Note: This page contains sample records for the topic plant pathogen fusarium from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Molecular characterization of pathogenic Fusarium species in cucurbit plants from Kermanshah province, Iran  

PubMed Central

Fusarium is one of the important phytopathogenic genera of microfungi causing serious losses on cucurbit plants in Kermanshah province, the largest area of cucurbits plantation in Iran. Therefore, the objectives in this study were to isolate and identify disease-causing Fusarium spp. from infected cucurbit plants, to ascertain their pathogenicity, and to determine their phylogenetic relationships. A total of 100 Fusarium isolates were obtained from diseased cucurbit plants collected from fields in different geographic regions in Kermanshah province, Iran. According to morphological characters, all isolates were identified as Fusarium oxysporum, Fusarium proliferatum, Fusarium equiseti, Fusarium semitectum and Fusarium solani. All isolates of the five Fusarium spp. were evaluated for their pathogenicity on healthy cucumber (Cucumis sativus) and honeydew melon (Cucumis melo) seedlings in the glasshouse. F. oxysporum caused damping-off in 20–35 days on both cucurbit seedlings tested. Typical stem rot symptoms were observed within 15 days after inoculation with F. solani on both seedlings. Based on the internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA) restriction fragment length polymorphism (RFLP) analysis, the five Fusarium species were divided into two major groups. In particular, isolates belonging to the F. solani species complex (FSSC) were separated into two RFLP types. Grouping among Fusarium strains derived from restriction analysis was in agreement with criteria used in morphological classification. Therefore, the PCR-ITS-RFLP method provides a simple and rapid procedure for the differentiation of Fusarium strains at species level. This is the first report on identification and pathogenicity of major plant pathogenic Fusarium spp. causing root and stem rot on cucurbits in Iran.

Chehri, K.; Salleh, B.; Yli-Mattila, T.; Reddy, K.R.N.; Abbasi, S.

2011-01-01

2

Skippy, a retrotransposon from the fungal plant pathogen Fusarium oxysporum.  

PubMed

A retrotransposon from the fungal plant pathogen Fusarium oxysporum f. sp. lycopersici has been isolated and characterized. The element, designated skippy (skp) is 7846 bp in length, flanked by identical long terminal repeats (LTR) of 429 bp showing structural features characteristic of retroviral and retrotransposon LTRs. Target-site duplications of 5 bp were found. Two long overlapping open reading frames (ORF) were identified. The first ORF, 2562 bp in length, shows homology to retroviral gag genes. The second ORF, 3888 bp in length, has homology to the protease, reverse transcriptase. RNase H and integrase domains of retroelement pol genes in that order. Sequence comparisons and the order of the predicted proteins from skippy indicate that the element is closely related to the gypsy family of LTR-retrotransposons. The element is present in similar copy numbers in the two races investigated, although RFLP analysis showed differences in banding patterns. The number of LTR sequences present in the genome is higher than the number of copies of complete elements, indicating excision by homologous recombination between LTR sequences. PMID:8544829

Anaya, N; Roncero, M I

1995-12-20

3

Earthworms disseminate a soil-borne plant pathogen, Fusarium oxysporum f. sp. raphani  

Microsoft Academic Search

Radish plants infested with a soil-borne plant pathogen, Fusarium oxysporum f. sp. raphani PEG-4, which is resistant to hygromycin B, were placed on the surface of a soil microcosm containing earthworms (Pheretima sp.). The earthworms ate the radish plants and scattered individual casts everywhere in the burrows. The fungal propagules were detected in the gut of the earthworms and in

K. Toyota; M. Kimura

1994-01-01

4

Monitoring of pathogenic and non-pathogenic Fusarium oxysporum strains during tomato plant infection.  

PubMed

Monitoring of pathogenic strains of Fusarium oxysporum (Fox), which cause wilt and rots on agricultural and ornamental plants, is important for predicting disease outbreaks. Since both pathogenic and non-pathogenic strains of Fox are ubiquitous and are able to colonize plant roots, detection of Fox DNA in plant material is not the ultimate proof of an ongoing infection which would cause damage to the plant. We followed the colonization of tomato plants by strains Fox f. sp. radicis-lycopersici ZUM2407 (a tomato foot and root rot pathogen), Fox f. sp. radiciscucumerinum V03-2g (a cucumber root rot pathogen) and Fox Fo47 (a well-known non-pathogenic biocontrol strain). We determined fungal DNA concentrations in tomato plantlets by quantitative PCR (qPCR) with primers complementary to the intergenic spacer region (IGS) of these three Fox strains. Two weeks after inoculation of tomato seedlings with these Fox strains, the DNA concentration of Forl ZUM2407 was five times higher than that of the non-compatible pathogen Forc V03-2g and 10 times higher than that of Fo47. In 3-week-old plantlets the concentration of Forl ZUM2407 DNA was at least 10 times higher than those of the other strains. The fungal DNA concentration, as determined by qPCR, appeared to be in good agreement with data of the score of visible symptoms of tomato foot and root rot obtained 3 weeks after inoculation of tomato with Forl ZUM2407. Our results show that targeting of the multicopy ribosomal operon results in a highly sensitive qPCR reaction for the detection of Fox DNA. Since formae speciales of Fox cannot be distinguished by comparison of ribosomal operons, detection of Fox DNA is not evidence of plant infection by a compatible pathogen. Nevertheless, the observed difference in levels of plant colonization between pathogenic and non-pathogenic strains strongly suggests that a concentration of Fox DNA in plant material above the threshold level of 0.005% is due to proliferation of pathogenic Fox. PMID:21255375

Validov, Shamil Z; Kamilova, Faina D; Lugtenberg, Ben J J

2011-01-01

5

Monitoring of pathogenic and non-pathogenic Fusarium oxysporum strains during tomato plant infection  

PubMed Central

Summary Monitoring of pathogenic strains of Fusarium oxysporum (Fox), which cause wilt and rots on agricultural and ornamental plants, is important for predicting disease outbreaks. Since both pathogenic and non?pathogenic strains of Fox are ubiquitous and are able to colonize plant roots, detection of Fox DNA in plant material is not the ultimate proof of an ongoing infection which would cause damage to the plant. We followed the colonization of tomato plants by strains Fox f. sp. radicis?lycopersici ZUM2407 (a tomato foot and root rot pathogen), Fox f. sp. radicis?cucumerinum V03?2g (a cucumber root rot pathogen) and Fox Fo47 (a well?known non?pathogenic biocontrol strain). We determined fungal DNA concentrations in tomato plantlets by quantitative PCR (qPCR) with primers complementary to the intergenic spacer region (IGS) of these three Fox strains. Two weeks after inoculation of tomato seedlings with these Fox strains, the DNA concentration of Forl ZUM2407 was five times higher than that of the non?compatible pathogen Forc V03?2g and 10 times higher than that of Fo47. In 3?week?old plantlets the concentration of Forl ZUM2407 DNA was at least 10 times higher than those of the other strains. The fungal DNA concentration, as determined by qPCR, appeared to be in good agreement with data of the score of visible symptoms of tomato foot and root rot obtained 3 weeks after inoculation of tomato with Forl ZUM2407. Our results show that targeting of the multicopy ribosomal operon results in a highly sensitive qPCR reaction for the detection of Fox DNA. Since formae speciales of Fox cannot be distinguished by comparison of ribosomal operons, detection of Fox DNA is not evidence of plant infection by a compatible pathogen. Nevertheless, the observed difference in levels of plant colonization between pathogenic and non?pathogenic strains strongly suggests that a concentration of Fox DNA in plant material above the threshold level of 0.005% is due to proliferation of pathogenic Fox.

Validov, Shamil Z.; Kamilova, Faina D.; Lugtenberg, Ben J. J.

2011-01-01

6

Impact of Transgenic Bt Maize Residues on the Mycotoxigenic Plant Pathogen Fusarium graminearum and the Biocontrol Agent Trichoderma atroviride  

Microsoft Academic Search

Transformation of maize with genes encoding for insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) could have an impact on the saprophytic survival of plant pathogens and their antagonists on crop residues. We assessed potential effects on the mycotoxin de- oxynivalenol (DON)-producing wheat and maize pathogen Fusarium graminearum and on the biocontrol agent Trichoderma atroviride. Purified Cry1Ab protein caused no

Andreas Naef; Thierry Zesiger; Genevieve Defago

2006-01-01

7

Population structure of plant-pathogenic Fusarium species in overwintered stalk residues from Bt-transformed and non-transformed maize crops  

Microsoft Academic Search

Bt-transformed maize contains genes from Bacillus thuringiensis encoding for insecticidal crystal proteins. Less insect damage on Bt maize stalks can cause a reduced infection by Fusarium species through plant injuries. This could affect the presence of plant-pathogenic Fusarium species on maize residues which serve as an inoculum source for subsequent crops. We collected overwintered maize stalks of four different Bt

A. Naef; G. Défago

2006-01-01

8

The Predicted Secretome of the Plant Pathogenic Fungus Fusarium graminearum: A Refined Comparative Analysis  

Microsoft Academic Search

The fungus Fusarium graminearum forms an intimate association with the host species wheat whilst infecting the floral tissues at anthesis. During the prolonged latent period of infection, extracellular communication between live pathogen and host cells must occur, implying a role for secreted fungal proteins. The wheat cells in contact with fungal hyphae subsequently die and intracellular hyphal colonisation results in

Neil A. Brown; John Antoniw; Kim E. Hammond-Kosack

2012-01-01

9

A Network Approach to Predict Pathogenic Genes for Fusarium graminearum  

Microsoft Academic Search

Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for

Xiaoping Liu; Wei-Hua Tang; Xing-Ming Zhao; Luonan Chen

2010-01-01

10

Use of molecular markers to compare Fusarium verticillioides pathogenic strains isolated from plants and humans.  

PubMed

Fusarium verticillioides is a pathogen of agriculturally important crops, especially maize. It is considered one of the most important pathogens responsible for fumonisin contamination of food products, which causes severe, chronic, and acute intoxication in humans and animals. Moreover, it is recognized as a cause of localized infections in immunocompetent patients and disseminated infections among severely immunosuppressed patients. Several molecular tools have been used to analyze the intraspecific variability of fungi. The objective of this study was to use molecular markers to compare pathogenic isolates of F. verticillioides and isolates of the same species obtained from clinical samples of patients with Fusarium mycoses. The molecular markers that we used were inter-simple sequence repeat markers (primers GTG5 and GACA4), intron splice site primer (primer EI1), random amplified polymorphic DNA marker (primer OPW-6), and restriction fragment length polymorphism-internal transcribed spacer (ITS) from rDNA. From the data obtained, clusters were generated based on the UPGMA clustering method. The amplification products obtained using primers ITS4 and ITS5 and loci ITS1-5.8-ITS2 of the rDNA yielded fragments of approximately 600 bp for all the isolates. Digestion of the ITS region fragment using restriction enzymes such as EcoRI, DraI, BshI, AluI, HaeIII, HinfI, MspI, and PstI did not permit differentiation among pathogenic and clinical isolates. The inter-simple sequence repeat, intron splice site primer, and random amplified polymorphic DNA markers presented high genetic homogeneity among clinical isolates in contrast to the high variability found among the phytopathogenic isolates of F. verticillioides. PMID:24065642

Chang, S C; Macêdo, D P C; Souza-Motta, C M; Oliveira, N T

2013-01-01

11

Thermographic visualization of leaf response in cucumber plants infected with the soil-borne pathogen Fusarium oxysporum f. sp. cucumerinum.  

PubMed

Infection with the soil-borne pathogen Fusarium oxysporum f. sp. cucumerinum (FOC), which causes Fusarium wilt of cucumber plants, might result in changes in plant transpiration and water status within leaves. To monitor leaf response in cucumber infected with FOC, digital infrared thermography (DIT) was employed to detect changes in leaf temperature. During the early stages of FOC infection, stomata closure was induced by ABA in leaves, resulting in a decreased transpiration rate and increased leaf temperature. Subsequently, cell death occurred, accompanied by water loss, resulting in a little decrease in leaf temperature. A negative correlation between transpiration rate and leaf temperature was existed. But leaf temperature exhibited a special pattern with different disease severity on light-dark cycle. Lightly wilted leaves had a higher temperature in light and a lower temperature in dark than did in healthy leaves. We identified that the water loss from wilted leaves was regulated not by stomata but rather by cells damage caused by pathogen infection. Finally, water balance in infected plants became disordered and dead tissue was dehydrated, so leaf temperature increased again. These data suggest that membrane injury caused by FOC infection induces uncontrolled water loss from damaged cells and an imbalance in leaf water status, and ultimately accelerate plant wilting. Combining detection of the temperature response of leaves to light-dark conditions, DIT not only permits noninvasive detection and indirect visualization of the development of the soil-borne disease Fusarium wilt, but also demonstrates certain internal metabolic processes correlative with water status. PMID:23103050

Wang, Min; Ling, Ning; Dong, Xian; Zhu, Yiyong; Shen, Qirong; Guo, Shiwei

2012-12-01

12

A study on the susceptibility of the model legume plant Medicago truncatula to the soil-borne pathogen Fusarium oxysporum  

Microsoft Academic Search

Fusarium wilt is a soil-borne disease caused by formae specialis of Fusarium oxysporum on a large number of cultivated and wild plants. The susceptibility of the model legume plant Medicago truncatula to Fusarium oxysporum was studied by root-inoculating young plants in a miniaturised hydroponic culture. Among eight tested M. truncatula lines, all were susceptible to F. oxysporum f.sp. medicaginis, the

Montserrat Ramírez-Suero; Anas Khanshour; Yves Martinez; Martina Rickauer

2010-01-01

13

Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain  

Microsoft Academic Search

An endophytic fungal isolate (Fs-K), identified as a Fus- arium solani strain, was obtained from root tissues of tomato plants grown on a compost which suppressed soil and foliar pathogens. Strain Fs-K was able to colonize root tissues and subsequently protect plants against the root pathogen Fusarium oxysporum f.sp. radicis-lycopersici (FORL), and elicit induced systemic resistance against the tomato foliar

Nektarios Kavroulakis; Spyridon Ntougias; Georgios I. Zervakis; Constantinos Ehaliotis; Kosmas Haralampidis; Kalliope K. Papadopoulou

2010-01-01

14

Fusarium Species Pathogenic to Barley and Their Associated Mycotoxins  

Microsoft Academic Search

Salas, B., Steffenson, B. J., Casper, H. H., Tacke, B., Prom, L. K., Fetch, T. G., Jr., and Schwarz, P. B. 1999. Fusarium species pathogenic to barley and their associated mycotoxins. Plant Dis. 83:667-674. Epidemics of Fusarium head blight (FHB) occurred on barley in Minnesota, North Dakota, and South Dakota from 1993 to 1998. The Red River Valley region was

B. Salas; B. J. Steffenson; H. H. Casper; B. Tacke; L. K. Prom; T. G. Fetch; P. B. Schwarz

1999-01-01

15

Linear plasmidlike DNA in the plant pathogenic fungus Fusarium oxysporum f. sp. conglutinans.  

PubMed Central

Double-stranded, 1.9-kilobase-pair (kbp) DNA molecules were found in 18 strains representing three pathogenic races of Fusarium oxysporum f. sp. conglutinans. The DNA element (pFOXC1) from a race 1 strain and the DNA element (pFOXC2) from a race 2 strain were shown by restriction endonuclease mapping to be linear. pFOXC2 was found in mitochondrial preparations and appears to have blocked 5' termini, as it was sensitive to 3'----5' exonuclease III but insensitive to 5'----3' lambda exonuclease. The major 1.8-kbp BglII restriction endonuclease fragment of pFOXC2 was cloned in plasmid pUC12. The recombinant plasmid (pCK1) was not homologous to the mitochondrial or nuclear genomes from F. oxysporum f. sp. conglutinans. This suggests that pFOXC2 is self-replicating. pCK1 was homologous to all 1.9-kbp DNA elements of race 2 but was not homologous to those of race 1 or race 5. All race 1 and 5 elements were also shown to share common DNA sequences. Images

Kistler, H C; Leong, S A

1986-01-01

16

The Predicted Secretome of the Plant Pathogenic Fungus Fusarium graminearum: A Refined Comparative Analysis  

PubMed Central

The fungus Fusarium graminearum forms an intimate association with the host species wheat whilst infecting the floral tissues at anthesis. During the prolonged latent period of infection, extracellular communication between live pathogen and host cells must occur, implying a role for secreted fungal proteins. The wheat cells in contact with fungal hyphae subsequently die and intracellular hyphal colonisation results in the development of visible disease symptoms. Since the original genome annotation analysis was done in 2007, which predicted the secretome using TargetP, the F. graminearum gene call has changed considerably through the combined efforts of the BROAD and MIPS institutes. As a result of the modifications to the genome and the recent findings that suggested a role for secreted proteins in virulence, the F. graminearum secretome was revisited. In the current study, a refined F. graminearum secretome was predicted by combining several bioinformatic approaches. This strategy increased the probability of identifying truly secreted proteins. A secretome of 574 proteins was predicted of which 99% was supported by transcriptional evidence. The function of the annotated and unannotated secreted proteins was explored. The potential role(s) of the annotated proteins including, putative enzymes, phytotoxins and antifungals are discussed. Characterisation of the unannotated proteins included the analysis of Pfam domains and features associated with known fungal effectors, for example, small size, cysteine-rich and containing internal amino acid repeats. A comprehensive comparative genomic analysis involving 57 fungal and oomycete genomes revealed that only a small number of the predicted F. graminearum secreted proteins can be considered to be either species or sequenced strain specific.

Brown, Neil A.; Antoniw, John; Hammond-Kosack, Kim E.

2012-01-01

17

The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum.  

PubMed

Gene expression in fungi by ambient pH is regulated via a conserved signalling cascade whose terminal component is the zinc finger transcription factor PacC/Rim1p. We have identified a pacC orthologue in the vascular wilt pathogen Fusarium oxysporum that binds the consensus 5'-GCCAAG-3' sequence and is proteolytically processed in a similar way to PacC from Aspergillus nidulans. pacC transcript levels were elevated in F. oxysporum grown in alkaline conditions and almost undetectable at extreme acidic growth conditions. PacC+/- loss-of-function mutants displayed an acidity-mimicking phenotype resulting in poor growth at alkaline pH, increased acid protease activity and higher transcript levels of acid-expressed polygalacturonase genes. Reintroduction of a functional pacC copy into a pacC+/- mutant restored the wild-type phenotype. Conversely, F. oxysporum merodiploids carrying a dominant activating pacCc allele had increased pacC transcript and protein levels and displayed an alkalinity-mimicking phenotype with reduced acid phosphatase and increased alkaline protease activities. PacC+/- mutants were more virulent than the wild-type strain in root infection assays with tomato plants, whereas pacCc strains were significantly reduced in virulence. We propose that F. oxysporum PacC acts as a negative regulator of virulence to plants, possibly by preventing transcription of acid-expressed genes important for infection. PMID:12694620

Caracuel, Zaira; Roncero, M Isabel G; Espeso, Eduardo A; González-Verdejo, Clara I; García-Maceira, Fe I; Di Pietro, Antonio

2003-05-01

18

Two xylanase genes of the vascular wilt pathogen Fusarium oxysporum are differentially expressed during infection of tomato plants.  

PubMed

Two genes encoding putative family F xylanases from the tomato vascular wilt pathogen Fusarium oxysporum f.sp. lycopersici have been cloned and sequenced. The two genes, designated xyl2 and xyl3, encode proteins with calculated molecular masses of 33 and 39.3 kDa and isoelectric points of 8.9 and 6.7, respectively. The predicted amino acid sequences show significant homology to other family F xylanases. XYL3 contains a cellulose-binding domain in its N-terminal region. Southern analysis suggested that xyl2 and xyl3 homologs are also present in other formae speciales of F. oxysporum. Both genes were expressed during growth on oat spelt xylan and tomato vascular tissue in vitro. RT-PCR revealed that xyl3 is expressed in roots and in the lower stems of tomato plants infected by F. oxysporum f.sp. lycopersici throughout the whole disease cycle, whereas xyl2 is only expressed during the final stages of disease. PMID:10323234

Ruiz-Roldán, M C; Di Pietro, A; Huertas-González, M D; Roncero, M I

1999-04-01

19

A novel virus in the family Hypoviridae from the plant pathogenic fungus Fusarium graminearum.  

PubMed

A double-stranded (ds) RNA element, sized at approximately 13 kb pairs, was purified from a field isolate, HN10, of Fusarium graminearum. The coding strand of the dsRNA was 13,023 nucleotides (nt) long (excluding the 3' poly(A) tail) and was predicted to contain two discontiguous open reading frames (ORF A and ORF B). The 5' proximal ORF A of 531 nt encoded a protein of 176 amino acids (aa), and a BLAST search showed it to be similar to the putative papain-like protease domains encoded by Valsa ceratosperma hypovirus 1 (35% identity) and Cryphonectria hypovirus 4 (CHV4) (31% identity). The 3' proximal ORF B of 11,118nt encoded a large polyprotein with three conserved domains, including papain-like protease, RNA-dependent RNA polymerase and RNA helicase domains. The polyprotein shared significant aa identities with CHV1 (32%) and CHV2 (32%). Both the genome organization and phylogenetic analysis suggested that the characterized RNA represented a novel hypovirus, designated "Fusarium graminearum hypovirus 1 (FgHV1)", which was closely related to CHV1 and CHV2 in the Hypoviridae family. Elimination of the virus resulted in no dramatic phenotypic alteration of the fungus. PMID:23499998

Wang, Shuangchao; Kondo, Hideki; Liu, Liang; Guo, Lihua; Qiu, Dewen

2013-06-01

20

Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride.  

PubMed

Transformation of maize with genes encoding for insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) could have an impact on the saprophytic survival of plant pathogens and their antagonists on crop residues. We assessed potential effects on the mycotoxin deoxynivalenol (DON)-producing wheat and maize pathogen Fusarium graminearum and on the biocontrol agent Trichoderma atroviride. Purified Cry1Ab protein caused no growth inhibition of these fungi on agar plates. Cry1Ab concentrations above levels common in Bt maize tissue stimulated the growth of F. graminearum. The fungi were also grown on gamma-radiation-sterilized leaf tissue of four Bt maize hybrids and their non transgenic isolines collected at maize maturity on a field trial in 2002 and 2003. Both fungi degraded the Cry1Ab protein in Bt maize tissue. Fungal biomass quantification with microsatellite-based polymerase chain reaction (PCR) assays revealed differential fungal growth on leaf tissue of different maize varieties but no consistent difference between corresponding Bt and non-Bt hybrids. Generally, year of maize tissue collection had a greater impact on biomass production than cultivar or Bt transformation. The mycotoxin DON levels observed in maize tissue experiments corresponded with patterns in F. graminearum biomass, indicating that Bt transformation has no impact on DON production. In addition to bioassays, maize leaf tissue was analyzed with a mass spectrometer-based electronic nose, generating fingerprints of volatile organic compounds. Chemical fingerprints of corresponding Bt and non-Bt leaf tissues differed only for those hybrid pairs that caused differential fungal biomass production in the bioassays. Our results suggest that Cry1Ab protein in maize residues has no direct effect on F. graminearum and T. atroviride but some corresponding Bt/non-Bt maize hybrids differ more in composition than Cry protein content alone, which can affect the saprophytic growth of fungi on crop residues. PMID:16738384

Naef, Andreas; Zesiger, Thierry; Défago, Geneviève

2006-01-01

21

Characterization of the four GH12 Endoxylanases from the plant pathogen Fusarium graminearum.  

PubMed

Four putative GH12 genes were found in the Fusarium graminearum genome. The corresponding proteins were expressed in Escherichia coli, purified, and evaluated. FGSG_05851 and FGSG_11037 displayed high activities towards xyloglucan (V(max) of 4 and 11 micronmol/min, respectively), whereas FGSG_07892 and FGSG_16349 were much less active with this substrate (0.081 and 0.004 micronmol/min, respectively). However, all four of these enzymes had a similar binding affinity for xyloglucan. Xyloglucan was the substrate preferred by FGSG_05851, in contrast to the three other enzymes, which preferred beta-glucan or lichenan. Therefore, FGSG_05851 is a xyloglucan-specific glucanase (E.C. 3.2.1.151) rather than an endoglucanase (E.C. 3.2.1.4) with broad substrate specificity. FGSG_11037 displayed a peculiar behavior in that the xyloglucan binding was highly cooperative, with a Hill coefficient of 2.5. Finally, FGSG_05851 essentially degraded xyloglucan into hepta-, octa-, and nonasaccharides, whereas the three other enzymes yielded hepta- and octa-saccharides as well as larger molecules. PMID:22713989

Habrylo, Olivier; Song, Xinghan; Forster, Anne; Jeltsch, Jean-Marc; Phalip, Vincent

2012-08-01

22

Efficacy of chemical and fluorescent protein markers in studying plant colonization by endophytic non-pathogenic Fusarium oxysporum isolates  

Microsoft Academic Search

In studying plant colonization by inoculated Fusarium oxysporum endophytes, it is important to be able to distinguish inoculated isolates from saprophytic strains. In the current study,\\u000a F. oxysporum isolates were transformed with the green (GFP) and red fluorescent protein (DsRed) genes, and benomyl- and chlorate-resistant\\u000a mutant isolates were also developed. The benomyl- and chlorate-resistant mutants, and the fluorescently labelled transformants,

Pamela Paparu; Adele Macleod; Thomas Dubois; Daniel Coyne; Altus Viljoen

2009-01-01

23

Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain.  

PubMed

An endophytic fungal isolate (Fs-K), identified as a Fusarium solani strain, was obtained from root tissues of tomato plants grown on a compost which suppressed soil and foliar pathogens. Strain Fs-K was able to colonize root tissues and subsequently protect plants against the root pathogen Fusarium oxysporum f.sp. radicis-lycopersici (FORL), and elicit induced systemic resistance against the tomato foliar pathogen Septoria lycopersici. Interestingly, attenuated expression of certain pathogenesis-related genes, i.e. PR5 and PR7, was detected in tomato roots inoculated with strain Fs-K compared with non-inoculated plants. The expression pattern of PR genes was either not affected or aberrant in leaves. A genetic approach, using mutant tomato plant lines, was used to determine the role of ethylene and jasmonic acid in the plant's response to infection by the soil-borne pathogen F. oxysporum f.sp. radicis-lycopersici (FORL), in the presence or absence of isolate Fs-K. Mutant tomato lines Never ripe (Nr) and epinastic (epi1), both impaired in ethylene-mediated plant responses, inoculated with FORL are not protected by isolate Fs-K, indicating that the ethylene signalling pathway is required for the mode of action used by the endophyte to confer resistance. On the contrary, def1 mutants, affected in jasmonate biosynthesis, show reduced susceptibility to FORL, in the presence Fs-K, which suggests that jasmonic acid is not essential for the mediation of biocontrol activity of isolate Fs-K. PMID:18048373

Kavroulakis, Nektarios; Ntougias, Spyridon; Zervakis, Georgios I; Ehaliotis, Constantinos; Haralampidis, Kosmas; Papadopoulou, Kalliope K

2007-01-01

24

Characterization of antagonistic and pathogenic Fusarium oxysporum isolates by random amplification of polymorphic DNA  

Microsoft Academic Search

Fusarium oxysporum is one of the most widespread and predominant species in natural and cultivated soils among the fungal genus Fusarium. It includes saprophytes as well as plant pathogens involved in serious vascular wilts, caused by severalformae speciales and races or pathotypes (1). Morphological similarities among pathogenic and saprophytic strains of F. oxysporum hamper diagnosis and clear discrimination among formae

Q. Migheli; L. Cavallarin

1994-01-01

25

Antagonistic bacteria of composted agro-industrial residues exhibit antibiosis against soil-borne fungal plant pathogens and protection of tomato plants from Fusarium oxysporum f.sp. radicis-lycopersici  

Microsoft Academic Search

Rhizospheric and root-associated\\/endophytic (RAE) bacteria were isolated from tomato plants grown in three suppressive compost-based\\u000a plant growth media derived from the olive mill, winery and Agaricus bisporus production agro-industries. Forty-four (35 rhizospheric and 9 RAE) out of 329 bacterial strains showed in vitro antagonistic\\u000a activity against at least one of the soil-borne fungal pathogens, Fusarium oxysporum f.sp. radicis-lycopersici (FORL), F.

Nektarios Kavroulakis; Spyridon Ntougias; Maria I. Besi; Pelagia Katsou; Athanasia Damaskinou; Constantinos Ehaliotis; Georgios I. Zervakis; Kalliope K. Papadopoulou

2010-01-01

26

Plant Disease Lesson: Fusarium head blight (FHB) or scab  

NSDL National Science Digital Library

This plant disease lesson on Fusarium head blight (FHB) or scab (caused by the fungus Fusarium graminearum (anamorph) Gibberella zeae (teleomorph)) includes information on symptoms and signs, pathogen biology, disease cycle and epidemiology, disease management, and the significance of the disease. Selected references are listed and a glossary is also available for use with this resource.

David G. Schmale III (Cornell University;); Gary C. Bergstrom (Cornell University;)

2003-06-12

27

Germination of Fusarium oxysporum in root exudates from tomato plants challenged with different Fusarium oxysporum strains  

Microsoft Academic Search

The response of microconidia from pathogenic and non-pathogenic Fusarium oxysporum to root exudates from tomato plants inoculated with different pathogenic and non-pathogenic F. oxysporum strains was studied. Root exudates from non-inoculated tomatoes highly stimulated the microconidial germination of the two\\u000a tomato pathogens, F. oxysporum f.sp. lycopersici strain Fol 007 and F. oxysporum f.sp. radicis-lycopersici strain Forl 101587. In root exudates

Siegrid Steinkellner; Roswitha Mammerler; Horst Vierheilig

2008-01-01

28

Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum.  

PubMed

Fungal plant pathogens such as Fusarium graminearum cause severe global economic losses in cereals crops, and current control measures are limited. This work addresses the potential for ZnO nanoparticles (NPs) and biocontrol bacteria to be used in plant fungal control strategies. Growth of F. graminearum was significantly (p = 0.05) inhibited by inclusion of the NPs in a mung bean broth agar and in sand. Suspension in mung bean broth medium modified the surface charge, dissolution, and aggregation state of the ZnO NPs, in comparison to processes occurring in water suspension. The ZnO NPs were significantly more inhibitory to fungal growth than micro-sized particles of ZnO, although both types of particles released similar levels of soluble Zn, indicating size-dependent toxicity of the particles. Zn ions produced dose-dependent inhibition, noticeable at the level of soluble Zn released from NPs after seven-day suspension in medium; inhibitory levels caused acidification of the growth medium. Transfer of fungal inoculum after exposure to the ZnO NPs to fresh medium did not indicate adaptation to the stress because growth was still inhibited by the NPs. The ZnO NPs did not prevent metabolites from a biocontrol bacterium, Pseudomonas chlororaphis O6, from inhibiting Fusarium growth: no synergism was observed in the mung bean agar. Because other studies find that soil amendment with ZnO NPs required high doses for inhibition of plant growth, the findings of pathogen growth control reported in this paper open the possibility of using ZnO NP-based formulations to complement existing strategies for improving crop health in field settings. PMID:23933719

Dimkpa, Christian O; McLean, Joan E; Britt, David W; Anderson, Anne J

2013-12-01

29

Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium  

SciTech Connect

Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, members of the F. oxysporum species complex exhibit wide host range but discontinuously distributed host specificity, reflecting remarkable genetic adaptability. To understand the molecular underpinnings of diverse phenotypic traits and their evolution in Fusarium, we compared the genomes of three economically important and phylogenetically related, yet phenotypically diverse plant-pathogenic species, F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici. Our analysis revealed greatly expanded lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes, accounting for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity. Experimentally, we demonstrate for the first time the transfer of two LS chromosomes between strains of F. oxysporum, resulting in the conversion of a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in the F. oxysporum species complex, putting the evolution of fungal pathogenicity into a new perspective.

Ma, Li Jun; van der Does, H. C.; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Jose; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Wolochuk, Charles; Xie, Xiaohui; Xu, Jin Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald; Goff, Steven; Hammond-Kossack, Kim; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. C.; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, Barbara G.; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

2010-03-18

30

Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium  

PubMed Central

Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.

Ma, Li-Jun; van der Does, H. Charlotte; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Josee; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Woloshuk, Charles; Xie, Xiaohui; Xu, Jin-Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A. E.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G. J.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald M.; Goff, Stephen; Hammond-Kosack, Kim E.; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong-Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook-Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. Carmen; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, B. Gillian; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

2011-01-01

31

Disseminated hyalohyphomycosis caused by a novel human pathogen, Fusarium napiforme.  

PubMed Central

Fusarium species are saprophytic molds and important plant pathogens, although they are increasingly recognized as agents of human mycosis. Frequently, the infection is superficial. Deep tissue infection may occur as an opportunistic hyalohyphomycosis, and wide dissemination is common in immunocompromised hosts. We describe a novel case of disseminated hyalohyphomycosis caused by F. napiforme in a patient with acute myelogenous leukemia. The clinical manifestations of this infection were similar to those attributed to infection with other species. In vitro susceptibility testing demonstrated resistance to amphotericin B and flucytosine, and progressive infection was documented until recovery of granulocyte function. The distinguishing clinical mycologic characteristics of this opportunistic mold are the unique turnip- or lemon-shaped microconidia. F. napiforme is a new agent of hyalohyphomycosis, further emphasizing the importance of Fusarium species as opportunistic molds. Images

Melcher, G P; McGough, D A; Fothergill, A W; Norris, C; Rinaldi, M G

1993-01-01

32

Disseminated hyalohyphomycosis caused by a novel human pathogen, Fusarium napiforme.  

PubMed

Fusarium species are saprophytic molds and important plant pathogens, although they are increasingly recognized as agents of human mycosis. Frequently, the infection is superficial. Deep tissue infection may occur as an opportunistic hyalohyphomycosis, and wide dissemination is common in immunocompromised hosts. We describe a novel case of disseminated hyalohyphomycosis caused by F. napiforme in a patient with acute myelogenous leukemia. The clinical manifestations of this infection were similar to those attributed to infection with other species. In vitro susceptibility testing demonstrated resistance to amphotericin B and flucytosine, and progressive infection was documented until recovery of granulocyte function. The distinguishing clinical mycologic characteristics of this opportunistic mold are the unique turnip- or lemon-shaped microconidia. F. napiforme is a new agent of hyalohyphomycosis, further emphasizing the importance of Fusarium species as opportunistic molds. PMID:8314987

Melcher, G P; McGough, D A; Fothergill, A W; Norris, C; Rinaldi, M G

1993-06-01

33

The Wor1-like Protein Fgp1 Regulates Pathogenicity, Toxin Synthesis and Reproduction in the Phytopathogenic Fungus Fusarium graminearum  

Microsoft Academic Search

WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity determents in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is required for pathogenicity and expression of key plant effector proteins. F. graminearum, an important pathogen of cereals, is not known to employ switching and no effector proteins from

Wilfried Jonkers; Yanhong Dong; Karen Broz; H. Corby Kistler

2012-01-01

34

Chromosome Complement of the Fungal Plant Pathogen Fusarium graminearum Based on Genetic and Physical Mapping and Cytological Observations  

Microsoft Academic Search

A genetic map of the filamentous fungus Fusarium graminearum (teleomorph: Gibberella zeae) was con- structed to both validate and augment the draft whole-genome sequence assembly of strain PH-1. A mapping population was created from a cross between mutants of the sequenced strain (PH-1, NRRL 31084, originally isolated from Michigan) and a field strain from Minnesota (00-676, NRRL 34097). A total

L. R. Gale; J. D. Bryant; S. Calvo; H. Giese; T. Katan; K. O'Donnell; H. Suga; M. Taga; T. R. Usgaard; T. J. Ward; H. C. Kistler

2005-01-01

35

Genomic analysis of host-pathogen interaction between Fusarium graminearum and wheat during early stages of disease development  

Microsoft Academic Search

Fusarium graminearum strains responsible for causing the plant disease Fusarium head blight vary greatly in their ability to cause disease and produce mycotoxins on wheat. With the goal of understanding fungal gene expression related to pathogenicity, three cDNA libraries were created by suppression subtractive hybridization using wheat heads inoculated with a highly aggressive strain and either water or a less

Rubella S. Goswami; Jin-Rong Xu; Frances Trail; Karen Hilburn; H. Corby Kistler

2006-01-01

36

Lack of biocontrol capacity in a non-pathogenic mutant of Fusarium oxysporum f. sp. melonis  

Microsoft Academic Search

The aim of this study was to assess the biocontrol capacity of rev157, a non-pathogenic mutant of a pathogenic strain of Fusarium oxysporum f. sp. melonis (Fom24). Inoculated in association with the virulent parental strain, the mutant rev157 did not protect the host plant (muskmelon)\\u000a against infection by Fom24. Applied on flax, a non-host plant, the mutant rev157 was not

Floriane L’Haridon; Sébastien Aimé; Claude Alabouvette; Chantal Olivain

2007-01-01

37

Response of endophytic bacterial communities in banana tissue culture plantlets to Fusarium wilt pathogen infection.  

PubMed

Endophytic bacteria reside within plant hosts without having pathogenic effects, and various endophytes have been found to functionally benefit plant disease suppressive ability. In this study, the influence of banana plant stress on the endophytic bacterial communities, which was achieved by infection with the wilt pathogen Fusarium oxysporum f. sp. cubense, was examined by cultivation-independent denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA directly amplified from plant tissue DNA. Community analysis clearly demonstrated increased bacterial diversity in pathogen-infected plantlets compared to that in control plantlets. By sequencing, bands most similar to species of Bacillus and Pseudomonas showed high density in the pathogen-treated pattern. In vitro screening of the isolates for antagonistic activity against Fusarium wilt pathogen acquired three strains of endophytic bacteria which were found to match those species that obviously increased in the pathogen infection process; moreover, the most inhibitive strain could also interiorly colonize plantlets and perform antagonism. The evidence obtained from this work showed that antagonistic endophytic bacteria could be induced by the appearance of a host fungal pathogen and further be an ideal biological control agent to use in banana Fusarium wilt disease protection. PMID:18497482

Lian, Jie; Wang, Zifeng; Zhou, Shining

2008-04-01

38

Fusarium pathogenomics.  

PubMed

Fusarium is a genus of filamentous fungi that contains many agronomically important plant pathogens, mycotoxin producers, and opportunistic human pathogens. Comparative analyses have revealed that the Fusarium genome is compartmentalized into regions responsible for primary metabolism and reproduction (core genome), and pathogen virulence, host specialization, and possibly other functions (adaptive genome). Genes involved in virulence and host specialization are located on pathogenicity chromosomes within strains pathogenic to tomato (Fusarium oxysporum f. sp. lycopersici) and pea (Fusarium 'solani' f. sp. pisi). The experimental transfer of pathogenicity chromosomes from F. oxysporum f. sp. lycopersici into a nonpathogen transformed the latter into a tomato pathogen. Thus, horizontal transfer may explain the polyphyletic origins of host specificity within the genus. Additional genome-scale comparative and functional studies are needed to elucidate the evolution and diversity of pathogenicity mechanisms, which may help inform novel disease management strategies against fusarial pathogens. PMID:24024636

Ma, Li-Jun; Geiser, David M; Proctor, Robert H; Rooney, Alejandro P; O'Donnell, Kerry; Trail, Frances; Gardiner, Donald M; Manners, John M; Kazan, Kemal

2013-01-01

39

Pathogen Phytosensing: Plants to Report Plant Pathogens  

PubMed Central

Real-time systems that provide evidence of pathogen contamination in crops can be an important new line of early defense in agricultural centers. Plants possess defense mechanisms to protect against pathogen attack. Inducible plant defense is controlled by signal transduction pathways, inducible promoters and cis-regulatory elements corresponding to key genes involved in defense, and pathogen-specific responses. Identified inducible promoters and cis-acting elements could be utilized in plant sentinels, or ‘phytosensors’, by fusing these to reporter genes to produce plants with altered phenotypes in response to the presence of pathogens. Here, we have employed cis-acting elements from promoter regions of pathogen inducible genes as well as those responsive to the plant defense signal molecules salicylic acid, jasmonic acid, and ethylene. Synthetic promoters were constructed by combining various regulatory elements supplemented with the enhancer elements from the Cauliflower mosaic virus (CaMV) 35S promoter to increase basal level of the GUS expression. The inducibility of each synthetic promoter was first assessed in transient expression assays using Arabidopsis thaliana protoplasts and then examined for efficacy in stably transgenic Arabidopsis and tobacco plants. Histochemical and fluorometric GUS expression analyses showed that both transgenic Arabidopsis and tobacco plants responded to elicitor and phytohormone treatments with increased GUS expression when compared to untreated plants. Pathogen-inducible phytosensor studies were initiated by analyzing the sensitivity of the synthetic promoters against virus infection. Transgenic tobacco plants infected with Alfalfa mosaic virus showed an increase in GUS expression when compared to mock-inoculated control plants, whereas Tobacco mosaic virus infection caused no changes in GUS expression. Further research, using these transgenic plants against a range of different pathogens with the regulation of detectable reporter gene could provide biological evidence to define the functional differences between pathogens, and provide new technology and applications for transgenic plants as phytosensors.

Mazarei, Mitra; Teplova, Irina; Hajimorad, M. Reza; Stewart, C. Neal

2008-01-01

40

Folyt1, a new member of the hAT family, is active in the genome of the plant pathogen Fusarium oxysporum.  

PubMed

An active transposable element, Folyt1, has been isolated from the tomato pathogen Fusarium oxysporum f. sp. lycopersici as an insertion sequence within the coding region of the nitrate reductase gene (nit 1) in two independent mutants (CO66 and CO108). Folyt1 was 2615 bp in length and contained 9-bp imperfect inverted terminal repeats (ITRs) and 8 bp duplicated at the target site upon insertion. The element contained a long open reading frame interrupted by a single putative intron. The predicted amino acid sequence showed similarity to conserved domains of transposases from hobo, Ac, and Tam3 elements, which belong to the hAT family. The excision frequency of Folyt1 was determined to be less than 10(-5) in both mutants. These events restored the nit 1 wild-type allele without leaving footprints in all the revertants of strain CO66. Nevertheless, some revertants of strain CO108 showed a point mutation footprint at the target sequence. Expression of the Folyt1 transposase was detected by Northern analysis as a 2.1-kb transcript. The element exists in about 10 copies per genome in F. oxysporum f. sp. lycopersici and appears to be widely distributed among different formae speciales of F. oxysporum. PMID:10413616

Gómez-Gómez, E; Anaya, N; Roncero, M I; Hera, C

1999-06-01

41

Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana.  

PubMed

Soil-borne fungal pathogen, Fusarium oxysporum causes major economic losses by inducing necrosis and wilting symptoms in many crop plants. Management of fusarium wilt is achieved mainly by the use of chemical fungicides which affect the soil health and their efficiency is often limited by pathogenic variability. Hence understanding the nature of interaction between pathogen and host may help to select and improve better cultivars. Current research evidences highlight the role of oxidative burst and antioxidant enzymes indicating that ROS act as an important signaling molecule in banana defense response against Fusarium oxysporum f.sp. cubense. The role of jasmonic acid signaling in plant defense against necrotrophic pathogens is well recognized. But recent studies show that the role of salicylic acid is complex and ambiguous against necrotrophic pathogens like Fusarium oxysporum, leading to many intriguing questions about its relationship between other signaling compounds. In case of banana, a major challenge is to identify specific receptors for effector proteins like SIX proteins and also the components of various signal transduction pathways. Significant progress has been made to uncover the role of defense genes but is limited to only model plants such as Arabidopsis and tomato. Keeping this in view, we review the host response, pathogen diversity, current understanding of biochemical and molecular changes that occur during host and pathogen interaction. Developing resistant cultivars through mutation, breeding, transgenic and cisgenic approaches have been discussed. This would help us to understand host defenses against Fusarium oxysporum and to formulate strategies to develop tolerant cultivars. PMID:24420701

Swarupa, V; Ravishankar, K V; Rekha, A

2014-04-01

42

The photolyase gene from the plant pathogen Fusarium oxysporum f. sp. lycopersici is induced by visible light and alpha-tomatine from tomato plant.  

PubMed

Survival of irradiated spores from Fusarium oxysporum with ultraviolet radiation (UV) was increased following exposition to visible light, indicating that this phytopathogenic fungus has a mechanism of photoreactivation able to counteract the lethal effects of UV. A genomic sequence containing the complete photolyase gene (phr1) from F. oxysporum was isolated by heterologous hybridisation with the Neurospora crassa photolyase gene. The F. oxysporum phr1 cDNA was isolated and expressed in a photolyase deficient Escherichia coli strain. The complementation of the photoreactivation deficiency of this E. coli mutant by phr1 cDNA demonstrated that the photolyase gene from F. oxysporum encodes a functional protein. The F. oxysporum PHR1 protein has a domain characteristic of photolyases from fungi (Trichoderma harziaium, N. crassa, Magnaporthe grisea, Saccharomyces cerevisiae) to bacteria (E. coli), and clusters in the photolyases phylogenetic tree with fungal photolyases. The F. oxysporum phr1 gene was inducible by visible light. The phr1 expression was also detected in presence of alpha-tomatine, a glycoalkaloid from tomato damaging cell membranes, suggesting that phr1 is induced by this cellular stress. PMID:14516768

Alejandre-Durán, Encarna; Roldán-Arjona, Teresa; Ariza, Rafael R; Ruiz-Rubio, Manuel

2003-11-01

43

Comparative pathogenicity of Fusarium graminearum isolates from China revealed by wheat coleoptile and floret inoculations  

Microsoft Academic Search

Fusarium head blight (FHB) or scab caused by Fusarium species is an economically important disease on small grain cereal crops worldwide. Accurate assessments of the pathogenicity of fungal isolates is a key obstacle toward a better understanding of the Fusarium-wheat scab system. In this study, a new laboratory method for inoculation of wheat coleoptiles was developed, which consists of cutting

A.-B. Wu; H.-P. Li; C.-S. Zhao; Y.-C. Liao

2005-01-01

44

Aquatic Plant Control Research Program. Evaluation of Fusarium Roseum 'Culmorum' as a Biological Control Agent for Hydrilla verticillata.  

National Technical Information Service (NTIS)

An isolate of Fusarium roseum 'Culmorum' was isolated in 1974 from diseased stratiotes aloides (Hydrocharitaceae) plants found new Wageningen, The Netherlands. In laboratory tests conducted in Gainesville, it was found to be pathogenic to a relative of S....

R. Charudattan T. E. Freeman R. E. Cullen F. M. Hofmeister

1984-01-01

45

Plant pathogen resistance  

DOEpatents

Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

2012-11-27

46

Plant pathogenic Pseudomonas species  

Microsoft Academic Search

In the current taxonomy, plant pathogenic Pseudomonas species are restricted to rRNA group I organisms belonging to the Gamma subclass of Proteobacteria. Currently, about 21 validly described plant pathogenic Pseudomonas species are known. The most important species is P. syringae with more than 50 described pathovars. The pathovar concept is confusing and the taxonomy of P. syringae needs revision. P.

Monica Höfte; PAUL DE VOS

47

Fusarium foetens, a new species pathogenic to begonia elatior hybrids (Begonia x hiemalis) and the sister taxon of the Fusarium oxysporum species complex.  

PubMed

A new disease recently was discovered in begonia elatior hybrid (Begonia × hiemalis) nurseries in The Netherlands. Diseased plants showed a combination of basal rot, vein yellowing and wilting and the base of collapsing plants was covered by unusually large masses of Fusarium macroconidia. A species of Fusarium was isolated consistently from the discolored veins of leaves and stems. It differed morphologically from F. begoniae, a known agent of begonia flower, leaf and stem blight. The Fusarium species resembled members of the F. oxysporum species complex in producing short monophialides on the aerial mycelium and abundant chlamydospores. Other phenotypic characters such as polyphialides formed occasionally in at least some strains, relatively long monophialides intermingled with the short monophialides formed on the aerial mycelium, distinct sporodochial conidiomata, and distinct pungent colony odor distinguished it from the F. oxysporum species complex. Phylogenetic analyses of partial sequences of the mitochondrial small subunit of the ribosomal DNA (mtSSU rDNA), nuclear translation elongation factor 1? (EF-1?) and ?-tubulin gene exons and introns indicate that the Fusarium species represents a sister group of the F. oxysporum species complex. Begonia × hiemalis cultivars Bazan, Bellona and Netja Dark proved to be highly susceptible to the new species. Inoculated plants developed tracheomycosis within 4 wk, and most died within 8 wk. The new taxon was not pathogenic to Euphorbia pulcherrima, Impatiens walleriana and Saintpaulia ionantha that commonly are grown in nurseries along with B. × hiemalis. Inoculated plants of Cyclamen persicum did not develop the disease but had discolored vessels from which the inoculated fungus was isolated. Given that the newly discovered begonia pathogen is distinct in pathogenicity, morphology and phylogeny from other fusaria, it is described here as a new species, Fusarium foetens. PMID:21148861

Schroers, H-J; Baayen, R P; Meffert, J P; de Gruyter, J; Hooftman, M; O'Donnell, K

2004-01-01

48

Fusarium oxysporum as a Multihost Model for the Genetic Dissection of Fungal Virulence in Plants and Mammals  

Microsoft Academic Search

Fungal pathogens cause disease in plant and animal hosts. The extent to which infection mechanisms are conserved between both classes of hosts is unknown. We present a dual plant-animal infection system based on a single strain of Fusarium oxysporum, the causal agent of vascular wilt disease in plants and an emerging opportunistic human pathogen. Injection of microconidia of a well-characterized

Montserrat Ortoneda; Josep Guarro; Marta P. Madrid; Zaira Caracuel; M. I. G. Roncero; E. Mayayo; A. Di Pietro

2004-01-01

49

The type 2C protein phosphatase FgPtc1p of the plant fungal pathogen Fusarium graminearum is involved in lithium toxicity and virulence.  

PubMed

Type 2C protein phosphatases (PP2Cs) are monomeric protein serine/threonine phosphatases that play various roles in eukaryotic organisms. In this study, we characterized the PP2C encoded by FgPTC1 in Fusarium graminearum, the major causal agent of Fusarium head blight on wheat and barley. We found that deletion of FgPTC1 delays the mycelium growth of F. graminearum in response to lithium. Consistently, FgPTC1 complemented the function of ScPTC1 in lithium toxicity in Saccharomyces cerevisiae. Furthermore, we showed that deletion of FgPTC1 attenuated the virulence of F. graminearum on wheat. Therefore, FgPTC1 plays an important role in regulating the hyphal growth and virulence of F. graminearum. PMID:20447276

Jiang, Linghuo; Yang, Jingran; Fan, Feiyu; Zhang, Dajun; Wang, Xuli

2010-03-01

50

Occurrence, pathogenicity and distribution of Fusarium spp. in stored wheat seeds Kermanshah Province, Iran.  

PubMed

Fusarium is one of the most important pathogenic and toxigenic fungi widely distributed all over the world, including Iran. Fusarium species are found frequently in stored agriculture products especially wheat. The objective of this study was to identify Fusarium species associated with stored wheat seeds and their pathogenicity on root and head of wheat in Kermanshah, the leading province in wheat production in Iran. In this survey 75 seed samples of stored wheat were collected from 10 different regions during 2006-2008 and tested for the presence of Fusarium. Fusarium spp. were found in 51 (68%) of 75 samples. A total of 580 Fusarium strains were isolated, identified and preserved. All these strains belong to 20 Fusarium spp. according to morphological characters. Each conidial suspension of selected strains representing all species was evaluated for their pathogenicity on roots and spikes of healthy wheat var. Fallat in the greenhouse. F. graminearum, F. crookwellense, F. trichothecioides, F. culmorum and F. verticillioides were the most pathogenic to wheat's head. Foot rot assessment revealed that F. pseudograminearum and F. culmorum were the most damaging species. Of the Fusarium isolates, F. graminearum was the most prevalent followed by F. verticillioides and F. proliferatum. This is the first comprehensive report on identity and distribution of Fusarium spp. from stored wheat seeds in Iran while F. nelsonii was reported for the first time from wheat seeds in Iran. PMID:21313898

Chehri, K; Salleh, B; Yli-Mattila, T; Soleimani, M J; Yousefi, A R

2010-12-15

51

Impact of a beneficial and of a pathogenic Fusarium strain on the fingerprinting-based structure of microbial communities in tomato ( Lycopersicon esculentum Milll.) rhizosphere  

Microsoft Academic Search

Fusarium solani strain FsK (FsK), isolated from a plant pathogen-suppressive compost, grows endophytically in tomato roots and controls infestations by Fusarium oxysporum f.sp. radicis-lycopersici (FORL). The effect of root colonization by the two fungi on the diversity of rhizosphere microbial community was studied. Tomato plants were inoculated with FsK and\\/or FORL and rhizosphere soil was collected 8, 15 and 30

Dimitrios G. Karpouzas; Anastasios Karatasas; Evangelia Spiridaki; Constantina Rousidou; Fotios Bekris; Michalis Omirou; Constantinos Ehaliotis; Kalliope K. Papadopoulou

2011-01-01

52

Photocatalytic bactericidal effect of TiO 2 thin film on plant pathogens  

Microsoft Academic Search

Many plant pathogens such as Enterobacter spp., Pythium spp., and Fusarium spp. can be transmitted by irrigation water. The conventional bactericidal methods often apply chemical pesticides to the water. However, synthetic pesticides are hazardous to animals and the environment. Photochemical disinfection of plant pathogens with TiO2 thin film might offer an alternative method to disinfect plant pathogens from water. In

K. S. Yao; D. Y. Wang; W. Y. Ho; J. J. Yan; K. C. Tzeng

2007-01-01

53

The Sfp-Type 4?-Phosphopantetheinyl Transferase Ppt1 of Fusarium fujikuroi Controls Development, Secondary Metabolism and Pathogenicity  

Microsoft Academic Search

The heterothallic ascomycete Fusarium fujikuroi is a notorious rice pathogen causing super-elongation of plants due to the production of terpene-derived gibberellic acids (GAs) that function as natural plant hormones. Additionally, F. fujikuroi is able to produce a variety of polyketide- and non-ribosomal peptide-derived metabolites such as bikaverins, fusarubins and fusarins as well as metabolites from yet unidentified biosynthetic pathways, e.g.

Philipp Wiemann; Sabine Albermann; Eva-Maria Niehaus; Lena Studt; Katharina W. von Bargen; Nelson L. Brock; Hans-Ulrich Humpf; Jeroen S. Dickschat; Bettina Tudzynski

2012-01-01

54

Microsatellite marker-based detection of Fusarium wilt pathogens of Psidium guajava L  

Microsoft Academic Search

Wilt of Psidium guajava L., incited by Fusarium oxysporum f. sp. psidii and Fusarium solani is a serious soil-borne disease of guava in India. Forty-two isolates each of F. oxysporum f. sp. psidii (Fop) and F. solani (Fs) collected from different agro climatic zones of India showing pathogenicity were subjected to estimate the genetic and molecular characterisation in terms of

V. K. Gupta; A. K. Misra

2011-01-01

55

Actinomycetes as plant pathogens  

Microsoft Academic Search

Biology, taxonomy, pathogenicity and control of plant disease inducing actinomycetes are reviewed. Recent progress in the study of potato, sweet potato, blueberry and fruit and forest tree diseases is illustrated. The role in potato scab pathogenesis of the newly discovered phytotoxins, thaxtomins, is discussed.

Romano Locci

1994-01-01

56

Slow sand filters effectively reduce Phytophthora after a pathogen switch from Fusarium and a simulated pump failure.  

PubMed

Slow sand filtration has been shown to effectively reduce Phytophthora zoospores in irrigation water. This experiment tested the reduction of Phytophthora colony forming units (CFUs) by slow sand filtration systems after switching the pathogen contaminating plant leachate from Fusarium to Phytophthora and the resilience of the system to a short period without water, as might be caused by a pump failure. The slow sand filtration system greatly reduced Phytophthora CFUs and transmission after switching the pathogens. In addition, Phytophthora reduction by the slow sand filter was equally effective before and after the simulated pump failure. Reduction of Fusarium was not seen by the SSFs, before or after the simulated pump failure. The results suggest that slow sand filters are effective at reducing larger organisms, such as Phytophthora zoospores, even after a pump failure or a change in pathogens. PMID:23866129

Lee, Eric; Oki, Lorence R

2013-09-15

57

Characterization of Fusarium oxysporum f. sp. melongenae isolates from eggplant in Turkey by pathogenicity, VCG and RAPD analysis  

Microsoft Academic Search

Fusarium wilt is an economically important fungal disease of common eggplant (Solanum melongena) cultivated in the eastern Mediterranean region of Turkey. Seventy-four isolates of Fusarium oxysporum isolated from diseased eggplant displaying typical Fusarium wilt symptoms were screened for pathogenicity on the highly susceptible\\u000a cv. ‘Pala’. All the isolates tested were pathogenic to eggplant and designated as Fusarium oxysporum f. sp.

H. Handan Alt?nok

2010-01-01

58

Lactoferrin-derived resistance against plant pathogens in transgenic plants.  

PubMed

Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein that contributes to nutrition and exerts a broad-spectrum primary defense against bacteria, fungi, protozoa, and viruses in mammals. These qualities make lactoferrin protein and its antimicrobial motifs highly desirable candidates to be incorporated in plants to impart broad-based resistance against plant pathogens or to economically produce them in bulk quantities for pharmaceutical and nutritional purposes. This study introduced bovine LF (BLF) gene into tobacco ( Nicotiana tabacum var. Xanthi), Arabidopsis ( A. thaliana ) and wheat ( Triticum aestivum ) via Agrobacterium -mediated plant transformation. Transgenic plants or detached leaves exhibited high levels of resistance against the damping-off causing fungal pathogen Rhizoctonia solani and the head blight causing fungal pathogen Fusarium graminearum . LF also imparted resistance to tomato plants against a bacterial pathogen, Ralstonia solanacearum . Similarly, other researchers demonstrated expression of LF and LF-mediated high-quality resistance to several other aggressive fungal and bacterial plant pathogens in transgenic plants and against viral pathogens by foliar applications of LF or its derivatives. Taken together, these studies demonstrated the effectiveness of LF for improving crop quality and its biopharming potentials for pharmaceautical and nutritional applications. PMID:23889215

Lakshman, Dilip K; Natarajan, Savithiry; Mandal, Sudhamoy; Mitra, Amitava

2013-12-01

59

Differential Colonization of Tomato Roots by Nonpathogenic and Pathogenic Fusarium oxysporum Strains May Influence Fusarium Wilt Control.  

PubMed

ABSTRACT Histochemical staining, beta-glucuronidase (GUS) activity, or placing roots on agar were methods used to characterize interactions between the pathogenic fungus, Fusarium oxysporum f. sp. lycopersici, and the nonpathogenic biocontrol F. oxysporum strain 70T01 with respect to colonization behaviors, interaction sites, and population densities on tomato roots. Mycelia of strain 70T01, a genetic transformant expressing stable GUS activity, hygromycin B resistance, and effective disease control, were localized in epidermal and cortex cell layers of tomato roots in a discontinuous and uneven pattern. In contrast, mycelia of F. oxysporum f. sp. lycopersici were found in the vascular bundles. Thus, direct interactions between the two fungi likely happen in the root surface cell layers. Colonization density of strain 70T01 was related to the inoculation density but decreased with distance from the inoculation site. Host defense reactions, including increased cell wall thickness or papilla deposits, were adjacent to 70T01 hyphae. Experiments done in soil showed that strain 70T01 densities in roots were highest at inoculation zones and barely detectable for root segments more than 2 cm away from the inoculation sites. F. oxysporum f. sp. lycopersici densities were lowest at 70T01 inoculation zones and highest (>10 times) where strain 70T01 was not directly applied. Newly elongating roots where strain 70T01 did not reach were available for infection by the pathogen. The higher strain 70T01 density was always found when the plants were simultaneously infected by F. oxysporum f. sp. lycopersici, suggesting that F. oxysporum f. sp. lycopersici has as much influence in predisposing the plant to colonization by strain 70T01 as strain 70T01 has on providing disease protection against the pathogen. PMID:18943589

Bao, J R; Lazarovits, G

2001-05-01

60

REN1 is required for development of microconidia and macroconidia, but not of chlamydospores, in the plant pathogenic fungus Fusarium oxysporum.  

PubMed

The filamentous fungus Fusarium oxysporum is a soil-borne facultative parasite that causes economically important losses in a wide variety of crops. F. oxysporum exhibits filamentous growth on agar media and undergoes asexual development producing three kinds of spores: microconidia, macroconidia, and chlamydospores. Ellipsoidal microconidia and falcate macroconidia are formed from phialides by basipetal division; globose chlamydospores with thick walls are formed acrogenously from hyphae or by the modification of hyphal cells. Here we describe rensa, a conidiation mutant of F. oxysporum, obtained by restriction-enzyme-mediated integration mutagenesis. Molecular analysis of rensa identified the affected gene, REN1, which encodes a protein with similarity to MedA of Aspergillus nidulans and Acr1 of Magnaporthe grisea. MedA and Acr1 are presumed transcription regulators involved in conidiogenesis in these fungi. The rensa mutant and REN1-targeted strains lack normal conidiophores and phialides and form rod-shaped, conidium-like cells directly from hyphae by acropetal division. These mutants, however, exhibit normal vegetative growth and chlamydospore formation. Nuclear localization of Ren1 was verified using strains expressing the Ren1-green fluorescent protein fusions. These data strongly suggest that REN1 encodes a transcription regulator required for the correct differentiation of conidiogenesis cells for development of microconidia and macroconidia in F. oxysporum. PMID:15020411

Ohara, Toshiaki; Inoue, Iori; Namiki, Fumio; Kunoh, Hitoshi; Tsuge, Takashi

2004-01-01

61

Antifungal properties of essential oils from Thai medical plants against rice pathogenic fungi  

Microsoft Academic Search

This in vitro study was aimed to evaluate the mycelium growth and spore germination inhibition properties of essential oils. Two Thai medicinal plants; Frankincense oil (Boswellia carteri Bird.) and Cassia oil (Acacia farnesiana Linn) were applied against 7 species of economically important rice pathogenic fungi; Alternaria brassicicola, Aspergillus flavus, Bipolaris oryzae, Fusarium moniliforme, Fusarium proliferatum, Pyricularia arisea and Rhizoctonia solani.

Apinya Piyo; Pitipong Thobunluepop

62

The Fusarium Graminearum Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization  

SciTech Connect

We sequenced and annotated the genome of the filamentous fungus Fusarium graminearum, a major pathogen of cultivated cereals. Very few repetitive sequences were detected, and the process of repeat-induced point mutation, in which duplicated sequences are subject to extensive mutation, may partially account for the reduced repeat content and apparent low number of paralogous (ancestrally duplicated) genes. A second strain of F. graminearum contained more than 10,000 single-nucleotide polymorphisms, which were frequently located near telomeres and within other discrete chromosomal segments. Many highly polymorphic regions contained sets of genes implicated in plant-fungus interactions and were unusually divergent, with higher rates of recombination. These regions of genome innovation may result from selection due to interactions of F. graminearum with its plant hosts.

Cuomo, Christina A.; Guldener, Ulrich; Xu, Jin Rong; Trail, Frances; Turgeon, Barbara G.; Di Pietro, Antonio; Walton, Johnathan D.; Ma, Li Jun; Baker, Scott E.; Rep, Martijn; Adam, Gerhard; Antoniw, John; Baldwin, Thomas; Calvo, Sarah; Chang, Yueh Long; DeCaprio, David; Gale, Liane R.; Gnerre, Sante; Goswami, Rubella S.; Hammond-Kossack, Kim; Harris, Linda J.; Hilburn, Karen; Kennell, John C.; Kroken, Scott; Magnuson, Jon K.; Mannhaupt, Gertrud; Mauceli, Evan; Mewes, Hans Werner; Mitterbauer, Rudolf; Muehlbauer, Gary; Munsterkotter, Martin; Nelson, David; O'Donnell, Kerry; Ouellet, Therese; Qi, Weihong; Quesneville, Hadi; Roncero, M. Isabel; Seong, Kye Yong; Tetko, Igor V.; Urban, Martin; Waalwijk, Cees; Ward, Todd J.; Yao, Jiqiang; Birren, Bruce W.; Kistler, H. Corby

2007-09-07

63

Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants  

Microsoft Academic Search

The effect of root exudates from mycorrhizal and non-mycorrhizal tomato plants on microconidia germination of the tomato pathogen Fusarium oxysporum f. sp. lycopersici was tested. Microconidia germination was enhanced in the presence of root exudates from mycorrhizal tomato plants. The more tomato plants were colonized by the arbuscular mycorrhizal fungus Glomus mosseae, the more microconidia germination was increased, indicating that

S. Scheffknecht; R. Mammerler; S. Steinkellner; H. Vierheilig

2006-01-01

64

Improving Biological Control of Fusarium Root-rot in Cucumber (Cucumis sativus L.) by Allelopathic Plant Extracts  

Microsoft Academic Search

The use of allelopathic plant extracts to improve the effectiveness of biological control agent (Trichoderma harzianum) is being popularized in recent years. The present work was designed to evaluate the potential of aqueous extracts of three plants in Saudi Arabia (Azadirachta indica; Ziziphus spina-christi & Zygophylum coccineum) against the pathogenic fungus Fusarium solanmi, the causal agent of root-rot in cucumber

NAHED Z. HAIKAL

65

[Bioprotection mechanisms of the lentil plant by Rhizobium leguminosarum against Fusarium oxysporum f. sp. lentis].  

PubMed

Living and heat-killed bacterial cells of Rhizobium leguminosarum protected totally lentil plants against infection by the pathogen Fusarium oxysporum MR 84. Culture filtrate of this rhizobacterium was also able to protect the plants to a high degree. However, when they were inoculated separately of the pathogen, living bacterial cells did not protect the plants whereas culture filtrate and killed bacterial cells protected them. These results suggest that Rhizobium cannot protect lentil plants without interaction with the pathogen, but the culture filtrate and the killed bacterial cells can protect them even in the absence of this interaction. It seems that the culture filtrate and the killed bacterial cells contain signals able to induce plant resistance. Those signals would be suppressed once Rhizobium is in contact with the plant. PMID:14746271

Essalmani, Haiat; Lahlou, Houria

2003-12-01

66

Degradation of aromatic compounds through the ?-ketoadipate pathway is required for pathogenicity of the tomato wilt pathogen Fusarium oxysporum f. sp. lycopersici.  

PubMed

Plant roots react to pathogen attack by the activation of general and systemic resistance, including the lignification of cell walls and increased release of phenolic compounds in root exudate. Some fungi have the capacity to degrade lignin using ligninolytic extracellular peroxidases and laccases. Aromatic lignin breakdown products are further catabolized via the ?-ketoadipate pathway. In this study, we investigated the role of 3-carboxy-cis,cis-muconate lactonizing enzyme (CMLE), an enzyme of the ?-ketoadipate pathway, in the pathogenicity of Fusarium oxysporum f. sp. lycopersici towards its host, tomato. As expected, the cmle deletion mutant cannot catabolize phenolic compounds known to be degraded via the ?-ketoadipate pathway. In addition, the mutant is impaired in root invasion and is nonpathogenic, even though it shows normal superficial root colonization. We hypothesize that the ?-ketoadipate pathway in plant-pathogenic, soil-borne fungi is necessary to degrade phenolic compounds in root exudate and/or inside roots in order to establish disease. PMID:22827542

Michielse, Caroline B; Reijnen, Linda; Olivain, Chantal; Alabouvette, Claude; Rep, Martijn

2012-12-01

67

The Wor1-like Protein Fgp1 Regulates Pathogenicity, Toxin Synthesis and Reproduction in the Phytopathogenic Fungus Fusarium graminearum  

PubMed Central

WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity determents in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is required for pathogenicity and expression of key plant effector proteins. F. graminearum, an important pathogen of cereals, is not known to employ switching and no effector proteins from F. graminearum have been found to date that are required for infection. In this study, the potential role of the WOR1-like gene in pathogenesis was tested in this toxigenic fungus. Deletion of the WOR1 ortholog (called FGP1) in F. graminearum results in greatly reduced pathogenicity and loss of trichothecene toxin accumulation in infected wheat plants and in vitro. The loss of toxin accumulation alone may be sufficient to explain the loss of pathogenicity to wheat. Under toxin-inducing conditions, expression of genes for trichothecene biosynthesis and many other genes are not detected or detected at lower levels in ?fgp1 strains. FGP1 is also involved in the developmental processes of conidium formation and sexual reproduction and modulates a morphological change that accompanies mycotoxin production in vitro. The Wor1-like proteins in Fusarium species have highly conserved N-terminal regions and remarkably divergent C-termini. Interchanging the N- and C- terminal portions of proteins from F. oxysporum and F. graminearum resulted in partial to complete loss of function. Wor1-like proteins are conserved but have evolved to regulate pathogenicity in a range of fungi, likely by adaptations to the C-terminal portion of the protein.

Jonkers, Wilfried; Dong, Yanhong; Broz, Karen; Corby Kistler, H.

2012-01-01

68

The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum.  

PubMed

WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity determents in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is required for pathogenicity and expression of key plant effector proteins. F. graminearum, an important pathogen of cereals, is not known to employ switching and no effector proteins from F. graminearum have been found to date that are required for infection. In this study, the potential role of the WOR1-like gene in pathogenesis was tested in this toxigenic fungus. Deletion of the WOR1 ortholog (called FGP1) in F. graminearum results in greatly reduced pathogenicity and loss of trichothecene toxin accumulation in infected wheat plants and in vitro. The loss of toxin accumulation alone may be sufficient to explain the loss of pathogenicity to wheat. Under toxin-inducing conditions, expression of genes for trichothecene biosynthesis and many other genes are not detected or detected at lower levels in ?fgp1 strains. FGP1 is also involved in the developmental processes of conidium formation and sexual reproduction and modulates a morphological change that accompanies mycotoxin production in vitro. The Wor1-like proteins in Fusarium species have highly conserved N-terminal regions and remarkably divergent C-termini. Interchanging the N- and C- terminal portions of proteins from F. oxysporum and F. graminearum resulted in partial to complete loss of function. Wor1-like proteins are conserved but have evolved to regulate pathogenicity in a range of fungi, likely by adaptations to the C-terminal portion of the protein. PMID:22693448

Jonkers, Wilfried; Dong, Yanhong; Broz, Karen; Kistler, H Corby

2012-01-01

69

Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato.  

PubMed

Arbuscular mycorrhizal (AM) fungi and non-pathogenic strains of soil-borne pathogens have been shown to control plant parasitic nematodes. As AM fungi and non-pathogenic fungi improve plant health by different mechanisms, combination of two such partners with complementary mechanisms might increase overall control efficacy and, therefore, provide an environmentally safe alternative to nematicide application. Experiments were conducted to study possible interactions between the AM fungus Glomus coronatum and the non-pathogenic Fusarium oxysporum strain Fo162 in the control of Meloidogyne incognita on tomato. Pre-inoculation of tomato plants with G. coronatum or Fo162 stimulated plant growth and reduced M. incognita infestation. Combined application of the AM fungus and Fo162 enhanced mycorrhization of tomato roots but did not increase overall nematode control or plant growth. A higher number of nematodes per gall was found for mycorrhizal than non-mycorrhizal plants. In synergisms between biocontrol agents, differences in their antagonistic mechanisms seem to be less important than their effects on different growth stages of the pathogen. PMID:12938032

Diedhiou, P M; Hallmann, J; Oerke, E-C; Dehne, H-W

2003-08-01

70

Antagonistic Effect of Nonpathogenic Fusarium oxysporum Fo47 and Pseudobactin 358 upon Pathogenic Fusarium oxysporum f. sp. dianthi  

PubMed Central

Pseudobactin production by Pseudomonas putida WCS358 significantly improves biological control of fusarium wilt caused by nonpathogenic Fusarium oxysporum Fo47b10 (P. Lemanceau, P. A. H. M. Bakker, W. J. de Kogel, C. Alabouvette, and B. Schippers, Appl. Environ. Microbiol. 58:2978-2982, 1992). The antagonistic effect of Fo47b10 and purified pseudobactin 358 was studied by using an in vitro bioassay. This bioassay allows studies on interactions among nonpathogenic F. oxysporum Fo47b10, pathogenic F. oxysporum f. sp. dianthi WCS816, and purified pseudobactin 358, the fluorescent siderophore produced by P. putida WCS358. Both nonpathogenic and pathogenic F. oxysporum reduced each other's growth when grown together. However, in these coinoculation experiments, pathogenic F. oxysporum WCS816 was relatively more inhibited in its growth than nonpathogenic F. oxysporum Fo47b10. The antagonism of nonpathogenic F. oxysporum against pathogenic F. oxysporum strongly depends on the ratio of nonpathogenic to pathogenic F. oxysporum densities: the higher this ratio, the stronger the antagonism. This fungal antagonism appears to be mainly associated with the competition for glucose. Pseudobactin 358 reduced the growth of both F. oxysporum strains, whereas ferric pseudobactin 358 did not; antagonism by pseudobactin 358 was then related to competition for iron. However, the pathogenic F. oxysporum strain was more sensitive to this antagonism than the nonpathogenic strain. Pseudobactin 358 reduced the efficiency of glucose metabolism by the fungi. These results suggest that pseudobactin 358 increases the intensity of the antagonism of nonpathogenic F. oxysporum Fo47b10 against pathogenic F. oxysporum WCS816 by making WCS816 more sensitive to the glucose competition by Fo47b10.

Lemanceau, Philippe; Bakker, Peter A. H. M.; De Kogel, Willem Jan; Alabouvette, Claude; Schippers, Bob

1993-01-01

71

The AMT1 Arginine Methyltransferase Gene Is Important for Plant Infection and Normal Hyphal Growth in Fusarium graminearum  

Microsoft Academic Search

Arginine methylation of non-histone proteins by protein arginine methyltransferase (PRMT) has been shown to be important for various biological processes from yeast to human. Although PRMT genes are well conserved in fungi, none of them have been functionally characterized in plant pathogenic ascomycetes. In this study, we identified and characterized all of the four predicted PRMT genes in Fusarium graminearum,

Guanghui Wang; Chenfang Wang; Rui Hou; Xiaoying Zhou; Guotian Li; Shijie Zhang; Jin-Rong Xu

2012-01-01

72

When do arbuscular mycorrhizal fungi protect plant roots from pathogens?  

PubMed

Arbuscular mycorrhizal (AM) fungi are mainly thought to facilitate phosphorus uptake in plants, but they can also perform several other functions that are equally beneficial. Our recent study sheds light on the factors determining one such function, enhanced plant protection from root pathogens. Root infection by the fungal pathogen Fusarium oxysporum was determined by both plant susceptibility and the ability of an AM fungal partner to suppress the pathogen. The non-susceptible plant species (Allium cepa) had limited F. oxysporum infection even without AM fungi. In contrast, the susceptible plant species (Setaria glauca) was heavily infected and only AM fungi in the family Glomeraceae limited pathogen abundance. Plant susceptibility to pathogens was likely determined by contrasting root architectures between plants, with the simple rooted plant (A. cepa) presenting fewer sites for infection.AM fungal colonization, however, was not limited in the same way in part because plants with fewer, simple roots are more mycorrhizal dependent. Protection only by Glomus species also indicates that whatever the mechanism(s) of this function, it responds to AM fungal families differently. While poor at pathogen protection, AM fungal species in the family Gigasporaceae most benefited the growth of the simple rooted plant species. Our research indicates that plant trait differences, such as root architecture can determine how important each mycorrhizal function is to plant growth but the ability to provide these functions differs among AM fungi. PMID:20400855

Sikes, Benjamin A

2010-06-01

73

Fusarium verticillioides chitin synthases CHS5 and CHS7 are required for normal growth and pathogenicity  

Microsoft Academic Search

Fusarium verticillioides is both an endophyte and a pathogen of maize and is a health threat in many areas of the world because it can contaminate\\u000a maize with fumonisins, a toxic secondary metabolite. We identified eight putative chitin synthase (CHS) genes in F. verticillioides genomic sequence, and phylogenetic evidence shows that they group into seven established CHS gene classes. We

Troy M. LarsonDavid; David F. Kendra; Mark Busman; Daren W. Brown

2011-01-01

74

Development of PCR Primers for a New Fusarium oxysporum Pathogenic on Paris Daisy (Argyranthemum frutescens L.)  

Microsoft Academic Search

The inverse PCR technique was applied to clone genomic DNA flanking insertion sites of sequences homologous to the transposable element Fot1 in the genome of a new pathogenic isolate of Fusarium oxysporum obtained from wilted Argyranthemum frutescens (Paris daisy). Based on the genomic flanking regions, a primer was designed which when paired to a second primer matching the Fot1 sequence

Matias Pasquali; Alberto Acquadro; Virgilio Balmas; Quirico Migheli; Maria Lodovica Gullino; Angelo Garibaldi

2004-01-01

75

Comparative secretome analysis of Fusarium graminearum and two of its non-pathogenic mutants upon deoxynivalenol induction in vitro.  

PubMed

To understand early events in plant-pathogen interactions, it is necessary to explore the pathogen secretome to identify secreted proteins that help orchestrate pathology. The secretome can be obtained from pathogens grown in vitro, and then characterized using standard proteomic approaches based on protein extraction and subsequent identification of tryptic peptides by LC-MS. A subset of the secretome is composed of proteins whose presence is required to initiate infection and their removal from the secretome would result in pathogens with reduced or no virulence. We present here comparative secretome from Fusarium graminearum. This filamentous fungus causes Fusarium head blight on wheat, a serious cereal disease found in many cereal-growing regions. Affected grain is contaminated with mycotoxins and cannot be used for food or feed. We used label-free quantitative MS to compare the secretomes of wild-type with two nonpathogenic deletion mutants of F. graminearum, ?tri6, and ?tri10. These mutations in mycotoxin-regulating transcription factors revealed a subset of 29 proteins whose relative abundance was affected in their secretomes, as measured by spectral counting. Proteins that decreased in abundance are potential candidate virulence factors and these included cell wall-degrading enzymes, metabolic enzymes, pathogenesis-related proteins, and proteins of unknown function. PMID:23512867

Rampitsch, Christof; Day, Jacqueline; Subramaniam, Rajagopal; Walkowiak, Sean

2013-06-01

76

Impaired purine biosynthesis affects pathogenicity of Fusarium oxysporum f. sp. melonis  

Microsoft Academic Search

The vascular wilt pathogen Fusarium oxysporum f. sp. melonis causes worldwide yield losses of muskmelon. In this study, we characterized a UV-induced non-pathogenic mutant (strain 4\\/4) of F. oxysporum f. sp. melonis, previously identified as a potential biological control agent. During comparative analysis of vegetative growth parameters using different carbon sources, mutant strain 4\\/4 showed a delay in development and

Youlia Denisov; Oded Yarden; Stanley Freeman

2005-01-01

77

Cloning of the pathogenicity-related gene FPD1 in Fusarium oxysporum f. sp. lycopersici  

Microsoft Academic Search

We selected a reduced-pathogenicity mutant of Fusarium oxysporum f. sp. lycopersici, a tomato wilt pathogen, from the transformants generated by restriction enzyme-mediated integration (REMI) transformation. The gene tagged with the plasmid in the mutant was predicted to encode a protein of 321 amino acids and was designated FPD1. Homology search showed its partial similarity to a chloride conductance regulatory protein

Masato Kawabe; Kohei Mizutani; Takanobu Yoshida; Tohru Teraoka; Katsuyoshi Yoneyama; Isamu Yamaguchi; Tsutomu Arie

2004-01-01

78

Widespread Occurrence of Diverse Human Pathogenic Types of the Fungus Fusarium Detected in Plumbing Drains ? †  

PubMed Central

It has been proposed that plumbing systems might serve as a significant environmental reservoir of human-pathogenic isolates of Fusarium. We tested this hypothesis by performing the first extensive multilocus sequence typing (MLST) survey of plumbing drain-associated Fusarium isolates and comparing the diversity observed to the known diversity of clinical Fusarium isolates. We sampled 471 drains, mostly in bathroom sinks, from 131 buildings in the United States using a swabbing method. We found that 66% of sinks and 80% of buildings surveyed yielded at least one Fusarium culture. A total of 297 isolates of Fusarium collected were subjected to MLST to identify the phylogenetic species and sequence types (STs) of these isolates. Our survey revealed that the six most common STs in sinks were identical to the six most frequently associated with human infections. We speculate that the most prevalent STs, by virtue of their ability to form and grow in biofilms, are well adapted to plumbing systems. Six major Fusarium STs were frequently isolated from plumbing drains within a broad geographic area and were identical to STs frequently associated with human infections.

Short, Dylan P. G.; O'Donnell, Kerry; Zhang, Ning; Juba, Jean H.; Geiser, David M.

2011-01-01

79

Galleria mellonella as model host for the trans-kingdom pathogen Fusarium oxysporum.  

PubMed

Fusarium oxysporum, the causal agent of vascular wilt disease, affects a wide range of plant species and can produce disseminated infections in humans. F. oxysporum f. sp. lycopersici isolate FGSC 9935 causes disease both on tomato plants and immunodepressed mice, making it an ideal model for the comparative analysis of fungal virulence on plant and animal hosts. Here we tested the ability of FGSC 9935 to cause disease in the greater wax moth Galleria mellonella, an invertebrate model host that is widely used for the study of microbial human pathogens. Injection of living but not of heat-killed microconidia into the hemocoel of G. mellonella larvae resulted in dose-dependent killing both at 30°C and at 37°C. Fluorescence microscopy of larvae inoculated with a F. oxysporum transformant expressing GFP revealed hyphal proliferation within the hemocoel, interaction with G. mellonella hemocytes, and colonization of the killed insects by the fungus. Fungal gene knockout mutants previously tested in the tomato and immunodepressed mouse systems displayed a good correlation in virulence between the Galleria and the mouse model. Thus, Galleria represents a useful non-vertebrate infection model for studying virulence mechanisms of F. oxysporum on animal hosts. PMID:21907298

Navarro-Velasco, Gesabel Y; Prados-Rosales, Rafael C; Ortíz-Urquiza, Almudena; Quesada-Moraga, Enrique; Di Pietro, Antonio

2011-12-01

80

Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in Arabidopsis.  

PubMed

Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including the model plant Arabidopsis thaliana. Currently, very little is known about the molecular or physiological processes that are activated in the host during infection and the roles these processes play in resistance and susceptibility to F. oxysporum. In this study, we analyzed global gene expression profiles of F. oxysporum-infected Arabidopsis plants. Genes involved in jasmonate biosynthesis as well as jasmonate-dependent defense were coordinately induced by F. oxysporum. Similarly, tryptophan pathway genes, including those involved in both indole-glucosinolate and auxin biosynthesis, were upregulated in both the leaves and the roots of inoculated plants. Analysis of plants expressing the DR5:GUS construct suggested that root auxin homeostasis was altered during F. oxysporum infection. However, Arabidopsis mutants with altered auxin and tryptophan-derived metabolites such as indole-glucosinolates and camalexin did not show an altered resistance to this pathogen. In contrast, several auxin-signaling mutants were more resistant to F. oxysporum. Chemical or genetic alteration of polar auxin transport also conferred increased pathogen resistance. Our results suggest that, similarly to many other pathogenic and nonpathogenic or beneficial soil organisms, F. oxysporum requires components of auxin signaling and transport to colonize the plant more effectively. Potential mechanisms of auxin signaling and transport-mediated F. oxysporum susceptibility are discussed. PMID:21281113

Kidd, Brendan N; Kadoo, Narendra Y; Dombrecht, Bruno; Tekeoglu, Mücella; Gardiner, Donald M; Thatcher, Louise F; Aitken, Elizabeth A B; Schenk, Peer M; Manners, John M; Kazan, Kemal

2011-06-01

81

Plant Colonization by the Vascular Wilt Fungus Fusarium oxysporum Requires FOW1, a Gene Encoding a Mitochondrial Protein  

Microsoft Academic Search

The soil-borne fungus Fusarium oxysporum causes vascular wilts of a wide variety of plant species by directly pene- trating roots and colonizing the vascular tissue. The pathogenicity mutant B60 of the melon wilt pathogen F. oxy- sporum f. sp. melonis was isolated previously by restriction enzyme-mediated DNA integration mutagenesis. Molecular analysis of B60 identified the affected gene, designated FOW1 ,

Iori Inoue; Fumio Namiki; Takashi Tsuge

2002-01-01

82

Spatial distribution and temporal development of fusarium crown and root rot of tomato and pathogen dissemination in field soil.  

PubMed

ABSTRACT The spatial distribution and temporal development of tomato crown and root rot, caused by Fusarium oxysporum f. sp. radicis-lycopersici, were studied in naturally infested fields in 1996 and 1997. Disease progression fit a logistic model better than a monomolecular one. Geostatistical analyses and semivariogram calculations revealed that the disease spreads from infected plants to a distance of 1.1 to 4.4 m during the growing season. By using a chlorate-resistant nitrate nonutilizing (nit) mutant of F. oxysporum f. sp. radicis-lycopersici as a "tagged" inoculum, the pathogen was found to spread from one plant to the next via infection of the roots. The pathogen spread to up to four plants (2.0 m) on either side of the inoculated focus plant. Root colonization by the nit mutant showed a decreasing gradient from the site of inoculation to both sides of the inoculated plant. Simulation experiments in the greenhouse further established that this soilborne pathogen can spread from root to root during the growing season. These findings suggest a polycyclic nature of F. oxysporum f. sp. radicis-lycopersici, a deviation from the monocyclic nature of many nonzoosporic soilborne pathogens. PMID:18944713

Rekah, Y; Shtienberg, D; Katan, J

1999-09-01

83

Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt.  

PubMed

Plant defensins are small cysteine-rich peptides which belong to a group of pathogenasis related defense mechanism proteins. The proteins inhibit the growth of a broad range of microbes and are highly stable under extreme environmental stresses. Tomato cultivation is affected by fungal disease such as Fusarium wilt. In order to overcome fungal damages, transgenic tomato plants expressing the Medicago sativa defensin gene MsDef1 under the control of the CaMV 35S promoter were developed. The Fusarium-susceptible tomato (Lycobersicum esculentum Mill) cultivar CastleRock was used for transformation to acquire fungal resistance. Hypocotyl with a part of cotyledon (hypocotyledonary) for young tomato seedlings were used as an explant material and transformation was performed using the biolistic delivery system. Bombarded shoots were selected on regeneration medium supplemented with hygromycin and suitable concentrations of BA, zeatin ripozide and AgNO(3). Putative transgenic plantlets of T(0) were confirmed by PCR analysis using primers specific for the transgene and the transformation frequency obtained was 52.3%. Transformation and transcription of transgenes were confirmed in T(1) by PCR, Southern hybridizations, and reverse-transcription PCR (RT-PCR). The copy numbers of integrated transgene into tomato genome ranged between 1-3 copies. Greenhouse bioassay was performed on the transgenic T(1) and T(2) young seedlings and non-transgenic controls by challenging with a vigorous isolate of the fungal pathogen Fusarium oxysporum f. sp. Lycopersici. The level of fungal infectivity was determined using RT-PCR with tomatinase specific primers. Transgenic lines were more resistant to infection by fusarium than the control plants. These results indicated that overexpressing defensins in transgenic plants confer resistance to fungal pathogens. PMID:21844692

Abdallah, Naglaa A; Shah, Dilip; Abbas, Dina; Madkour, Magdy

2010-01-01

84

Gene expression in Fusarium graminearum grown on plant cell wall  

Microsoft Academic Search

Fusarium graminearum is a phytopathogenic filamentous fungus attacking a wide range of plants including Humulus lupulus (hop). Transcriptional analysis of F. graminearum grown on minimal media containing hop cell wall or glucose as the sole carbon source was performed by applying a highly stringent method combining microarrays and a subtracted cDNA library. In addition to genes coding for various cell

Raphaël Carapito; Didier Hatsch; Sonja Vorwerk; Elizabet Petkovski; Jean-Marc Jeltsch; Vincent Phalip

2008-01-01

85

Expression of rice thaumatin-like protein gene in transgenic banana plants enhances resistance to fusarium wilt.  

PubMed

The possibility of controlling Fusarium wilt--caused by Fusarium oxysporum sp. cubensec (race 4)--was investigated by genetic engineering of banana plants for constitutive expression of rice thaumatin-like protein (tlp) gene. Transgene was introduced to cauliflower-like bodies' cluster, induced from meristemic parts of male inflorescences, using particle bombardment with plasmid carrying a rice tlp gene driving by the CaMV 35S promoter. Hygromycin B was used as the selection reagent. The presence and integration of rice tlp gene in genomic DNA confirmed by PCR and Southern blot analyses. RT-PCR revealed the expression of transgene in leaf and root tissues in transformants. Bioassay of transgenic banana plants challenged with Fusarium wilt pathogen showed that expression of TLP enhanced resistance to F. oxysporum sp. cubensec (race 4) compared to control plants. PMID:22183565

Mahdavi, F; Sariah, M; Maziah, M

2012-02-01

86

Fungal microbiota from rain water and pathogenicity of Fusarium species isolated from atmospheric dust and rainfall dust.  

PubMed

In order to determine the presence of Fusarium spp. in atmospheric dust and rainfall dust, samples were collected during September 2007, and July, August, and October 2008. The results reveal the prevalence of airborne Fusarium species coming from the atmosphere of the South East coast of Spain. Five different Fusarium species were isolated from the settling dust: Fusarium oxysporum, F. solani, F. equiseti, F. dimerum, and F. proliferatum. Moreover, rainwater samples were obtained during significant rainfall events in January and February 2009. Using the dilution-plate method, 12 fungal genera were identified from these rainwater samples. Specific analyses of the rainwater revealed the presence of three species of Fusarium: F. oxysporum, F. proliferatum and F. equiseti. A total of 57 isolates of Fusarium spp. obtained from both rainwater and atmospheric rainfall dust sampling were inoculated onto melon (Cucumis melo L.) cv. Piñonet and tomato (Lycopersicon esculentum Mill.) cv. San Pedro. These species were chosen because they are the main herbaceous crops in Almeria province. The results presented in this work indicate strongly that spores or propagules of Fusarium are able to cross the continental barrier carried by winds from the Sahara (Africa) to crop or coastal lands in Europe. Results show differences in the pathogenicity of the isolates tested. Both hosts showed root rot when inoculated with different species of Fusarium, although fresh weight measurements did not bring any information about the pathogenicity. The findings presented above are strong indications that long-distance transmission of Fusarium propagules may occur. Diseases caused by species of Fusarium are common in these areas. They were in the past, and are still today, a problem for greenhouses crops in Almería, and many species have been listed as pathogens on agricultural crops in this region. Saharan air masses dominate the Mediterranean regions. The evidence of long distance dispersal of Fusarium spp. by atmospheric dust and rainwater together with their proved pathogenicity must be taken into account in epidemiological studies. PMID:20820862

Palmero, D; Rodríguez, J M; de Cara, M; Camacho, F; Iglesias, C; Tello, J C

2011-01-01

87

Lipolytic system of the tomato pathogen Fusarium oxysporum f. sp. lycopersici.  

PubMed

The lipolytic profile of Fusarium oxysporum f. sp lycopersici was studied by in silico search and biochemical enzyme activity analyses. Twenty-five structural secreted lipases were predicted based on the conserved pentapeptide Gly-X-Ser-X-Gly-, characteristic of fungal lipases, and secretion signal sequences. Moreover, a predicted lipase regulatory gene was identified in addition to the previously characterized ctf1. The transcription profile of thirteen lipase genes during tomato plant colonization revealed that lip1, lip3, and lip22 were highly induced between 21 and 96 h after inoculation. Deletion mutants in five lipase genes (lip1, lip2, lip3, lip5, and lip22) and in the regulatory genes ctf1 and ctf2 as well as a ?ctf1?ctf2 double mutant were generated. Quantitative reverse transcription-polymerase chain reaction expression analyses of structural lipase genes in the ?ctf1, ?ctf2, and ?ctf1?ctf2 mutants indicated the existence of a complex lipase regulation network in F. oxysporum. The reduction of total lipase activity, as well as the severely reduced virulence of the ?ctf1, ?ctf2, and ?ctf1?ctf2 mutants, provides evidence for an important role of the lipolytic system of this fungus in pathogenicity. PMID:23718123

Bravo-Ruiz, Gustavo; Ruiz-Roldán, Carmen; Roncero, M Isabel G

2013-09-01

88

Pathogenicity of some Fusarium species associated with superficial blemishes of potato tubers.  

PubMed

As an organ for reserve and propagation, the tuber grows underground and is in contact with soil-borne microorganisms, making it potentially exposed to blemishes. Therefore, the objective of this study was the possibility of using some modern methods of molecular diagnostics and detection of the presence of fungal contaminants in potato blemishes in Al-Qasim (Saudi Arabia). Polygonal lesions were the most observed blemish type in the collected samples. One hundred and sixty isolates were recovered from different types of blemishes obtained in this study. Fusarium, Penicillium, Ilyonectria, Alternaria and Rhizoctonia were the most common genera collected from different blemish types. Using ITS region sequencing, all collected fungi were identified at the species level. All Fusarium strains collected during this study were used to detect their pathogenicity against potato tubers. This is the first comprehensive report on the identification of major pathogenic fungi isolated from potato tuber blemishes in Saudi Arabia. PMID:23829078

Gashgari, Rukaia M; Gherbawy, Youssuf A

2013-01-01

89

Identification and pathogenic characterization of endophytic Fusarium species from cowpea seeds.  

PubMed

Isolates of Fusarium were obtained and identified from seeds of cowpea, Vigna unguiculata (L.) Walp., by means of blotter tests and slide cultures. Species were differentiated according to the morphology of the macroconidia, microconidia and their arrangement in chains or false heads, the size and type of conidiophore, and the presence or absence of chlamydospores. The species were identified as F. semitectum, F. equiseti, F. oxysporum, F. solani, F. anthophilum, F. sporotrichioides, F. moniliforme, and Fusarium sp. Among the species, F. semitectum was the most frequently detected. None of these species were pathogenic when inoculated in susceptible cowpea cultivar (BR 17-Gurgueia). But, an isolate of F. oxysporum f. sp. tracheiphilum used as a standard of comparison for pathogenicity (control) induced symptoms of yellowing, vascular wilting, and death of a susceptible cowpea cultivar under the same environmental conditions. PMID:15750735

Rodrigues, A A C; Menezes, Maria

2005-01-01

90

Trichoderma harzianum and Glomus intraradices modify the hormone disruption induced by Fusarium oxysporum infection in melon plants.  

PubMed

The plant hormones salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA) are known to play crucial roles in plant disease and pest resistance. Changes in the concentrations of these plant hormones in melon plant shoots, as a consequence of the interaction between the plant, the pathogen Fusarium oxysporum, the antagonistic microorganism Trichoderma harzianum, and the arbuscular mycorrhizal fungus Glomus intraradices were investigated. Attack by F. oxysporum activated a defensive response in the plant, mediated by the plant hormones SA, JA, ET, and ABA, similar to the one produced by T. harzianum. When inoculated with the pathogen, both T. harzianum and G. intraradices attenuated the plant response mediated by the hormones ABA and ET elicited by the pathogen attack. T. harzianum was also able to attenuate the SA-mediated response. In the three-way interaction (F. oxysporum-T. harzianum-G. intraradices), although a synergistic effect in reducing disease incidence was found, no synergistic effect on the modulation of the hormone disruption induced by the pathogen was observed. These results suggest that the induction of plant basal resistance and the attenuation of the hormonal disruption caused by F. oxysporum are both mechanisms by which T. harzianum can control Fusarium wilt in melon plants; while the mechanisms involving G. intraradices seem to be independent of SA and JA signaling. PMID:20528186

Martínez-Medina, Ainhoa; Pascual, Jose Antonio; Pérez-Alfocea, Francisco; Albacete, Alfonso; Roldán, Antonio

2010-07-01

91

Pathogenic, Genetic and Molecular Characterisation of Fusarium oxysporum f.sp. lilii  

Microsoft Academic Search

Isolates of Fusarium oxysporum from lily were screened for pathogenicity, vegetative compatibility and DNA restriction fragment length polymorphisms, and compared to reference isolates of F. oxysporum f.sp. gladioli and F. oxysporum f.sp. tulipae to justify the distinction of F. oxysporum f.sp. lilii. Twenty-four isolates from different locations in The Netherlands (18 isolates), Italy (4 isolates), Poland and the United States

R. P. Baayen; M. G. Förch; C. Waalwijk; P. J. M. Bonants; H. J. M. Löffler; E. J. A. Roebroeck

1998-01-01

92

Comparative study of the pathogenicity of seabed isolates of Fusarium equiseti and the effect of the composition of the mineral salt medium and temperature on mycelial growth  

PubMed Central

The pathogenicity of seven strains of Fusarium equiseti isolated from seabed soil was evaluated on different host plants showing pre and post emergence damage. Radial growth of 27 strains was measured on culture media previously adjusted to different osmotic potentials with either KCl or NaCl (-1.50 to -144.54 bars) at 15°, 25° and 35° C. Significant differences and interactive effects were observed in the response of mycelia to osmotic potential and temperature.

Palmero, D.; de Cara, M.; Iglesias, C.; Galvez, L.; Tello, J.C.

2011-01-01

93

The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum  

PubMed Central

The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum.

Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

2013-01-01

94

The membrane mucin Msb2 regulates invasive growth and plant infection in Fusarium oxysporum.  

PubMed

Fungal pathogenicity in plants requires a conserved mitogen-activated protein kinase (MAPK) cascade homologous to the yeast filamentous growth pathway. How this signaling cascade is activated during infection remains poorly understood. In the soil-borne vascular wilt fungus Fusarium oxysporum, the orthologous MAPK Fmk1 (Fusarium MAPK1) is essential for root penetration and pathogenicity in tomato (Solanum lycopersicum) plants. Here, we show that Msb2, a highly glycosylated transmembrane protein, is required for surface-induced phosphorylation of Fmk1 and contributes to a subset of Fmk1-regulated functions related to invasive growth and virulence. Mutants lacking Msb2 share characteristic phenotypes with the ?fmk1 mutant, including defects in cellophane invasion, penetration of the root surface, and induction of vascular wilt symptoms in tomato plants. In contrast with ?fmk1, ?msb2 mutants were hypersensitive to cell wall targeting compounds, a phenotype that was exacerbated in a ?msb2 ?fmk1 double mutant. These results suggest that the membrane mucin Msb2 promotes invasive growth and plant infection upstream of Fmk1 while contributing to cell integrity through a distinct pathway. PMID:21441438

Pérez-Nadales, Elena; Di Pietro, Antonio

2011-03-01

95

Comparative pathogenicity of Fusarium graminearum isolates from China revealed by wheat coleoptile and floret inoculations.  

PubMed

Fusarium head blight (FHB) or scab caused by Fusarium species is an economically important disease on small grain cereal crops worldwide. Accurate assessments of the pathogenicity of fungal isolates is a key obstacle toward a better understanding of the Fusarium-wheat scab system. In this study, a new laboratory method for inoculation of wheat coleoptiles was developed, which consists of cutting off the coleoptile apex, covering the cut apex with a piece of filter paper soaked in conidial suspension, and measuring the lengths of brown lesions 7 days post inoculation. After coleoptile inoculation, distinct brown lesions in the diseased stems were observed, in which the presence of the fungus was verified by PCR amplification with F. graminearum Schwable-specific primers. Coleoptile inoculation of six wheat varieties indicated that a highly susceptible wheat variety was more suitable as a differentiating host for the pathogenicity assay. Analysis of the coleoptiles inoculated with a set of 58 different isolates of F. graminearum showed a significant difference in the lengths of the lesions, forming the basis by which pathogenicity of the isolates was assessed. Field inoculation of florets of three wheat varieties over 2 years revealed significant differences in pathogenicity among the 58 isolates, and that the highly resistant and highly susceptible wheat varieties were more appropriate and stable for pathogenicity assessment in field trials. Comparative analyses of eight inoculation experiments of wheat with 58 F. graminearum isolates showed significant direct linear correlations (P<0.001) between coleoptile and floret inoculations. These results indicate that the wheat coleoptile inoculation is a simple, rapid and reliable method for pathogenicity studies of F. graminearum in wheat. PMID:16160772

Wu, A-B; Li, H-P; Zhao, C-S; Liao, Y-C

2005-08-01

96

FoSTUA, encoding a basic helix-loop-helix protein, differentially regulates development of three kinds of asexual spores, macroconidia, microconidia, and chlamydospores, in the fungal plant pathogen Fusarium oxysporum.  

PubMed

The soil-borne fungus Fusarium oxysporum causes vascular wilt of a wide variety of plant species. F. oxysporum produces three kinds of asexual spores, macroconidia, microconidia, and chlamydospores. Falcate macroconidia are formed generally from terminal phialides on conidiophores and rarely from intercalary phialides on hyphae. Ellipsoidal microconidia are formed from intercalary phialides on hyphae. Globose chlamydospores with thick walls are developed by the modification of hyphal and conidial cells. Here we describe FoSTUA of F. oxysporum, which differentially regulates the development of macroconidia, microconidia, and chlamydospores. FoSTUA encodes a basic helix-loop-helix protein with similarity to Aspergillus nidulans StuA, which has been identified as a transcriptional regulator controlling conidiation. Nuclear localization of FoStuA was verified by using strains expressing FoStuA-green fluorescent protein fusions. The FoSTUA-targeted mutants exhibited normal microconidium formation in cultures. However, the mutants lacked conidiophores and produced macroconidia at low frequencies only from intercalary phialides. Thus, FoSTUA appears to be necessary to induce conidiophore differentiation. In contrast, chlamydospore formation was dramatically promoted in the mutants. These data demonstrate that FoStuA is a positive regulator and a negative regulator for the development of macroconidia and chlamydospores, respectively, and is dispensable for microconidium formation in cultures. The disease-causing ability of F. oxysporum was not affected by mutations in FoSTUA. However, the mutants produced markedly fewer macroconidia and microconidia in infected plants than the wild type. These results suggest that FoSTUA also has an important role for microconidium formation specifically in infected plants. PMID:15590816

Ohara, Toshiaki; Tsuge, Takashi

2004-12-01

97

Induced resistance in tomato plants by IAA against Fusarium oxysporum lycopersici.  

PubMed

The phytohormone IAA (indol-3-acetic acid) was tested in vitro on growth of tomato wilt pathogen Fusarium oxysporum lycopersici. The hormone reduced spore germination, mycelial dry weight and protein content. Such reduction was matched with the elevation in the hormone concentration. The in vivo application of IAA to soil of the uninoculated plants (controls) improved growth and yielded longer shoot and root, particularly at low concentrations. Moreover, the hormone could prevent completely any chance for disease incidence by soil pathogens. Presence of IAA in soil of inoculated plants not only reduced the infection rate but also increased plant growth, causing that they appeared healthy and normal. Disease suppression in tomato plants, exerted by application of IAA, was achieved through either increasing plant growth, exerting a direct harmful effect on the target pathogen and/or inducing resistance in host tissue. The induced resistance was correlated with induction of certain secondary metabolites which may have a role in increasing tolerance in tomato plants to the pathogen. PMID:15478356

Sharaf, Eman F; Farrag, Ayman A

2004-01-01

98

Colonization of Flax Roots and Early Physiological Responses of Flax Cells Inoculated with Pathogenic and Nonpathogenic Strains of Fusarium oxysporum  

PubMed Central

Fusarium oxysporum includes nonpathogenic strains and pathogenic strains that can induce necrosis or tracheomycosis in plants. The objective of this study was to compare the abilities of a pathogenic strain (Foln3) and a nonpathogenic strain (Fo47) to colonize flax roots and to induce early physiological responses in flax cell culture suspensions. Both strains colonized the outer cortex of the root; however, plant defense reactions, i.e., the presence of wall appositions, osmiophilic material, and collapsed cells, were less frequent and less intense in a root colonized by Foln3 than by Fo47. Early physiological responses were measured in flax cell suspensions confronted with germinated microconidia of both strains. Both pathogenic (Foln3) and nonpathogenic strains (Fo47) triggered transient H2O2 production in the first few minutes of the interaction, but the nonpathogenic strain also induced a second burst 3 h postinoculation. Ca2+ influx was more intense in cells inoculated with Fo47 than in cells inoculated with Foln3. Similarly, alkalinization of the extracellular medium was higher with Fo47 than with Foln3. Inoculation of the fungi into flax cell suspensions induced cell death 10 to 20 h postinoculation, with a higher percentage of dead cells observed with Fo47 than with Foln3 beginning at 14 h. This is the first report showing that early physiological responses of flax cells can be used to distinguish pathogenic and nonpathogenic strains of the soil-borne fungus F. oxysporum.

Olivain, Chantal; Trouvelot, Sophie; Binet, Marie-Noelle; Cordier, Christelle; Pugin, Alain; Alabouvette, Claude

2003-01-01

99

Colonization of flax roots and early physiological responses of flax cells inoculated with pathogenic and nonpathogenic strains of Fusarium oxysporum.  

PubMed

Fusarium oxysporum includes nonpathogenic strains and pathogenic strains that can induce necrosis or tracheomycosis in plants. The objective of this study was to compare the abilities of a pathogenic strain (Foln3) and a nonpathogenic strain (Fo47) to colonize flax roots and to induce early physiological responses in flax cell culture suspensions. Both strains colonized the outer cortex of the root; however, plant defense reactions, i.e., the presence of wall appositions, osmiophilic material, and collapsed cells, were less frequent and less intense in a root colonized by Foln3 than by Fo47. Early physiological responses were measured in flax cell suspensions confronted with germinated microconidia of both strains. Both pathogenic (Foln3) and nonpathogenic strains (Fo47) triggered transient H(2)O(2) production in the first few minutes of the interaction, but the nonpathogenic strain also induced a second burst 3 h postinoculation. Ca(2+) influx was more intense in cells inoculated with Fo47 than in cells inoculated with Foln3. Similarly, alkalinization of the extracellular medium was higher with Fo47 than with Foln3. Inoculation of the fungi into flax cell suspensions induced cell death 10 to 20 h postinoculation, with a higher percentage of dead cells observed with Fo47 than with Foln3 beginning at 14 h. This is the first report showing that early physiological responses of flax cells can be used to distinguish pathogenic and nonpathogenic strains of the soil-borne fungus F. oxysporum. PMID:12957934

Olivain, Chantal; Trouvelot, Sophie; Binet, Marie-Noëlle; Cordier, Christelle; Pugin, Alain; Alabouvette, Claude

2003-09-01

100

The Genome Sequence of the Fungal Pathogen Fusarium virguliforme That Causes Sudden Death Syndrome in Soybean  

PubMed Central

Fusarium virguliforme causes sudden death syndrome (SDS) of soybean, a disease of serious concern throughout most of the soybean producing regions of the world. Despite the global importance, little is known about the pathogenesis mechanisms of F. virguliforme. Thus, we applied Next-Generation DNA Sequencing to reveal the draft F. virguliforme genome sequence and identified putative pathogenicity genes to facilitate discovering the mechanisms used by the pathogen to cause this disease. Methodology/Principal Findings We have generated the draft genome sequence of F. virguliforme by conducting whole-genome shotgun sequencing on a 454 GS-FLX Titanium sequencer. Initially, single-end reads of a 400-bp shotgun library were assembled using the PCAP program. Paired end sequences from 3 and 20 Kb DNA fragments and approximately 100 Kb inserts of 1,400 BAC clones were used to generate the assembled genome. The assembled genome sequence was 51 Mb. The N50 scaffold number was 11 with an N50 Scaffold length of 1,263 Kb. The AUGUSTUS gene prediction program predicted 14,845 putative genes, which were annotated with Pfam and GO databases. Gene distributions were uniform in all but one of the major scaffolds. Phylogenic analyses revealed that F. virguliforme was closely related to the pea pathogen, Nectria haematococca. Of the 14,845 F. virguliforme genes, 11,043 were conserved among five Fusarium species: F. virguliforme, F. graminearum, F. verticillioides, F. oxysporum and N. haematococca; and 1,332 F. virguliforme-specific genes, which may include pathogenicity genes. Additionally, searches for candidate F. virguliforme pathogenicity genes using gene sequences of the pathogen-host interaction database identified 358 genes. Conclusions The F. virguliforme genome sequence and putative pathogenicity genes presented here will facilitate identification of pathogenicity mechanisms involved in SDS development. Together, these resources will expedite our efforts towards discovering pathogenicity mechanisms in F. virguliforme. This will ultimately lead to improvement of SDS resistance in soybean.

Srivastava, Subodh K.; Huang, Xiaoqiu; Brar, Hargeet K.; Fakhoury, Ahmad M.; Bluhm, Burton H.; Bhattacharyya, Madan K.

2014-01-01

101

Proteomics of Plant Pathogenic Fungi  

PubMed Central

Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection.

Gonzalez-Fernandez, Raquel; Prats, Elena; Jorrin-Novo, Jesus V.

2010-01-01

102

Proteins from Plant Cell Walls Inhibit Polygalacturonases Secreted by Plant Pathogens  

Microsoft Academic Search

Proteins extracted from the cell walls of Red Kidney bean hypocotyls, tomato stems, and suspension-cultured sycamore cells can completely inhibit the activity of the polygalacturonases (polygalacturonide hydrolases, EC 3.2.1.15) secreted by the fungal plant pathogens Colletotrichum lindemuthianum, Fusarium oxysporum, and Sclerotium rolfsii. The inhibitor of the C. lindemuthianum polygalacturonase, purified 560-fold from bean hypocotyl extracts, is 40 times as effective

Peter Albersheim; Anne J. Anderson

1971-01-01

103

Isolating Fungal Pathogens from a Dynamic Disease Outbreak in a Native Plant Population to Establish Plant-Pathogen Bioassays for the Ecological Model Plant Nicotiana attenuata  

PubMed Central

The wild tobacco species Nicotiana attenuata has been intensively used as a model plant to study its interaction with insect herbivores and pollinators in nature, however very little is known about its native pathogen community. We describe a fungal disease outbreak in a native N. attenuata population comprising 873 plants growing in an area of about 1500 m2. The population was divided into 14 subpopulations and disease symptom development in the subpopulations was monitored for 16 days, revealing a waxing and waning of visible disease symptoms with some diseased plants recovering fully. Native fungal N. attenuata pathogens were isolated from diseased plants, characterized genetically, chemotaxonomically and morphologically, revealing several isolates of the ascomycete genera Fusarium and Alternaria, that differed in the type and strength of the disease symptoms they caused in bioassays on either detached leaves or intact soil-grown plants. These isolates and the bioassays will empower the study of N. attenuata-pathogen interactions in a realistic ecological context.

Schuck, Stefan; Baldwin, Ian T.

2014-01-01

104

Trichoderma asperellum Strain T34 Controls Fusarium Wilt Disease in Tomato Plants in Soilless Culture Through Competition for Iron  

Microsoft Academic Search

Trichoderma asperellum strain T34 has been reported to control the disease caused by Fusarium oxysporum f.sp. lycopersici (Fol) on tomato plants. To study the importance of iron concentration in the growth media for the activity and competitiveness\\u000a of T34 and the pathogen, we tested four iron concentrations in the nutrient solution [1, 10, 100, and 1000?µM provided as\\u000a EDTA\\/Fe(III)] in

Guillem Segarra; Eva Casanova; Manuel Avilés; Isabel Trillas

2010-01-01

105

Fusarium graminearum exploits ethylene signalling to colonize dicotyledonous and monocotyledonous plants.  

PubMed

Ethylene signalling affects the resistance of dicotyledonous plant species to diverse pathogens but almost nothing is known about the role of this pathway in monocotyledonous crop species. Fusarium graminearum causes Fusarium head blight (FHB) of cereals, contaminating grain with mycotoxins such as deoxynivalenol (DON). Very little is known about the mechanisms of resistance/susceptibility to this disease. Genetic and chemical genetic studies were used to examine the influence of ethylene (ET) signalling and perception on infection of dicotyledonous (Arabidopsis) and monocotyledonous (wheat and barley) species by F. graminearum. Arabidopsis mutants with reduced ET signalling or perception were more resistant to F. graminearum than wild-type, while mutants with enhanced ET production were more susceptible. These findings were confirmed by chemical genetic studies of Arabidopsis, wheat and barley. Attenuation of expression of EIN2 in wheat, a gene encoding a core component of ethylene signalling, reduced both disease symptoms and DON contamination of grain. Fusarium graminearum appears to exploit ethylene signalling in both monocotyledonous and dicotyledonous species. This demonstration of translation from model to crop species provides a foundation for improving resistance of cereal crops to FHB through identification of allelic variation for components of the ethylene-signalling pathway. PMID:19383094

Chen, X; Steed, A; Travella, S; Keller, B; Nicholson, P

2009-06-01

106

Disease Development Following Infection of Tomato and Basil Foliage by Airborne Conidia of the Soilborne Pathogens Fusarium oxysporum f. sp. radicis-lycopersici and F. oxysporum f. sp. basilici.  

PubMed

ABSTRACT Fusarium oxysporum f. sp. radicis-lycopersici, the causal agent of Fusarium crown and root rot of tomato, and F. oxysporum f. sp. basilici, the causal agent of Fusarium wilt in basil, are soilborne pathogens capable of producing conspicuous masses of macroconidia along the stem. The role of the airborne propagules in the epidemics of the disease in tomato plants was studied. In the field, airborne propagules of F. oxysporum f. sp. radicis-lycopersici were trapped with a selective medium and their prevalence was determined. Plants grown in both covered and uncovered pots, detached from the field soil, and exposed to natural aerial inoculum developed typical symptoms (82 to 87% diseased plants). The distribution of inoculum in the growth medium in the pots also indicated the occurrence of foliage infection. In greenhouse, foliage and root inoculations were carried out with both tomato and basil and their respective pathogens. Temperature and duration of high relative humidity affected rate of colonization of tomato, but not of basil, by the respective pathogens. Disease incidence in foliage-inoculated plants reached 75 to 100%. In these plants, downward movement of the pathogens from the foliage to the crown and roots was observed. Wounding enhanced pathogen invasion and establishment in the foliage-inoculated plants. The sporulation of the two pathogens on stems, aerial dissemination, and foliage infection raise the need for foliage protection in addition to soil disinfestation, in the framework of an integrated disease management program. PMID:18943372

Rekah, Y; Shtienberg, D; Katan, J

2000-12-01

107

The Top 10 fungal pathogens in molecular plant pathology.  

PubMed

The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resumé of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10. PMID:22471698

Dean, Ralph; Van Kan, Jan A L; Pretorius, Zacharias A; Hammond-Kosack, Kim E; Di Pietro, Antonio; Spanu, Pietro D; Rudd, Jason J; Dickman, Marty; Kahmann, Regine; Ellis, Jeff; Foster, Gary D

2012-05-01

108

Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species.  

PubMed

The plant hormone indole-3-acetic acid (IAA) can be synthesized from tryptophan via the intermediate indole-3-acetamide (IAM). The two genes, IaaM (encoding tryptophan monooxygenase) and IaaH (encoding indole-3-acetamide hydrolase) that constitute the IAM pathway have been described in plant-associated bacteria. We have identified putative homologs of the bacterial IaaM and IaaH genes in four Fusarium species -Fusarium proliferatum, Fusarium verticillioides, Fusarium fujikuroi, and Fusarium oxysporum. In all four species the two genes are organized next to each other in a head to head orientation and are separated by a short non-coding region. However, the pathway is fully functional only in the orchid endophytic strain F. proliferatum ET1, which produces significant amounts of IAM and IAA. Minor amounts of IAM are produced by the corn pathogen F. verticillioides strain 149, while in the two other species, the rice pathogen F. fujikuroi strain m567 and the tomato pathogen F. oxysporum f. sp. lycopersici strain 42-87 the IAM pathway is inactive. Deletion of the entire gene locus in F. proliferatum ET1 resulted in drastic reduction of IAA production. Conversely, transgenic strains of F. fujikuroi over-expressing the F. proliferatum IAM genes produced elevated levels of both IAM and IAA. Analysis of the intergenic promoter region in F. proliferatum showed that transcriptional activation in direction of the IaaH gene is about 3-fold stronger than in direction of the IaaM gene. The regulation of the IAM genes and the limiting factors of IAA production via the IAM pathway are discussed. PMID:22079545

Tsavkelova, Elena; Oeser, Birgitt; Oren-Young, Liat; Israeli, Maayan; Sasson, Yehezkel; Tudzynski, Bettina; Sharon, Amir

2012-01-01

109

Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot.  

PubMed

The soilborne fungus Fusarium oxysporum f. sp. radicis-lycopersici causes tomato foot and root rot (TFRR), which can be controlled by the addition of the nonpathogenic fungus F. oxysporum Fo47 to the soil. To improve our understanding of the interactions between the two Fusarium strains on tomato roots during biocontrol, the fungi were labeled using different autofluorescent proteins as markers and subsequently visualized using confocal laser scanning microscopy. The results were as follows. i) An at least 50-fold excess of Fo47over F. oxysporum f. sp. radicis-lycopersici was required to obtain control of TFRR. ii) When seedlings were planted in sand infested with spores of a single fungus, Fo47 hyphae attached to the root earlier than those of F. oxysporum f. sp. radicis-lycopersici. iii) Subsequent root colonization by F. oxysporum f. sp. radicis-lycopersici was faster and to a larger extent than that by Fo47. iv) Under disease-controlling conditions, colonization of tomato roots by the pathogenic fungus was significantly reduced. v) When the inoculum concentration of Fo47 was increased, root colonization by the pathogen was arrested at the stage of initial attachment to the root. vi) The percentage of spores of Fo47 that germinates in tomato root exudate in vitro is higher than that of the pathogen F. oxysporum f. sp. radicis-lycopersici. Based on these results, the mechanisms by which Fo47 controls TFRR are discussed in terms of i) rate of spore germination and competition for nutrients before the two fungi reach the rhizoplane; ii) competition for initial sites of attachment, intercellular junctions, and nutrients on the tomato root surface; and iii) inducing systemic resistance. PMID:16042017

Bolwerk, Annouschka; Lagopodi, Anastasia L; Lugtenberg, Ben J J; Bloemberg, Guido V

2005-07-01

110

The Endless Race Between Plant and Pathogen  

NSDL National Science Digital Library

This article introduces a special issue on plant pathology, including new insights into the evolutionary forces driving plant-pathogen interactions, as well as the practical outcomes in terms of pathogen management.

Pamela Hines (AAAS;); Jean Marx (AAAS;)

2001-06-22

111

Detection of Fusarium wilt pathogens of Psidium guajava L. in soil using culture independent PCR (ciPCR).  

PubMed

Traditional culturing methods take a long time for identification of pathogenic isolates. A protocol has been developed for the detection of Fusarium from soil samples in the early stage of infection. Seventeen soil samples from different locations were collected before the onset of rains to find out the presence of Fusarium spp. population present in the soil of guava orchards and to correlate its presence with incidence of wilt. A PCR based method was developed for the molecular characterization of Fusarium using Fusarium spp. specific primer. DNA extracted by this method was free from protein and other contaminations and the yield was sufficient for PCR amplification. The primer developed in this study was amplifying ?230 bp in all infected samples while not in healthy soil. The specificity and sensitivity of primer were tested on several Fusarium spp. and found that this primer was amplifying 10(-6) dilution of the fungal DNA. The present study facilitates the rapid detection of Fusarium spp. from infected soil samples of guava collected from different agroclimatic regions in India. A rapid detection method for pathogens and a diagnostic assay for disease would facilitate an early detection of pathogen and lead to more effective control strategies. PMID:23961219

Mishra, Rupesh K; Pandey, Brajesh K; Muthukumar, M; Pathak, Neelam; Zeeshan, Mohammad

2013-01-01

112

Detection of Fusarium wilt pathogens of Psidium guajava L. in soil using culture independent PCR (ciPCR)  

PubMed Central

Traditional culturing methods take a long time for identification of pathogenic isolates. A protocol has been developed for the detection of Fusarium from soil samples in the early stage of infection. Seventeen soil samples from different locations were collected before the onset of rains to find out the presence of Fusarium spp. population present in the soil of guava orchards and to correlate its presence with incidence of wilt. A PCR based method was developed for the molecular characterization of Fusarium using Fusarium spp. specific primer. DNA extracted by this method was free from protein and other contaminations and the yield was sufficient for PCR amplification. The primer developed in this study was amplifying ?230 bp in all infected samples while not in healthy soil. The specificity and sensitivity of primer were tested on several Fusarium spp. and found that this primer was amplifying 10?6 dilution of the fungal DNA. The present study facilitates the rapid detection of Fusarium spp. from infected soil samples of guava collected from different agroclimatic regions in India. A rapid detection method for pathogens and a diagnostic assay for disease would facilitate an early detection of pathogen and lead to more effective control strategies.

Mishra, Rupesh K.; Pandey, Brajesh K.; Muthukumar, M.; Pathak, Neelam; Zeeshan, Mohammad

2012-01-01

113

Resistance in pepper plants induced by Fusarium oxysporum f. sp. lycopersici involves different defence-related genes.  

PubMed

Inoculation with Fusarium oxysporum f. sp. lycopersici (FOL) protects pepper plants from subsequent infection with Phytophthora capsici. In the present paper, the level of local and systemic protection achieved by plants induced with FOL was evaluated by quantifying the pathogen biomass and using real-time PCR. Differences in the amount of pathogen were found in stems and roots between FOL-treated and untreated plants, while pathogen biomass could not be detected in leaves of induced plants. Five defence-related genes coding for a PR-1 protein, a beta-1,3-glucanase, a chitinase, a peroxidase and a sesquiterpene cyclase were up-regulated 48 h after treatment in all the tissues studied, and maximal mRNAs levels were found in leaves. PMID:19121115

Silvar, C; Merino, F; Díaz, J

2009-01-01

114

Influence of plant root exudates, germ tube orientation and passive conidia transport on biological control of fusarium wilt by strains of nonpathogenic Fusarium oxysporum.  

PubMed

In earlier studies, biological control of Fusarium wilt of cucumber induced by Fusarium oxysporum f. sp. cucumerinum was demonstrated using nonpathogenic strains C5 and C14 of Fusarium oxysporum. Strain C14 induced resistance and competed for infection sites whether roots were wounded or intact, whereas strain C5 required wounds to achieve biocontrol. In the current work, additional attributes involved in enhanced resistance by nonpathogenic biocontrol agents strains to Fusarium wilt of cucumber and pea were further investigated. In pre-penetration assays, pathogenic formae specials exhibited a significantly higher percentage of spore germination in 4-day-old root exudates of cucumber and pea than nonpathogens. Also, strain C5 exhibited the lowest significant reduction in spore germination in contrast to strain C14 or control. One-day-old cucumber roots injected with strain C14 resulted in significant reduction in germ tube orientation towards the root surface, 48-96 h after inoculation with F. o. cucumerinum spores, whereas strain C5 induced significantly lower spore orientation of the pathogen and only at 72 and 96 h after inoculation. In post-penetration tests, passive transport of microconidia of pathogenic and nonpathogens in stems from base to apex were examined when severed plant roots were immersed in spore suspension. In repeated trials, strain C5, F. o. cucumerinum and F. o. pisi were consistently isolated from stem tissues of both cucumber and pea at increasing heights over a 17 days incubation period. Strain C14 however, was recovered at a maximum translocation distance of 4.6 cm at day 6 and later height of isolation significantly declined thereafter to 1.2 cm at day 17. In pea stem, the decline was even less. Significant induction of resistance to challenge inoculation by the pathogen in cucumber occurred 72 and 96 h after pre-inoculation with biocontrol agents. Nonetheless, strain C14 induced protection as early as 48 h and the maximum resistance was reached at 96 h. The presented data confirm the previous findings that attributes important for nonpathogenic fusaria to induce resistant are: rapid spore germination and orientation in response to root exudate; active root penetration and passive conidia transport in stem to initiate defence reaction without pathogenicity and enough lag period between induction and challenge inoculation. Strain C14 possesses all these qualifications and hence its ability to enhance host resistance is superior than strain C5. PMID:16482390

Mandeel, Qaher A

2006-03-01

115

Colonization of Tomato Root by Pathogenic and Nonpathogenic Fusarium oxysporum Strains Inoculated Together and Separately into the Soil  

PubMed Central

In soil, fungal colonization of plant roots has been traditionally studied by indirect methods such as microbial isolation that do not enable direct observation of infection sites or of interactions between fungal pathogens and their antagonists. Confocal laser scanning microscopy was used to visualize the colonization of tomato roots in heat-treated soil and to observe the interactions between a nonpathogenic strain, Fo47, and a pathogenic strain, Fol8, inoculated onto tomato roots in soil. When inoculated separately, both fungi colonized the entire root surface, with the exception of the apical zone. When both strains were introduced together, they both colonized the root surface and were observed at the same locations. When Fo47 was introduced at a higher concentration than Fol8, it colonized much of the root surface, but hyphae of Fol8 could still be observed at the same location on the root. There was no exclusion of the pathogenic strain by the presence of the nonpathogenic strain. These results are not consistent with the hypothesis that specific infection sites exist on the root for Fusarium oxysporum and instead support the hypothesis that competition occurs for nutrients rather than for infection sites.

Olivain, Chantal; Humbert, Claude; Nahalkova, Jarmila; Fatehi, Jamshid; L'Haridon, Floriane; Alabouvette, Claude

2006-01-01

116

Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil.  

PubMed

In soil, fungal colonization of plant roots has been traditionally studied by indirect methods such as microbial isolation that do not enable direct observation of infection sites or of interactions between fungal pathogens and their antagonists. Confocal laser scanning microscopy was used to visualize the colonization of tomato roots in heat-treated soil and to observe the interactions between a nonpathogenic strain, Fo47, and a pathogenic strain, Fol8, inoculated onto tomato roots in soil. When inoculated separately, both fungi colonized the entire root surface, with the exception of the apical zone. When both strains were introduced together, they both colonized the root surface and were observed at the same locations. When Fo47 was introduced at a higher concentration than Fol8, it colonized much of the root surface, but hyphae of Fol8 could still be observed at the same location on the root. There was no exclusion of the pathogenic strain by the presence of the nonpathogenic strain. These results are not consistent with the hypothesis that specific infection sites exist on the root for Fusarium oxysporum and instead support the hypothesis that competition occurs for nutrients rather than for infection sites. PMID:16461707

Olivain, Chantal; Humbert, Claude; Nahalkova, Jarmila; Fatehi, Jamshid; L'Haridon, Floriane; Alabouvette, Claude

2006-02-01

117

Targeted disruption of a G protein alpha subunit gene results in reduced pathogenicity in Fusarium oxysporum.  

PubMed

The cloning of fga1, the gene encoding a G protein alpha subunit, was performed by standard PCR techniques and by screening a Fusarium oxysporum genomic library, using the PCR product as a probe. The full-length open reading frame spanned 1,059 nucleotides and the deduced primary structure of the protein (353 amino acid residues) showed high identity to those of G protein alpha(i) family proteins from other filamentous fungi. Disruption of fga1 had no effect on vegetative growth, but reduced the conidiation and pathogenicity of the fungus. Disruptants also showed a decreased level of intracellular cAMP and increased resistance to heat shock at 45 degrees C. These results suggest that the Galpha subunit encoded by fga1 is involved in a signal transduction pathway in F. oxysporum that controls conidiation, heat resistance and pathogenicity. PMID:12228810

Jain, Sona; Akiyama, Kouichi; Mae, Kenjiro; Ohguchi, Tomizo; Takata, Renkichi

2002-09-01

118

Antifungal potential of some higher plants against Fusarium udum causing wilt disease of Cajanus cajan.  

PubMed

The fungitoxic effects of different plant extracts on Fusarium udum, which causes wilt disease of Cajanus cajan in vitro and in vivo, were examined. The complete arrest of the radial growth of the pathogen occurred at a 10% concentration of leaf extract from Adenocallyma alliaceum. A leaf extract of Citrus medica, a root extract of Asparagus adscendens, rhizome extracts of Curcuma longa and Zingiber officinale, and a bulb extract of Allium sativum inhibited up to 100% growth at higher concentrations. A. alliaceum controlled the disease up to 100% by amending its 4% powder in unsterilized soil and 2% in sterilized soil. The population of F. udum was found to be markedly reduced following treatments with plant powders. PMID:10955831

Singh, R; Rai, B

2000-01-01

119

Effect of mixed inoculations with Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. dianthi on the phenols content of tomato plants  

Microsoft Academic Search

Forms ofFusarium oxysporum specific on hosts other than tomato induce in this plant greater initial increases of the phenols content than the pathogenic f. sp.lycopersici. Mixed inoculations of f. sp.lycopersici and f. sp.dianthi are on the contrary no more effective in inducing the phenol accumulation 24 h after the infection than f. sp.lycopersici alone. This observation suggests that the pathogen

A. Matta; Irene Gentile; Isa Giai

1970-01-01

120

Constitutive expression of the xylanase inhibitor TAXI-III delays Fusarium head blight symptoms in durum wheat transgenic plants.  

PubMed

Cereals contain xylanase inhibitor (XI) proteins which inhibit microbial xylanases and are considered part of the defense mechanisms to counteract microbial pathogens. Nevertheless, in planta evidence for this role has not been reported yet. Therefore, we produced a number of transgenic plants constitutively overexpressing TAXI-III, a member of the TAXI type XI that is induced by pathogen infection. Results showed that TAXI-III endows the transgenic wheat with new inhibition capacities. We also showed that TAXI-III is correctly secreted into the apoplast and possesses the expected inhibition parameters against microbial xylanases. The new inhibition properties of the transgenic plants correlate with a significant delay of Fusarium head blight disease symptoms caused by Fusarium graminearum but do not significantly influence leaf spot symptoms caused by Bipolaris sorokiniana. We showed that this contrasting result can be due to the different capacity of TAXI-III to inhibit the xylanase activity of these two fungal pathogens. These results provide, for the first time, clear evidence in planta that XI are involved in plant defense against fungal pathogens and show the potential to manipulate TAXI-III accumulation to improve wheat resistance against F. graminearum. PMID:23945000

Moscetti, Ilaria; Tundo, Silvio; Janni, Michela; Sella, Luca; Gazzetti, Katia; Tauzin, Alexandra; Giardina, Thierry; Masci, Stefania; Favaron, Francesco; D'Ovidio, Renato

2013-12-01

121

Cerebroside elicitor confers resistance to fusarium disease in various plant species.  

PubMed

ABSTRACT In the rice blast fungus pathosystem, cerebroside, a compound categorized as a sphingolipid, was found in our previous study to be a non-racespecific elicitor, which elicits defense responses in rice. Here we describe that cerebroside C is produced in diverse strains of Fusarium oxysporum, a common soilborne agent of wilt disease affecting a wide range of plant species. In addition, some type of cerebroside elicitor involving cerebroside A, B, or C was detected in other soilborne phytopathogens, such as Pythium and Botrytis. Treatment of lettuce (Lactuca sativa), tomato (Lycopersicon esculentum), melon (Cucumis melo), and sweet potato (Ipomoea batatas) with cerebroside B resulted in resistance to infection by each pathogenic strain of F. oxysporum. Induction of pathogenesis-related genes and H(2)O(2) production by treatment with cerebroside B were observed in tomato root tissues. The cerebroside elicitor showed no antifungal activity against F. oxysporum in vitro, indicating that the cerebroside elicitor activates defense mechanisms to confer resistance to Fusarium disease. These results suggest that cerebroside functions as a non-race-specific elicitor in a wide range of plant-phytopathogenic fungus interactions. Additionally, cerebroside elicitor serves as a potential biologically derived control agent. PMID:18943100

Umemura, Kenji; Tanino, Shigeki; Nagatsuka, Tadako; Koga, Jinichiro; Iwata, Michiaki; Nagashima, Kenji; Amemiya, Yoshimiki

2004-08-01

122

Taxonomic identification of rhizospheric actinobacteria isolated from Algerian semi-arid soil exhibiting antagonistic activities against plant fungal pathogens  

Microsoft Academic Search

The rhizosphere is a rich source of actinobacteria and some members of this bacterial group present strong abilities in the biocontrol of plant diseases. In the present study, 72 strains of actinobacteria were isolated from different rhizospheric semi-arid soils collected in Algeria. Their in vitro antagonistic activity was assayed toward the following plant pathogenic fungi: Verticillium dahliae, Fusarium culmorum, Drechslera

Lamia Aouar; Sylvain Lerat; Ammar Ouffroukh; Abderrahmane Boulahrouf; Carole Beaulieu

2012-01-01

123

Comparison of antibiotic tolerance, lipids and respiration in the tomato pathogens Fusarium oxysporum lycopersici and F. oxysporum radicis lycopersici  

Microsoft Academic Search

The respiration and lipid contents and the tolerance to mycostatin, chloramphenicol and cycloheximide were compared in the two morphologically similar forms of the tomato pathogens: Fusarium oxysporum lycopersici (FOL) and the virulent form F. oxysporum radicis lycopersici (FORL). The differential tolerances to mycostatin were the most significant feature of the comparisons. The MIC for FORL was 24 ?g\\/mL for the

Clarence Madhosingh; Alvin N. Starratt

1987-01-01

124

Detection of tomatinase from Fusarium oxysporum f. sp. lycopersici in infected tomato plants.  

PubMed

The antifungal glycoalkaloid alpha-tomatine of the tomato plant (Lycopersicon esculentum) is proposed to protect the plant against phytopathogenic fungi. Fusarium oxysporum f. sp. lycopersici, a vascular pathogen of tomato, produces a tomatinase enzyme which hydrolyses the glycoalkaloid into non-fungitoxic compounds. Detoxification of alpha-tomatine may be how this fungus avoids the plant glycoalkaloid barrier. As an initial step to evaluate this possibility we have studied the induction of tomatinase; (i) in fungal cultures containing extracts from leaf, stem or root of tomato plants; and (ii) in stem and root of tomato plants infected with the pathogen at different infection stages. The kinetics of tomatinase induction with leaf extract (0.6% dry weight) was similar to that observed with 20 micrograms ml-1 of alpha-tomatine. In the presence of stem extract, tomatinase activity was less than 50% of that induced with leaf extract, whereas in the presence of root extract tomatinase activity was very low. In the stem of infected tomato plants tomatinase activity was higher at the wilt stage than in previous infections stages and in root, tomatinase activity appeared with the first symptoms and was maintained until wilting. TLC analysis showed that the tomatinase induced in culture medium with plant extracts and in infected tomato plants had the same mode of action as the enzyme induced with pure alpha-tomatine, hydrolysing the glycoalkaloid into its non-fungitoxic forms, tomatidine and beta-lycotetraose. The antisera raised against purified tomatinase recognized in extracts of root and stem of infected tomato plants a protein of 50000 (45000 when proteins were deglycosylated), corresponding to the tomatinase enzyme. Therefore, it is concluded that F. oxysporum f. sp. lycopersici express tomatinase in vivo as a result of the infection of tomato plant. PMID:9237400

Lairini, K; Ruiz-Rubio, M

1997-08-01

125

Pythium oligandrum in the control of Fusarium rot on some bulbous plants.  

PubMed

Pythium oligandrum was applied as tulip bulbs or gladiolus corms soak prior or after inoculation with formae speciales Fusarium oxysporum. The mycoparasite used before inoculation with pathogen suppressed the development of Fusarium rot. This effect was not observed, however, when P. oligandrum was used 24 hr after bulb inoculation. Soaking of forced tulip bulbs in oospore suspension of P. oligandrum may reduce Fusarium rot spread and increase number of flowers, but at conc. 2.5 x 10(3)-10(4)/cm3 caused inhibition of tulip root growth. PMID:12425035

Skrzypczak, C

2001-01-01

126

HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soilborne pathogen Fusarium oxysporum.  

PubMed

Soilborne fungal pathogens cause devastating yield losses and are highly persistent and difficult to control. During the infection process, these organisms must cope with limited availability of iron. Here we show that the bZIP protein HapX functions as a key regulator of iron homeostasis and virulence in the vascular wilt fungus Fusarium oxysporum. Deletion of hapX does not affect iron uptake but causes derepression of genes involved in iron-consuming pathways, leading to impaired growth under iron-depleted conditions. F. oxysporum strains lacking HapX are reduced in their capacity to invade and kill tomato (Solanum lycopersicum) plants and immunodepressed mice. The virulence defect of ?hapX on tomato plants is exacerbated by coinoculation of roots with a biocontrol strain of Pseudomonas putida, but not with a siderophore-deficient mutant, indicating that HapX contributes to iron competition of F. oxysporum in the tomato rhizosphere. These results establish a conserved role for HapX-mediated iron homeostasis in fungal infection of plants and mammals. PMID:22968717

López-Berges, Manuel S; Capilla, Javier; Turrà, David; Schafferer, Lukas; Matthijs, Sandra; Jöchl, Christoph; Cornelis, Pierre; Guarro, Josep; Haas, Hubertus; Di Pietro, Antonio

2012-09-01

127

Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells.  

PubMed

Fusarium oxysporum is an asexual, soil inhabiting fungus that comprises many different formae speciales, each pathogenic towards a different host plant. In absence of a suitable host all F. oxysporum isolates appear to have a very similar lifestyle, feeding on plant debris and colonizing the rhizosphere of living plants. Upon infection F. oxysporum switches from a saprophytic to an infectious lifestyle, which probably includes the reprogramming of gene expression. In this work we show that the expression of the known effector gene SIX1 of F. oxysporum f. sp. lycopersici is strongly upregulated during colonization of the host plant. Using GFP (green fluorescent protein) as reporter, we show that induction of SIX1 expression starts immediately upon penetration of the root cortex. Induction requires living plant cells, but is not host specific and does not depend on morphological features of roots, since plant cells in culture can also induce SIX1 expression. Taken together, F. oxysporum seems to be able to distinguish between living and dead plant material, preventing unnecessary switches from a saprophytic to an infectious lifestyle. PMID:18606236

van der Does, H Charlotte; Duyvesteijn, Roselinde G E; Goltstein, Pieter M; van Schie, Chris C N; Manders, Erik M M; Cornelissen, Ben J C; Rep, Martijn

2008-09-01

128

Evidence for a reversible drought induced shift in the species composition of mycotoxin producing Fusarium head blight pathogens isolated from symptomatic wheat heads.  

PubMed

Fusarium species are fungal plant pathogens producing toxic secondary metabolites such as deoxynivalenol (DON), 15-acetyl-deoxynivalenol (15AcDON) and nivalenol (NIV). In Luxembourg, the Fusarium species composition isolated from symptomatic winter wheat heads was dominated by Fusarium graminearum sensu stricto strains (genetic 15AcDON chemotype) between the years 2009 and 2012, except for 2011, when Fusarium culmorum strains (genetic NIV chemotype) dominated the pathogen complex. Previous reports indicated that F. graminearum sensu stricto (genetic 15AcDON chemotype) was also most frequently isolated from randomly sampled winter wheat kernels including symptomatic as well as asymptomatic kernels in 2007 and 2008. The annual precipitation (average of 10 weather stations scattered across the country) decreased continuously from 924.31mm in 2007 over 917.15mm in 2008, to 843.38mm in 2009, 736.24mm in 2010, and 575.09mm in 2011. In 2012, the annual precipitation increased again to 854.70mm. Hardly any precipitation was recorded around the time of wheat anthesis in the years 2010 and 2011, whereas precipitation levels >50mm within the week preceding anthesis plus the week post anthesis were observed in the other years. The shift to genetic NIV chemotype F. culmorum strains in 2011 was accompanied by a very minor elevation of average NIV contents (2.9ngg(-1)) in the grain. Our data suggest that high NIV levels in Luxembourgish winter wheat are at present rather unlikely, because the indigenous F. culmorum strains with the genetic NIV chemotype seem to be outcompeted under humid in vivo conditions by F. graminearum DON producing strains on the one hand and seem to be inhibited - even though to a lower extent than DON producing strains - under dry in vivo conditions on the other hand. PMID:24859190

Beyer, Marco; Pogoda, Friederike; Pallez, Marine; Lazic, Joëlle; Hoffmann, Lucien; Pasquali, Matias

2014-07-16

129

Fusarium verticillioides chitin synthases CHS5 and CHS7 are required for normal growth and pathogenicity.  

PubMed

Fusarium verticillioides is both an endophyte and a pathogen of maize and is a health threat in many areas of the world because it can contaminate maize with fumonisins, a toxic secondary metabolite. We identified eight putative chitin synthase (CHS) genes in F. verticillioides genomic sequence, and phylogenetic evidence shows that they group into seven established CHS gene classes. We targeted two CHSs (CHS5 and CHS7) for deletion analysis and found that both are required for normal hyphal growth and maximal disease of maize seedlings and ears. CHS5 and CHS7 encode a putative class V and class VII fungal chitin synthase, respectively; they are located adjacent to each other and are divergently transcribed. Fluorescent microscopy found that both CHS deficient strains produce balloon-shaped hyphae, while growth assays indicated that they were more sensitive to cell wall stressing compounds (e.g., the antifungal compound Nikkomycin Z) than wild type. Pathogenicity assays on maize seedlings and ears indicated that both strains were significantly reduced in their ability to cause disease. Our results demonstrate that both CHS5 and CHS7 are necessary for proper hyphal growth and pathogenicity of F. verticillioides on maize. PMID:21246198

Larson, Troy M; Kendra, David F; Busman, Mark; Brown, Daren W

2011-06-01

130

Xyr1 regulates xylanase but not cellulase formation in the head blight fungus Fusarium graminearum  

Microsoft Academic Search

Fusarium graminearum is a plant pathogen that causes severe economical losses by infecting numerous agriculturally important plants and until\\u000a now most culture plants have only low levels of Fusarium resistance. The plant cell wall can be assumed as the first target that has to be overcome by plant pathogens. Therefore\\u000a pathogenic organisms are known to produce a complex cocktail of

Kurt Brunner; Anton M. Lichtenauer; Klaus Kratochwill; Marizela Delic; Robert L. Mach

2007-01-01

131

Cloning, expression, and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum.  

PubMed

pg1 encoding the major in vitro extracellular endopolygalacturonase of the tomato vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici was cloned and sequenced. The deduced mature protein had a calculated molecular mass of 35.5 kDa and a pI of 6.2, and showed significant similarity with other fungal endoPGs. pg1 mRNA was induced in vitro by citrus pectin, tomato vascular tissue, 0.1% D-galacturonic acid, and polygalacturonic acid, and repressed by 1% D-galacturonic acid and 1% glucose. Reverse transcription-polymerase chain reaction revealed pg1 expression in roots and lower stems of tomato plants infected by F. oxysporum f. sp. lycopersici. Three naturally occurring F. oxysporum f. sp. melonis isolates deficient in PG1 were transformed with the cloned gene. The PG1 enzyme secreted by the transformants had the same molecular mass, pI, and glycosylation pattern as those of the donor isolate. Polygalacturonase activity in cultures of transformants grown in vitro on citrus pectin and on melon plants, but not on glucose, increased 10- to 20-fold, compared with the PG1-deficient wild-type isolate, whereas mycelial dry weight increased two- to three-fold. Transformants exhibited the same degree of virulence toward susceptible muskmelon cultivars as the wild-type isolate and were avirulent on a resistant cultivar. PMID:9450333

Di Pietro, A; Roncero, M I

1998-02-01

132

The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum.  

PubMed

Trichothecenes are a group of toxic secondary metabolites produced mainly by Fusarium graminearum (teleomorph: Gibberella zeae) during the infection of crop plants, including wheat, maize, barley, oats, rye and rice. Some fungal genes involved in trichothecene biosynthesis have been shown to encode regulatory proteins. However, the global regulation of toxin biosynthesis is still enigmatic. In addition to the production of secondary metabolites belonging to the trichothecene family, F. graminearum produces the red pigment aurofusarin. The gene regulation underlying the production of aurofusarin is not well understood. The velvet gene (veA) is conserved in various genera of filamentous fungi. Recently, the veA gene from Aspergillus nidulans has been shown to be the key component of the velvet complex regulating development and secondary metabolism. Using blast analyses, we identified the velvet gene from F. graminearum, FgVe1. Disruption of FgVe1 causes several phenotypic effects. However, the complementation of this mutant with the FgVe1 gene restores the wild-type phenotypes. The in vitro phenotypes include hyperbranching of the mycelium, suppression of aerial hyphae formation, reduced hydrophobicity of the mycelium and highly reduced sporulation. Our data also show that FgVe1 modulates the production of the aurofusarin pigment and is essential for the expression of Tri genes and the production of trichothecenes. Pathogenicity studies performed on flowering wheat plants indicate that FgVe1 is a positive regulator of virulence in F. graminearum. PMID:22013911

Merhej, Jawad; Urban, Martin; Dufresne, Marie; Hammond-Kosack, Kim E; Richard-Forget, Florence; Barreau, Christian

2012-05-01

133

The Sfp-Type 4?-Phosphopantetheinyl Transferase Ppt1 of Fusarium fujikuroi Controls Development, Secondary Metabolism and Pathogenicity  

PubMed Central

The heterothallic ascomycete Fusarium fujikuroi is a notorious rice pathogen causing super-elongation of plants due to the production of terpene-derived gibberellic acids (GAs) that function as natural plant hormones. Additionally, F. fujikuroi is able to produce a variety of polyketide- and non-ribosomal peptide-derived metabolites such as bikaverins, fusarubins and fusarins as well as metabolites from yet unidentified biosynthetic pathways, e.g. moniliformin. The key enzymes needed for their production belong to the family of polyketide synthases (PKSs) and non-ribosomal peptide synthases (NRPSs) that are generally known to be post-translationally modified by a Sfp-type 4?phosphopantetheinyl transferase (PPTase). In this study we provide evidence that the F. fujikuroi Sfp-type PPTase FfPpt1 is essentially involved in lysine biosynthesis and production of bikaverins, fusarubins and fusarins, but not moniliformin as shown by analytical methods. Concomitantly, targeted Ffppt1 deletion mutants reveal an enhancement of terpene-derived metabolites like GAs and volatile substances such as ?-acorenol. Pathogenicity assays on rice roots using fluorescent labeled wild-type and Ffppt1 mutant strains indicate that lysine biosynthesis and iron acquisition but not PKS and NRPS metabolism is essential for establishment of primary infections of F. fujikuroi. Additionally, FfPpt1 is involved in conidiation and sexual mating recognition possibly by activating PKS- and/or NRPS-derived metabolites that could act as diffusible signals. Furthermore, the effect on iron acquisition of Ffppt1 mutants led us to identify a previously uncharacterized putative third reductive iron uptake system (FfFtr3/FfFet3) that is closely related to the FtrA/FetC system of A. fumigatus. Functional characterization provides evidence that both proteins are involved in iron acquisition and are liable to transcriptional repression of the homolog of the Aspergillus GATA-type transcription factor SreA under iron-replete conditions. Targeted deletion of the first Fusarium homolog of this GATA-type transcription factor-encoding gene, Ffsre1, strongly indicates its involvement in regulation of iron homeostasis and oxidative stress resistance.

Wiemann, Philipp; Albermann, Sabine; Niehaus, Eva-Maria; Studt, Lena; von Bargen, Katharina W.; Brock, Nelson L.; Humpf, Hans-Ulrich; Dickschat, Jeroen S.; Tudzynski, Bettina

2012-01-01

134

Antibody-based resistance to plant pathogens.  

PubMed

Plant diseases are a major threat to the world food supply, as up to 15% of production is lost to pathogens. In the past, disease control and the generation of resistant plant lines protected against viral, bacterial or fungal pathogens, was achieved using conventional breeding based on crossings, mutant screenings and backcrossing. Many approaches in this field have failed or the resistance obtained has been rapidly broken by the pathogens. Recent advances in molecular biotechnology have made it possible to obtain and to modify genes that are useful for generating disease resistant crops. Several strategies, including expression of pathogen-derived sequences or anti-pathogenic agents, have been developed to engineer improved pathogen resistance in transgenic plants. Antibody-based resistance is a novel strategy for generating transgenic plants resistant to pathogens. Decades ago it was shown that polyclonal and monoclonal antibodies can neutralize viruses, bacteria and selected fungi. This approach has been improved recently by the development of recombinant antibodies (rAbs). Crop resistance can be engineered by the expression of pathogen-specific antibodies, antibody fragments or antibody fusion proteins. The advantages of this approach are that rAbs can be engineered against almost any target molecule, and it has been demonstrated that expression of functional pathogen-specific rAbs in plants confers effective pathogen protection. The efficacy of antibody-based resistance was first shown for plant viruses and its application to other plant pathogens is becoming more established. However, successful use of antibodies to generate plant pathogen resistance relies on appropriate target selection, careful antibody design, efficient antibody expression, stability and targeting to appropriate cellular compartments. PMID:11252378

Schillberg, S; Zimmermann, S; Zhang, M Y; Fischer, R

2001-01-01

135

Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil.  

PubMed

We developed two species-specific PCR assays for rapid and accurate detection of the pathogenic fungi Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in diseased plant tissues and soil. Based on differences in internal transcribed spacer (ITS) sequences of Fusarium spp. and Mycosphaerella spp., two pairs of species-specific primers, Fn-1/Fn-2 and Mn-1/Mn-2, were synthesized. After screening 24 isolates of F. oxysporum f. sp. niveum, 22 isolates of M. melonis, and 72 isolates from the Ascomycota, Basidiomycota, Deuteromycota, and Oomycota, the Fn-1/Fn-2 primers amplified only a single PCR band of approximately 320 bp from F. oxysporum f. sp.niveum, and the Mn-1/Mn-2 primers yielded a PCR product of approximately 420 bp from M. melonis. The detection sensitivity with primers Fn-1/Fn-2 and Mn-1/Mn-2 was 1fg of genomic DNA. Using ITS1/ITS4 as the first-round primers, combined with either Fn-1/Fn-2 and or Mn-1/Mn-2, two nested PCR procedures were developed, and the detection sensitivity increased 1000-fold to 1ag. The detection sensitivity for the soil pathogens was 100-microconidia/g soil. A duplex PCR method, combining primers Fn-1/Fn-2 and Mn-1/Mn-2, was used to detect F. oxysporum f. sp. niveum and M. melonis in plant tissues infected by the pathogens. Real-time fluorescent quantitative PCR assays were developed to detect and monitor the pathogens directly in soil samples. The PCR-based methods developed here could simplify both plant disease diagnosis and pathogen monitoring as well as guide plant disease management. PMID:16019161

Zhang, Zhenggang; Zhang, Jingyu; Wang, Yuanchao; Wang, Yuchao; Zheng, Xiaobo

2005-08-01

136

Fusarium equiseti GF191 as an effective biocontrol agent against Fusarium crown and root rot of tomato in rock wool systems  

Microsoft Academic Search

Six isolates of plant growth-promoting fungi (PGPF), non-pathogenic Fusarium oxysporum, and five isolates of bacteria were tested in hydroponic rock wool systems as potential biocontrol agents of Fusarium crown and root rot (FCRR) of tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici (FORL). PGPF Fusarium equiseti proved the most effective organism in controlling FCRR, and the reduction rate by F.

H. Horinouchi; A. Muslim; T. Suzuki; M. Hyakumachi

2007-01-01

137

Threats and opportunities of plant pathogenic bacteria.  

PubMed

Plant pathogenic bacteria can have devastating effects on plant productivity and yield. Nevertheless, because these often soil-dwelling bacteria have evolved to interact with eukaryotes, they generally exhibit a strong adaptivity, a versatile metabolism, and ingenious mechanisms tailored to modify the development of their hosts. Consequently, besides being a threat for agricultural practices, phytopathogens may also represent opportunities for plant production or be useful for specific biotechnological applications. Here, we illustrate this idea by reviewing the pathogenic strategies and the (potential) uses of five very different (hemi)biotrophic plant pathogenic bacteria: Agrobacterium tumefaciens, A. rhizogenes, Rhodococcus fascians, scab-inducing Streptomyces spp., and Pseudomonas syringae. PMID:24216222

Tarkowski, Petr; Vereecke, Danny

2014-01-01

138

Soil suppressiveness to fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization.  

PubMed

Soil suppressiveness to Fusarium disease was induced by incubating sandy soil with debris of wild rocket (WR; Diplotaxis tenuifolia) under field conditions. We studied microbial dynamics in the roots of cucumber seedlings following transplantation into WR-amended or nonamended soil, as influenced by inoculation with Fusarium oxysporum f. sp. radicis-cucumerinum. Disease symptoms initiated in nonamended soil 6 days after inoculation, compared with 14 days in WR-amended soil. Root infection by F. oxysporum f. sp. radicis-cucumerinum was quantified using real-time polymerase chain reaction (PCR). Target numbers were similar 3 days after inoculation for both WR-amended and nonamended soils, and were significantly lower (66%) 6 days after inoculation and transplanting into the suppressive (WR-amended) soil. This decrease in root colonization was correlated with a reduction in disease (60%) 21 days after inoculation and transplanting into the suppressive soil. Fungal community composition on cucumber roots was assessed using mass sequencing of fungal internal transcribed spacer gene fragments. Sequences related to F. oxysporum, Fusarium sp. 14005, Chaetomium sp. 15003, and an unclassified Ascomycota composed 96% of the total fungal sequences in all samples. The relative abundances of these major groups were highly affected by root inoculation with F. oxysporum f. sp. radicis-cucumerinum, with a 10-fold increase in F. oxysporum sequences, but were not affected by the WR amendment. Quantitative analysis and mass-sequencing methods indicated a qualitative shift in the root's bacterial community composition in suppressive soil, rather than a change in bacterial numbers. A sharp reduction in the size and root dominance of the Massilia population in suppressive soil was accompanied by a significant increase in the relative abundance of specific populations; namely, Rhizobium, Bacillus, Paenibacillus, and Streptomyces spp. Composition of the Streptomyces community shifted significantly, as determined by PCR denaturing gradient gel electrophoresis, resulting in an increase in the dominance of a specific population in suppressive soils after only 3 days. This shift was related mainly to the increase in Streptomyces humidus, a group previously described as antagonistic to phytopathogenic fungi. Thus, suitable soil amendment resulted in a shift in the root's bacterial communities, and infection by a virulent pathogen was contained by the root microbiome, leading to a reduced disease rate. PMID:22950737

Klein, Eyal; Ofek, Maya; Katan, Jaacov; Minz, Dror; Gamliel, Abraham

2013-01-01

139

New Insights in Trichoderma harzianum Antagonism of Fungal Plant Pathogens by Secreted Protein Analysis  

Microsoft Academic Search

Trichoderma harzianum ALL42 were capable of overgrowing and degrading Rhizoctonia solani and Macrophomina phaseolina mycelia, coiling around the hyphae with formation of apressoria and hook-like structures. Hyphae of T. harzianum ALL42 did not show any coiling around Fusarium sp. hyphae suggesting that mycoparasitism may be different among the plant pathogens. In this study, a secretome analysis\\u000a was used to identify some

Valdirene Neves Monteiro; Roberto do Nascimento Silva; Andrei Stecca Steindorff; Fabio Teles Costa; Eliane Ferreira Noronha; Carlos André Ornelas Ricart; Marcelo Valle de Sousa; Marilene Henning Vainstein; Cirano José Ulhoa

2010-01-01

140

Phytophthora parasitica: a model oomycete plant pathogen  

PubMed Central

Oomycetes are eukaryotic microorganisms morphologically similar to but phylogenetically distant from true fungi. Most species in the genus Phytophthora of oomycetes are devastating plant pathogens, causing damages to both agricultural production and natural ecosystems. Tremendous progress has been achieved in recent years in diversity, evolution and lifestyles of oomycete plant pathogens, as well as on the understanding of genetic and molecular basis of oomycete-plant interactions. Phytophthora parasitica is a soilborne pathogen with a wide range of host plants and represents most species in the genus Phytophthora. In this review, we present some recent progress of P. parasitica research by highlighting important features that make it emerge as a model species of oomycete pathogens. The emerged model pathogen will facilitate improved understanding of oomycete biology and pathology that are crucial to the development of novel disease-control strategies and improved disease-control measures.

Meng, Yuling; Zhang, Qiang; Ding, Wei; Shan, Weixing

2014-01-01

141

Vegetative Hyphal Fusion Is Not Essential for Plant Infection by Fusarium oxysporum? †  

PubMed Central

Vegetative hyphal fusion (VHF) is a ubiquitous phenomenon in filamentous fungi whose biological role is poorly understood. In Neurospora crassa, the mitogen-activated protein kinase (MAPK) Mak-2 and the WW domain protein So are required for efficient VHF. A MAPK orthologous to Mak-2, Fmk1, was previously shown to be essential for root penetration and pathogenicity of the vascular wilt fungus Fusarium oxysporum. Here we took a genetic approach to test two hypotheses, that (i) VHF and plant infection have signaling mechanisms in common and (ii) VHF is required for efficient plant infection. F. oxysporum mutants lacking either Fmk1 or Fso1, an orthologue of N. crassa So, were impaired in the fusion of vegetative hyphae and microconidial germ tubes. ?fmk1 ?fso1 double mutants exhibited a more severe fusion phenotype than either single mutant, indicating that the two components function in distinct pathways. Both ?fso1 and ?fmk1 strains were impaired in the formation of hyphal networks on the root surface, a process associated with extensive VHF. The ?fso1 mutants exhibited slightly reduced virulence in tomato fruit infection assays but, in contrast to ?fmk1 strains, were still able to perform functions associated with invasive growth, such as secretion of pectinolytic enzymes or penetration of cellophane sheets, and to infect tomato plants. Thus, although VHF per se is not essential for plant infection, both processes have some signaling components in common, suggesting an evolutionary relationship between the underlying cellular mechanisms.

Prados Rosales, Rafael C.; Di Pietro, Antonio

2008-01-01

142

Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants.  

PubMed

The effect of root exudates from mycorrhizal and non-mycorrhizal tomato plants on microconidia germination of the tomato pathogen Fusarium oxysporum f. sp. lycopersici was tested. Microconidia germination was enhanced in the presence of root exudates from mycorrhizal tomato plants. The more tomato plants were colonized by the arbuscular mycorrhizal fungus Glomus mosseae, the more microconidia germination was increased, indicating that alterations of the exudation pattern depended on the degree of root AM colonization. Moreover, alterations of the exudation pattern of mycorrhizal plants are not only local, but also systemic. Testing the exudates from plants with a high and a low P level revealed that the alterations of the root exudates from mycorrhizal plants, resulting in a changed effect on microconidia germination, are not due to an improved P status of mycorrhizal plants. PMID:16528569

Scheffknecht, S; Mammerler, R; Steinkellner, S; Vierheilig, H

2006-07-01

143

Inhibitory Effect of Algal Extracts on Mycelial Growth of the Tomato-Wilt Pathogen, Fusarium oxysporum f. sp. lycopersici.  

PubMed

The present study was undertaken to explore the inhibitory effect of cyanobacterial extracts of Nostoc commune FA-103 against the tomato-wilt pathogen, Fusarium oxysporum f. sp. lycopersici. In an optimal medium, cell growth, antifungal activity, and antifungal compound production could be increased 2.7-fold, 4.1-fold, and 13.4-fold, respectively. A crude algal extract had a similar effect as mancozeb at the recommended dose, both in laboratory and pot tests. In vitro and in vivo fungal growth, spore sporulation and fungal infection of wilt pathogen in tomato seeds were significantly inhibited by cyanobacterial extracts. Nostoc commune FA-103 extracts have potential for the suppression of Fusarium oxysporum f. sp. lycopersici. PMID:23997634

Kim, Jiyoung; Kim, Jeong-Dong

2008-12-01

144

Inhibitory Effect of Algal Extracts on Mycelial Growth of the Tomato-Wilt Pathogen, Fusarium oxysporum f. sp. lycopersici  

PubMed Central

The present study was undertaken to explore the inhibitory effect of cyanobacterial extracts of Nostoc commune FA-103 against the tomato-wilt pathogen, Fusarium oxysporum f. sp. lycopersici. In an optimal medium, cell growth, antifungal activity, and antifungal compound production could be increased 2.7-fold, 4.1-fold, and 13.4-fold, respectively. A crude algal extract had a similar effect as mancozeb at the recommended dose, both in laboratory and pot tests. In vitro and in vivo fungal growth, spore sporulation and fungal infection of wilt pathogen in tomato seeds were significantly inhibited by cyanobacterial extracts. Nostoc commune FA-103 extracts have potential for the suppression of Fusarium oxysporum f. sp. lycopersici.

Kim, Jiyoung

2008-01-01

145

Contribution of proteomics to the study of plant pathogenic fungi.  

PubMed

Phytopathogenic fungi are one of the most damaging plant parasitic organisms, and can cause serious diseases and important yield losses in crops. The study of the biology of these microorganisms and the interaction with their hosts has experienced great advances in recent years due to the development of moderm, holistic and high-throughput -omic techniques, together with the increasing number of genome sequencing projects and the development of mutants and reverse genetics tools. We highlight among these -omic techniques the importance of proteomics, which has become a relevant tool in plant-fungus pathosystem research. Proteomics intends to identify gene products with a key role in pathogenicity and virulence. These studies would help in the search of key protein targets and in the development of agrochemicals, which may open new ways for crop disease diagnosis and protection. In this review, we made an overview on the contribution of proteomics to the knowledge of life cycle, infection mechanisms, and virulence of the plant pathogenic fungi. Data from current, innovative literature, according to both methodological and experimental systems, were summarized and discussed. Specific sections were devoted to the most studied fungal phytopathogens: Botrytis cinerea, Sclerotinia sclerotiorum, and Fusarium graminearum. PMID:22085090

Gonzalez-Fernandez, Raquel; Jorrin-Novo, Jesus V

2012-01-01

146

Pathogenic variability in Ethiopian isolates of Fusarium oxysporum f. sp. ciceris and reaction of chickpea improved varieties to the isolates  

Microsoft Academic Search

Twenty-four isolates of Fusarium oxysporum f. sp. ciceris were isolated from wilted chickpea plants obtained from different districts and ‘wilt sickplots’ of central Ethiopia to assess variability in pathogenecity of the populations. Each isolate was tested on 10 different chickpea lines and eight improved chickpea varieties. Isolates showed highly significant variation in wilt severity on the differential lines and improved

Meki Shehabu; Seid Ahmed; Parshotam K. Sakhuja

2008-01-01

147

Sphingolipid C-9 Methyltransferases Are Important for Growth and Virulence but Not for Sensitivity to Antifungal Plant Defensins in Fusarium graminearum  

Microsoft Academic Search

The C-9-methylated glucosylceramides (GlcCers) are sphingolipids unique to fungi. They play important roles in fungal growth and pathogenesis, and they act as receptors for some antifungal plant defensins. We have identified two genes, FgMT1 and FgMT2, that each encode a putative sphingolipid C-9 methyltransferase (C-9-MT) in the fungal pathogen Fusarium graminearum and complement a Pichia pastoris C-9-MT-null mutant. The Fgmt1

Vellaisamy Ramamoorthy; Edgar B. Cahoon; Mercy Thokala; Jagdeep Kaur; Jia Li; Dilip M. Shah

2009-01-01

148

Antibody-mediated resistance against plant pathogens.  

PubMed

Plant diseases have a significant impact on the yield and quality of crops. Many strategies have been developed to combat plant diseases, including the transfer of resistance genes to crops by conventional breeding. However, resistance genes can only be introgressed from sexually-compatible species, so breeders need alternative measures to introduce resistance traits from more distant sources. In this context, genetic engineering provides an opportunity to exploit diverse and novel forms of resistance, e.g. the use of recombinant antibodies targeting plant pathogens. Native antibodies, as a part of the vertebrate adaptive immune system, can bind to foreign antigens and eliminate them from the body. The ectopic expression of antibodies in plants can also interfere with pathogen activity to confer disease resistance. With sufficient knowledge of the pathogen life cycle, it is possible to counter any disease by designing expression constructs so that pathogen-specific antibodies accumulate at high levels in appropriate sub-cellular compartments. Although first developed to tackle plant viruses and still used predominantly for this purpose, antibodies have been targeted against a diverse range of pathogens as well as proteins involved in plant-pathogen interactions. Here we comprehensively review the development and implementation of antibody-mediated disease resistance in plants. PMID:21872654

Safarnejad, Mohammad Reza; Jouzani, Gholamreza Salehi; Tabatabaei, Meisam; Tabatabaie, Meisam; Twyman, Richard M; Schillberg, Stefan

2011-01-01

149

Fusarium torreyae sp. nov., a pathogen causing canker disease of Florida torreya (Torreya taxifolia), a critically endangered conifer restricted to northern Florida and southwestern Georgia.  

PubMed

During a survey for pathogens of Florida torreya (Torreya taxifolia) in 2009, a novel Fusarium species was isolated from cankers affecting this critically endangered conifer whose current range is restricted to northern Florida and southwestern Georgia. Published multilocus molecular phylogenetic analyses indicated that this pathogen represented a genealogically exclusive, phylogenetically distinct species representing one of the earliest divergences within the Gibberella clade of Fusarium. Furthermore, completion of Koch's postulates established that this novel species was the causal agent of Florida torreya canker disease. Here we formally describe this pathogen as a new species, Fusarium torreyae. Pure cultures of this species produced long and slender multiseptate sporodochial conidia that showed morphological convergence with two distantly related fusaria, reflecting the homoplasious nature of Fusarium conidial morphology. PMID:23099517

Aoki, Takayuki; Smith, Jason A; Mount, Lacey L; Geiser, David M; O'Donnell, Kerry

2013-01-01

150

Fusarium oxysporum as a Multihost Model for the Genetic Dissection of Fungal Virulence in Plants and Mammals  

PubMed Central

Fungal pathogens cause disease in plant and animal hosts. The extent to which infection mechanisms are conserved between both classes of hosts is unknown. We present a dual plant-animal infection system based on a single strain of Fusarium oxysporum, the causal agent of vascular wilt disease in plants and an emerging opportunistic human pathogen. Injection of microconidia of a well-characterized tomato pathogenic isolate (isolate 4287) into the lateral tail vein of immunodepressed mice resulted in disseminated infection of multiple organs and death of the animals. Knockout mutants in genes encoding a mitogen-activated protein kinase, a pH response transcription factor, or a class V chitin synthase previously shown to be implicated in virulence on tomato plants were tested in the mouse model. The results indicate that some of these virulence factors play functionally distinct roles during the infection of tomato plants and mice. Thus, a single F. oxysporum strain can be used to study fungal virulence mechanisms in plant and mammalian pathogenesis.

Ortoneda, Montserrat; Guarro, Josep; Madrid, Marta P.; Caracuel, Zaira; Roncero, M. Isabel G.; Mayayo, Emilio; Di Pietro, Antonio

2004-01-01

151

Fusarium oxysporum as a multihost model for the genetic dissection of fungal virulence in plants and mammals.  

PubMed

Fungal pathogens cause disease in plant and animal hosts. The extent to which infection mechanisms are conserved between both classes of hosts is unknown. We present a dual plant-animal infection system based on a single strain of Fusarium oxysporum, the causal agent of vascular wilt disease in plants and an emerging opportunistic human pathogen. Injection of microconidia of a well-characterized tomato pathogenic isolate (isolate 4287) into the lateral tail vein of immunodepressed mice resulted in disseminated infection of multiple organs and death of the animals. Knockout mutants in genes encoding a mitogen-activated protein kinase, a pH response transcription factor, or a class V chitin synthase previously shown to be implicated in virulence on tomato plants were tested in the mouse model. The results indicate that some of these virulence factors play functionally distinct roles during the infection of tomato plants and mice. Thus, a single F. oxysporum strain can be used to study fungal virulence mechanisms in plant and mammalian pathogenesis. PMID:14977985

Ortoneda, Montserrat; Guarro, Josep; Madrid, Marta P; Caracuel, Zaira; Roncero, M Isabel G; Mayayo, Emilio; Di Pietro, Antonio

2004-03-01

152

Microconidia germination of the tomato pathogen Fusarium oxysporum in the presence of root exudates  

Microsoft Academic Search

In this study we assessed microconidia germination of the tomato pathogens F. oxysporum f. sp. lycopersici (Fol) and F. oxysporum f. sp. radicis-lycopersici (Forl) in the presence of root exudates. Tomato root exudates stimulated microconidia germination and the level of stimulation was affected by plant age. Treatment of root exudates with insoluble polyvinylpolypyrrolidone, which binds phenolic compounds, indicated that tomato

Siegrid Steinkellner; Roswitha Mammerler; Horst Vierheilig

2005-01-01

153

Use of the Plant Defense Protein Osmotin To Identify Fusarium oxysporum Genes That Control Cell Wall Properties ? ‡  

PubMed Central

Fusarium oxysporum is the causative agent of fungal wilt disease in a variety of crops. The capacity of a fungal pathogen such as F. oxysporum f. sp. nicotianae to establish infection on its tobacco (Nicotiana tabacum) host depends in part on its capacity to evade the toxicity of tobacco defense proteins, such as osmotin. Fusarium genes that control resistance to osmotin would therefore reflect coevolutionary pressures and include genes that control mutual recognition, avoidance, and detoxification. We identified FOR (Fusarium Osmotin Resistance) genes on the basis of their ability to confer osmotin resistance to an osmotin-sensitive strain of Saccharomyces cerevisiae. FOR1 encodes a putative cell wall glycoprotein. FOR2 encodes the structural gene for glutamine:fructose-6-phosphate amidotransferase, the first and rate-limiting step in the biosynthesis of hexosamine and cell wall chitin. FOR3 encodes a homolog of SSD1, which controls cell wall composition, longevity, and virulence in S. cerevisiae. A for3 null mutation increased osmotin sensitivity of conidia and hyphae of F. oxysporum f. sp. nicotianae and also reduced cell wall ?-1,3-glucan content. Together our findings show that conserved fungal genes that determine cell wall properties play a crucial role in regulating fungal susceptibility to the plant defense protein osmotin.

Lee, Hyeseung; Damsz, Barbara; Woloshuk, Charles P.; Bressan, Ray A.; Narasimhan, Meena L.

2010-01-01

154

Genomic clustering and co-regulation of transcriptional networks in the pathogenic fungus Fusarium graminearum  

PubMed Central

Background Genes for the production of a broad range of fungal secondary metabolites are frequently colinear. The prevalence of such gene clusters was systematically examined across the genome of the cereal pathogen Fusarium graminearum. The topological structure of transcriptional networks was also examined to investigate control mechanisms for mycotoxin biosynthesis and other processes. Results The genes associated with transcriptional processes were identified, and the genomic location of transcription-associated proteins (TAPs) analyzed in conjunction with the locations of genes exhibiting similar expression patterns. Highly conserved TAPs reside in regions of chromosomes with very low or no recombination, contrasting with putative regulator genes. Co-expression group profiles were used to define positionally clustered genes and a number of members of these clusters encode proteins participating in secondary metabolism. Gene expression profiles suggest there is an abundance of condition-specific transcriptional regulation. Analysis of the promoter regions of co-expressed genes showed enrichment for conserved DNA-sequence motifs. Potential global transcription factors recognising these motifs contain distinct sets of DNA-binding domains (DBDs) from those present in local regulators. Conclusions Proteins associated with basal transcriptional functions are encoded by genes enriched in regions of the genome with low recombination. Systematic searches revealed dispersed and compact clusters of co-expressed genes, often containing a transcription factor, and typically containing genes involved in biosynthetic pathways. Transcriptional networks exhibit a layered structure in which the position in the hierarchy of a regulator is closely linked to the DBD structural class.

2013-01-01

155

Pathogenicity of two species of Fusarium on some cultivars of bean in greenhouse.  

PubMed

Twenty isolates of Fusarium oxysporum and F. solani were isolated from the infected roots of bean in different farms of east Azarbaijan and Tehran Provinces and their pathogenicity determined. Most isolates of the fungi were identified as F. oxysporun. They caused root rot, yellowing and wilting of bean in the field. In this test, the roots of 6 cultivars of bean seedlings soaked in suspension of the 7 isolates of the fungi (a1, Gogan, a2, Bilverdi, a3, Savojbolagh-Hashtgerd, a4, field of Agr. Coll. a5, Khomein, a6, Ramjin of F. oxysporum and a7 of F. solani of Varamin, Iran) for 5 minute (106 spores/ml.) then transplanted into the sterilized soil in 4 pots (as replication). For control (a8) the roots soaked in distilled water. The results showed that percentage average of necrotic roots and crowns of isolates al, a2, a3, a5, a6, a7 was %20.31 in group a, a4 was %43.52 in group b and a8 was %2.77 in group c after 3 weeks. The isolate a4 (from the field of Agricultural College, Karaj) was more infectious than the other because it caused wilting, yellowing the leaves and decreased the growth very soon, followed by a5 with %25.32 rate was more pathogenic. Bean cultivar Goli-Red was more tolerant with %10.02 than the others of 16.29 (Naz Red) to 25.15 percent of necrotic the roots & stems. PMID:16637191

Faraji, M; Okhovvat, S M

2005-01-01

156

The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK  

PubMed Central

Fusarium head blight (FHB) caused by Fusarium and Microdochium species can significantly affect the yield of barley grain as well as the quality and safety of malt and beer. The present study provides new knowledge on the impacts of the FHB pathogen complex on the malting and brewing quality parameters of naturally infected barley. Quantitative real-time PCR and liquid chromatography double mass spectrometry were used to quantify the predominant FHB pathogens and Fusarium mycotoxins, respectively, in commercially grown UK malting barley samples collected between 2007 and 2011. The predominant Fusarium species identified across the years were F. poae, F. tricinctum and F. avenaceum. Microdochium majus was the predominant Microdochium species in 2007, 2008, 2010 and 2011 whilst Microdochium nivale predominated in 2009. Deoxynivalenol and zearalenone quantified in samples collected between 2007 and 2009 were associated with F. graminearum and F. culmorum, whilst HT-2 and T-2, and nivalenol in samples collected between 2010 and 2011 correlated positively with F. langsethiae and F. poae, respectively. Analysis of the regional distribution and yearly variation in samples from 2010 to 2011 showed significant differences in the composition of the FHB species complex. In most regions (Scotland, the South and North of England) the harvest in 2010 had higher concentrations of Fusarium spp. than in 2011, although no significant difference was observed in the Midlands between the two years. Microdochium DNA was significantly higher in 2011 and in the North of England and Scotland compared to the South or Midlands regions. Pathogens of the FHB complex impacted negatively on grain yield and quality parameters. Thousand grain weight of malting barley was affected significantly by M. nivale and M. majus whilst specific weight correlated negatively with F. avenaceum and F. graminearum. To determine the impact of sub-acute infections of the identified Fusarium and Microdochium species on malting and brewing quality of naturally infected samples, selected malting barley cultivars (Optic, Quench and Tipple) were micromalted and subjected to malt and wort analysis of key quality parameters. F. poae and M. nivale decreased germinative energy and increased water sensitivity of barley. The fungal biomass of F. poae and F. langsethiae correlated with increased wort free amino nitrogen and with decreased extract of malt. DNA of M. nivale correlated with increased malt friability as well as decreased wort filtration volume. The findings of this study indicate that the impact of species such as the newly emerging F. langsethiae, as well as F. poae and the two non-toxigenic Microdochium species should be considered when evaluating the quality of malting barley.

Nielsen, L.K.; Cook, D.J.; Edwards, S.G.; Ray, R.V.

2014-01-01

157

The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK.  

PubMed

Fusarium head blight (FHB) caused by Fusarium and Microdochium species can significantly affect the yield of barley grain as well as the quality and safety of malt and beer. The present study provides new knowledge on the impacts of the FHB pathogen complex on the malting and brewing quality parameters of naturally infected barley. Quantitative real-time PCR and liquid chromatography double mass spectrometry were used to quantify the predominant FHB pathogens and Fusarium mycotoxins, respectively, in commercially grown UK malting barley samples collected between 2007 and 2011. The predominant Fusarium species identified across the years were F. poae, F. tricinctum and F. avenaceum. Microdochium majus was the predominant Microdochium species in 2007, 2008, 2010 and 2011 whilst Microdochium nivale predominated in 2009. Deoxynivalenol and zearalenone quantified in samples collected between 2007 and 2009 were associated with F. graminearum and F. culmorum, whilst HT-2 and T-2, and nivalenol in samples collected between 2010 and 2011 correlated positively with F. langsethiae and F. poae, respectively. Analysis of the regional distribution and yearly variation in samples from 2010 to 2011 showed significant differences in the composition of the FHB species complex. In most regions (Scotland, the South and North of England) the harvest in 2010 had higher concentrations of Fusarium spp. than in 2011, although no significant difference was observed in the Midlands between the two years. Microdochium DNA was significantly higher in 2011 and in the North of England and Scotland compared to the South or Midlands regions. Pathogens of the FHB complex impacted negatively on grain yield and quality parameters. Thousand grain weight of malting barley was affected significantly by M. nivale and M. majus whilst specific weight correlated negatively with F. avenaceum and F. graminearum. To determine the impact of sub-acute infections of the identified Fusarium and Microdochium species on malting and brewing quality of naturally infected samples, selected malting barley cultivars (Optic, Quench and Tipple) were micromalted and subjected to malt and wort analysis of key quality parameters. F. poae and M. nivale decreased germinative energy and increased water sensitivity of barley. The fungal biomass of F. poae and F. langsethiae correlated with increased wort free amino nitrogen and with decreased extract of malt. DNA of M. nivale correlated with increased malt friability as well as decreased wort filtration volume. The findings of this study indicate that the impact of species such as the newly emerging F. langsethiae, as well as F. poae and the two non-toxigenic Microdochium species should be considered when evaluating the quality of malting barley. PMID:24727381

Nielsen, L K; Cook, D J; Edwards, S G; Ray, R V

2014-06-01

158

Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1  

PubMed Central

The plant defensin NaD1, from Nicotiana alata, has potent antifungal activity against a range of filamentous fungi including the two important cotton pathogens, Fusarium oxysporum f. sp. vasinfectum (Fov) and Verticillium dahliae. Transgenic cotton plants expressing NaD1 were produced and plants from three events were selected for further characterization. Homozygous plants were assessed in greenhouse bioassays for resistance to Fov. One line (D1) was selected for field trial testing over three growing seasons in soils naturally infested with Fov and over two seasons in soils naturally infested with V. dahliae. In the field trials with Fov-infested soil, line D1 had 2–3-times the survival rate, a higher tolerance to Fov (higher disease rank), and a 2–4-fold increase in lint yield compared to the non-transgenic Coker control. When transgenic line D1 was planted in V. dahliae-infested soil, plants had a higher tolerance to Verticillium wilt and up to a 2-fold increase in lint yield compared to the non-transgenic Coker control. Line D1 did not exhibit any detrimental agronomic features compared to the parent Coker control when plants were grown in non-diseased soil. This study demonstrated that the expression of NaD1 in transgenic cotton plants can provide substantial resistance to two economically important fungal pathogens.

Anderson, Marilyn A.

2014-01-01

159

Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1.  

PubMed

The plant defensin NaD1, from Nicotiana alata, has potent antifungal activity against a range of filamentous fungi including the two important cotton pathogens, Fusarium oxysporum f. sp. vasinfectum (Fov) and Verticillium dahliae. Transgenic cotton plants expressing NaD1 were produced and plants from three events were selected for further characterization. Homozygous plants were assessed in greenhouse bioassays for resistance to Fov. One line (D1) was selected for field trial testing over three growing seasons in soils naturally infested with Fov and over two seasons in soils naturally infested with V. dahliae. In the field trials with Fov-infested soil, line D1 had 2-3-times the survival rate, a higher tolerance to Fov (higher disease rank), and a 2-4-fold increase in lint yield compared to the non-transgenic Coker control. When transgenic line D1 was planted in V. dahliae-infested soil, plants had a higher tolerance to Verticillium wilt and up to a 2-fold increase in lint yield compared to the non-transgenic Coker control. Line D1 did not exhibit any detrimental agronomic features compared to the parent Coker control when plants were grown in non-diseased soil. This study demonstrated that the expression of NaD1 in transgenic cotton plants can provide substantial resistance to two economically important fungal pathogens. PMID:24502957

Gaspar, Yolanda M; McKenna, James A; McGinness, Bruce S; Hinch, Jillian; Poon, Simon; Connelly, Angela A; Anderson, Marilyn A; Heath, Robyn L

2014-04-01

160

Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants.  

PubMed

Bacillus amyloliquefaciens strain NJN-6 is an important plant growth-promoting rhizobacteria (PGPR) which can produce secondary metabolites antagonistic to several soil-borne pathogens. In this study, the ability of a bio-organic fertilizer (BIO) containing NJN-6 strain to promote the growth and suppress Fusarium wilt of banana plants was evaluated in a pot experiment. The results showed that the application of BIO significantly decreased the incidence of Fusarium wilt and promoted the growth of banana plants compared to that for the organic fertilizer (OF). To determine the beneficial mechanism of the strain, the colonization of NJN-6 strain on banana roots was evaluated using scanning electron microscopy (SEM). The plant growth-promoting hormones indole-3-acetic acid (IAA) and gibberellin A3 (GA3), along with antifungal lipopeptides iturin A, were detected when the NJN-6 strain was incubated in both Landy medium with additional l-tryptophan and in root exudates of banana plants. In addition, some antifungal volatile organic compounds and iturin A were also detected in BIO. In summary, strain NJN-6 could colonize the roots of banana plants after the application of BIO and produced active compounds which were beneficial for the growth of banana plants. PMID:23541032

Yuan, Jun; Ruan, Yunze; Wang, Beibei; Zhang, Jian; Waseem, Raza; Huang, Qiwei; Shen, Qirong

2013-04-24

161

Technological Advancement Conidial germination in the filamentous fungus Fusarium graminearum  

Microsoft Academic Search

The ascomycetous fungus Fusarium graminearum is an important plant pathogen causing Fusarium head blight disease of wheat and barley. To understand early developmental stages of this organism, we followed the germination of macroconidia microscopically to understand the timing of key events. These events, recorded after suspension of spores in liquid germination medium, included spore swelling at 2 h, germination tube

Kye-Yong Seong; Xinhua Zhao; Jin-Rong Xu; Ulrich Guldener; H. Corby Kistler

162

Conidial germination in the filamentous fungus Fusarium graminearum  

Microsoft Academic Search

The ascomycetous fungus Fusarium graminearum is an important plant pathogen causing Fusarium head blight disease of wheat and barley. To understand early developmental stages of this organism, we followed the germination of macroconidia microscopically to understand the timing of key events. These events, recorded after suspension of spores in liquid germination medium, included spore swelling at 2h, germination tube emergence

Kye-Yong Seong; Xinhua Zhao; Jin-Rong Xu; Ulrich Güldener; H. Corby Kistler

2008-01-01

163

The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts.  

PubMed

Fungal pathogens provoke devastating losses in agricultural production, contaminate food with mycotoxins and give rise to life-threatening infections in humans. The soil-borne ascomycete Fusarium oxysporum attacks over 100 different crops and can cause systemic fusariosis in immunocompromised individuals. Here we functionally characterized VeA, VelB, VelC and LaeA, four components of the velvet protein complex which regulates fungal development and secondary metabolism. Deletion of veA, velB and to a minor extent velC caused a derepression of conidiation as well as alterations in the shape and size of microconidia. VeA and LaeA were required for full virulence of F.?oxysporum on tomato plants and on immunodepressed mice. A critical contribution of velvet consists in promoting chromatin accessibility and expression of the biosynthetic gene cluster for beauvericin, a depsipeptide mycotoxin that functions as a virulence determinant. These results reveal a conserved role of the velvet complex during fungal infection on plants and mammals. PMID:23106229

López-Berges, Manuel S; Hera, Concepción; Sulyok, Michael; Schäfer, Katja; Capilla, Javier; Guarro, Josep; Di Pietro, Antonio

2013-01-01

164

Induction of systemic resistance of benzothiadiazole and humic Acid in soybean plants against fusarium wilt disease.  

PubMed

The ability of benzothiadiazole (BTH) and/or humic acid (HA) used as seed soaking to induce systemic resistance against a pathogenic strain of Fusarium oxysporum was examined in four soybean cultivars under greenhouse conditions. Alone and in combination the inducers were able to protect soybean plants against damping-off and wilt diseases compared with check treatment. These results were confirmed under field conditions in two different locations (Minia and New Valley governorates). The tested treatments significantly reduced damping-off and wilt diseases and increased growth parameters, except the number of branches per plant and also increased seed yield. Application of BTH (0.25 g/L) + HA (4 g/L) was the most potent in this respect. Soybean seed soaking in BTH + HA produced the highest activities of the testes of oxidative enzymes followed by BTH in the four soybean cultivars. HA treatment resulted in the lowest increases of these oxidative enzymes. Similar results were obtained with total phenol but HA increased total phenol more than did BTH in all tested cultivars. PMID:22783118

Abdel-Monaim, Montaser Fawzy; Ismail, Mamdoh Ewis; Morsy, Kadry Mohamed

2011-12-01

165

Cytotoxicity of Fusarium species mycotoxins and culture filtrates of Fusarium species isolated from the medicinal plant Tribulus terrestris to mammalian cells  

Microsoft Academic Search

Ayurvedic medicine, which uses decoctions made of medicinal plants, is used to cure diseases in many Asian countries including Sri Lanka. Although proper storage facilities for medicinal plants are unavailable in Sri Lanka, neither the potential for growth of toxigenic fungi nor their ability to produce mycotoxins in stored medicinal plants has been investigated. We isolated three Fusarium species, F.

Krishanthi Abeywickrama; G. A. Bean

1992-01-01

166

EPCOT, NASA and plant pathogens in space.  

PubMed

Cooperative work between NASA and Walt Disney World's EPCOT Land Pavilion is described. Joint efforts include research about allelopathy in multi-species plant cropping in CELSS, LEDs as light sources in hydroponic systems, and the growth of plant pathogens in space. PMID:11540338

White, R

1996-01-01

167

Fungal Pathogens: The Battle for Plant Infection  

Microsoft Academic Search

The attempted infection of a plant by a pathogen, such as a fungus or an Oomycete, may be regarded as a battle whose major weapons are proteins and smaller chemical compounds produced by both organisms. Indeed, plants produce an astonishing plethora of defense compounds that are still being discovered at a rapid pace. This pattern arose from a multi-million year,

Ricardo B. Ferreira; Sara Monteiro; Regina Freitas; Cláudia N. Santos; Zhenjia Chen; Luís M. Batista; João Duarte; Alexandre Borges; Artur R. Teixeira

2006-01-01

168

Recent advances in genes involved in secondary metabolite synthesis, hyphal development, energy metabolism and pathogenicity in Fusarium graminearum (teleomorph Gibberella zeae).  

PubMed

The ascomycete fungus, Fusarium graminearum (teleomorph Gibberella zeae), is the most common causal agent of Fusarium head blight (FHB), a devastating disease for cereal crops worldwide. F. graminearum produces ascospores (sexual spores) and conidia (asexual spores), which can serve as disease inocula of FHB. Meanwhile, Fusarium-infected grains are often contaminated with mycotoxins such as trichothecenes (TRIs), fumonisins, and zearalenones, among which TRIs are related to the pathogenicity of F. graminearum, and these toxins are hazardous to humans and livestock. In recent years, with the complete genome sequencing of F. graminearum, an increasing number of functional genes involved in the production of secondary metabolites, hyphal differentiation, sexual and asexual reproduction, virulence and pathogenicity have been identified from F. graminearum. In this review, the secondary metabolite synthesis, hyphal development and pathogenicity related genes in F. graminearum were thoroughly summarized, and the genes associated with secondary metabolites, sexual reproduction, energy metabolism, and pathogenicity were highlighted. PMID:24389085

Geng, Zongyi; Zhu, Wei; Su, Hao; Zhao, Yong; Zhang, Ke-Qin; Yang, Jinkui

2014-01-01

169

Punctuated changes in plant pathogen populations associated with passage of atmospheric Lagrangian coherent structures  

NASA Astrophysics Data System (ADS)

The atmospheric transport of airborne microorganisms (e.g., plant pathogens) is poorly understood, yet necessary to assess their ecological roles in agricultural ecosystems and to evaluate risks posed by invasive species. The atmospheric transport of plant pathogens can be roughly divided into three phases: liberation of pathogen spores, drift (transport in the atmosphere) and deposition. If liberated spores escape into the planetary boundary layer, they could be transported over thousands of kilometers before being deposited. The drift phase is poorly understood, due to the complex nature of atmospheric transport and relative lack of observational data. In this talk, we present a framework of Lagrangian coherent structures to determine the important atmospheric transport barriers (ATBs) that partition the atmosphere and systematically organize the mesoscale transport problem. Using autonomous unmanned aerial vehicles, we measure the concentration of spores of a plant pathogenic fungus (Fusarium) sampled in the atmosphere above Virginia Tech's Kentland Farm. We report correlations between concentrations of Fusarium with the local movement of ATBs determined from archived meteorological data.

Ross, Shane; Tallapragada, Phanindra; Schmale, David

2010-11-01

170

A robust identification and detection assay to discriminate the cucumber pathogens Fusarium oxysporum f. sp. cucumerinum and f. sp. radicis-cucumerinum.  

PubMed

The fungal species Fusarium oxysporum is a ubiquitous inhabitant of soils worldwide that includes pathogenic as well as non-pathogenic or even beneficial strains. Pathogenic strains are characterized by a high degree of host specificity and strains that infect the same host range are organized in so-called formae speciales. Strains for which no host plant has been identified are believed to be non-pathogenic strains. Therefore, identification below the species level is highly desired. However, the genetic basis of host specificity and virulence in F. oxysporum is so far unknown. In this study, a robust random-amplified polymorphic DNA (RAPD) marker-based assay was developed to specifically detect and identify the economically important cucumber pathogens F. oxysporum f. sp. cucumerinum and F. oxysporum f. sp. radicis-cucumerinum. While the F. oxysporum radicis-cucumerinum strains were found to cluster in a separate clade based on elongation factor-1alpha phylogeny, strains belonging to F. oxysporum f. sp. cucumerinum were found to be genetically more diverse. This is reflected in the observation that specificity testing of the identified markers using a broad collection of F. oxysporum strains with all known vegetative compatibility groups of the target formae speciales, as well as representative strains belonging to other formae speciales, resulted in two cross-reactions for the F. oxysporum f. sp. cucumerimum marker. However, no cross-reactions were observed for the F. oxysporum f. sp. radicis-cucumerimum marker. This F. oxysporum f. sp. radicis-cucumerimum marker shows homology to Folyt1, a transposable element identified in the tomato pathogen F. oxysporum f. sp. lycopersici and may possibly play a role in host-range specificity in the target forma specialis. The markers were implemented in a DNA array that enabled parallel and sensitive detection and identification of the pathogens in complex samples from diverse origins. PMID:17686014

Lievens, Bart; Claes, Loes; Vakalounakis, Demetrios J; Vanachter, Alfons C R C; Thomma, Bart P H J

2007-09-01

171

Effect of azoxystrobin on activities of antioxidant enzymes and alternative oxidase in wheat head blight pathogens Fusarium graminearum and Microdochium nivale  

Microsoft Academic Search

Wheat head blight pathogens Fusarium graminearum and Microdochium nivale have distinct sensitivities to strobilurin fungicides, which inhibit activity of complex III in the mitochondrial electron\\u000a transport chain. When mycelia were cultured in medium with the strobilurin fungicide azoxystrobin (AZ), F. graminearum increased its oxygen-consumption, but M. nivale, which is more sensitive than Fusarium species to strobilurins, did not. There was

Isao Kaneko; Hideo Ishii

2009-01-01

172

Protein phosphatase 2A regulatory subunits perform distinct functional roles in the maize pathogen Fusarium verticillioides.  

PubMed

Fusarium verticillioides is a pathogen of maize causing ear rot and stalk rot. The fungus also produces fumonisins, a group of mycotoxins linked to disorders in animals and humans. A cluster of genes, designated FUM genes, plays a key role in the synthesis of fumonisins. However, our understanding of the regulatory mechanism of fumonisin biosynthesis is still incomplete. We have demonstrated previously that Cpp1, a protein phosphatase type 2A (PP2A) catalytic subunit, negatively regulates fumonisin production and is involved in cell shape maintenance. In general, three PP2A subunits, structural A, regulatory B and catalytic C, make up a heterotrimer complex to perform regulatory functions. Significantly, we identified two PP2A regulatory subunits in the F.?verticillioides genome, Ppr1 and Ppr2, which are homologous to Saccharomyces cerevisiae?Cdc55 and Rts1, respectively. In this study, we hypothesized that Ppr1 and Ppr2 are involved in the regulation of fumonisin biosynthesis and/or cell development in F.?verticillioides, and generated a series of mutants to determine the functional role of Ppr1 and Ppr2. The PPR1 deletion strain (?ppr1) resulted in drastic growth defects, but increased microconidia production. The PPR2 deletion mutant strain (?ppr2) showed elevated fumonisin production, similar to the ?cpp1 strain. Germinating ?ppr1 conidia formed abnormally swollen cells with a central septation site, whereas ?ppr2 showed early hyphal branching during conidia germination. A kernel rot assay showed that the mutants were slow to colonize kernels, but this is probably a result of growth defects rather than a virulence defect. Results from this study suggest that two PP2A regulatory subunits in F.?verticillioides carry out distinct roles in the regulation of fumonisin biosynthesis and fungal development. PMID:23452277

Shin, Joon-Hee; Kim, Jung-Eun; Malapi-Wight, Martha; Choi, Yoon-E; Shaw, Brian D; Shim, Won-Bo

2013-06-01

173

MYT3, A Myb-Like Transcription Factor, Affects Fungal Development and Pathogenicity of Fusarium graminearum.  

PubMed

We previously characterized members of the Myb protein family, MYT1 and MYT2, in Fusarium graminearum. MYT1 and MYT2 are involved in female fertility and perithecium size, respectively. To expand knowledge of Myb proteins in F. graminearum, in this study, we characterized the functions of the MYT3 gene, which encodes a putative Myb-like transcription factor containing two Myb DNA-binding domains and is conserved in the subphylum Pezizomycotina of Ascomycota. MYT3 proteins were localized in nuclei during most developmental stages, suggesting the role of MYT3 as a transcriptional regulator. Deletion of MYT3 resulted in impairment of conidiation, germination, and vegetative growth compared to the wild type, whereas complementation of MYT3 restored the wild-type phenotype. Additionally, the ?myt3 strain grew poorly on nitrogen-limited media; however, the mutant grew robustly on minimal media supplemented with ammonium. Moreover, expression level of nitrate reductase gene in the ?myt3 strain was decreased in comparison to the wild type and complemented strain. On flowering wheat heads, the ?myt3 strain exhibited reduced pathogenicity, which corresponded with significant reductions in trichothecene production and transcript levels of trichothecene biosynthetic genes. When the mutant was selfed, mated as a female, or mated as a male for sexual development, perithecia were not observed on the cultures, indicating that the ?myt3 strain lost both male and female fertility. Taken together, these results demonstrate that MYT3 is required for pathogenesis and sexual development in F. graminearum, and will provide a robust foundation to establish the regulatory networks for all Myb-like proteins in F. graminearum. PMID:24722578

Kim, Yongsoo; Kim, Hun; Son, Hokyoung; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

2014-01-01

174

MYT3, A Myb-Like Transcription Factor, Affects Fungal Development and Pathogenicity of Fusarium graminearum  

PubMed Central

We previously characterized members of the Myb protein family, MYT1 and MYT2, in Fusarium graminearum. MYT1 and MYT2 are involved in female fertility and perithecium size, respectively. To expand knowledge of Myb proteins in F. graminearum, in this study, we characterized the functions of the MYT3 gene, which encodes a putative Myb-like transcription factor containing two Myb DNA-binding domains and is conserved in the subphylum Pezizomycotina of Ascomycota. MYT3 proteins were localized in nuclei during most developmental stages, suggesting the role of MYT3 as a transcriptional regulator. Deletion of MYT3 resulted in impairment of conidiation, germination, and vegetative growth compared to the wild type, whereas complementation of MYT3 restored the wild-type phenotype. Additionally, the ?myt3 strain grew poorly on nitrogen-limited media; however, the mutant grew robustly on minimal media supplemented with ammonium. Moreover, expression level of nitrate reductase gene in the ?myt3 strain was decreased in comparison to the wild type and complemented strain. On flowering wheat heads, the ?myt3 strain exhibited reduced pathogenicity, which corresponded with significant reductions in trichothecene production and transcript levels of trichothecene biosynthetic genes. When the mutant was selfed, mated as a female, or mated as a male for sexual development, perithecia were not observed on the cultures, indicating that the ?myt3 strain lost both male and female fertility. Taken together, these results demonstrate that MYT3 is required for pathogenesis and sexual development in F. graminearum, and will provide a robust foundation to establish the regulatory networks for all Myb-like proteins in F. graminearum.

Son, Hokyoung; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

2014-01-01

175

Survival of plant pathogens under structural solarization  

Microsoft Academic Search

Structural solarization of greenhouses is a nonchemical sanitation procedure. The method involves dry heating, since maximal\\u000a temperatures may exceed 60°C and consequent relative humidity (r.h.) is low (ca 15%), under fluctuating temperature and r.h. regimes. Thirty-five structural solarization experiments were performed over\\u000a 7 years, testing one bacterial and five fungal plant pathogens. Various aspects of pathogen thermal inactivation under this

Eli Shlevin; Yitzhak Mahrer; Giora Kritzman; Jaacov Katan

2004-01-01

176

Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f.sp. niveum  

Microsoft Academic Search

Root exudates have a key role in communication between plants and microbes in the rhizosphere. Fusarium wilt of watermelon,\\u000a caused by Fusarium oxysporum f. sp. niveum (Fusarium oxysporum), drastically reduces watermelon yields in continuous cultivation systems, but it can be significantly alleviated using watermelon\\/aerobic\\u000a rice intercropping system as shown by the research carried out in this laboratory. It is important

Wen-ya Hao; Li-xuan Ren; Wei Ran; Qi-rong Shen

2010-01-01

177

Pathogenicity of Fusarium semitectum against crop pests and its biosafety to non-target organisms.  

PubMed

Microbial control is receiving more attention, since these alternative tactics, compared to chemical control methods, are energy saving, non polluting, ecologically sound and sustainable. A mycopathogen, Fusarium semitectum Berk. and Rav. (ARSEF 7233) was isolated from diseased cadavers of aphid (Aphis gossypii) and cultured in Saboraud Maltose Agar supplemented with Yeast extract medium (SMAY). Being isolated first time from the chilli ecosystem its potential was evaluated. Experiments were conducted to understand its pathogenicity against crop pests as well as to ensure its safety to non target organisms such as silk worm (Bombyx mor), honey bee (Apis indica) and earthworm (Eisenia foetida). A paper-thrips-paper sandwich method for thrips and detached-leaf bioassay method for mites were used. Test insects and mites either reared in laboratory or obtained from the field were topically applied with spore suspension of F. semitectum (1x10(9) spores/ml). Mortality was recorded and dead animals were surface sterilized with 0.5% NaOCl and placed in SMAY medium to confirm pathogenicity. Mulberry leaves sprayed with the fungal suspension were fed to larvae of B. mori and reared. Newly emerged A. indica were topically applied with fungus. The fungus grown in cow dung for two weeks was used to assess the composting ability of E. foetida. F. semitectum produced mycosis and caused mortality to sucking pests such as chilli thrips (Scirtothrips dorsalis), broad mite (Polyphagotarsonemus latus), sugarcane wooly aphid (Ceratavacuna lanigera), spiraling whitefly (Aleyrodicus disperses), whitefly (Bemisia tabaci, A. gossypii and coconut mite (Aceria guerroronis). The fungus did not cause mortality on larvae of lepidopteran insect pests and ladybird beetle (Menochilus sexmaculatus), predatory mite (Amblysius ovalis) and larval parasitoid (Goniozus nephantidis). F. semitectum failed to infect the larvae of B. mori and newly emerged A. indica and its brood. The mycopathogen had no influence on the composting ability and growth of E. foetida. F. semitectum, in general, expressed its selectivity against sucking pests and proved its eco-friendly characteristics to the beneficial organisms and especially safe to Sericulture, Apiculture and Vermiculture industries in Karnataka, India. This novel fungus can be well incorporated as a viable tactics into the integrated management programmes of crop pests. PMID:17385514

Mikunthan, G; Manjunatha, M

2006-01-01

178

Plant Pathogen Forensics: Capabilities, Needs, and Recommendations  

PubMed Central

A biological attack on U.S. crops, rangelands, or forests could reduce yield and quality, erode consumer confidence, affect economic health and the environment, and possibly impact human nutrition and international relations. Preparedness for a crop bioterror event requires a strong national security plan that includes steps for microbial forensics and criminal attribution. However, U.S. crop producers, consultants, and agricultural scientists have traditionally focused primarily on strategies for prevention and management of diseases introduced naturally or unintentionally rather than on responding appropriately to an intentional pathogen introduction. We assess currently available information, technologies, and resources that were developed originally to ensure plant health but also could be utilized for postintroduction plant pathogen forensics. Recommendations for prioritization of efforts and resource expenditures needed to enhance our plant pathogen forensics capabilities are presented.

Fletcher, J.; Bender, C.; Budowle, B.; Cobb, W. T.; Gold, S. E.; Ishimaru, C. A.; Luster, D.; Melcher, U.; Murch, R.; Scherm, H.; Seem, R. C.; Sherwood, J. L.; Sobral, B. W.; Tolin, S. A.

2006-01-01

179

Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis  

PubMed Central

Background Fusarium oxysporum f. sp. lycopersici is the causal agent of vascular wilt disease in tomato. In order to gain more insight into the molecular processes in F. oxysporum necessary for pathogenesis and to uncover the genes involved, we used Agrobacterium-mediated insertional mutagenesis to generate 10,290 transformants and screened the transformants for loss or reduction of pathogenicity. Results This led to the identification of 106 pathogenicity mutants. Southern analysis revealed that the average T-DNA insertion is 1.4 and that 66% of the mutants carry a single T-DNA. Using TAIL-PCR, chromosomal T-DNA flanking regions were isolated and 111 potential pathogenicity genes were identified. Conclusions Functional categorization of the potential pathogenicity genes indicates that certain cellular processes, such as amino acid and lipid metabolism, cell wall remodeling, protein translocation and protein degradation, seem to be important for full pathogenicity of F. oxysporum. Several known pathogenicity genes were identified, such as those encoding chitin synthase V, developmental regulator FlbA and phosphomannose isomerase. In addition, complementation and gene knock-out experiments confirmed that a glycosylphosphatidylinositol-anchored protein, thought to be involved in cell wall integrity, a transcriptional regulator, a protein with unknown function and peroxisome biogenesis are required for full pathogenicity of F. oxysporum.

Michielse, Caroline B; van Wijk, Ringo; Reijnen, Linda; Cornelissen, Ben JC; Rep, Martijn

2009-01-01

180

Effects of aqueous extracts of some plant species against Fusarium solani and Rhizoctonia solani in Phaseolus vulgaris plants  

Microsoft Academic Search

The antifungal activity of aqueous extracts of 22 of plant species, against the linear mycelium of Fusarium solani and Rhizoctonia solani, were tested in vitro test. All plant extracts have an antifungal activity against the two fungi except Basil, Castor beans, Chamomile and Peppermint. Aqueous extracts of Chilli, Lantana, Lemon grass and Onion seeds highly reduced the mycelial growth of

H. Abd-El-Khair; G. El-Gamal Nadia

2011-01-01

181

Plant Colonization by the Vascular Wilt Fungus Fusarium oxysporum Requires FOW1, a Gene Encoding a Mitochondrial Protein  

PubMed Central

The soil-borne fungus Fusarium oxysporum causes vascular wilts of a wide variety of plant species by directly penetrating roots and colonizing the vascular tissue. The pathogenicity mutant B60 of the melon wilt pathogen F. oxysporum f. sp. melonis was isolated previously by restriction enzyme–mediated DNA integration mutagenesis. Molecular analysis of B60 identified the affected gene, designated FOW1, which encodes a protein with strong similarity to mitochondrial carrier proteins of yeast. Although the FOW1 insertional mutant and gene-targeted mutants showed normal growth and conidiation in culture, they showed markedly reduced virulence as a result of a defect in the ability to colonize the plant tissue. Mitochondrial import of Fow1 was verified using strains expressing the Fow1–green fluorescent protein fusion proteins. The FOW1-targeted mutants of the tomato wilt pathogen F. oxysporum f. sp. lycopersici also showed reduced virulence. These data strongly suggest that FOW1 encodes a mitochondrial carrier protein that is required specifically for colonization in the plant tissue by F. oxysporum.

Inoue, Iori; Namiki, Fumio; Tsuge, Takashi

2002-01-01

182

Plant colonization by the vascular wilt fungus Fusarium oxysporum requires FOW1, a gene encoding a mitochondrial protein.  

PubMed

The soil-borne fungus Fusarium oxysporum causes vascular wilts of a wide variety of plant species by directly penetrating roots and colonizing the vascular tissue. The pathogenicity mutant B60 of the melon wilt pathogen F. oxysporum f. sp. melonis was isolated previously by restriction enzyme-mediated DNA integration mutagenesis. Molecular analysis of B60 identified the affected gene, designated FOW1, which encodes a protein with strong similarity to mitochondrial carrier proteins of yeast. Although the FOW1 insertional mutant and gene-targeted mutants showed normal growth and conidiation in culture, they showed markedly reduced virulence as a result of a defect in the ability to colonize the plant tissue. Mitochondrial import of Fow1 was verified using strains expressing the Fow1-green fluorescent protein fusion proteins. The FOW1-targeted mutants of the tomato wilt pathogen F. oxysporum f. sp. lycopersici also showed reduced virulence. These data strongly suggest that FOW1 encodes a mitochondrial carrier protein that is required specifically for colonization in the plant tissue by F. oxysporum. PMID:12172028

Inoue, Iori; Namiki, Fumio; Tsuge, Takashi

2002-08-01

183

Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron.  

PubMed

Trichoderma asperellum strain T34 has been reported to control the disease caused by Fusarium oxysporum f.sp. lycopersici (Fol) on tomato plants. To study the importance of iron concentration in the growth media for the activity and competitiveness of T34 and the pathogen, we tested four iron concentrations in the nutrient solution [1, 10, 100, and 1000 microM provided as EDTA/Fe(III)] in a biological control experiment with T34 and Fol in tomato plants. The reduction of the Fusarium-infected shoot by T34 was only significant at 10 microM Fe. We hypothesized that Fe competition is one of the key factors in the biocontrol activity exerted by T34 against Fol, as an increase in Fe concentration over 10 microM would lead to the suppression of T34 siderophore synthesis and thus inhibition of Fe competition with Fol. T34 significantly reduced the populations of Fol at all the doses of Fe assayed. In contrast, Fol enhanced the populations of T34 at 1 and 10 microM Fe. Nevertheless, several plant physiological parameters like net CO(2) assimilation (A), stomatal conductance (g(s)), relative quantum efficiency of PSII (Phi(PSII)), and efficiency of excitation energy capture by open PSII reactive centers (Fv'/Fm') demonstrated the protection against Fol damage by treatment with T34 at 100 microM Fe. The first physiological parameter affected by the disease progression was g(s). Plant dry weight was decreased by Fe toxicity at 100 and 1,000 microM. T34-treated plants had significantly greater heights and dry weights than control plants at 1,000 microM Fe, even though T34 did not reduce the Fe content in leaves or stems. Furthermore, T34 enhanced plant height even at the optimal Fe concentration (10 microM) compared to control plants. In conclusion, T. asperellum strain T34 protected tomato plants from both biotic (Fusarium wilt disease) and abiotic stress [Fe(III) toxic effects]. PMID:19536588

Segarra, Guillem; Casanova, Eva; Avilés, Manuel; Trillas, Isabel

2010-01-01

184

Circadian regulation of plant immunity to pathogens.  

PubMed

The plant circadian clock primes the immune response of Arabidopsis thaliana to infection with the bacterial pathogen Pseudomonas syringae pv tomato DC3000 (Pst DC3000) such that there is a more robust response during the subjective day than subjective night. Thus Pst DC3000 growth in plants infected with the same initial titre of bacteria varies depending on the time of day of infection (Bhardwaj et al., PLoS One 6: e26968, 2011; Zhang et al., PLoS Pathog 9:e1003370, 2013). We describe here a protocol for assaying bacterial leaf titres following pressure infiltration or spray inoculation of Arabidopsis thaliana with Pst DC3000. We also describe a method for assaying plant susceptibility to infection with the necrotrophic fungal pathogen Botrytis cinerea. These methods can be used in studying the circadian clock regulation of signal transduction pathways controlling plant defense responses. PMID:24792058

Ingle, Robert A; Roden, Laura C

2014-01-01

185

[RAPD analysis of plant pathogenic coryneform bacteria].  

PubMed

RAPD analysis was used for the taxonomy of plant pathogenic coryneform bacteria, especially for the classification of two new pathogens (Curtobacterium flaccumfaciens pv. basellae pv. nov. and Curtobacterium flaccumfaciens pv. beticola pv. nov.). 20 random primers were screened from 50 ones to detect polymorphism among the total strains used. 80.4% were polymorphic bands among the 225 ones produced. The results of pairwise similarity and UPGMA cluster analysis suggest that the two new pathovars of sugar beet (Beta vulgaris var. saccharifera) and malabar spinach (Basella rubra) are genetically close related with Curtobacterium flacumfaciens, and the minimal similarity coefficient is 0.6511. According to the RAPD analysis and previous research, some newly made taxonomic changes of the plant pathogenic coryneform bacteria are discussed. PMID:16496687

Yin, Yan-Ni; Chen, Yong-Fang; Li, Shi-Mo; Guo, Jian-Hua

2005-12-01

186

The fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death.  

PubMed

The Fusarium genus of fungi is responsible for commercially devastating crop diseases and the contamination of cereals with harmful mycotoxins. Fusarium mycotoxins aid infection, establishment, and spread of the fungus within the host plant. We investigated the effects of the Fusarium mycotoxin deoxynivalenol (DON) on the viability of Arabidopsis cells. Although it is known to trigger apoptosis in animal cells, DON treatment at low concentrations surprisingly did not kill these cells. On the contrary, we found that DON inhibited apoptosis-like programmed cell death (PCD) in Arabidopsis cells subjected to abiotic stress treatment in a manner independent of mitochondrial cytochrome c release. This suggested that Fusarium may utilise mycotoxins to suppress plant apoptosis-like PCD. To test this, we infected Arabidopsis cells with a wild type and a DON-minus mutant strain of F. graminearum and found that only the DON producing strain could inhibit death induced by heat treatment. These results indicate that mycotoxins may be capable of disarming plant apoptosis-like PCD and thereby suggest a novel way that some fungi can influence plant cell fate. PMID:23922734

Diamond, Mark; Reape, Theresa J; Rocha, Olga; Doyle, Siamsa M; Kacprzyk, Joanna; Doohan, Fiona M; McCabe, Paul F

2013-01-01

187

Fusarium graminearum on plant cell wall: No fewer than 30 xylanase genes transcribed  

Microsoft Academic Search

The transcription of a set of 32 putative xylanase genes from Fusarium graminearum was examined by quantitative PCR after growth on different carbon sources (hop cell wall, xylan, xylose, or carboxymethylcellulose). Growing on plant cell wall medium, this fungus displays a great diversity of expression of xylan-related genes, with 30 being induced. A second level of diversity exists because expression

Didier Hatsch; Vincent Phalip; Elizabet Petkovski; Jean-Marc Jeltsch

2006-01-01

188

The Fusarium Mycotoxin Deoxynivalenol Can Inhibit Plant Apoptosis-Like Programmed Cell Death  

PubMed Central

The Fusarium genus of fungi is responsible for commercially devastating crop diseases and the contamination of cereals with harmful mycotoxins. Fusarium mycotoxins aid infection, establishment, and spread of the fungus within the host plant. We investigated the effects of the Fusarium mycotoxin deoxynivalenol (DON) on the viability of Arabidopsis cells. Although it is known to trigger apoptosis in animal cells, DON treatment at low concentrations surprisingly did not kill these cells. On the contrary, we found that DON inhibited apoptosis-like programmed cell death (PCD) in Arabidopsis cells subjected to abiotic stress treatment in a manner independent of mitochondrial cytochrome c release. This suggested that Fusarium may utilise mycotoxins to suppress plant apoptosis-like PCD. To test this, we infected Arabidopsis cells with a wild type and a DON-minus mutant strain of F. graminearum and found that only the DON producing strain could inhibit death induced by heat treatment. These results indicate that mycotoxins may be capable of disarming plant apoptosis-like PCD and thereby suggest a novel way that some fungi can influence plant cell fate.

Diamond, Mark; Reape, Theresa J.; Rocha, Olga; Doyle, Siamsa M.; Kacprzyk, Joanna; Doohan, Fiona M.; McCabe, Paul F.

2013-01-01

189

Comparative analysis of twelve Dothideomycete plant pathogens  

SciTech Connect

The Dothideomycetes are one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related Dothideomycete species can have very diverse host plants. Twelve Dothideomycete genomes have currently been sequenced by the Joint Genome Institute and other sequencing centers. They can be accessed via Mycocosm which has tools for comparative analysis

Ohm, Robin; Aerts, Andrea; Salamov, Asaf; Goodwin, Stephen B.; Grigoriev, Igor

2011-03-11

190

Chitin synthase-deficient mutant of Fusarium oxysporum elicits tomato plant defence response and protects against wild-type infection.  

PubMed

A mutant of the root pathogen Fusarium oxysporum f. sp. lycopersici, deficient in class V chitin synthase, has been shown previously to be nonvirulent. In this study, we tested the hypothesis that the cause of its avirulence could be the elicitation of the induced plant defence response, leading to the restriction of fungal infection. Co-inoculation of tomato plants with the wild-type strain and the DeltachsV mutant resulted in a significant reduction in symptom development, supporting a protective mechanism exerted by the mutant. The ability of the mutant to penetrate and colonize plant tissues was determined by scanning and transmission electron microscopy, as well as fluorescence microscopy using green fluorescent protein- or cherry fluorescent protein-labelled fungal strains. The extent of wild-type strain colonization in co-inoculated plants decreased steadily throughout the infection process, as shown by the quantification of fungal biomass using real-time polymerase chain reaction. The hypothesis that defence responses are activated by the DeltachsV mutant was confirmed by the analysis of plant pathogenesis-related genes using real-time reverse transcriptase-polymerase chain reaction. Tomato plants inoculated with the DeltachsV mutant showed a three fold increase in endochitinase activity in comparison with wild-type inoculated plants. Taken together, these results suggest that the perturbation of fungal cell wall biosynthesis results in elicitation of the plant defence response during the infection process. PMID:20618706

Pareja-Jaime, Yolanda; Martín-Urdíroz, Magdalena; Roncero, María Isabel González; González-Reyes, José Antonio; Roldán, María Del Carmen Ruiz

2010-07-01

191

Fusarium solani: An Emerging Fungus in Chronic Diabetic Ulcer  

PubMed Central

Fusarium species, a mold which causes disease mainly in plants has emerged as pathogen in immunocompromised patients. Fusarium is known to cause keratitis, onychomycosis, and endophthalmitis. Fusarium solani, is the most common isolate from clinical specimen. Here is a case, a 65-year-old male with type II diabetes mellitus since 10 years presented with a large ulcer on the left leg since 8 months following trauma. The fungal culture of the escar of the ulcer isolated a mold, Fusarium solani. The patient's leg was amputated and was treated with amphotericin B. The patient was discharged on healing of the stump. This case gives emphasis on fungal culture in chronic diabetic ulcer.

Pai, Ramakrishna; Boloor, Rekha; Shreevidya, K; Shenoy, Divakar

2010-01-01

192

Production of Beauvericin by Different Races of Fusarium Oxysporum F. sp. Melonis , The Fusarium Wilt Agent of Muskmelon  

Microsoft Academic Search

Fourty-four strains of Fusarium oxysporum were isolated from plants of melon with Fusarium wilt symptoms. Among these strains, thirty-nine were characterized for their pathogenicity on melon. Thirty-seven strains belonged to known races of F. oxysporum f. sp. melonis, while two strains were non-pathogenic. Four strains belonged to race 0, seven to race 1, four to race 2, and twenty-two to

A. Moretti; A. Belisario; A. Tafuri; A. Ritieni; L. Corazza; A. Logrieco

2002-01-01

193

Paleogene Radiation of a Plant Pathogenic Mushroom  

PubMed Central

Background The global movement and speciation of fungal plant pathogens is important, especially because of the economic losses they cause and the ease with which they are able to spread across large areas. Understanding the biogeography and origin of these plant pathogens can provide insights regarding their dispersal and current day distribution. We tested the hypothesis of a Gondwanan origin of the plant pathogenic mushroom genus Armillaria and the currently accepted premise that vicariance accounts for the extant distribution of the species. Methods The phylogeny of a selection of Armillaria species was reconstructed based on Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI). A timeline was then placed on the divergence of lineages using a Bayesian relaxed molecular clock approach. Results Phylogenetic analyses of sequenced data for three combined nuclear regions provided strong support for three major geographically defined clades: Holarctic, South American-Australasian and African. Molecular dating placed the initial radiation of the genus at 54 million years ago within the Early Paleogene, postdating the tectonic break-up of Gondwana. Conclusions The distribution of extant Armillaria species is the result of ancient long-distance dispersal rather than vicariance due to continental drift. As these finding are contrary to most prior vicariance hypotheses for fungi, our results highlight the important role of long-distance dispersal in the radiation of fungal pathogens from the Southern Hemisphere.

Coetzee, Martin P. A.; Bloomer, Paulette; Wingfield, Michael J.; Wingfield, Brenda D.

2011-01-01

194

Fow2, a Zn(II)2Cys6-type transcription regulator, controls plant infection of the vascular wilt fungus Fusarium oxysporum.  

PubMed

The filamentous fungus Fusarium oxysporum is a soil-borne parasite that causes vascular wilts in a wide variety of crops by directly penetrating roots and colonizing the vascular tissue. In previous work, we generated the non-pathogenic mutant B137 of the melon wilt pathogen F. oxysporum f. sp. melonis by using restriction enzyme-mediated integration (REMI) mutagenesis. Molecular characterization of B137 revealed that this mutant has a single-copy plasmid insertion in a gene, designated FOW2, which encodes a putative transcription regulator belonging to the Zn(II)2Cys6 family. The REMI mutant B137 and other FOW2-targeted mutants completely lost pathogenicity, but were not impaired in vegetative growth and conidiation in cultures. Microscopic observation of infection behaviours of green fluorescent protein (GFP)-marked wild-type and mutant strains revealed that the mutants were defective in their abilities to invade roots and colonize plant tissues. FOW2 is conserved in F. oxysporum pathogens that infect different plants. The FOW2-targeted mutants of the tomato wilt pathogen F. oxysporum f. sp. lycopersici also lost pathogenicity. Nuclear localization of Fow2 was verified using strains expressing Fow2-GFP and GFP-Fow2 fusion proteins. These data strongly suggest that FOW2 encodes a transcription regulator controlling the plant infection capability of F. oxysporum pathogens. PMID:17302801

Imazaki, Iori; Kurahashi, Makoto; Iida, Yuichiro; Tsuge, Takashi

2007-02-01

195

The phylogeny of plant and animal pathogens in the Ascomycota  

Microsoft Academic Search

What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also

Mary L. Berbee

2001-01-01

196

Recent developments in pathogen detection arrays: implications for fungal plant pathogens and use in practica  

Microsoft Academic Search

The failure to adequately identify plant pathogens from culture-based morphological techniques has led to the development of culture-independent molecular approaches. Increasingly, diagnostic laboratories are pursuing fast routine methods that provide reliable identification, sensitive detection, and accurate quantification of plant pathogens. In addition, since plants or parts thereof can be infected by multiple pathogens, multiplex assays that can detect and quantify

Bart Lievens; Bart P. H. J. Thomma

2005-01-01

197

A molecular diagnostic for tropical race 4 of the banana fusarium wilt pathogen  

Microsoft Academic Search

This study analysed genomic variation of the translation elongation factor 1? (TEF-1?) and the intergenic spacer region (IGS) of the nuclear ribosomal operon of Fusarium oxysporum f. sp. cubense (Foc) isolates, from different banana production areas, representing strains within the known races, comprising 20 vegetative compatibility groups (VCG). Based on two single nucleotide polymorphisms present in the IGS region, a

M. A. Dita Rodriguez; C. Waalwijk; I. W. Buddenhagen; M. T. Souza Jr; G. H. J. Kema

2010-01-01

198

Isolates of Fusarium graminearum collected 40–320 meters above ground level cause Fusarium head blight in wheat and produce trichothecene mycotoxins  

Microsoft Academic Search

The aerobiology of fungi in the genus Fusarium is poorly understood. Many species of Fusarium are important pathogens of plants and animals and some produce dangerous secondary metabolites known as mycotoxins. In 2006\\u000a and 2007, autonomous unmanned aerial vehicles (UAVs) were used to collect Fusarium 40–320 m above the ground at the Kentland Farm in Blacksburg, Virginia. Eleven single-spored isolates of

D. G. Schmale; S. D. Ross; T. L. Fetters; P. Tallapragada; A. K. Wood-Jones; B. Dingus

199

Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds.  

PubMed

Chitin, a beta-1,4-linked polysaccharide of N-acetylglucosamine, is a major structural component of fungal cell walls. Fungi have multiple classes of chitin synthases that catalyse N-acetylglucosamine polymerization. Here, we demonstrate the requirement for a class V chitin synthase during host infection by the vascular wilt pathogen Fusarium oxysporum. The chsV gene was identified in an insertional mutagenesis screen for pathogenicity mutants. ChsV has a putative myosin motor and a chitin synthase domain characteristic of class V chitin synthases. The chsV insertional mutant and a gene replacement mutant of F. oxysporum display morphological abnormalities such as hyphal swellings that are indicative of alterations in cell wall structure and can be partially restored by osmotic stabilizer. The mutants are unable to infect and colonize tomato plants or to grow invasively on tomato fruit tissue. They are also hypersensitive to plant antimicrobial defence compounds such as the tomato phytoanticipin alpha-tomatine or H2O2. Reintroduction of a functional chsV copy into the mutant restored the growth phenotype of the wild-type strain. These data suggest that F. oxysporum requires a specific class V chitin synthase for pathogenesis, most probably to protect itself against plant defence mechanisms. PMID:12492869

Madrid, Martan P; Di Pietro, Antonio; Roncero, M Isabel G

2003-01-01

200

Deciphering the Cryptic Genome: Genome-wide Analyses of the Rice Pathogen Fusarium fujikuroi Reveal Complex Regulation of Secondary Metabolism and Novel Metabolites  

PubMed Central

The fungus Fusarium fujikuroi causes “bakanae” disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F. fujikuroi that was assembled into 12 scaffolds corresponding to the 12 chromosomes described for the fungus. We used the genome sequence along with ChIP-seq, transcriptome, proteome, and HPLC-FTMS-based metabolome analyses to identify the potential secondary metabolite biosynthetic gene clusters and to examine their regulation in response to nitrogen availability and plant signals. The results indicate that expression of most but not all gene clusters correlate with proteome and ChIP-seq data. Comparison of the F. fujikuroi genome to those of six other fusaria revealed that only a small number of gene clusters are conserved among these species, thus providing new insights into the divergence of secondary metabolism in the genus Fusarium. Noteworthy, GA biosynthetic genes are present in some related species, but GA biosynthesis is limited to F. fujikuroi, suggesting that this provides a selective advantage during infection of the preferred host plant rice. Among the genome sequences analyzed, one cluster that includes a polyketide synthase gene (PKS19) and another that includes a non-ribosomal peptide synthetase gene (NRPS31) are unique to F. fujikuroi. The metabolites derived from these clusters were identified by HPLC-FTMS-based analyses of engineered F. fujikuroi strains overexpressing cluster genes. In planta expression studies suggest a specific role for the PKS19-derived product during rice infection. Thus, our results indicate that combined comparative genomics and genome-wide experimental analyses identified novel genes and secondary metabolites that contribute to the evolutionary success of F. fujikuroi as a rice pathogen.

Studt, Lena; Niehaus, Eva-Maria; Espino, Jose J.; Huss, Kathleen; Michielse, Caroline B.; Albermann, Sabine; Wagner, Dominik; Bergner, Sonja V.; Connolly, Lanelle R.; Fischer, Andreas; Reuter, Gunter; Kleigrewe, Karin; Bald, Till; Wingfield, Brenda D.; Ophir, Ron; Freeman, Stanley; Hippler, Michael; Smith, Kristina M.; Brown, Daren W.; Proctor, Robert H.; Munsterkotter, Martin; Freitag, Michael; Humpf, Hans-Ulrich; Guldener, Ulrich; Tudzynski, Bettina

2013-01-01

201

Pathogens promote plant diversity through a compensatory response  

Microsoft Academic Search

Pathogens are thought to promote diversity in plant communities by preventing competitive exclusion. Previous studies have focussed primarily on single-plant, single- pathogen interactions, yet the interactions between multiple pathogens and multiple hosts may have non-additive impacts on plant community composition. Here, we report that both a bacterial and a fungal pathogen maintained the diversity of a four-species plant community across

Devon J. Bradley; Gregory S. Gilbert; Jennifer B. H. Martiny

2008-01-01

202

Plants, plant pathogens, and microgravity--a deadly trio.  

PubMed

Plants grown in spaceflight conditions are more susceptible to colonization by plant pathogens. The underlying causes for this enhanced susceptibility are not known. Possibly the formation of structural barriers and the activation of plant defense response components are impaired in spaceflight conditions. Either condition would result from altered gene expression of the plant. Because of the tools available, past studies focused on a few physiological responses or biochemical pathways. With recent advances in genomics research, new tools, including microarray technologies, are available to examine the global impact of growth in the spacecraft on the plant's gene expression profile. In ground-based studies, we have developed cDNA subtraction libraries of rice that are enriched for genes induced during pathogen infection and the defense response. Arrays of these genes are being used to dissect plant defense response pathways in a model system involving wild-type rice plants and lesion mimic mutants. The lesion mimic mutants are ideal experimental tools because they erratically develop defense response-like lesions in the absence of pathogens. The gene expression profiles from these ground-based studies will provide the molecular basis for understanding the biochemical and physiological impacts of spaceflight on plant growth, development and disease defense responses. This, in turn, will allow the development of strategies to manage plant disease for life in the space environment. PMID:11865865

Leach, J E; Ryba-White, M; Sun, Q; Wu, C J; Hilaire, E; Gartner, C; Nedukha, O; Kordyum, E; Keck, M; Leung, H; Guikema, J A

2001-06-01

203

Hemoglobin regulation of plant embryogenesis and plant pathogen interaction  

PubMed Central

Plant hemoglobins are ubiquitous molecules involved in several aspects of plant development and stress responses. Studies on the functional aspects of plant hemoglobins at the cellular level in these processes are limited, despite their ability to scavenge nitric oxide (NO), an important signal molecule interfering with hormone synthesis and sensitivity. This mini-review summarizes current knowledge on plant hemoglobins, analyzes their participation in plant pathogen interaction and embryogenesis and proposes a possible model centering on jasmonic acid (JA) as a downstream component of hemoglobin responses.

Wally, Owen S.D.; Mira, Mohamed M.; Hill, Robert D.; Stasolla, Claudio

2013-01-01

204

In vitro evaluation on inhibitory nature of some Neem formulations against plant pathogenic fungi.  

PubMed

Different Neem formulations derived from the Neem tree (Azadirachta indica) have been found to be potential fungicides against a broad spectrum of plant pathogenic fungi. Some Neem formulations viz. Achook (0.15% EC), Bioneem (0.03% EC), Nimbecidine (0.03% EC) and Neemark (0.03% EC) were examined against some plant pathogenic fungi such as (Fusarium oxysporum, Alternaria solani, Curvularia lunata, Helminthosporium sp. and Sclerotium rolfsii). Among these Achook (0.15% EC) was found to be more active in terms of Minimum Inhibition Concentration (MIC) value followed by Bioneem, Neemark and Nimbecidine. Remarkably, although all these formulations are oil based, Neem oil itself did not exhibit any fungicidal activity. PMID:12024976

Bhonde, S B; Deshpande, S G; Sharma, R N

1999-01-01

205

HapX-Mediated Iron Homeostasis Is Essential for Rhizosphere Competence and Virulence of the Soilborne Pathogen Fusarium oxysporum[C][W][OA  

PubMed Central

Soilborne fungal pathogens cause devastating yield losses and are highly persistent and difficult to control. During the infection process, these organisms must cope with limited availability of iron. Here we show that the bZIP protein HapX functions as a key regulator of iron homeostasis and virulence in the vascular wilt fungus Fusarium oxysporum. Deletion of hapX does not affect iron uptake but causes derepression of genes involved in iron-consuming pathways, leading to impaired growth under iron-depleted conditions. F. oxysporum strains lacking HapX are reduced in their capacity to invade and kill tomato (Solanum lycopersicum) plants and immunodepressed mice. The virulence defect of ?hapX on tomato plants is exacerbated by coinoculation of roots with a biocontrol strain of Pseudomonas putida, but not with a siderophore-deficient mutant, indicating that HapX contributes to iron competition of F. oxysporum in the tomato rhizosphere. These results establish a conserved role for HapX-mediated iron homeostasis in fungal infection of plants and mammals.

Lopez-Berges, Manuel S.; Capilla, Javier; Turra, David; Schafferer, Lukas; Matthijs, Sandra; Jochl, Christoph; Cornelis, Pierre; Guarro, Josep; Haas, Hubertus; Di Pietro, Antonio

2012-01-01

206

Tomato root colonization by fluorescent-tagged pathogenic and protective strains of Fusarium oxysporum in hydroponic culture differs from root colonization in soil.  

PubMed

The colonization process of tomato roots inoculated separately or/and simultaneously by a pathogenic Fusarium oxysporum f. sp. lycopersici strain Fol8 and the protective F. oxysporum strain Fo47, genetically tagged with the red and green fluorescent protein genes, respectively, was studied in a hydroponic culture. Plants were coinoculated with Fol8 and Fo47 at two conidial concentration ratios of 1/1 and 1/100, in which biological control was not effective or effective, respectively. First observation of fungi on root was possible 48 h after inoculation at a high inoculum level and 5 days post inoculation at the lower concentration of inoculum. The pattern of root colonization was similar for both strains with the initial development of hyphal network on the upper part of taproot, followed by the growth of hyphae towards the elongation zone, lateral roots and root apices. Finally, the whole elongation zone and root apex were invaded by both strains but no specific infection sites were observed. When coinoculated, both strains could grow very closely or even at the same spot on the root surface. At the nonprotective ratio, Fol8 was the successful colonizer, but application of Fo47 at a concentration 100 times >Fol8 delayed vessel colonization by the pathogen. PMID:18657114

Nahalkova, Jarmila; Fatehi, Jamshid; Olivain, Chantal; Alabouvette, Claude

2008-09-01

207

Inhibitory effects of essential oils of medicinal plants from growth of plant pathogenic fungi.  

PubMed

Plant cells produce a vast amount of secondary metabolites. Production of some compounds is restricted to a single species. Some compounds are nearly always found only in certain specific plant organs and during a specific developmental period of the plant. Some secondary metabolites of plants serve as defensive compounds against invading microorganisms. Nowadays, it is attempted to substitute the biological and natural agents with chemically synthesized fungicides. In the present research, the antifungal activities of essential oils of seven medicinal plants on mycelial growth of three soilborne plant pathogenic fungi were investigated. The plants consisted of Zataria multiflora, Thymus carmanicus, Mentha pieperata, Satureja hortensis, Lavandual officinolis, Cuminum cyminum and Azadirachta indica. The first five plants are from the family Labiatae. Examined fungi, Fusarium oxysporum f.sp. lycopersici, Fusarium solani and Rhizoctonia solani are the causal agents of tomato root rot. Essential oils of Z. multiflora, T. carmanicus, M. pieperata, S. hortensis and C. cyminum were extracted by hydro-distillation method. Essential oils of L. officinalis and A. indica were extracted by vapor-distillation method. A completely randomized design with five replicates was used to examine the inhibitory impact of each concentration (300, 600 and 900 ppm) of each essential oil. Poisoned food assay using potato dextrose agar (PDA) medium was employed. Results showed that essential oils of A. indica, Z. multiflora, T. carmanicus and S. hortensis in 900 ppm at 12 days post-inoculation, when the control fungi completely covered the plates, prevented about 90% from mycelial growth of each of the fungi. While, the essential oils of M. pieperata, C. cyminum and L. officinalis in the same concentration and time prevented 54.86, 52.77 and 48.84%, respectively, from F. solani growth. These substances did not prevent from F. oxysporum f.sp. lycopersici and R. solani growth. Minimum inhibitory concentration (MIC) of essential oils of T. carmanicus, Z. multiflora and A. indica from R. solani and F. solani growth was 900 and 600 ppm, respectively. In addition, the MIC of essential oils of these plants and essential oil of S. hortensis from F. oxysporum f.sp. lycopersici growth was 900 ppm. The MIC of essential oils of M. pieperata, C. cyminum and L. officinalis from F. solani growth was 900 ppm. PMID:22702190

Panjehkeh, N; Jahani Hossein-Abadi, Z

2011-01-01

208

Top 10 plant pathogenic bacteria in molecular plant pathology.  

PubMed

Many plant bacteriologists, if not all, feel that their particular microbe should appear in any list of the most important bacterial plant pathogens. However, to our knowledge, no such list exists. The aim of this review was to survey all bacterial pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate the bacterial pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 458 votes from the international community, and allowed the construction of a Top 10 bacterial plant pathogen list. The list includes, in rank order: (1) Pseudomonas syringae pathovars; (2) Ralstonia solanacearum; (3) Agrobacterium tumefaciens; (4) Xanthomonas oryzae pv. oryzae; (5) Xanthomonas campestris pathovars; (6) Xanthomonas axonopodis pathovars; (7) Erwinia amylovora; (8) Xylella fastidiosa; (9) Dickeya (dadantii and solani); (10) Pectobacterium carotovorum (and Pectobacterium atrosepticum). Bacteria garnering honourable mentions for just missing out on the Top 10 include Clavibacter michiganensis (michiganensis and sepedonicus), Pseudomonas savastanoi and Candidatus Liberibacter asiaticus. This review article presents a short section on each bacterium in the Top 10 list and its importance, with the intention of initiating discussion and debate amongst the plant bacteriology community, as well as laying down a benchmark. It will be interesting to see, in future years, how perceptions change and which bacterial pathogens enter and leave the Top 10. PMID:22672649

Mansfield, John; Genin, Stephane; Magori, Shimpei; Citovsky, Vitaly; Sriariyanum, Malinee; Ronald, Pamela; Dow, Max; Verdier, Valérie; Beer, Steven V; Machado, Marcos A; Toth, Ian; Salmond, George; Foster, Gary D

2012-08-01

209

Protein-protein interactions in pathogen recognition by plants  

Microsoft Academic Search

Protein-protein interactions have emerged as key determinants of whether plant encounters with pathogens result in disease or successful plant defense. Genetic interactions between plant resistance genes and pathogen avirulence genes enable pathogen recognition by plants and activate plant defense. These gene-for-gene interactions in some cases have been shown to involve direct interactions of the products of the genes, and have

Adam J. Bogdanove

2002-01-01

210

A proteomic study of in-root interactions between chickpea pathogens: the root-knot nematode Meloidogyne artiellia and the soil-borne fungus Fusarium oxysporum f. sp. ciceris race 5.  

PubMed

Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. ciceris (Foc) is the main soil-borne disease limiting chickpea production. Management of this disease is achieved mainly by the use of resistant cultivars. However, co-infection of a Foc-resistant plant by the fungus and the root-knot nematode Meloidogyne artiellia (Ma) causes breakdown of the resistance and thus limits its efficacy in the control of Fusarium wilt. In this work we aimed to reveal key aspects of chickpea:Foc:Ma interactions, studying fungal- and nematode-induced changes in root proteins, using chickpea lines 'CA 336.14.3.0' and 'ICC 14216K' that show similar resistant (Foc race 5) and susceptible (Ma) responses to either pathogen alone but a differential response after co-infection with both pathogens. 'CA 336.14.3.0' and 'ICC 14216K' chickpea plants were challenged with Foc race 5 and Ma, either in single or in combined inoculations, and the root proteomes were analyzed by two-dimensional gel electrophoresis using three biological replicates. Pairwise comparisons of treatments indicated that 47 protein spots in 'CA 336.14.3.0' and 31 protein spots in 'ICC 14216K' underwent significant changes in intensity. The responsive protein spots tentatively identified by MALDI TOF-TOF MS (27 spots for 'CA 336.14.3.0' and 15 spots for 'ICC 14216K') indicated that same biological functions were involved in the responses of either chickpea line to Foc race 5 and Ma, although common as well as line-specific responsive proteins were found within the different biological functions. To the best of our knowledge, this is the first study at the root proteome level of chickpea response to a biotic stress imposed by single and joint infections by two major soil-borne pathogens. PMID:21640211

Palomares-Rius, Juan E; Castillo, Pablo; Navas-Cortés, Juan A; Jiménez-Díaz, Rafael M; Tena, Manuel

2011-09-01

211

Natural Occurrence of 16 Fusarium Toxins in Grains and Feedstuffs of Plant Origin from Germany  

Microsoft Academic Search

A total of 220 samples comprising cereals, cereal byproducts, corn plants and corn silage as well as non-grain based feedstuffs\\u000a was randomly collected during 2000 and 2001 from sources located in Germany and analysed for 16 Fusarium toxins. The trichothecenes scirpentriol (SCIRP), 15-monoacetoxyscirpenol (MAS), diacetoxyscirpenol (DAS), T-2 tetraol, T-2\\u000a triol, HT-2 and T-2 toxin (HT-2, T-2), neosolaniol (NEO), deoxynivalenol (DON),

Margit Schollenberger; Hans-Martin Müller; Melanie Rüfle; Sybille Suchy; Susanne Plank; Winfried Drochner

2006-01-01

212

Systemic expression of defense response genes in wheat spikes as a response to Fusarium graminearum infection  

Microsoft Academic Search

Wheat spikes infected by Fusarium graminearum result in Fusarium head blight, a devastating disease of wheat. The spikes respond to infection by inducing a set of defense response genes in infected spikelets much as has been shown in other plant-pathogen interactions. To determine whether defense response genes are expressed systemically within F. graminearum -inoculated wheat spikes, we examined transcript accumulation

Clara Pritsch; Carroll P. Vance; William R. Bushnell; David A. Somers; Thomas M. Hohn; Gary J. Muehlbauer

2001-01-01

213

First record of Fusarium oxysporum f. sp. basilici occurring on sweet basil in South Africa  

Microsoft Academic Search

This is the first record of Fusarium oxysporum f. sp. basilici causing wilt and crown rot of sweet basil plants in the Western Cape province of South Africa. The identification of the\\u000a pathogen was confirmed with a PCR assay using the Fusarium oxysporum f. sp. basilici specific primer pair, Bik 1 + Bik 2.

L. Swart; J. M. van Niekerk

2003-01-01

214

Molecular detection of Fusarium species and prediction of mycotoxin levels in food and feed  

Microsoft Academic Search

Members of the genus Fusarium are among the most potent plant pathogens worldwide, and members of this genus produce a range of mycotoxins which may be harmful for humans and animals. The current morphology based taxonomical system for Fusarium is inadequate, and detection and identification procedures are both time consuming and error-prone. In the last decade molecular detection methods have

Ralf Kristensen; Knut Berdal; Arne Holst-Jensen

2007-01-01

215

Genome and Transcriptome Analysis of the Fungal Pathogen Fusarium oxysporum f. sp. cubense Causing Banana Vascular Wilt Disease  

PubMed Central

Background The asexual fungus Fusarium oxysporum f. sp. cubense (Foc) causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.). To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced. Methodology/Principal Findings Genome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1), the Foc race 4 isolate (Foc4) has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana ‘Brazil’ in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety ‘Brazil’. Conclusions/Significance Foc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will thus advance us develop effective methods for managing the banana vascular wilt disease, including improvement of disease resistance in banana.

Zeng, Huicai; Fan, Dingding; Zhu, Yabin; Feng, Yue; Wang, Guofen; Peng, Chunfang; Jiang, Xuanting; Zhou, Dajie; Ni, Peixiang; Liang, Changcong; Liu, Lei; Wang, Jun; Mao, Chao

2014-01-01

216

The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses  

PubMed Central

Venturia inaequalis is the causal agent of apple scab, a devastating disease of apple. We outline several unique features of this pathogen which are useful for molecular genetics studies intended to understand plant-pathogen interactions. The pathogenicity mechanisms of the pathogen and overview of apple defense responses, monogenic and polygenic resistance, and their utilization in scab resistance breeding programs are also reviewed.

Jha, Gopaljee; Thakur, Karnika; Thakur, Priyanka

2009-01-01

217

Do plant and human pathogens have a common pathogenicity strategy?  

Microsoft Academic Search

Recently, a novel ‘two-step’ model of pathogenicity has been described that suggests host-cell-derived vasculoproliferative factors play a crucial role in the pathogenesis of bacillary angiomatosis, a disease caused by the human pathogenic bacterium Bartonella henselae. The resulting proliferation of endothelial cells could be interpreted as bacterial pathogens triggering the promotion of their own habitat: the host cell. Similar disease mechanisms

Volkhard A. J Kempf; Niclas Hitziger; Tanja Riess; Ingo B Autenrieth

2002-01-01

218

Genome Sequences of Six Wheat-Infecting Fusarium Species Isolates  

PubMed Central

Fusarium pathogens represent a major constraint to wheat and barley production worldwide. To facilitate future comparative studies of Fusarium species that are pathogenic to wheat, the genome sequences of four Fusarium pseudograminearum isolates, a single Fusarium acuminatum isolate, and an organism from the Fusarium incarnatum-F. equiseti species complex are reported.

Moolhuijzen, Paula M.; Manners, John M.; Wilcox, Stephen A.; Bellgard, Matthew I.

2013-01-01

219

Genome sequences of six wheat-infecting fusarium species isolates.  

PubMed

Fusarium pathogens represent a major constraint to wheat and barley production worldwide. To facilitate future comparative studies of Fusarium species that are pathogenic to wheat, the genome sequences of four Fusarium pseudograminearum isolates, a single Fusarium acuminatum isolate, and an organism from the Fusarium incarnatum-F. equiseti species complex are reported. PMID:24009115

Moolhuijzen, Paula M; Manners, John M; Wilcox, Stephen A; Bellgard, Matthew I; Gardiner, Donald M

2013-01-01

220

Antagonistic interactions between fungal rice pathogen Fusarium Verticillioides (Sacc.) Nirenberg and Trichoderma harzianum Rifai  

Microsoft Academic Search

Trichoderma harzianum has been found to be a competitor and mycoparasite ofFusarium verticillioides which causes foot rot disease on rice. The experiment was undertaken macroscopically and microscopically. In total 6 treatments\\u000a were performed combining three water activities (0.95, 0.98, 0.995) and two temperatures (15 and 25 °C). At all conditions\\u000a tested, except at 0.95a\\u000a w and 15 °C.Trichoderma harzianum acted

Francisca Sempere; María Pilar Santamarina

2009-01-01

221

Pathogen Induced Changes in the Protein Profile of Human Tears from Fusarium Keratitis Patients  

PubMed Central

Fusarium is the major causative agent of fungal infections leading to corneal ulcer (keratitis) in Southern India and other tropical countries. Keratitis caused by Fusarium is a difficult disease to treat unless antifungal therapy is initiated during the early stages of infection. In this study tear proteins were prepared from keratitis patients classified based on the duration of infection. Among the patients recruited, early infection (n?=?35), intermediate (n?=?20), late (n?=?11), samples from five patients in each group were pooled for analysis. Control samples were a pool of samples from 20 patients. Proteins were separated on difference gel electrophoresis (DIGE) and the differentially expressed proteins were quantified using DeCyder software analysis. The following differentially expressed proteins namely alpha-1-antitrypsin, haptoglobin ?2 chain, zinc-alpha-2-glycoprotein, apolipoprotein, albumin, haptoglobin precursor - ? chain, lactoferrin, lacrimal lipocalin precursor, cystatin SA III precursor, lacritin precursor were identified using mass spectrometry. Variation in the expression level of some of the proteins was confirmed using western blot analysis. This is the first report to show stage specific tear protein profile in fungal keratitis patients. Validation of this data using a much larger sample set could lead to clinical application of these findings.

Ananthi, Sivagnanam; Venkatesh Prajna, Namperumalsamy; Lalitha, Prajna; Valarnila, Murugesan; Dharmalingam, Kuppamuthu

2013-01-01

222

Integrated management strategies for tomato Fusarium wilt.  

PubMed

Fusarium wilt is caused by the fungal pathogens, Fusarium oxysporum or Fusarium solani. It is a devastating disease that affects many important food and vegetable crops and a major source of loss to farmers worldwide. Initial strategies developed to combat this devastating plant disease include the use of cultural, physical and chemical control. None of these strategies have been able to give the best results of completely ameliorating the situation except for the cultural method which is mainly preventive. A good knowledge of the nature, behaviour and environmental conditions of growth of the disease agent is very important to controlling the disease development in that case. Biological control has been shown to be an environmentally friendly alternative. It makes use of rhizospheric and endophytic microorganisms that can survive and compete favourably well with the Fusarium wilt pathogen. They include plant growth-promoting rhizobacteria (PGPR) such as Bacillus spp. and Pseudomonas spp. For PGPR to control or inhibit the growth of the Fusarium wilt pathogen, they make use of mechanisms such as indole acetic acid production, siderophore production, phosphate solublilization, systemic resistance induction and antifungal volatile production among others. PMID:24077535

Ajilogba, Caroline F; Babalola, Olubukola O

2013-01-01

223

Future of portable devices for plant pathogen diagnosis.  

PubMed

The demand for rapid and accurate diagnosis of plant diseases has risen in the last decade. On-site diagnosis of single or multiple pathogens using portable devices is the first step in this endeavour. Despite extensive attempts to develop portable devices for pathogen detection, current technologies are still restricted to detecting known pathogens with limited detection accuracy. Developing new detection techniques for rapid and accurate detection of multiple plant pathogens and their associated variants is essential. Recent single DNA sequencing technologies are a promising new avenue for developing future portable devices for plant pathogen detection. In this review, we detail the current progress in portable devices and technologies used for detecting plant pathogens, the current position of emerging sequencing technologies for analysis of plant genomics, and the future of portable devices for rapid pathogen diagnosis. PMID:24920461

Nezhad, Amir Sanati

2014-07-14

224

Mutation of CRE1 in Fusarium oxysporum reverts the pathogenicity defects of the FRP1 deletion mutant.  

PubMed

The F-box protein Frp1 is required for pathogenicity of Fusarium oxysporum f. sp. lycopersici towards tomato. The Delta frp1 mutant is deficient in expression of genes for cell wall-degrading enzymes (CWDEs) and ICL1, encoding a key enzyme for the assimilation of C2 carbon sources. An explanation for the inability of the Delta frp1 mutant to express these genes may be found in constitutive carbon catabolite repression. Cre1 is the transcriptional repressor in filamentous fungi known to repress several CWDE genes and other genes required for assimilation of non-sugar carbon sources. Here, we demonstrate that Frp1 and Cre1 both control the repression/derepression state of such genes. The replacement of CRE1 with GST::CRE1 resulted in a derepressed phenotype in wild-type background, suggesting that this replacement affects Cre1 function. Strikingly, in the Delta frp1 mutant the replacement of CRE1 with GST::CRE1 restored pathogenicity, growth on ethanol and expression of ICL1 and CWDE genes. A GFP-Cre1 fusion protein is not degraded nor exported out of the nucleus during growth on ethanol, a derepressing carbon source, suggesting that Cre1 is not likely a target of Frp1 for degradation by the proteasome. We conclude that both proteins function together to regulate transcription of carbon source utilization genes. PMID:19912543

Jonkers, Wilfried; Rep, Martijn

2009-12-01

225

Uncovering plant-pathogen crosstalk through apoplastic proteomic studies  

PubMed Central

Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.

Delaunois, Bertrand; Jeandet, Philippe; Clement, Christophe; Baillieul, Fabienne; Dorey, Stephan; Cordelier, Sylvain

2014-01-01

226

Expression of a single-chain variable-fragment antibody against a Fusarium virguliforme toxin peptide enhances tolerance to sudden death syndrome in transgenic soybean plants.  

PubMed

Plants do not produce antibodies. However, plants can correctly assemble functional antibody molecules encoded by mammalian antibody genes. Many plant diseases are caused by pathogen toxins. One such disease is the soybean sudden death syndrome (SDS). SDS is a serious disease caused by the fungal pathogen Fusarium virguliforme. The pathogen, however, has never been isolated from diseased foliar tissues. Thus, one or more toxins produced by the pathogen have been considered to cause foliar SDS. One of these possible toxins, FvTox1, was recently identified. We investigated whether expression of anti-FvTox1 single-chain variable-fragment (scFv) antibody in transgenic soybean can confer resistance to foliar SDS. We have created two scFv antibody genes, Anti-FvTox1-1 and Anti-FvTox1-2, encoding anti-FvTox1 scFv antibodies from RNAs of a hybridoma cell line that expresses mouse monoclonal anti-FvTox1 7E8 antibody. Both anti-FvTox1 scFv antibodies interacted with an antigenic site of FvTox1 that binds to mouse monoclonal anti-FvTox1 7E8 antibody. Binding of FvTox1 by the anti-FvTox1 scFv antibodies, expressed in either Escherichia coli or transgenic soybean roots, was initially verified on nitrocellulose membranes. Expression of anti-FvTox1-1 in stable transgenic soybean plants resulted in enhanced foliar SDS resistance compared with that in nontransgenic control plants. Our results suggest that i) FvTox1 is an important pathogenicity factor for foliar SDS development and ii) expression of scFv antibodies against pathogen toxins could be a suitable biotechnology approach for protecting crop plants from toxin-induced diseases. PMID:22397408

Brar, Hargeet K; Bhattacharyya, Madan K

2012-06-01

227

Pathogen derived elicitors: searching for receptors in plants  

Microsoft Academic Search

SUMMARY Recognition of potential pathogens is central to plants' ability to defend themselves against harmful microbes. Plants are able to recognize pathogen-derived molecules; elicitors that trigger a number of induced defences in plants. Microbial elicitors constitute a bewildering array of compounds including different oligosaccharides, lipids, peptides and proteins. Identifying the receptors for this vast array of elicitors is a major

Marcos Montesano; Gunter Brader; E. Tapio Palva

2003-01-01

228

The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms.  

PubMed

Microbial communities play a pivotal role in the functioning of plants by influencing their physiology and development. While many members of the rhizosphere microbiome are beneficial to plant growth, also plant pathogenic microorganisms colonize the rhizosphere striving to break through the protective microbial shield and to overcome the innate plant defense mechanisms in order to cause disease. A third group of microorganisms that can be found in the rhizosphere are the true and opportunistic human pathogenic bacteria, which can be carried on or in plant tissue and may cause disease when introduced into debilitated humans. Although the importance of the rhizosphere microbiome for plant growth has been widely recognized, for the vast majority of rhizosphere microorganisms no knowledge exists. To enhance plant growth and health, it is essential to know which microorganism is present in the rhizosphere microbiome and what they are doing. Here, we review the main functions of rhizosphere microorganisms and how they impact on health and disease. We discuss the mechanisms involved in the multitrophic interactions and chemical dialogues that occur in the rhizosphere. Finally, we highlight several strategies to redirect or reshape the rhizosphere microbiome in favor of microorganisms that are beneficial to plant growth and health. PMID:23790204

Mendes, Rodrigo; Garbeva, Paolina; Raaijmakers, Jos M

2013-09-01

229

Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens.  

PubMed

The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases. PMID:21829347

Klosterman, Steven J; Subbarao, Krishna V; Kang, Seogchan; Veronese, Paola; Gold, Scott E; Thomma, Bart P H J; Chen, Zehua; Henrissat, Bernard; Lee, Yong-Hwan; Park, Jongsun; Garcia-Pedrajas, Maria D; Barbara, Dez J; Anchieta, Amy; de Jonge, Ronnie; Santhanam, Parthasarathy; Maruthachalam, Karunakaran; Atallah, Zahi; Amyotte, Stefan G; Paz, Zahi; Inderbitzin, Patrik; Hayes, Ryan J; Heiman, David I; Young, Sarah; Zeng, Qiandong; Engels, Reinhard; Galagan, James; Cuomo, Christina A; Dobinson, Katherine F; Ma, Li-Jun

2011-07-01

230

Metabolites of rhizobacteria antagonistic towards fungal plant pathogens  

Microsoft Academic Search

Biological control of insect, plant pathogens and weeds is the only major alternative to the use of pesticides in agriculture\\u000a and forestry. A double-layer technique was used for isolation of antagonistic bacteria from rhizosphere against plant pathogenic\\u000a fungi. Four potential rhizobacteria was selected in dual culture plate method based on their antifungal activity against several\\u000a soil-borne fungal plant pathogens. The

Garima Jha; Vanamala Anjaiah

2007-01-01

231

Antibiotic effect of exogenously applied salicylic acid on in vitro soilborne pathogen, Fusarium oxysporum f.sp.niveum.  

PubMed

Salicylic acid, which is biosynthesized inside plant and is often found and accumulated in soil due to plant debris decaying, is considered as a signaling substance during plant-microbe interactions. It is involved in the cycling of biogeochemistry and related to plant resistance to biotic and abiotic stress. The antibiotic effect of salicylic acid on Fusarium oxysporum f.sp.niveum (FON) was studied to investigate the relationships between the salicylic acid and the fungus in the ecological interaction of plant-microbe. Results showed that the biomass, colony diameter, number of conidium germination and conidium production of FON were decreased by 52.0%, 25.7%, 100% and 100% at concentrations of 800 mg L(-1). However, mycotoxin yield was increased by 233%, pectinase activity raised by 168.0% and cellulase activity increased by 1325% compared to control at higher concentrations. It was concluded that salicylic acid as an allelochemical greatly inhibited FON growth and conidia formation and germination, though stimulated mycotoxin production and activities of hydrolytic enzymes by FON. PMID:18952255

Wu, Hong-Sheng; Raza, Waseem; Fan, Jia-Qin; Sun, Yong-Gang; Bao, Wei; Liu, Dong-Yang; Huang, Qi-Wei; Mao, Ze-Sheng; Shen, Qi-Rong; Miao, Wei-Guo

2008-12-01

232

Formation of tomatine in tomato plants infected with Streptomyces species and treated with herbicides, correlated with reduction of Pseudomonas solanacearum and Fusarium oxysporum f. sp. lycopersici.  

PubMed

Pretreatment of tomato seeds with pendimethalin or metribuzin and inoculation of seedlings with the antagonistic Streptomyces corchorusii or/and Streptomyces mutabilis were tested for the formation of tomatine in roots and stems of tomato, infested with Pseudomonas solancearum or/and Fusarium oxysporum f. sp. lycopersici. All treatments induced the formation of variable quantities of tomatine, compared with untreated control. The variation was proportional to: the pathogen, Fusarium was more stimulating than Pseudomonas; the antagonistic organism, S. corchorusii being more eliciting than S. mutabilis; the herbicide and its concentration, pendimethalin at 2 x 10(-3) M being the most eliciting of tomatine; and according to the soil, plants grown in non-sterilized soil accumulated more tomatine than did these grown in sterilized soil. In all treatments, stems had more tomatine than roots and non-sterilized soil was better than sterilized soil. The antagonistic streptomycetes induced accumulation of tomatine more than did the herbicides. The highest amounts of tomatine were detected in plants pretreated with pendimethalin at 2 x 10(-3) M, grown in non-sterilized soil, infested with F. oxysporum, and inoculated with S. corchorusii and S. mutabilis. The effect of the extracted tomatine on the growth of Fusarium and Pseudomonas was examined in vitro. The crude extract of tomatine from all treatments reduced growth and sporulation of F. oxysporum and growth of P. solanacearum in defined media. The reduction varied according to the treatment and was proportional to the quantities of extracted tomatine, the highest amounts being the most effective. The mechanism of phytoalexins in controlling tomato wilt pathogens was also discussed. PMID:8934667

El-Raheem, A; El-Shanshoury, R; El-Sououd, S M; Awadalla, O A; El-Bandy, N B

1995-01-01

233

Multiplex Detection of Plant Pathogens Using a Microsphere Immunoassay Technology  

PubMed Central

Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), chilli vein-banding mottle virus (CVbMV, potyvirus), watermelon silver mottle virus (WSMoV, tospovirus serogroup IV) and melon yellow spot virus (MYSV, tospovirus). An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE)-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA) when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour) was much shorter than that of ELISA (4 hours). This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.

Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Kumpoosiri, Mallika; Warin, Nuchnard; Oplatowska, Michalina; Gajanandana, Oraprapai; Grant, Irene R.; Karoonuthaisiri, Nitsara; Elliott, Christopher T.

2013-01-01

234

Fusarium graminearum Gene Deletion Mutants Map1 and tri5 Reveal Similarities and Differences in the Pathogenicity Requirements to Cause Disease on Arabidopsis and Wheat Floral Tissue  

Microsoft Academic Search

The Ascomycete pathogen Fusarium graminearum can infect all cereal species and lower grain yield, quality and safety. The fungus can also cause disease on Arabidopsis thaliana. In this study, the disease-causing ability of two F. graminearum mutants was analysed to further explore the parallels between the wheat (Triticum aestivum) and Arabidopsis floral pathosystems. Wild-type F graminearum (strain PH-1) and two

Alayne Cuzick; Martin Urban; Kim Hammond-Kosack

2008-01-01

235

Mating, conidiation and pathogenicity of Fusarium graminearum , the main causal agent of the headblight disease of wheat, are regulated by the MAP kinase gpmk1  

Microsoft Academic Search

To date, only very little is known about the molecular infection mechanisms of the head-blight pathogen of wheat, Fusarium graminearum (teleomorph Gibberella zeae). Here, we report on the isolation and characterization of the Fus3\\/Pmk1 mitogen-activated protein kinase homologue Gpmk1 from F. graminearum. Disruption of the gpmk1 gene in F. graminearum results in mutants that are reduced in conidial production, are

Nicole J. Jenczmionka; Frank J. Maier; Anke P. Lösch; Wilhelm Schäfer

2003-01-01

236

Physiologic races of Fusarium oxysporum f.sp. melonis in the southeastern anatolia region of turkey and varietal reactions to races of the pathogen  

Microsoft Academic Search

Thirty-four isolates ofFusarium oxysporum f.sp.melonis (F.o.m.) obtained from 205 fields in melon-producing areas in the southeastern Anatolia Region of Turkey were identified on the basis\\u000a of colony morphology and pathogenicity by the root dip method. In this region the mean prevalence of wilt disease was 88.1%\\u000a and the mean incidence of disease was 47.5%. Physiologic races 0, 1, 2, and

Sener Kurt; B. Baran; N. Sar?; H. Yetisir

2002-01-01

237

Pathogenicity, vegetative compatibility and amplified fragment length polymorphism (AFLP) analysis of Fusarium oxysporum f. sp. radicis-cucumerinum isolates from Turkish greenhouses  

Microsoft Academic Search

The objective of the current study was to characterize Fusarium oxysporum f. sp. radicis-cucumerinum isolates from cucumbers in Turkey in terms of pathogenicity, vegetative compatibility and amplified fragment length polymorphism\\u000a (AFLP) variation. In the 2007 and 2008 greenhouse cucumber-growing seasons, surveys were conducted in Adana, Antalya, Hatay\\u000a and Mersin provinces of the Mediterranean region of Turkey. Forty-seven fungal isolates of

Fatih Mehmet Tok; ?ener Kurt

2010-01-01

238

A Phenome-Based Functional Analysis of Transcription Factors in the Cereal Head Blight Fungus, Fusarium graminearum  

Microsoft Academic Search

Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The fungus produces mycotoxins that are harmful to animal and human. In this study, a systematic analysis of 17 phenotypes of the mutants in 657 Fusarium graminearum genes encoding putative transcription factors (TFs) resulted in a database of over 11,000 phenotypes (phenome). This database provides

Hokyoung Son; Young-Su Seo; Kyunghun Min; Ae Ran Park; Jungkwan Lee; Jian-Ming Jin; Yang Lin; Peijian Cao; Sae-Yeon Hong; Eun-Kyung Kim; Seung-Ho Lee; Aram Cho; Seunghoon Lee; Myung-Gu Kim; Yongsoo Kim; Jung-Eun Kim; Jin-Cheol Kim; Gyung Ja Choi; Sung-Hwan Yun; Jae Yun Lim; Minkyun Kim; Yong-Hwan Lee; Yang-Do Choi; Yin-Won Lee

2011-01-01

239

Phenylpropanoid Pathway Is Potentiated by Silicon in the Roots of Banana Plants During the Infection Process of Fusarium oxysporum f. sp. cubense.  

PubMed

ABSTRACT Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense, is a disease that causes large reductions in banana yield worldwide. Considering the importance of silicon (Si) to potentiate the resistance of several plant species to pathogen infection, this study aimed to investigate, at the histochemical level, whether this element could enhance the production of phenolics on the roots of banana plants in response to F. oxysporum f. sp. cubense infection. Plants of cultivar Maçã, which is susceptible to F. oxysporum f. sp. cubense, were grown in plastic pots amended with 0 (-Si) or 0.39 g of Si (+Si) per kilogram of soil and inoculated with race 1 of F. oxysporum f. sp. cubense. The root Si concentration was increased by 35.6% for +Si plants in comparison to the -Si plants, which contributed to a 27% reduction in the symptoms of Fusarium wilt on roots. There was an absence of fluorescence for the root sections of the -Si plants treated with the Neu and Wilson's reagents. By contrast, for the root sections obtained from the +Si plants treated with Neu's reagent, strong yellow-orange fluorescence was observed in the phloem, and lemon-yellow fluorescence was observed in the sclerenchyma and metaxylem vessels, indicating the presence of flavonoids. For the root sections of the +Si plants treated with Wilson's reagent, orange-yellowish autofluorescence was more pronounced around the phloem vessels, and yellow fluorescence was more pronounced around the metaxylem vessels, also indicating the presence of flavonoids. Lignin was more densely deposited in the cortex of the roots of the +Si plants than for the -Si plants. Dopamine was barely detected in the roots of the -Si plants after using the lactic and glyoxylic acid stain, but was strongly suspected to occur on the phloem and metaxylem vessels of the roots of the +Si plants as confirmed by the intense orange-yellow fluorescence. The present study provides new evidence of the pivotal role of the phenylpropanoid pathway in the resistance of banana plants to F. oxysporum f. sp. cubense infection when supplied with Si. PMID:24350769

Fortunato, Alessandro Antônio; da Silva, Washington Luís; Rodrigues, Fabrício Ávila

2014-06-01

240

A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species.  

PubMed

Potato scab is a globally important disease caused by polyphyletic plant pathogenic Streptomyces species. Streptomyces acidiscabies, Streptomyces scabies and Streptomyces turgidiscabies possess a conserved biosynthetic pathway for the nitrated dipeptide phytotoxin thaxtomin. These pathogens also possess the nec1 gene which encodes a necrogenic protein that is an independent virulence factor. In this article we describe a large (325-660 kb) pathogenicity island (PAI) conserved among these three plant pathogenic Streptomyces species. A partial DNA sequence of this PAI revealed the thaxtomin biosynthetic pathway, nec1, a putative tomatinase gene, and many mobile genetic elements. In addition, the PAI from S. turgidiscabies contains a plant fasciation (fas) operon homologous to and colinear with the fas operon in the plant pathogen Rhodococcus fascians. The PAI was mobilized during mating from S. turgidiscabies to the non-pathogens Streptomyces coelicolor and Streptomyces diastatochromogenes on a 660 kb DNA element and integrated site-specifically into a putative integral membrane lipid kinase. Acquisition of the PAI conferred a pathogenic phenotype on S. diastatochromogenes but not on S. coelicolor. This PAI is the first to be described in a Gram-positive plant pathogenic bacterium and is responsible for the emergence of new plant pathogenic Streptomyces species in agricultural systems. PMID:15686551

Kers, Johan A; Cameron, Kimberly D; Joshi, Madhumita V; Bukhalid, Raghida A; Morello, Joanne E; Wach, Michael J; Gibson, Donna M; Loria, Rosemary

2005-02-01

241

[Antimicrobial activities of ant Ponericin W1 against plant pathogens in vitro and the disease resistance in its transgenic Arabidopsis].  

PubMed

The antimicrobial peptides (AMPs) exhibit a broad antimicrobial spectrum. The application of AMPs from non-plant organisms attracts considerable attention in plant disease resistance engineering. Ponericin W1, isolated from the venom of ant (Pachycondyla goeldii), shows antimicrobial activities against Gram-positive bacteria, Gram-negative bacteria and the budding yeast (Saccharomyces cerevisiae); however, it is not clear whether Ponericin W1 is effective against plant pathogens. The results of this study indicated synthesized Ponericin W1 inhibited mycelial growth of Magnaporthe oryzae and Botrytis cinerea, as well as hyphal growth and spore production of Fusarium graminearum. Besides, Ponericin W1 exhibited antibacterial activities against Pseudomonas syringae pv. tomato and Xanthomonas oryzae pv. oryzae. After codon optimization, Ponericin W1 gene was constructed into plant expression vector, and transformed into Arabidopsis thaliana by floral dip method. The Ponericin W1 was located in intercellular space of the transgenic plants as expected. Compared with the wild-type plants, there were ungerminated spores and less hyphal, conidia on the leaves of transgenic plants after innoculation with the powdery mildew fungus Golovinomyces cichoracearum. After innoculation with the pathogenic bac-terium Pseudomonas syringae pv. tomato, the baceria in the leaves of transgenic plants was significantly less than the wild-type plants, indicating that the transgenic plants displayed enhanced disease resistance to pathogens. These results demonstrate a potential use of Ponericin W1 in genetic engineering for broad-spectrum plant disease resistance. PMID:23956091

Chen, Yong-Fang; Sun, Peng-Wei; Tang, Ding-Zhong

2013-08-01

242

Targeting Iron Acquisition Blocks Infection with the Fungal Pathogens Aspergillus fumigatus and Fusarium oxysporum  

PubMed Central

Filamentous fungi are an important cause of pulmonary and systemic morbidity and mortality, and also cause corneal blindness and visual impairment worldwide. Utilizing in vitro neutrophil killing assays and a model of fungal infection of the cornea, we demonstrated that Dectin-1 dependent IL-6 production regulates expression of iron chelators, heme and siderophore binding proteins and hepcidin in infected mice. In addition, we show that human neutrophils synthesize lipocalin-1, which sequesters fungal siderophores, and that topical lipocalin-1 or lactoferrin restricts fungal growth in vivo. Conversely, we show that exogenous iron or the xenosiderophore deferroxamine enhances fungal growth in infected mice. By examining mutant Aspergillus and Fusarium strains, we found that fungal transcriptional responses to low iron levels and extracellular siderophores are essential for fungal growth during infection. Further, we showed that targeting fungal iron acquisition or siderophore biosynthesis by topical application of iron chelators or statins reduces fungal growth in the cornea by 60% and that dual therapy with the iron chelator deferiprone and statins further restricts fungal growth by 75%. Together, these studies identify specific host iron-chelating and fungal iron-acquisition mediators that regulate fungal growth, and demonstrate that therapeutic inhibition of fungal iron acquisition can be utilized to treat topical fungal infections.

Leal, Sixto M.; Roy, Sanhita; Vareechon, Chairut; Carrion, Steven deJesus; Clark, Heather; Lopez-Berges, Manuel S.; diPietro, Antonio; Schrettl, Marcus; Beckmann, Nicola; Redl, Bernhard; Haas, Hubertus; Pearlman, Eric

2013-01-01

243

Involvement of the salicylic acid signaling pathway in the systemic resistance induced in Arabidopsis by plant growth-promoting fungus Fusarium equiseti GF19-1.  

PubMed

Plant growth-promoting fungi (PGPF) are effective biocontrol agents for a number of soil-borne diseases and are known for their ability to trigger induced systemic resistance (ISR). In this study, we investigated the mechanisms triggered by PGPF Fusarium equiseti GF19-1, which is known to increase pathogen resistance in plants, by using GF19-1 spores and the culture filtrate (CF) to treat the roots of Arabidopsis thaliana. Subsequently, the leaves were challenged with Pseudomonas syringae pv tomato DC3000 (Pst) bacteria. Arabidopsis plants treated with GF19-1 spores or the CF elicited ISR against the Pst pathogen, resulting in a restriction of disease severity and suppression of pathogen proliferation. Examination of ISR in various signaling mutants and transgenic plants showed that GF19-1-induced protection was observed in the jasmonate response mutant jar1 and the ethylene response mutant etr1, whereas it was blocked in Arabidopsis plants expressing the NahG transgene or demonstrating a disruption of the NPR1 gene (npr1). Analysis of systemic gene expression revealed that GF19-1 modulates the expression of salicylic acid (SA)-responsive PR-1, PR-2, and PR-5 genes. Moreover, transient accumulation of SA was observed in GF19-1-treated plant, whereas the level was further enhanced after Pst infection of GF19-1-pretreated plants, indicating that accumulation of SA was potentiated when Arabidopsis plants were primed for disease resistance by GF19-1. In conclusion, these findings imply that the induced protective effect conferred by F. equiseti GF19-1 against the leaf pathogen Pst requires responsiveness to an SA-dependent pathway. PMID:23728333

Kojima, Hanae; Hossain, Md Motaher; Kubota, Mayumi; Hyakumachi, Mitsuro

2013-01-01

244

Presence of Pathogenic Microorganisms in Power Plant Cooling Waters.  

National Technical Information Service (NTIS)

Cooling waters from eleven geographically disparate power plants were tested for the presence of Naegleria fowleri and Legionella pneumophila (LDB). Control source waters for each plant were also tested for these pathogens. Water from two of the eleven pl...

R. L. Tyndall

1982-01-01

245

Controlling Plant Pathogens with Bacterial/Fungal Antagonist Combinations.  

National Technical Information Service (NTIS)

Fungal/bacterial antagonist combinations, a seed coated with one of the combinations and a plant protected from plant pathogens by one of the combinations. The invention is also a fungal/bacterial antagonist combination comprising a Trichoderma virens fun...

T. D. Johnson

2004-01-01

246

Plant defense multigene families: I. Divergence of Fusarium solani-induced expression in Pisum and Lathyrus  

Microsoft Academic Search

The defense response in plants challenged with pathogens is characterized by the activation of a diverse set of genes. Many of the same genes are induced in the defense responses of a wide range of plant species. How plant defense gene families evolve may therefore provide an important clue to our understanding of how disease resistance evolves. Because studies usually

Sandhya Tewari; Stuart M. Brown; Brian Fristensky

2003-01-01

247

Inactivation of Snt2, a BAH/PHD-containing transcription factor, impairs pathogenicity and increases autophagosome abundance in Fusarium oxysporum.  

PubMed

The soil-borne, asexual fungus Fusarium oxysporum f.sp. melonis (FOM) is a causal agent of muskmelon wilt disease. The current study focused on the most virulent race of FOM-race 1,2. The tagged mutant D122, generated by Agrobacterium tumefaciens-mediated transformation, caused the delayed appearance of initial wilt disease symptoms, as well as a 75% reduction in pathogenicity. D122 was impaired in the gene product homologous to the Snt2-like transcription factor of Schizosaccharomyces pombe. Involvement of snt2 in the early stage of FOM pathogenesis and its requirement for host colonization were confirmed by targeted disruption followed by quantitative reverse transcription-polymerase chain reaction analysis of snt2 expression in planta. ?snt2 mutants of FOM and Neurospora crassa exhibited similar morphological abnormalities, including a reduction in conidia production and biomass accumulation, slower vegetative growth and frequent hyphal septation. In N. crassa, snt-2 is required for sexual development, as ?snt-2 mutants were unable to produce mature perithecia. Suppressive subtraction hybridization analysis of the D122 mutant versus wild-type isolate detected four genes (idi4, pdc, msf1, eEF1G) that were found previously in association with the target of rapamycin (TOR) kinase pathway. Expression of the autophagy-related idi4 and pdc genes was found to be up-regulated in the ?snt2 FOM mutant. In N. crassa, disruption of snt-2 also conferred a significant over-expression of idi4. PMID:21535351

Denisov, Youlia; Freeman, Stanley; Yarden, Oded

2011-06-01

248

Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts  

PubMed Central

The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ? 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus .

Ishida, Kelly; Cipriano, Talita Ferreira; Rocha, Gustavo Miranda; Weissmuller, Gilberto; Gomes, Fabio; Miranda, Kildare; Rozental, Sonia

2013-01-01

249

Phylogenetic signal in plant pathogen-host range  

PubMed Central

What determines which plant species are susceptible to a given plant pathogen is poorly understood. Experimental inoculations with fungal pathogens of plant leaves in a tropical rain forest show that most fungal pathogens are polyphagous but that most plant species in a local community are resistant to any given pathogen. The likelihood that a pathogen can infect two plant species decreases continuously with phylogenetic distance between the plants, even to ancient evolutionary distances. This phylogenetic signal in host range allows us to predict the likely host range of plant pathogens in a local community, providing an important tool for plant ecology, design of agronomic systems, quarantine regulations in international trade, and risk analysis of biological control agents. In particular, the results suggest that the rate of spread and ecological impacts of a disease through a natural plant community will depend strongly on the phylogenetic structure of the community itself and that current regulatory approaches strongly underestimate the local risks of global movement of plant pathogens or their hosts.

Gilbert, Gregory S.; Webb, Campbell O.

2007-01-01

250

Coevolution of Plants and Their Pathogens in Natural Habitats  

NSDL National Science Digital Library

Access to the article is free, however registration and sign-in are required. Understanding of plant-pathogen coevolution in natural systems continues to develop as new theories at the population and species level are increasingly informed by studies unraveling the molecular basis of interactions between individual plants and their pathogens.

Jeremy J. Burdon (Commonwealth Scientific and Industrial Research Organization (CSIRO)âÂÂPlant Industry;); Peter H. Thrall (Commonwealth Scientific and Industrial Research Organization (CSIRO)âÂÂPlant Industry;)

2009-05-08

251

Insights into Cross-Kingdom Plant Pathogenic Bacteria  

PubMed Central

Plant and human pathogens have evolved disease factors to successfully exploit their respective hosts. Phytopathogens utilize specific determinants that help to breach reinforced cell walls and manipulate plant physiology to facilitate the disease process, while human pathogens use determinants for exploiting mammalian physiology and overcoming highly developed adaptive immune responses. Emerging research, however, has highlighted the ability of seemingly dedicated human pathogens to cause plant disease, and specialized plant pathogens to cause human disease. Such microbes represent interesting systems for studying the evolution of cross-kingdom pathogenicity, and the benefits and tradeoffs of exploiting multiple hosts with drastically different morphologies and physiologies. This review will explore cross-kingdom pathogenicity, where plants and humans are common hosts. We illustrate that while cross-kingdom pathogenicity appears to be maintained, the directionality of host association (plant to human, or human to plant) is difficult to determine. Cross-kingdom human pathogens, and their potential plant reservoirs, have important implications for the emergence of infectious diseases.

Kirzinger, Morgan W.B.; Nadarasah, Geetanchaly; Stavrinides, John

2011-01-01

252

Plant-pathogenic bacteria as biological weapons - real threats?  

PubMed

At present, much attention is being given to the potential of plant pathogens, including plant-pathogenic bacteria, as biological weapons/bioterror weapons. These two terms are sometimes used interchangeably and there is need for care in their application. It has been claimed that clandestine introduction of certain plant-pathogenic bacteria could cause such crop losses as to impact so significantly on a national economy and thus constitute a threat to national security. As a separate outcome, it is suggested that they could cause serious public alarm, perhaps constituting a source of terror. Legislation is now in place to regulate selected plant-pathogenic bacteria as potential weapons. However, we consider it highly doubtful that any plant-pathogenic bacterium has the requisite capabilities to justify such a classification. Even if they were so capable, the differentiation of pathogens into a special category with regulations that are even more restrictive than those currently applied in quarantine legislation of most jurisdictions offers no obvious benefit. Moreover, we believe that such regulations are disadvantageous insofar as they limit research on precisely those pathogens most in need of study. Whereas some human and animal pathogens may have potential as biological or bioterror weapons, we conclude that it is unlikely that any plant-pathogenic bacterium realistically falls into this category. PMID:18943451

Young, J M; Allen, C; Coutinho, T; Denny, T; Elphinstone, J; Fegan, M; Gillings, M; Gottwald, T R; Graham, J H; Iacobellis, N S; Janse, J D; Jacques, M-A; Lopez, M M; Morris, C E; Parkinson, N; Prior, P; Pruvost, O; Neto, J Rodrigues; Scortichini, M; Takikawa, Y; Upper, C D

2008-10-01

253

Plant immunity: towards an integrated view of plant–pathogen interactions  

Microsoft Academic Search

Plants are engaged in a continuous co-evolutionary struggle for dominance with their pathogens. The outcomes of these interactions are of particular importance to human activities, as they can have dramatic effects on agricultural systems. The recent convergence of molecular studies of plant immunity and pathogen infection strategies is revealing an integrated picture of the plant–pathogen interaction from the perspective of

Peter N. Dodds; John P. Rathjen

2010-01-01

254

Infection of corn ears by Fusarium spp. induces the emission of volatile sesquiterpenes.  

PubMed

Infection of corn (Zea mays L.) ears with fungal pathogens of the Fusarium genus might result in yield losses and in the accumulation of mycotoxins. The aim of this study was to investigate whether volatile profiles could be used to identify Fusarium-infected corn ears. The volatiles released by corn ears infected by Fusarium graminearum, Fusarium verticillioides, and Fusarium subglutinans were studied. Volatile emission was recorded at 24 days postinoculation (dpi) and in a time series (from 4 to 24 dpi). Twenty-two volatiles were differentially emitted from Fusarium-infected versus healthy corn ears. These included C6-C8 compounds and sesquiterpenoids. All volatiles indicative of Fusarium infection were detectable as early as 4-8 dpi and continued to be produced to the final sampling time (early milk maturity stage). The induced emission of ?-macrocarpene and ?-bisabolene correlated with an increased transcript accumulation of corn terpene synthase 6/11 (tps6/11). Additionally, the modification of volatile profiles after Fusarium infection was accompanied by the induction of plant defense compounds such as zealexins and oxylipins. Together, these results reveal a broad metabolic response of the plant to pathogen attack. Volatile biomarkers of Fusarium infection are promising indicators for the early detection of fungal infection before disease symptoms become visible. PMID:24816267

Becker, Eva-Maria; Herrfurth, Cornelia; Irmisch, Sandra; Köllner, Tobias G; Feussner, Ivo; Karlovsky, Petr; Splivallo, Richard

2014-06-01

255

A comparison of wild-type, old and modern tomato cultivars in the interaction with the arbuscular mycorrhizal fungus Glomus mosseae and the tomato pathogen Fusarium oxysporum f. sp. lycopersici.  

PubMed

The effect of the arbuscular mycorrhizal symbiosis (AM) varies in plant cultivars. In the present study, we tested whether wild-type, old and modern tomato cultivars differ in the parameters of the AM interaction. Moreover, the bioprotective effect of AM against the soilborne tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol) was tested in the different cultivars. Ten tomato cultivars were inoculated with the arbuscular mycorrhizal fungus (AMF) Glomus mosseae alone or in combination with Fol. At the end of the experiment, AM root colonization, Fusarium infection, and the plant fresh weight was determined. The tomato cultivars differed in their susceptibility to AMF and Fol, but these differences were not cultivar age dependent. In all the cultivars affected by Fol, mycorrhization showed a bioprotective effect. Independent of the cultivar age, tomato cultivars differ in their susceptibility to AMF and Fol and the bioprotective effect of mycorrhization, indicating that the cultivar age does not affect the AM parameters tested in this study. PMID:21674299

Steinkellner, Siegrid; Hage-Ahmed, Karin; García-Garrido, Jose M; Illana, Antonio; Ocampo, Juan A; Vierheilig, Horst

2012-04-01

256

Potential Role of Pathogen Signaling in Multitrophic Plant-Microbe Interactions Involved in Disease Protection  

PubMed Central

Multitrophic interactions mediate the ability of fungal pathogens to cause plant disease and the ability of bacterial antagonists to suppress disease. Antibiotic production by antagonists, which contributes to disease suppression, is known to be modulated by abiotic and host plant environmental conditions. Here, we demonstrate that a pathogen metabolite functions as a negative signal for bacterial antibiotic biosynthesis, which can determine the relative importance of biological control mechanisms available to antagonists and which may also influence fungus-bacterium ecological interactions. We found that production of the polyketide antibiotic 2,4-diacetylphloroglucinol (DAPG) was the primary biocontrol mechanism of Pseudomonas fluorescens strain Q2-87 against Fusarium oxysporum f. sp. radicis-lycopersici on the tomato as determined with mutational analysis. In contrast, DAPG was not important for the less-disease-suppressive strain CHA0. This was explained by differential sensitivity of the bacteria to fusaric acid, a pathogen phyto- and mycotoxin that specifically blocked DAPG biosynthesis in strain CHA0 but not in strain Q2-87. In CHA0, hydrogen cyanide, a biocide not repressed by fusaric acid, played a more important role in disease suppression.

Duffy, Brion; Keel, Christoph; Defago, Genevieve

2004-01-01

257

Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection.  

PubMed

Multitrophic interactions mediate the ability of fungal pathogens to cause plant disease and the ability of bacterial antagonists to suppress disease. Antibiotic production by antagonists, which contributes to disease suppression, is known to be modulated by abiotic and host plant environmental conditions. Here, we demonstrate that a pathogen metabolite functions as a negative signal for bacterial antibiotic biosynthesis, which can determine the relative importance of biological control mechanisms available to antagonists and which may also influence fungus-bacterium ecological interactions. We found that production of the polyketide antibiotic 2,4-diacetylphloroglucinol (DAPG) was the primary biocontrol mechanism of Pseudomonas fluorescens strain Q2-87 against Fusarium oxysporum f. sp. radicis-lycopersici on the tomato as determined with mutational analysis. In contrast, DAPG was not important for the less-disease-suppressive strain CHA0. This was explained by differential sensitivity of the bacteria to fusaric acid, a pathogen phyto- and mycotoxin that specifically blocked DAPG biosynthesis in strain CHA0 but not in strain Q2-87. In CHA0, hydrogen cyanide, a biocide not repressed by fusaric acid, played a more important role in disease suppression. PMID:15006813

Duffy, Brion; Keel, Christoph; Défago, Geneviève

2004-03-01

258

Currency notes and coins as a possible source of transmitting fungal pathogens of man and plants.  

PubMed

Currency (notes and coins) handling by people during transaction is one of the most mobile objects within the community, which has a potential of transmitting pathogens. A survey carried out recently in Nanded city (Maharashtra) revealed heavy contamination of currency notes and coins by important fungal pathogens of plants and man, i.e. Aspergillus niger (60.37%), A. flavus (3.98%), A.nidulans (0.2%), Penicillium citrinum (17.80%), Alternaria tenuis (0.20%), Curvularia pallescens (0.20%), Cladosporium cladosporioides (10.69%), Rhizopus stolonifer (1.04%), an unidentified Aspergillus species .1 (0.20%) and another unidentified Aspergillus species.2 (3.14%), Fusarium sp. (0.20%), Trichoderma viride (0.20%),white sterile mycelium (0.62%) and brown sterile mycelium (0.62%). The study highlights the importance of preventing and controlling fungal contamination of currency notes and coins in public health and plant protection. Currency notes or coins are rarely suspected as infection sources and often not quarantined at airport or seaport terminal. Possible transmission of pathogens or "alien", invasive species through currency across borders or across countries needs to be taken into consideration especially under circumstances of serious outbreak of important disease or when there is a threat of biological warfare. PMID:23505834

Wanule, Dinesh; Jalander, Vaghmare; Gachande, B D; Sirsikar, A N

2011-10-01

259

Genomic variability as a driver of plant-pathogen coevolution?  

PubMed

Pathogens apply one of the strongest selective pressures in plant populations. Understanding plant-pathogen coevolution has therefore been a major research focus for at least sixty years [1]. Recent comparative genomic studies have revealed that the genes involved in plant defense and pathogen virulence are among the most polymorphic in the respective genomes. Which fraction of this diversity influences the host-pathogen interaction? Do coevolutionary dynamics maintain variation? Here we review recent literature on the evolutionary and molecular processes that shape this variation, focusing primarily on gene-for-gene interactions. In summarizing theoretical and empirical studies of the processes that shape this variation in natural plant and pathogen populations, we find a disconnect between the complexity of ecological interactions involving hosts and their myriad microbes, and the models that describe them. PMID:24491596

Karasov, Talia L; Horton, Matthew W; Bergelson, Joy

2014-04-01

260

Tandem mass spectrometry for the detection of plant pathogenic fungi and the effects of database composition on protein inferences  

PubMed Central

LC-MS/MS has demonstrated potential for detecting plant pathogens. Unlike PCR or ELISA, LC-MS/MS does not require pathogen-specific reagents for the detection of pathogen-specific proteins and peptides. However, the MS/MS approach we and others have explored does require a protein sequence reference database and database-search software to interpret tandem mass spectra. To evaluate the limitations of database composition on pathogen identification, we analyzed proteins from cultured Ustilago maydis, Phytophthora sojae, Fusarium graminearum, and Rhizoctonia solani by LC-MS/MS. When the search database did not contain sequences for a target pathogen, or contained sequences to related pathogens, target pathogen spectra were reliably matched to protein sequences from nontarget organisms, giving an illusion that proteins from nontarget organisms were identified. Our analysis demonstrates that when database-search software is used as part of the identification process, a paradox exists whereby additional sequences needed to detect a wide variety of possible organisms may lead to more cross-species protein matches and misidentification of pathogens.

Padliya, Neerav D.; Garrett, Wesley M.; Campbell, Kimberly B.; Tabb, David L.; Cooper, Bret

2010-01-01

261

Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens.  

PubMed Central

Monoconidial cultures of 15 isolates of Trichoderma harzianum were characterized on the basis of 82 morphological, physiological, and biochemical features and 99 isoenzyme bands from seven enzyme systems. The results were subjected to numerical analysis which revealed four distinct groups. Representative sequences of the internal transcribed spacer 1 (ITS 1)-ITS 2 region in the ribosomal DNA gene cluster were compared between groups confirming this distribution. The utility of the groupings generated from the morphological, physiological, and biochemical data was assessed by including an additional environmental isolate in the electrophoretic analysis. The in vitro antibiotic activity of the T. harzianum isolates was assayed against 10 isolates of five different soilborne fungal plant pathogens: Aphanomyces cochlioides, Rhizoctonia solani, Phoma betae, Acremonium cucurbitacearum, and Fusarium oxysporum f. sp. radicis lycopersici. Similarities between levels and specificities of biological activity and the numerical characterization groupings are both discussed in relation to antagonist-specific populations in known and potential biocontrol species.

Grondona, I; Hermosa, R; Tejada, M; Gomis, M D; Mateos, P F; Bridge, P D; Monte, E; Garcia-Acha, I

1997-01-01

262

Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens.  

PubMed

Monoconidial cultures of 15 isolates of Trichoderma harzianum were characterized on the basis of 82 morphological, physiological, and biochemical features and 99 isoenzyme bands from seven enzyme systems. The results were subjected to numerical analysis which revealed four distinct groups. Representative sequences of the internal transcribed spacer 1 (ITS 1)-ITS 2 region in the ribosomal DNA gene cluster were compared between groups confirming this distribution. The utility of the groupings generated from the morphological, physiological, and biochemical data was assessed by including an additional environmental isolate in the electrophoretic analysis. The in vitro antibiotic activity of the T. harzianum isolates was assayed against 10 isolates of five different soilborne fungal plant pathogens: Aphanomyces cochlioides, Rhizoctonia solani, Phoma betae, Acremonium cucurbitacearum, and Fusarium oxysporum f. sp. radicis lycopersici. Similarities between levels and specificities of biological activity and the numerical characterization groupings are both discussed in relation to antagonist-specific populations in known and potential biocontrol species. PMID:9251205

Grondona, I; Hermosa, R; Tejada, M; Gomis, M D; Mateos, P F; Bridge, P D; Monte, E; Garcia-Acha, I

1997-08-01

263

Plant-pathogen interactions and elevated CO2: morphological changes in favour of pathogens  

PubMed Central

Crop losses caused by pests and weeds have been estimated at 42% worldwide, with plant pathogens responsible for almost $10 billion worth of damage in the USA in 1994 alone. Elevated carbon dioxide [ECO2] and associated climate change have the potential to accelerate plant pathogen evolution, which may, in turn, affect virulence. Plant–pathogen interactions under increasing CO2 concentrations have the potential to disrupt both agricultural and natural systems severely, yet the lack of experimental data and the subsequent ability to predict future outcomes constitutes a fundamental knowledge gap. Furthermore, nothing is known about the mechanistic bases of increasing pathogen agressiveness. In the absence of information on crop species, it is shown here that plant pathogen (Erysiphe cichoracearum) aggressiveness is increased under ECO2, together with changes in the leaf epidermal characteristics of the model plant Arabidopsis thaliana L. Stomatal density, guard cell length, and trichome numbers on leaves developing post-infection are increased under ECO2 in direct contrast to non-infected responses. As many plant pathogens utilize epidermal features for successful infection, these responses provide a positive feedback mechanism facilitating an enhanced susceptibility of newly developed leaves to further pathogen attack. Furthermore, a screen of resistant and susceptible ecotypes suggest inherent differences in epidermal responses to ECO2.

Lake, Janice Ann; Wade, Ruth Nicola

2009-01-01

264

The AMT1 arginine methyltransferase gene is important for plant infection and normal hyphal growth in Fusarium graminearum.  

PubMed

Arginine methylation of non-histone proteins by protein arginine methyltransferase (PRMT) has been shown to be important for various biological processes from yeast to human. Although PRMT genes are well conserved in fungi, none of them have been functionally characterized in plant pathogenic ascomycetes. In this study, we identified and characterized all of the four predicted PRMT genes in Fusarium graminearum, the causal agent of Fusarium head blight of wheat and barley. Whereas deletion of the other three PRMT genes had no obvious phenotypes, the ?amt1 mutant had pleiotropic defects. AMT1 is a predicted type I PRMT gene that is orthologous to HMT1 in Saccharomyces cerevisiae. The ?amt1 mutant was slightly reduced in vegetative growth but normal in asexual and sexual reproduction. It had increased sensitivities to oxidative and membrane stresses. DON mycotoxin production and virulence on flowering wheat heads also were reduced in the ?amt1 mutant. The introduction of the wild-type AMT1 allele fully complemented the defects of the ?amt1 mutant and Amt1-GFP fusion proteins mainly localized to the nucleus. Hrp1 and Nab2 are two hnRNPs in yeast that are methylated by Hmt1 for nuclear export. In F. graminearum, AMT1 is required for the nuclear export of FgHrp1 but not FgNab2, indicating that yeast and F. graminearum differ in the methylation and nucleo-cytoplasmic transport of hnRNP components. Because AMT2 also is a predicted type I PRMT with limited homology to yeast HMT1, we generated the ?amt1 ?amt2 double mutants. The ?amt1 single and ?amt1 ?amt2 double mutants had similar defects in all the phenotypes assayed, including reduced vegetative growth and virulence. Overall, data from this systematic analysis of PRMT genes suggest that AMT1, like its ortholog in yeast, is the predominant PRMT gene in F. graminearum and plays a role in hyphal growth, stress responses, and plant infection. PMID:22693618

Wang, Guanghui; Wang, Chenfang; Hou, Rui; Zhou, Xiaoying; Li, Guotian; Zhang, Shijie; Xu, Jin-Rong

2012-01-01

265

Suppression of Fusarium oxysporum and induced resistance of plants involved in the biocontrol of Cucumber Fusarium Wilt by Streptomyces bikiniensis HD-087.  

PubMed

Cucumber Fusarium Wilt, caused by Fusarium oxysporum f. sp. cucumerinum, which usually leads to severe economic damage, is a common destructive disease worldwide. To date, no effective method has yet been found to counteract this disease. A fungal isolate, designated HD-087, which was identified as Streptomyces bikiniensis using physiological-biochemical identification and 16S rRNA sequence analysis, is shown to possess distinctive inhibitory activity against F. oxysporum. The fermentation broth of HD-087 leads to certain abnormalities in pathogen hyphae. It peroxidizes cell membrane lipids, which leads to membrane destruction along with cytoplasm leakage. This broth also restrains germination of the conidia. The activities of the enzymes peroxidase, phenylalanine ammonia-lyase, and ?-1,3-glucanase in cucumber leaves were dramatically increased after treated with fermentation broth of HD-087. The levels of chlorophyll and soluble sugars were also found to be increased, with the relative conductivity of leaves being reduced. In short, the metabolites of strain HD-087 can effectively suppress F. oxysporum and trigger induced resistance in cucumber. PMID:22806732

Zhao, Shuai; Du, Chun-Mei; Tian, Chang-Yan

2012-09-01

266

Pathogenicity of Fusarium oxysporum against the larvae of Culex quinquefasciatus (Say) and Anopheles stephensi (Liston) in laboratory.  

PubMed

The entomopathogenic fungi Fusarium oxysporum are the next generation mosquito controlling agent. F. oxysporum basically contains unique toxin and can be a selectively good agent in tropical countries. We are reporting here the efficacy of the metabolites of F. oxysporum against the larvae of Anopheles stephensi and Culex quinquefasciatus in the laboratory. F. oxysporum was grown on Czapek Dox broth. The bioassays were run at five different concentrations (1.30, 1.60, 1.77, 1.90, and 2.00 ppm). The LC(50), LC(90), and LC(99) values with 95% fiducial limits and probit equations were calculated by probit analysis. The mortality was observed after 24, 48, and 72 h against all instars. The LC(90) values in the case of C. quinquefasciatus after 48 h when calculated were 1.85, 1.92, 1.87, and 1.87 ppm, respectively, while LC(99) values calculated were 2.24, 2.25, 2.18, and 2.19 ppm. Moreover, after 48 h in the case of A. stephensi, the LC(50) values for the first, second, third, and fourth instars were recorded as 1.48, 1.51, 1.71, and 1.50 ppm, respectively. The LC(90) values recorded were 1.88, 1.91, 1.93, and 1.89 ppm and LC(99) values observed were 2.36, 2.23, 2.26, and 2.21 ppm. The results obtained 24, 48, and 72 h have been compared and it was observed significantly that 48 h after exposure the metabolite has more pathogenicity. The results of the metabolites of F. oxysporum may be considered as a new bio-control agent for vector mosquitoes if the field trial succeeds. PMID:20499096

Prakash, Soam; Singh, Gavendra; Soni, Namita; Sharma, Sweta

2010-08-01

267

ChsVb, a Class VII Chitin Synthase Involved in Septation, Is Critical for Pathogenicity in Fusarium oxysporum? †  

PubMed Central

A new myosin motor-like chitin synthase gene, chsVb, has been identified in the vascular wilt fungus Fusarium oxysporum f. sp. lycopersici. Phylogenetic analysis of the deduced amino acid sequence of the chsVb chitin synthase 2 domain (CS2) revealed that ChsVb belongs to class VII chitin synthases. The ChsVb myosin motor-like domain (MMD) is shorter than the MMD of class V chitin synthases and does not contain typical ATP-binding motifs. Targeted disrupted single (?chsVb) and double (?chsV ?chsVb) mutants were unable to infect and colonize tomato plants or grow invasively on tomato fruit tissue. These strains were hypersensitive to compounds that interfere with fungal cell wall assembly, produced lemon-like shaped conidia, and showed swollen balloon-like structures in hyphal subapical regions, thickened walls, aberrant septa, and intrahyphal hyphae. Our results suggest that the chsVb gene is likely to function in polarized growth and confirm the critical importance of cell wall integrity in the complex infection process of this fungus.

Martin-Urdiroz, Magdalena; Roncero, M. Isabel G.; Gonzalez-Reyes, Jose Antonio; Ruiz-Roldan, Carmen

2008-01-01

268

Potentially durable resistance mechanisms in plants to specialised fungal pathogens  

Microsoft Academic Search

Specialised plant pathogens are in many ways adapted to exploit their host plants. Infective propagules should reach the appropriate\\u000a plant tissue, gain access to the tissue and negate or suppress various kinds of constitutive and inducible resistance mechanisms.\\u000a The resistance type most frequently deployed in plant breeding is the race-specific resistance, where a hypersensitive response\\u000a of plant tissue is elicited

Rients E. Niks; Diego Rubiales

2002-01-01

269

Plant pathogens and integrated defence responses to infection  

Microsoft Academic Search

Plants cannot move to escape environmental challenges. Biotic stresses result from a battery of potential pathogens: fungi, bacteria, nematodes and insects intercept the photosynthate produced by plants, and viruses use replication machinery at the host's expense. Plants, in turn, have evolved sophisticated mechanisms to perceive such attacks, and to translate that perception into an adaptive response. Here, we review the

Jeffery L. Dangl; Jonathan D. G. Jones

2001-01-01

270

The cuticle and plant defense to pathogens  

PubMed Central

The cuticle provides a physical barrier against water loss and protects against irradiation, xenobiotics, and pathogens. Components of the cuticle are perceived by invading fungi and activate developmental processes during pathogenesis. In addition, cuticle alterations of various types induce a syndrome of reactions that often results in resistance to necrotrophs. This article reviews the current knowledge on the role of the cuticle in relation to the perception of pathogens and activation of defenses.

Serrano, Mario; Coluccia, Fania; Torres, Martha; L'Haridon, Floriane; Metraux, Jean-Pierre

2014-01-01

271

Synergy between pathogen release and resource availability in plant invasion.  

PubMed

Why do some exotic plant species become invasive? Two common hypotheses, increased resource availability and enemy release, may more effectively explain invasion if they favor the same species, and therefore act in concert. This would be expected if plant species adapted to high levels of available resources in their native range are particularly susceptible to enemies, and therefore benefit most from a paucity of enemies in their new range. We tested this possibility by examining how resource adaptations influence pathogen richness and release among 243 European plant species naturalized in the United States. Plant species adapted to higher resource availability hosted more pathogen species in their native range. Plants from mesic environments hosted more fungi than plants from xeric environments, and plants from nitrogen-rich environments hosted more viruses than plants from nitrogen-poor environments. Furthermore, plants classified as competitors hosted more than 4 times as many fungi and viruses as did stress tolerators. Patterns of enemy release mirrored those of pathogen richness: competitors and species from mesic and nitrogen-rich environments were released from many pathogen species, while stress tolerators and species from xeric and nitrogen-poor environments were released from relatively few pathogen species. These results suggest that enemy release contributes most to invasion by fast-growing species adapted to resource-rich environments. Consequently, enemy release and increases in resource availability may act synergistically to favor exotic over native species. PMID:19416888

Blumenthal, Dana; Mitchell, Charles E; Pysek, Petr; Jarosík, Vojtech

2009-05-12

272

Biological Control Of Fusarium Head Blight Of Wheat And Deoxynivalenol Levels In Grain Via Use Of Microbial Antagonists  

Microsoft Academic Search

\\u000a Efforts to reduce mycotoxin contamination in food logically start with minimizing plant infection by mycotoxin producing pathogens.Fusarium graminearum(perfect state,Gibberella zeae)infects wheat heads at flowering, causing the disease Fusarium head blight (FHB) and losses of over 2.6 billion dollars in\\u000a the U.S. during the last 10 years. The pathogen often produces deoxynivalenol (DON) resulting in grain size and quality reduction.\\u000a Highly

David A. Schisler; Naseem I. Khan; Michael J. Boehm

273

Biological Control of Aquatic Plants with Pathogenic Fungi.  

National Technical Information Service (NTIS)

The endemic fungal plant pathogen Cercospora rodmanii was shown to have a high potential as a biocontrol agent for waterhyacinths (Eichhorniae crassipes). During this study, methods of culturing and dissemination of this fungus for biocontrol purposes wer...

T. E. Freeman R. Charudattan K. E. Conway R. E. Cullen R. D. Martyn

1981-01-01

274

Effects of Composted Municipal Sludge on Soilborne Plant Pathogens,  

National Technical Information Service (NTIS)

The effect of composted municipal sludge (CMS) on soilborne plant pathogens was evaluated in three sets of experiments. Studies with soybeans over three growing seasons investigated the effect of CMS on root rot severity and yield in Phytophthora-infested...

H. A. J. Hoitink A. F. Schmitthenner J. A. Ryan

1988-01-01

275

Recent developments in pathogen detection arrays: implications for fungal plant pathogens and use in practice.  

PubMed

ABSTRACT The failure to adequately identify plant pathogens from culture-based morphological techniques has led to the development of culture-independent molecular approaches. Increasingly, diagnostic laboratories are pursuing fast routine methods that provide reliable identification, sensitive detection, and accurate quantification of plant pathogens. In addition, since plants or parts thereof can be infected by multiple pathogens, multiplex assays that can detect and quantify different pathogens simultaneously are highly desirable. Technologies that can meet these requirements, especially those involving polymerase chain reaction, are being developed and implemented in horticultural and agricultural practice. Currently, DNA array technology is the most suitable technique for multiplex detection of plant pathogens. Recently, a quantitative aspect was added to this technology, making DNA arrays highly attractive for various research and practical applications. Here, we review the most important recent advances in molecular plant pathogen diagnostics, with special attention to fungal molecular diagnostics. In addition to their applicability in practice, the different criteria that have to be fulfilled for developing robust detection procedures that can routinely be used by diagnostic laboratories are discussed. PMID:18943547

Lievens, Bart; Thomma, Bart P H J

2005-12-01

276

An inordinate fondness for Fusarium: phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts.  

PubMed

Ambrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses, as evidenced by the 11 independent origins and 3500 species of ambrosia beetles. Here we document the evolution of a clade within Fusarium associated with ambrosia beetles in the genus Euwallacea (Coleoptera: Scolytinae). Ambrosia Fusarium Clade (AFC) symbionts are unusual in that some are plant pathogens that cause significant damage in naïve natural and cultivated ecosystems, and currently threaten avocado production in the United States, Israel and Australia. Most AFC fusaria produce unusual clavate macroconidia that serve as a putative food source for their insect mutualists. AFC symbionts were abundant in the heads of four Euwallacea spp., which suggests that they are transported within and from the natal gallery in mandibular mycangia. In a four-locus phylogenetic analysis, the AFC was resolved in a strongly supported monophyletic group within the previously described Clade 3 of the Fusarium solani species complex (FSSC). Divergence-time estimates place the origin of the AFC in the early Miocene ?21.2 Mya, which coincides with the hypothesized adaptive radiation of the Xyleborini. Two strongly supported clades within the AFC (Clades A and B) were identified that include nine species lineages associated with ambrosia beetles, eight with Euwallacea spp. and one reportedly with Xyleborus ferrugineus, and two lineages with no known beetle association. More derived lineages within the AFC showed fixation of the clavate (club-shaped) macroconidial trait, while basal lineages showed a mix of clavate and more typical fusiform macroconidia. AFC lineages consisted mostly of genetically identical individuals associated with specific insect hosts in defined geographic locations, with at least three interspecific hybridization events inferred based on discordant placement in individual gene genealogies and detection of recombinant loci. Overall, these data are consistent with a strong evolutionary trend toward obligate symbiosis coupled with secondary contact and interspecific hybridization. PMID:23608321

Kasson, Matthew T; O'Donnell, Kerry; Rooney, Alejandro P; Sink, Stacy; Ploetz, Randy C; Ploetz, Jill N; Konkol, Joshua L; Carrillo, Daniel; Freeman, Stanley; Mendel, Zvi; Smith, Jason A; Black, Adam W; Hulcr, Jiri; Bateman, Craig; Stefkova, Kristyna; Campbell, Paul R; Geering, Andrew D W; Dann, Elizabeth K; Eskalen, Akif; Mohotti, Keerthi; Short, Dylan P G; Aoki, Takayuki; Fenstermacher, Kristi A; Davis, Donald D; Geiser, David M

2013-07-01

277

Method of identifying plant pathogen tolerance  

DOEpatents

A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described. 7 figs.

Ecker, J.R.; Staskawicz, B.J.; Bent, A.F.; Innes, R.W.

1997-10-07

278

Method of identifying plant pathogen tolerance  

DOEpatents

A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described.

Ecker, Joseph R. (Erial, NJ); Staskawicz, Brian J. (Castro Valley, CA); Bent, Andrew F. (Piedmont, CA); Innes, Roger W. (Bloomington, IN)

1997-10-07

279

Preliminary Identification and Typing of Pathogenic and Toxigenic Fusarium Species Using Restriction Digestion of ITS1-5.8S rDNA-ITS2 Region  

PubMed Central

Background: Fusarium species are capable of causing a wide range of crop plants infections as well as uncommon human infections. Many species of the genus produce mycotoxins, which are responsible for acute or chronic diseases in animals and humans. Identification of Fusaria to the species level is necessary for biological, epidemiological, pathological, and toxicological purposes. In this study, we undertook a computer-based analysis of ITS1-5.8SrDNA-ITS2 in 192 GenBank sequences from 36 Fusarium species to achieve data for establishing a molecular method for specie-specific identification. Methods: Sequence data and 610 restriction enzymes were analyzed for choosing RFLP profiles, and subsequently designed and validated a PCR-restriction enzyme system for identification and typing of species. DNA extracted from 32 reference strains of 16 species were amplified using ITS1 and ITS4 universal primers followed by sequencing and restriction enzyme digestion of PCR products. Results: The following 3 restriction enzymes TasI, ItaI and CfoI provide the best discriminatory power. Using ITS1 and ITS4 primers a product of approximately 550bp was observed for all Fusarium strains, as expected regarding the sequence analyses. After RFLP of the PCR products, some species were definitely identified by the method and some strains had different patterns in same species. Conclusion: Our profile has potential not only for identification of species, but also for genotyping of strains. On the other hand, some Fusarium species were 100% identical in their ITS-5.8SrDNA-ITS2 sequences, therefore differentiation of these species is impossible regarding this target alone. ITS-PCR-RFLP method might be useful for preliminary differentiation and typing of most common Fusarium species.

Mirhendi, H; Ghiasian, A; Vismer, HF; Asgary, MR; Jalalizand, N; Arendrup, MC; Makimura, K

2010-01-01

280

Cell interactions between a nonpathogenic Fusarium oxysporum strain and root tissues of Eucalyptus viminalis  

Microsoft Academic Search

Nonpathogenic isolates of Fusarium oxysporum can be successful antagonists of pathogenic forms of the same fungal species that commonly attacks crop plants. The characteristics that distinguish nonpathogenic from pathogenic forms are not well understood. In this study, the mode of root colonization of Eucalyptus viminalis seedlings by a nonpathogenic F. oxysporum strain is described at the ultrastructural level. Root systems

Maria-Isabel Salerno; Silvio Gianinazzi; Christine Arnould; Vivienne Gianinazzi-Pearson

2004-01-01

281

Study of Resistance of Musa acuminata to Fusarium oxysporum using RAPD markers  

Microsoft Academic Search

Suckers collected from different populations of Musa acuminata ssp. malaccensis were found to be highly resistant to race 4 of Fusarium oxysporum f. sp. cubense (FOC) suggesting that local wild banana populations co-evolved with the pathogen. Seedlings from these wild banana plants segregated for resistance to the pathogen. The infected seedlings were characterized based on external and internal symptoms and

M. A. Javed; M. Chai; R. Y. Othman

2004-01-01

282

Versatile persistence pathways for pathogens of animals and plants.  

PubMed

The glyoxylate cycle and the glycine cleavage system are part of conserved metabolic pathways involved in the chronic persistence of microorganisms in animal hosts. In the chromosome of the plant pathogen Rhodococcus fascians, the vic locus has been identified as a region containing genes essential for persistence inside induced leafy galls. Sequence analysis showed that this 18-kb locus is syntenic with chromosomal regions of Mycobacterium species that encompass the 'persistence' loci of these mammalian pathogens. Hence, the ability to switch diet inside the host appears to be governed by 'persistence' enzymes that are conserved between pathogens of animals and plants. PMID:12419605

Vereecke, Danny; Cornelis, Karen; Temmerman, Wim; Holsters, Marcelle; Goethals, Koen

2002-11-01

283

The Plant Cell Wall: A Dynamic Barrier Against Pathogen Invasion  

PubMed Central

Prospective plant pathogens must overcome the physical barrier presented by the plant cell wall. In addition to being a preformed, passive barrier limiting access of pathogens to plant cells, the cell wall is actively remodeled and reinforced specifically at discrete sites of interaction with potentially pathogenic microbes. Active reinforcement of the cell wall through the deposition of cell wall appositions, referred to as papillae, is an early response to perception of numerous categories of pathogens including fungi and bacteria. Rapid deposition of papillae is generally correlated with resistance to fungal pathogens that attempt to penetrate plant cell walls for the establishment of feeding structures. Despite the ubiquity and apparent importance of this early defense response, relatively little is known about the underlying molecular mechanisms and cellular processes involved in the targeting and assembly of papillae. This review summarizes recent advances in our understanding of cell wall-associated defenses induced by pathogen perception as well as the impact of changes in cell wall polymers on interactions with pathogens and highlights significant unanswered questions driving future research in the area.

Underwood, William

2012-01-01

284

Characterization of Fusarium isolates from asparagus fields in southwestern Ontario and influence of soil organic amendments on Fusarium crown and root rot.  

PubMed

Fusarium crown and root rot (FCRR) of asparagus has a complex etiology with several soilborne Fusarium spp. as causal agents. Ninety-three Fusarium isolates, obtained from plant and soil samples collected from commercial asparagus fields in southwestern Ontario with a history of FCRR, were identified as Fusarium oxysporum (65.5%), F. proliferatum (18.3%), F. solani (6.4%), F. acuminatum (6.4%), and F. redolens (3.2%) based on morphological or cultural characteristics and polymerase chain reaction (PCR) analysis with species-specific primers. The intersimple-sequence repeat PCR analysis of the field isolates revealed considerable variability among the isolates belonging to different Fusarium spp. In the in vitro pathogenicity screening tests, 50% of the field isolates were pathogenic to asparagus, and 22% of the isolates caused the most severe symptoms on asparagus. The management of FCRR with soil organic amendments of pelleted poultry manure (PPM), olive residue compost, and fish emulsion was evaluated in a greenhouse using three asparagus cultivars of different susceptibility in soils infested with two of the pathogenic isolates (F. oxysporum Fo-1.5 and F. solani Fs-1.12). Lower FCRR symptom severity and higher plant weights were observed for most treatments on 'Jersey Giant' and 'Grande' but not on 'Mary Washington'. On all three cultivars, 1% PPM consistently reduced FCRR severity by 42 to 96% and increased plant weights by 77 to 152% compared with the Fusarium control treatment. Populations of Fusarium and total bacteria were enumerated after 1, 3, 7, and 14 days of soil amendment. In amended soils, the population of Fusarium spp. gradually decreased while the population of total culturable bacteria increased. These results indicate that soil organic amendments, especially PPM, can decrease disease severity and promote plant growth, possibly by decreasing pathogen population and enhancing bacterial activity in the soil. PMID:24261409

Borrego-Benjumea, Ana; Basallote-Ureba, María J; Melero-Vara, José M; Abbasi, Pervaiz A

2014-04-01

285

Biological Control of Fungal Plant Pathogens: Analysis of Fusaromycin. A Production by 'Pseudomonas fluorescens' Strain NP77. Phase 1.  

National Technical Information Service (NTIS)

Pseudomonas fluorescens strain NP77 inhibits the growth of the cotton pathogens Thielaviopsis basicola and Fusarium oxysporum in vitro, producing an antifungal molecule, fusaromycin A. Variability in efficacy hampers the commercial development of the biol...

W. T. Tucker

1989-01-01

286

Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense  

PubMed Central

Plants are constantly exposed to microorganisms in the environment and, as a result, have evolved intricate mechanisms to recognize and defend themselves against potential pathogens. One of these responses is the downregulation of photosynthesis and other processes associated with primary metabolism that are essential for plant growth. It has been suggested that the energy saved by downregulation of primary metabolism is diverted and used for defense responses. However, several studies have shown that upregulation of primary metabolism also occurs during plant-pathogen interactions. We propose that upregulation of primary metabolism modulates signal transduction cascades that lead to plant defense responses. In support of this thought, we here compile evidence from the literature to show that upon exposure to pathogens or elicitors, plants induce several genes associated with primary metabolic pathways, such as those involved in the synthesis or degradation of carbohydrates, amino acids and lipids. In addition, genetic studies have confirmed the involvement of these metabolic pathways in plant defense responses. This review provides a new perspective highlighting the relevance of primary metabolism in regulating plant defense against pathogens with the hope to stimulate further research in this area.

Rojas, Clemencia M.; Senthil-Kumar, Muthappa; Tzin, Vered; Mysore, Kirankumar S.

2014-01-01

287

Molecular battles between plant and pathogenic bacteria in the phyllosphere.  

PubMed

The phyllosphere, i.e., the aerial parts of the plant, provides one of the most important niches for microbial colonization. This niche supports the survival and, often, proliferation of microbes such as fungi and bacteria with diverse lifestyles including epiphytes, saprophytes, and pathogens. Although most microbes may complete the life cycle on the leaf surface, pathogens must enter the leaf and multiply aggressively in the leaf interior. Natural surface openings, such as stomata, are important entry sites for bacteria. Stomata are known for their vital role in water transpiration and gas exchange between the plant and the environment that is essential for plant growth. Recent studies have shown that stomata can also play an active role in limiting bacterial invasion of both human and plant pathogenic bacteria as part of the plant innate immune system. As counter-defense, plant pathogens such as Pseudomonas syringae pv tomato (Pst) DC3000 use the virulence factor coronatine to suppress stomate-based defense. A novel and crucial early battleground in host-pathogen interaction in the phyllosphere has been discovered with broad implications in the study of bacterial pathogenesis, host immunity, and molecular ecology of bacterial diseases. PMID:20602017

Baker, C M; Chitrakar, R; Obulareddy, N; Panchal, S; Williams, P; Melotto, M

2010-08-01

288

Aromatic plants essential oils activity on Fusarium verticillioides Fumonisin B(1) production in corn grain.  

PubMed

The minimum inhibitory concentration (MIC) of Origanum vulgare, Aloysia triphylla, Aloysia polystachya and Mentha piperita essential oils (EOs) against Fusarium verticillioides M 7075 (F. moniliforme, Sheldon) were assessed, using the semisolid agar antifungal susceptibility (SAAS) technique. O. vulgare, A. triphylla, A. polystachya and M. piperita EOs were evaluated at final concentrations of 10, 20, 40, 50, 100, 200, 250, 500, 1000 and 1500 epsilonl per litre (epsilonl/l) of culture medium. A. triphylla and O. vulgare EOs showed the highest inhibitory effects on F. verticillioides mycelial development. This inhibition was observed at 250 and 500 epsilonl/l for EOs coming from Aloysia triphylla and O. vulgare, respectively. Thus, the effects of EOs on FB(1) production were evaluated using corn grain (Zea mays) as substrate. The EOs were inserted on the 5th, 10th, 15th and 20th day of maize postinoculation with a conidia suspension of F. verticillioides. O. vulgare and A. triphylla were applied to give final concentrations of 30 ppm and 45 ppm, respectively. Different effects were observed in the toxicogenicity at the 20th day treatment. The O. vulgare EO decreased the production level of FB(1) (P < 0.01) while A. triphyla EO increased it (P < 0.001) with respect to those obtained in the inoculated maize, not EOs treated. Results obtained in the present work indicate that fumonisin production could be inhibited or stimulated by some constituents of EOs coming from aromatic plants. Further studies should be performed to identify the components of EOs with modulatory activity on the growth and fumonisins production of Fusarium verticillioides. PMID:15702272

López, A G; Theumer, M G; Zygadlo, J A; Rubinstein, H R

2004-10-01

289

Unravelling the Microbiome of Eggs of the Endangered Sea Turtle Eretmochelys imbricata Identifies Bacteria with Activity against the Emerging Pathogen Fusarium falciforme  

PubMed Central

Habitat bioaugmentation and introduction of protective microbiota have been proposed as potential conservation strategies to rescue endangered mammals and amphibians from emerging diseases. For both strategies, insight into the microbiomes of the endangered species and their habitats is essential. Here, we sampled nests of the endangered sea turtle species Eretmochelys imbricata that were infected with the fungal pathogen Fusarium falciforme. Metagenomic analysis of the bacterial communities associated with the shells of the sea turtle eggs revealed approximately 16,664 operational taxonomic units, with Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes as the most dominant phyla. Subsequent isolation of Actinobacteria from the eggshells led to the identification of several genera (Streptomyces, Amycolaptosis, Micromomospora Plantactinospora and Solwaraspora) that inhibit hyphal growth of the pathogen F. falciforme. These bacterial genera constitute a first set of microbial indicators to evaluate the potential role of microbiota in conservation of endangered sea turtle species.

Sarmiento-Ramirez, Jullie M.; van der Voort, Menno; Raaijmakers, Jos M.; Dieguez-Uribeondo, Javier

2014-01-01

290

Unravelling the microbiome of eggs of the endangered sea turtle Eretmochelys imbricata identifies bacteria with activity against the emerging pathogen Fusarium falciforme.  

PubMed

Habitat bioaugmentation and introduction of protective microbiota have been proposed as potential conservation strategies to rescue endangered mammals and amphibians from emerging diseases. For both strategies, insight into the microbiomes of the endangered species and their habitats is essential. Here, we sampled nests of the endangered sea turtle species Eretmochelys imbricata that were infected with the fungal pathogen Fusarium falciforme. Metagenomic analysis of the bacterial communities associated with the shells of the sea turtle eggs revealed approximately 16,664 operational taxonomic units, with Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes as the most dominant phyla. Subsequent isolation of Actinobacteria from the eggshells led to the identification of several genera (Streptomyces, Amycolaptosis, Micromomospora Plantactinospora and Solwaraspora) that inhibit hyphal growth of the pathogen F. falciforme. These bacterial genera constitute a first set of microbial indicators to evaluate the potential role of microbiota in conservation of endangered sea turtle species. PMID:24743166

Sarmiento-Ramírez, Jullie M; van der Voort, Menno; Raaijmakers, Jos M; Diéguez-Uribeondo, Javier

2014-01-01

291

Populations of Nonpathogenic Fusarium oxysporum Associated with Roots of Four Plant Species Compared to Soilborne Populations.  

PubMed

ABSTRACT The effect of the plant on the diversity of soilborne populations of Fusarium oxysporum was assessed after successive cultures of flax, melon, tomato, and wheat in separate samples of the same soil. Forty soil-borne isolates of F. oxysporum and forty root-colonizing isolates of each plant species were sampled during the first (T0) and fourth (T1) cultures. The population structures were assessed by a genotypic method based on restriction fragment analysis of polymerase chain reaction-amplified ri-bosomal intergenic spacer (IGS) DNA. Sixteen IGS types were defined among the four hundred isolates analyzed. The distributions of soil isolates among IGS types were similar at both sampling times. The structure of F. oxysporum populations associated with the roots of flax or melon did not differ from the structure of soilborne populations. In contrast, the structure of F. oxysporum populations associated with roots of wheat or tomato differed from the structure of soilborne populations. High frequencies were found for IGS type 4 among wheat isolates at both T0 and T1 and for IGS type 11 among tomato isolates at T1. Moreover, a high level of genetic divergence was obtained between IGS types 4 and 11. Our results suggest that tomato and wheat have a selective effect on soilborne populations of F. oxysporum and that this effect seems to be plant specific. PMID:18945090

Edel, V; Steinberg, C; Gautheron, N; Alabouvette, C

1997-07-01

292

Emerging Plant Pathogenic Bacteria and Global Warming  

Microsoft Academic Search

Several bacteria, previously classified as non-fluorescent, oxidase positive pseudomonads, Ralstonia, Acidovorax, and Burkholderia have emerged as serious problems worldwide. Perhaps the most destructive is R. solanacearum (RS), a soilborne pathogen with a very wide host range. RS race 3, biovar 2 infects potato and geranium during cooler weather\\u000a making it an additional threat. Acidovorax avenae subsp. avenae has emerged as

Norman W. Schaad

293

Effect of sewage sludge on suppressiveness to soil-borne plant pathogens  

Microsoft Academic Search

The objective of this study was to evaluate the effect of sewage sludge on soil suppressiveness to the pathogens Fusarium oxysporum f. sp. lycopersici on tomato, Sclerotium rolfsii on bean, Sclerotinia sclerotiorum on tomato, Rhizoctonia solani on radish, Pythium spp. on cucumber, and Ralstonia solanacearum on tomato. Soil samples were collected from an experimental corn field in which sewage sludge

Raquel Ghini; Flávia Rodrigues Alves Patrício; Wagner Bettiol; Irene Maria Gatti de Almeida; Aline de Holanda Nunes Maia

2007-01-01

294

Isolation, Identification, and Activity of Mycoherbicidal Pathogens from Juvenile Broomrape Plants  

Microsoft Academic Search

Although there are reports of isolation of mycoherbicidal pathogens attacking the widespread broomrapes (Orobanche spp.) that parasitize legumes and vegetables, none is in use or available. This is despite there being no good method of controlling broomrapes in most crops other than by preplant fumigation with methyl bromide. Two highly parasitic fungi, Fusarium arthrosporioides strain E4a (CNCM I-164) and F.

Z Amsellem; Y Kleifeld; Z Kerenyi; L Hornok; Y Goldwasser; J Gressel

2001-01-01

295

Npc1 is involved in sterol trafficking in the filamentous fungus Fusarium graminearum  

Microsoft Academic Search

The ortholog of the human gene NPC1 was identified in the plant pathogenic, filamentous fungus Fusarium graminearum by shared amino acid sequence, protein domain structure and cellular localization of the mature fungal protein. The FusariumNpc1 gene shares 34% amino acid sequence identity and 51% similarity to the human gene, has similar domain structure and is constitutively expressed, although up-regulated in

Andrew Breakspear; Matias Pasquali; Karen Broz; Yanhong Dong; H. Corby Kistler

2011-01-01

296

Insect Antimicrobial Peptides as New Weapons Against Plant Pathogens  

Microsoft Academic Search

\\u000a One action to furnish the increasing demand for food and feed of the growing world population is to reduce yield losses caused\\u000a by plant diseases. Biotechnology helps to generate crop plants with improved resistance against pathogenic bacteria, fungi,\\u000a and pests. The expression of antimicrobial peptides (AMPs) from various sources is a promising approach to pursue strengthening\\u000a plant health in a

Carin Jansen; Karl-Heinz Kogel

297

Genome sequence of the plant pathogen Ralstonia solanacearum  

Microsoft Academic Search

Ralstonia solanacearum is a devastating, soil-borne plant pathogen with a global distribution and an unusually wide host range. It is a model system for the dissection of molecular determinants governing pathogenicity. We present here the complete genome sequence and its analysis of strain GMI1000. The 5.8-megabase (Mb) genome is organized into two replicons: a 3.7-Mb chromosome and a 2.1-Mb megaplasmid.

M. Salanoubat; S. Genin; F. Artiguenave; J. Gouzy; S. Mangenot; M. Arlat; A. Billault; P. Brottier; J. C. Camus; L. Cattolico; M. Chandler; N. Choisne; C. Claudel-Renard; S. Cunnac; N. Demange; C. Gaspin; M. Lavie; A. Moisan; C. Robert; W. Saurin; T. Schiex; P. Siguier; P. Thébault; M. Whalen; P. Wincker; M. Levy; J. Weissenbach; C. A. Boucher

2002-01-01

298

Caterpillars and Fungal Pathogens: Two Co-Occurring Parasites of an Ant-Plant Mutualism  

PubMed Central

In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia) and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae) as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae) can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs) whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes), that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth.

Roux, Olivier; Cereghino, Regis; Solano, Pascal J.; Dejean, Alain

2011-01-01

299

The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans.  

PubMed

Sirodesmin PL is a phytotoxin produced by the fungus Leptosphaeria maculans, which causes blackleg disease of canola (Brassica napus). This phytotoxin belongs to the epipolythiodioxopiperazine (ETP) class of toxins produced by fungi including mammalian and plant pathogens. We report the cloning of a cluster of genes with predicted roles in the biosynthesis of sirodesmin PL and show via gene disruption that one of these genes (encoding a two-module non-ribosomal peptide synthetase) is essential for sirodesmin PL biosynthesis. Of the nine genes in the cluster tested, all are co-regulated with the production of sirodesmin PL in culture. A similar cluster is present in the genome of the opportunistic human pathogen Aspergillus fumigatus and is most likely responsible for the production of gliotoxin, which is also an ETP. Homologues of the genes in the cluster were also identified in expressed sequence tags of the ETP producing fungus Chaetomium globosum. Two other fungi with publicly available genome sequences, Magnaporthe grisea and Fusarium graminearum, had similar gene clusters. A comparative analysis of all four clusters is presented. This is the first report of the genes responsible for the biosynthesis of an ETP. PMID:15387811

Gardiner, Donald M; Cozijnsen, Anton J; Wilson, Leanne M; Pedras, M Soledade C; Howlett, Barbara J

2004-09-01

300

Transgenically enhanced expression of indole-3-acetic Acid confers hypervirulence to plant pathogens.  

PubMed

ABSTRACT Fusarium oxysporum and F. arthrosporioides, pathogenic on Orobanche aegyptiaca, were transformed with two genes of the indole-3-acetamide (IAM) pathway leading to indole-3-acetic acid (IAA) to attempt to enhance virulence. Transgenic F. oxysporum lines containing both the tryptophan-2-monooxyngenase (iaaM) and indole-3-acetamide hydrolase (iaaH) genes produced significantly more IAA than the wild type. IAM accumulated in culture extracts of F. oxysporum containing iaaM alone. F. arthrosporioides containing only iaaM accumulated IAM and an unidentified indole. Some transformants of F. oxysporum expressing only the iaaM gene also produced more IAA than the wild type. Sub-threshold levels (that barely infect Orobanche) of transgenic F. oxysporum expressing both genes and of F. arthrosporioides expressing iaaM were more effective in suppressing the number and size of Orobanche shoots than the wild type on tomato plants grown in soil mixed with Orobanche seed. Stimulating an auxin imbalance enhanced pathogen virulence by affecting the host in a manner similar to low doses of auxin herbicides such as 2,4-dichlorophenoxy acetic acid. PMID:18944254

Cohen, Barry A; Amsellem, Ziva; Maor, Rudy; Sharon, Amir; Gressel, Jonathan

2002-06-01

301

Pathogenic amoebae in power-plant cooling lakes. Final report  

SciTech Connect

Cooling waters and associated algae and sediments from four northern and four southern/western electric power plants were tested for the presence of pathogenic amoebae. Unheated control waters and algae/sediments from four northern and five southern/western sites were also tested. When comparing results from the test versus control sites, a significantly higher proportion (P less than or equal to 0.05) of the samples from the test sites were positive for thermophilic amoeba, thermophilic Naegleria and pathogenic Naegleria. The difference in number of samples positive for thermophilic Naegleria between heated and unheated waters, however, was attributable predominantly to the northern waters and algae/sediments. While two of four northern test sites yielded pathogenic Naegleria, seven of the eight isolates were obtained from one site. Seasonality effects relative to the isolation of the pathogen were also noted at this site. One pathogen was isolated from a southwestern test site. Pathogens were not isolated from any control sites. Some of the pathogenic isolates were analyzed serologically and classified as pathogenic Naegleria fowleri. Salinity, pH, conductivity, and bacteriological profiles did not obviously correlate with the presence or absence of pathogenic Naegleria. While thermal addition was significantly associated with the presence of thermophilic Naegleria (P less than or equal to 0.05), the data implicate other as yet undefined parameters associated with the presence of the pathogenic thermophile. Until further delineation of these parameters is effected, generalizations cannot be made concerning the effect of thermal impact on the growth of pathogenic amoeba in a particular cooling system.

Tyndall, R.L.; Willaert, E.; Stevens, A.R.

1981-06-01

302

Calcium signaling in pathogenic and beneficial plant microbe interactions  

PubMed Central

Elevation of intracellular calcium levels in a plant cell is an early signaling event in many mutualistic and pathogenic plant/microbe interactions. In pathogenic plant/fungus interactions, receptor-mediated cytoplasmic calcium elevations induce defense genes via the activation of ion fluxes at the plasma membrane, an oxidative burst and MAPK activation. Mycorrhizal and beneficial endophytic plant/fungus interactions result in a better plant performance through sequencial cytoplasmic and nuclear calcium elevations. The specificity of the calcium responses depends on the calcium signature, its amplitude, duration, frequency and location, a selective activation of calcium channels in the diverse cellular membranes and the stimulation of calcium-dependent signaling components. Arabidopsis contains more than 100 genes for calcium-binding proteins and channels and the response to pathogens and beneficial fungi relies on a highly specific activation of individual members of these protein families. Genetic tools are required to understand this complex response patterns and the cross talks between the individual calcium-dependent signaling pathways. The beneficial interaction of Arabidopsis with the growth-promoting endophyte Piriformospora indica provides a nice model system to unravel signaling events leading to mutualistic or pathogenic plant/fungus interactions.

Vadassery, Jyothilakshmi

2009-01-01

303

Control of Fusarium crown and root rot of tomato in a soil system by combination of a plant growth-promoting fungus, Fusarium equiseti, and biodegradable pots  

Microsoft Academic Search

A combination of Fusarium equiseti GF191 and biodegradable pots (BPs) was tested for its ability to control Fusarium crown and root rot (FCRR) of tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici (FORL) in soil during long-term cultivation. The protective effect of F. equiseti isolate GF191 with BPs, based on the discoloration of vascular tissue (cortex\\/xylem) was 58% 131d after

H. Horinouchi; N. Katsuyama; Y. Taguchi; M. Hyakumachi

2008-01-01

304

Influence of Plant Root Exudates, Germ Tube Orientation and Passive Conidia Transport on Biological Control of Fusarium Wilt by Strains of Nonpathogenic Fusarium oxysporum  

Microsoft Academic Search

In earlier studies, biological control of Fusarium wilt of cucumber induced by Fusarium oxysporum f. sp. cucumerinum was demonstrated using nonpathogenic strains C5 and C14 of Fusarium oxysporum. Strain C14 induced resistance and competed for infection sites whether roots were wounded or intact, whereas strain C5 required\\u000a wounds to achieve biocontrol. In the current work, additional attributes involved in enhanced

Qaher A. Mandeel

2006-01-01

305

Fungicide resistance assays for fungal plant pathogens.  

PubMed

Fungicide resistance assays are useful to determine if a fungal pathogen has developed resistance to a fungicide used to manage the disease it causes. Laboratory assays are used to determine loss of sensitivity, or resistance, to a fungicide and can explain fungicide failures and for developing successful fungicide recommendations in the field. Laboratory assays for fungicide resistance are conducted by measuring reductions in growth or spore germination of fungi in the presence of fungicide, or by molecular procedures. This chapter describes two techniques for measuring fungicide resistance, using the sugarbeet leaf spot fungus Cercospora beticola as a model for the protocol. Two procedures are described for fungicides from two different classes; growth reduction for triazole (sterol demethylation inhibitor; DMI) fungicides, and inhibition of spore germination for quinone outside inhibitor (QoI) fungicides. PMID:22183666

Secor, Gary A; Rivera, Viviana V

2012-01-01

306

Phylogenetic relationships between the lettuce root rot pathogen Fusarium oxysporum f. sp. lactucae races 1, 2, and 3 based on the sequence of the intergenic spacer region of its ribosomal DNA  

Microsoft Academic Search

The genetic relationship between the vegetative compatibility groups (VCGs) and between physiological races of Fusarium oxysporum f. sp. lactucae (FOL), the causal pathogen of lettuce root rot, was determined by analyzing the intergenic spacer (IGS) region of its ribosomal\\u000a DNA. A total of 29 isolates containing a type strain were tested: 24 Japanese isolates, 2 Californian isolates, and 3 Italian

Masashi Fujinaga; Hideki Ogiso; Hirosuke Shinohara; Seiya Tsushima; Norio Nishimura; Masayuki Togawa; Hideki Saito; Masayuki Nozue

2005-01-01

307

Pathogens and insect herbivores drive rainforest plant diversity and composition.  

PubMed

Tropical forests are important reservoirs of biodiversity, but the processes that maintain this diversity remain poorly understood. The Janzen-Connell hypothesis suggests that specialized natural enemies such as insect herbivores and fungal pathogens maintain high diversity by elevating mortality when plant species occur at high density (negative density dependence; NDD). NDD has been detected widely in tropical forests, but the prediction that NDD caused by insects and pathogens has a community-wide role in maintaining tropical plant diversity remains untested. We show experimentally that changes in plant diversity and species composition are caused by fungal pathogens and insect herbivores. Effective plant species richness increased across the seed-to-seedling transition, corresponding to large changes in species composition. Treating seeds and young seedlings with fungicides significantly reduced the diversity of the seedling assemblage, consistent with the Janzen-Connell hypothesis. Although suppressing insect herbivores using insecticides did not alter species diversity, it greatly increased seedling recruitment and caused a marked shift in seedling species composition. Overall, seedling recruitment was significantly reduced at high conspecific seed densities and this NDD was greatest for the species that were most abundant as seeds. Suppressing fungi reduced the negative effects of density on recruitment, confirming that the diversity-enhancing effect of fungi is mediated by NDD. Our study provides an overall test of the Janzen-Connell hypothesis and demonstrates the crucial role that insects and pathogens have both in structuring tropical plant communities and in maintaining their remarkable diversity. PMID:24463522

Bagchi, Robert; Gallery, Rachel E; Gripenberg, Sofia; Gurr, Sarah J; Narayan, Lakshmi; Addis, Claire E; Freckleton, Robert P; Lewis, Owen T

2014-02-01

308

New grower-friendly methods for plant pathogen monitoring.  

PubMed

Accurate plant disease diagnoses and rapid detection and identification of plant pathogens are of utmost importance for controlling plant diseases and mitigating the economic losses they incur. Technological advances have increasingly simplified the tools available for the identification of pathogens to the extent that, in some cases, this can be done directly by growers and producers themselves. Commercially available immunoprinting kits and lateral flow devices (LFDs) for detection of selected plant pathogens are among the first tools of what can be considered grower-friendly pathogen monitoring methods. Research efforts, spurned on by point-of-care needs in the medical field, are paving the way for the further development of on-the-spot diagnostics and multiplex technologies in plant pathology. Grower-friendly methods need to be practical, robust, readily available, and cost-effective. Such methods are not restricted to on-the-spot testing but extend to laboratory services, which are sometimes more practicable for growers, extension agents, regulators, and other users of diagnostic tests. PMID:22607454

De Boer, Solke H; López, María M

2012-01-01

309

Effects of Rainfall Acidification on Plant Pathogens.  

National Technical Information Service (NTIS)

Wind-blown rain, rain splash, and films of free moisture play important roles in the epidemiology of many plant diseases. The chemical nature of the aqueous microenvironment at the infection court is a potentially significant factor in the successful diss...

D. S. Shriner E. B. Cowling

1980-01-01

310

Function of peroxisomes in plant-pathogen interactions.  

PubMed

Peroxisomes are ubiquitous organelles of eukaryotic cells that accomplish a variety of biochemical functions, including ?-oxidation of fatty acids, glyoxylate cycle, etc. Many reports have been accumulating that indicate peroxisome related metabolic functions are essential for pathogenic development of plant pathogenic fungi. They include peroxisome biogenesis proteins, peroxins and preferential destruction of peroxisomes, pexophagy. Gene disrupted mutants of anthracnose disease pathogen Colletotrichum orbiculare or rice blast pathogen Magnaporthe oryzae defective in peroxins or pexophagy showed deficiency in pathogenesis. Woronin body, a peroxisome related cellular organelle that is related to endurance of fungal cells against environmental damage has essential roles in pathogenesis of M. oryzae. Also, peroxisome related metabolisms such as ?-oxidation and glyoxylate cycle are essential for pathogenesis in several plant pathogenic fungi. In addition, secondary metabolisms including polyketide melanin biosynthesis of C. orbiculare and M. oryzae, and host selective toxins produced by necrotrophic pathogen Alternaria alternata have pivotal roles in fungal pathogenesis. Every such factor was listed and their functions for pathogenesis were demonstrated (Table 18.1 and Fig. 18.1). PMID:23821157

Kubo, Yasuyuki

2013-01-01

311

IAA-producing Penicillium sp. NICS01 triggers plant growth and suppresses Fusarium sp.-induced oxidative stress in sesame (Sesamum indicum L.).  

PubMed

Application of rhizospheric fungi is an effective and environmentally friendly method of improving plant growth and controlling many plant diseases. The current study was aimed to identify phytohormone-producing fungi from soil, to understand their roles in sesame plant growth, and to control Fusarium disease. Three predominant fungi (PNF1, PNF2, and PNF3) isolated from the rhizospheric soil of peanut plants were screened for their growth-promoting efficiency on sesame seedlings. Among these isolates, PNF2 significantly increased the shoot length and fresh weight of seedlings compared with controls. Analysis of the fungal culture filtrate showed a higher concentration of indole acetic acid in PNF2 than in the other isolates. PNF2 was identified as Penicillium sp. on the basis of phylogenetic analysis of ITS sequence similarity. The in vitro biocontrol activity of Penicillium sp. against Fusarium sp. was exhibited by a 49% inhibition of mycelial growth in a dual culture bioassay and by hyphal injuries as observed by scanning electron microscopy. In addition, greenhouse experiments revealed that Fusarium inhibited growth in sesame plants by damaging lipid membranes and reducing protein content. Co-cultivation with Penicillium sp. mitigated Fusarium-induced oxidative stress in sesame plants by limiting membrane lipid peroxidation, and by increasing the protein concentration, levels of antioxidants such as total polyphenols, and peroxidase and polyphenoloxidase activities. Thus, our findings suggest that Penicillium sp. is a potent plant growthpromoting fungus that has the ability to ameliorate damage caused by Fusarium infection in sesame cultivation. PMID:23676921

Radhakrishnan, Ramalingam; Shim, Kang-Bo; Lee, Byeong-Won; Hwang, Chung-Dong; Pae, Suk-Bok; Park, Chang-Hwan; Kim, Sung-Up; Lee, Choon-Ki; Baek, In-Youl

2013-06-28

312

Unraveling Plant Responses to Bacterial Pathogens through Proteomics  

PubMed Central

Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens.

Zimaro, Tamara; Gottig, Natalia; Garavaglia, Betiana S.; Gehring, Chris; Ottado, Jorgelina

2011-01-01

313

Induced defense-related proteins in soybean (Glycine max L. Merrill) plants by Carnobacterium sp. SJ-5 upon challenge inoculation of Fusarium oxysporum.  

PubMed

The aim of the present study was to analyze induced expression of defense-related proteins in the soybean plants by rhizobacterial stain Carnobacterium sp. SJ-5 upon challenge inoculation with Fusarium oxysporum. Determination of the enzymatic activity of the different defense-related enzymes, phenylalanine ammonia lyase (PAL), lipoxygenase (LOX), peroxidase (POD) and polyphenol oxidase (PPO) was performed in the major parts of Glycine max L. Merrill using spectrophotometric method. Native-polyacrylamide gel electrophoresis analysis of the POD and PPO was employed followed by activity staining to find out the isoforms of respective enzymes. Activities of the PAL, LOX, POD and PPO were found to be highest in the bacterized root tissue of the soybean plants challenged with F. oxysporum. Isoform analysis revealed that PPO1, PPO4 and POD2 isoforms were expressed at higher levels in bacterized soybean root tissues challenge inoculated with the pathogen. Conclusively it was found that bacterial strain Carnobacterium sp. SJ-5 protect soybean plants from wilt disease caused by F. oxysporum by elicitation of the defense-related enzymes. PMID:24504695

Jain, Shekhar; Choudhary, Devendra Kumar

2014-05-01

314

Microbial populations responsible for specific soil suppressiveness to plant pathogens  

Microsoft Academic Search

Agricultural soils suppressive to soilborne plant pathogens occur worldwide, and for several of these soils the biological basis of suppressiveness has been described. Two classical types of suppressiveness are known. General suppression owes its activity to the total microbial biomass in soil and is not transferable between soils. Specific suppression owes its activity to the effects of individual or select

David M. Weller; Jos M. Raaijmakers; Brian B. McSpadden Gardener; Linda S. Thomashow

2002-01-01

315

Bacteriophage biocontrol of plant pathogens: fact or fiction?  

Microsoft Academic Search

Bacterial resistance due to the misuse of antibiotics has become a global issue and alternative methods are being developed that might decrease the use of antimicrobials in agricultural settings. Bacteriophage therapy represents a novel way to control the growth of plant-based bacterial pathogens. Although this method shows promise, a recent paper by Gill and Abedon has shown that the complex

Lawrence D. Goodridge

2004-01-01

316

Subcutaneous infection caused by Corynespora cassiicola, a plant pathogen.  

PubMed

We describe a 69-year-old female farmer with diabetes mellitus who developed subcutaneous infection due to a plant pathogen, Corynespora cassiicola. The organism was identified based on characteristic morphotypes and confirmed by sequence analysis of the internal transcribed spacer (ITS) regions. The patient was treated successfully with amphotericin B therapy. PMID:19925826

Huang, Hong-Kai; Liu, Chun-Eng; Liou, Jia-Hung; Hsiue, Han-Chung; Hsiao, Cheng-Hsiang; Hsueh, Po-Ren

2010-02-01

317

Pathogenic Amoebae in Power-Plant Cooling Lakes. Final Report.  

National Technical Information Service (NTIS)

Cooling waters and associated algae and sediments from four northern and four southern/western electric power plants were tested for the presence of pathogenic amoebae. Unheated control waters and algae/sediments from four northern and five southern/weste...

R. L. Tyndall E. Willaert A. R. Stevens

1981-01-01

318

Presence of Pathogenic Amoebae in Power Plant Cooling Waters.  

National Technical Information Service (NTIS)

Cooling-water-associated algae and sediments from five northern and five southern or western electric power plants were tested for the presence of pathogenic amoebae. In addition, water algae and sediments from five northern and five southern/western site...

R. L. Tyndall E. Willaert A. R. Stevens

1981-01-01

319

Versatile persistence pathways for pathogens of animals and plants  

Microsoft Academic Search

The glyoxylate cycle and the glycine cleavage system are part of conserved metabolic pathways involved in the chronic persistence of microorganisms in animal hosts. In the chromosome of the plant pathogen Rhodococcus fascians, the vic locus has been identified as a region containing genes essential for persistence inside induced leafy galls. Sequence analysis showed that this 18-kb locus is syntenic

Danny Vereecke; Karen Cornelis; Wim Temmerman; Marcelle Holsters; Koen Goethals

2002-01-01

320

Innovative tools for detection of plant pathogenic viruses and bacteria  

Microsoft Academic Search

Detection of harmful viruses and bacteria in plant material, vectors or natural reservoirs is essential to ensure safe and sustainable agriculture. The techniques available have evolved significantly in the last few years to achieve rapid and reliable detection of pathogens, extraction of the target from the sample being important for optimising detection. For viruses, sample preparation has been simplified by

María M. López; Edson Bertolini; Antonio Olmos; Paola Caruso; MaríaTeresa Gorris; Pablo Llop; Ramón Penyalver; Mariano Cambra

2003-01-01

321

Zinc Improves Biocontrol of Fusarium Crown and Root Rot of Tomato by Pseudomonas fluorescens and Represses the Production of Pathogen Metabolites Inhibitory to Bacterial Antibiotic Biosynthesis.  

PubMed

ABSTRACT Crown and root rot of tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici is an increasing problem in Europe, Israel, Japan, and North America. The biocontrol agent Pseudomonas fluorescens strain CHA0 provides only moderate control of this disease. A one-time amendment of zinc EDTA at 33 mug of Zn(2+)/ml to hydroponic nutrient solution in soilless rockwool culture did not reduce disease when used alone, but did reduce disease by 25% in the presence of CHA0. In in vitro studies with the pathogen, zinc at concentrations as low as 10 mug/ml abolished production of the phytotoxin fusaric acid, a Fusarium pathogenicity factor, and increased production of microconidia over 100-fold, but reduced total biomass. Copper EDTA at 33 mug of Cu(2+)/ml had a similar effect as zinc on the pathogen in vitro; it reduced disease when used alone, and increased the biocontrol activity of CHA0 in soilless culture. Ammonium-molybdate neither improved the biocontrol activity of CHA0 nor affected production of fusaric acid or microconidia. Strain CHA0 did not degrade fusaric acid. Fusaric acid at concentrations as low as 0.12 mug/ml repressed production by CHA0 of the antibiotic 2,4-diacetylphloroglucinol, a key factor in the biocontrol activity of this strain. Production of pyoluteorin by CHA0 was also reduced, but production of hydrogen cyanide and protease was not affected, suggesting that fusaric acid affects biosynthesis at a regulatory level downstream of gacA and apdA genes. Fusaric acid did not affect the recovery of preformed antibiotics nor did it affect bacterial growth even at concentrations as high as 200 mug/ml. When microbial meta-bolite production was measured in the rockwool bioassay, zinc amendments reduced fusaric acid production and enhanced 2,4-diacetylphloro-glucinol production. We suggest that zinc, which did not alleviate the repression of antibiotic biosynthesis by fusaric acid, improved biocontrol activity by reducing fusaric acid production by the pathogen, which resulted in increased antibiotic production by the biocontrol agent. This demonstrates that pathogens can have a direct negative impact on the mechanism(s) of biocontrol agents. PMID:18945026

Duffy, B K; Défago, G

1997-12-01

322

The cAMP signaling pathway in Fusarium verticillioides is important for conidiation, plant infection, and stress responses but not fumonisin production.  

PubMed

Fusarium verticillioides is one of the most important fungal pathogens of maize. Mycotoxin, fumonisins produced by this pathogen pose a threat to human and animal health. Because cAMP signaling has been implicated in regulating diverse developmental and infection processes in fungal pathogens, in this study, we aimed to elucidate the function of the cAMP-protein kinase A (PKA) pathway in toxin production and plant infection in F. verticillioides. Targeted deletion mutants were generated for the CPK1 and FAC1 genes that encode a catalytic subunit of PKA and the adenylate cyclase, respectively. Defects in radial growth and macroconidiation were observed in both the cpk1 and fac1 deletion mutants. The fac1 mutant also was significantly reduced in virulence and microconidiation but increased in tolerance to heat and oxidative stresses. These phenotypes were not observed in the cpk1 mutant, indicating that additional catalytic subunit of PKA must exist and function downstream from FAC1. The fac1 mutant formed microconidia mainly in false heads. The expression levels of the hydrophobin genes HYD1 and HYD2, which are known to be associated with change in formation of microconidia, were significantly reduced in the fac1 mutant. Expression of F. verticillioides GSY2 and HSP26 genes, two other putative downstream targets of FAC1, was increased in the fac1 mutant and may be associated with its enhanced stress tolerance. Although fumonisin production was normal, biosynthesis of bikaverin was increased in the fac1 mutant, suggesting that FAC1 and cAMP signaling may have pathway-or metabolite-specific regulatory roles in secondary metabolism. Overall, the pleiotropic defects of the fac1 deletion mutant indicate that the cAMP-PKA pathway is involved in growth, conidiation, bikaverin production, and plant infection in F. verticillioides. PMID:20192838

Choi, Yoon-E; Xu, Jin-Rong

2010-04-01

323

Pathogenicity of and plant immunity to soft rot pectobacteria  

PubMed Central

Soft rot pectobacteria are broad host range enterobacterial pathogens that cause disease on a variety of plant species including the major crop potato. Pectobacteria are aggressive necrotrophs that harbor a large arsenal of plant cell wall-degrading enzymes as their primary virulence determinants. These enzymes together with additional virulence factors are employed to macerate the host tissue and promote host cell death to provide nutrients for the pathogens. In contrast to (hemi)biotrophs such as Pseudomonas, type III secretion systems (T3SS) and T3 effectors do not appear central to pathogenesis of pectobacteria. Indeed, recent genomic analysis of several Pectobacterium species including the emerging pathogen Pectobacterium wasabiae has shown that many strains lack the entire T3SS as well as the T3 effectors. Instead, this analysis has indicated the presence of novel virulence determinants. Resistance to broad host range pectobacteria is complex and does not appear to involve single resistance genes. Instead, activation of plant innate immunity systems including both SA (salicylic acid) and JA (jasmonic acid)/ET (ethylene)-mediated defenses appears to play a central role in attenuation of Pectobacterium virulence. These defenses are triggered by detection of pathogen-associated molecular patterns (PAMPs) or recognition of modified-self such as damage-associated molecular patterns (DAMPs) and result in enhancement of basal immunity (PAMP/DAMP-triggered immunity or pattern-triggered immunity, PTI). In particular plant cell wall fragments released by the action of the degradative enzymes secreted by pectobacteria are major players in enhanced immunity toward these pathogens. Most notably bacterial pectin-degrading enzymes release oligogalacturonide (OG) fragments recognized as DAMPs activating innate immune responses. Recent progress in understanding OG recognition and signaling allows novel genetic screens for OG-insensitive mutants and will provide new insights into plant defense strategies against necrotrophs such as pectobacteria.

Davidsson, Par R.; Kariola, Tarja; Niemi, Outi; Palva, E. T.

2013-01-01

324

Natural occurrence of 16 fusarium toxins in grains and feedstuffs of plant origin from Germany.  

PubMed

A total of 220 samples comprising cereals, cereal byproducts, corn plants and corn silage as well as non-grain based feedstuffs was randomly collected during 2000 and 2001 from sources located in Germany and analysed for 16 Fusarium toxins. The trichothecenes scirpentriol (SCIRP), 15-monoacetoxyscirpenol (MAS), diacetoxyscirpenol (DAS), T-2 tetraol, T-2 triol, HT-2 and T-2 toxin (HT-2, T-2), neosolaniol (NEO), deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivealenol (15-ADON), nivalenol (NIV) and fusarenon-X (FUS-X) were determined by gas chromatography/mass spectrometry. Zearalenone (ZEA) and alpha- and beta-zearalenol (alpha- and beta-ZOL) were analysed by high performance liquid chromatography with fluorescence and UV-detection. Detection limits ranged between 1 and 19 microg/kg. Out of 125 samples of a group consisting of wheat, oats, corn, corn byproducts, corn plants and corn silage only two wheat samples did not contain any of the toxins analysed. Based on 125 samples the incidences were at 2-11% for DAS, NEO, T-2 Triol, FUS-X, alpha- and beta-ZOL, at 20-22% for SCIRP, MAS, T-2 tetraol and 3-ADON, at 44-74% for HT-2, T-2, 15-ADON, NIV and ZEA, and at 94% for DON. Mean levels of positive samples were between 6 and 758 microg/kg. Out of 95 samples of a group consisting of hay, lupines, peas, soya meal, rapeseed meal and other oil-seed meals, 64 samples were toxin negative. DAS, T-2 triol, NEO and FUS-X were not detected in any sample. The incidences of DON and ZEA were at 14 and 23% respectively, those of the other toxins between 1-4%, mean levels of positive samples were between 5 and 95 microg/kg. PMID:16389484

Schollenberger, Margit; Müller, Hans-Martin; Rüfle, Melanie; Suchy, Sybille; Plank, Susanne; Drochner, Winfried

2006-01-01

325

The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes  

Microsoft Academic Search

The ubiquitous bacterium Pseudomonas aeruginosa is the quintessential opportunistic pathogen. Certain isolates infect a broad range of host organisms, from plants to humans. The pathogenic promiscuity of particular variants may reflect an increased virulence gene repertoire beyond the core P. aeruginosa genome. We have identified and characterized two P. aeruginosa pathogenicity islands (PAPI-1 and PAPI-2) in the genome of PA14,

Jianxin He; Regina L. Baldini; Eric Déziel; Maude Saucier; Qunhao Zhang; Nicole T. Liberati; Daniel Lee; Jonathan Urbach; Howard M. Goodman; Laurence G. Rahme

2004-01-01

326

The invasive plant Solidago canadensis L. suppresses local soil pathogens through allelopathy  

Microsoft Academic Search

Recent studies suggest that invasive plants pose a significant effect on local soil pathogens, which in turn affects on the plant invasion. However, the mechanisms by which invasive plants affect soil pathogens were less well known. We conducted four experiments to test the hypothesis that the invasive plant species Solidago canadensis L. may affect soilborne pathogens through exudation of allelochemicals.

Shanshan Zhang; Yili Jin; Jianjun Tang; Xin Chen

2009-01-01

327

Influence of soil fauna on fungal plant pathogens in agricultural and horticultural systems  

Microsoft Academic Search

An understanding of the ecology of plant pathogens is crucial for the development of agricultural and horticultural growing systems that enhance plant health. One important group of organisms that influences plant pathogen survival and dispersal is the soil fauna. This review deals with known and possible interactions between soil animals and different groups of fungal plant pathogens. It is suggested

Hanna Friberg; Jan Lagerlöf; Birgitta Rämert

2005-01-01

328

Innovative tools for detection of plant pathogenic viruses and bacteria.  

PubMed

Detection of harmful viruses and bacteria in plant material, vectors or natural reservoirs is essential to ensure safe and sustainable agriculture. The techniques available have evolved significantly in the last few years to achieve rapid and reliable detection of pathogens, extraction of the target from the sample being important for optimising detection. For viruses, sample preparation has been simplified by imprinting or squashing plant material or insect vectors onto membranes. To improve the sensitivity of techniques for bacterial detection, a prior enrichment step in liquid or solid medium is advised. Serological and molecular techniques are currently the most appropriate when high numbers of samples need to be analysed. Specific monoclonal and/or recombinant antibodies are available for many plant pathogens and have contributed to the specificity of serological detection. Molecular detection can be optimised through the automatic purification of nucleic acids from pathogens by columns or robotics. New variants of PCR, such as simple or multiplex nested PCR in a single closed tube, co-operative-PCR and real-time monitoring of amplicons or quantitative PCR, allow high sensitivity in the detection of one or several pathogens in a single assay. The latest development in the analysis of nucleic acids is micro-array technology, but it requires generic DNA/RNA extraction and pre-amplification methods to increase detection sensitivity. The advances in research that will result from the sequencing of many plant pathogen genomes, especially now in the era of proteomics, represent a new source of information for the future development of sensitive and specific detection techniques for these microorganisms. PMID:13680391

López, María M; Bertolini, Edson; Olmos, Antonio; Caruso, Paola; Gorris, María Teresa; Llop, Pablo; Penyalver, Ramón; Cambra, Mariano

2003-12-01

329

Arabidopsis defense response against Fusarium oxysporum.  

PubMed

The plant fungal pathogen Fusarium oxysporum (Fox) is the causal agent of root rot or wilt diseases in several plant species, including crops such as tomato (Solanum lycopersicum), banana (Musa sapientum) and asparagus (Asparagus officinalis). Colonization of plants by Fox leads to the necrosis of the infected tissues, a subsequent collapse of vascular vessels and decay of the plant. Plant resistance to Fox appears to be monogenic or oligogenic depending on the host. Perception of Fox by plants follows the concept of elicitor-induced immune response, which in turn activates several plant defense signaling pathways. Here, we review the Fox-derived elicitors identified so far and the interaction among the different signaling pathways mediating plant resistance to Fox. PMID:18289920

Berrocal-Lobo, Marta; Molina, Antonio

2008-03-01

330

Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi  

PubMed Central

Background The discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for the production of liquid transportation biofuels and other bioproducts. The industrial fungus Trichoderma reesei is known to be highly cellulolytic and is a major industrial microbial source for commercial cellulases, xylanases and other cell wall degrading enzymes. However, enzyme-prospecting research continues to identify opportunities to enhance the activity of T. reesei enzyme preparations by supplementing with enzymatic diversity from other microbes. The goal of this study was to evaluate the enzymatic potential of a broad range of plant pathogenic and non-pathogenic fungi for their ability to degrade plant biomass and isolated polysaccharides. Results Large-scale screening identified a range of hydrolytic activities among 348 unique isolates representing 156 species of plant pathogenic and non-pathogenic fungi. Hierarchical clustering was used to identify groups of species with similar hydrolytic profiles. Among moderately and highly active species, plant pathogenic species were found to be more active than non-pathogens on six of eight substrates tested, with no significant difference seen on the other two substrates. Among the pathogenic fungi, greater hydrolysis was seen when they were tested on biomass and hemicellulose derived from their host plants (commelinoid monocot or dicot). Although T. reesei has a hydrolytic profile that is highly active on cellulose and pretreated biomass, it was less active than some natural isolates of fungi when tested on xylans and untreated biomass. Conclusions Several highly active isolates of plant pathogenic fungi were identified, particularly when tested on xylans and untreated biomass. There were statistically significant preferences for biomass type reflecting the monocot or dicot host preference of the pathogen tested. These highly active fungi are promising targets for identification and characterization of novel cell wall degrading enzymes for industrial applications.

2011-01-01

331

The Ascomycete Verticillium longisporum Is a Hybrid and a Plant Pathogen with an Expanded Host Range  

Microsoft Academic Search

Hybridization plays a central role in plant evolution, but its overall importance in fungi is unknown. New plant pathogens are thought to arise by hybridization between formerly separated fungal species. Evolution of hybrid plant pathogens from non-pathogenic ancestors in the fungal-like protist Phytophthora has been demonstrated, but in fungi, the most important group of plant pathogens, there are few well-characterized

Patrik Inderbitzin; R. Michael Davis; Richard M. Bostock; Krishna V. Subbarao; Anastasia Litvintseva

2011-01-01

332

Sporulation of Fusarium oxysporum f. sp. lycopersici on Stem Surfaces of Tomato Plants and Aerial Dissemination of Inoculum.  

PubMed

ABSTRACT Plants exhibiting symptoms of wilt and xylem discoloration typical of Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici were observed in greenhouses of cherry tomatoes at various sites in Israel. However, the lower stems of some of these plants were covered with a pink layer of macroconidia of F. oxysporum. This sign resembles the sporulating layer on stems of tomato plants infected with F. oxysporum f. sp. radicis-lycopersici, which causes the crown and root rot disease. Monoconidial isolates of F. oxysporum from diseased plants were assigned to vegetative compatibility group 0030 of F. oxysporum f. sp. lycopersici and identified as belonging to race 1 of F. oxysporum f. sp. lycopersici. The possibility of coinfection with F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici was excluded by testing several macroconidia from each plant. Airborne propagules of F. oxysporum f. sp. lycopersici were trapped on selective medium in greenhouses in which plants with a sporulating layer had been growing. Sporulation on stems was reproduced by inoculating tomato plants with races 1 and 2 of F. oxysporum f. sp. lycopersici. This phenomenon has not been reported previously with F. oxysporum f. sp. lycopersici and might be connected to specific environmental conditions, e.g., high humidity. The sporulation of F. oxysporum f. sp. lycopersici on plant stems and the resultant aerial dissemination of macroconidia may have serious epidemiological consequences. Sanitation of the greenhouse structure, as part of a holistic disease management approach, is necessary to ensure effective disease control. PMID:18945093

Katan, T; Shlevin, E; Katan, J

1997-07-01

333

Natural Competence and Recombination in the Plant Pathogen Xylella fastidiosa ?  

PubMed Central

Homologous recombination is one of many forces contributing to the diversity, adaptation, and emergence of pathogens. For naturally competent bacteria, transformation is one possible route for the acquisition of novel genetic material. This study demonstrates that Xylella fastidiosa, a generalist bacterial plant pathogen responsible for many emerging plant diseases, is naturally competent and able to homologously recombine exogenous DNA into its genome. Several factors that affect transformation and recombination efficiencies, such as nutrient availability, growth stage, and methylation of transforming DNA, were identified. Recombination was observed in at least one out of every 106 cells when exogenous plasmid DNA was supplied and one out of every 107 cells when different strains were grown together in vitro. Based on previous genomic studies and experimental data presented here, there is mounting evidence that recombination can occur at relatively high rates and could play a large role in shaping the genetic diversity of X. fastidiosa.

Kung, Stephanie H.; Almeida, Rodrigo P. P.

2011-01-01

334

Antifungal activity of alkyl gallates against plant pathogenic fungi.  

PubMed

The antifungal activity of alkyl gallates against plant pathogenic fungi was evaluated. All of the fungi tested in this study were susceptible to some alkyl gallates, and the effect of linear alkyl gallates against plant pathogenic fungi was similar to the previously reported effects against Gram-negative and Gram-positive bacteria. We found that branched alkyl gallates showed stronger activity than did linear alkyl gallates with similar logP values. In addition, the antifungal activity of alkyl gallates was correlated with gallate-induced inhibition of the activity of mitochondrial complex II. The antifungal activity of alkyl gallates likely originates, at least in part, from their ability to inhibit the membrane respiratory chain. PMID:24618299

Ito, Shinsaku; Nakagawa, Yasutaka; Yazawa, Satoru; Sasaki, Yasuyuki; Yajima, Shunsuke

2014-04-01

335

Brassinosteroid enhances resistance to fusarium diseases of barley.  

PubMed

Fusarium pathogens are among the most damaging pathogens of cereals. These pathogens have the ability to attack the roots, seedlings, and flowering heads of barley and wheat plants with disease, resulting in yield loss and head blight disease and also resulting in the contamination of grain with mycotoxins harmful to human and animal health. There is increasing evidence that brassinosteroid (BR) hormones play an important role in plant defense against both biotic and abiotic stress agents and this study set out to determine if and how BR might affect Fusarium diseases of barley. Application of the epibrassinolide (epiBL) to heads of 'Lux' barley reduced the severity of Fusarium head blight (FHB) caused by Fusarium culmorum by 86% and reduced the FHB-associated loss in grain weight by 33%. Growth of plants in soil amended with epiBL resulted in a 28 and 35% reduction in Fusarium seedling blight (FSB) symptoms on the Lux and 'Akashinriki' barley, respectively. Microarray analysis was used to determine whether growth in epiBL-amended soil changed the transcriptional profile in stem base tissue during the early stages of FSB development. At 24 and 48 h post F. culmorum inoculation, there were 146 epiBL-responsive transcripts, the majority being from the 48-h time point (n = 118). Real-time reverse-transcription polymerase chain reaction analysis validated the results for eight transcripts, including five defense genes. The results of gene expression studies show that chromatin remodeling, hormonal signaling, photosynthesis, and pathogenesis-related genes are activated in plants as a result of growth in epiBL. PMID:23777406

Ali, Shahin S; Kumar, G B Sunil; Khan, Mojibur; Doohan, Fiona M

2013-12-01

336

Molecular Techniques for Classification and Diagnosis of Plant Pathogenic Oomycota  

Microsoft Academic Search

\\u000a With a delay of approximately 10 years, molecular techniques came in use for the investigation of phylogenetic, taxonomic,\\u000a and diagnostic problems in oomycetes. The particular problem in plant pathogenic Oomycota lies in their biotrophic nature,\\u000a which prohibits axenic cultivation of the majority of species, in particular downy mildews and white blister rusts, on artificial\\u000a media. This impeded the broad employment

Otmar Spring; Marco Thines

337

A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata.  

PubMed

The filamentous fungus Alternaria alternata contains seven pathogenic variants (pathotypes), which produce host-specific toxins and cause diseases on different plants. Previously, the gene cluster involved in host-specific AK-toxin biosynthesis of the Japanese pear pathotype was isolated, and four genes, named AKT genes, were identified. The AKT homologs were also found in the strawberry and tangerine pathotypes, which produce AF-toxin and ACT-toxin, respectively. This result is consistent with the fact that the toxins of these pathotypes share a common 9,10-epoxy-8-hydroxy-9-methyl-decatrienoic acid structural moiety. In this study, three of the AKT homologs (AFT1-1, AFTR-1, and AFT3-1) were isolated on a single cosmid clone from strain NAF8 of the strawberry pathotype. In NAF8, all of the AKT homologs were present in multiple copies on a 1.05-Mb chromosome. Transformation-mediated targeting of AFT1-1 and AFT3-1 in NAF8 produced AF-toxin-minus, nonpathogenic mutants. All of the mutants lacked the 1.05-Mb chromosome encoding the AFT genes. This chromosome was not essential for saprophytic growth of this pathogen. Thus, we propose that a conditionally dispensable chromosome controls host-specific pathogenicity of this pathogen. PMID:12019223

Hatta, Rieko; Ito, Kaoru; Hosaki, Yoshitsugu; Tanaka, Takayoshi; Tanaka, Aiko; Yamamoto, Mikihiro; Akimitsu, Kazuya; Tsuge, Takashi

2002-05-01

338

Clonality, recombination, and hybridization in the plumbing-inhabiting human pathogen Fusarium keratoplasticum inferred from multilocus sequence typing  

PubMed Central

Background Recent work has shown that Fusarium species and genotypes most commonly associated with human infections, particularly of the cornea (mycotic keratitis), are the same as those most commonly isolated from plumbing systems. The species most dominant in plumbing biofilms is Fusarium keratoplasticum, a cosmopolitan fungus known almost exclusively from animal infections and biofilms. To better understand its diversity and population dynamics, we developed and utilized a nine-locus sequence-based typing system to make inferences about clonality, recombination, population structure, species boundaries and hybridization. Results High levels of genetic diversity and evidence for recombination and clonality were detected among 75 clinical and 156 environmental isolates of Fusarium keratoplasticum. The multilocus sequence typing system (MLST) resolved 111 unique nine-locus sequence types (STs). The single locus bifactorial determinants of mating compatibility (mating types MAT1-1 and MAT1-2), were found in a ratio of 70:30. All but one of the 49 isolates of the most common ST (FSSC 2d-2) came from human infections, mostly of the cornea, and from biofilms associated with contact lenses and plumbing surfaces. Significant levels of phylogenetic incongruence were found among loci. Putative clonal relationships among genotypes were estimated, showing a mixture of large clonal complexes and unrelated singletons. Discordance between the nuclear ribosomal rRNA and other gene genealogies is consistent with introgression of ribosomal RNA alleles of phylogenetic species FSSC 9 into F. keratoplasticum. No significant population subdivision based on clinical versus non-clinical sources was found. Conclusions Incongruent phylogenetic trees and the presence of both mating types within otherwise identical STs were observed, providing evidence for sexuality in F. keratoplasticum. Cryptic speciation suggested in a published three-locus MLST system was not supported with the addition of new loci, but evidence of introgression of ribosomal RNA genes from another strongly supported phylogenetic species (FSSC 9), also known from plumbing systems and human infections, was detected in two isolates. Overall, F. keratoplasticum is a diverse and geographically unstructured species with a mixed clonal and recombinant life history.

2014-01-01

339

[Modes of action of agrochemicals against plant pathogenic organisms].  

PubMed

The chemical control of plant pathogens concerns mainly fungal diseases of crops. Most of the available fungicides act directly on essential fungal functions such as respiration, sterol biosynthesis or cell division. Consequently, these compounds can exhibit undesirable toxicological and environmental effects and sometimes select fungal resistant strains. Plant activators are expected to provide sustainable disease management in several crops because the development of resistance is not expected. Considering the future, the discovery of novel antifungal molecules will reap advantage from throughput screening methodologies and functional genomics. PMID:12741178

Leroux, Pierre

2003-01-01

340

Pathogen-induced systemic plant signal triggers DNA rearrangements.  

PubMed

Plant genome stability is known to be affected by various abiotic environmental conditions, but little is known about the effect of pathogens. For example, exposure of maize plants to barley stripe mosaic virus seems to activate transposable elements and to cause mutations in the non-infected progeny of infected plants. The induction by barley stripe mosaic virus of an inherited effect may mean that the virus has a non-cell-autonomous influence on genome stability. Infection with Peronospora parasitica results in an increase in the frequency of somatic recombination in Arabidopsis thaliana; however, it is unclear whether effects on recombination require the presence of the pathogen or represent a systemic plant response. It is also not clear whether the changes in the frequency of somatic recombination can be inherited. Here we report a threefold increase in homologous recombination frequency in both infected and non-infected tissue of tobacco plants infected with either tobacco mosaic virus or oilseed rape mosaic virus. These results indicate the existence of a systemic recombination signal that also results in an increased frequency of meiotic and/or inherited late somatic recombination. PMID:12802336

Kovalchuk, Igor; Kovalchuk, Olga; Kalck, Véronique; Boyko, Vitaly; Filkowski, Jody; Heinlein, Manfred; Hohn, Barbara

2003-06-12

341

Purification and characterization of an exo-polygalacturonase from the tomato vascular wilt pathogen Fusarium oxysporum f.sp. lycopersici.  

PubMed

An exo-polygalacturonase (EC 3.2.1.15) was purified to apparent homogeneity from cultures of Fusarium oxysporum f.sp. lycopersici on synthetic medium supplemented with citrus pectin, using preparative isoelectric focusing. The enzyme, denominated PG2, had an apparent M(r) of 74000 Da upon SDS-PAGE. The pI of the main PG2 isoform was 4.5, and pH and temperature optima were 5.0 and 55 degrees C, respectively. PG2 hydrolyzed polygalacturonic acid in an exo-manner, as demonstrated by anaysis of degradation products. The enzyme was N-glycosylated. The N-terminal amino acid sequence, L-A-F-N-V-P-S-K-P-P, has no identify to other known polygalacturonases. PMID:8961570

Di Pietro, A; Roncero, M I

1996-12-01

342

The Possible Induction of Resistance in Lupinus termis L. Against Fusarium oxysporum by Streptomyces chibaensis and its Mode of Action: I. Changes in Certain Morphological Criteria and Biochemical Composition Related to Induced Resistance  

Microsoft Academic Search

Much attention has been focused on examining the sequence of different changes that are triggered upon invasion of a pathogenic organism to a higher plant. Of the most rapid changes are those related to the morphological appearance of the infected plant. In the present work, growth of L. termis in Fusarium-pathogenized soil points to marked increases in root and shoot

M. NAFIE

343

A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East.  

PubMed

We investigated Fusarium graminearum complex (Fg complex) species diversity and toxin potential in European and Asian regions of the Russian Federation and adjoining regions northwest to Finland and south near Harbin, Heilongjiang Province, China, to expand our knowledge of the host range and geographic distribution of these economically devastating cereal head blight pathogens. Results of a recently described multilocus genotyping (MLGT) assay revealed that F. graminearum was the sole Fg complex pathogen in northern Europe and the predominant one in Asia (90.5%). Even though isolates of F. graminearum were segregating for 3-acetyldeoxynivalenol (3ADON) and 15-acetyldeoxynivalenol (15ADON) chemotype in nearly equal frequencies in the regions sampled on both continents, significant differences in the geographic distribution of isolates producing these acetyl ester derivatives of deoxynivalenol (DON) were observed in Europe. While 93.5% of the isolates in southern Russia (n = 43 of 46) possessed the 15ADON chemotype, isolates of F. graminearum recovered in Finland and northwestern Russia (n = 40) were exclusively 3ADON producers. Based on results of the MLGT assay, species identity of 10 genetically novel Fg complex isolates from the Russian Far East was investigated further via molecular phylogenetic analyses of multilocus DNA sequence data. Results of these analyses resolved these isolates as a phylogenetically distinct, reciprocally monophyletic sister lineage of F. asiaticum, which together with F. vorosii form a newly discovered Asian clade within the Fg complex. Because this novel lineage fulfills the highly conservative criterion of genealogical exclusivity under phylogenetic species recognition it is formally described herein as F. ussurianum. In addition to morphologically characterizing isolates of F. ussurianum, experiments were conducted to assess pathogenicity to wheat and trichothecene toxin potential in planta. PMID:19927749

Yli-Mattila, Tapani; Gagkaeva, Tatiana; Ward, Todd J; Aoki, Takayuki; Kistler, H Corby; O'Donnell, Kerry

2009-01-01

344

Functional Analysis of the Kinome of the Wheat Scab Fungus Fusarium graminearum  

Microsoft Academic Search

As in other eukaryotes, protein kinases play major regulatory roles in filamentous fungi. Although the genomes of many plant pathogenic fungi have been sequenced, systematic characterization of their kinomes has not been reported. The wheat scab fungus Fusarium graminearum has 116 protein kinases (PK) genes. Although twenty of them appeared to be essential, we generated deletion mutants for the other

Chenfang Wang; Shijie Zhang; Rui Hou; Zhongtao Zhao; Qian Zheng; Qijun Xu; Dawei Zheng; Guanghui Wang; Huiquan Liu; Xuli Gao; Ji-Wen Ma; H. Corby Kistler; Zhensheng Kang; Jin-Rong Xu

2011-01-01

345

Simultaneous detection of Fusarium culmorum and F. graminearum in plant material by duplex PCR with melting curve analysis  

PubMed Central

Background Fusarium head blight (FHB) is a disease of cereal crops, which has a severe impact on wheat and barley production worldwide. Apart from reducing the yield and impairing grain quality, FHB leads to contamination of grain with toxic secondary metabolites (mycotoxins), which pose a health risk to humans and livestock. The Fusarium species primarily involved in FHB are F. graminearum and F. culmorum. A key prerequisite for a reduction in the incidence of FHB is an understanding of its epidemiology. Results We describe a duplex-PCR-based method for the simultaneous detection of F. culmorum and F. graminearum in plant material. Species-specific PCR products are identified by melting curve analysis performed in a real-time thermocycler in the presence of the fluorescent dye SYBR Green I. In contrast to multiplex real-time PCR assays, the method does not use doubly labeled hybridization probes. Conclusion PCR with product differentiation by melting curve analysis offers a cost-effective means of qualitative analysis for the presence of F. culmorum and F. graminearum in plant material. This method is particularly suitable for epidemiological studies involving a large number of samples.

Brandfass, Christoph; Karlovsky, Petr

2006-01-01

346

Evolutionary History of the Plant Pathogenic Bacterium Xanthomonas axonopodis  

PubMed Central

Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes – geographical and ecological speciation – that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25 000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar.

Mhedbi-Hajri, Nadia; Hajri, Ahmed; Boureau, Tristan; Darrasse, Armelle; Durand, Karine; Brin, Chrystelle; Saux, Marion Fischer-Le; Manceau, Charles; Poussier, Stephane; Pruvost, Olivier

2013-01-01

347

Plant NBS-LRR proteins in pathogen sensing and host defense  

Microsoft Academic Search

Plant proteins belonging to the nucleotide-binding site–leucine-rich repeat (NBS-LRR) family are used for pathogen detection. Like the mammalian Nod-LRR protein 'sensors' that detect intracellular conserved pathogen-associated molecular patterns, plant NBS-LRR proteins detect pathogen-associated proteins, most often the effector molecules of pathogens responsible for virulence. Many virulence proteins are detected indirectly by plant NBS-LRR proteins from modifications the virulence proteins inflict

Brody J DeYoung; Roger W Innes

2006-01-01

348

2001 NATIONAL COTTON FUSARIUM WILT REPORT  

Microsoft Academic Search

Cotton cultivars and elite breeding lines submitted by 24 cooperators were evaluated for Fusarium wilt resistance under field conditions at the E. V. Smith Research Center, Plant Breeding Unit, Tallassee, Alabama. These entries were grown on an Independence loamy fine sand highly infested with the Fusarium wilt fungus (Fusarium oxysporum) Schlect. f. vasinfectum (Atk.) (Snyd. & Hans.) and southern root-knot

Kathryn M. Glass; William S. Gazaway; Edzard van Santen

349

Effect of Fusarium oxysporum f. sp. lycopersici on the soil-to-root translocation of heavy metals in tomato plants susceptible and resistant to the fungus.  

PubMed

The purpose of this work was to gain an insight on the potential role of the phytopathogenic fungus Fusarium oxysporum f. sp. lycopersici in the translocation of metals and metalloids from soil to plant roots in tomato (Lycopersicum esculentum). Two varieties of tomato (one susceptible and another resistant to infection by Fusarium oxysporum f. sp. lycopersici) were challenged with the fungus for different periods of time, and several elements (V, Cr, Mn, Co, Cu, Zn, As, Se, Mo, Ag, Cd, Pb) were determined in roots and in soil substrate. Additionally, phenolic plant products were also analyzed for the evaluation of the plant response to biotic stress. In order to obtain representative results for plants cultivated in noncontaminated environments, the infected and control plants were grown in commercial soil with natural, relatively low metal concentrations, partly associated with humic substances. Using such an experimental design, a specific role of the fungus could be observed, while possible effects of plant exposure to elevated concentrations of heavy metals were avoided. In the infected plants of two varieties, the root concentrations of several metals/metalloids were increased compared to control plants; however, the results obtained for elements and for phenolic compounds were significantly different in the two plant varieties. It is proposed that both Lycopersicum esculentum colonization by Fusarium oxysporum f. sp. lycopersici and the increase of metal bioavailability due to fungus-assisted solubilization of soil humic substances contribute to element traffic from soil to roots in tomato plant. PMID:21053907

Corrales Escobosa, Alma Rosa; Wrobel, Katarzyna; Landero Figueroa, Julio Alberto; Gutíerrez Corona, J Felix; Wrobel, Kazimierz

2010-12-01

350

The plant pathogen Rhodococcus fascians colonizes the exterior and interior of the aerial parts of plants.  

PubMed

Rhodococcus fascians is a plant-pathogenic bacterium that causes malformations on aerial plant parts, whereby leafy galls occur at axillary meristems. The colonization behavior on Nicotiana tabacum and Arabidopsis thaliana plants was examined. Independent of the infection methods, R. fascians extensively colonized the plant surface where the bacteria were surrounded by a slime layer. R. fascians caused the collapse of epidermal cells and penetrated intercellularly into the plant tissues. The onset of symptom development preceded the extensive colonization of the interior. The meristematic regions induced by pathogenic strain D188 were surrounded by bacteria. The nonpathogenic strain, D188-5, colonized the exterior of the plant equally well, but the linear plasmid (pFiD188) seemed to be involved in the penetration efficiency and colonization of tobacco tissues. PMID:11332724

Cornelis, K; Ritsema, T; Nijsse, J; Holsters, M; Goethals, K; Jaziri, M

2001-05-01

351

Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions  

PubMed Central

The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteria and nematodes need to degrade the plant cell wall at a certain stage of their infection process, to obtain nutrients for their growth. Plants have developed a system for sensing pathogens and monitoring the cell wall integrity, upon which they activate defense responses that lead to a dynamic cell wall remodeling required to prevent the disease. Pathogens, on the other hand, may exploit the host cell wall metabolism to support the infection. We review here the strategies utilized by both plants and pathogens to prevail in the cell wall battleground.

Bellincampi, Daniela; Cervone, Felice; Lionetti, Vincenzo

2014-01-01

352

Flavonoids and Strigolactones in Root Exudates as Signals in Symbiotic and Pathogenic Plant-Fungus Interactions  

Microsoft Academic Search

Secondary plant compounds are important signals in several symbiotic and pathogenic plant-microbe interactions. The present review is limited to two groups of secondary plant compounds, flavonoids and strigolactones, which have been reported in root exudates. Data on flavonoids as signaling compounds are available from several symbiotic and pathogenic plant-microbe interactions, whereas only recently initial data on the role of strigolactones

Siegrid Steinkellner; Venasius Lendzemo; Ingrid Langer; Peter Schweiger; Thanasan Khaosaad; Jean-Patrick Toussaint; Horst Vierheilig

2007-01-01

353

Characterization of Novel Di-, Tri-, and Tetranucleotide Microsatellite Primers Suitable for Genotyping Various Plant Pathogenic Fungi with Special Emphasis on Fusaria and Mycospherella graminicola.  

PubMed

The goals of this investigation were to identify and evaluate the use of polymorphic microsatellite marker (PMM) analysis for molecular typing of seventeen plant pathogenic fungi. Primers for di-, tri-, and tetranucleotide loci were designed directly from the recently published genomic sequence of Mycospherlla graminicola and Fusarium graminearum. A total of 20 new microsatellite primers as easy-to-score markers were developed. Microsatellite primer PCR (MP-PCR) yielded highly reproducible and complex genomic fingerprints, with several bands ranging in size from 200 to 3000 bp. Of the 20 primers tested, only (TAGG)4, (TCC)5 and (CA)7T produced a high number of polymorphic bands from either F. graminearum or F. culmorum. (ATG)5 led to successful amplifications in M. graminicola isolates collected from Germany. Percentage of polymorphic bands among Fusarium species ranged from 9 to 100%. Cluster analysis of banding patterns of the isolates corresponded well to the established species delineations based on morphology and other methods of phylogenetic analysis. The current research demonstrates that the newly designed microsatellite primers are reliable, sensitive and technically simple tools for assaying genetic variability in plant pathogenic fungi. PMID:22489135

Bahkali, Ali H; Abd-Elsalam, Kamel A; Guo, Jian-Rong; Khiyami, Mohamed A; Verreet, Joseph-Alexander

2012-01-01

354

Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper  

PubMed Central

Background and Aims Plants modulate defence signalling networks in response to different biotic stresses. The present study evaluated the effect of a phloem-sucking aphid on plant defence mechanisms in pepper (Capsicum annuum) during subsequent pathogen attacks on leaves and rhizosphere bacteria on roots. Methods Plants were pretreated with aphids and/or the chemical trigger benzothiadiazol (BTH) 7 d before being challenged with two pathogenic bacteria, Xanthomonas axonopodis pv. vesicatoria (Xav) as a compatible pathogen and X. axonopodis pv. glycines (Xag) as an incompatible (non-host) pathogen. Key Results Disease severity was noticeably lower in aphid- and BTH + aphid-treated plants than in controls. Although treatment with BTH or aphids alone did not affect the hypersensitive response (HR) against Xag strain 8ra, the combination treatment had a synergistic effect on the HR. The aphid population was reduced by BTH pretreatment and by combination treatment with BTH and bacterial pathogens in a synergistic manner. Analysis of the expression of the defence-related genes Capsicum annum pathogenesis-related gene 9 (CaPR9), chitinase 2 (CaCHI2), SAR8·2 and Lipoxygenase1 (CaLOX1) revealed that aphid infestation resulted in the priming of the systemic defence responses against compatible and incompatible pathogens. Conversely, pre-challenge with the compatible pathogen Xav on pepper leaves significantly reduced aphid numbers. Aphid infestation increased the population of the beneficial Bacillus subtilis GB03 but reduced that of the pathogenic Ralstonia solanacearum SL1931. The expression of defence-related genes in the root and leaf after aphid feeding indicated that the above-ground aphid infestation elicited salicylic acid and jasmonic acid signalling throughout the whole plant. Conclusions The findings of this study show that aphid feeding elicits plant resistance responses and attracts beneficial bacterial populations to help the plant cope with subsequent pathogen attacks.

Lee, Boyoung; Lee, Soohyun; Ryu, Choong-Min

2012-01-01

355

Increased Growth and Yield of Hydroponically Grown Greenhouse Tomato Plants Inoculated with Arbuscular Mycorrhizal Fungi and Fusarium oxysporum f. sp. radicis-lycopersici  

Microsoft Academic Search

The arbuscular mycorrhizal fungi Glomus monosporum, G. vesiculiferum, G. deserticola, G. intraradices, G. mosseae, and two unidentified species were tested to determine their effect on plant growth and fruit production of tomato (Lycopersicon esculentum Mill.) cv. Trust inoculated with Fusarium oxysporum f. sp. radicis-lycopersici (FORL) under near-commercial greenhouse conditions. Inoculation with G. monosporum and G. mosseae significantly increased fruit yield

R. Utkhede

2006-01-01

356

Ralfuranone thioether production by the plant pathogen Ralstonia solanacearum.  

PubMed

Ralfuranones are aryl-substituted furanone secondary metabolites of the Gram-negative plant pathogen Ralstonia solanacearum. New sulfur-containing ralfuranone derivatives were identified, including the methyl thioether-containing ralfuranone D. Isotopic labeling in vivo, as well as headspace analyses of volatiles from R. solanacearum liquid cultures, established a mechanism for the transfer of an intact methylthio group from L-methionine or ?-keto-?-methylthiobutyric acid. The methylthio acceptor molecule ralfuranone I, a previously postulated biosynthetic intermediate in ralfuranone biosynthesis, was isolated and characterized by NMR. The highly reactive Michael acceptor system of this intermediate readily reacts with various thiols, including glutathione. PMID:24106142

Pauly, Julia; Spiteller, Dieter; Linz, Jeanine; Jacobs, Jonathan; Allen, Caitilyn; Nett, Markus; Hoffmeister, Dirk

2013-11-01

357

Detection of 3-hydroxykynurenine in a plant pathogenic fungus.  

PubMed Central

A redox-active compound has been purified from the barley powdery mildew fungus Blumeria ( Erysiphe ) graminis f. sp. hordei. A combination of spectrophotometry, MS and NMR has identified it as 3-hydroxykynurenine (3OHKyn). This compound, never previously detected in any fungus or pathogen, is best known for its role in vertebrate cataracts. It is found abundantly in developing and germinating spores and also in runner hyphae. Two roles for 3OHKyn are discussed: first, the presence of active oxygen species would enable 3OHKyn to cross-link the spore chemically with the plant. Secondly, it may be acting as an UV protectant and an antioxidant.

Wilson, T J Greer; Thomsen, Karl Kristian; Petersen, Bent O; Duus, Jens ?; Oliver, Richard P

2003-01-01

358

Trehalose Biosynthesis Promotes Pseudomonas aeruginosa Pathogenicity in Plants  

PubMed Central

Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but not glucose, sulfate, or phosphate suppressed the phenotype of the double ?treYZ?treS mutant. Exogenous trehalose or ammonium nitrate does not suppress the growth defect of the double ?treYZ?treS mutant by suppressing the plant defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the ?treYZ?treS in trans. Surprisingly, the growth defect of the double ?treYZ?treS double mutant was suppressed by various Arabidopsis cell wall mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors. An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a highly conserved “house-keeping” anabolic pathway (trehalose biosynthesis) as a potent virulence factor that allows it to replicate in the intercellular environment of a leaf.

Djonovic, Slavica; Urbach, Jonathan M.; Drenkard, Eliana; Bush, Jenifer; Feinbaum, Rhonda; Ausubel, Jonathan L.; Traficante, David; Risech, Martina; Kocks, Christine; Fischbach, Michael A.; Priebe, Gregory P.; Ausubel, Frederick M.

2013-01-01

359

Natural and Natural-like Phenolic Inhibitors of Type B Trichothecene in Vitro Production by the Wheat (Triticum sp.) Pathogen Fusarium culmorum.  

PubMed

Fusarium culmorum, a fungal pathogen of small grain cereals, produces 4-deoxynivalenol and its acetylated derivatives that may cause toxicoses on humans or animals consuming contaminated food or feed. Natural and natural-like compounds belonging to phenol and hydroxylated biphenyl structural classes were tested in vitro to determine their activity on vegetative growth and trichothecene biosynthesis by F. culmorum. Most of the compounds tested at 1.5 or 1.0 mM reduced 3-acetyl-4-deoxynivalenol production by over 70% compared to the control, without affecting fungal growth significantly. Furthermore, several compounds retained their ability to inhibit toxin in vitro production at the lowest concentrations of 0.5 and 0.25 mM. Magnolol 27 showed fungicidal activity even at 0.1 mM. No linear correlation was observed between antioxidant properties of the compounds and their ability to inhibit fungal growth and mycotoxigenic capacity. A guaiacyl unit in the structure may play a key role in trichothecene inhibition. PMID:24820850

Pani, Giovanna; Scherm, Barbara; Azara, Emanuela; Balmas, Virgilio; Jahanshiri, Zahra; Carta, Paola; Fabbri, Davide; Dettori, Maria Antonietta; Fadda, Angela; Dessì, Alessandro; Dallocchio, Roberto; Migheli, Quirico; Delogu, Giovanna

2014-06-01

360

alpha-Tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum.  

PubMed

The tomato saponin alpha-tomatine has been proposed to kill sensitive cells by binding to cell membranes followed by leakage of cell components. However, details of the modes of action of the compound on fungal cells are poorly understood. In the present study, mechanisms involved in alpha-tomatine-induced cell death of fungi were examined using a filamentous pathogenic fungus Fusarium oxysporum. alpha-Tomatine-induced cell death of F. oxysporum (TICDF) occurred only under aerobic conditions and was blocked by the mitochondrial F(0)F(1)-ATPase inhibitor oligomycin, the caspase inhibitor D-VAD-fmk, and protein synthesis inhibitor cycloheximide. Fungal cells exposed to alpha-tomatine showed TUNEL-positive nuclei, depolarization of transmembrane potential of mitochondria, and reactive oxygen species (ROS) accumulation. These results suggest that TICDF occurs through a programmed cell death process in which mitochondria play a pivotal role. Pharmacological studies using inhibitors suggest that alpha-tomatine activates phosphotyrosine kinase and monomeric G-protein signaling pathways leading to Ca(2+) elevation and ROS burst in F. oxysporum cells. PMID:17585910

Ito, Shin-Ichi; Ihara, Takashi; Tamura, Hideyuki; Tanaka, Shuhei; Ikeda, Tsuyoshi; Kajihara, Hiroshi; Dissanayake, Chandrika; Abdel-Motaal, Fatma F; El-Sayed, Magdi A

2007-07-10

361

Bacterial hrp and Avirulence Genes are Key Determinants in Plant-Pathogen Interactions  

Microsoft Academic Search

Among the 1600 different species known in the bacterial kingdom only a small number are plant pathogenic. In fact, most pathogens\\u000a can only infect a limited number of host plant species. On the other hand, many bacteria live in the plant’s phyllosphere\\u000a and rhizosphere without causing any harm. To be successful as a pathogen, i.e., live on the expense of

Ulla Bonas; Guido Van den Ackerveken

362

Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses  

Microsoft Academic Search

BACKGROUND: The toxigenic fungal plant pathogen Fusarium graminearum compromises wheat production worldwide. Azole fungicides play a prominent role in controlling this pathogen. Sequencing of its genome stimulated the development of high-throughput technologies to study mechanisms of coping with fungicide stress and adaptation to fungicides at a previously unprecedented precision. DNA-microarrays have been used to analyze genome-wide gene expression patterns and

Rayko Becher; Fabian Weihmann; Holger B Deising; Stefan GR Wirsel

2011-01-01

363

Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate.  

PubMed

The effects of the pathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici and of the bacterial biocontrol strain Pseudomonas fluorescens WCS365, and of both microbes, on the amounts and composition of root exudate components of tomato plants grown in a gnotobiotic stonewool substrate system were studied. Conditions were selected under which introduction of F. oxysporum f. sp. radicis-lycopersici caused severe foot and root rot, whereas inoculation of the seed with P. fluorescens WCS365 decreased the percentage of diseased plants from 96 to 7%. This is a much better disease control level than was observed in potting soil. Analysis of root exudate revealed that the presence of F. oxysporum f. sp. radicis-lycopersici did not alter the total amount of organic acids, but that the amount of citric acid decreased and that of succinic acid increased compared with the nontreated control. In contrast, in the presence of the P. fluorescens biocontrol strain WCS365, the total amount of organic acid increased, mainly due to a strong increase of the amount of citric acid, whereas the amount of succinic acid decreased dramatically. Under biocontrol conditions, when both microbes are present, the content of succinic acid decreased and the level of citric acid was similar to that in the nontreated control. The amount of sugar was approximately half that of the control sample when either one of the microbes was present alone or when both were present. Analysis of the interactions between the two microbes grown together in sterile tomato root exudate showed that WCS365 inhibited multiplication of F. oxysporum f. sp. radicis-lycopersici, whereas the fungus did not affect the number of CFU of the bacterium. PMID:17022176

Kamilova, Faina; Kravchenko, Lev V; Shaposhnikov, Alexander I; Makarova, Nataliya; Lugtenberg, Ben

2006-10-01

364

Viruses of the plant pathogenic fungus Sclerotinia sclerotiorum.  

PubMed

Sclerotinia sclerotiorum is a notorious plant fungal pathogen with a broad host range including many important crops, such as oilseed rape, soybean, and numerous vegetable crops. Hypovirulence-associated mycoviruses have attracted much attention because of their potential as biological control agents for combating plant fungal diseases and for use in fundamental studies on fungal pathogenicity and other properties. This chapter describes several mycoviruses that were isolated from hypovirulent strains except for strain Sunf-M, which has a normal phenotype. These viruses include the geminivirus-like mycovirus Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), Sclerotinia debilitation-associated RNA virus (SsDRV), Sclerotinia sclerotiorum RNA virus L (SsRV-L), Sclerotinia sclerotiorum hypovirus 1 (SsHV-1), Sclerotinia sclerotiorum mitoviruses 1 and 2 (SsMV-1, SsMV-2), and Sclerotinia sclerotiorum partitivirus S (SsPV-S). Unlike many other fungi, incidences of mixed infections with two or more mycoviruses in S. sclerotiorum are particularly high and very common. The interaction between SsDRV and S. sclerotiorum is likely to be unique. The significance of these mycoviruses to fungal ecology and viral evolution and the potential for biological control of Sclerotinia diseases using mycoviruses are discussed. PMID:23498908

Jiang, Daohong; Fu, Yanping; Guoqing, Li; Ghabrial, Said A

2013-01-01

365

Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f.sp. niveum  

Microsoft Academic Search

Paenibacillus polymyxa SQR-21 has been identified as a potential agent for the biocontrol of Fusarium wilt in watermelon, which is caused by the pathogenic fungus Fusarium oxysporum f.sp. niveum (FON). In the present study, the effects of root exudates from watermelon plants inoculated or non-inoculated with either\\u000a SQR-21 or FON on conidial germination of FON were investigated. Compared to the

Ning Ling; Qiwei Huang; Shiwei Guo; Qirong Shen

2011-01-01

366

Evaluation of Fusarium head blight in barley infected by Fusarium graminearum.  

PubMed

Fusarium head blight, which is primarily caused by Fusarium graminearum, is a devastating disease in the barley field. A real-time PCR protocol was developed to evaluate the growth of this pathogen in the host plant tissues. All four strains harbored the gene encoding ATP-BINDING CASSETTE TRANSPORTER (FgABC; FGSG_00541) as a single copy within their genomes. Our Southern blot result was identical with the genomic data for F. graminearum strain PH-1. Based on the crossing point (CP) values obtained in our TaqMan real-time PCR analysis, two standard curves describing the relationship among the CP value, FgABC copy number, and amount of fungal DNA were constructed. Chronological enumeration of fungal growth was coincided with the symptom development. PMID:23990309

Kang, Woo-Ri; Hwang, Duk-Ju; Bae, Shin-Chul; Lee, Theresa; Kim, Soonok; Ahn, Il-Pyung

2013-08-01

367

Plant Antimicrobial Agents and Their Effects on Plant and Human Pathogens  

PubMed Central

To protect themselves, plants accumulate an armoury of antimicrobial secondary metabolites. Some metabolites represent constitutive chemical barriers to microbial attack (phytoanticipins) and others inducible antimicrobials (phytoalexins). They are extensively studied as promising plant and human disease-controlling agents. This review discusses the bioactivity of several phytoalexins and phytoanticipins defending plants against fungal and bacterial aggressors and those with antibacterial activities against pathogens affecting humans such as Pseudomonas aeruginosa and Staphylococcus aureus involved in respiratory infections of cystic fibrosis patients. The utility of plant products as “antibiotic potentiators” and “virulence attenuators” is also described as well as some biotechnological applications in phytoprotection.

Gonzalez-Lamothe, Rocio; Mitchell, Gabriel; Gattuso, Mariza; Diarra, Moussa S.; Malouin, Francois; Bouarab, Kamal

2009-01-01

368

Pyrrole and indole alkaloids from an endophytic Fusarium incarnatum (HKI00504) isolated from the mangrove plant Aegiceras corniculatum.  

PubMed

Two new pyrrole alkaloids, N-[4-(2-formyl-5-hydroxymethyl-pyrrol-1-yl)-butyl]-acetamide (1) and N-[5-(2-formyl-5-hydroxymethyl-pyrrol-1-yl)-pentyl]-acetamide (2), and a new indole derivative (3aR,8aR)-3a-acetoxyl-1,2,3,3a,8,8a-hexahydropyrrolo-[2,3-b]indol (3) were isolated, together with ( - )-3a-hydroxyfuroindoline, (3aR,8aS)-1-acetyl-1,3,3a,8,8a-hexahydropyrrolo-[2,3-b]indol-3a-ol, and N-acetyltryptamine A, from an endophytic ascomycetous fungus, Fusarium incarnatum (HKI00504), which was isolated from the mangrove plant Aegiceras corniculatum. The structures of compounds 1-3 were determined on the basis of extensive spectroscopic data analyses. PMID:18696331

Li, Li-Ya; Ding, Yi; Groth, Ingrid; Menzel, Klaus-Dieter; Peschel, Gundela; Voigt, Kerstin; Deng, Zi-Wei; Sattler, Isabel; Lin, Wen-Han

2008-01-01

369

Pyrrole and indole alkaloids from an endophytic Fusarium incarnatum (HKI00504) isolated from the mangrove plant Aegiceras corniculatum  

Microsoft Academic Search

Two new pyrrole alkaloids, N-[4-(2-formyl-5-hydroxymethyl-pyrrol-1-yl)-butyl]-acetamide (1) and N-[5-(2-formyl-5-hydroxymethyl-pyrrol-1-yl)-pentyl]-acetamide (2), and a new indole derivative (3aR,8aR)-3a-acetoxyl-1,2,3,3a,8,8a-hexahydropyrrolo-[2,3-b]indol (3) were isolated, together with ( ? )-3a-hydroxyfuroindoline, (3aR,8aS)-1-acetyl-1,3,3a,8,8a-hexahydropyrrolo-[2,3-b]indol-3a-ol, and N-acetyltryptamine A, from an endophytic ascomycetous fungus, Fusarium incarnatum (HKI00504), which was isolated from the mangrove plant Aegiceras corniculatum. The structures of compounds 1–3 were determined on the basis of extensive spectroscopic data analyses.

Li-Ya Li; Yi Ding; Ingrid Groth; Klaus-Dieter Menzel; Gundela Peschel; Kerstin Voigt; Zi-Wei Deng; Isabel Sattler; Wen-Han Lin

2008-01-01

370

Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi  

PubMed Central

Arbuscular mycorrhizal (AM) fungi represent ubiquitous mutualists of terrestrial plants. Through the symbiosis, plant hosts, among other benefits, receive protection from pathogens. A meta-analysis was conducted on 106 articles to determine whether, following pathogen infection of AM-colonized plants, the identity of the organisms involved (pathogens, AM fungi and host plants) had implications for the extent of the AM-induced pathogen suppression. Data on fungal and nematode pathogens were analysed separately. Although we found no differences in AM effectiveness with respect to the identity of the plant pathogen, the identity of the AM isolate had a dramatic effect on the level of pathogen protection. AM efficiency differences with respect to nematode pathogens were mainly limited to the number of AM isolates present; by contrast, modification of the ability to suppress fungal pathogens could occur even through changing the identity of the Glomeraceae isolate applied. N-fixing plants received more protection from fungal pathogens than non-N-fixing dicotyledons; this was attributed to the more intense AM colonization in N-fixing plants. Results have implications for understanding mycorrhizal ecology and agronomic applications.

Veresoglou, Stavros D.; Rillig, Matthias C.

2012-01-01

371

Induced Release of a Plant-Defense Volatile 'Deceptively' Attracts Insect Vectors to Plants Infected with a Bacterial Pathogen  

PubMed Central

Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread.

Mann, Rajinder S.; Ali, Jared G.; Hermann, Sara L.; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S.; Alborn, Hans T.; Stelinski, Lukasz L.

2012-01-01

372

Transgenic tomato plants expressing a wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f. sp. lycopersici  

Microsoft Academic Search

Various chitinases have been shown to inhibit the growth of fungal pathogens in in vitro as well as in planta conditions.\\u000a chi194, a wheat chitinases gene encoding a 33-kDa chitinase protein, was overexpressed in tomato plants (cv. Pusa Ruby) under the\\u000a control of maize ubiquitin 1 promoter. The integration of transgene in tomato plants was confirmed with polymerase chain reaction

P. V. Girhepuje; G. B. Shinde

2011-01-01

373

Identification and biocontrol efficacy of Streptomyces miharaensis producing filipin III against Fusarium wilt.  

PubMed

A number of bacterial strains were isolated from the internal tissue of Trapa japonica. Of these, strain KPE62302H, which had a 16S rDNA sequence identical to that of Streptomyces miharaensis showed antifungal activity against several plant pathogens. Treatment of seeds with strain KPE62302H induced a significant reduction in the incidence of Fusarium wilt in tomato plants compared with untreated controls. An antifungal substance (FP-1) was purified from the culture extract of strain KPE62302H using C18 flash and Sephadex LH-20 column chromatography and reverse phase HPLC. Extensive spectrometric analysis using MS and NMR identified this as filipin III. FP-1 inhibited the mycelial growth of plant pathogenic fungi such as Alternaria mali, Aspergillus niger, Colletotrichum gloeosporioides, C. orbiculare, Cylindrocarpon destructans, Diaporthe citiri, Fusarium oxysporum at 1-10 ?g ml(-1) and also markedly inhibited the development of Fusarium wilt caused by F. oxysporum f.sp. lycopersici in tomato plants by treatment with 10 ?g ml(-1) under greenhouse conditions. The efficacy of FP-1 against Fusarium wilt was comparable to that of the synthetic fungicide benomyl. An egfp -tagged strain of KPE62302H confirmed its ability to colonize tomato plants. PMID:22460913

Kim, Jeong Do; Han, Jae Woo; Hwang, In Cheon; Lee, Dongho; Kim, Beom Seok

2012-04-01

374

On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance.  

PubMed

The ascomycete fungal pathogen Fusarium graminearum (sexual stage: Gibberella zeae) causes the devastating head blight or scab disease on wheat and barley, and cob or ear rot disease on maize. Fusarium graminearum infection causes significant crop and quality losses. In addition to roles as virulence factors during pathogenesis, trichothecene mycotoxins (e.g. deoxynivalenol) produced by this pathogen constitute a significant threat to human and animal health if consumed in respective food or feed products. In the last few years, significant progress has been made towards a better understanding of the processes involved in F. graminearum pathogenesis, toxin biosynthesis and host resistance mechanisms through the use of high-throughput genomic and phenomic technologies. In this article, we briefly review these new advances and also discuss how future research can contribute to the development of sustainable plant protection strategies against this important plant pathogen. PMID:22098555

Kazan, Kemal; Gardiner, Donald M; Manners, John M

2012-05-01

375

The FgHOG1 Pathway Regulates Hyphal Growth, Stress Responses, and Plant Infection in Fusarium graminearum  

PubMed Central

Fusarium head blight (FHB) caused by Fusarium graminearum is a destructive disease of wheat and barley worldwide. In a previous study of systematic characterization of protein kinase genes in F. graminearum, mutants of three putative components of the osmoregulation MAP kinase pathway were found to have distinct colony morphology and hyphal growth defects on PDA plates. Because the osmoregulation pathway is not known to regulate aerial hyphal growth and branching, in this study we further characterized the functions of the FgHog1 pathway in growth, pathogenesis, and development. The Fghog1, Fgpbs2, and Fgssk2 mutants were all reduced in growth rate, aerial hyphal growth, and hyphal branching angle. These mutants were not only hypersensitive to osmotic stress but also had increased sensitivity to oxidative, cytoplasm membrane, and cell wall stresses. The activation of FgHog1 was blocked in the Fgpbs2 and Fgssk2 mutants, indicating the sequential activation of FgSsk2-FgPbs2-FgHog1 cascade. Interestingly, the FgHog1 MAPK pathway mutants appeared to be sensitive to certain compounds present in PDA. They were female sterile but retained male fertility. We also used the metabolomics profiling approach to identify compatible solutes that were accumulated in the wild type but not in the Fghog1 deletion mutant. Overall, our results indicate that the FgSsk2-FgPbs2-FgHog1 MAPK cascade is important for regulating hyphal growth, branching, plant infection, and hyperosmotic and general stress responses in F. graminearum.

Zhou, Xiaoying; Wang, Chenfang; Xiang, Ping; Zheng, Qian; Xu, Jin-Rong

2012-01-01

376

Plants for planting; indirect evidence for the movement of a serious forest pathogen, Teratosphaeria destructans , in Asia  

Microsoft Academic Search

Fungal diseases caused by native pathogens and pathogens introduced with planting stock have a significant impact on exotic\\u000a plantation forestry in the tropics. Teratosphaeria destructans (formerly Kirramyces destructans) is a serious pathogen causing leaf, bud and shoot blight diseases of Eucalyptus spp. in plantations in the sub-tropics and tropics of south-east Asia. This pathogen was first discovered in Indonesia in

Vera Andjic; Bernard Dell; Paul Barber; Giles Hardy; Michael Wingfield; Treena Burgess

377

Fumonisin B1 from the fungus Fusarium moniliforme causes contact toxicity in plants: evidence from studies with biosynthetically labeled toxin.  

PubMed

Fumonisin B1 (FB1) is the most abundant of a series of sphingosine analog mycotoxins produced by the fungus Fusarium moniliforme, a ubiquitous contaminant of stored corn (maize) worldwide. FB1 exhibits a variety of biological activities including phytotoxicity, which is of particular interest for its potential role as a virulence factor to facilitate invasion of plant tissues by the fungus. Droplets of FB1 solution applied to the leaf surface of jimsonweed, black nightshade, and susceptible tomatoes caused necrosis, growth inhibition, and death. With Arabidopsis thaliana grown on agar plates, an IC50 (concentration causing half maximal phytotoxicity) of less than 1 ppm was observed. [3H]FB1 was prepared by biosynthetic incorporation of commercially-available radiolabeled presumptive precursors into the toxin in rice medium solid cultures of F. moniliforme JW#1. The labeled toxin produced by incorporation of [9,10-3H]palmitate induced phytotoxic symptoms identical to unlabeled material, indicating it had full biological activity. The area of necrosis on treated leaves was similar in light and dark treated plants. Using liquid scintillation counting to quantify radioactivity in excised plant parts, over 95% of the [3H]FB1 radioactivity applied to leaves of light or dark-treated plants was recovered from the treated leaf. When [3H]FB1 was applied to a wound site on target plants, severe damage occurred at the site of FB1 application and in tissue above the site. These results indicate that FB1 applied to intact surfaces of target plants exhibits primarily contact activity. Translocation of FB1 is limited, occurring only when FB1 is applied to a wound site, and it results in damage to tissue above the point of application, indicating that FB1 is xylem mobile. PMID:10591043

Abbas, H K; Smeda, R J; Gerwick, B C; Shier, W T

1999-10-01

378

Fumonisin B1 from the fungus Fusarium moniliforme causes contact toxicity in plants: evidence from studies with biosynthetically labeled toxin.  

PubMed

Fumonisin B1 (FB1) is the most abundant of a series of sphingosine analog mycotoxins produced by the fungus Fusarium moniliforme, a ubiquitous contaminant of stored corn (maize) worldwide. FB1 exhibits a variety of biological activities including phytotoxicity, which is of particular interest for its potential role as a virulence factor to facilitate invasion of plant tissues by the fungus. Droplets of FB1 solution applied to the leaf surface of jimsonweed, black nightshade, and susceptible tomatoes caused necrosis, growth inhibition, and death. With Arabidopsis thaliana grown on agar plates, an IC50 (concentration causing half maximal phytotoxicity) of less than 1 ppm was observed. [3H]FB1 was prepared by biosynthetic incorporation of commercially-available radiolabeled presumptive precursors into the toxin in rice medium solid cultures of F. moniliforme JW#1. The labeled toxin produced by incorporation of [9,10(-3)H]palmitate induced phytotoxic symptoms identical to unlabeled material, indicating it had full biological activity. The area of necrosis on treated leaves was similar in light and dark treated plants. Using liquid scintillation counting to quantify radioactivity in excised plant parts, over 95% of the [3H]FB1 radioactivity applied to leaves of light or dark-treated plants was recovered from the treated leaf. When [3H]FB1 was applied to a wound site on target plants, severe damage occurred at the site of FB1 application and in tissue above the site. These results indicate that FB1 applied to intact surfaces of target plants exhibits primarily contact activity. Translocation of FB1 is limited, occurring only when FB1 is applied to a wound site, and it results in damage to tissue above the point of application, indicating that FB1 is xylem mobile. PMID:10701184

Abbas, H K; Smeda, R J; Gerwick, B C; Shier, W T

2000-02-01

379

Chitinolytic Enterobacter agglomerans Antagonistic to Fungal Plant Pathogens  

PubMed Central

Three Enterobacter agglomerans strains which produce and excrete proteins with chitinolytic activity were found while screening soil-borne bacteria antagonistic to fungal plant pathogens. The chitinolytic activity was induced when the strains were grown in the presence of colloidal chitin as the sole carbon source. It was quantitated by using assays with chromogenic p-nitrophenyl analogs of disaccharide, trisaccharide, and tetrasaccharide derivatives of N-acetylglucosamine. A set of three fluorescent substrates with a 4-methylumbelliferyl group linked by (beta)-1,4 linkage to N-acetylglucosamine mono- or oligosaccharides were used to identify the chitinolytic activities of proteins which had been renatured following their separation by electrophoresis. This study provides the most complete evidence for the presence of a complex of chitinolytic enzymes in Enterobacter strains. Four enzymes were detected: two N-acetyl-(beta)-d-glucosaminidases of 89 and 67 kDa, an endochitinase with an apparent molecular mass of 59 kDa, and a chitobiosidase of 50 kDa. The biocontrol ability of the chitinolytic strains was demonstrated under greenhouse conditions. The bacteria decreased the incidence of disease caused by Rhizoctonia solani in cotton by 64 to 86%. Two Tn5 mutants of one of the isolates, which were deficient in chitinolytic activity, were unable to protect plants against the disease.

Chernin, L.; Ismailov, Z.; Haran, S.; Chet, I.

1995-01-01

380

Antagonistic potential of Gluconacetobacter diazotrophicus against Fusarium oxysporum in sweet potato (Ipomea batatus)  

Microsoft Academic Search

Gluconacetobacter diazotrophicus, an endophytic diazotroph also encountered as rhizosphere bacterium, is reported to possess different plant growth promoting characteristics. In this study, we assessed the biocontrol potential of G. diazotrophicus under in vitro conditions with soil-borne plant pathogenic Fusarium oxysporum. The possible compounds involved in the biocontrol involves 2,4-diacetylphloroglucinol, Pyrrolnitrin and Pyoluteorin. Thin layer chromatography analysis revealed that G. diazotrophicus

P. Logeshwarn; M. Thangaraju; K. Rajasundari

2011-01-01

381

Induction of mutants of Fusarium oxysporum f. sp. lycopersici with altered virulence  

Microsoft Academic Search

Mutants ofFusarium oxysporum f. sp.lycopersici were obtained by UV irradiation. The mutants of race 1 and race 2 caused disease symptoms on plants with resistance genes\\u000a against the corresponding wild type strains. Mutants of race 1 of the pathogen were stable, whereas mutants of race 2 lost\\u000a the ability to cause disease symptoms in plants carrying the 1–2 resistance gene,

B. A. M. Kroon; D. M. Elgersma

1991-01-01

382

Antibacterial activity of traditional therapeutic coastal medicinal plants against some pathogens.  

PubMed

Antimicrobial activity of 10 traditional coastal medicinal plant species from South west coast of India were tested against 12 human bacterial pathogens and two cattle pathogens. Among the plant species tested, a butanolic extract of Bacopa monnieri showed maximum inhibitory activity against the human pathogen Escherichia coli, whereas the butanolic extract of Aristolochia indica. L showed maximum inhibitory activity against the cattle pathogen Listeria monocytogen. The mean zone of inhibition indicates that the growth of Salmonella enteritidis and Pseudomonas aeruginosa were highly inhibited by the coastal medicinal plant extract than the other bacterial species and also the antibacterial activity was found higher in the butanolic extract than water extract. PMID:16334271

Ravikumar, S; Nazar, S; Nuralshiefa, A; Abideen, S

2005-06-01

383

Plant community effects on the diversity and pathogen suppressive activity of soil streptomycetes  

Microsoft Academic Search

Ecological factors that promote pathogen suppressive microbial communities remain poorly understood. However, plants have profound impacts on the structure and functional activities of soil microbial communities, and land-use changes which alter plant diversity or community composition may indirectly affect the structure and function of microbial communities. Previous research has suggested that the streptomycetes are significant contributors to pathogen suppression in

Matthew G. Bakker; Jerry D. Glover; John G. Mai; Linda L. Kinkel

2010-01-01

384

Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans  

Microsoft Academic Search

Plant pathogens establish infection by secretion of effector proteins that may be delivered inside host cells to manipulate innate immunity. It is increasingly apparent that the ubiquitin proteasome system (UPS) contributes significantly to the regulation of plant defences and, as such, is a target for pathogen effectors. Bacterial effectors delivered by the type III and IV secretion systems have been

Paul R. J. Birch; Miles Armstrong; Jorunn Bos; Petra Boevink; Eleanor M. Gilroy; Rosalind M. Taylor; Stephan Wawra; Leighton Pritchard; Lucio Conti; Richard Ewan; Stephen C. Whisson; Pieter van West; Ari Sadanandom; Sophien Kamoun

2009-01-01

385

Development of recombinant antibody technology for application in plant pathogen diagnosis  

Microsoft Academic Search

This thesis describes the applicability of the novel phage display technique to select plant-pathogen-specific monoclonal antibodies (MAbs) from combinatorial antibody libraries. The retrieved MAbs are so specific that they can be used as diagnostic tools in sensitive immunoassays for the detection and identification of plant pathogens. Testing results, obtained from laboratories that have applied these recombinant MAbs, are discussed in

R. A. Griep

1999-01-01

386

Development of a small-plant bioassay to assess banana grown from tissue culture for consistent infection by Fusarium oxysporum f. sp. cubense  

Microsoft Academic Search

Two reliable small-plant bioassays were developed using tissue-cultured banana, resulting in consistent symptom expression\\u000a and infection by Fusarium oxysporum f. sp. cubense (Foc). One bioassay was based on providing a constant watertable within a closed pot and the second used free-draining pots. Culture\\u000a medium for spore generation influenced infectivity of Foc. Inoculation of potted banana by drenching potting mix with

L. J. SmithA; M. K. Smith; D. Tree; D. O’Keefe; V. J. Galea

2008-01-01

387

Fusarium oxysporum gas1 encodes a putative beta-1,3-glucanosyltransferase required for virulence on tomato plants.  

PubMed

Glycosylphosphatidylinositol-anchored (beta)-1,3-glucanosyltransferases play active roles in fungal cell wall biosynthesis and morphogenesis and have been implicated in virulence on mammals. The role of beta-1,3-glucanosyltransferases in pathogenesis to plants has not been explored so far. Here, we report the cloning and mutational analysis of the gas1 gene encoding a putative beta-1,3-glucanosyltransferase from the vascular wilt fungus Fusarium oxysporum. In contrast to Candida albicans, expression of gas1 in F. oxysporum was independent of ambient pH and of the pH response transcription factor PacC. Gene knockout mutants lacking a functional gas1 allele grew in a way similar to the wildtype strain in submerged culture but exhibited restricted colony growth on solid substrates. The restricted growth phenotype was relieved by the osmotic stabilizer sorbitol, indicating that it may be related to structural alterations in the cell wall. Consistent with this hypothesis, deltagas1 mutants exhibited enhanced resistance to cell wall-degrading enzymes and increased transcript levels of chsV and rho1, encoding a class V chitin synthase and a small monomeric G protein, respectively. The deltagas1 mutants showed dramatically reduced virulence on tomato, both in a root infection assay and in a fruit tissue-invasion model, thus providing the first evidence for an essential role of fungal beta-1,3-glucanosyltransferases during plant infection. PMID:16353549

Caracuel, Zaira; Martínez-Rocha, Ana Lilia; Di Pietro, Antonio; Madrid, Marta P; Roncero, M Isabel G

2005-11-01

388

Effects of Varying Environmental Conditions on Biological Control of Fusarium Wilt of Tomato by Nonpathogenic Fusarium spp.  

PubMed

ABSTRACT The influence of varying environmental and cropping conditions including temperature, light, soil type, pathogen isolate and race, and cultivar of tomato on biological control of Fusarium wilt of tomato by isolates of nonpathogenic Fusarium oxysporum (CS-20 and CS-24) and F. solani (CS-1) was evaluated in greenhouse and growth chamber experiments. Liquid spore suspensions (10(6)/ml) of the biocontrol isolates were applied to soilless potting mix at the time of tomato seeding, and the seedlings were transplanted into pathogen-infested field soil 2 weeks later. Temperature regimes ranging from 22 to 32 degrees C significantly affected disease development and plant physiological parameters. Biocontrol isolate CS-20 significantly reduced disease at all temperature regimes tested, yielding reductions of disease incidence of 59 to 100% relative to pathogen control treatments. Isolates CS-24 and CS-1 reduced disease incidence in the greenhouse and at high temperatures, but were less effective at the optimum temperature for disease development (27 degrees C). Growing plants under shade (50% of full light) versus full light affected some plant growth parameters, but did not affect the efficacy of biocontrol of any of the three bio-control isolates. Isolate CS-20 effectively reduced disease incidence (56 to 79% reduction) in four different field soils varying in texture (sandy to clayey) and organic matter content (0 to 3.2%). Isolate CS-1 reduced disease in the sandy and loamy soils (49 to 66% reduction), but was not effective in a heavy clay soil. Both CS-1 and CS-20 were equally effective against all three races of the pathogen, as well as multiple isolates of each race (48 to 66% reduction in disease incidence). Both isolates, CS-1 and CS-20, were equally effective in reducing disease incidence (66 to 80% reduction) by pathogenic races 1, 2, and 3 on eight different tomato cultivars containing varying levels of inherent resistance to Fusarium wilt (susceptible, resistant to race 1, or resistant to races 1 and 2). These results demonstrate that both these Fusarium isolates, and particularly CS-20, can effectively reduce Fusarium wilt disease of tomato under a variety of environmental conditions and have potential for further development. PMID:18944240

Larkin, Robert P; Fravel, Deborah R

2002-11-01

389

Alteration in lignin biosynthesis restricts growth of Fusarium spp. in brown midrib sorghum.  

PubMed

To improve sorghum for bioenergy and forage uses, brown midrib (bmr)6 and -12 near-isogenic genotypes were developed in different sorghum backgrounds. The bmr6 and bmr12 grain had significantly reduced colonization by members of the Gibberella fujikuroi species complex compared with the wild type, as detected on two semiselective media. Fusarium spp. were identified using sequence analysis of a portion of the translation elongation factor (TEF) 1-alpha gene. The pathogens Fusarium thapsinum, F. proliferatum, and F. verticillioides, G. fujikuroi members, were commonly recovered. Other frequently isolated Fusarium spp. likely colonize sorghum asymptomatically. The chi(2) analyses showed that the ratios of Fusarium spp. colonizing bmr12 grain were significantly different from the wild type, indicating that bmr12 affects colonization by Fusarium spp. One F. incarnatum-F. equiseti species complex (FIESC) genotype, commonly isolated from wild-type and bmr6 grain, was not detected in bmr12 grain. Phylogenetic analysis suggested that this FIESC genotype represents a previously unreported TEF haplotype. When peduncles of wild-type and near-isogenic bmr plants were inoculated with F. thapsinum, F. verticillioides, or Alternaria alternata, the resulting mean lesion lengths were significantly reduced relative to the wild type in one or both bmr mutants. This indicates that impairing lignin biosynthesis results in reduced colonization by Fusarium spp. and A. alternata. PMID:20528185

Funnell-Harris, Deanna L; Pedersen, Jeffrey F; Sattler, Scott E

2010-07-01

390

Plant-mediated interactions between insects and a fungal plant pathogen and the role of plant chemical responses to infection  

Microsoft Academic Search

Diverse organisms simultaneously exploit plants in nature, but most studies do not examine multiple types of exploiters like\\u000a phytophagous insects and fungal, bacterial, and viral plant pathogens. This study examined patterns of induction of antipathogenic\\u000a peroxidase enzymes and phenolics after infection by the cucurbit scab fungus, Cladosporium cucumerinum, and then determined if induction mediated ecological effects on Colletotrichum orbiculare, another

Patrick J. Moran

1998-01-01

391

Phytophagous arthropods and a pathogen sharing a host plant: evidence for indirect plant-mediated interactions.  

PubMed

In ecological systems, indirect interactions between plant pathogens and phytophagous arthropods can arise when infestation by a first attacker alters the common host plant so that although a second attacker could be spatially or temporally separated from the first one, the former could be affected. The induction of plant defense reactions leading to the production of secondary metabolites is thought to have an important role since it involves antagonistic and/or synergistic cross-talks that may determine the outcome of such interactions. We carried out experiments under controlled conditions on young rose plants in order to assess the impact of these indirect interactions on life history traits of three pests: the necrotrophic fungus Botrytis cinerea Pers.: Fr. (Helotiales: Sclerotiniaceae), the aphid Rhodobium porosum Sanderson (Hemiptera: Aphididae) and the thrips Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Our results indicated (i) a bi-directional negative interaction between B. cinerea and R. porosum, which is conveyed by decreased aphid growth rate and reduced fungal lesion area, as well as (ii) an indirect negative effect of B. cinerea on insect behavior. No indirect effect was observed between thrips and aphids. This research highlights several complex interactions that may be involved in structuring herbivore and plant pathogen communities within natural and managed ecosystems. PMID:21611161

Mouttet, Raphaëlle; Bearez, Philippe; Thomas, Cécile; Desneux, Nicolas

2011-01-01

392

Phytophagous Arthropods and a Pathogen Sharing a Host Plant: Evidence for Indirect Plant-Mediated Interactions  

PubMed Central

In ecological systems, indirect interactions between plant pathogens and phytophagous arthropods can arise when infestation by a first attacker alters the common host plant so that although a second attacker could be spatially or temporally separated from the first one, the former could be affected. The induction of plant defense reactions leading to the production of secondary metabolites is thought to have an important role since it involves antagonistic and/or synergistic cross-talks that may determine the outcome of such interactions. We carried out experiments under controlled conditions on young rose plants in order to assess the impact of these indirect interactions on life history traits of three pests: the necrotrophic fungus Botrytis cinerea Pers.: Fr. (Helotiales: Sclerotiniaceae), the aphid Rhodobium porosum Sanderson (Hemiptera: Aphididae) and the thrips Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Our results indicated (i) a bi-directional negative interaction between B. cinerea and R. porosum, which is conveyed by decreased aphid growth rate and reduced fungal lesion area, as well as (ii) an indirect negative effect of B. cinerea on insect behavior. No indirect effect was observed between thrips and aphids. This research highlights several complex interactions that may be involved in structuring herbivore and plant pathogen communities within natural and managed ecosystems.

Mouttet, Raphaelle; Bearez, Philippe; Thomas, Cecile; Desneux, Nicolas

2011-01-01

393

Effect of acidic electrolyzed water on the viability of bacterial and fungal plant pathogens and on bacterial spot disease of tomato.  

PubMed

Acidic electrolyzed water (AEW), known to have germicidal activity, was obtained after electrolysis of 0.045% aqueous solution of sodium chloride. Freshly prepared AEW (pH 2.3-2.6, oxidation-reduction potential 1007-1025 mV, and free active chlorine concentration 27-35 ppm) was tested in vitro and (or) on tomato foliage and seed surfaces for its effects on the viability of plant pathogen propagules that could be potential seed contaminants. Foliar sprays of AEW were tested against bacterial spot disease of tomato under greenhouse and field conditions. The viability of propagules of Xanthomonas campestris pv. vesicatoria (bacterial spot pathogen), Streptomyces scabies (potato scab pathogen), and Fusarium oxysporum f.sp. lycopersici (root rot pathogen) was significantly reduced 4-8 log units within 2 min of exposure to AEW. Immersion of tomato seed from infected fruit in AEW for 1 and 3 min significantly reduced the populations of X. campestris pv. vesicatoria from the surface of the seed without affecting seed germination. Foliar sprays of AEW reduced X. campestris pv. vesicatoria populations and leaf spot severity on tomato foliage in the greenhouse. In the field, multiple sprays of AEW consistently reduced bacterial spot severity on tomato foliage. Disease incidence and severity was also reduced on fruit, but only in 2003. Fruit yield was either enhanced or not affected by the AEW sprays. These results indicate a potential use of AEW as a seed surface disinfectant or contact bactericide. PMID:17110959

Abbasi, P A; Lazarovits, G

2006-10-01

394

Fusarium inhibition by wild populations of the medicinal plant Salvia africana-lutea L. linked to metabolomic profiling  

PubMed Central

Background Salvia africana-lutea L., an important medicinal sage used in the Western Cape (South Africa), can be termed a ‘broad-spectrum remedy’ suggesting the presence of a multiplicity of bioactive metabolites. This study aimed at assessing wild S. africana-lutea populations for chemotypic variation and anti-Fusarium properties. Methods Samples were collected from four wild growing population sites (Yzerfontein, Silwerstroomstrand, Koeberg and Brackenfell) and one garden growing location in Stellenbosch. Their antifungal activities against Fusarium verticillioides (strains: MRC 826 and MRC 8267) and F. proliferatum (strains: MRC 6908 and MRC 7140) that are aggressive mycotoxigenic phytopathogens were compared using an in vitro microdilution assay. To correlate antifungal activity to chemical profiles, three techniques viz. Gas chromatography-mass spectrometry (GC-MS); Liquid chromatography-mass spectrometry (LC-MS) and 1H Nuclear Magnetic Resonance (NMR) were employed. Principal Component Analysis (PCA) was applied to the NMR data. The partial least squares-discriminant analysis (PLS-DA) was used to integrate LC-MS and NMR data sets. All statistics were performed with the SIMCA-P?+?12.0 software. Results The dichloromethane:methanol (1:1; v/v) extracts of the plant species collected from Stellenbosch demonstrated the strongest inhibition of F. verticillioides and F. proliferatum with minimum inhibitory concentration (MIC) values of 0.031 mg ml-1 and 0.063 mg ml-1 respectively. GC-MS showed four compounds which were unique to the Stellenbosch extracts. By integrating LC-MS and 1H NMR analyses, large chemotype differences leading to samples grouping by site when a multivariate analysis was performed, suggested strong plant-environment interactions as factors influencing metabolite composition. Signals distinguishing the Stellenbosch profile were in the aromatic part of the 1H NMR spectra. Conclusions This study shows the potential of chemotypes of Salvia africana-lutea in controlling fungal growth and consequently mycotoxin production. Products for use in the agricultural sector may be developed from such chemotypes.

2014-01-01

395

Apicidin F: Characterization and Genetic Manipulation of a New Secondary Metabolite Gene Cluster in the Rice Pathogen Fusarium fujikuroi  

PubMed Central

The fungus F. fujikuroi is well known for its production of gibberellins causing the ‘bakanae’ disease of rice. Besides these plant hormones, it is able to produce other secondary metabolites (SMs), such as pigments and mycotoxins. Genome sequencing revealed altogether 45 potential SM gene clusters, most of which are cryptic and silent. In this study we characterize a new non-ribosomal peptide synthetase (NRPS) gene cluster that is responsible for the production of the cyclic tetrapeptide apicidin F (APF). This new SM has structural similarities to the known histone deacetylase inhibitor apicidin. To gain insight into the biosynthetic pathway, most of the 11 cluster genes were deleted, and the mutants were analyzed by HPLC-DAD and HPLC-HRMS for their ability to produce APF or new