working toward integrated models of alpine plant distribution.

    PubMed

    Carlson, Bradley Z; Randin, Christophe F; Boulangeat, Isabelle; Lavergne, Sébastien; Thuiller, Wilfried; Choler, Philippe

    2013-10-01

    Species distribution models (SDMs) have been frequently employed to forecast the response of alpine plants to global changes. Efforts to model alpine plant distribution have thus far been primarily based on a correlative approach, in which ecological processes are implicitly addressed through a statistical relationship between observed species occurrences and environmental predictors. Recent evidence, however, highlights the shortcomings of correlative SDMs, especially in alpine landscapes where plant species tend to be decoupled from atmospheric conditions in micro-topographic habitats and are particularly exposed to geomorphic disturbances. While alpine plants respond to the same limiting factors as plants found at lower elevations, alpine environments impose a particular set of scale-dependent and hierarchical drivers that shape the realized niche of species and that require explicit consideration in a modelling context. Several recent studies in the European Alps have successfully integrated both correlative and process-based elements into distribution models of alpine plants, but for the time being a single integrative modelling framework that includes all key drivers remains elusive. As a first step in working toward a comprehensive integrated model applicable to alpine plant communities, we propose a conceptual framework that structures the primary mechanisms affecting alpine plant distributions. We group processes into four categories, including multi-scalar abiotic drivers, gradient dependent species interactions, dispersal and spatial-temporal plant responses to disturbance. Finally, we propose a methodological framework aimed at developing an integrated model to better predict alpine plant distribution. PMID:24790594

  16. Predictive modelling of boiler fouling. Quarterly technical progress report, April 1, 1992--June 30, 1992

    SciTech Connect

    Not Available

    1992-12-01

    As this study incorporates in a general framework, appropriate modules to model condensable species transport to the surface along with particles, the need for a suitable solver for the reaction component of the species equations with regard to issues of stability, stiffness, economy, etc. becomes obvious. It is generally agreed in the literature that the major problem associated with the simultaneous integration of large sets of chemical kinetic rate equations is that of stiffness. Although stiffness does not have a simple definition, it is characterized by widely varying time constants. For example, in hydrogen-air combustion, the induction time is of the order of microseconds whereas the nitric oxide formation time is of the order of milliseconds. These widely different time constants present classical methods (such as the popular explicit Runge-Kutta method) with the following difficulty: to ensure stability of the numerical solution, these methods are restricted to using very short time steps that are determined by the smallest time constant. However, the time for all chemical species to reach near-equilibrium values is determined by the longest time constant. As a result, classical methods require excessive amounts of computer time to solve stiff systems of ordinary differential equations (ODE`s). Several approaches for the solution of stiff ODE`s have been proposed. Of all these techniques, the general purpose codes EPISODE and LSODE are regarded as the best available ``packaged`` codes for the solution of stiff systems of ODE`S. However, although these codes may be the best available for solving an arbitrary systems ODE`S, it may be possible to construct superior methods for solving a particular system of ODE`s governing the behavior of a specific problem. In this view, an exponentially fitted method, CREK1D, deserves a special mention and is described briefly.

  17. The theater management model of plant memory

    PubMed Central

    Norris, Vic; Ripoll, Camille; Thellier, Michel

    2015-01-01

    The existence of a memory in plants raises several fundamental questions. What might be the function of a plant memory? How might it work? Which molecular mechanisms might be responsible? Here, we sketch out the landscape of plant memory with particular reference to the concepts of functioning-dependent structures and competitive coherence. We illustrate how these concepts might be relevant with reference to the metaphor of a traveling, avant-garde theater company and we suggest how using a program that simulates competitive coherence might help answer some of the questions about plant memory. PMID:25482789

  18. Spiral Growth in Plants: Models and Simulations

    ERIC Educational Resources Information Center

    Allen, Bradford D.

    2004-01-01

    The analysis and simulation of spiral growth in plants integrates algebra and trigonometry in a botanical setting. When the ideas presented here are used in a mathematics classroom/computer lab, students can better understand how basic assumptions about plant growth lead to the golden ratio and how the use of circular functions leads to accurate…

  19. Establishing the SECME model in the District of Columbia. Quarterly report, 1 January 1994--31 March 1994

    SciTech Connect

    Vikers, R.G.

    1994-05-01

    During this quarter, many program activities were held to help SECME teachers and counselors implement, improve and strengthen SECME school programs in the District of Columbia. Teachers were actively engaged in enhanced instructional techniques, ideas, processes and resources to help them enrich their students` learning experience. Students are busily participating in hands-on instructional activities and preparing for the SECME competition where they are learning to excel in a competitive environment designed to help them make the most of their school experience.

  20. How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model

    PubMed Central

    Jones, Kathryn M.; Kobayashi, Hajime; Davies, Bryan W.; Taga, Michiko E.; Walker, Graham C.

    2009-01-01

    Nitrogen-fixing rhizobial bacteria and leguminous plants have evolved complex signal exchange mechanisms that allow a specific bacterial species to induce its host plant to form invasion structures through which the bacteria can enter the plant root. Once the bacteria have been endocytosed within a host-membrane-bound compartment by root cells, the bacteria differentiate into a new form that can convert atmospheric nitrogen into ammonia. Bacterial differentiation and nitrogen fixation are dependent on the microaerobic environment and other support factors provided by the plant. In return, the plant receives nitrogen from the bacteria, which allows it to grow in the absence of an external nitrogen source. Here, we review recent discoveries about the mutual recognition process that allows the model rhizobial symbiont Sinorhizobium meliloti to invade and differentiate inside its host plant alfalfa (Medicago sativa) and the model host plant barrel medic (Medicago truncatula). PMID:17632573

  1. Short-Term Energy Outlook: Quarterly projections. Fourth quarter 1993

    SciTech Connect

    Not Available

    1993-11-05

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the fourth quarter of 1993 through the fourth quarter of 1994. Values for the third quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications.

  2. Short-term energy outlook, Quarterly projections. Third quarter 1993

    SciTech Connect

    1993-08-04

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the third quarter of 1993 through the fourth quarter of 1994. Values for the second quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding.

  3. Systems Modeling for Z-IFE Power Plants

    SciTech Connect

    Meier, W R

    2006-11-08

    A preliminary systems model has been developed for Z-IFE power plants. The model includes cost and performance scaling for the target physics, z-pinch driver, chamber, power conversion system and target/RTL manufacturing plant. As the base case we consider the dynamic hohlraum target and a thick liquid wall chamber with flibe as the working fluid. Driver cost and efficiency are evaluated parametrically since various options are still being considered. The model allows for power plants made up of multiple chambers and power conversion units supplied by a central target/RTL manufacturing plant. Initial results indicate that plants with few chambers operating at high yield are economically more attractive than the 10-unit plant previously proposed. Various parametric and sensitivity studies have been completed and are discussed.

  4. 5. East side of quarters (executive officer's quarters), looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. East side of quarters (executive officer's quarters), looking west - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  5. 4. South side of quarters (executive officer's quarters), looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. South side of quarters (executive officer's quarters), looking north - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  6. 3. Southwest side of quarters (executive officer's quarters), looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Southwest side of quarters (executive officer's quarters), looking northeast - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  7. 6. Interior of quarters (executive officer's quarters), living room, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Interior of quarters (executive officer's quarters), living room, looking west - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  8. 2. West side of quarters (executive officer's quarters), looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. West side of quarters (executive officer's quarters), looking east - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  9. 1. North side of quarters (executive officer's quarters), looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. North side of quarters (executive officer's quarters), looking southeast - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  10. Contextual view of quarters no. 2 quarters no. 1, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of quarters no. 2 quarters no. 1, and water tower, looking southwest. - Sacramento National Wildlife Refuge, Headquarters Complex, Quarters No. 2, 752 County Road 99W, Willows, Glenn County, CA

  11. Quarterly coal report

    SciTech Connect

    Young, P.

    1996-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  12. CHARACTERIZATION AND MODELING OF THE FORMS OF MERCURY FROM COAL-FIRED POWER PLANTS

    SciTech Connect

    Dennis L. Laudal

    2001-08-01

    The 1990 Clean Air Act Amendments (CAAAs) required the U.S. Environmental Protection Agency (EPA) to determine whether the presence of mercury in the stack emissions from fossil fuel-fired electric utility power plants poses an unacceptable public health risk. EPA's conclusions and recommendations were presented in the Mercury Study Report to Congress (1) and the Utility Air Toxics Report to Congress (1). The first report addressed both the human health and environmental effects of anthropogenic mercury emissions, while the second addressed the risk to public health posed by the emission of mercury and other hazardous air pollutants from steam-electric generating units. Given the current state of the art, these reports did not state that mercury controls on coal-fired electric power stations would be required. However, they did indicate that EPA views mercury as a potential threat to human health. In fact, in December 2000, the EPA issued an intent to regulate for mercury from coal-fired boilers. However, it is clear that additional research needs to be done in order to develop economical and effective mercury control strategies. To accomplish this objective, it is necessary to understand mercury behavior in coal-fired power plants. The markedly different chemical and physical properties of the different mercury forms generated during coal combustion appear to impact the effectiveness of various mercury control strategies. The original Characterization and Modeling of the Forms of Mercury from Coal-Fired Power Plants project had two tasks. The first was to collect enough data such that mercury speciation could be predicted based on relatively simple inputs such as coal analyses and plant configuration. The second was to field-validate the Ontario Hydro mercury speciation method (at the time, it had only been validated at the pilot-scale level). However, after sampling at two power plants (the Ontario Hydro method was validated at one of them), the EPA issued an

  13. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Framed by wispy contrails left by passing jets high above, a quarter-scale model of the Centurion solar-electric flying wing shows off its graceful lines during a March 1997 test flight at El Mirage Dry Lake in California's Mojave Desert. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate

  14. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Illuminated by early-morning sunlight, a quarter-scale model of the Solar-powered, remotely piloted Centurion ultra-high-altitude flying wing demonstrates its abilities during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar

  15. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Trailed by a van carrying the remote pilot and observers, a radio-controlled quarter-scale model of the Centurion solar-electric flying wing makes a low pass over El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate

  16. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing on Lakebed

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A quarter-scale model of the Centurion solar-powered flying wing rests on the clay of El Mirage Dry Lake in Southern California's high desert after completion of a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft

  17. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing Landing during First

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A quarter-scale model of the future Centurion solar-powered high-altitude research aircraft settles in for landing after a March 1997 test flight at El Mirage Dry Lake, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he

  18. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing on Lakebed

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A quarter-scale model of the Centurion solar-powered flying wing rests on the clay of El Mirage Dry Lake in Southern California's high desert after completion of of a March 1997 flight test. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar

  19. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Illuminated by early-morning sunlight, a quarter-scale model of the solar-powered, remotely piloted Centurion ultra-high-altitude flying wing soars over California's Mojave Desert on a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for

  20. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Silhouetted under a bright blue sky, a quarter-scale model of the Centurion solar-powered flying wing shows off its long, narrow wing as it flies over the broad expanse of El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del

  1. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Silhouetted under a bright blue sky, a quarter-scale model of the Centurion solar-powered flying wing shows off its internal rib structure as it floats over the El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate

  2. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With the snow-covered San Gabriel Mountains as a backdrop and a motorcycle-mounted chase crew alongside, a quarter-scale model of the Centurion solar-powered flying wing soars over El Mirage Dry Lake on an early test flight in March 1997. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate

  3. Measurement and modelling of sap flow in maize plants

    NASA Astrophysics Data System (ADS)

    Heinlein, Florian; Biernath, Christian; Hoffmann, Peter; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2014-05-01

    Climate change as well as the changing composition of the atmosphere will have an impact on future yield of agricultural plants. In order to better estimate these impacts new, mechanistic plant growth models are needed. These models should be able to dynamically reproduce the plants' reactions to modified climate state variables like temperature, atmospheric CO2-concentration and water availability. In particular, to better describe the crop response to more strongly changing water availability the simulation of plant-internal water and solute transport processes in xylem and phloem needs to be improved. Our existing water transport model consists of two coupled 1-D Richards equations to calculate water transport in the soil and in the plants. This model has already been successfully applied to single Fagus sylvatica L. trees. At present it is adapted to agricultural plants such as maize. To simulate the water transport within the plants a representation of the flow paths, i.e. the plant architecture, is required. Aboveground plant structures are obtained from terrestrial laser scan (TLS) measurements at different development stages. These TLSs have been executed at the lysimeter facilities of Helmholtz Zentrum München and at the TERENO (Terrestrial Environmental Observatories) research farm Scheyern. Additionally, an L-system model is used to simulate aboveground and belowground plant architectures. In a further step, the quality of the explicit water flow model has to be tested using measurements. The Heat-Ratio-Method has been employed to directly measure sap flow in larger maize plants during a two-months-period in summer 2013 with a resolution of 10 minutes and thus, the plants' transpiration can be assessed. Water losses from the soil are determined by measuring the weight of lysimeters. From this evapotranspiration can be calculated. Transpiration and evapotranspiration are also simulated by application of the modelling system Expert-N. This framework

  4. USE OF MODELING APPROACHES TO UNDERSTAND POTENTIAL IMPACTS OF GENETICALLY MODIFIED PLANTS ON PLANT COMMUNITIES

    EPA Science Inventory

    Model development is of interest to ecologists, regulators and developers, since it may assist theoretical understanding, decision making in experimental design, product development and risk assessment. In order to predict the potential impacts of genetically modified (GM) plants...

  5. Legumes as a Model Plant Family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The human population derives the majority of its nutrition either directly or indirectly (via animal protein) from two plant families: the grasses and the legumes. Grain legumes alone supply approximately 33% of human protein nutrition. Thus, it is critical for genetic improvement of legume crop spe...

  6. Multiscale Models in the Biomechanics of Plant Growth

    PubMed Central

    Fozard, John A.

    2015-01-01

    Plant growth occurs through the coordinated expansion of tightly adherent cells, driven by regulated softening of cell walls. It is an intrinsically multiscale process, with the integrated properties of multiple cell walls shaping the whole tissue. Multiscale models encode physical relationships to bring new understanding to plant physiology and development. PMID:25729061

  7. English Leadership Quarterly. 1991.

    ERIC Educational Resources Information Center

    Strickland, James, Ed.

    1991-01-01

    These four issues of the English Leadership Quarterly represent the quarterly for 1991. Articles in number 1 deal with whole language and include: "CEL: Shorter and Better" (Myles D. Eley); "Toward a New Philosophy of Language Learning" (Kathleen Strickland); "Whole Language: Implications for Secondary Classrooms" (Barbara King-Shaver); "Whole…

  8. CSSEDC Quarterly. 1990.

    ERIC Educational Resources Information Center

    Strickland, James, Ed.

    1990-01-01

    These four issues of the CSSEDC Quarterly (Conference for Secondary School English Department Chairpersons) represent the quarterly for 1990. Articles in number 1 deal with student teachers and include: "Student Teaching: Smoothing Out the Rough Spots" (Susan B. Argyle and Fred C. Feitler); "A Partnership for Urban Student Teaching" (Jerome T.…

  9. CSSEDC Quarterly. 1989.

    ERIC Educational Resources Information Center

    Strickland, James, Ed.

    1989-01-01

    These four issues of the CSSEDC Quarterly (Conference for Secondary School English Department Chairpersons) represent the quarterly for 1989. Articles in number 1 deal with professional development, and include: "Sharing Expertise within a Department" (Martha R. Dolly); "Empowerment Develops a Computer Writing Center" (Norman L. Frey); "Videotapes…

  10. CSSEDC Quarterly. 1988.

    ERIC Educational Resources Information Center

    Zirinsky, Driek, Ed.; Strickland, James, Ed.

    1988-01-01

    These four issues of the CSSEDC Quarterly (Conference for Secondary School English Department Chairpersons) represent the quarterly for 1988. Articles in number 1 include: "Relearning Leadership" (Tom Jones); "The English Coalition Conference" (Robert Denham); "The Reluctant Writer and Word Processing" (James Strickland); "Teacher Aides: An…

  11. Dynamics of an ant-plant-pollinator model

    NASA Astrophysics Data System (ADS)

    Wang, Yuanshi; DeAngelis, Donald L.; Nathaniel Holland, J.

    2015-03-01

    In this paper, we consider plant-pollinator-ant systems in which plant-pollinator interaction and plant-ant interaction are both mutualistic, but there also exists interference of pollinators by ants. The plant-pollinator interaction can be described by a Beddington-DeAngelis formula, so we extend the formula to characterize plant-pollinator mutualisms, including the interference by ants, and form a plant-pollinator-ant model. Using dynamical systems theory, we show uniform persistence of the model. Moreover, we demonstrate conditions under which boundary equilibria are globally asymptotically stable. The dynamics exhibit mechanisms by which the three species could coexist when ants interfere with pollinators. We define a threshold in ant interference. When ant interference is strong, it can drive plant-pollinator mutualisms to extinction. Furthermore, if the ants depend on pollination mutualism for their persistence, then sufficiently strong ant interference could lead to their own extinction as well. Yet, when ant interference is weak, plant-ant and plant-pollinator mutualisms can promote the persistence of one another.

  12. In vivo nanotoxicity assays in plant models.

    PubMed

    Kumari, Mamta; Ernest, Vinita; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2012-01-01

    Increasing application of silver nanoparticles (SNPs) and zinc oxide nanoparticles (nZnO) in consumer products like textiles, cosmetics, washing machines and other household products increases their chance to reach the environment. Intensive research is required to assess the nanoparticles' toxicity to the environmental system. The toxicological effect of nanoparticles has been studied at the miniscule scale and requires intensive research to be conducted to assess its unknown effects. Plants are the primary target species which need to be included to develop a comprehensive toxicity profile for nanoparticles. So far, the mechanisms of toxicity of nanoparticles to the plant system remains largely unknown and little information on the potential uptake of nanoparticles by plants and their subsequent fate within the food chain is available. The phytoxicological behaviour of silver and zinc oxide nanoparticles on Allium cepa and seeds of Zea mays (maize), Cucumis sativus (cucumber) and Lycopersicum esculentum (tomato) was done. The in vitro studies on A. cepa have been done to check the cytotoxicological effects including mitotic index, chromosomal aberrations, vagrant chromosomes, sticky chromosomes, disturbed metaphase, breaks and formation of micronucleus. In vitro and in vivo studies on seed systems exposed to different concentration of nanoparticles dispersion to check phytotoxicity end point as root length, germination effect, adsorption and accumulation of nanoparticles (uptake studies) into the plant systems. In vivo studies in a seed system was done using phytagel medium. Biochemical studies were done to check effect on protein, DNA and thiobarbituric acid reactive species concentration. FT-IR studies were done to analyze the functional and conformational changes in the treated and untreated samples. The toxicological effects of nanoparticles had to be studied at the miniscule scale to address existing environment problems or prevent future problems. The

  13. 4. Northeast corner of quarters (executive officer's quarters), looking onto ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Northeast corner of quarters (executive officer's quarters), looking onto Quarter R (commanding officer's quarters), looking southeast - Naval Air Station Chase Field, Texas State Highway 202, 4.8 miles east of intersection of Texas State Highway 202 & U.S. State Highway 181, Beeville, Bee County, TX

  14. Growth protocols for model plants in developmental biology.

    PubMed

    Hennig, Lars

    2010-01-01

    Arabidopsis is the dominating model species for plant developmental biology, but other species serve as models for processes that cannot be studied in Arabidopsis, such as compound leaf or wood formation, or to test the universality of developmental mechanisms initially identified in Arabidopsis. Research in plant developmental biology depends critically on robust growth protocols that will support reproducible development. Here, protocols are given to grow Antirrhinum, Arabidopsis, Brachypodium, maize, Medicago, Petunia, rice, and tomato in the laboratory. PMID:20734250

  15. Modeling of air pollution from the power plant ash dumps

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad M.; Balać, Nedeljko

    A simple model of air pollution from power plant ash dumps is presented, with emission rates calculated from the Bagnold formula and transport simulated by the ATDL type model. Moisture effects are accounted for by assumption that there is no pollution on rain days. Annual mean daily sedimentation rates, calculated for the area around the 'Nikola Tesla' power plants near Belgrade for 1987, show reasonably good agreement with observations.

  16. Linear programming model of a meat processing plant

    SciTech Connect

    Shah, S.A.; Okos, M.R.; Reklaitis, G.V.

    1981-01-01

    A multi-period and multi-product production-planning model of an operational meat processing plant is presented. The model input is the time-varying customer demand and the output is the optimum product mix. The model results are interpreted and compared with actual data. Various production strategies are evaluated.

  17. Past, present, and future of Brachypodium as a model plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biologists rely on a plethora of model systems to study an exceptionally broad range of questions in biology. These model systems range from simple prokaryotes to complex animal species. In plants, the most powerful model system has been Arabidopsis thaliana (Arabidopsis), a small dicotyledonous wee...

  18. Plant Phenotyping using Probabilistic Topic Models: Uncovering the Hyperspectral Language of Plants.

    PubMed

    Wahabzada, Mirwaes; Mahlein, Anne-Katrin; Bauckhage, Christian; Steiner, Ulrike; Oerke, Erich-Christian; Kersting, Kristian

    2016-01-01

    Modern phenotyping and plant disease detection methods, based on optical sensors and information technology, provide promising approaches to plant research and precision farming. In particular, hyperspectral imaging have been found to reveal physiological and structural characteristics in plants and to allow for tracking physiological dynamics due to environmental effects. In this work, we present an approach to plant phenotyping that integrates non-invasive sensors, computer vision, as well as data mining techniques and allows for monitoring how plants respond to stress. To uncover latent hyperspectral characteristics of diseased plants reliably and in an easy-to-understand way, we "wordify" the hyperspectral images, i.e., we turn the images into a corpus of text documents. Then, we apply probabilistic topic models, a well-established natural language processing technique that identifies content and topics of documents. Based on recent regularized topic models, we demonstrate that one can track automatically the development of three foliar diseases of barley. We also present a visualization of the topics that provides plant scientists an intuitive tool for hyperspectral imaging. In short, our analysis and visualization of characteristic topics found during symptom development and disease progress reveal the hyperspectral language of plant diseases. PMID:26957018

  19. Plant Phenotyping using Probabilistic Topic Models: Uncovering the Hyperspectral Language of Plants

    PubMed Central

    Wahabzada, Mirwaes; Mahlein, Anne-Katrin; Bauckhage, Christian; Steiner, Ulrike; Oerke, Erich-Christian; Kersting, Kristian

    2016-01-01

    Modern phenotyping and plant disease detection methods, based on optical sensors and information technology, provide promising approaches to plant research and precision farming. In particular, hyperspectral imaging have been found to reveal physiological and structural characteristics in plants and to allow for tracking physiological dynamics due to environmental effects. In this work, we present an approach to plant phenotyping that integrates non-invasive sensors, computer vision, as well as data mining techniques and allows for monitoring how plants respond to stress. To uncover latent hyperspectral characteristics of diseased plants reliably and in an easy-to-understand way, we “wordify” the hyperspectral images, i.e., we turn the images into a corpus of text documents. Then, we apply probabilistic topic models, a well-established natural language processing technique that identifies content and topics of documents. Based on recent regularized topic models, we demonstrate that one can track automatically the development of three foliar diseases of barley. We also present a visualization of the topics that provides plant scientists an intuitive tool for hyperspectral imaging. In short, our analysis and visualization of characteristic topics found during symptom development and disease progress reveal the hyperspectral language of plant diseases. PMID:26957018

  20. Structure of plant photosystem I revealed by theoretical modeling.

    PubMed

    Jolley, Craig; Ben-Shem, Adam; Nelson, Nathan; Fromme, Petra

    2005-09-30

    Photosystem (PS) I is a large membrane protein complex vital for oxygenic photosynthesis, one of the most important biological processes on the planet. We present an "atomic" model of higher plant PSI, based on theoretical modeling using the recent 4.4 angstroms x-ray crystal structure of PSI from pea. Because of the lack of information on the amino acid side chains in the x-ray structural model and the high cofactor content in this system, novel modeling techniques were developed. Our model reveals some important structural features of plant PSI that were not visible in the crystal structure, and our model sheds light on the evolutionary relationship between plant and cyanobacterial PSI. PMID:15955818

  1. Three-Dimensional Modeling of Laser-Plasma Interactions Near the Quarter-Critical Density in Plasmas

    NASA Astrophysics Data System (ADS)

    Wen, H.; Maximov, A. V.; Yan, R.; Ren, C.; Li, J.; Myatt, J. F.

    2015-11-01

    Three dimensional particle-in-cell simulations have been performed in the plasma region near quarter-critical density for the parameters typical for direct-drive inertial confinement fusion experiments. The laser-plasma instabilities of two-plasmon decay (TPD), stimulated Raman scattering (SRS), and stimulated Brillouin scattering have been identified in the time evolution of different electric- and magnetic-field components. A good agreement between the simulation results and the theories of TPD and SRS has been observed. In the nonlinear saturation regime, the field intensities and the fast-electron distributions are compared for plane-wave and speckled laser beams. The effects of collisions are studied. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. FETC/EPRI Biomass Cofiring Cooperative Agreement. Quarterly technical report, April 1-June 30, 1997

    SciTech Connect

    Hughes, E.; Tillman, D.

    1997-12-01

    The FETC/EPRI Biomass Cofiring Program has accelerated the pace of cofiring development by increasing the testing activities plus the support activities for interpreting test results. Past tests conducted and analyzed include the Allen Fossil Plant and Seward Generating Station programs. On-going tests include the Colbert Fossil Plant precommercial test program, the Greenidge Station commercialization program, and the Blount St. Station switchgrass program. Tests in the formative stages included the NIPSCO cofiring test at Michigan City Generating Station. Analytical activities included modeling and related support functions required to analyze the cofiring test results, and to place those results into context. Among these activities is the fuel availability study in the Pittsburgh, PA area. This study, conducted for Duquesne Light, supports their initial investigation into reburn technology using wood waste as a fuel. This Quarterly Report, covering the third quarter of the FETC/EPRI Biomass Cofiring Program, highlights the progress made on the 16 projects funded under this cooperative agreement.

  3. A dynamical systems model for nuclear power plant risk

    NASA Astrophysics Data System (ADS)

    Hess, Stephen Michael

    The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of

  4. A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology.

    PubMed

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-09-01

    The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software. Two case studies have been evaluated to assess the model's performance: (1) modelling the energy demand of two urban wastewater treatment plants based on conventional activated sludge and submerged anaerobic membrane bioreactor (AnMBR) technologies in steady-state conditions and (2) modelling the dynamics of reactor temperature and heat requirements in an AnMBR plant in unsteady-state conditions. The results indicate that the proposed model can be used to assess the energy performance of different wastewater treatment processes and would thus be useful, for example, WWTP design or upgrading or the development of new control strategies for energy savings. PMID:26829316

  5. Mesoscale to plant-scale models of nuclear waste reprocessing.

    SciTech Connect

    Noble, David Frederick; O'Hern, Timothy John; Moffat, Harry K.; Nemer, Martin B.; Domino, Stefan Paul; Rao, Rekha Ranjana; Cipiti, Benjamin B.; Brotherton, Christopher M.; Jove-Colon, Carlos F.; Pawlowski, Roger Patrick

    2010-09-01

    Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.

  6. Commercial second-generation PFBC plant transient model: Task 15

    SciTech Connect

    White, J.S.; Getty, R.T.; Torpey, M.R.

    1995-04-01

    The advanced pressurized fluidized bed combustor (APFBC) power plant combines an efficient gas-fired combined cycle, a low-emission PFB combustor, and a coal pyrolysis unit (carbonizer) that converts coal, America`s most plentiful fuel, into the gas turbine fuel. From an operation standpoint, the APFBC plant is similar to an integrated gasification combined cycle (IGCC) plant, except that the PFBC and fluid bed heat exchanger (FBHE) allow a considerable fraction of coal energy to be shunted around the gas turbine and sent directly to the steam turbine. By contrast, the fuel energy in IGCC plants and most other combined cycles is primarily delivered to the gas turbine and then to the steam turbine. Another characteristic of the APFBC plant is the interaction among three large thermal inertias--carbonizer, PFBC, and FBHE--that presents unique operational challenges for modeling and operation of this type of plant. This report describes the operating characteristics and dynamic responses of the APFBC plant and discusses the advantages and shortcomings of several alternative control strategies for the plant. In particular, interactions between PFBC, FBHE, and steam bottoming cycle are analyzed and the effect of their interactions on plant operation is discussed. The technical approach used in the study is described in Section 2. The dynamic model is introduced in Section 3 and described is detail in the appendices. Steady-state calibration and transient simulations are presented in Sections 4 and 5. The development of the operating philosophy is discussed in Section 6. Potential design changes to the dynamic model and trial control schemes are listed in Sections 7 and 8. Conclusions derived from the study are presented in Section 9.

  7. A collaborative effort to model plant response to acidic rain

    SciTech Connect

    Jacobson, J.; Irving, P.; Kuja, A.; Lee, J.; Shriner, D.; Troiano, J.; Perrigan, S.; Cullinan, V.

    1989-01-01

    Radish plants were exposed three times per week to simulated acidic rain at pH values of 2.6 to 5.4 over the course of four weeks in trials performed at Argonne, Illinois; Ithaca and Upton, New York; Corvallis, Oregon; Oak Ridge, Tennessee; and Toronto, Canada. Uniform genotype, soil media and planting techniques, treatment procedures, biological measurements, and experimental design were employed. Growth of plants differed among trials as a result of variation in greenhouse environmental conditions according to location and facilities. Larger plants underwent greater absolute but lower relative reductions in biomass after exposure to the higher levels of acidity. A generalized Mitscherlich function was used to model the effects of acidity of simulated rain on dry mass of hypocotyls using data from three laboratories that performed duplicate trials. The remaining data, from three other laboratories that performed only one trial each, were used to test the model. 14 refs., 2 figs., 7 tabs.

  8. Modelling of an oil refinery wastewater treatment plant.

    PubMed

    Pinzón Pardo, A L; Brdjanovic, D; Moussa, M S; López-Vázquez, C M; Meijer, S C F; Van Straten, H H A; Janssen, A J H; Amy, G; Van Loosdrecht, M C M

    2007-11-01

    The Activated Sludge Model No. 3 (ASM3) and Dutch calibration guidelines (STOWA) were evaluated in the modelling of an activated sludge system treating effluents from a large oil refinery. The plant was designed to remove suspended solids, organic matter and nitrogen from wastewater at an average water temperature of 34 degrees C. The plant consists of three tanks in series; the first two tanks operate in on-off aeration mode with pure oxygen for N-removal, whilst extra methanol is added for the denitrification, and the third tank is maintained as constantly aerobic. Calibration was performed based on a simplified influent characterisation and extra batch experiments (nitrification and denitrification). With the adjustment of only four parameters the model proved capable of describing the performance of the plant concerning both the liquid phase and the biomass. The model was further used to analyse possible modifications in the plant layout and optimize operational conditions in order to reduce operating costs. Modelling results indicated reduction in methanol dosage by implementing an idle time between aerobic and anoxic phases. In this way, surplus methanol was prevented from entering during the aerobic period. Moreover, simulations showed that the most cost-effective option regarding the denitrification process was a combined pre-post-denitrification scheme, without the need for enlarging existing basins. It can be concluded that although ASM3 and STOWA guidelines were originally developed for domestic wastewater application at a temperature range of 10 to 20 degrees C, they proved well capable of describing the performance of an oil refinery wastewater treatment plant operating at 34 degrees C. Moreover, the plant model proved useful for optimization of the plant performance regarding operational costs. PMID:18290537

  9. Public Lakes, Private Lakeshore: Modeling Protection of Native Aquatic Plants

    NASA Astrophysics Data System (ADS)

    Schroeder, Susan A.; Fulton, David C.

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey ( n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  10. Public lakes, private lakeshore: modeling protection of native aquatic plants.

    PubMed

    Schroeder, Susan A; Fulton, David C

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property. PMID:23609308

  11. The components of crop productivity: measuring and modeling plant metabolism

    NASA Technical Reports Server (NTRS)

    Bugbee, B.

    1995-01-01

    Several investigators in the CELSS program have demonstrated that crop plants can be remarkably productive in optimal environments where plants are limited only by incident radiation. Radiation use efficiencies of 0.4 to 0.7 g biomass per mol of incident photons have been measured for crops in several laboratories. Some early published values for radiation use efficiency (1 g mol-1) were inflated due to the effect of side lighting. Sealed chambers are the basic research module for crop studies for space. Such chambers allow the measurement of radiation and CO2 fluxes, thus providing values for three determinants of plant growth: radiation absorption, photosynthetic efficiency (quantum yield), and respiration efficiency (carbon use efficiency). Continuous measurement of each of these parameters over the plant life cycle has provided a blueprint for daily growth rates, and is the basis for modeling crop productivity based on component metabolic processes. Much of what has been interpreted as low photosynthetic efficiency is really the result of reduced leaf expansion and poor radiation absorption. Measurements and models of short-term (minutes to hours) and long-term (days to weeks) plant metabolic rates have enormously improved our understanding of plant environment interactions in ground-based growth chambers and are critical to understanding plant responses to the space environment.

  12. Simulation model for plant growth in controlled environment systems

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.; Wann, M.

    1986-01-01

    The role of the mathematical model is to relate the individual processes to environmental conditions and the behavior of the whole plant. Using the controlled-environment facilities of the phytotron at North Carolina State University for experimentation at the whole-plant level and methods for handling complex models, researchers developed a plant growth model to describe the relationships between hierarchial levels of the crop production system. The fundamental processes that are considered are: (1) interception of photosynthetically active radiation by leaves, (2) absorption of photosynthetically active radiation, (3) photosynthetic transformation of absorbed radiation into chemical energy of carbon bonding in solube carbohydrates in the leaves, (4) translocation between carbohydrate pools in leaves, stems, and roots, (5) flow of energy from carbohydrate pools for respiration, (6) flow from carbohydrate pools for growth, and (7) aging of tissues. These processes are described at the level of organ structure and of elementary function processes. The driving variables of incident photosynthetically active radiation and ambient temperature as inputs pertain to characterization at the whole-plant level. The output of the model is accumulated dry matter partitioned among leaves, stems, and roots; thus, the elementary processes clearly operate under the constraints of the plant structure which is itself the output of the model.

  13. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  14. Synthesis of model compounds for coal liquefaction research. Quarterly report No. 1, June 21, 1990--September 20, 1990

    SciTech Connect

    Hirschon, A.S.; Asaro, M.; Bottaro, J.

    1990-11-02

    The objectives of this project are to develop feasible synthetic routes to produce (1) 4(4`-hydroxy-5`,6`,7`,8`-tetrahydro-l`-naphthylmethyl )- 6-methyldibenzothiophene, and (2) a 1-hydroxynaphthalene-benzothiophene polymer. Our experimental work during this quarter concentrated on. As several possible synthetic routes to the target molecule, 4(4`-hydroxy-5`,6`,7`,8`-tetrahydro- l`-naphthylmethyl )-6-methyldibenzothiophene. We tried synthesizing the intermediates for our first method, in which we couple a metalated 4-methyldibenzothiophene with 4-formyl-5,6,7,8-tetrahydro-1-naphthol. We found that we could easily metalate dibenzothiophene, and then add a methyl group to the 4-position to give 4-methyldibenzothiophene in greater than 80% yield by using t-butyllithium in tetrahydropyran followed by dimethylsulfate. However, adding the second metal to the desired 4` position using the same method was more difficult, and instead the reaction occurred on the methyl group. Therefore, we will investigate an alternative method, in which a hydroxy group is added in order to help direct the second metalation step to the 4` position on 4-methyldibenzothiophene.

  15. Gasification CFD Modeling for Advanced Power Plant Simulations

    SciTech Connect

    Zitney, S.E.; Guenther, C.P.

    2005-09-01

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  16. A stoichiometric model of early plant primary succession.

    PubMed

    Marleau, Justin N; Jin, Yu; Bishop, John G; Fagan, William F; Lewis, Mark A

    2011-02-01

    The relative importance of plant facilitation and competition during primary succession depends on the development of ecosystem nutrient pools, yet the interaction of these processes remains poorly understood. To explore how these mechanisms interact to drive successional dynamics, we devised a stoichiometric ecosystem-level model that considers the role of nitrogen and phosphorus limitation in plant primary succession. We applied this model to the primary plant community on Mount St. Helens, Washington State, to check the validity of the proposed mechanisms. Our results show that the plant community is colimited by nitrogen and phosphorus, and they confirm previous suggestions that the presence of a nitrogen-fixing legume, Lupinus lepidus, can enhance community biomass. In addition, the observed nutrient supply rates may promote alternative successional trajectories that depend on the initial plant abundances, which may explain the observed heterogeneity in community development. The model further indicates the importance of mineralization rates and other ecosystem parameters to successional rates. We conclude that a model framework based on ecological stoichiometry allows integration of key biotic processes that interact nonlinearly with biogeochemical aspects of succession. Extension of this approach will improve the understanding of the process of primary succession and its application to ecosystem rehabilitation. PMID:21460559

  17. Incorporating Plant Phenology Dynamics in a Biophysical Canopy Model

    NASA Technical Reports Server (NTRS)

    Barata, Raquel A.; Drewry, Darren

    2012-01-01

    The Multi-Layer Canopy Model (MLCan) is a vegetation model created to capture plant responses to environmental change. Themodel vertically resolves carbon uptake, water vapor and energy exchange at each canopy level by coupling photosynthesis, stomatal conductance and leaf energy balance. The model is forced by incoming shortwave and longwave radiation, as well as near-surface meteorological conditions. The original formulation of MLCan utilized canopy structural traits derived from observations. This project aims to incorporate a plant phenology scheme within MLCan allowing these structural traits to vary dynamically. In the plant phenology scheme implemented here, plant growth is dependent on environmental conditions such as air temperature and soil moisture. The scheme includes functionality that models plant germination, growth, and senescence. These growth stages dictate the variation in six different vegetative carbon pools: storage, leaves, stem, coarse roots, fine roots, and reproductive. The magnitudes of these carbon pools determine land surface parameters such as leaf area index, canopy height, rooting depth and root water uptake capacity. Coupling this phenology scheme with MLCan allows for a more flexible representation of the structure and function of vegetation as it responds to changing environmental conditions.

  18. Higher Plants in life support systems: design of a model and plant experimental compartment

    NASA Astrophysics Data System (ADS)

    Hezard, Pauline; Farges, Berangere; Sasidharan L, Swathy; Dussap, Claude-Gilles

    The development of closed ecological life support systems (CELSS) requires full control and efficient engineering for fulfilling the common objectives of water and oxygen regeneration, CO2 elimination and food production. Most of the proposed CELSS contain higher plants, for which a growth chamber and a control system are needed. Inside the compartment the development of higher plants must be understood and modeled in order to be able to design and control the compartment as a function of operating variables. The plant behavior must be analyzed at different sub-process scales : (i) architecture and morphology describe the plant shape and lead to calculate the morphological parameters (leaf area, stem length, number of meristems. . . ) characteristic of life cycle stages; (ii) physiology and metabolism of the different organs permit to assess the plant composition depending on the plant input and output rates (oxygen, carbon dioxide, water and nutrients); (iii) finally, the physical processes are light interception, gas exchange, sap conduction and root uptake: they control the available energy from photosynthesis and the input and output rates. These three different sub-processes are modeled as a system of equations using environmental and plant parameters such as light intensity, temperature, pressure, humidity, CO2 and oxygen partial pressures, nutrient solution composition, total leaf surface and leaf area index, chlorophyll content, stomatal conductance, water potential, organ biomass distribution and composition, etc. The most challenging issue is to develop a comprehensive and operative mathematical model that assembles these different sub-processes in a unique framework. In order to assess the parameters for testing a model, a polyvalent growth chamber is necessary. It should permit a controlled environment in order to test and understand the physiological response and determine the control strategy. The final aim of this model is to have an envi

  19. Modeling the benefits of power plant emission controls in Massachusetts.

    PubMed

    Levy, Jonathan I; Spengler, John D

    2002-01-01

    Older fossil-fueled power plants provide a significant portion of emissions of criteria air pollutants in the United States, in part because these facilities are not required to meet the same emission standards as new sources under the Clean Air Act. Pending regulations for older power plants need information about any potential public health benefits of emission reductions, which can be estimated by combining emissions information, dispersion modeling, and epidemiologic evidence. In this article, we develop an analytical modeling framework that can evaluate health benefits of emission controls, and we apply our model to two power plants in Massachusetts. Using the CALPUFF atmospheric dispersion model, we estimate that use of Best Available Control Technology (BACT) for NOx and SO2 would lead to maximum annual average secondary particulate matter (PM) concentration reductions of 0.2 microg/m3. When we combine concentration reductions with current health evidence, our central estimate is that the secondary PM reductions from these two power plants would avert 70 deaths per year in a population of 33 million individuals. Although benefit estimates could differ substantially with different interpretations of the health literature, parametric perturbations within CALPUFF and other simple model changes have relatively small impacts from an aggregate risk perspective. While further analysis would be required to reduce uncertainties and expand on our analytical model, our framework can help decision-makers evaluate the magnitude and distribution of benefits under different control scenarios. PMID:15152660

  20. Dynamic Models for Wind Turbines and Wind Power Plants

    SciTech Connect

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  1. Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model

    SciTech Connect

    Annoni, Jennifer; Gebraad, Pieter M. O.; Scholbrock, Andrew K.; Fleming, Paul A.; Wingerden, Jan-Willem van

    2015-08-14

    Wind turbines are typically operated to maximize their performance without considering the impact of wake effects on nearby turbines. Wind plant control concepts aim to increase overall wind plant performance by coordinating the operation of the turbines. This paper focuses on axial-induction-based wind plant control techniques, in which the generator torque or blade pitch degrees of freedom of the wind turbines are adjusted. The paper addresses discrepancies between a high-order wind plant model and an engineering wind plant model. Changes in the engineering model are proposed to better capture the effects of axial-induction-based control shown in the high-order model.

  2. Chemotaxis signaling systems in model beneficial plant-bacteria associations.

    PubMed

    Scharf, Birgit E; Hynes, Michael F; Alexandre, Gladys M

    2016-04-01

    Beneficial plant-microbe associations play critical roles in plant health. Bacterial chemotaxis provides a competitive advantage to motile flagellated bacteria in colonization of plant root surfaces, which is a prerequisite for the establishment of beneficial associations. Chemotaxis signaling enables motile soil bacteria to sense and respond to gradients of chemical compounds released by plant roots. This process allows bacteria to actively swim towards plant roots and is thus critical for competitive root surface colonization. The complete genome sequences of several plant-associated bacterial species indicate the presence of multiple chemotaxis systems and a large number of chemoreceptors. Further, most soil bacteria are motile and capable of chemotaxis, and chemotaxis-encoding genes are enriched in the bacteria found in the rhizosphere compared to the bulk soil. This review compares the architecture and diversity of chemotaxis signaling systems in model beneficial plant-associated bacteria and discusses their relevance to the rhizosphere lifestyle. While it is unclear how controlling chemotaxis via multiple parallel chemotaxis systems provides a competitive advantage to certain bacterial species, the presence of a larger number of chemoreceptors is likely to contribute to the ability of motile bacteria to survive in the soil and to compete for root surface colonization. PMID:26797793

  3. Mathematical Modeling of Plant Metabolism―From Reconstruction to Prediction

    PubMed Central

    Nägele, Thomas; Weckwerth, Wolfram

    2012-01-01

    Due to their sessile lifestyle, plants are exposed to a large set of environmental cues. In order to cope with changes in environmental conditions a multitude of complex strategies to regulate metabolism has evolved. The complexity is mainly attributed to interlaced regulatory circuits between genes, proteins and metabolites and a high degree of cellular compartmentalization. The genetic model plant Arabidopsis thaliana was intensely studied to characterize adaptive traits to a changing environment. The availability of genetically distinct natural populations has made it an attractive system to study plant-environment interactions. The impact on metabolism caused by changing environmental conditions can be estimated by mathematical approaches and deepens the understanding of complex biological systems. In combination with experimental high-throughput technologies this provides a promising platform to develop in silico models which are not only able to reproduce but also to predict metabolic phenotypes and to allow for the interpretation of plant physiological mechanisms leading to successful adaptation to a changing environment. Here, we provide an overview of mathematical approaches to analyze plant metabolism, with experimental procedures being used to validate their output, and we discuss them in the context of establishing a comprehensive understanding of plant-environment interactions. PMID:24957647

  4. Predicting plants -modeling traits as a function of environment

    NASA Astrophysics Data System (ADS)

    Franklin, Oskar

    2016-04-01

    A central problem in understanding and modeling vegetation dynamics is how to represent the variation in plant properties and function across different environments. Addressing this problem there is a strong trend towards trait-based approaches, where vegetation properties are functions of the distributions of functional traits rather than of species. Recently there has been enormous progress in in quantifying trait variability and its drivers and effects (Van Bodegom et al. 2012; Adier et al. 2014; Kunstler et al. 2015) based on wide ranging datasets on a small number of easily measured traits, such as specific leaf area (SLA), wood density and maximum plant height. However, plant function depends on many other traits and while the commonly measured trait data are valuable, they are not sufficient for driving predictive and mechanistic models of vegetation dynamics -especially under novel climate or management conditions. For this purpose we need a model to predict functional traits, also those not easily measured, and how they depend on the plants' environment. Here I present such a mechanistic model based on fitness concepts and focused on traits related to water and light limitation of trees, including: wood density, drought response, allocation to defense, and leaf traits. The model is able to predict observed patterns of variability in these traits in relation to growth and mortality, and their responses to a gradient of water limitation. The results demonstrate that it is possible to mechanistically predict plant traits as a function of the environment based on an eco-physiological model of plant fitness. References Adier, P.B., Salguero-Gómez, R., Compagnoni, A., Hsu, J.S., Ray-Mukherjee, J., Mbeau-Ache, C. et al. (2014). Functional traits explain variation in plant lifehistory strategies. Proc. Natl. Acad. Sci. U. S. A., 111, 740-745. Kunstler, G., Falster, D., Coomes, D.A., Hui, F., Kooyman, R.M., Laughlin, D.C. et al. (2015). Plant functional traits

  5. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species. Quarterly technical progress report, March 20, 1995--June 20, 1995

    SciTech Connect

    Kochian, L.

    1995-12-01

    The biological accumulation of heavy metals and cesium, strontium, and uranium in plants is discussed. The role of nutrient deficiencies and foliar treatments of manganese and iron compounds is described.

  6. Combustion characterization of the blend of plant coal and recovered coal fines. [Quarterly] technical report, March 1, 1992--May 31, 1992

    SciTech Connect

    Singh, S.; Scaroni, A.; Miller, B.; Choudhry, V.

    1992-10-01

    The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. One plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through -200 mesh size. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace win be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc. The burning profile of the plant coal and the three blends was determined in a thermogravimetric analyzer. Results indicated slower burning of the blends due to low volatile matter and oxidized coal particles. Ash fusing temperatures of the samples were determined using ASTM procedure. Preliminary combustion evaluation of the samples (100% plant coal, 80% plant coal/20% recovered coal fines) indicated that the flame was stable at 100,000-200,000 Btu/hr firing rate. Carbon conversion efficiency of 85 to 90% was recorded using the Ash Tracer technique. Tests are continuing to determine the operating boundaries for these blends while measuring the emissions of SO{sub x}, NO{sub x}, CO and O{sub 2}, maintaining a stable flame.

  7. Simulation of wastewater treatment plant within integrated urban wastewater models.

    PubMed

    Heusch, S; Kamradt, B; Ostrowski, M

    2010-01-01

    In the federal state of Hesse in Germany the application of an integrated software modelling framework is becoming part of the planning process to attain legal approval for the operation of combined sewer systems. The software allows for parallel simulation of flow and water quality routing in the sewer system and in receiving rivers. It combines existing pollution load model approaches with a simplified version of the River Water Quality Model No. 1 (RWQM1). Comprehensive simulation of the wastewater treatment plant (WWTP) is not considered yet. The paper analyses alternatives for the implementation of a WWTP module to model activated sludge plants. For both primary and secondary clarifiers as well as for the activated sludge process concepts for the integration into the existing software framework were developed. The activated sludge concept which uses a linearized version of the well known ASM1 model is presented in detail. PMID:20453339

  8. Methane modeling: predicting the inflow of methane gas into coal mines. Quarterly technical progress report, January 2, 1981-March 31, 1981

    SciTech Connect

    Boyer, C.M. II; Morrison, H.L.; Schwerer, F.C.

    1981-04-15

    Salient features of technical progress for the first quarter are the following: (I) computer-assisted literature searches have been completed for several strategies designed to cover different aspects of the model development and evaluation program. Some strategy refinement and additional searches are required. Ultimately a comprehensive bibliography will have been compiled and evaluated; (II) basic mathematical components that are sufficient for the development of a first numerical model for water and methane flows to coal mines have been identified. This initial set of components is a basis for the collection and analysis of refinements to provide more realistic accounts of the complex factors affecting coal-bed methane during mining and degasification; (III) a set of basic partial differential equations for flow of water and gas in a horizontal, homogeneous coal seam has been formulated in terms of pressure, pore saturation, and adsorbed gas variables and presented in normalized form for numerical solution. Equation sets corresponding to alternative choices of dependent variables will be formulated and compared with this initial set and (IV) computer subroutines have been modified and assembled to implement one-dimensional, nonsteady, two-phase flow models. These programs implement numerical, finite-difference, method-of-lines algorithms in a format that facilitates substitution of mathematical components and equation sets. Initial runs with this software package have illustrated the superiority of a particular space-discretization scheme and provide data for comparison of grid and permeability weighting schemes.

  9. Collaborative effort to model plant response to acidic rain

    SciTech Connect

    Jacobson, J.; Kuja, A.; Shriner, D.; Perrigan, S.; Irving, P.; Lee, J.; Troiano, J.; Cullinan, V.

    1988-06-01

    Radish plants were exposed three times per week to simulated acidic rain at pH values of 2.6 to 5.4 over the course of four weeks in trials performed at Argonne, Illinois; Ithaca and Upton, New York; Corvallis, Oregon; Oak Ridge, Tennessee; and Toronto, Canada. Uniform genotype, soil media and planting techniques, treatment procedures, biological measurements, and experimental design were employed. Growth of plants differed among trials as a result of variation in greenhouse environmental conditions according to location and facilities. Larger plants underwent greater absolute but lower relative reductions in biomass after exposure to the higher levels of acidity. A generalized Mitscherlich function was used to model the effects of acidity of simulated rain or dry mass of hypocotyls using data from three laboratories that performed duplicate trials. The remaining data, from three other laboratories that performed only one trial each, were used to test the model. When the laboratory by trial effect was removed, lack of fit to the Mitscherlich function was insignificant. Thus, a single mathematical model satisfactorily characterized the relationship between acidity and mean plant response.

  10. EMSL Quarterly Highlights Report: FY 2008, 3rd Quarter

    SciTech Connect

    Showalter, Mary Ann

    2008-09-16

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  11. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    SciTech Connect

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  12. EMSL Quarterly Highlights Report: 1st Quarter, FY08

    SciTech Connect

    Showalter, Mary Ann

    2008-01-28

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  13. Modeling regulatory networks to understand plant development: small is beautiful.

    PubMed

    Middleton, Alistair M; Farcot, Etienne; Owen, Markus R; Vernoux, Teva

    2012-10-01

    We now have unprecedented capability to generate large data sets on the myriad genes and molecular players that regulate plant development. Networks of interactions between systems components can be derived from that data in various ways and can be used to develop mathematical models of various degrees of sophistication. Here, we discuss why, in many cases, it is productive to focus on small networks. We provide a brief and accessible introduction to relevant mathematical and computational approaches to model regulatory networks and discuss examples of small network models that have helped generate new insights into plant biology (where small is beautiful), such as in circadian rhythms, hormone signaling, and tissue patterning. We conclude by outlining some of the key technical and modeling challenges for the future. PMID:23110896

  14. Modeling Regulatory Networks to Understand Plant Development: Small Is Beautiful

    PubMed Central

    Middleton, Alistair M.; Farcot, Etienne; Owen, Markus R.; Vernoux, Teva

    2012-01-01

    We now have unprecedented capability to generate large data sets on the myriad genes and molecular players that regulate plant development. Networks of interactions between systems components can be derived from that data in various ways and can be used to develop mathematical models of various degrees of sophistication. Here, we discuss why, in many cases, it is productive to focus on small networks. We provide a brief and accessible introduction to relevant mathematical and computational approaches to model regulatory networks and discuss examples of small network models that have helped generate new insights into plant biology (where small is beautiful), such as in circadian rhythms, hormone signaling, and tissue patterning. We conclude by outlining some of the key technical and modeling challenges for the future. PMID:23110896

  15. Matrix population models from 20 studies of perennial plant populations

    USGS Publications Warehouse

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the 'Testing Matrix Models' working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  16. Matrix population models from 20 studies of perennial plant populations

    USGS Publications Warehouse

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the "Testing Matrix Models" working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  17. COAL PREPARATION PLANT COMPUTER MODEL: VOLUME I. USER DOCUMENTATION

    EPA Science Inventory

    The two-volume report describes a steady state modeling system that simulates the performance of coal preparation plants. The system was developed originally under the technical leadership of the U.S. Bureau of Mines and the sponsorship of the EPA. The modified form described in ...

  18. Forecast and virtual weather driven plant disease risk modeling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe a system in use and development that leverages public weather station data, several spatialized weather forecast types, leaf wetness estimation, generic plant disease models, and online statistical evaluation. Convergent technological developments in all these areas allow, with funding f...

  19. Spatially Informed Plant PRA Models for Security Assessment

    SciTech Connect

    Wheeler, Timothy A.; Thomas, Willard; Thornsbury, Eric

    2006-07-01

    Traditional risk models can be adapted to evaluate plant response for situations where plant systems and structures are intentionally damaged, such as from sabotage or terrorism. This paper describes a process by which traditional risk models can be spatially informed to analyze the effects of compound and widespread harsh environments through the use of 'damage footprints'. A 'damage footprint' is a spatial map of regions of the plant (zones) where equipment could be physically destroyed or disabled as a direct consequence of an intentional act. The use of 'damage footprints' requires that the basic events from the traditional probabilistic risk assessment (PRA) be spatially transformed so that the failure of individual components can be linked to the destruction of or damage to specific spatial zones within the plant. Given the nature of intentional acts, extensive modifications must be made to the risk models to account for the special nature of the 'initiating events' associated with deliberate adversary actions. Intentional acts might produce harsh environments that in turn could subject components and structures to one or more insults, such as structural, fire, flood, and/or vibration and shock damage. Furthermore, the potential for widespread damage from some of these insults requires an approach that addresses the impacts of these potentially severe insults even when they occur in locations distant from the actual physical location of a component or structure modeled in the traditional PRA. (authors)

  20. OXYGEN UTILIZATION IN ACTIVATED SLUDGE PLANTS: SIMULATION AND MODEL CALIBRATION

    EPA Science Inventory

    The objective of the research described in the report is to apply recent advances in activated sludge process modeling to the simulation of oxygen utilization rates in full scale activated sludge treatment plants. This is accomplished by calibrating the International Association ...

  1. Representing plants as rigid cylinders in experiments and models

    NASA Astrophysics Data System (ADS)

    Vargas-Luna, Andrés; Crosato, Alessandra; Calvani, Giulio; Uijttewaal, Wim S. J.

    2016-07-01

    Simulating the morphological adaptation of water systems often requires including the effects of plants on water and sediment dynamics. Physical and numerical models need representing vegetation in a schematic easily-quantifiable way despite the variety of sizes, shapes and flexibility of real plants. Common approaches represent plants as rigid cylinders, but the ability of these schematizations to reproduce the effects of vegetation on morphodynamic processes has never been analyzed systematically. This work focuses on the consequences of representing plants as rigid cylinders in laboratory tests and numerical simulations. New experiments show that the flow resistance decreases for increasing element Reynolds numbers for both plants and rigid cylinders. Cylinders on river banks can qualitatively reproduce vegetation effects on channel width and bank-related processes. A comparative review of numerical simulations shows that Baptist's method that sums the contribution of bed shear stress and vegetation drag, underestimates bed erosion within sparse vegetation in real rivers and overestimates the mean flow velocity in laboratory experiments. This is due to assuming uniform flow among plants and to an overestimation of the role of the submergence ratio.

  2. Plants as Model in Biomimetics and Biorobotics: New Perspectives

    PubMed Central

    Mazzolai, Barbara; Beccai, Lucia; Mattoli, Virgilio

    2013-01-01

    Especially in robotics, rarely plants have been considered as a model of inspiration for designing and developing new technology. This is probably due to their radically different operational principles compared to animals and the difficulty to study their movements and features. Owing to the sessile nature of their lifestyle, plants have evolved the capability to respond to a wide range of signals and efficiently adapt to changing environmental conditions. Plants in fact are able to show considerable plasticity in their morphology and physiology in response to variability within their environment. This results in movements that are characterized by energy efficiency and high density. Plant materials are optimized to reduce energy consumption during motion and these capabilities offer a plethora of solutions in the artificial world, exploiting approaches that are muscle-free and thus not necessarily animal-like. Plant roots then are excellent natural diggers, and their characteristics such as adaptive growth, low energy consumption movements, and the capability of penetrating soil at any angle are interesting from an engineering perspective. A few examples are described to lay the perspectives of plants in the artificial world. PMID:25152878

  3. An experimental test of plant canopy reflectance models on cotton

    NASA Technical Reports Server (NTRS)

    Lemaster, E. W.

    1974-01-01

    Extensive data on the plant parameters necessary to evaluate any model are presented for a cotton crop. The variation of the bidirectional reflectance function with observer altitude, observer azimuth, and sun altitude angle is presented for a high density cotton crop having leaf index of 19. A comparison with the quantitative behavior obtained from the Suits model is accomplished in the wavelength region from 400 nm to 1050 nm.

  4. Signalling Network Construction for Modelling Plant Defence Response

    PubMed Central

    Miljkovic, Dragana; Stare, Tjaša; Mozetič, Igor; Podpečan, Vid; Petek, Marko; Witek, Kamil; Dermastia, Marina; Lavrač, Nada; Gruden, Kristina

    2012-01-01

    Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2) triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be utilised for

  5. Ocean energy systems. Quarterly report, July-September 1982

    SciTech Connect

    Not Available

    1982-09-30

    This quarterly report summarizes work on the following tasks as of September 30, 1982: (1) OTEC pilot plant conceptual design review; (2) OTEC methanol; (3) financial and legal considerations in OTEC implementation; (4) GEOTEC resource exploration at Adak, Alaska, and Lualualei, Hawaii; (5) preliminary GEOTEC plant cost estimates; and (6) supervision of testing of pneumatic wave energy conversion system.

  6. Ocean thermal energy. Quarterly report, April-June 1982

    SciTech Connect

    Not Available

    1982-06-30

    This quarterly report includes summaries of the following tasks: (1) OTEC pilot plant conceptual design review; (2) OTEC methanol; (3) management decision requirements for OTEC construction; (4) hybrid geothermal - OTEC (GEOTEC) power plant performance estimates; and (5) supervision of testing of pneumatic wave energy conversion system.

  7. Coal liquefaction. Quarterly report, July-September 1979

    SciTech Connect

    1980-07-01

    The status of coal liquefaction pilot plants supported by US DOE is reviewed under the following headings: company involved, location, contract, funding, process name, process description, flowsheet, history and progress during the July-September 1979 quarter. Supporting projects such as test facilities, refining and upgrading coal liquids, catalyst development, and gasification of residues from coal gasification plants are discussed similarly. (LTN)

  8. Ocean thermal energy. Quarterly report, October-December 1981

    SciTech Connect

    Not Available

    1981-12-30

    This quarterly report summarizes work on the following tasks: OTEC methanol; approaches for financing OTEC proof-of-concept experimental vessels; investigation of OTEC-ammonia as an alternative fuel; review of electrolyzer development programs and requirements; hybrid geothermal-OTEC power plants: single-cycle performance; estimates; and hybrid geothermal-OTEC power plants: dual-cycle performance estimates.

  9. Ocean thermal energy. Quarterly report, January-March 1982

    SciTech Connect

    Not Available

    1982-03-30

    This quarterly report summarizes work of the following tasks as of March 31, 1982: OTEC pilot plant conceptual design review; OTEC methanol; review of electrolyzer development programs and requirements; financial and legal considerations in OTEC implementation; potential Navy sites for GEOTEC systems; hybrid geothermal-OTEC power plants: single-cycle performance estimates; and supervision of testing of pneumatic wave energy conversion system.

  10. Model-free adaptive control of advanced power plants

    SciTech Connect

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  11. ENEL overall PWR plant models and neutronic integrated computing systems

    SciTech Connect

    Pedroni, G.; Pollachini, L.; Vimercati, G.; Cori, R.; Pretolani, F.; Spelta, S.

    1987-01-01

    To support the design activity of the Italian nuclear energy program for the construction of pressurized water reactors, the Italian Electricity Board (ENEL) needs to verify the design as a whole (that is, the nuclear steam supply system and balance of plant) both in steady-state operation and in transient. The ENEL has therefore developed two computer models to analyze both operational and incidental transients. The models, named STRIP and SFINCS, perform the analysis of the nuclear as well as the conventional part of the plant (the control system being properly taken into account). The STRIP model has been developed by means of the French (Electricite de France) modular code SICLE, while SFINCS is based on the Italian (ENEL) modular code LEGO. STRIP validation was performed with respect to Fessenheim French power plant experimental data. Two significant transients were chosen: load step and total load rejection. SFINCS validation was performed with respect to Saint-Laurent French power plant experimental data and also by comparing the SFINCS-STRIP responses.

  12. Stochastic modeling of deterioration in nuclear power plant components

    NASA Astrophysics Data System (ADS)

    Yuan, Xianxun

    2007-12-01

    The risk-based life-cycle management of engineering systems in a nuclear power plant is intended to ensure safe and economically efficient operation of energy generation infrastructure over its entire service life. An important element of life-cycle management is to understand, model and forecast the effect of various degradation mechanisms affecting the performance of engineering systems, structures and components. The modeling of degradation in nuclear plant components is confounded by large sampling and temporal uncertainties. The reason is that nuclear systems are not readily accessible for inspections due to high level of radiation and large costs associated with remote data collection methods. The models of degradation used by industry are largely derived from ordinary linear regression methods. The main objective of this thesis is to develop more advanced techniques based on stochastic process theory to model deterioration in engineering components with the purpose of providing more scientific basis to life-cycle management of aging nuclear power plants. This thesis proposes a stochastic gamma process (GP) model for deterioration and develops a suite of statistical techniques for calibrating the model parameters. The gamma process is a versatile and mathematically tractable stochastic model for a wide variety of degradation phenomena, and another desirable property is its nonnegative, monotonically increasing sample paths. In the thesis, the GP model is extended by including additional covariates and also modeling for random effects. The optimization of age-based replacement and condition-based maintenance strategies is also presented. The thesis also investigates improved regression techniques for modeling deterioration. A linear mixed-effects (LME) regression model is presented to resolve an inconsistency of the traditional regression models. The proposed LME model assumes that the randomness in deterioration is decomposed into two parts: the unobserved

  13. Modelling of some parameters from thermoelectric power plants

    NASA Astrophysics Data System (ADS)

    Popa, G. N.; Diniş, C. M.; Deaconu, S. I.; Maksay, Şt; Popa, I.

    2016-02-01

    Paper proposing new mathematical models for the main electrical parameters (active power P, reactive power Q of power supplies) and technological (mass flow rate of steam M from boiler and dust emission E from the output of precipitator) from a thermoelectric power plants using industrial plate-type electrostatic precipitators with three sections used in electrical power plants. The mathematical models were used experimental results taken from industrial facility, from boiler and plate-type electrostatic precipitators with three sections, and has used the least squares method for their determination. The modelling has been used equations of degree 1, 2 and 3. The equations were determined between dust emission depending on active power of power supplies and mass flow rate of steam from boiler, and, also, depending on reactive power of power supplies and mass flow rate of steam from boiler. These equations can be used to control the process from electrostatic precipitators.

  14. Development of a plant-wide dynamic model of an integrated gasification combined cycle (IGCC) plant

    SciTech Connect

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2009-01-01

    In this presentation, development of a plant-wide dynamic model of an advanced Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture will be discussed. The IGCC reference plant generates 640 MWe of net power using Illinois No.6 coal as the feed. The plant includes an entrained, downflow, General Electric Energy (GEE) gasifier with a radiant syngas cooler (RSC), a two-stage water gas shift (WGS) conversion process, and two advanced 'F' class combustion turbines partially integrated with an elevated-pressure air separation unit (ASU). A subcritical steam cycle is considered for heat recovery steam generation. Syngas is selectively cleaned by a SELEXOL acid gas removal (AGR) process. Sulfur is recovered using a two-train Claus unit with tail gas recycle to the AGR. A multistage intercooled compressor is used for compressing CO2 to the pressure required for sequestration. Using Illinois No.6 coal, the reference plant generates 640 MWe of net power. The plant-wide steady-state and dynamic IGCC simulations have been generated using the Aspen Plus{reg_sign} and Aspen Plus Dynamics{reg_sign} process simulators, respectively. The model is generated based on the Case 2 IGCC configuration detailed in the study available in the NETL website1. The GEE gasifier is represented with a restricted equilibrium reactor model where the temperature approach to equilibrium for individual reactions can be modified based on the experimental data. In this radiant-only configuration, the syngas from the Radiant Syngas Cooler (RSC) is quenched in a scrubber. The blackwater from the scrubber bottom is further cleaned in the blackwater treatment plant. The cleaned water is returned back to the scrubber and also used for slurry preparation. The acid gas from the sour water stripper (SWS) is sent to the Claus plant. The syngas from the scrubber passes through a sour shift process. The WGS reactors are modeled as adiabatic plug flow reactors with rigorous kinetics based on the mid

  15. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    NASA Astrophysics Data System (ADS)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  16. A Compact Model for the Complex Plant Circadian Clock

    PubMed Central

    De Caluwé, Joëlle; Xiao, Qiying; Hermans, Christian; Verbruggen, Nathalie; Leloup, Jean-Christophe; Gonze, Didier

    2016-01-01

    The circadian clock is an endogenous timekeeper that allows organisms to anticipate and adapt to the daily variations of their environment. The plant clock is an intricate network of interlocked feedback loops, in which transcription factors regulate each other to generate oscillations with expression peaks at specific times of the day. Over the last decade, mathematical modeling approaches have been used to understand the inner workings of the clock in the model plant Arabidopsis thaliana. Those efforts have produced a number of models of ever increasing complexity. Here, we present an alternative model that combines a low number of equations and parameters, similar to the very earliest models, with the complex network structure found in more recent ones. This simple model describes the temporal evolution of the abundance of eight clock gene mRNA/protein and captures key features of the clock on a qualitative level, namely the entrained and free-running behaviors of the wild type clock, as well as the defects found in knockout mutants (such as altered free-running periods, lack of entrainment, or changes in the expression of other clock genes). Additionally, our model produces complex responses to various light cues, such as extreme photoperiods and non-24 h environmental cycles, and can describe the control of hypocotyl growth by the clock. Our model constitutes a useful tool to probe dynamical properties of the core clock as well as clock-dependent processes. PMID:26904049

  17. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species, Quarterly technical progress report, December 20, 1995--March 20, 1995

    SciTech Connect

    Kochian, L.; Brady, D.; Last, M.; Ebbs, S.

    1995-12-01

    Although the period covered by this progress report began on December 20, 1994, which was the date that DOE approved the Interagency Agreement, the agreement was not approved by USDA until January 9, 1995 and the first scientists working on the project were not hired until February 1, 1995. The first goal of the research supported by the Interagency Agreement is to use hydroponic techniques to identify plant species and genotypes with potential for heavy metal hyperaccumulation for planting on a test site at Silverbow Creek and for radionuclide ({sup 90}Sr and {sup 137}Cs) accumulation on a test site at INEL, Idaho, later this year. The second goal of this research is to identify soil amendment procedures that will enhance the bioavailability of heavy metals and radionuclides in the soil without increasing the movement of the contaminants of concern (COC`s) into the groundwater. Our initial research covered in this report focuses on the first goal.

  18. Plants Living on Gypsum: Beyond the Specialist Model

    PubMed Central

    Palacio, Sara; Escudero, Adrián; Montserrat-Martí, Gabriel; Maestro, Melchor; Milla, Rubén; Albert, MarÍa J.

    2007-01-01

    Background and Aims Plants from gypsum habitats are classified as gypsophiles and gypsovags. The former include both narrow endemics limited to small gypsum areas and regionally dominant gypsophiles growing in gypsum areas of large regions, whereas gypsovags are plants that can grow both in gypsum and non-gypsum soils. Factors controlling the distribution of gypsum plants are still not fully understood. Methods To assess how the different types of gypsum plants deal with the stressful conditions of gypsum substrates, comparisons were made of the leaf chemical composition of four gypsovags, five regionally dominant gypsophiles and four narrow gypsum endemics growing in two massive gypsum areas of the Iberian Peninsula. Key Results The chemical composition of gypsovags was clearly different from regionally dominant gypsophiles, while the chemical composition of narrow-gypsophile endemics was more similar to the chemical composition of gypsovags than to that of regionally dominant gypsophiles. Regionally dominant gypsophiles showed higher concentrations of ash, Ca, S, N, Mg P and Na, whereas gypsovags and local gypsophile endemics displayed higher concentrations of C and greater C : N ratios. Conclusions Such differences suggest that the three groups of gypsum plants follow diverse ecological strategies. It is suggested that regionally dominant gypsophiles might fit the ‘specialist’ model, being species specifically adapted to gypsum, whereas both gypsovags and narrow-gypsophile endemics might fit the ‘refuge’ model, being stress-tolerant species that find refuge on gypsum soils from competition. The analysis of the leaf chemical composition could be a good predictor of the degree of plants specialization to gypsum soils. PMID:17204537

  19. Verification of Geometric Model-Based Plant Phenotyping Methods for Studies of Xerophytic Plants

    PubMed Central

    Drapikowski, Paweł; Kazimierczak-Grygiel, Ewa; Korecki, Dominik; Wiland-Szymańska, Justyna

    2016-01-01

    This paper presents the results of verification of certain non-contact measurement methods of plant scanning to estimate morphological parameters such as length, width, area, volume of leaves and/or stems on the basis of computer models. The best results in reproducing the shape of scanned objects up to 50 cm in height were obtained with the structured-light DAVID Laserscanner. The optimal triangle mesh resolution for scanned surfaces was determined with the measurement error taken into account. The research suggests that measuring morphological parameters from computer models can supplement or even replace phenotyping with classic methods. Calculating precise values of area and volume makes determination of the S/V (surface/volume) ratio for cacti and other succulents possible, whereas for classic methods the result is an approximation only. In addition, the possibility of scanning and measuring plant species which differ in morphology was investigated. PMID:27355949

  20. Verification of Geometric Model-Based Plant Phenotyping Methods for Studies of Xerophytic Plants.

    PubMed

    Drapikowski, Paweł; Kazimierczak-Grygiel, Ewa; Korecki, Dominik; Wiland-Szymańska, Justyna

    2016-01-01

    This paper presents the results of verification of certain non-contact measurement methods of plant scanning to estimate morphological parameters such as length, width, area, volume of leaves and/or stems on the basis of computer models. The best results in reproducing the shape of scanned objects up to 50 cm in height were obtained with the structured-light DAVID Laserscanner. The optimal triangle mesh resolution for scanned surfaces was determined with the measurement error taken into account. The research suggests that measuring morphological parameters from computer models can supplement or even replace phenotyping with classic methods. Calculating precise values of area and volume makes determination of the S/V (surface/volume) ratio for cacti and other succulents possible, whereas for classic methods the result is an approximation only. In addition, the possibility of scanning and measuring plant species which differ in morphology was investigated. PMID:27355949

  1. Hydroacoustic Studies Using HydroCAM - Station-centric Integration of Models and Observations Quarterly Report No. 2 January 2003 - March 2003

    SciTech Connect

    Pulli, Jay J.; Upton, Zachary M.

    2003-04-21

    OAK A271 Hydroacoustic Studies Using HydroCAM - Station-centric Integration of Models and Observations Quarterly Report No. 2 January 2003 - March 2003. BBN's work from January through March of 2003 was focused on data collection, data analysis and software development. We continued our efforts to collect ground truth hydroacoustic data from sub-sea earthquakes in the Indian Ocean. These data are recorded on the International Monitoring System stations at Diego Garcia and Cape Leeuwin. The software development effort spanned two areas. Fixing problems and making small improvements to HydroCAM based on meetings at AFTAC in September 2002. We have also begun development of the software that will integrate local high-resolution bathymetry into lower-resolution global bathymetry for acoustic path predictions in HydroCAM. We hope that this will improve HydroCAM's ability to predict acoustic blockage. Unfortunately, due to corporate travel restrictions stemming from the war with Iraq, BBN will not be able to participate in the International Hydroacoustics Meeting in Hobart, Tasmania in May. However, we plan to provide Phil Harben with material to present and we plan to participate in the annual Seismic Research Review in Arizona this September.

  2. Hydroacoustic Studies Using HydroCAM - Station-centric Integration of Models and Observations Quarterly Report No. 3 April 2003 - June 2003

    SciTech Connect

    Pulli, Jay J.; Upton, Zachary M.

    2003-07-14

    OAK A271 Hydroacoustic Studies Using HydroCAM - Station-centric Integration of Models and Observations Quarterly Report No. 3 April 2003 - June 2003. BBN's work from April through June of 2003 was focused on the testing and release of HydroCAM 4.0, development of HydroCAM 4.1 software, continued data collection and analysis, and initial preparations for the 2003 Seismic Research Review. HydroCAM 4.0 was released and sent to DOE and AFTAC on June 9. This is the first release of new software on this contract. The code addresses the problems and issues that BBN and AFTAC had identified in the Fall of 2003. HydroCAM 4.1 is under development. A description of that development is shown in section 3.2. We continued our efforts to collect ground truth hydroacoustic data from sub-sea earthquakes in the Indian Ocean. To date, we have collected over 130 events. These data are recorded on the International Monitoring System stations at Diego Garcia and Cape Leeuwin. Finally, BBN submitted an abstract for the 2003 Seismic Research Review meeting. However, after discussions with Phil Harben at Lawrence Livermore Labs, we have decided to collaborate on one program-wide paper for the meeting.

  3. MATHEMATICAL MODEL OF PLANT UPTAKE AND TRANSLOCATION OF ORGANIC CHEMICALS: APPLICATION TO EXPERIMENTS

    EPA Science Inventory

    Uptake, transport, and accumulation of organic chemicals by plants are influenced by characteristics of the plant and properties of the chemical, soil, and environmental conditions. athematical model for uptake of organic chemicals by plants was calibrated by application to data ...

  4. Combustion characterization of coal fines recovered from the handling plant. Quarterly technical progress report No. 2, January 1, 1995--March 31, 1995

    SciTech Connect

    Houshang, Masudi

    1995-04-01

    The main goal of this research project is to evaluate the combustion characteristics of the slurry fuels prepared from the recovered coal fines and plant coal fines. A specific study will include the combustion behavior, flame stability, ash behavior and emissions of SO{sub x}, NO{sub x} and particulate in a well insulated laboratory scale furnace in which the residence time and temperature history of the burning particles are similar to that of utility boiler furnace at 750,000 Btu/hr input and 20% excess air. The slurry fuel will be prepared at 60% solid to match the generic slurry properties, i.e., viscosity less than 500 cp, 100% of particles passing through 100 mesh and 80-90% of solid particles passing through 200 mesh. The coal blend is prepared using a mix of 15% effluent recovered coal and 85% plant fines. Combustion characteristics of the slurry fuels is determined at three different firing rates 750K, 625K, 500K Btu/hr. Finally a comparison of the results is made to determine the advantages of coal water slurry fuel over the plant coal blended form.

  5. Combustion characterization of coal fines recovered from the handling plant. Quarterly technical progress report no. 3, April 1, 1995--June 31, 1995

    SciTech Connect

    Houshang, M.; Samudrala, S.R.; Mohannad, O.

    1995-07-01

    The main goal of this research project is to evaluate the combustion characteristics of the slurry fuels prepared from the recovered coal fines and plant coal fines. A specific study will include the combustion behavior, flame stability, ash behavior and emissions of SO{sub x}, NO{sub x} and particulate in a well insulated laboratory scale furnace in which the residence time and temperature history of the burning particles are similar to that of utility boiler furnace at 750,000 Btu/hr input and 20% excess air. The slurry fuel will be prepared at 60% solid to match the generic slurry properties, i.e., viscosity less than 500 cp, 100% of particles passing through 100 mesh and 80-90% of solid particles passing through 200 mesh. The coal blend is prepared using a mix of 15% effluent recovered coal and 85% plant fines. Combustion characteristics of the slurry fuels is determined at three different firing rates 750K, 625K, 500K Btu/hr. Finally a comparison of the results is made to determine the advantages of coal water slurry fuel over the plant coal blended form.

  6. Modeling Gas Exchange in a Closed Plant Growth Chamber

    NASA Technical Reports Server (NTRS)

    Cornett, J. D.; Hendrix, J. E.; Wheeler, R. M.; Ross, C. W.; Sadeh, W. Z.

    1994-01-01

    Fluid transport models for fluxes of water vapor and CO2 have been developed for one crop of wheat and three crops of soybean grown in a closed plant a growth chamber. Correspondence among these fluxes is discussed. Maximum fluxes of gases are provided for engineering design requirements of fluid recycling equipment in growth chambers. Furthermore, to investigate the feasibility of generalized crop models, dimensionless representations of water vapor fluxes are presented. The feasibility of such generalized models and the need for additional data are discussed.

  7. Modeling gas exchange in a closed plant growth chamber

    NASA Technical Reports Server (NTRS)

    Cornett, J. D.; Hendrix, J. E.; Wheeler, R. M.; Ross, C. W.; Sadeh, W. Z.

    1994-01-01

    Fluid transport models for fluxes of water vapor and CO2 have been developed for one crop of wheat and three crops of soybean grown in a closed plant growth chamber. Correspondence among these fluxes is discussed. Maximum fluxes of gases are provided for engineering design requirements of fluid recycling equipment in growth chambers. Furthermore, to investigate the feasibility of generalized crop models, dimensionless representations of water vapor fluxes are presented. The feasibility of such generalized models and the need for additional data are discussed.

  8. Empirical Modeling of Plant Gas Fluxes in Controlled Environments

    NASA Technical Reports Server (NTRS)

    Cornett, Jessie David

    1994-01-01

    As humans extend their reach beyond the earth, bioregenerative life support systems must replace the resupply and physical/chemical systems now used. The Controlled Ecological Life Support System (CELSS) will utilize plants to recycle the carbon dioxide (CO2) and excrement produced by humans and return oxygen (O2), purified water and food. CELSS design requires knowledge of gas flux levels for net photosynthesis (PS(sub n)), dark respiration (R(sub d)) and evapotranspiration (ET). Full season gas flux data regarding these processes for wheat (Triticum aestivum), soybean (Glycine max) and rice (Oryza sativa) from published sources were used to develop empirical models. Univariate models relating crop age (days after planting) and gas flux were fit by simple regression. Models are either high order (5th to 8th) or more complex polynomials whose curves describe crop development characteristics. The models provide good estimates of gas flux maxima, but are of limited utility. To broaden the applicability, data were transformed to dimensionless or correlation formats and, again, fit by regression. Polynomials, similar to those in the initial effort, were selected as the most appropriate models. These models indicate that, within a cultivar, gas flux patterns appear remarkably similar prior to maximum flux, but exhibit considerable variation beyond this point. This suggests that more broadly applicable models of plant gas flux are feasible, but univariate models defining gas flux as a function of crop age are too simplistic. Multivariate models using CO2 and crop age were fit for PS(sub n), and R(sub d) by multiple regression. In each case, the selected model is a subset of a full third order model with all possible interactions. These models are improvements over the univariate models because they incorporate more than the single factor, crop age, as the primary variable governing gas flux. They are still limited, however, by their reliance on the other environmental

  9. Trustee Quarterly, Issues 1-3, 1996.

    ERIC Educational Resources Information Center

    Hutchins, Sally, Ed.

    1996-01-01

    The three issues of "Trustee Quarterly" contained in this document focus on topics of current concern to community college trustees. Issue 1 for 1996 focuses on the policy governance model of community college board leadership, offering the following feature articles: "John Carver...and His Contribution to Community College Governance," (Ray…

  10. Augmented Reality for Close Quarters Combat

    ScienceCinema

    None

    2014-06-23

    Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.

  11. Augmented Reality for Close Quarters Combat

    SciTech Connect

    2013-09-20

    Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.

  12. English Leadership Quarterly, 1992.

    ERIC Educational Resources Information Center

    Strickland, James, Ed.

    1992-01-01

    These four issues of the English Leadership Quarterly represent those published during 1992. Articles in number 1 deal with testing assessing, and measuring student performance, and include: "Real Evaluation: Portfolios as an Effective Alternative to Standardized Testing" (Kate Kiefer); "No More Objective Tests, Ever" (Carol Jago); "Process-Based…

  13. English Leadership Quarterly, 1995.

    ERIC Educational Resources Information Center

    Kiernan, Henry, Ed.

    1995-01-01

    These 4 issues of the English Leadership Quarterly comprise volume 17, published during 1995. Articles in number 1 deal with multicultural and multiethnic literature, and are, as follows: "Guidelines for Selecting European Ethnic Literature for Interdisciplinary Courses" (Sandra Stotsky); "Striving for Kinship within Diverse Communities" (Peter…

  14. English Leadership Quarterly, 1993.

    ERIC Educational Resources Information Center

    Strickland, James, Ed.

    1993-01-01

    These four issues of the English Leadership Quarterly represent those published during 1993. Articles in number 1 deal with parent involvement and participation, and include: "Opening the Doors to Open House" (Jolene A. Borgese); "Parent/Teacher Conferences: Avoiding the Collision Course" (Robert Perrin); "Expanding Human Resources: Trained…

  15. Trustee Quarterly, 1995.

    ERIC Educational Resources Information Center

    Trustee Quarterly, 1995

    1995-01-01

    The four issues of "Trustee Quarterly" contained in this document focus on topics of current concern to community college trustees. The winter 1995 issue offers these feature articles: "Trustees Believe Focus Should Be on Major Policy Decisions," (John F. Grabowski) and "A Cost-Benefit Analysis System for Proposed Capital Projects," (Steven E.…

  16. Gifted Education Quarterly, 1998.

    ERIC Educational Resources Information Center

    Fisher, Maurice, Ed.

    1998-01-01

    These four issues of "Gifted Education Quarterly" include the following articles: (1) "Using Test Results To Support Clinical Judgment" (Linda Kreger Silverman), which discusses some of the difficulties in obtaining accurate indications of a child's level of giftedness and the importance of using professional judgment in determining whether tests…

  17. English Leadership Quarterly, 1994.

    ERIC Educational Resources Information Center

    Strickland, James, Ed.; Kiernan, Henry, Ed.

    1994-01-01

    These 4 issues of the English Leadership Quarterly comprise volume 16, published during 1994. Articles in number 1 deal with practical advice, and include: "The Law of Privacy and the Writing Teacher" (Ben T. Allen); Beware of Teachers Who Laminate Their Lesson Plans and Other Useful Suggestions about Teaching" (Robert Perrin); "Firefighter, Cook,…

  18. Trustee Quarterly, 1997.

    ERIC Educational Resources Information Center

    Hutchins, Sally, Ed.

    1997-01-01

    These four issues of "Trustee Quarterly" focus on current topics affecting community college trustees. Issue 1 focuses on the learning revolution and serves as a guide for community college trustees. It offers the following feature articles by Terry O'Banion: "Education Reform: Two Waves,""The Second Wave and the Community College,""The House that…

  19. Trustee Quarterly, 1992.

    ERIC Educational Resources Information Center

    Trustee Quarterly, 1992

    1992-01-01

    The four issues of "Trustee Quarterly" contained in this document focus on topics of current concern to community college trustees. The winter 1992 issue offers articles on the trustee's role in politics, community colleges as community catalysts, Lewis and Clark Community College's (Illinois) strategic planning process, staff development…

  20. Trustee Quarterly, 1993.

    ERIC Educational Resources Information Center

    Trustee Quarterly, 1993

    1993-01-01

    The four issues of "Trustee Quarterly" contained in this document focus on topics of current concern to community college trustees. The winter 1993 issue offers articles on the prospects for educational reform under the Clinton administration and the current Congress, strategies for obtaining needed resources from the state legislature, and the…

  1. Macroscopic modeling of plant water uptake: soil and root resistances

    NASA Astrophysics Data System (ADS)

    Vogel, Tomas; Votrubova, Jana; Dohnal, Michal; Dusek, Jaromir

    2014-05-01

    The macroscopic physically-based plant root water uptake (RWU) model, based on water-potential-gradient formulation (Vogel et al., 2013), was used to simulate the observed soil-plant-atmosphere interactions at a forest site located in a temperate humid climate of central Europe and to gain an improved insight into the mutual interplay of RWU parameters that affects the soil water distribution in the root zone. In the applied RWU model, the uptake rates are directly proportional to the potential gradient and indirectly proportional to the local soil and root resistances to water flow. The RWU algorithm is implemented in a one-dimensional dual-continuum model of soil water flow based on Richards' equation. The RWU model is defined by four parameters (root length density distribution, average active root radius, radial root resistance, and the threshold value of the root xylem potential). In addition, soil resistance to water extraction by roots is related to soil hydraulic conductivity function and actual soil water content. The RWU model is capable of simulating both the compensatory root water uptake, in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers, and the root-mediated hydraulic redistribution of soil water, contributing to more natural soil moisture distribution throughout the root zone. The present study focusses on the sensitivity analysis of the combined soil water flow and RWU model responses in respect to variations of RWU model parameters. Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154.

  2. Future of Plant Functional Types in Terrestrial Biosphere Models

    NASA Astrophysics Data System (ADS)

    Wullschleger, S. D.; Euskirchen, E. S.; Iversen, C. M.; Rogers, A.; Serbin, S.

    2015-12-01

    Earth system models describe the physical, chemical, and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Plant functional types (PFTs) have been adopted by modelers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current, and future distribution of vegetation. Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration, and shrub expansion. However, representation of above- and especially belowground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait-environment relationships. Surprisingly, despite being important to land-atmosphere interactions of carbon, water, and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology, and remote sensing will be

  3. Global asymptotic stability of plant-seed bank models.

    PubMed

    Eager, Eric Alan; Rebarber, Richard; Tenhumberg, Brigitte

    2014-07-01

    Many plant populations have persistent seed banks, which consist of viable seeds that remain dormant in the soil for many years. Seed banks are important for plant population dynamics because they buffer against environmental perturbations and reduce the probability of extinction. Viability of the seeds in the seed bank can depend on the seed's age, hence it is important to keep track of the age distribution of seeds in the seed bank. In this paper we construct a general density-dependent plant-seed bank model where the seed bank is age-structured. We consider density dependence in both seedling establishment and seed production, since previous work has highlighted that overcrowding can suppress both of these processes. Under certain assumptions on the density dependence, we prove that there is a globally stable equilibrium population vector which is independent of the initial state. We derive an analytical formula for the equilibrium population using methods from feedback control theory. We apply these results to a model for the plant species Cirsium palustre and its seed bank. PMID:23712394

  4. Predictive modeling of particle-laden, turbulent flows. Quarterly progress report No. 3, April 1 to June 30, 1993

    SciTech Connect

    Sinclair, J.L.; Bolio, E.J.; Hrenya, C.M

    1993-11-01

    An Eulerian two-fluid mathematical model is considered for the flow prediction of gas-particle systems. The model expands on the Sinclair and Jackson model by recognizing a turbulent continuous phase. Both the gas- and the particle-phase velocity fields are composed of by a mean and a fluctuating component, and the important physical phenomena arising from the interaction of these components are included in the model. The gas turbulence is modeled by a single-phase closure, namely the k-{var_epsilon} low Reynolds model by Myong and Kasagi, modified to account for the presence of a dilute particle phase. The solid phase is considered as a rapid granular flow; hence, a closure based on the kinetic-theory analogy is used for the description of the stresses associated with this phase. Along with the relation between the fluxes of both phases and the pressure drop, the model is capable of predicting features related to the local flow structure, such as the mean and fluctuating velocity components and the concentration of both phases. In this report, the model is applied to the case of steady, fully developed flow in a vertical cylindrical pipe. An extensive comparison of the model predictions with experimental data is included. The sensitivity of the model predictions to the properties describing the particle collisions is also explored.

  5. Strategic Petroleum Reserve quarterly report

    SciTech Connect

    Not Available

    1993-08-15

    This Quarterly Report highlights activities undertaken during the second quarter of calendar year 1993, including: inventory of petroleum products stored in the Reserve, under contract and in transit at the end of the calendar quarter; fill rate for the current quarter and projected fill rate for the next calendar quarter; average price of the petroleum products acquired during the calendar quarter; current and projected storage capacity and plans to accelerate the acquisition or construction of such capacity; analysis of existing or anticipated problems with the acquisition and storage of petroleum products, and future expansion of storage capacity; funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and major environmental actions completed, in progress, or anticipated.

  6. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species. Quarterly progress report, July 1, 1996--September 30, 1996

    SciTech Connect

    Kochian, L.

    1997-05-01

    Potential for phytoremediation of an aged radiocesium-contaminated soil from Brookhaven National Laboratory was investigated in three phases: (1) hydroponic screening for plant species capable of accumulating elevated levels of cesium in shoots, (2) amending contaminated soil to enhance {sup 137}Cs bioavailability, and (3) phytoextracting radiocesium with plant roots and its removal in harvested shoots. The bioaccumulation ratio of Cs in shoots of hydroponically grown plants ranged between 38 and 165. From solution, dicot species accumulated 2- to 4-fold more cesium in shoots than grasses. The effect of several chemical compounds on {sup 137}Cs desorption from the contaminated soil was investigated. Ammonium salts were the most effective at desorbing Cs from contaminated soil, but only 25% of radiocesium could be desorbed. Although release of radiocesium from the soil was concentration-dependent, this effect appeared to level off above 0.2 M ammonium in solution. In a pot study, from the soil contaminated with 400 pCi g{sup -1} soil, the greatest amount of {sup 137}Cs, 140 pCi, was removed in shoots of cabbage (Brassica oleracea var. capitata). {sup 137}Cs accumulation in shoots was significantly increased by the addition of 40 NH{sub 4}NO{sub 3} kg{sup -1} soil. Increasing NH{sub 4}NO{sub 3} application from 40 to 80 mmoles kg{sup -1} soil did not further increase radiocesium phytoextraction. The ability to accumulate radiocesium from soil in shoots was significantly different among species tested. This ability increased in order: reed Canary grass (Phalaris arundinacea) < Indian mustard (Brassica juncea) < tepary bean (Phaseolus acutifolius) < cabbage.

  7. Power plant performance modeling: dynamic model evaluation. [Comparison of MMS and RETRAN codes

    SciTech Connect

    DiDomenico, P.N.; Shor, S.W.W.

    1981-10-01

    The dynamic performance of the turbine and feedwater train of a 550-MW oil-fired plant has been modeled by two modeling systems, the Modular Modeling System (MMS) and the Reactor Transient Analysis System (RETRAN). This report documents the performance of each modeling system and provides results on which the reader may be able to base a judgement as to the usefulness of each system for his modeling purposes. It compares transients simulated by the MMS with those recorded during tests conducted on an operating power plant. Specific information is provided on the type of model constructed, the agreement between blind predictions and measurements, and the level and type of modeling effort required together with computer run time. This program could not have been carried out without the willing support of the Boston Edison Company, which performed the transient tests on its Mystic Unit 7 and provided extensive engineering support to the program through the provision of detailed information on the power plant equipment and systems. It is believed that the insights into plant operation provided by the testing program itself resulted in more than sufficient improvement in plant efficiency to pay for the entire test program, but this could not have been foreseen by Boston Edison when they offered the plant for testing.

  8. Modelling of the Nutrient Medium for Plants Cultivation in Spaceflight

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.

    2016-07-01

    MODELLING OF THE NUTRIENT MEDIUM FOR PLANTS CULTIVATION IN SPACEFLIGHT Nechitajlo G.S.*, Rakhmetova A.A.**, Bogoslovskaja O.A.**, Ol'hovskay I.P.**, Glushchenko N.N.** *Emanuel Institute of Biochemical Physics of Russian Academy of Sciences (IBCP RAS) mail: spacemal@mail.ru **V.L. Talrose Institute for Energy Problems of Chemical Physics of Russian Academy of Science (INEPCP RAS) mail: nnglu@ mail.ru The valuable life and fruitful activity of cosmonauts and researchers in conditions of spaceflights and prolonged work at space stations are only possible with creating life area providing fresh air, natural food, comfortable psychological conditions, etc. The solution of that problem under space conditions seems impossible without use of high nano- and biotechnologies for plants growth. A priority should be given not only to choose species of growth plants in space, but also to improve conditions for their growth which includes optimal nourishing components for plants, preparation of nutrient mediums, illumination and temperature. We are deeply convinced that just manipulations with growing conditions for cultivated plants, but not genes changes, is a guarantee of success in the decision of this problem. For improving the method of plants growing on the artificial nutrient medium with balanced content of components, being necessary for growth and development of plants, we added essential metal elements: Fe, Zn, Cu - in an electroneutral state in the form of nanoparticles instead of sulfates or other easily dissolving salts. Nanoparticulated metals are known to have a number of advantages in comparison with salts: metals in an electroneutral form are characterized with the prolonged and multifunctional action, low toxicity per se and appearing to be much below the toxicity of the same metals in the ionic forms, accumulation as a reserve being used in biotic dozes, active distribution in bodies and organs of plants and stimulation of vital processes. A high reactivity

  9. Assessment of uncertainty in functional–structural plant models

    PubMed Central

    Ford, E. David; Kennedy, Maureen C.

    2011-01-01

    Background and Aims Constructing functional–structural plant models (FSPMs) is a valuable method for examining how physiology and morphology interact in determining plant processes. However, such models always have uncertainty concerned with whether model components have been selected and represented effectively, with the number of model outputs simulated and with the quality of data used in assessment. We provide a procedure for defining uncertainty of an FSPM and how this uncertainty can be reduced. Methods An important characteristic of FSPMs is that typically they calculate many variables. These can be variables that the model is designed to predict and also variables that give indications of how the model functions. Together these variables are used as criteria in a method of multi-criteria assessment. Expected ranges are defined and an evolutionary computation algorithm searches for model parameters that achieve criteria within these ranges. Typically, different combinations of model parameter values provide solutions achieving different combinations of variables within their specified ranges. We show how these solutions define a Pareto Frontier that can inform about the functioning of the model. Key Results The method of multi-criteria assessment is applied to development of BRANCHPRO, an FSPM for foliage reiteration on old-growth branches of Pseudotsuga menziesii. A geometric model utilizing probabilities for bud growth is developed into a causal explanation for the pattern of reiteration found on these branches and how this pattern may contribute to the longevity of this species. Conclusions FSPMs should be assessed by their ability to simulate multiple criteria simultaneously. When different combinations of parameter values achieve different groups of assessment criteria effectively a Pareto Frontier can be calculated and used to define the sources of model uncertainty. PMID:21593061

  10. Measurement and modeling of advanced coal conversion processes. Twenty-first quarterly report, October 1, 1991--December 31, 1991

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S.

    1991-12-31

    The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.