Science.gov

Sample records for plant secondary metabolites

  1. Secondary metabolites in fungus-plant interactions

    PubMed Central

    Pusztahelyi, Tünde; Holb, Imre J.; Pócsi, István

    2015-01-01

    Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed. PMID:26300892

  2. Cyanobacteria as Cell Factories to Produce Plant Secondary Metabolites

    PubMed Central

    Xue, Yong; He, Qingfang

    2015-01-01

    Cyanobacteria represent a promising platform for the production of plant secondary metabolites. Their capacity to express plant P450 proteins, which have essential functions in the biosynthesis of many plant secondary metabolites, makes cyanobacteria ideal for this purpose, and their photosynthetic capability allows cyanobacteria to grow with simple nutrient inputs. This review summarizes the advantages of using cyanobacteria to transgenically produce plant secondary metabolites. Some techniques to improve heterologous gene expression in cyanobacteria are discussed. PMID:25973419

  3. Influence of abiotic stress signals on secondary metabolites in plants

    PubMed Central

    Ramakrishna, Akula; Ravishankar, Gokare Aswathanarayana

    2011-01-01

    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory. PMID:22041989

  4. Using Hairy Roots for Production of Valuable Plant Secondary Metabolites.

    PubMed

    Tian, Li

    2015-01-01

    Plants synthesize a wide variety of natural products, which are traditionally termed secondary metabolites and, more recently, coined specialized metabolites. While these chemical compounds are employed by plants for interactions with their environment, humans have long since explored and exploited plant secondary metabolites for medicinal and practical uses. Due to the tissue-specific and low-abundance accumulation of these metabolites, alternative means of production in systems other than intact plants are sought after. To this end, hairy root culture presents an excellent platform for producing valuable secondary metabolites. This chapter will focus on several major groups of secondary metabolites that are manufactured by hairy roots established from different plant species. Additionally, the methods for preservations of hairy roots will also be reviewed. PMID:25583225

  5. Current approaches toward production of secondary plant metabolites

    PubMed Central

    Hussain, Md. Sarfaraj; Fareed, Sheeba; Ansari, Saba; Rahman, Md. Akhlaquer; Ahmad, Iffat Zareen; Saeed, Mohd.

    2012-01-01

    Plants are the tremendous source for the discovery of new products with medicinal importance in drug development. Today several distinct chemicals derived from plants are important drugs, which are currently used in one or more countries in the world. Secondary metabolites are economically important as drugs, flavor and fragrances, dye and pigments, pesticides, and food additives. Many of the drugs sold today are simple synthetic modifications or copies of the naturally obtained substances. The evolving commercial importance of secondary metabolites has in recent years resulted in a great interest in secondary metabolism, particularly in the possibility of altering the production of bioactive plant metabolites by means of tissue culture technology. Plant cell and tissue culture technologies can be established routinely under sterile conditions from explants, such as plant leaves, stems, roots, and meristems for both the ways for multiplication and extraction of secondary metabolites. In vitro production of secondary metabolite in plant cell suspension cultures has been reported from various medicinal plants, and bioreactors are the key step for their commercial production. Based on this lime light, the present review is aimed to cover phytotherapeutic application and recent advancement for the production of some important plant pharmaceuticals. PMID:22368394

  6. Plants and endophytes: equal partners in secondary metabolite production?

    PubMed

    Ludwig-Müller, Jutta

    2015-07-01

    Well known plant production systems should be re-evaluated due to findings that the interesting metabolite might actually be produced by microbes intimately associated with the plant, so-called endophytes. Endophytes can be bacteria or fungi and they are characterized usually by the feature that they do not cause any harm to the host. Indeed, in some cases, such as mycorrhizal fungi or other growth promoting endophytes, they can be beneficial for the plant. Here some examples are reviewed where the host plant and/or endophyte metabolism can be induced by the other partner. Also, partial or complete biosynthesis pathways for plant secondary metabolites can be attributed to such endophytes. In other cases the host plant is able to metabolize substances from fungal origin. The question of the natural role of such metabolic changes for the endophyte will be briefly touched. Finally, the consequences for the use of plant cultures for secondary metabolite production is discussed. PMID:25792513

  7. From the Lab Bench: Plant secondary metabolites: The good and the bad.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A column was written to discuss the negatives and positives of plant secondary metabolites. Primary metabolites are those metabolites that are required for survival, such as protein, carbohydrates, and lipids. Plant secondary metabolites are produced from primary metabolites and are not required f...

  8. Secondary metabolites in plants: transport and self-tolerance mechanisms.

    PubMed

    Shitan, Nobukazu

    2016-07-01

    Plants produce a host of secondary metabolites with a wide range of biological activities, including potential toxicity to eukaryotic cells. Plants generally manage these compounds by transport to the apoplast or specific organelles such as the vacuole, or other self-tolerance mechanisms. For efficient production of such bioactive compounds in plants or microbes, transport and self-tolerance mechanisms should function cooperatively with the corresponding biosynthetic enzymes. Intensive studies have identified and characterized the proteins responsible for transport and self-tolerance. In particular, many transporters have been isolated and their physiological functions have been proposed. This review describes recent progress in studies of transport and self-tolerance and provides an updated inventory of transporters according to their substrates. Application of such knowledge to synthetic biology might enable efficient production of valuable secondary metabolites in the future. PMID:26940949

  9. Medicinal plants: a source of anti-parasitic secondary metabolites.

    PubMed

    Wink, Michael

    2012-01-01

    This review summarizes human infections caused by endoparasites, including protozoa, nematodes, trematodes, and cestodes, which affect more than 30% of the human population, and medicinal plants of potential use in their treatment. Because vaccinations do not work in most instances and the parasites have sometimes become resistant to the available synthetic therapeutics, it is important to search for alternative sources of anti-parasitic drugs. Plants produce a high diversity of secondary metabolites with interesting biological activities, such as cytotoxic, anti-parasitic and anti-microbial properties. These drugs often interfere with central targets in parasites, such as DNA (intercalation, alkylation), membrane integrity, microtubules and neuronal signal transduction. Plant extracts and isolated secondary metabolites which can inhibit protozoan parasites, such as Plasmodium, Trypanosoma, Leishmania, Trichomonas and intestinal worms are discussed. The identified plants and compounds offer a chance to develop new drugs against parasitic diseases. Most of them need to be tested in more detail, especially in animal models and if successful, in clinical trials. PMID:23114614

  10. Hsp90 Activity Modulation by Plant Secondary Metabolites.

    PubMed

    Dal Piaz, Fabrizio; Terracciano, Stefania; De Tommasi, Nunziatina; Braca, Alessandra

    2015-09-01

    Hsp90 is an evolutionarily conserved adenosine triphosphate-dependent molecular chaperone and is one of the most abundant proteins in the cells (1-3 %). Hsp90 is induced when a cell undergoes various types of environmental stresses such as heat, cold, or oxygen deprivation. It is involved in the turnover, trafficking, and activity of client proteins, including apoptotic factors, protein kinases, transcription factors, signaling proteins, and a number of oncoproteins. Most of the Hsp90 client proteins are involved in cell growth, differentiation, and survival, and include kinases, nuclear hormone receptors, transcription factors, and other proteins associated with almost all the hallmarks of cancer. Consistent with these diverse activities, genetic and biochemical studies have demonstrated the implication of Hsp90 in a range of diseases, including cancer, making this chaperone an interesting target for drug research.During the last few decades, plant secondary metabolites have been studied as a major source for lead compounds in drug discovery. Recently, several plant-derived small molecules have been discovered exhibiting inhibitory activity towards Hsp90, such as epigallocatechin gallate, gedunin, lentiginosine, celastrol, and deguelin. In this work, an overview of plant secondary metabolites interfering with Hsp90 activities is provided. PMID:26227505

  11. Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research

    PubMed Central

    SATO, Fumihiko; KUMAGAI, Hidehiko

    2013-01-01

    Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed. PMID:23666088

  12. The Metabolic Plant Feedback Hypothesis: How Plant Secondary Metabolites Nonspecifically Impact Human Health.

    PubMed

    Gertsch, Jürg

    2016-07-01

    Humans can ingest gram amounts of plant secondary metabolites daily through diet. Many of these phytochemicals are bioactive beyond our current understanding because they act through weak negative biological feedback mechanisms, undetectable in vitro. Homeostatic-type assessments shed light on the evolutionary implications of the human diet from plants, giving rise to the metabolic plant feedback hypothesis. The hypothesis states that ancient diets rich in carbohydrates coincide with bulk dietary phytochemicals that act as nonspecific inhibitors of metabolic and inflammatory processes. Consequently, food-derived phytochemicals are likely to be equally effective as herbal medicines for these indications. In addition to the ubiquitous flavonoids, terpenoids, and fatty acids in the diet, the likely impact of chronic chlorophyll ingestion on human health is discussed, and data on its modulation of blood glucose levels are presented. A major deduction of this hypothesis is that starchy diets lacking plant secondary metabolites are associated with multimorbidity (lifestyle diseases) including obesity, type 2 diabetes, and cardiovascular disease. It is proposed that the intake of leafy vegetables, spices, and herbal remedies rich in phytochemicals matches the transition and genetic adaptation to early agriculture, playing a compensatory role in the mismatch of old genes and new diets. PMID:27286339

  13. Sun, shade, and secondary metabolites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    My research program focuses on understanding plant primary and secondary metabolites. Grape secondary metabolites, such as phenolics, have long been valuable for the organoleptic properties they impart to fruit and wine, and, more recently, for their possible health benefits. These compounds develop...

  14. Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites.

    PubMed

    Kaimoyo, Evans; Farag, Mohamed A; Sumner, Lloyd W; Wasmann, Catherine; Cuello, Joel L; VanEtten, Hans

    2008-01-01

    Many secondary metabolites that are normally undetectable or in low amounts in healthy plant tissue are synthesized in high amounts in response to microbial infection. Various abiotic and biotic agents have been shown to mimic microorganisms and act as elicitors of the synthesis of these plant compounds. In the present study, sub-lethal levels of electric current are shown to elicit the biosynthesis of secondary metabolites in transgenic and non-transgenic plant tissue. The production of the phytoalexin (+)-pisatin by pea was used as the main model system. Non-transgenic pea hairy roots treated with 30-100 mA of electric current produced 13 times higher amounts of (+)-pisatin than did the non-elicited controls. Electrically elicited transgenic pea hairy root cultures blocked at various enzymatic steps in the (+)-pisatin biosynthetic pathway also accumulated intermediates preceding the blocked enzymatic step. Secondary metabolites not usually produced by pea accumulated in some of the transgenic root cultures after electric elicitation due to the diversion of the intermediates into new pathways. The amount of pisatin in the medium bathing the roots of electro-elicited roots of hydroponically cultivated pea plants was 10 times higher 24 h after elicitation than in the medium surrounding the roots of non-elicited control plants, showing not only that the electric current elicited (+)-pisatin biosynthesis but also that the (+)-pisatin was released from the roots. Seedlings, intact roots or cell suspension cultures of fenugreek (Trigonella foenum-graecum), barrel medic, (Medicago truncatula), Arabidopsis thaliana, red clover (Trifolium pratense) and chickpea (Cicer arietinum) also produced increased levels of secondary metabolites in response to electro-elicitation. On the basis of our results, electric current would appear to be a general elicitor of plant secondary metabolites and to have potential for application in both basic and commercial research. PMID:18331050

  15. Hormesis and a Chemical Raison D’être for Secondary Plant Metabolites

    PubMed Central

    Hadacek, Franz; Bachmann, Gert; Engelmeier, Doris; Chobot, Vladimir

    2010-01-01

    In plants, accumulation in specific compartments and huge structural diversity of secondary metabolites is one trait that is not understood yet. By exploring the diverse abiotic and biotic interactions of plants above- and belowground, we provide examples that are characterized by nonlinear effects of the secondary metabolites. We propose that redox chemistry, specifically the reduction of reactive oxygen species (ROS) and, in their absence, reduction of molecular oxygen by the identical secondary metabolite, is an important component of the hormetic effects caused by these compounds. This is illustrated for selected phenols, terpenoids, and alkaloids. The redox reactions are modulated by the variable availability of transition metals that serve as donors of electrons in a Fenton reaction mode. Low levels of ROS stimulate growth, cell differentiation, and stress resistance; high levels induce programmed cell death. We propose that provision of molecules that can participate in this redox chemistry is the raison d’être for secondary metabolites. In this context, the presence or absence of functional groups in the molecule is more essential than the whole structure. Accordingly, there exist no constraints that limit structural diversity. Redox chemistry is ubiquitous, from the atmosphere to the soil. PMID:21431080

  16. Secondary metabolite localization by autofluorescence in living plant cells.

    PubMed

    Talamond, Pascale; Verdeil, Jean-Luc; Conéjéro, Geneviève

    2015-01-01

    Autofluorescent molecules are abundant in plant cells and spectral images offer means for analyzing their spectra, yielding information on their accumulation and function. Based on their fluorescence characteristics, an imaging approach using multiphoton microscopy was designed to assess localization of the endogenous fluorophores in living plant cells. This method, which requires no previous treatment, provides an effective experimental tool for discriminating between multiple naturally-occurring fluorophores in living-tissues. Combined with advanced Linear Unmixing, the spectral analysis extends the possibilities and enables the simultaneous detection of fluorescent molecules reliably separating overlapping emission spectra. However, as with any technology, the possibility for artifactual results does exist. This methodological article presents an overview of the applications of tissular and intra-cellular localization of these intrinsic fluorophores in leaves and fruits (here for coffee and vanilla). This method will provide new opportunities for studying cellular environments and the behavior of endogenous fluorophores in the intracellular environment. PMID:25808147

  17. Endophytes as in vitro production platforms of high value plant secondary metabolites.

    PubMed

    Venugopalan, Aarthi; Srivastava, Smita

    2015-11-01

    Many reports have been published on bioprospecting of endophytic fungi capable of producing high value bioactive molecules like, paclitaxel, vincristine, vinblastine, camptothecin and podophyllotoxin. However, commercial exploitation of endophytes for high value-low volume plant secondary metabolites remains elusive due to widely reported genomic instability of endophytes in the axenic culture. While most of the endophyte research focuses on screening endophytes for novel or existing high value biomolecules, very few reports seek to explore the possible mechanisms of production of host-plant associated or novel secondary metabolites in these organisms. With an overview of host-endophyte relationship and its possible impact on the secondary metabolite production potential of endophytes, the review highlights the evidence reported for and against the presence of host-independent biosynthetic machinery in endophytes. The review aims to address the question, why should and how can endophytes be exploited for large scale in vitro production of high value phytochemicals? In this regard, various bioprocess optimization strategies that have been applied to sustain and enhance the product yield from the endophytes have also been described in detail. Further, techniques like mixed fermentation/co-cultivation and use of epigenetic modifiers have also been discussed as potential strategies to activate cryptic gene clusters in endophytes, thereby aiding in novel metabolite discovery and overcoming the limitations associated with axenic culture of endophytes. PMID:26225453

  18. Potential Effects of Medicinal Plants and Secondary Metabolites on Acute Lung Injury

    PubMed Central

    Cornélio Favarin, Daniely; Robison de Oliveira, Jhony; Jose Freire de Oliveira, Carlo; de Paula Rogerio, Alexandre

    2013-01-01

    Acute lung injury (ALI) is a life-threatening syndrome that causes high morbidity and mortality worldwide. ALI is characterized by increased permeability of the alveolar-capillary membrane, edema, uncontrolled neutrophils migration to the lung, and diffuse alveolar damage, leading to acute hypoxemic respiratory failure. Although corticosteroids remain the mainstay of ALI treatment, they cause significant side effects. Agents of natural origin, such as medicinal plants and their secondary metabolites, mainly those with very few side effects, could be excellent alternatives for ALI treatment. Several studies, including our own, have demonstrated that plant extracts and/or secondary metabolites isolated from them reduce most ALI phenotypes in experimental animal models, including neutrophil recruitment to the lung, the production of pro-inflammatory cytokines and chemokines, edema, and vascular permeability. In this review, we summarized these studies and described the anti-inflammatory activity of various plant extracts, such as Ginkgo biloba and Punica granatum, and such secondary metabolites as epigallocatechin-3-gallate and ellagic acid. In addition, we highlight the medical potential of these extracts and plant-derived compounds for treating of ALI. PMID:24224172

  19. From covalent bonds to eco-physiological pharmacology of secondary plant metabolites.

    PubMed

    Chatterjee, Shyam Sunder

    2015-11-15

    Despite the availability of numerous drugs and other therapeutic modalities, the prevention and cure of over- and under-nutrition triggered metabolic and other disease states continues as a major challenge for modern medicine. Such silently progressing and eventually life-threatening diseases often accompany diverse spectrum of comorbid psychiatric disorders. Majority of the global population suffering from metabolic diseases live in economically developing or underdeveloped countries, where due to socioeconomic, cultural, and other reasons, therapies may be unavailable. Evidence from preclinical, clinical, and epidemiological studies of numerous structurally and functionally diverse secondary metabolites of plants suggest that many of these could be promising therapeutic leads for the treatment and prevention of malnutrition-associated diseases and mental health problems. The review discusses the potential therapeutic uses of secondary plant metabolites and their bacterial and mammalian catabolites based on their bioactivity profiles, with special emphasis on their modulating effects on gut microbial ecology and physiological stress responses. Based on concepts in medicinal chemistry and pharmacology considerations that evolved during the author's interactions with David Triggle, secondary plant metabolites may represent an alternative and economically feasible approach to new drugs. PMID:26253688

  20. Herbal Extracts and Phytochemicals: Plant Secondary Metabolites and the Enhancement of Human Brain Function1

    PubMed Central

    Kennedy, David O.; Wightman, Emma L.

    2011-01-01

    Humans consume a wide range of foods, drugs, and dietary supplements that are derived from plants and which modify the functioning of the central nervous sytem (CNS). The psychoactive properties of these substances are attributable to the presence of plant secondary metabolites, chemicals that are not required for the immediate survival of the plant but which are synthesized to increase the fitness of the plant to survive by allowing it to interact with its environment, including pathogens and herbivorous and symbiotic insects. In many cases, the effects of these phytochemicals on the human CNS might be linked either to their ecological roles in the life of the plant or to molecular and biochemical similarities in the biology of plants and higher animals. This review assesses the current evidence for the efficacy of a range of readily available plant-based extracts and chemicals that may improve brain function and which have attracted sufficient research in this regard to reach a conclusion as to their potential effectiveness as nootropics. Many of these candidate phytochemicals/extracts can be grouped by the chemical nature of their potentially active secondary metabolite constituents into alkaloids (caffeine, nicotine), terpenes (ginkgo, ginseng, valerian, Melissa officinalis, sage), and phenolic compounds (curcumin, resveratrol, epigallocatechin-3-gallate, Hypericum perforatum, soy isoflavones). They are discussed in terms of how an increased understanding of the relationship between their ecological roles and CNS effects might further the field of natural, phytochemical drug discovery. PMID:22211188

  1. A modified acidic approach for DNA extraction from plant species containing high levels of secondary metabolites.

    PubMed

    Cavallari, M M; Siqueira, M V B M; Val, T M; Pavanelli, J C; Monteiro, M; Grando, C; Pinheiro, J B; Zucchi, M I; Gimenes, M A

    2014-01-01

    Purified genomic DNA can be difficult to obtain from some plant species because of the presence of impurities such as polysaccharides, which are often co-extracted with DNA. In this study, we developed a fast, simple, and low-cost protocol for extracting DNA from plants containing high levels of secondary metabolites. This protocol does not require the use of volatile toxic reagents such as mercaptoethanol, chloroform, or phenol and allows the extraction of high-quality DNA from wild and cultivated tropical species. PMID:25158268

  2. Quinones derived from plant secondary metabolites as anti-cancer agents.

    PubMed

    Lu, Jin-Jian; Bao, Jiao-Lin; Wu, Guo-Sheng; Xu, Wen-Shan; Huang, Ming-Qing; Chen, Xiu-Ping; Wang, Yi-Tao

    2013-03-01

    Quinones are plant-derived secondary metabolites that present some anti-proliferation and anti-metastasis effects in various cancer types both in vitro and in vivo. This review focuses on the anti-cancer prospects of plant-derived quinones, namely, aloe-emodin, juglone, β-lapachol, plumbagin, shikonin, and thymoquinone. We intend to summarize their anti-cancer effects and investigate the mechanism of actions to promote the research and development of anti-cancer agents from quinones. PMID:22931417

  3. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants.

    PubMed

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; del-Val, Ek; Larsen, John

    2016-04-01

    Trichodermaspp. are common soil and root inhabitants that have been widely studied due to their capacity to produce antibiotics, parasitize other fungi and compete with deleterious plant microorganisms. These fungi produce a number of secondary metabolites such as non-ribosomal peptides, terpenoids, pyrones and indolic-derived compounds. In the rhizosphere, the exchange and recognition of signaling molecules byTrichodermaand plants may alter physiological and biochemical aspects in both. For example, severalTrichodermastrains induce root branching and increase shoot biomass as a consequence of cell division, expansion and differentiation by the presence of fungal auxin-like compounds. Furthermore,Trichoderma, in association with plant roots, can trigger systemic resistance and improve plant nutrient uptake. The present review describes the most recent advances in understanding the ecological functions ofTrichodermaspp. in the rhizosphere at biochemical and molecular levels with special emphasis on their associations with plants. Finally, through a synthesis of the current body of work, we present potential future research directions on studies related toTrichodermaspp. and their secondary metabolites in agroecosystems. PMID:26906097

  4. Cytoplasmic Acidification and Secondary Metabolite Production in Different Plant Cell Suspensions (A Comparative Study).

    PubMed Central

    Hagendoorn, MJM.; Wagner, A. M.; Segers, G.; Van Der Plas, LHW.; Oostdam, A.; Van Walraven, H. S.

    1994-01-01

    In this study, a correlation is described between low cytoplasmic pH, measured with the fluorescent probes 2[prime],7[prime]-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (acetoxymethyl ester) and bis- [3-propyl-5-oxoisoxazol-4-yl]pentamethine oxonol, and the production of secondary metabolites for several plant cell-suspension systems. Anthraquinone production in Morinda citrifolia suspensions is negligible in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D), whereas with naphthalene acetic acid (NAA) a significant accumulation is realized. NAA-grown cells showed a lower cytoplasmic pH than did 2,4-D-grown cells. Addition of 2,4-D or parachlorophenoxy acetic acid to NAA-grown cells resulted in an inhibition of anthraquinone production and an increase of the cytoplasmic pH, whereas addition of parachlorophenyl acetic acid had no effect on either parameter. Lignin production in Petunia hybrida cells could be induced by subculturing them in a medium without iron. These cells showed a lower cytoplasmic pH than control cells. Addition of Fe3+ led to a decreased lignin content and an increased cytoplasmic pH. Two cell lines of Linum flavum showed a different level of coniferin and lignin concentration in their cells. Cells that accumulated coniferin and lignin had a lower cytoplasmic pH than cells that did not accumulate these secondary metabolites. Apparently, in different species and after different kinds of treatment there is a correlation between acidification of the cytoplasm and the production of different secondary metabolites. The possible role of this acidification in secondary metabolite production is discussed. PMID:12232364

  5. Endophytic Streptomyces in the traditional medicinal plant Arnica montana L.: secondary metabolites and biological activity.

    PubMed

    Wardecki, Tina; Brötz, Elke; De Ford, Christian; von Loewenich, Friederike D; Rebets, Yuriy; Tokovenko, Bogdan; Luzhetskyy, Andriy; Merfort, Irmgard

    2015-08-01

    Arnica montana L. is a medical plant of the Asteraceae family and grows preferably on nutrient poor soils in mountainous environments. Such surroundings are known to make plants dependent on symbiosis with other organisms. Up to now only arbuscular mycorrhizal fungi were found to act as endophytic symbiosis partners for A. montana. Here we identified five Streptomyces strains, microorganisms also known to occur as endophytes in plants and to produce a huge variety of active secondary metabolites, as inhabitants of A. montana. The secondary metabolite spectrum of these strains does not contain sesquiterpene lactones, but consists of the glutarimide antibiotics cycloheximide and actiphenol as well as the diketopiperazines cyclo-prolyl-valyl, cyclo-prolyl-isoleucyl, cyclo-prolyl-leucyl and cyclo-prolyl-phenylalanyl. Notably, genome analysis of one strain was performed and indicated a huge genome size with a high number of natural products gene clusters among which genes for cycloheximide production were detected. Only weak activity against the Gram-positive bacterium Staphylococcus aureus was revealed, but the extracts showed a marked cytotoxic activity as well as an antifungal activity against Candida parapsilosis and Fusarium verticillioides. Altogether, our results provide evidence that A. montana and its endophytic Streptomyces benefit from each other by completing their protection against competitors and pathogens and by exchanging plant growth promoting signals with nutrients. PMID:26036671

  6. Plant protein and secondary metabolites influence diet selection in a mammalian specialist herbivore

    PubMed Central

    Ulappa, Amy C.; Kelsey, Rick G.; Frye, Graham G.; Rachlow, Janet L.; Shipley, Lisa A.; Bond, Laura; Pu, Xinzhu; Forbey, Jennifer Sorensen

    2015-01-01

    For herbivores, nutrient intake is limited by the relatively low nutritional quality of plants and high concentrations of potentially toxic defensive compounds (plant secondary metabolites, PSMs) produced by many plants. In response to phytochemical challenges, some herbivores selectively forage on plants with higher nutrient and lower PSM concentrations relative to other plants. Pygmy rabbits (Brachylagus idahoensis) are dietary specialists that feed on sagebrush (Artemisia spp.) and forage on specific plants more than others within a foraging patch. We predicted that the plants with evidence of heavy foraging (browsed plants) would be of higher dietary quality than plants that were not browsed (unbrowsed). We used model selection to determine which phytochemical variables best explained the difference between browsed and unbrowsed plants. Higher crude protein increased the odds that plants would be browsed by pygmy rabbits and the opposite was the case for certain PSMs. Additionally, because pygmy rabbits can occupy foraging patches (burrows) for consecutive years, their browsing may influence the nutritional and PSM constituents of plants at the burrows. In a post hoc analysis, we did not find a significant relationship between phytochemical concentrations, browse status and burrow occupancy length. We concluded that pygmy rabbits use nutritional and chemical cues while making foraging decisions. PMID:26366011

  7. Secondary metabolites of plants from the genus chloranthus: chemistry and biological activities.

    PubMed

    Wang, An-Ran; Song, Hong-Chuan; An, Hong-Mei; Huang, Qian; Luo, Xie; Dong, Jin-Yan

    2015-04-01

    Chloranthus, a genus of the family Chloranthaceae, which is mainly distributed in eastern and southern Asia, has been used in Chinese folk medicine due to its antitumor, antifungal, and anti-inflammatory activities. This review compiles the research on isolation, structure elucidation, structural diversity, and bioactivities of Chloranthus secondary metabolites reported between 2007 and 2013. The metabolites listed encompass 82 sesquiterpenoids, 50 dimeric sesquiterpenoids, 15 diterpenoids, one coumarin, and five other compounds. Among them, dimeric sesquiterpenoids, the characteristic components of plants from the genus Chloranthus, have attracted considerable attention due to their complex structures and significant biological features, e.g., antitumor, antibacterial, antifungal, anti-inflammatory, and hepatoprotective activities, and potent and selective inhibition of the delayed rectifier (IK) K(+) current and tyrosinase. PMID:25879494

  8. The plant secondary metabolite citral alters water status and prevents seed formation in Arabidopsis thaliana.

    PubMed

    Graña, E; Díaz-Tielas, C; López-González, D; Martínez-Peñalver, A; Reigosa, M J; Sánchez-Moreiras, A M

    2016-05-01

    Based on previous results, which showed that the secondary metabolite citral causes disturbances to plant water status, the present study is focused on demonstrating and detailing these effects on the water-related parameters of Arabidopsis thaliana adult plants, and their impact on plant fitness. Clear evidence of effects on water status and fitness were observed: plants treated with 1200 and 2400 μm citral showed decreased RWC, reduced Ψs , increased Ψw and reduced stomatal opening, even 7 days after the beginning of the experiment. Plant protection signals, such as leaf rolling or increased anthocyanin content, were also detected in these plants. In contrast, 14 days after beginning the treatment, treated plants showed signs of citral-related damage. Moreover, the reproductive success of treated plants was critically compromised, with prematurely withered flowers and no silique or seed development. This effect of citral on fitness of adult plants suggests a promising application of this natural compound in weed management by reducing the weed seed bank in the soil. PMID:26587965

  9. Facilitation and inhibition: changes in plant nitrogen and secondary metabolites mediate interactions between aboveground and belowground herbivores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To date, it remains unclear how herbivore-induced changes in plant primary and secondary metabolites impact aboveground and belowground herbivore interactions. Here we report the effects of aboveground (adult) and belowground (larval) feeding by Bikasha collaris on nitrogen and secondary chemicals i...

  10. Primary expectations of secondary metabolites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant secondary metabolites (e.g., phenolics) are important for human health, in addition to the organoleptic properties they impart to fresh and processed foods. Consumer expectations such as appearance, taste, or texture influence their purchasing decisions. Thorough identification of phenolic com...

  11. [Repellent and antifeedant effect of secondary metabolites of non-host plants on Plutella xylostella].

    PubMed

    Wei, Hui; Hou, Youming; Yang, Guang; You, Minsheng

    2004-03-01

    Based on the theory of co-evolution between plants and phytophagous insects, the repellent and antifeedant effect of secondary metabolites of non-host plants on diamondback moth(DBM) Plutella xylostella was studied, aimed at finding out the oviposition repellents and antifeedants of insect pests. When the ethanol extracts(Etho Exts) of Bauhinia variegata, Eucalyptus tereticornis, Euphorbia hirta, Duranta repens, Zanthoxylum bungeanum, Magnolia grandiflora, and Nicotiana tabacum were applied respectively, the oviposition repellent rates were all over 80.00%; while after forty-eight hours treatment with the Etho Exts of Euphorbia pulcherrima, Broussonetia papyrifera, Artemisia argyi, Camellia oleifera, Salix babylonica, Euphorbia hirta, Bauhinia variegata, and Setaria viridisa, the antifeedant rates of DBM larvae were all more than 80.00%. PMID:15228000

  12. Secondary metabolites from Ganoderma.

    PubMed

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji

    2015-06-01

    Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites. PMID:25975187

  13. Digitonin synergistically enhances the cytotoxicity of plant secondary metabolites in cancer cells.

    PubMed

    Eid, Safaa Yehia; El-Readi, Mahmoud Zaki; Wink, Michael

    2012-11-15

    In phytotherapy, extracts from medicinal plants are employed which contain mixtures of secondary metabolites. Their modes of action are complex because the secondary metabolites can react with single or multiple targets. The components in a mixture can exert additive or even synergistic activities. In this study, the cytotoxicity of some phytochemicals, including phenolics (EGCG and thymol), terpenoids (menthol, aromadendrene, β-sitosterol-O-glucoside, and β-carotene) and alkaloids (glaucine, harmine, and sanguinarine) were investigated alone or in combination with the cytotoxic monodesmosidic steroidal saponin digitonin in Caco-2, MCF-7, CEM/ADR5000, and CCRF-CEM cells. Digitonin was combined in non-toxic concentrations (5μM in each cell line; except in MCF-7 the concentration was 2μM), together with a selection of phenolics, terpenoids, and alkaloids to evaluate potential synergistic or additive effects. An enhanced cytotoxicity was observed in most combinations. Even multi-drug resistant (MDR) cells (such as CEM/ADR5000 cells), with a high expression of P-glycoprotein, were responsive to combinations. Sanguinarine was the most cytotoxic alkaloid against CEM/ADR5000, MCF-7, and CCRF-CEM cells alone and in combination with digitonin. As compared to sanguinarine alone, the combination was 44.53-, 15.38-, and 6.65-fold more toxic in each cell line, respectively. Most combinations synergistically increased the cytotoxicity, stressing the importance of synergy when using multi-target drugs and mixtures in phytotherapy. PMID:23062361

  14. Gas concentration effects on secondary metabolite production by plant cell cultures.

    PubMed

    Linden, J C; Haigh, J R; Mirjalili, N; Phisaphalong, M

    2001-01-01

    One aspect of secondary metabolite production that has been studied relatively infrequently is the effect of gaseous compounds on plant cell behavior. The most influential gases are believed to be oxygen, carbon dioxide and other volatile hormones such as ethylene and methyl jasmonate. Organic compounds of interest include the promising antimalarial artemisinin (known as "qing hao su" in China where it has been a folk remedy for centuries) that is produced by Artemisia annua (sweet wormwood) and taxanes used for anticancer therapy that are produced by species of Taxus (yew). The suspension cultures of both species were grown under a variety of dissolved gas conditions in stoppered culture flasks and under conditions of continuous headspace flushing with known gas mixtures. An analysis is presented to show the culture conditions are such that equilibrium between the culture liquid and gas head-space is assured. The growth rate of the cells and their production rates of artemisinin and paclitaxel were determined. These and other parameters are correlated as functions of the gas concentrations. Interdependence of ethylene and methyl jasmonate is also explored with respect to regulation of secondary metabolite formation. PMID:11729755

  15. Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants

    PubMed Central

    Schmidt, Ruth; Köberl, Martina; Mostafa, Amr; Ramadan, Elshahat M.; Monschein, Marlene; Jensen, Kenneth B.; Bauer, Rudolf; Berg, Gabriele

    2014-01-01

    Plant-associated bacteria fulfill important functions for plant growth and health. However, our knowledge about the impact of bacterial treatments on the host's microbiome and physiology is limited. The present study was conducted to assess the impact of bacterial inoculants on the microbiome of chamomile plants Chamomilla recutita (L.) Rauschert grown in a field under organic management in Egypt. Chamomile seedlings were inoculated with three indigenous Gram-positive strains (Streptomyces subrutilus Wbn2-11, Bacillus subtilis Co1-6, Paenibacillus polymyxa Mc5Re-14) from Egypt and three European Gram-negative strains (Pseudomonas fluorescens L13-6-12, Stenotrophomonas rhizophila P69, Serratia plymuthica 3Re4-18) already known for their beneficial plant-microbe interaction. Molecular fingerprints of 16S rRNA gene as well as real-time PCR analyses did not show statistically significant differences for all applied bacterial antagonists compared to the control. In contrast, a pyrosequencing analysis of the 16S rRNA gene libraries revealed significant differences in the community structure of bacteria between the treatments. These differences could be clearly shown by a shift within the community structure and corresponding beta-diversity indices. Moreover, B. subtilis Co1-6 and P. polymyxa Mc5Re-14 showed an enhancement of the bioactive secondary metabolite apigenin-7-O-glucoside. This indicates a possible new function of bacterial inoculants: to interact with the plant microbiome as well as to influence the plant metabolome. PMID:24600444

  16. Protective effect of secondary plant metabolites from Ipomoea aquatica Forsk. against carbofuran induced damages.

    PubMed

    Datta, Sanjukta; Sinha, Mahuya; Das, Dipesh; Ghosh, Santinath; Dhar, Pubali

    2013-12-01

    Plausible interactions between food contaminants and natural constituents in vivo and protective effect of polyphenols present in I. aquatica against carbofuran toxicity in Charles Foster rats were evaluated. Determinations based on antioxidant enzyme activities showed significant alterations in glutathione, glutathione peroxidase, superoxide dismutase and catalase in tissues (liver and brain) and plasma of pesticide treated group while polyphenolic extracts from I. aquatica (IAE) attenuated their activities when given alongwith carbofuran. IAE decreased enhanced lipid peroxidation levels in plasma and erythrocyte membrane and cholesterol levels in brain and plasma. IAE also minimized histopathological degenerative changes produced by carbofuran. While single cell gel electrophoresis showed that secondary metabolites in leafy vegetables produced a combinatorial effect with pesticide at cellular level, DNA fragmentation level in bone marrow cells showed a decline in the IAE treated rats. Food safety adversely affected by various chemical contaminants can be retained by plant polyphenols and secondary plant constituents that can be found together in bolus. Therefore, the present study gives an insight into the protective role of naturally found polyphenols against pesticide toxicity. PMID:24579377

  17. Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects

    PubMed Central

    Senthil-Nathan, Sengottayan

    2013-01-01

    This review described the physiological and biochemical effects of various secondary metabolites from Meliaceae against major Lepidopteran insect pest including, Noctuidae and Pyralidae. The biochemical effect of major Meliaceae secondary metabolites were discussed more in this review. Several enzymes based on food materials have critical roles in nutritional indices (food utilization) of the insect pest population. Several research work has been referred and the effect of Meliaceae secondary metabolites on feeding parameters of insects by demonstrating food consumption, approximate digestibility of consumed food, efficiency of converting the ingested food to body substance, efficiency of converting digested food to body substance and consumption index was reviewed in detail. Further how the digestive enzymes including a-Amylases, α and β-glucosidases (EC 3.2.1.1), lipases (EC 3.1.1) Proteases, serine, cysteine, and aspartic proteinases affected by the Meliaceae secondary metabolites was reviewed. Further effect of Meliaceae secondary metabolites on detoxifying enzymes have been found to react against botanical insecticides including general esterases (EST), glutathione S-transferase (GST) and phosphatases was reviewed. Alkaline phosphatase (ALP, E.C.3.1.3.1) and acid phosphatase (ACP, E.C.3.1.3.2) are hydrolytic enzymes, which hydrolyze phosphomonoesters under alkaline or acid conditions, respectively. These enzymes were affected by the secondary metabolites treatment. The detailed mechanism of action was further explained in this review. Acethylcholine esterase (AChE) is a key enzyme that terminates nerve impulses by catalyzing the hydrolysis of neurotransmitter, acetylcholine, in the nervous system of various organisms. How the AChE activity was altered by the Meliaceae secondary metabolites reviewed in detail. PMID:24391591

  18. Investigation of Secondary Metabolites in Plants. A General Protocol for Undergraduate Research in Natural Products

    NASA Astrophysics Data System (ADS)

    Cannon, Jonathan; Li, Du; Wood, Steven G.; Owen, Noel L.; Gromova, Alexandra; Lutsky, Vladislav

    2001-09-01

    Many plants contain compounds known as metabolites that are believed to play important roles, such as attracting insects or defending the plants from predators. Some plant metabolites have medicinal properties, and a large percentage of currently used medicines were derived from plant extracts. A general procedure is outlined for extracting, isolating, and purifying metabolites from plant specimens. A number of simple bioassays are described that can be used to ascertain the bioactivity of the extracts, and the techniques most commonly used for determining the molecular structures of the compounds are described. One example of a plant (Astragalus danicus) that has been used for medicinal purposes by indigenous people is described in detail, and several of the compounds isolated and identified from this plant are described.

  19. Seasonal changes in one seed juniper intake by sheep and goats in relation to dietary protein and plant secondary metabolites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seasonal variation in plant secondary metabolites (PSM) can influence voluntary intake levels of one-seed juniper (Juniperus monosperma Englem. Sarg.) of sheep and goats. Supplemental nutrients could mitigate the deterrent effects of juniper PSM. We determined the concentration of mono-and sesqui- t...

  20. Isolation of high-quality RNA from Reaumuria soongorica, a desert plant rich in secondary metabolites.

    PubMed

    Wang, Xiaohua; Xiao, Honglang; Chen, Guoxiong; Zhao, Xin; Huang, Chenghong; Chen, Cuiyun; Wang, Fang

    2011-06-01

    RNA isolation is a prerequisite for the study of the molecular mechanisms of stress tolerance in the desert plant Reaumuria soongorica, an extreme xeric semi-shrub. However, R. soongorica that contains high levels of secondary metabolites that co-precipitate with RNA, making RNA isolation difficult. Here the authors propose a new protocol suitable for isolating high-quality RNA from the leaves of R. soongorica. Based on a CTAB method described by Liu et al., the protocol has been improved as follows: the samples were ground with PVPP to effectively inhibit the oxidation of phenolics, contaminating DNA was removed with DNase I, and NaAc was used along with ethanol for precipitation to enhance the RNA yield and shorten the precipitation time. Gel electrophoresis and spectrophotometric analysis indicated that this isolation method provides RNA with no DNA contamination. Moreover, the yield (183.79 ± 40.36 μg/g) and quality were superior to those using the method of Liu et al., which yields RNA with significant DNA contamination at 126.30 ± 29.43 μg/g. Gene amplification showed that the RNA obtained using this protocol is suitable for use in downstream molecular procedures. This method was found to work equally well for isolating RNA from other desert plants. Thus, it is likely to be widely applicable. PMID:21136208

  1. Cross-talk between signaling pathways: the link between plant secondary metabolite production and wounding stress response.

    PubMed

    Jacobo-Velázquez, Daniel A; González-Agüero, Mauricio; Cisneros-Zevallos, Luis

    2015-01-01

    Plants subjected to wounding stress produce secondary metabolites. Several of these metabolites prevent chronic diseases and can be used as colorants, flavors, and as antimicrobials. This wound-induced production of plant secondary metabolites is mediated by signaling-molecules such as reactive oxygen species (ROS), ethylene (ET) and jasmonic acid (JA). However, their specific role and interactions that modulate the wound-respond in plants is not fully understood. In the present study, a subtractive cDNA library was generated, to better understand the global response of plants to wounding stress. Carrot (Daucus carota) was used as a model system for this study. A total of 335 unique expressed sequence tags (ESTs) sequences were obtained. ESTs sequences with a putative identity showed involvement in stress-signaling pathways as well as on the primary and secondary metabolism. Inhibitors of ROS biosynthesis, ET action, and JA biosynthesis alone and in combination were applied to wounded-carrots in order to determine, based on relative gene expression data, the regulatory role of ET, JA, and ROS on the wound-response in plants. Our results demonstrate that ROS play a key role as signaling-molecules for the wound-induced activation of the primary and secondary metabolism whereas ET and JA are essential to modulate ROS levels. PMID:25712739

  2. Multivariate analyses of NP-TLC chromatographic retention data for grouping of structurally-related plant secondary metabolites.

    PubMed

    Shawky, Eman

    2016-09-01

    The chromatographic behavior of 28 plant secondary metabolites belonging to four chemically similar classes (alkaloids, flavonoids, flavone glycosides and sesquiterpenes) was studied by normal-phase thin-layer chromatography (NP-TLC) under 5 different chromatographic systems commonly used in plant drug analysis with the aim to explore whether the retention properties of these metabolites can determine the chemical group they belong to. The use of RM values as the retention parameter is implemented as a relatively new approach in plant analysis. Principal component analysis (PCA), hierarchical clustering heat maps and discriminant analysis (DA), were used for statistical evaluation of the chromatographic data and extraction of similarities between chemically related compounds. The twenty eight metabolites were classified into four groups by principal component analysis. The heat map of hierarchical clustering revealed that all metabolites were clustered into four groups, except for caffeine, while linear discriminant analysis showed that 96.4% of metabolites are predicted correctly as the groupings identified by chemical class in original and cross-validated data. The main advantage of the approach described in current paper is its simplicity which can assist with preliminary identification of metabolites in complex plant extracts. PMID:27395422

  3. Antinociceptive activity of extracts and secondary metabolites from wild growing and micropropagated plants of Renealmia alpinia

    PubMed Central

    Gómez-Betancur, Isabel; Cortés, Natalie; Benjumea, Dora; Osorio, Edison; León, Francisco; Cutler, Stephen J.

    2015-01-01

    Ethnopharmacological relevance Renealmia alpinia is native to the American continent and can be found from Mexico to Brazil, and in the Caribbean islands. It is known as “matandrea” in Colombia, and it has been commonly used in traditional medicine to treat painful diseases and ailments. Based on its traditional uses, it is of interest to evaluate the pharmacologic effects of this plant and its secondary metabolites. Materials and methods Methanol and aqueous extracts of wild and micropropagated R. alpinia (leaves) were obtained and chemically compared by High Performance Thin Layer Chromatography (HPTLC). The antinociceptive activity of these extracts was examined using an in vivo assay (Siegmund test). Additionally, the dichloromethane extract of R. alpinia was fractionated and pure compounds were isolated by chromatographic methods. The structure elucidation of isolated compounds was performed by NMR experiments and spectroscopic techniques and comparison with the literature data. Purified compounds were evaluated for their in vitro binding affinity for opioids and cannabinoids receptors. Results The dichloromethane extract of the plant’s aerial part afforded sinostrobin (1), naringenin 7,4′-dimethyl ether (2), 2′,6′-dihydroxy-4′-methoxychalcone (3), 4-methoxy-6-(2-phenylethenyl)-2H-pyran-2-one (4), naringenin 7-methyl ether (5) and 3,5-heptanediol, 1,7-diphenyl (6), which were isolated using chromatographic methods. Their chemical structures were established by physical and spectroscopic techniques. The antinociceptive effects observed in mice by extracts of wild and micropropagated plants were similar. The compounds isolated from R. alpinia do not show affinity to opioid or cannabinoid receptors. Conclusion Aqueous and methanol extracts of R. alpinia provide antinociceptive and analgesic effects in an in vivo model. These results contribute additional insight as to why this plant is traditionally used for pain management. Also, this is the first

  4. Minerals salt composition and secondary metabolites of Euphorbia hirta Linn., an antihyperglycemic plant

    PubMed Central

    Yvette Fofie, N’Guessan Bra; Sanogo, Rokia; Coulibaly, Kiyinlma; Kone-Bamba, Diénéba

    2015-01-01

    Phytochemical study and research on acute toxicity were performed on the aerial parts (leaves and stems) of Euphorbia hirta Linn. The phytochemical screening and chromatography revealed the presence of saponin, sterol, terpene, alkaloids, polyphenols, tannins and flavonoids and especially mucilage. The evaluation of total polyphenols and total flavonoids gave 120.97 ± 7.07 gallic acid equivalents (GAE) mg/g (mg of GAE/g of extract) of dry extract and 41.4 ± 0.5 mg quercetin equivalent per gram (QE/g) (mg of QE/g of plant extract) of dry extract respectively. The physicochemical study revealed moisture content of 7.73% ± 0.00%, total ash 7.48% ± 0.03%. Sulfuric ash 9.05% ± 0.01%, hydrochloric acid insoluble ash of 0.8% ± 0.02%. The search for minerals salt revealed the presence of Cr, Zn, K, Ca and Mg having an important role in glucose metabolism. The acute toxicity study showed that the toxic dose may be above 3000 mg/kg. The results of these studies indicate that extracts from the leaves and stem of E. hirta Linn. contains trace elements and minerals salt and bioactive secondary metabolites which explain their therapeutic uses for treating diabetes mellitus. PMID:25598628

  5. Heterochromatin influences the secondary metabolite profile in the plant pathogen Fusarium graminearum

    PubMed Central

    Reyes-Dominguez, Yazmid; Boedi, Stefan; Sulyok, Michael; Wiesenberger, Gerlinde; Stoppacher, Norbert; Krska, Rudolf; Strauss, Joseph

    2012-01-01

    Chromatin modifications and heterochromatic marks have been shown to be involved in the regulation of secondary metabolism gene clusters in the fungal model system Aspergillus nidulans. We examine here the role of HEP1, the heterochromatin protein homolog of Fusarium graminearum, for the production of secondary metabolites. Deletion of Hep1 in a PH-1 background strongly influences expression of genes required for the production of aurofusarin and the main tricothecene metabolite DON. In the Hep1 deletion strains AUR genes are highly up-regulated and aurofusarin production is greatly enhanced suggesting a repressive role for heterochromatin on gene expression of this cluster. Unexpectedly, gene expression and metabolites are lower for the trichothecene cluster suggesting a positive function of Hep1 for DON biosynthesis. However, analysis of histone modifications in chromatin of AUR and DON gene promoters reveals that in both gene clusters the H3K9me3 heterochromatic mark is strongly reduced in the Hep1 deletion strain. This, and the finding that a DON-cluster flanking gene is up-regulated, suggests that the DON biosynthetic cluster is repressed by HEP1 directly and indirectly. Results from this study point to a conserved mode of secondary metabolite (SM) biosynthesis regulation in fungi by chromatin modifications and the formation of facultative heterochromatin. PMID:22100541

  6. Coping with shrub secondary metabolites by ruminants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rangelands throughout the world contain varying but often substantial proportions of shrubs. Shrubs are generally heavily chemically defended, and herbivores must either contend with their plant secondary metabolites (PSM) or avoid a significant component of the available forage. Browsing ruminants ...

  7. Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation.

    PubMed

    Lavania, Umesh C; Srivastava, Sarita; Lavania, Seshu; Basu, Surochita; Misra, Nandeesh Kumar; Mukai, Yasuhiko

    2012-08-01

    Whole genome duplication leads to autopolyploidy and brings about an increase in cell size, concentration of secondary metabolites and enhanced cytosine methylation. The increased cell size offers a positive advantage to polyploids for cell-surface-related activities, but there is a differential response to change in body size across species and taxonomic groups. Although polyploidy has been very extensively studied, having genetic, ecological and evolutionary implications, there is no report that underscores the significance of native secondary metabolites vis-à-vis body size with ploidy change. To address this problem we targeted unique diploid-autotetraploid paired sets of eight diverse clones of six species of Cymbopogon- a species complex of aromatic grasses that accumulate qualitatively different monoterpene essential oils (secondary metabolite) in their vegetative biomass. Based on the qualitative composition of essential oils and the plant body size relationship between the diploid versus autotetraploid paired sets, we show that polyploidy brings about enhanced accumulation of secondary metabolites in all cases, but exerts differential effects on body size in various species. It is observed that the accumulation of alcohol-type metabolites (e.g. geraniol) does not inhibit increase in body size with ploidy change from 2× to 4× (r = 0.854, P < 0.01), but aldehyde-type metabolites (e.g. citral) appear to drastically impede body development (r = -0.895). Such a differential response may be correlated to the metabolic steps involved in the synthesis of essential oil components. When changed to tetraploidy, the progenitor diploids requiring longer metabolic steps in production of their secondary metabolites are stressed, and those having shorter metabolite routes better utilize their resources for growth and vigour. In situ immunodetection of 5-methylcytosine sites reveals enhanced DNA methylation in autopolyploids. It is underpinned that the qualitative

  8. Secondary metabolites in in vitro cultured plants of the genus Drosera.

    PubMed

    Marczak, L; Kawiak, A; Lojkowska, E; Stobiecki, M

    2005-01-01

    Extracts from plantlets of different species of the genus Drosera, grown as in vitro cultures, were evaluated for the level of phenolic secondary metabolites from the group of naphthoquinones and flavonols. The profiles of natural products in the extracts obtained from different species were monitored by HPLC with UV detection at 260 and 330 nm. On the basis of the data obtained, Drosera binata, the species with the highest amount of plumbagin, was selected for further studies. The most effective method of extraction of quinones was established and the composition of phenolic secondary metabolites in the tissues was determined. For the identification of phenolic compounds, HPLC-UV and HPLC-ESI/MS were applied. PMID:15997845

  9. Analytical methods for the extraction and identification of secondary metabolite production in 'in vitro' plant cell cultures.

    PubMed

    Bertoli, Alessandra; Ruffoni, Barbara; Pistelli, Laura; Pistelli, Luisa

    2010-01-01

    The production of plant secondary metabolites by in vitro culture is one of the most challenging and thrilling field of recent scientific researches. In the few last years, pharmaceutical and food industry demand in phytochemicals has increased steadily. Therefore, the establishment of in vitro plant protocols has to be monitored by phytochemical investigation of their selected extracts in order to supply standardized raw material. In this chapter, the advantages and disadvantages of some modem techniques have been described for the sampling, extraction and analysis ofthe invitro plants and derivatives. Depending on the volatile or nonvolatile substances produced by in vitro plant raw material, different kinds of laboratory facilities are needed for the extraction and quali-quantitative analysis. Recent extraction technology such as accelerated solvent extraction or microwave assisted extraction in combination with hyphenated techniques such as gas chromathography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) represent a modern approach to perform fast and reproducible analytical methods for the quality control of secondary metabolite production in 'in vitro' plant material. PMID:21520717

  10. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments.

    PubMed

    Musilova, Lucie; Ridl, Jakub; Polivkova, Marketa; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the "secondary compound hypothesis" and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes. PMID:27483244

  11. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments

    PubMed Central

    Musilova, Lucie; Ridl, Jakub; Polivkova, Marketa; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the “secondary compound hypothesis” and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes. PMID:27483244

  12. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites.

    PubMed

    Yue, Wei; Ming, Qian-Liang; Lin, Bing; Rahman, Khalid; Zheng, Cheng-Jian; Han, Ting; Qin, Lu-Ping

    2016-01-01

    The development of plant tissue (including organ and cell) cultures for the production of secondary metabolites has been underway for more than three decades. Plant cell cultures with the production of high-value secondary metabolites are promising potential alternative sources for the production of pharmaceutical agents of industrial importance. Medicinal plant cell suspension cultures (MPCSC), which are characterized with the feature of fermentation with plant cell totipotency, could be a promising alternative "chemical factory". However, low productivity becomes an inevitable obstacle limiting further commercialization of MPCSC and the application to large-scale production is still limited to a few processes. This review generalizes and analyzes the recent progress of this bioproduction platform for the provision of medicinal chemicals and outlines a range of trials taken or underway to increase product yields from MPCSC. The scale-up of MPCSC, which could lead to an unlimited supply of pharmaceuticals, including strategies to overcome and solution of the associated challenges, is discussed. PMID:24963701

  13. MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites

    PubMed Central

    Matsuda, Fumio; Yonekura-Sakakibara, Keiko; Niida, Rie; Kuromori, Takashi; Shinozaki, Kazuo; Saito, Kazuki

    2009-01-01

    The MS/MS spectral tag (MS2T) library-based peak annotation procedure was developed for informative non-targeted metabolic profiling analysis using LC-MS. An MS2T library of Arabidopsis metabolites was created from a set of MS/MS spectra acquired using the automatic data acquisition function of the mass spectrometer. By using this library, we obtained structural information for the detected peaks in the metabolic profile data without performing additional MS/MS analysis; this was achieved by searching for the corresponding MS2T accession in the library. In the case of metabolic profile data for Arabidopsis tissues containing more than 1000 peaks, approximately 50% of the peaks were tagged by MS2Ts, and 90 peaks were identified or tentatively annotated with metabolite information by searching the metabolite databases and manually interpreting the MS2Ts. A comparison of metabolic profiles among the Arabidopsis tissues revealed that many unknown metabolites accumulated in a tissue-specific manner, some of which were deduced to be unusual Arabidopsis metabolites based on the MS2T data. Candidate genes responsible for these biosyntheses could be predicted by projecting the results to the transcriptome data. The method was also used for metabolic phenotyping of a subset of Ds transposon-inserted lines of Arabidopsis, resulting in clarification of the functions of reported genes involved in glycosylation of flavonoids. Thus, non-targeted metabolic profiling analysis using MS2T annotation methods could prove to be useful for investigating novel functions of secondary metabolites in plants. PMID:18939963

  14. DNA Extraction Protocol for Plants with High Levels of Secondary Metabolites and Polysaccharides without Using Liquid Nitrogen and Phenol

    PubMed Central

    Sahu, Sunil Kumar; Thangaraj, Muthusamy; Kathiresan, Kandasamy

    2012-01-01

    Mangroves and salt marsh species are known to synthesize a wide spectrum of polysaccharides and polyphenols including flavonoids and other secondary metabolites which interfere with the extraction of pure genomic DNA. Although a plethora of plant DNA isolation protocols exist, extracting DNA from mangroves and salt marsh species is a challenging task. This study describes a rapid and reliable cetyl trimethylammonium bromide (CTAB) protocol suited specifically for extracting DNA from plants which are rich in polysaccharides and secondary metabolites, and the protocol also excludes the use of expensive liquid nitrogen and toxic phenols. Purity of extracted DNA was excellent as evident by A260/A280 ratio ranging from 1.78 to 1.84 and A260/A230 ratio was >2, which also suggested that the preparations were sufficiently free of proteins and polyphenolics/polysaccharide compounds. DNA concentration ranged from 8.8 to 9.9 μg μL−1. The extracted DNA was amenable to RAPD, restriction digestion, and PCR amplification of plant barcode genes (matK and rbcl). The optimized method is suitable for both dry and fresh leaves. The success of this method in obtaining high-quality genomic DNA demonstrated the broad applicability of this method. PMID:27335662

  15. Simultaneous determination of secondary metabolites from Vinca rosea plant extractives by reverse phase high performance liquid chromatography

    PubMed Central

    Siddiqui, Mohammad Jamshed Ahmad; Ismail, Zhari; Saidan, Noor Hafizoh

    2011-01-01

    Background: Vinca rosea (Apocynaceae) is one of the most important and high value medicinal plants known for its anticancer alkaloids. It is the iota of the isolated secondary metabolites used in chemotherapy to treat diverse cancers. Several high performance liquid chromatography (HPLC) methods have been developed to quantify the active alkaloids in the plant. However, this method may serve the purpose in quantification of V. rosea plant extracts in totality. Objective: To develop and validate the reverse phase (RP)-HPLC method for simultaneous determination of secondary metabolites, namely alkaloids from V. rosea plant extracts. Materials and Methods: The quantitative determination was conducted by RP-HPLC equipped with ultraviolet detector. Optimal separation was achieved by isocratic elution with mobile phase consisting of methanol:acetonitrile:ammonium acetate buffer (25 mM) with 0.1% triethylamine (15:45:40 v/v) on a column (Zorbax Eclipse plus C18, 250 mm % 4.6 mm; 5 μm). The standard markers (vindoline, vincristine, catharanthine, and vinblastine) were identified by retention time and co-injected with reference standard and quantified by external standard method at 297 nm. Results: The precision of the method was confirmed by the relative standard deviation (R.S.D.), which was lower than 2.68%. The recoveries were in the range of 98.09%-108%. The limits of detection (LOD) for each marker alkaloids were lower than 0.20 μg. Different parts of the V. rosea extracts shows different concentrations of markers, flower samples were high in vinblastine content, while methanol extract from the leaves contains all the four alkaloids in good yield, and there is no significant presence of markers in water extracts. Conclusion: HPLC method established is appropriate for the standardization and quality assurance of V. rosea plant extracts. PMID:21716929

  16. Transporter and its engineering for secondary metabolites.

    PubMed

    Lv, Huajun; Li, Jianhua; Wu, Yingying; Garyali, Sanjog; Wang, Yong

    2016-07-01

    Secondary metabolites possess a lot of biological activities, and to achieve their functions, transmembrane transportation is crucial. Elucidation of their transport mechanisms in the cell is critical for discovering ways to improve the production. Here, we have summarized the recent progresses for representative secondary metabolite transporters and also the strategies for uncovering the transporter systems in plants and microbes. We have also discussed the transporter engineering strategies being utilized for improving the heterologous natural product production, which exhibits promising future under the guide of synthetic biology. PMID:27209041

  17. Regulation of cytochrome P450 mRNA expression in primary porcine hepatocytes by selected secondary plant metabolites from chicory (Cichorium intybus L.).

    PubMed

    Rasmussen, Martin Krøyer; Klausen, Christina Lindgaard; Ekstrand, Bo

    2014-03-01

    Chicory (Cichorium intybus) has been shown to induce enzymes of pharmacokinetic relevance (cytochrome P450; CYP). The aim of this study was to investigate the effects of selected secondary plant metabolites with a global extract of chicory root, on the expression of hepatic CYP mRNA (1A2, 2A19, 2C33, 2D25, 2E1 and 3A29), using primary porcine hepatocytes. Of the tested secondary plant metabolites, artemisinin, scoparone, lactucin and esculetin all induced increased expression of specific CYPs, while esculin showed no effect. In contrast, a global extract of chicory root decreased the expression of CYP1A2, 2C33, 2D25 and 3A29 at high concentrations. The results suggest that purified secondary metabolites from chicory affect CYP expression and thereby might affect detoxification in general, and that global extracts of plants can have effects different from individual components. PMID:24176340

  18. Effects of Produced Water on Soil Characteristics, Plant Biomass, and Secondary Metabolites.

    PubMed

    Burkhardt, Andy; Gawde, Archana; Cantrell, Charles L; Baxter, Holly L; Joyce, Blake L; Stewart, C Neal; Zheljazkov, Valtcho D

    2015-11-01

    The Powder River Basin in Wyoming and Montana contains the United States' largest coal reserve. The area produces large amounts of natural gas through extraction from water-saturated coalbeds. Determining the impacts of coalbed natural gas-produced efflux water on crops is important when considering its potential use as supplemental irrigation water. We hypothesized that coalbed natural gas water, because of its high salinity and sodicity, would affect plant secondary metabolism (essential oils) and biomass accumulation. A 2-yr field study was conducted in Wyoming to investigate the effects of produced water on two traditional bioenergy feedstocks-corn ( L.) and switchgrass ( L.)-and four novel biofuel feedstock species-spearmint ( L.), Japanese cornmint ( L.), lemongrass [ (Nees ex Steud.) J.F. Watson]), and common wormwood ( L.). The four nontraditional feedstock species were chosen because they contain high-value plant chemicals that can offset production costs. Essential oil content was significantly affected by coalbed natural gas water in lemongrass and spearmint. Oil content differences between two spearmint harvests in the same year indicated that there were significant changes between the growth stage of the plant and essential oil content; the first harvest averaged 0.42 g of oil per 100 g biomass while the second harvest (harvested before flowering) yielded only 0.19 g oil per 100 g dry biomass. Results indicated that produced water can be used for short-period (2 yr) irrigation of crops. However, prolonged use of untreated produced water for irrigation would likely have deleterious long-term effects on the soil and plants unless the water was treated or diluted (mixed) with good-quality water. PMID:26641346

  19. Investigation of abiogenic stress-induced alterations in the level of secondary metabolites in poppy plants (Papaver somniferum L.).

    PubMed

    Szabó, Beáta; Lakatos, A; Koszegi, T; Botz, L

    2008-12-01

    We aimed to understand the effects of water stress on the alkaloid production in various developmental stages of poppy plants and the effect of stress on the alkaloids content in the capsules. Three stages of the life cycle of Papaver somniferum L. were selected in our studies: Rosette, Flowering and Lancing developmental stages. Four types of water conditions were examined: Control, Withdrawal of Water, 50% Water Supply and Inundation. The morphological monitoring, results of Relative Water Content and proline content were used as indicators of stress. The result of the measurements in poppy leaves show that the secondary metabolites dramatically respond to these stress conditions. The constant water supply was beneficial for the accumulation of alkaloids in the capsules. PMID:19133499

  20. Effect of different ecological conditions on secondary metabolite production and gene expression in two mycotoxigenic plant pathogen Fusarium species: F. verticillioides and F. equiseti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Fusarium includes many species that are plant pathogens and many produce harmful secondary metabolites including fumonisins and trichothecenes. These mycotoxins can cause disease in animals and have been associated with cancers and birth defects in humans. Many factors influence the produc...

  1. Metabolic Profiling of Developing Pear Fruits Reveals Dynamic Variation in Primary and Secondary Metabolites, Including Plant Hormones

    PubMed Central

    Oikawa, Akira; Otsuka, Takao; Nakabayashi, Ryo; Jikumaru, Yusuke; Isuzugawa, Kanji; Murayama, Hideki; Saito, Kazuki; Shiratake, Katsuhiro

    2015-01-01

    Metabolites in the fruits of edible plants include sweet sugars, visually appealing pigments, various products with human nutritional value, and biologically active plant hormones. Although quantities of these metabolites vary during fruit development and ripening because of cell division and enlargement, there are few reports describing the actual dynamics of these changes. Therefore, we applied multiple metabolomic techniques to identify the changes in metabolite levels during the development and ripening of pear fruits (Pyrus communis L. ‘La France’). We quantified and classified over 250 metabolites into six groups depending on their specific patterns of variation during development and ripening. Approximately half the total number of metabolites, including histidine and malate, accumulated transiently around the blooming period, during which cells are actively dividing, and then decreased either rapidly or slowly. Furthermore, the amounts of sulfur-containing amino acids also increased in pear fruits around 3–4 months after the blooming period, when fruit cells are enlarging, but virtually disappeared from ripened fruits. Some metabolites, including the plant hormone abscisic acid, accumulated particularly in the receptacle prior to blooming and/or fruit ripening. Our results show several patterns of variation in metabolite levels in developing and ripening pear fruits, and provide fundamental metabolomic data that is useful for understanding pear fruit physiology and enhancing the nutritional traits of new cultivars. PMID:26168247

  2. Activity and characterization of secondary metabolites produced by a new microorganism for control of plant diseases.

    PubMed

    Ko, Wen-Hsiung; Tsou, Yi-Jung; Lin, Mei-Ju; Chern, Lih-Ling

    2010-09-30

    Microorganisms capable of utilizing vegetable tissues for growth in soils were isolated and their vegetable broth cultures were individually sprayed directly on leaves to test their ability to control Phytophthora blight of bell pepper caused by Phytophthora capsici. Liquid culture of Streptomyces strain TKA-5, a previously undescribed species obtained in this study, displayed several desirable disease control characteristics in nature, including high potency, long lasting and ability to control also black leaf spot of spoon cabbage caused by Alternaria brassicicolca. The extract was fungicidal to P. capsici but fungistatic to A. brassicicola. It was stable at high temperature and high pH. However, after exposure to pH 2 for 24h, the extract was no longer inhibitory to P. capsici although it was still strongly inhibitory to A. brassicicola. After treatment with cation or anion exchange resins, the extract lost its inhibitory effect against P. capsici but not A. brassicicola. The results suggest that the extract contained two different kinds of inhibitory metabolites, one against P. capsici with both positive and negative charges on its molecule and another against A. brassicicola with no charges on its molecule. The inhibitory metabolites were soluble in ethanol or methanol but not in water, ether or chloroform. They were dialyzable in the membrane tubing with molecular weight cut-off of 10,000, 1000 or 500 but not 100, indicating that the inhibitors have a molecular weight between 500 and 100. Results also showed that both inhibitors are not proteins. PMID:20580869

  3. Global Perspectives of Fungal Secondary Metabolite Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi produce a wide range of unusual metabolites, termed secondary metabolites because they play no role in the normal, basic metabolic pathways used for growth and energy production, etc. Some of these secondary metabolites have antibiotic properties; others are potent toxins that are dangerous w...

  4. Secondary metabolites and phenylpropanoid pathway enzymes as influenced under supplemental ultraviolet-B radiation in Withania somnifera Dunal, an indigenous medicinal plant.

    PubMed

    Takshak, Swabha; Agrawal, S B

    2014-11-01

    The present study aims to investigate the effects of supplemental ultraviolet B (3.6 kJ m(-2)day(-1) above ambient) radiation on secondary metabolites and phenylpropanoid pathway enzymes of Withania somnifera under field conditions at 40, 70, and 100 days after transplantation. Secondary metabolites' (alkaloids, anthocyanins, carotenoids, flavonoids, lignin, phytosterols, saponins, and tannins) concentrations were analysed at the end of the treatments. Activities of phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), 4-coumarate-CoA ligase (4CL), chalcone-flavanone isomerase (CHI), and dihydroflavonol reductase (DFR) were also determined. In treated plants, secondary metabolite-concentrations generally increased (higher concentrations being recorded in roots compared to leaves). Anomalies were recorded for lycopene in roots and phytosterols in leaves (all sampling ages); β-carotene declined in leaves at third sampling age. s-UV-B-treated plants depicted decrease in withanolide A content with concomitant increase in withaferin A (two major alkaloids analysed by HPLC) compared to their respective controls. Phenylpropanoid pathway enzyme-activities increased in leaves and roots under s-UV-B treatment, the latter showing greater increase. The study concludes that s-UV-B is a potent factor in increasing the concentrations of secondary metabolites and their biosynthetic pathway enzymes in W. somnifera. PMID:25226342

  5. Foraging in chemically diverse environments: energy, protein, and alternative foods influence ingestion of plant secondary metabolites by lambs.

    PubMed

    Villalba, Juan J; Provenza, Frederick D

    2005-01-01

    Interactions among nutrients and plant secondary metabolites (PSM) may influence how herbivores mix their diets and use food resources. We determined intake of a food containing a mix of terpenoids identified in sagebrush (Artemisia tridentata) when present in isoenergetic diets of increasing concentrations of protein (6, 9, 15, or 21% CP) or in isonitrogenous diets of increasing concentrations of energy (2.17, 2.55, 3.30, or 3.53 Mcal/kg). Lambs were offered choices between those diets with or without terpenes or between diets with terpenes and alfalfa hay. Intake of the diets with terpenes was lowest with the lowest concentrations of protein (6%) and energy (2.17 Mcal/kg) in the diets, and highest with diets of 15% CP and 3.53 Mcal/kg. In contrast, when terpenes were absent from the diets, lambs consumed similar amounts of all four diets with different concentrations of protein, and more of the diets with intermediate amounts of energy. When given a choice between the diet with or without terpenes, lambs preferred the diet without terpenes. When lambs were offered choices between terpene-containing diets and alfalfa, energy and protein concentrations influenced the amount of terpenes animals ingested. Energy densities higher than alfalfa, and protein concentrations higher than 6%, increased intake of the terpene-containing diet. Thus, the nutritional environment interacted with terpenes to influence preference such that lambs offered diets of higher energy or protein concentration ate more terpenes when forced, but not when offered alternative food without terpenes. The nutrients supplied by a plant and its neighbors likely influence how much PSM an animal can ingest, which in turn may affect the dynamics of plant communities, and the distribution of herbivores in a landscape. We discuss implications of these findings for traditional views of grazing refuges and varied diets in herbivores. PMID:15839485

  6. Endophytic Actinobacteria from the Brazilian Medicinal Plant Lychnophora ericoides Mart. and the Biological Potential of Their Secondary Metabolites.

    PubMed

    Conti, Raphael; Chagas, Fernanda Oliveira; Caraballo-Rodriguez, Andrés Mauricio; Melo, Weilan Gomes da Paixão; do Nascimento, Andréa Mendes; Cavalcanti, Bruno Coêlho; de Moraes, Manoel Odorico; Pessoa, Cláudia; Costa-Lotufo, Letícia Veras; Krogh, Renata; Andricopulo, Adriano Defini; Lopes, Norberto Peporine; Pupo, Mônica Tallarico

    2016-06-01

    Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides were isolated for the first time, and the biological potential of their secondary metabolites was evaluated. A phylogenic analysis of isolated actinobacteria was accomplished with 16S rRNA gene sequencing, and the predominance of the genus Streptomyces was observed. All strains were cultured on solid rice medium, and ethanol extracts were evaluated with antimicrobial and cytotoxic assays against cancer cell lines. As a result, 92% of the extracts showed a high or moderate activity against at least one pathogenic microbial strain or cancer cell line. Based on the biological and chemical analyses of crude extracts, three endophytic strains were selected for further investigation of their chemical profiles. Sixteen compounds were isolated, and 3-hydroxy-4-methoxybenzamide (9) and 2,3-dihydro-2,2-dimethyl-4(1H)-quinazolinone (15) are reported as natural products for the first time in this study. The biological activity of the pure compounds was also assessed. Compound 15 displayed potent cytotoxic activity against all four tested cancer cell lines. Nocardamine (2) was only moderately active against two cancer cell lines but showed strong activity against Trypanosoma cruzi. Our results show that endophytic actinobacteria from L. ericoides are a promising source of bioactive compounds. PMID:27128202

  7. The abiotic and biotic plant stress tolerant and beneficial secondary metabolites produced by endophytic Bacillus species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of endophytic bacteria and their potential for protecting crops has targeted the endophytic species of Bacillus as a valued microorganism not only for disease protection but also for inducing plant defense mechanisms. Numerous strains of Bacillus, endophytic and non-endophytic, are widely...

  8. Dung-inhabiting fungi: a potential reservoir of novel secondary metabolites for the control of plant pathogens.

    PubMed

    Sarrocco, Sabrina

    2016-04-01

    Coprophilous fungi are a large group of saprotrophic fungi mostly found in herbivore dung. The number of these fungi undergoing investigation is continually increasing, and new species and genera continue to be described. Dung-inhabiting fungi play an important ecological role in decomposing and recycling nutrients from animal dung. They produce a large array of bioactive secondary metabolites and have a potent enzymatic arsenal able to utilise even complex molecules. Bioactive secondary metabolites are actively involved in interaction with and defence against other organisms whose growth can be inhibited, resulting in an enhanced ecological fitness of producer strains. Currently, these antibiotics and bioactive secondary metabolites are of interest in medicine in particular, while very little information is available concerning their potential use in agriculture. This review introduces the ecology of dung-inhabiting fungi, with particular emphasis on the production of antibiotic compounds as a means to compete with other microorganisms. Owing to the fast pace of technological progress, new approaches to predicting the biosynthesis of bioactive metabolites are proposed. Coprophilous fungi should be considered as elite candidate organisms for the discovery of novel antifungal compounds, above all in view of their exploitation for crop protection. PMID:26662623

  9. The Mouthparts Enriched Odorant Binding Protein 11 of the Alfalfa Plant Bug Adelphocoris lineolatus Displays a Preferential Binding Behavior to Host Plant Secondary Metabolites

    PubMed Central

    Sun, Liang; Wei, Yu; Zhang, Dan-Dan; Ma, Xiao-Yu; Xiao, Yong; Zhang, Ya-Nan; Yang, Xian-Ming; Xiao, Qiang; Guo, Yu-Yuan; Zhang, Yong-Jun

    2016-01-01

    Odorant binding proteins (OBPs) are proposed to be directly required for odorant discrimination and represent potential interesting targets for pest control. In the notoriously agricultural pest Adelphocoris lineolatus, our previous functional investigation of highly expressed antennal OBPs clearly supported this viewpoint, whereas the findings of the current study by characterizing of AlinOBP11 rather indicated that OBP in hemipterous plant bugs might fulfill a different and tantalizing physiological role. The phylogenetic analysis uncovered that AlinOBP11 together with several homologous bug OBP proteins are potential orthologs, implying they could exhibit a conserved function. Next, the results of expression profiles solidly showed that AlinOBP11 was predominantly expressed at adult mouthparts, the most important gustatory organ of Hemiptera mirid bug. Finally, a rigorously selective binding profile was observed in the fluorescence competitive binding assay, in which recombinant AlinOBP11 displayed much stronger binding abilities to non-volatile secondary metabolite compounds than the volatile odorants. These results reflect that AlinOBP11, even its orthologous proteins across bug species, could be associated with a distinctively conserved physiological role such as a crucial carrier for non-volatiles host secondary metabolites in gustatory system. PMID:27313540

  10. The Mouthparts Enriched Odorant Binding Protein 11 of the Alfalfa Plant Bug Adelphocoris lineolatus Displays a Preferential Binding Behavior to Host Plant Secondary Metabolites.

    PubMed

    Sun, Liang; Wei, Yu; Zhang, Dan-Dan; Ma, Xiao-Yu; Xiao, Yong; Zhang, Ya-Nan; Yang, Xian-Ming; Xiao, Qiang; Guo, Yu-Yuan; Zhang, Yong-Jun

    2016-01-01

    Odorant binding proteins (OBPs) are proposed to be directly required for odorant discrimination and represent potential interesting targets for pest control. In the notoriously agricultural pest Adelphocoris lineolatus, our previous functional investigation of highly expressed antennal OBPs clearly supported this viewpoint, whereas the findings of the current study by characterizing of AlinOBP11 rather indicated that OBP in hemipterous plant bugs might fulfill a different and tantalizing physiological role. The phylogenetic analysis uncovered that AlinOBP11 together with several homologous bug OBP proteins are potential orthologs, implying they could exhibit a conserved function. Next, the results of expression profiles solidly showed that AlinOBP11 was predominantly expressed at adult mouthparts, the most important gustatory organ of Hemiptera mirid bug. Finally, a rigorously selective binding profile was observed in the fluorescence competitive binding assay, in which recombinant AlinOBP11 displayed much stronger binding abilities to non-volatile secondary metabolite compounds than the volatile odorants. These results reflect that AlinOBP11, even its orthologous proteins across bug species, could be associated with a distinctively conserved physiological role such as a crucial carrier for non-volatiles host secondary metabolites in gustatory system. PMID:27313540

  11. Prenylation of aromatic compounds, a key diversification of plant secondary metabolites.

    PubMed

    Yazaki, Kazufumi; Sasaki, Kanako; Tsurumaru, Yusuke

    2009-01-01

    Prenylation plays a major role in the diversification of aromatic natural products, such as phenylpropanoids, flavonoids, and coumarins. This biosynthetic reaction represents the crucial coupling process of the shikimate or polyketide pathway providing an aromatic moiety and the isoprenoid pathway derived from the mevalonate or methyl erythritol phosphate (MEP) pathway, which provides the prenyl (isoprenoid) chain. In particular, prenylation contributes strongly to the diversification of flavonoids, due to differences in the prenylation position on the aromatic rings, various lengths of prenyl chain, and further modifications of the prenyl moiety, e.g., cyclization and hydroxylation, resulting in the occurrence of ca. 1000 prenylated flavonoids in plants. Many prenylated flavonoids have been identified as active components in medicinal plants with biological activities, such as anti-cancer, anti-androgen, anti-leishmania, and anti-nitric oxide production. Due to their beneficial effects on human health, prenylated flavonoids are of particular interest as lead compounds for producing drugs and functional foods. However, the gene coding for prenyltransferases that catalyze the key step of flavonoid prenylation have remained unidentified for more than three decades, because of the membrane-bound nature of these enzymes. Recently, we have succeeded in identifying the first prenyltransferase gene SfN8DT-1 from Sophora flavescens, which is responsible for the prenylation of the flavonoid naringenin at the 8-position, and is specific for flavanones and dimethylallyl diphosphate (DMAPP) as substrates. Phylogenetic analysis showed that SfN8DT-1 has the same evolutionary origin as prenyltransferases for vitamin E and plastoquinone. A prenyltransferase GmG4DT from soybean, which is involved in the formation of glyceollin, was also identified recently. This enzyme was specific for pterocarpan as its aromatic substrate, and (-)-glycinol was the native substrate yielding the

  12. Metabolomics by Proton High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance of Tomato Plants Treated with Two Secondary Metabolites Isolated from Trichoderma.

    PubMed

    Mazzei, Pierluigi; Vinale, Francesco; Woo, Sheridan Lois; Pascale, Alberto; Lorito, Matteo; Piccolo, Alessandro

    2016-05-11

    Trichoderma fungi release 6-pentyl-2H-pyran-2-one (1) and harzianic acid (2) secondary metabolites to improve plant growth and health protection. We isolated metabolites 1 and 2 from Trichoderma strains, whose different concentrations were used to treat seeds of Solanum lycopersicum. The metabolic profile in the resulting 15 day old tomato leaves was studied by high-resolution magic-angle-spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy directly on the whole samples without any preliminary extraction. Principal component analysis (PCA) of HRMAS NMR showed significantly enhanced acetylcholine and γ-aminobutyric acid (GABA) content accompanied by variable amount of amino acids in samples treated with both Trichoderma secondary metabolites. Seed germination rates, seedling fresh weight, and the metabolome of tomato leaves were also dependent upon doses of metabolites 1 and 2 treatments. HRMAS NMR spectroscopy was proven to represent a rapid and reliable technique for evaluating specific changes in the metabolome of plant leaves and calibrating the best concentration of bioactive compounds required to stimulate plant growth. PMID:27088924

  13. Studies on bioactivity and secondary metabolites of crude extracts of Bidens pilosa L. (Asteraceae): A medicinal plant used in the Transkei region of South Africa.

    PubMed

    Njume, Collise; Gqaza, Bomkazi M; Rozani, Carina; Goduka, Nomalungelo I

    2016-05-01

    Whole plant-parts of Bidens pilosa were powdered and extracted in concentrated hexane, acetone, ethanol, methanol and water. The extracts were tested for antimicrobial activity against Escherichia coli (25922), Bacillus subtilis (ATCC 6051), Enterococcus faecalis (51299) Staphylococcus aureus (ATCC 29213) and Pseudomonas aeruginosa (ATCC127853), using standard microbiological techniques. Active crude extracts were macerated in concentrated methanol and tested for secondary metabolites including tannins, saponins, alkaloids, cardiac glycosides, anthraquinones, steroids and flavonoids using standard phytochemical procedures. Hexane and methanol extracts demonstrated similar activity producing 8-17 mm and 11-18 mm inhibition zone-diameter ranges respectively. Further analysis for minimum inhibitory concentrations (MIC(50)) recorded 1.25-20mg/mL and 2.5-20mg/mL for hexane and methanol extracts respectively. The highest zones of inhibition diameters (22-36mm) and lowest MIC(50) values (0.0002-0.0006mg/mL) were recorded for Gentamicin, the positive control. Minimum bactericidal concentration (MBC) ranges were between 10-80mg/mL and 0.001-0.005mg/mL for extracts and control antibiotic respectively. With the exception of anthraquinones, the plant crude extracts tested positive for all secondary metabolites analyzed. These results provide scientific basis for the use of B. pilosa in South African traditional medicine. The antibacterial activity reported herein may be attributed to one or more of the 6 secondary metabolites detected in the plant crude extracts. PMID:27166532

  14. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents

    PubMed Central

    Wink, Michael; Ashour, Mohamed L.; El-Readi, Mahmoud Zaki

    2012-01-01

    Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197

  15. Energetic costs and implications of the intake of plant secondary metabolites on digestive and renal morphology in two austral passerines.

    PubMed

    Barceló, Gonzalo; Ríos, Juan Manuel; Maldonado, Karin; Sabat, Pablo

    2016-07-01

    Seed-eating birds have a diet of high nutritional value; however, they must cope with plant secondary metabolites (PSM). We postulated that the detoxification capacity of birds is associated with a metabolic cost, given that the organs responsible for detoxification significantly contribute to energetic metabolism. We used an experimental approach to assess the effects of phenol-enriched diets on two passerines with different feeding habits: the omnivorous rufous-collared sparrow (Zonotrichia capensis) and the granivorous common diuca-finch (Diuca diuca). The birds were fed with one of three diets: control diet, supplemented with tannic acid, or supplemented with Opuntia ficus-indica phenolic extract (a common food of the sparrow but not the finch). After 5 weeks of exposure to the diets, we measured basal metabolic rates (BMR), energy intake, glucuronic acid output and digestive and kidney structure. In both species, detoxification capacity expressed as glucuronic acid output was higher in individuals consuming phenol-enriched diets compared to the control diet. However, whereas sparrows increase energy intake and intestinal mass when feeding on phenol-enriched diets, finches had lower intestinal mass and energy intake remains stable. Furthermore, sparrows had higher BMR on phenol-enriched diets compared to the control group, whereas in the finches BMR remains unchanged. Interspecific differences in response to phenols intake may be determined by the dietary habits of these species. While both species can feed on moderate phenolic diets for 5 weeks, energy costs may differ due to different responses in food intake and organ structure to counteract the effects of PSM intake. PMID:26931656

  16. Effects of enhanced UV-B radiation on secondary metabolites in forage plants and potential consequences for multiple trophic responses involving mammalian herbivores

    NASA Astrophysics Data System (ADS)

    Thines, Nicole J.; Bassman, John H.; Shipley, Lisa A.; Slusser, James R.

    2004-10-01

    Herbivores represent the interface between primary production and higher trophic levels. The effects of enhanced UV-B radiation on microbes, invertebrate herbivores, and detritivores has received limited study in both terrestrial and aquatic ecosystems. However, although direct effects (e.g. melanoma, cataracts) on mammals have been documented, indirect effects (e.g., resulting from changes in plant chemistry) of enhanced UV-B on mammalian herbivores have not been evaluated. Although the diet of mammalian herbivores has little effect on nutritional quality for their associated predators, to the extent changes in plant chemistry affect aspects of population dynamics (e.g., growth, fecundity, densities), higher trophic levels can be affected. In this study, different forage species of varying inherent levels of key secondary metabolites are being grown in the field under either ambient or ambient plus supplemental UV-B radiation simulating a 15% stratospheric ozone depletion for Pullman, Washington. At various time intervals, foliage is being sampled and analyzed for changes in secondary metabolites and other attributes. Using controlled feeding trials, changes in plant secondary metabolites are being related to preference and digestibility in specialist and generalist mammalian hindgut herbivores, digestion in ruminants and non-ruminants, and to selected aspects of population dynamics in mammalian herbivores. Results suggest how UV-B-induced changes in plant secondary chemistry affect animal nutrition, and thus animal productivity in a range of mammalian herbivores. Reductions in palatability and digestibility of plant material along with reductions in fecundity and other aspects of population dynamics could have significant economic ramifications for farmers, ranchers and wildlife biologists.

  17. Genetically engineering Synechocystis sp. Pasteur Culture Collection 6803 for the sustainable production of the plant secondary metabolite p-coumaric acid.

    PubMed

    Xue, Yong; Zhang, Yan; Cheng, Dan; Daddy, Soumana; He, Qingfang

    2014-07-01

    p-Coumaric acid is the precursor of phenylpropanoids, which are plant secondary metabolites that are beneficial to human health. Tyrosine ammonia lyase catalyzes the production of p-coumaric acid from tyrosine. Because of their photosynthetic ability and biosynthetic versatility, cyanobacteria are promising candidates for the production of certain plant metabolites, including phenylpropanoids. Here, we produced p-coumaric acid in a strain of transgenic cyanobacterium Synechocystis sp. Pasteur Culture Collection 6803 (hereafter Synechocystis 6803). Whereas a strain of Synechocystis 6803 genetically engineered to express sam8, a tyrosine ammonia lyase gene from the actinomycete Saccharothrix espanaensis, accumulated little or no p-coumaric acid, a strain that both expressed sam8 and lacked slr1573, a native hypothetical gene shown here to encode a laccase that oxidizes polyphenols, produced ∼82.6 mg/L p-coumaric acid, which was readily purified from the growth medium. PMID:24927550

  18. Genetically engineering Synechocystis sp. Pasteur Culture Collection 6803 for the sustainable production of the plant secondary metabolite p-coumaric acid

    PubMed Central

    Xue, Yong; Zhang, Yan; Cheng, Dan; Daddy, Soumana; He, Qingfang

    2014-01-01

    p-Coumaric acid is the precursor of phenylpropanoids, which are plant secondary metabolites that are beneficial to human health. Tyrosine ammonia lyase catalyzes the production of p-coumaric acid from tyrosine. Because of their photosynthetic ability and biosynthetic versatility, cyanobacteria are promising candidates for the production of certain plant metabolites, including phenylpropanoids. Here, we produced p-coumaric acid in a strain of transgenic cyanobacterium Synechocystis sp. Pasteur Culture Collection 6803 (hereafter Synechocystis 6803). Whereas a strain of Synechocystis 6803 genetically engineered to express sam8, a tyrosine ammonia lyase gene from the actinomycete Saccharothrix espanaensis, accumulated little or no p-coumaric acid, a strain that both expressed sam8 and lacked slr1573, a native hypothetical gene shown here to encode a laccase that oxidizes polyphenols, produced ∼82.6 mg/L p-coumaric acid, which was readily purified from the growth medium. PMID:24927550

  19. Secondary metabolites from Rubiaceae species.

    PubMed

    Martins, Daiane; Nunez, Cecilia Veronica

    2015-01-01

    This study describes some characteristics of the Rubiaceae family pertaining to the occurrence and distribution of secondary metabolites in the main genera of this family. It reports the review of phytochemical studies addressing all species of Rubiaceae, published between 1990 and 2014. Iridoids, anthraquinones, triterpenes, indole alkaloids as well as other varying alkaloid subclasses, have shown to be the most common. These compounds have been mostly isolated from the genera Uncaria, Psychotria, Hedyotis, Ophiorrhiza and Morinda. The occurrence and distribution of iridoids, alkaloids and anthraquinones point out their chemotaxonomic correlation among tribes and subfamilies. From an evolutionary point of view, Rubioideae is the most ancient subfamily, followed by Ixoroideae and finally Cinchonoideae. The chemical biosynthetic pathway, which is not so specific in Rubioideae, can explain this and large amounts of both iridoids and indole alkaloids are produced. In Ixoroideae, the most active biosysthetic pathway is the one that produces iridoids; while in Cinchonoideae, it produces indole alkaloids together with other alkaloids. The chemical biosynthetic pathway now supports this botanical conclusion. PMID:26205062

  20. Non-targeted Metabolomics in Diverse Sorghum Breeding Lines Indicates Primary and Secondary Metabolite Profiles Are Associated with Plant Biomass Accumulation and Photosynthesis

    PubMed Central

    Turner, Marie F.; Heuberger, Adam L.; Kirkwood, Jay S.; Collins, Carl C.; Wolfrum, Edward J.; Broeckling, Corey D.; Prenni, Jessica E.; Jahn, Courtney E.

    2016-01-01

    Metabolomics is an emerging method to improve our understanding of how genetic diversity affects phenotypic variation in plants. Recent studies have demonstrated that genotype has a major influence on biochemical variation in several types of plant tissues, however, the association between metabolic variation and variation in morphological and physiological traits is largely unknown. Sorghum bicolor (L.) is an important food and fuel crop with extensive genetic and phenotypic variation. Sorghum lines have been bred for differing phenotypes beneficial for production of grain (food), stem sugar (food, fuel), and cellulosic biomass (forage, fuel), and these varying phenotypes are the end products of innate metabolic programming which determines how carbon is allocated during plant growth and development. Further, sorghum has been adapted among highly diverse environments. Because of this geographic and phenotypic variation, the sorghum metabolome is expected to be highly divergent; however, metabolite variation in sorghum has not been characterized. Here, we utilize a phenotypically diverse panel of sorghum breeding lines to identify associations between leaf metabolites and morpho-physiological traits. The panel (11 lines) exhibited significant variation for 21 morpho-physiological traits, as well as broader trends in variation by sorghum type (grain vs. biomass types). Variation was also observed for cell wall constituents (glucan, xylan, lignin, ash). Non-targeted metabolomics analysis of leaf tissue showed that 956 of 1181 metabolites varied among the lines (81%, ANOVA, FDR adjusted p < 0.05). Both univariate and multivariate analyses determined relationships between metabolites and morpho-physiological traits, and 384 metabolites correlated with at least one trait (32%, p < 0.05), including many secondary metabolites such as glycosylated flavonoids and chlorogenic acids. The use of metabolomics to explain relationships between two or more morpho

  1. Non-targeted Metabolomics in Diverse Sorghum Breeding Lines Indicates Primary and Secondary Metabolite Profiles Are Associated with Plant Biomass Accumulation and Photosynthesis.

    PubMed

    Turner, Marie F; Heuberger, Adam L; Kirkwood, Jay S; Collins, Carl C; Wolfrum, Edward J; Broeckling, Corey D; Prenni, Jessica E; Jahn, Courtney E

    2016-01-01

    Metabolomics is an emerging method to improve our understanding of how genetic diversity affects phenotypic variation in plants. Recent studies have demonstrated that genotype has a major influence on biochemical variation in several types of plant tissues, however, the association between metabolic variation and variation in morphological and physiological traits is largely unknown. Sorghum bicolor (L.) is an important food and fuel crop with extensive genetic and phenotypic variation. Sorghum lines have been bred for differing phenotypes beneficial for production of grain (food), stem sugar (food, fuel), and cellulosic biomass (forage, fuel), and these varying phenotypes are the end products of innate metabolic programming which determines how carbon is allocated during plant growth and development. Further, sorghum has been adapted among highly diverse environments. Because of this geographic and phenotypic variation, the sorghum metabolome is expected to be highly divergent; however, metabolite variation in sorghum has not been characterized. Here, we utilize a phenotypically diverse panel of sorghum breeding lines to identify associations between leaf metabolites and morpho-physiological traits. The panel (11 lines) exhibited significant variation for 21 morpho-physiological traits, as well as broader trends in variation by sorghum type (grain vs. biomass types). Variation was also observed for cell wall constituents (glucan, xylan, lignin, ash). Non-targeted metabolomics analysis of leaf tissue showed that 956 of 1181 metabolites varied among the lines (81%, ANOVA, FDR adjusted p < 0.05). Both univariate and multivariate analyses determined relationships between metabolites and morpho-physiological traits, and 384 metabolites correlated with at least one trait (32%, p < 0.05), including many secondary metabolites such as glycosylated flavonoids and chlorogenic acids. The use of metabolomics to explain relationships between two or more morpho

  2. Mitigation of NaCl Stress by Arbuscular Mycorrhizal Fungi through the Modulation of Osmolytes, Antioxidants and Secondary Metabolites in Mustard (Brassica juncea L.) Plants

    PubMed Central

    Sarwat, Maryam; Hashem, Abeer; Ahanger, Mohammad A.; Abd_Allah, Elsayed F.; Alqarawi, A. A.; Alyemeni, Mohammed N.; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    Present work was carried out to investigate the possible role of arbuscular mycorrhizal fungi (AMF) in mitigating salinity-induced alterations in Brassica juncea L. Exposure to NaCl stress altered the morphological, physio-biochemical attributes, antioxidant activity, secondary metabolites and phytohormones in the mustard seedlings. The growth and biomass yield, leaf water content, and total chlorophyll content were decreased with NaCl stress. However, AMF-inoculated plants exhibited enhanced shoot and root length, elevated relative water content, enhanced chlorophyll content, and ultimately biomass yield. Lipid peroxidation and proline content were increased by 54.53 and 63.47%, respectively with 200 mM NaCl concentration. Further increase in proline content and decrease in lipid peroxidation was observed in NaCl-treated plants inoculated with AMF. The antioxidants, superoxide dismutase, ascorbate peroxidase, glutathione reductase, and reduced glutathione were increased by 48.35, 54.86, 43.85, and 44.44%, respectively, with 200 mM NaCl concentration. Further increase in these antioxidants has been observed in AMF-colonized plants indicating the alleviating role of AMF to salinity stress through antioxidant modulation. The total phenol, flavonoids, and phytohormones increase with NaCl treatment. However, NaCl-treated plants colonized with AMF showed further increase in the above parameters except ABA, which was reduced with NaCl+AMF treatment over the plants treated with NaCl alone. Our results demonstrated that NaCl caused negative effect on B. juncea seedlings; however, colonization with AMF enhances the NaCl tolerance by reforming the physio-biochemical attributes, activities of antioxidant enzymes, and production of secondary metabolites and phytohormones. PMID:27458462

  3. Mitigation of NaCl Stress by Arbuscular Mycorrhizal Fungi through the Modulation of Osmolytes, Antioxidants and Secondary Metabolites in Mustard (Brassica juncea L.) Plants.

    PubMed

    Sarwat, Maryam; Hashem, Abeer; Ahanger, Mohammad A; Abd Allah, Elsayed F; Alqarawi, A A; Alyemeni, Mohammed N; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    Present work was carried out to investigate the possible role of arbuscular mycorrhizal fungi (AMF) in mitigating salinity-induced alterations in Brassica juncea L. Exposure to NaCl stress altered the morphological, physio-biochemical attributes, antioxidant activity, secondary metabolites and phytohormones in the mustard seedlings. The growth and biomass yield, leaf water content, and total chlorophyll content were decreased with NaCl stress. However, AMF-inoculated plants exhibited enhanced shoot and root length, elevated relative water content, enhanced chlorophyll content, and ultimately biomass yield. Lipid peroxidation and proline content were increased by 54.53 and 63.47%, respectively with 200 mM NaCl concentration. Further increase in proline content and decrease in lipid peroxidation was observed in NaCl-treated plants inoculated with AMF. The antioxidants, superoxide dismutase, ascorbate peroxidase, glutathione reductase, and reduced glutathione were increased by 48.35, 54.86, 43.85, and 44.44%, respectively, with 200 mM NaCl concentration. Further increase in these antioxidants has been observed in AMF-colonized plants indicating the alleviating role of AMF to salinity stress through antioxidant modulation. The total phenol, flavonoids, and phytohormones increase with NaCl treatment. However, NaCl-treated plants colonized with AMF showed further increase in the above parameters except ABA, which was reduced with NaCl+AMF treatment over the plants treated with NaCl alone. Our results demonstrated that NaCl caused negative effect on B. juncea seedlings; however, colonization with AMF enhances the NaCl tolerance by reforming the physio-biochemical attributes, activities of antioxidant enzymes, and production of secondary metabolites and phytohormones. PMID:27458462

  4. Facilitation and inhibition: changes in plant nitrogen and secondary metabolites mediate interactions between above-ground and below-ground herbivores.

    PubMed

    Huang, Wei; Siemann, Evan; Yang, Xuefang; Wheeler, Gregory S; Ding, Jianqing

    2013-09-22

    To date, it remains unclear how herbivore-induced changes in plant primary and secondary metabolites impact above-ground and below-ground herbivore interactions. Here, we report effects of above-ground (adult) and below-ground (larval) feeding by Bikasha collaris on nitrogen and secondary chemicals in shoots and roots of Triadica sebifera to explain reciprocal above-ground and below-ground insect interactions. Plants increased root tannins with below-ground herbivory, but above-ground herbivory prevented this increase and larval survival doubled. Above-ground herbivory elevated root nitrogen, probably contributing to increased larval survival. However, plants increased foliar tannins with above-ground herbivory and below-ground herbivory amplified this increase, and adult survival decreased. As either foliar or root tannins increased, foliar flavonoids decreased, suggesting a trade-off between these chemicals. Together, these results show that plant chemicals mediate contrasting effects of conspecific larval and adult insects, whereas insects may take advantage of plant responses to facilitate their offspring performance, which may influence population dynamics. PMID:23902902

  5. Transcriptional responses underlying the hormetic and detrimental effects of the plant secondary metabolite gossypol on the generalist herbivore Helicoverpa armigera

    PubMed Central

    2011-01-01

    Background Hormesis is a biphasic biological response characterized by the stimulatory effect at relatively low amounts of chemical compounds which are otherwise detrimental at higher concentrations. A hormetic response in larval growth rates has been observed in cotton-feeding insects in response to increasing concentrations of gossypol, a toxic metabolite found in the pigment glands of some plants in the family Malvaceae. We investigated the developmental effect of gossypol in the cotton bollworm, Helicoverpa armigera, an important heliothine pest species, by exposing larvae to different doses of this metabolite in their diet. In addition, we sought to determine the underlying transcriptional responses to different gossypol doses. Results Larval weight gain, pupal weight and larval development time were measured in feeding experiments and a hormetic response was seen for the first two characters. On the basis of net larval weight gain responses to gossypol, three concentrations (0%, 0.016% and 0.16%) were selected for transcript profiling in the gut and the rest of the body in a two-color double reference design microarray experiment. Hormesis could be observed at the transcript level, since at the low gossypol dose, genes involved in energy acquisition such as β-fructofuranosidases were up-regulated in the gut, and genes involved in cell adhesion were down-regulated in the body. Genes with products predicted to be integral to the membrane or associated with the proteasome core complex were significantly affected by the detrimental dose treatment in the body. Oxidoreductase activity-related genes were observed to be significantly altered in both tissues at the highest gossypol dose. Conclusions This study represents the first transcriptional profiling approach investigating the effects of different concentrations of gossypol in a lepidopteran species. H. armigera's transcriptional response to gossypol feeding is tissue- and dose-dependent and involves diverse

  6. Genomics of Secondary Metabolite Production by Pseudomonas fluorescens Pf-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas spp. are prolific producers of secondary metabolites, and the availability of genomic sequences now opens the door for discovery of novel natural products with potential roles in the ecology and plant growth promoting properties of these bacteria. The rhizosphere bacterium Pseudomonas f...

  7. Secondary metabolites in floral nectar reduce parasite infections in bumblebees

    PubMed Central

    Richardson, Leif L.; Adler, Lynn S.; Leonard, Anne S.; Andicoechea, Jonathan; Regan, Karly H.; Anthony, Winston E.; Manson, Jessamyn S.; Irwin, Rebecca E.

    2015-01-01

    The synthesis of secondary metabolites is a hallmark of plant defence against herbivores. These compounds may be detrimental to consumers, but can also protect herbivores against parasites. Floral nectar commonly contains secondary metabolites, but little is known about the impacts of nectar chemistry on pollinators, including bees. We hypothesized that nectar secondary metabolites could reduce bee parasite infection. We inoculated individual bumblebees with Crithidia bombi, an intestinal parasite, and tested effects of eight naturally occurring nectar chemicals on parasite population growth. Secondary metabolites strongly reduced parasite load, with significant effects of alkaloids, terpenoids and iridoid glycosides ranging from 61 to 81%. Using microcolonies, we also investigated costs and benefits of consuming anabasine, the compound with the strongest effect on parasites, in infected and uninfected bees. Anabasine increased time to egg laying, and Crithidia reduced bee survival. However, anabasine consumption did not mitigate the negative effects of Crithidia, and Crithidia infection did not alter anabasine consumption. Our novel results highlight that although secondary metabolites may not rescue survival in infected bees, they may play a vital role in mediating Crithidia transmission within and between colonies by reducing Crithidia infection intensities. PMID:25694627

  8. Secondary metabolites in floral nectar reduce parasite infections in bumblebees.

    PubMed

    Richardson, Leif L; Adler, Lynn S; Leonard, Anne S; Andicoechea, Jonathan; Regan, Karly H; Anthony, Winston E; Manson, Jessamyn S; Irwin, Rebecca E

    2015-03-22

    The synthesis of secondary metabolites is a hallmark of plant defence against herbivores. These compounds may be detrimental to consumers, but can also protect herbivores against parasites. Floral nectar commonly contains secondary metabolites, but little is known about the impacts of nectar chemistry on pollinators, including bees. We hypothesized that nectar secondary metabolites could reduce bee parasite infection. We inoculated individual bumblebees with Crithidia bombi, an intestinal parasite, and tested effects of eight naturally occurring nectar chemicals on parasite population growth. Secondary metabolites strongly reduced parasite load, with significant effects of alkaloids, terpenoids and iridoid glycosides ranging from 61 to 81%. Using microcolonies, we also investigated costs and benefits of consuming anabasine, the compound with the strongest effect on parasites, in infected and uninfected bees. Anabasine increased time to egg laying, and Crithidia reduced bee survival. However, anabasine consumption did not mitigate the negative effects of Crithidia, and Crithidia infection did not alter anabasine consumption. Our novel results highlight that although secondary metabolites may not rescue survival in infected bees, they may play a vital role in mediating Crithidia transmission within and between colonies by reducing Crithidia infection intensities. PMID:25694627

  9. Defence strategies adopted by the medicinal plant Coleus forskohlii against supplemental ultraviolet-B radiation: Augmentation of secondary metabolites and antioxidants.

    PubMed

    Takshak, Swabha; Agrawal, S B

    2015-12-01

    Supplementary ultraviolet-B (ambient+3.6  kJ m(-2) day(-1)) induced changes on morphological, physiological, and biochemical characteristics (specifically the defence strategies: UV-B protective compounds and antioxidants) of Coleus forskohlii were investigated under field conditions at 30, 60, and 90 days after transplantation. Levels of secondary metabolites increased under s-UV-B stress; flavonoids and phenolics (primary UV-B screening agents) were recorded to be higher in leaves which are directly exposed to s-UV-B. This was also verified by enhanced activities of phenylpropanoid pathway enzymes: phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), 4-coumarate-CoA ligase (4CL), chalcone-flavanone isomerase (CHI), and dihydroflavonol reductase (DFR). Antioxidants, both enzymatic (ascorbate peroxidase, catalase, glutathione reductase, peroxidase, polyphenol oxidase, and superoxide dismutase) and non-enzymatic (ascorbic acid and α-tocopherol) also increased in the treated organs of the test plant, higher contents being recorded in roots except for ascorbic acid. On the contrary, protein and chlorophyll content (directly implicated in regulating plant growth and development) declined under s-UV-B. These alterations in plant biochemistry led the plant to compromise on its photosynthate allocation towards growth and biomass production as evidenced by a reduction in its height and biomass. The study concludes that s-UV-B is a potent stimulating factor in increasing the concentrations of defense compounds and antioxidants in C. forskohlii to optimize its performance under stress. PMID:26461242

  10. Δ9-Tetrahydrocannabinolic acid synthase: The application of a plant secondary metabolite enzyme in biocatalytic chemical synthesis.

    PubMed

    Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K

    2016-09-10

    Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from the secondary metabolism of Cannabis sativa L. catalyzes the oxidative formation of an intramolecular CC bond in cannabigerolic acid (CBGA) to synthesize Δ(9)-tetrahydrocannabinolic acid (THCA), which is the direct precursor of Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Aiming on a biotechnological production of cannabinoids, we investigated the potential of the heterologously produced plant oxidase in a cell-free system on preparative scale. THCAS was characterized in an aqueous/organic two-liquid phase setup in order to solubilize the hydrophobic substrate and to allow in situ product removal. Compared to the single phase aqueous setup the specific activity decreased by a factor of approximately 2 pointing to a substrate limitation of CBGA in the two-liquid phase system. However, the specific activity remained stable for at least 3h illustrating the benefit of the two-liquid phase setup. In a repeated-batch setup, THCAS showed only a minor loss of specific activity in the third batch pointing to a high intrinsic stability and high solvent tolerance of the enzyme. Maximal space-time-yields of 0.121gL(-1)h(-1) were reached proving the two-liquid phase concept suitable for biotechnological production of cannabinoids. PMID:27369551

  11. [Secondary Metabolites from Marine Microorganisms. I. Secondary Metabolites from Marine Actinomycetes].

    PubMed

    Orlova, T I; Bulgakova, V G; Polin, A N

    2015-01-01

    Review represents data on new active metabolites isolated from marine actinomycetes published in 2007 to 2014. Marine actinomycetes are an unlimited source of novel secondary metabolites with various biological activities. Among them there are antibiotics, anticancer compounds, inhibitors of biochemical processes. PMID:26863742

  12. Discovering the secondary metabolite potential encoded within Entomopathogenic Fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article discusses the secondary metabolite potential of the insect pathogens Metarhizium and Beauveria, including a bioinformatics analysis of secondary metabolite genes for which no products are yet identified....

  13. Effect of light intensity and wavelength on concentration of plant secondary metabolites in the leaves of Flourensia cernua

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flourensia cernua (tarbush) is a shrub that has encroached into grasslands in many areas of the northern Chihuahuan Desert and contains high levels of carbon-based secondary compounds. Concentrations of secondary compounds are affected by numerous biotic and abiotic influences, including amount and ...

  14. Endocidal Regulation of Secondary Metabolites in the Producing Organisms.

    PubMed

    Li, Shiyou; Wang, Ping; Yuan, Wei; Su, Zushang; Bullard, Steven H

    2016-01-01

    Secondary metabolites are defined as organic compounds that are not directly involved in the normal growth, development, and reproduction of an organism. They are widely believed to be responsible for interactions between the producing organism and its environment, with the producer avoiding their toxicities. In our experiments, however, none of the randomly selected 44 species representing different groups of plants and insects can avoid autotoxicity by its endogenous metabolites once made available. We coined the term endocides (endogenous biocides) to describe such metabolites that can poison or inhibit the parent via induced biosynthesis or external applications. Dosage-dependent endocides can selectively induce morphological mutations in the parent organism (e.g., shrubbiness/dwarfism, pleiocotyly, abnormal leaf morphogenesis, disturbed phyllotaxis, fasciated stems, and variegation in plants), inhibit its growth, development, and reproduction and cause death than non-closely related species. The propagule, as well as the organism itself contains or produces adequate endocides to kill itself. PMID:27389069

  15. Endocidal Regulation of Secondary Metabolites in the Producing Organisms

    PubMed Central

    Li, Shiyou; Wang, Ping; Yuan, Wei; Su, Zushang; Bullard, Steven H.

    2016-01-01

    Secondary metabolites are defined as organic compounds that are not directly involved in the normal growth, development, and reproduction of an organism. They are widely believed to be responsible for interactions between the producing organism and its environment, with the producer avoiding their toxicities. In our experiments, however, none of the randomly selected 44 species representing different groups of plants and insects can avoid autotoxicity by its endogenous metabolites once made available. We coined the term endocides (endogenous biocides) to describe such metabolites that can poison or inhibit the parent via induced biosynthesis or external applications. Dosage-dependent endocides can selectively induce morphological mutations in the parent organism (e.g., shrubbiness/dwarfism, pleiocotyly, abnormal leaf morphogenesis, disturbed phyllotaxis, fasciated stems, and variegation in plants), inhibit its growth, development, and reproduction and cause death than non-closely related species. The propagule, as well as the organism itself contains or produces adequate endocides to kill itself. PMID:27389069

  16. RNA-seq analysis for secondary metabolite pathway gene discovery in Polygonum minus.

    PubMed

    Loke, Kok-Keong; Rahnamaie-Tajadod, Reyhaneh; Yeoh, Chean-Chean; Goh, Hoe-Han; Mohamed-Hussein, Zeti-Azura; Mohd Noor, Normah; Zainal, Zamri; Ismail, Ismanizan

    2016-03-01

    Polygonum minus plant is rich in secondary metabolites, especially terpenoids and flavonoids. Present study generates transcriptome resource for P. minus to decipher its secondary metabolite biosynthesis pathways. Raw reads and the transcriptome assembly project have been deposited at GenBank under the accessions SRX313492 (root) and SRX669305 (leaf) respectively. PMID:26981350

  17. The Study of Naphthoquinones and Their Complexes with DNA by Using Raman Spectroscopy and Surface Enhanced Raman Spectroscopy: New Insight into Interactions of DNA with Plant Secondary Metabolites

    PubMed Central

    Vrana, Oldrich; Adam, Vojtech

    2014-01-01

    Naphthoquinones represent the group of plant secondary metabolites with cytotoxic properties based on their ability to generate reactive oxygen species and interfere with the processes of cell respiration. Due to this fact, the possible cytotoxic mechanisms on cellular and subcellular levels are investigated intensively. There are many targets of cytotoxic action on the cellular level; however, DNA is a critical target of many cytotoxic compounds. Due to the cytotoxic properties of naphthoquinones, it is necessary to study the processes of naphthoquinones, DNA interactions (1,4-naphthoquinone, binapthoquinone, juglone, lawsone, plumbagin), especially by using modern analytical techniques. In our work, the Raman spectroscopy was used to determine the possible binding sites of the naphthoquinones on the DNA and to characterize the bond of naphthoquinone to DNA. Experimental data reveals the relationships between the perturbations of structure-sensitive Raman bands and the types of the naphthoquinones involved. The modification of DNA by the studied naphthoquinones leads to the nonspecific interaction, which causes the transition of B-DNA into A-DNA conformation. The change of the B-conformation of DNA for all measured DNA modified by naphthoquinones except plumbagin is obvious. PMID:25045679

  18. Ability of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) to detoxify juglone, the main secondary metabolite of the non-host plant walnut.

    PubMed

    Piskorski, Rafal; Ineichen, Simon; Dorn, Silvia

    2011-10-01

    Many plant species produce toxic secondary metabolites that limit attacks by herbivorous insects, and may thereby constrain insect expansion to new hosts. Walnut is a host for the codling moth Cydia pomonella, which efficiently detoxifies the main walnut defensive compound juglone (5-hydroxy-1,4-naphthoquinone). The oriental fruit moth Grapholita molesta, which also belongs to the tribe Grapholitini, does not feed on walnut. We tested the performance of G. molesta, a highly invasive species, on artificial diets containing juglone at levels mimicking those found in walnut over the growing season. Juglone-fed G. molesta survived relatively well to adulthood, but larval and adult body weights were reduced, and larval developmental time was prolonged in a dose-dependent fashion. Chemical analysis of frass from larvae that had been fed a juglone-containing diet suggests that G. molesta reduces juglone to non-toxic 1,4,5-trihydroxynaphthalene in its gut. This unexpected tolerance of G. molesta to high levels of juglone may facilitate expansion of the host range beyond the current rosacean fruit trees used by this invasive pest. PMID:21901444

  19. Isolation of high quality RNA from pistachio (Pistacia vera L.) and other woody plants high in secondary metabolites.

    PubMed

    Moazzam Jazi, Maryam; Rajaei, Saideh; Seyedi, Seyed Mahdi

    2015-10-01

    The quality and quantity of RNA are critical for successful downstream transcriptome-based studies such as microarrays and RNA sequencing (RNA-Seq). RNA isolation from woody plants, such as Pistacia vera, with very high amounts of polyphenols and polysaccharides is an enormous challenge. Here, we describe a highly efficient protocol that overcomes the limitations posed by poor quality and low yield of isolated RNA from pistachio and various recalcitrant woody plants. The key factors that resulted in a yield of 150 μg of high quality RNA per 200 mg of plant tissue include the elimination of phenol from the extraction buffer, raising the concentration of β-mercaptoethanol, long time incubation at 65 °C, and nucleic acid precipitation with optimized volume of NaCl and isopropyl alcohol. Also, the A260/A280 and A260/A230 of extracted RNA were about 1.9-2.1and 2.2-2.3, respectively, revealing the high purity. Since the isolated RNA passed highly stringent quality control standards for sensitive reactions, including RNA sequencing and real-time PCR, it can be considered as a reliable and cost-effective method for RNA extraction from woody plants. PMID:26600686

  20. Metabolite Damage and Metabolite Damage Control in Plants.

    PubMed

    Hanson, Andrew D; Henry, Christopher S; Fiehn, Oliver; de Crécy-Lagard, Valérie

    2016-04-29

    It is increasingly clear that (a) many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, (b) the damaged metabolites formed by these reactions can be harmful, and (c) organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms. PMID:26667673

  1. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review

    SciTech Connect

    Wiegand, C. . E-mail: cwiegand@igb-berlin.de; Pflugmacher, S. . E-mail: pflugmacher@igb-berlin.de

    2005-03-15

    Cyanobacteria are one of the most diverse groups of gram-negative photosynthetic prokaryotes. Many of them are able to produce a wide range of toxic secondary metabolites. These cyanobacterial toxins can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). Cyanobacterial blooms are hazardous due to this production of secondary metabolites and endotoxins, which could be toxic to animals and plants. Many of the freshwater cyanobacterial blooms include species of the toxigenic genera Microcystis, Anabaena, or Plankthotrix. These compounds differ in mechanisms of uptake, affected organs, and molecular mode of action. In this review, the main focus is the aquatic environment and the effects of these toxins to the organisms living there. Some basic toxic mechanisms will be discussed in comparison to the mammalian system.

  2. Pea aphid Acyrthosiphon pisum sequesters plant-derived secondary metabolite L-DOPA for wound healing and UVA resistance

    PubMed Central

    Zhang, Yi; Wang, Xing-Xing; Zhang, Zhan-Feng; Chen, Nan; Zhu, Jing-Yun; Tian, Hong-Gang; Fan, Yong-Liang; Liu, Tong-Xian

    2016-01-01

    Herbivores can ingest and store plant-synthesized toxic compounds in their bodies, and sequester those compounds for their own benefits. The broad bean, Vicia faba L., contains a high quantity of L-DOPA (L-3,4-dihydroxyphenylalanine), which is toxic to many insects. However, the pea aphid, Acyrthosiphon pisum, can feed on V. faba normally, whereas many other aphid species could not. In this study, we investigated how A. pisum utilizes plant-derived L-DOPA for their own benefit. L-DOPA concentrations in V. faba and A. pisum were analyzed to prove L-DOPA sequestration. L-DOPA toxicity was bioassayed using an artificial diet containing high concentrations of L-DOPA. We found that A. pisum could effectively adapt and store L-DOPA, transmit it from one generation to the next. We also found that L-DOPA sequestration verity differed in different morphs of A. pisum. After analyzing the melanization efficiency in wounds, mortality and deformity of the aphids at different concentrations of L-DOPA under ultraviolet radiation (UVA 365.0 nm for 30 min), we found that A. pisum could enhance L-DOPA assimilation for wound healing and UVA-radiation protection. Therefore, we conclude that A. pisum could acquire L-DOPA and use it to prevent UVA damage. This study reveals a successful co-evolution between A. pisum and V. faba. PMID:27006098

  3. Pea aphid Acyrthosiphon pisum sequesters plant-derived secondary metabolite L-DOPA for wound healing and UVA resistance.

    PubMed

    Zhang, Yi; Wang, Xing-Xing; Zhang, Zhan-Feng; Chen, Nan; Zhu, Jing-Yun; Tian, Hong-Gang; Fan, Yong-Liang; Liu, Tong-Xian

    2016-01-01

    Herbivores can ingest and store plant-synthesized toxic compounds in their bodies, and sequester those compounds for their own benefits. The broad bean, Vicia faba L., contains a high quantity of L-DOPA (L-3,4-dihydroxyphenylalanine), which is toxic to many insects. However, the pea aphid, Acyrthosiphon pisum, can feed on V. faba normally, whereas many other aphid species could not. In this study, we investigated how A. pisum utilizes plant-derived L-DOPA for their own benefit. L-DOPA concentrations in V. faba and A. pisum were analyzed to prove L-DOPA sequestration. L-DOPA toxicity was bioassayed using an artificial diet containing high concentrations of L-DOPA. We found that A. pisum could effectively adapt and store L-DOPA, transmit it from one generation to the next. We also found that L-DOPA sequestration verity differed in different morphs of A. pisum. After analyzing the melanization efficiency in wounds, mortality and deformity of the aphids at different concentrations of L-DOPA under ultraviolet radiation (UVA 365.0 nm for 30 min), we found that A. pisum could enhance L-DOPA assimilation for wound healing and UVA-radiation protection. Therefore, we conclude that A. pisum could acquire L-DOPA and use it to prevent UVA damage. This study reveals a successful co-evolution between A. pisum and V. faba. PMID:27006098

  4. Magnetic nanosystem for cancer therapy using oncocalyxone a, an antitomour secondary metabolite isolated from a Brazilian plant.

    PubMed

    Barreto, Antônio C H; Santiago, Vivian R; Freire, Rafael M; Mazzetto, Selma E; Denardin, Juliano C; Mele, Giuseppe; Cavalcante, Igor M; Ribeiro, Maria E N P; Ricardo, Nágila M P S; Gonçalves, Tamara; Carbone, Luigi; Lemos, Telma L G; Pessoa, Otília D L; Fechine, Pierre B A

    2013-01-01

    This paper describes the investigation and development of a novel magnetic drug delivery nanosystem (labeled as MO-20) for cancer therapy. The drug employed was oncocalyxone A (onco A), which was isolated from Auxemma oncocalyx, an endemic Brazilian plant. It has a series of pharmacological properties: antioxidant, cytotoxic, analgesic, anti-inflammatory, antitumor and antiplatelet. Onco A was associated with magnetite nanoparticles in order to obtain magnetic properties. The components of MO-20 were characterized by XRD, FTIR, TGA, TEM and Magnetization curves. The MO-20 presented a size of about 30 nm and globular morphology. In addition, drug releasing experiments were performed, where it was observed the presence of the anomalous transport. The results found in this work showed the potential of onco A for future applications of the MO-20 as a new magnetic drug release nanosystem for cancer treatment. PMID:24013376

  5. Magnetic Nanosystem for Cancer Therapy Using Oncocalyxone A, an Antitomour Secondary Metabolite Isolated from a Brazilian Plant

    PubMed Central

    Barreto, Antônio C. H.; Santiago, Vivian R.; Freire, Rafael M.; Mazzetto, Selma E.; Denardin, Juliano C.; Mele, Giuseppe; Cavalcante, Igor M.; Ribeiro, Maria E. N. P.; Ricardo, Nágila M. P. S.; Gonçalves, Tamara; Carbone, Luigi; Lemos, Telma L. G.; Pessoa, Otília D. L.; Fechine, Pierre B. A.

    2013-01-01

    This paper describes the investigation and development of a novel magnetic drug delivery nanosystem (labeled as MO-20) for cancer therapy. The drug employed was oncocalyxone A (onco A), which was isolated from Auxemma oncocalyx, an endemic Brazilian plant. It has a series of pharmacological properties: antioxidant, cytotoxic, analgesic, anti-inflammatory, antitumor and antiplatelet. Onco A was associated with magnetite nanoparticles in order to obtain magnetic properties. The components of MO-20 were characterized by XRD, FTIR, TGA, TEM and Magnetization curves. The MO-20 presented a size of about 30 nm and globular morphology. In addition, drug releasing experiments were performed, where it was observed the presence of the anomalous transport. The results found in this work showed the potential of onco A for future applications of the MO-20 as a new magnetic drug release nanosystem for cancer treatment. PMID:24013376

  6. Fusarial toxins: secondary metabolites of Fusarium fungi.

    PubMed

    Nesic, Ksenija; Ivanovic, Snezana; Nesic, Vladimir

    2014-01-01

    Exposure to mycotoxins occurs worldwide, even though there are geographic and climatic differences in the amounts produced and occurrence of these substances.Mycotoxins are secondary chemical metabolites of different fungi. They are natural contaminants of cereals, so their presence is often inevitable. Among many genera that produce mycotoxins, Fusarium fungi are the most widespread in cereal-growing areas of the planet. Fusarium fungi produce a diversity of mycotoxin types, whose distributions are also diverse. What is produced and where it is produced is influenced primarily by environmental conditions, and crop production and storage methods. The amount of toxin produced depends on physical (viz., moisture, relative humidity, temperature, and mechanical damage), chemical (viz., carbon dioxide,oxygen, composition of substrate, insecticides and fungicides), and biological factors (viz., plant variety, stress, insects, spore load, etc.). Moisture and temperature have a major influence on mold growth rate and mycotoxin production.Among the most toxic and prevalent fusaria) toxins are the following: zearalenone,fumonisins, moniliformin and trichothecenes (T-2/HT-2 toxin, deoxynivalenol,diacetoxyscirpenol, nivalenol). Zearalenone (ZEA; ZON, F-2 toxin) isaphy to estrogenic compound, primarily a field contaminant, which exhibits estrogenic activity and has been implicated in numerous mycotoxicoses of farm animals,especially pigs. Recently, evidence suggests that ZEA has potential to stimulate the growth of human breast cancer cells. Fumonisins are also cancer-promoting metabolites,of which Fumonisin 8 I (FBI) is the most important. Moniliformin (MON) isalso highly toxic to both animals and humans. Trichothecenes are classified as gastrointestinal toxins, dermatotoxins, immunotoxins, hematotoxins, and gene toxins.T-2 and HT-2 toxin, and diacetoxyscirpenol (DAS, anguidine) are the most toxic mycotoxins among the trichothecene group. Deoxynivalenol (DON, vomitoxin) and

  7. [Basidiomycetes: A new source of secondary metabolites.].

    PubMed

    Brizuela, M A; García, L; Pérez, L; Mansur, M

    1998-06-01

    The area of natural products research is the most rapidly growing field of organic chemistry, due to the great technical developments in the isolation and identification techniques. Today, near to one million natural products -isolated from the most diverse living things- are known. Microorganisms are among the least-studied of these. Nevertheless, they offer large possibilities for the discovery of new structures and biological activities. Among the microorganisms, the Basidiomycetes present a production capacity and a range of biologically active metabolites, which have scarcely been investigated. The wide spectrum of natural products with biological activity produced by Basidiomycetes includes antimicrobial agents, antifungal, antiviral and cytotoxic activities, enzymes, plant growth regulators and flavors. These metabolites are generally grouped by their chemical origin, and the relationship between chemical structure and the different biological activities reported. The main objective of this review is to bring an updated revision of the numerous and interesting biosynthetic pathways from basidiomycetes. PMID:17655412

  8. Heterogeneous distribution of metabolites across plant species

    NASA Astrophysics Data System (ADS)

    Takemoto, Kazuhiro; Arita, Masanori

    2009-07-01

    We investigate the distribution of flavonoids, a major category of plant secondary metabolites, across species. Flavonoids are known to show high species specificity, and were once considered as chemical markers for understanding adaptive evolution and characterization of living organisms. We investigate the distribution among species using bipartite networks, and find that two heterogeneous distributions are conserved among several families: the power-law distributions of the number of flavonoids in a species and the number of shared species of a particular flavonoid. In order to explain the possible origin of the heterogeneity, we propose a simple model with, essentially, a single parameter. As a result, we show that two respective power-law statistics emerge from simple evolutionary mechanisms based on a multiplicative process. These findings provide insights into the evolution of metabolite diversity and characterization of living organisms that defy genome sequence analysis for different reasons.

  9. In Vivo and Real-time Monitoring of Secondary Metabolites of Living Organisms by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Wang, Lei; Ye, Wen-Cai; Yao, Zhong-Ping

    2013-07-01

    Secondary metabolites are compounds that are important for the survival and propagation of animals and plants. Our current understanding on the roles and secretion mechanism of secondary metabolites is limited by the existing techniques that typically cannot provide transient and dynamic information about the metabolic processes. In this manuscript, by detecting venoms secreted by living scorpion and toad upon attack and variation of alkaloids in living Catharanthus roseus upon stimulation, which represent three different sampling methods for living organisms, we demonstrated that in vivo and real-time monitoring of secondary metabolites released from living animals and plants could be readily achieved by using field-induced direct ionization mass spectrometry.

  10. Resolving the mechanism of bacterial inhibition by plant secondary metabolites employing a combination of whole-cell biosensors.

    PubMed

    Chan, Andrea C; Ager, Duane; Thompson, Ian P

    2013-06-01

    Tightening regulations regarding the use of biocides have stimulated interest in investigating alternatives to current antimicrobial strategies. Plant essential oils and their constituent compounds are promising candidates as novel antimicrobial agents because of their excellent ability in killing microbes while being non-toxic to humans at antimicrobially-active concentrations. Allyl isothiocyanate (AIT), carvacrol, cinnamaldehyde (CNAD), citral, and thymol were investigated for their antibacterial activity against Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The five compounds were screened via disc diffusion assay and broth microdilution method, by which inhibition zone diameters, minimum inhibitory concentrations (MICs), and minimum bactericidal concentrations (MBCs) were determined. AIT and CNAD displayed the greatest inhibitory effects against all species tested, with AIT yielding MICs of 156.25mg/L and MBCs of 156.25 to 312.5mg/L, and CNAD yielding MICs of 78.125 to 156.25mg/L and MBCs of 78.125 to 312.5mg/L. Based on these results, AIT and CNAD were selected for closer examination of their toxic effects. Two complementary bioluminescence-based bacterial biosensors, E. coli HB101_pUCD607_lux and Acinetobacter baylyi ADP1_recA_lux, were employed to examine the dose-response relationships and mechanism of action of AIT and CNAD. This is the first reported study to employ a lux-based biosensor assay coupled with parallel plate count experiments to demonstrate that AIT and CNAD not only damaged cell membranes, but also disrupted cellular metabolism and energy production in bacteria. It is also the first to use genotoxicity-sensing whole-cell bioreporters to demonstrate that neither AIT nor CNAD induced expression of the universal DNA repair gene, recA. This suggests that AIT and CNAD were not genotoxic. As an antimicrobial agent, it is advantageous that the compound be genetically non-damaging so that toxicity towards

  11. Regulation of 3β-hydroxysteroid dehydrogenase and sulphotransferase 2A1 gene expression in primary porcine hepatocytes by selected sex-steroids and plant secondary metabolites from chicory (Cichorium intybus L.) and wormwood (Artemisia sp.).

    PubMed

    Rasmussen, Martin Krøyer; Ekstrand, Bo

    2014-02-15

    In pigs the endogenously produced compound androstenone is metabolised in the liver in two steps by 3β-hydroxysteroid dehydrogenase (3β-HSD) and sulphotransferase 2A1 (SULT2A1). The present study investigated the effect of selected sex-steroids (0.01-1 μM androstenone, testosterone and estradiol), skatole (1-100 μM) and secondary plant metabolites (1-100 μM) on the expression of 3β-HSD and SULT2A1 mRNA. Additionally the effect of a global methanolic extract of dried chicory root was investigated and compared to previous obtained in vivo effects. Primary hepatocytes were isolated from the livers of piglets (crossbreed: Landrace×Yorkshire and Duroc) and cultured for 24h before treatment for an additionally 24h. RNA was isolated from the hepatocytes and specific gene expression determined by RT-PCR using TaqMan probes. The investigated sex-steroids had no effect on the mRNA expression of 3β-HSD and SULT2A1, while skatole decreased the content of SULT2A1 30% compared to control. Of the investigated secondary plant metabolites artemisinin and scoparone (found in Artemisia sp.) lowered the content of SULT2A1 by 20 and 30% compared to control, respectively. Moreover, we tested three secondary plant metabolites (lactucin, esculetin and esculin) found in chicory root. Lactucin increased the mRNA content of both 3β-HSD and SULT2A1 by 200% compared to control. An extract of chicory root was shown to decrease the expression of both 3β-HSD and SULT2A1. It is concluded that the gene expression of enzymes with importance for androstenone metabolism is regulated by secondary plant metabolites in a complex manner. PMID:24333270

  12. Fingerprinting of secondary metabolites of liverworts: chemosystematic approach.

    PubMed

    Ludwiczuk, Agnieszka; Asakawa, Yoshinori

    2014-01-01

    The relationship between various types of plants can be predicted based on the similarity in the chemical substances present in them. Compounds that belong to the category of secondary metabolites are of great value in identifying such relationships. Additionally, results from the chemical investigations, together with the other biological or genetic information, can help to understand real relationships among the taxa. Liverworts are small spore-forming plants with simple morphological organization. On the other hand, many liverwort species demonstrate wide geographical distribution and grow under diverse ecological conditions. Because of this, the identification of these plants is especially challenging. One of the outstanding features of the liverworts is their chemistry. They produce a wide array of secondary metabolites, mainly terpenoids and aromatic compounds. Many of these compounds are characterized by unique structures, and some have not been found in any other plants, fungi, or marine organisms. The potential use of chromatographic fingerprinting of the liverworts, as complementary to morphological and genetic information, to resolve the taxonomic problems at the species, genus, and family levels are discussed. PMID:25902971

  13. Genomics-guided discovery of secondary metabolites and their regulation in Pseudomonas protegens Pf-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas protegens strain Pf-5 is a well-characterized rhizosphere bacterium known for its production of a diverse spectrum of secondary metabolites and its capacity to suppress plant diseases caused by soilborne fungal, bacterial and oomycete pathogens. Metabolites produced by Pf-5 include 2,4-...

  14. The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii

    PubMed Central

    Das, Aparajita; Kamal, Shwet; Shakil, Najam Akhtar; Sherameti, Irena; Oelmüller, Ralf; Dua, Meenakshi; Tuteja, Narendra; Johri, Atul Kumar; Varma, Ajit

    2012-01-01

    This study was undertaken to investigate the influence of plant probiotic fungus Piriformospora indica on the medicinal plant C. forskohlii. Interaction of the C. forskohlii with the root endophyte P. indica under field conditions, results in an overall increase in aerial biomass, chlorophyll contents and phosphorus acquisition. The fungus also promoted inflorescence development, consequently the amount of p-cymene in the inflorescence increased. Growth of the root thickness was reduced in P. indica treated plants as they became fibrous, but developed more lateral roots. Because of the smaller root biomass, the content of forskolin was decreased. The symbiotic interaction of C. forskohlii with P. indica under field conditions promoted biomass production of the aerial parts of the plant including flower development. The plant aerial parts are important source of metabolites for medicinal application. Therefore we suggest that the use of the root endophyte fungus P. indica in sustainable agriculture will enhance the medicinally important chemical production. PMID:22301976

  15. Secondary Metabolites of Hypericum leptophyllum Hochst., an Endemic Turkish Species

    PubMed Central

    Camas, Necdet; Radusiene, Jolita; Stanius, Zydrunas; Caliskan, Omer; Cirak, Cuneyt

    2012-01-01

    In the present study, the presence of the phloroglucinol derivative hyperforin, the naphthodianthrones hypericin and pseudohypericin, the phenylpropane chlorogenic acid and the flavonoids rutin, hyperoside, kaempferol, isoquercetine, quercitrine, and quercetine was investigated in Hypericum leptophyllum Hochst., an endemic Turkish species for the first time. The aerial parts representing a total of 30 individuals were collected at full flowering and dissected into floral, leaf, and stem tissues. After being dried at room temperature, the plant materials were assayed for secondary metabolite concentrations by HPLC. Aerial plant parts accumulated chlorogenic acid, hyperoside, isoquercetine, quercitrine, and quercetine, but they did not accumulate hyperforin, hypericin, pseudohypericin, rutin, and kaempferol. Accumulation levels of the detected compounds varied with plant tissues. Such kind of data could be useful for elucidation of the chemotaxonomical significance of the corresponding compounds and phytochemical evaluation of this endemic species. PMID:22649295

  16. Secondary metabolites of Hypericum leptophyllum Hochst., an endemic Turkish species.

    PubMed

    Camas, Necdet; Radusiene, Jolita; Stanius, Zydrunas; Caliskan, Omer; Cirak, Cuneyt

    2012-01-01

    In the present study, the presence of the phloroglucinol derivative hyperforin, the naphthodianthrones hypericin and pseudohypericin, the phenylpropane chlorogenic acid and the flavonoids rutin, hyperoside, kaempferol, isoquercetine, quercitrine, and quercetine was investigated in Hypericum leptophyllum Hochst., an endemic Turkish species for the first time. The aerial parts representing a total of 30 individuals were collected at full flowering and dissected into floral, leaf, and stem tissues. After being dried at room temperature, the plant materials were assayed for secondary metabolite concentrations by HPLC. Aerial plant parts accumulated chlorogenic acid, hyperoside, isoquercetine, quercitrine, and quercetine, but they did not accumulate hyperforin, hypericin, pseudohypericin, rutin, and kaempferol. Accumulation levels of the detected compounds varied with plant tissues. Such kind of data could be useful for elucidation of the chemotaxonomical significance of the corresponding compounds and phytochemical evaluation of this endemic species. PMID:22649295

  17. Synergism of three-drug combinations of sanguinarine and other plant secondary metabolites with digitonin and doxorubicin in multi-drug resistant cancer cells.

    PubMed

    Eid, Safaa Yehia; El-Readi, Mahmoud Zaki; Wink, Michael

    2012-11-15

    We determined the ability of some phytochemicals, including alkaloids (glaucine, harmine, and sanguinarine), phenolics (EGCG and thymol), and terpenoids (menthol, aromadendrene, β-sitosterol-O-glucoside, and β-carotene), alone or in combination with the saponin digitonin to reverse the relative multi-drug resistance of Caco-2 and CEM/ADR5000 cells to the chemotherapeutical agent doxorubicin. The IC(50) of doxorubicin in Caco-2 and CEM/ADR5000 was 4.22 and 44.08μM, respectively. Combination of non-toxic concentrations of individual secondary metabolite with doxorubicin synergistically sensitized Caco-2 and CEM/ADR5000 cells, and significantly enhanced the cytotoxicity of doxorubicin. Furthermore, three-drug combinations (secondary metabolite+digitonin+doxorubicin) were even more powerful. The best synergist was the benzophenanthridine alkaloid sanguinarine. It reduced the IC(50) value of doxorubicin 17.58-fold in two-drug combinations (sanguinarine+doxorubicin) and even 35.17-fold in three-drug combinations (sanguinarine+digitonin+doxorubicin) in Caco-2 cells. Thus synergistic drug combinations offer the possibility to enhance doxorubicin efficacy in chemotherapy. PMID:23146422

  18. Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction

    NASA Astrophysics Data System (ADS)

    Zhong, Jian-Jiang; Xiao, Jian-Hui

    Medicinal higher fungi such as Cordyceps sinensis and Ganoderma lucidum have been used as an alternative medicine remedy to promote health and longevity for people in China and other regions of the world since ancient times. Nowadays there is an increasing public interest in the secondary metabolites of those higher fungi for discovering new drugs or lead compounds. Current research in drug discovery from medicinal higher fungi involves a multifaceted approach combining mycological, biochemical, pharmacological, metabolic, biosynthetic and molecular techniques. In recent years, many new secondary metabolites from higher fungi have been isolated and are more likely to provide lead compounds for new drug discovery, which may include chemopreventive agents possessing the bioactivity of immunomodulatory, anticancer, etc. However, numerous challenges of secondary metabolites from higher fungi are encountered including bioseparation, identification, biosynthetic metabolism, and screening model issues, etc. Commercial production of secondary metabolites from medicinal mushrooms is still limited mainly due to less information about secondary metabolism and its regulation. Strategies for enhancing secondary metabolite production by medicinal mushroom fermentation include two-stage cultivation combining liquid fermentation and static culture, two-stage dissolved oxygen control, etc. Purification of bioactive secondary metabolites, such as ganoderic acids from G. lucidum, is also very important to pharmacological study and future pharmaceutical application. This review outlines typical examples of the discovery, bioactivity, and bioproduction of secondary metabolites of higher fungi origin.

  19. Jasmonate-responsive transcription factors regulating plant secondary metabolism.

    PubMed

    Zhou, Meiliang; Memelink, Johan

    2016-01-01

    Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies. PMID:26876016

  20. Evolution of a Secondary Metabolite Biosynthetic Gene Cluster in Fusarium by Gene Relocation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecenes are secondary metabolites produced by multiple genera of fungi, including some plant pathogenic species of Fusarium. Trichothecenes contribute to virulence of Fusarium on some plants and are considered to be mycotoxins because of their human and animal toxicity. Previous analyses of...

  1. NeeMDB: Convenient Database for Neem Secondary Metabolites

    PubMed Central

    Hatti, Kaushik S; Muralitharan, Lakshmi; Hegde, Rajendra; Kush, Anil

    2014-01-01

    Indian Neem tree is known for its pesticidal and medicinal properties for centuries. Structure elucidation of large number of secondary metabolites responsible for its diverse properties has been achieved. However, this data is spread over various books, scientific reports and publications and difficult to access. We have compiled and stored structural details of neem metabolites in NeeMDB, a database which can be easily accessed, queried and downloaded. NeeMDB would be central in dissipating structural information of neem secondary metabolites world over. PMID:24966540

  2. Plant chemical defenses: are all constitutive antimicrobial metabolites phytoanticipins?

    PubMed

    Pedras, M Soledade C; Yaya, Estifanos E

    2015-01-01

    A critical perspective on phytoanticipins, constitutive plant secondary metabolites with defensive roles against microbes is presented. This mini-review focuses on the chemical groups and structural types of defensive plant metabolites thus far not reviewed from the phytoanticipin perspective: i) fatty acid derivatives and polyketides, ii) terpenoids, iii) shikimates, phenylpropanoids and derivatives, and iv) benzylisoquinoline and pyrrolizidine alkaloids. The more traditional groups of phytoanticipins are briefly summarized, with particular focus on the latest results: i) benzoxazinoids, ii) cyanogenic glycosides, iii) glucosinolates and their metabolic products, and iv) saponins. Current evidence suggests that a better understanding of the functions of plant metabolites will drive their application to protect crops against microbial diseases. PMID:25920246

  3. Characterization of secondary metabolites of an endophytic fungus from Curcuma wenyujin.

    PubMed

    Yan, Jvfen; Qi, Ningbo; Wang, Suping; Gadhave, Kiran; Yang, Shulin

    2014-11-01

    Endophytic fungi are ubiquitous in the plant kingdom and they produce a variety of secondary metabolites to protect plant communities and to show some potential for human use. However, secondary metabolites produced by endophytic fungi in the medicinal plant Curcuma wenyujin are sparsely explored and characterized. The aim of this study was to characterize the secondary metabolites of an active endophytic fungus. M7226, the mutant counterpart of endophytic fungus EZG0807 previously isolated from the root of C. wenyujin, was as a target strain. After fermentation, the secondary metabolites were purified using a series of purification methods including thin layer chromatography, column chromatography with silica, ODS-C18, Sephadex LH-20, and macroporous resin, and were analyzed using multiple pieces of data (UV, IR, MS, and NMR). Five compounds were isolated and identified as curcumin, cinnamic acid, 1,4-dihydroxyanthraquinone, gibberellic acid, and kaempferol. Interestingly, curcumin, one of the main active ingredients of C. wenyujin, was isolated as a secondary metabolite from a fungal endophyte for the first time. PMID:25002358

  4. Comparative histochemical localization of secondary metabolites in seed-raised and in vitro propagated plants of Excoecaria agallocha Linn. (Euphorbiaceae), the milky mangrove tree of historical significance.

    PubMed

    Satyan, R S; Aveek, N; Eganathan, P; Parida, A

    2010-10-01

    Mangroves synthesize novel secondary chemicals that are poorly understood. Among the euphorbiaceous mangrove species, Excoecaria agallocha Linn. produces novel terpenoids and alkaloids of medicinal importance. We conducted a comparative tissue level histochemical study of E. agallocha L. to determine whether in vitro propagation alters the content of phytochemicals within the plant parts. Transverse sections of the root, stem and leaves of seed-raised saplings and in vitro propagated plants stained with 10% vanillin-perchloric acid revealed accumulation of terpenoids in the cork cambium. Alkaloids were localized using Dragendorf's reagent in the cortex of the root sections as brown layers. Methylene blue staining revealed that seed-raised plants possessed more lignified cells, distinct latex ducts and ellipsoidal guard cells compared to the plants propagated in vitro, which revealed abnormal, circular guard cells. The phytochemical content of E. agallocha propagated by the in vitro method was comparable to the seed-raised plants. Phytochemical studies of the species of E. agallocha propagated in vitro would confirm whether the species could be used for its medicinal compounds. PMID:19701827

  5. Using Molecular Networking for Microbial Secondary Metabolite Bioprospecting

    PubMed Central

    Purves, Kevin; Macintyre, Lynsey; Brennan, Debra; Hreggviðsson, Guðmundur Ó.; Kuttner, Eva; Ásgeirsdóttir, Margrét E.; Young, Louise C.; Green, David H.; Edrada-Ebel, Ruangelie; Duncan, Katherine R.

    2016-01-01

    The oceans represent an understudied resource for the isolation of bacteria with the potential to produce novel secondary metabolites. In particular, actinomyces are well known to produce chemically diverse metabolites with a wide range of biological activities. This study characterised spore-forming bacteria from both Scottish and Antarctic sediments to assess the influence of isolation location on secondary metabolite production. Due to the selective isolation method used, all 85 isolates belonged to the phyla Firmicutes and Actinobacteria, with the majority of isolates belonging to the genera Bacillus and Streptomyces. Based on morphology, thirty-eight isolates were chosen for chemical investigation. Molecular networking based on chemical profiles (HR-MS/MS) of fermentation extracts was used to compare complex metabolite extracts. The results revealed 40% and 42% of parent ions were produced by Antarctic and Scottish isolated bacteria, respectively, and only 8% of networked metabolites were shared between these locations, implying a high degree of biogeographic influence upon secondary metabolite production. The resulting molecular network contained over 3500 parent ions with a mass range of m/z 149–2558 illustrating the wealth of metabolites produced. Furthermore, seven fermentation extracts showed bioactivity against epithelial colon adenocarcinoma cells, demonstrating the potential for the discovery of novel bioactive compounds from these understudied locations. PMID:26761036

  6. The Diversity of Anti-Microbial Secondary Metabolites Produced by Fungal Endophytes: An Interdisciplinary Perspective

    PubMed Central

    Mousa, Walaa Kamel; Raizada, Manish N.

    2013-01-01

    Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens. PMID:23543048

  7. Elevated CO2 affects secondary metabolites in Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils.

    PubMed

    Jia, Xia; Zhao, Yonghua; Liu, Tuo; Huang, Shuping

    2016-10-01

    Secondary metabolites play important roles in plant interactions with the environment. The co-occurrence of heavy metal contamination of soils and rising atmospheric CO2 has important effects on plant. It is important to explore the ways in which production of plant secondary metabolites is affected by heavy metals under elevated atmospheric CO2. We examined the effects of elevated CO2 on secondary metabolite contents in Robinia pseudoacacia seedlings grown in Cd- and lead (Pb)-contaminated soils. The increase in secondary metabolites was greater under Cd + Pb exposure than under exposure to individual metals regardless of elevated CO2 with the exception of condensed tannins in leaves and total alkaloids in stems. Except for phenolic compounds and condensed tannins, elevated CO2 was associated with increased secondary metabolite contents in leaves and stems of plants exposed to Cd, Pb, and Cd + Pb compared to plants exposed to ambient CO2 + metals. Changes in saponins in leaves and alkaloids in stems were greater than changes in the other secondary metabolites. Significant interactive effects of CO2, Cd, and Pb on secondary metabolites were observed. Saponins in leaves and alkaloids in stems were more sensitive than other secondary metabolites to elevated CO2 + Cd + Pb. Elevated CO2 could modulate plant protection and defense mechanisms in R. pseudoacacia seedlings exposed to heavy metals by altering the production of secondary metabolites. The increased Cd and Pb uptake under elevated CO2 suggested that R. pseudoacacia may be used in the phytoremediation of heavy metal-contaminated soils under global environmental scenarios. PMID:27376859

  8. Use of mass spectrometry for imaging metabolites in plants

    SciTech Connect

    Lee, Young-Jin; Perdian, David; Song, Zhihong; Yeung, Edward; Nikolau, Basil

    2012-03-27

    We discuss and illustrate recent advances that have been made to image the distribution of metabolites among cells and tissues of plants using different mass spectrometry technologies. These technologies include matrix-assisted laser desorption ionization, desorption electrospray ionization, and secondary ion mass spectrometry. These are relatively new technological applications of mass spectrometry and they are providing highly spatially resolved data concerning the cellular distribution of metabolites. We discuss the advantages and limitations of each of these mass spectrometric methods, and provide a description of the technical barriers that are currently limiting the technology to the level of single-cell resolution. However, we anticipate that advances in the next few years will increase the resolving power of the technology to provide unprecedented data on the distribution of metabolites at the subcellular level, which will increase our ability to decipher new knowledge concerning the spatial organization of metabolic processes in plants.

  9. Use of Mass spectrometry for imaging metabolites in plants

    SciTech Connect

    Lee, Young Jin; Perdian, David C.; Song, Zhihong; Yeung, Edward S.; Nikolau, Basil

    2012-03-27

    We discuss and illustrate recent advances that have been made to image the distribution of metabolites among cells and tissues of plants using different mass spectrometry technologies. These technologies include matrix-assisted laser desorption ionization, desorption electrospray ionization, and secondary ion mass spectrometry. These are relatively new technological applications of mass spectrometry and they are providing highly spatially resolved data concerning the cellular distribution of metabolites. We discuss the advantages and limitations of each of these mass spectrometric methods, and provide a description of the technical barriers that are currently limiting the technology to the level of single-cell resolution. However, we anticipate that advances in the next few years will increase the resolving power of the technology to provide unprecedented data on the distribution of metabolites at the subcellular level, which will increase our ability to decipher new knowledge concerning the spatial organization of metabolic processes in plants.

  10. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack

    PubMed Central

    Huber, Meret; Epping, Janina; Schulze Gronover, Christian; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Köllner, Tobias G.; Vogel, Heiko; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A. M.; Verhoeven, Koen; Preite, Veronica; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground. PMID:26731567

  11. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    PubMed

    Huber, Meret; Epping, Janina; Schulze Gronover, Christian; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Köllner, Tobias G; Vogel, Heiko; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A M; Verhoeven, Koen; Preite, Veronica; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground. PMID:26731567

  12. Chemical composition, plant secondary metabolites, and minerals of green and black teas and the effect of different tea-to-water ratios during their extraction on the composition of their spent leaves as potential additives for ruminants.

    PubMed

    Ramdani, Diky; Chaudhry, Abdul Shakoor; Seal, Chris J

    2013-05-22

    This study characterized the chemical composition of green and black teas as well as their spent tea leaves (STL) following boiling in water with different tea-to-water ratios. The green and black tea leaves had statistically similar (g/kg dry matter (DM), unless stated otherwise) DM (937 vs 942 g/kg sample), crude protein (240 vs 242), and ash (61.8 vs 61.4), but green tea had significantly higher (g/kg DM) total phenols (231 vs 151), total tannins (204 vs 133), condensed tannins (176 vs 101), and total saponins (276 vs 86.1) and lower neutral detergent fiber (254 vs 323) and acid detergent fiber (211 vs 309) than the black tea leaves. There was no significant difference between the green and black tea leaves for most mineral components except Mn, which was significantly higher in green tea leaves, and Na and Cu, which were significantly higher in black tea leaves. A higher tea-to-water ratio during extraction significantly reduced the loss of soluble compounds into water and hence yielded more nutrient-rich STL. On the basis of these analyses it appears that the green and black tea leaves alongside their STL have the potential for use as sources of protein, fiber, secondary metabolites, and minerals in ruminant diets. The presence of high levels of plant secondary metabolites in either tea leaves or their STL suggests that they may have potential for use as natural additives in ruminant diets. PMID:23621359

  13. Small‐molecule elicitation of microbial secondary metabolites

    PubMed Central

    Pettit, Robin K.

    2011-01-01

    Summary Microbial natural products continue to be an unparalleled resource for pharmaceutical lead discovery, but the rediscovery rate is high. Bacterial and fungal sequencing studies indicate that the biosynthetic potential of many strains is much greater than that observed by fermentation. Prodding the expression of such silent (cryptic) pathways will allow us to maximize the chemical diversity available from microorganisms. Cryptic metabolic pathways can be accessed in the laboratory using molecular or cultivation‐based approaches. A targeted approach related to cultivation‐based methods is the application of small‐molecule elicitors to specifically affect transcription of secondary metabolite gene clusters. With the isolation of the novel secondary metabolites lunalides A and B, oxylipins, cladochromes F and G, nygerone A, chaetoglobosin‐542, ‐540 and ‐510, sphaerolone, dihydrosphaerolone, mutolide and pestalone, and the enhanced production of known secondary metabolites like penicillin and bacitracin, chemical elicitation is proving to be an effective way to augment natural product libraries. PMID:21375710

  14. A genome-wide survey of the secondary metabolite biosynthesis genes in the wheat pathogen Parastagonospora nodorum

    PubMed Central

    Chooi, Yit-Heng; Muria-Gonzalez, Mariano Jordi; Solomon, Peter S.

    2014-01-01

    The model pathogen Parastagonospora nodorum is a necrotroph and the causal agent of the wheat disease Septoria nodorum blotch (SNB). The sequenced P. nodorum genome has revealed that the fungus harbours a large number of secondary metabolite genes. Secondary metabolites are known to play important roles in the virulence of plant pathogens, but limited knowledge is available about the SM repertoire of this wheat pathogen. Here, we review the secondary metabolites that have been isolated from P. nodorum and related species of the same genus and provide an in-depth genome-wide overview of the secondary metabolite gene clusters encoded in the P. nodorum genome. The secondary metabolite gene survey reveals that P. nodorum is capable of producing a diverse range of small molecules and exciting prospects exist for discovery of novel virulence factors and bioactive molecules. PMID:25379341

  15. Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila.

    PubMed

    Andersen, Birgitte; Dongo, Anita; Pryor, Barry M

    2008-02-01

    Chemotaxonomy (secondary metabolite profiling) has been shown to be of great value in the classification and differentiation in Ascomycota. However, few studies have investigated the use of metabolite production for classification and identification purposes of plant pathogenic Alternaria species. The purpose of the present study was to describe the methodology behind metabolite profiling in chemotaxonomy using A. dauci, A. porri, A. solani, and A. tomatophila strains as examples of the group. The results confirmed that A. dauci, A. solani, and A. tomatophila are three distinct species each with their own specific metabolite profiles, and that A. solani and A. tomatophila both produce altersolanol A, altertoxin I, and macrosporin. By using automated chemical image analysis and other multivariate statistic analyses, three sets of species-specific metabolites could be selected, one each for A. dauci, A. solani, and A. tomatophila. PMID:18262401

  16. Secondary metabolites as DNA topoisomerase inhibitors: A new era towards designing of anticancer drugs

    PubMed Central

    Baikar, Supriya; Malpathak, Nutan

    2010-01-01

    A large number of secondary metabolites like alkaloids, terpenoids, polyphenols and quinones are produced by the plants. These metabolites can be utilized as natural medicines for the reason that they inhibit the activity of DNA topoisomerase which are the clinical targets for anticancer drugs. DNA topoisomerases are the cellular enzymes that change the topological state of DNA through the breaking and rejoining of DNA strands. Synthetic drugs as inhibitors of topoisomerases have been developed and used in the clinical trials but severe side effects are a serious problem for them therefore, there is a need for the development of novel plant-derived natural drugs and their analogs which may serve as appropriate inhibitors with respect to drug designing. The theme for this review is how secondary metabolites or natural products inactivate the action of DNA topoisomerases and open new avenues towards isolation and characterization of compounds for the development of novel drugs with anticancer potential. PMID:22228937

  17. Secondary metabolites from Penicillium corylophilum isolated from damp buildings.

    PubMed

    McMullin, David R; Nsiama, Tienabe K; Miller, J David

    2014-01-01

    Indoor exposure to the spores and mycelial fragments of fungi that grow on damp building materials can result in increased non-atopic asthma and upper respiratory disease. The mechanism appears to involve exposure to low doses of fungal metabolites. Penicillium corylophilum is surprisingly common in damp buildings in USA, Canada and western Europe. We examined isolates of P. corylophilum geographically distributed across Canada in the first comprehensive study of secondary metabolites of this fungus. The sesquiterpene phomenone, the meroterpenoids citreohybridonol and andrastin A, koninginin A, E and G, three new alpha pyrones and four new isochromans were identified from extracts of culture filtrates. This is the first report of koninginins, meroterpenoids and alpha pyrones from P. corylophilum. These secondary metabolite data support the removal of P. corylophilum from Penicillium section Citrina and suggest that further taxonomic studies are required on this species. PMID:24891425

  18. Genomic Analysis of Secondary Metabolite Production by Pseudomonas fluorescens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas fluorescens is a diverse bacterial species known for its ubiquity in natural habitats and its production of secondary metabolites. The high degree of ecological and metabolic diversity represented in P. fluorescens is reflected in the genomic diversity displayed among strains. Certain st...

  19. What roles do fungal secondary metabolites play in interactions between Ascochyta fungi and cool season food legumes?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal plant pathogens produce many secondary metabolites including many that are toxic to plants (phytotoxins). Some of these phytotoxins are host-selective (toxic only to particular genotypes of host plants) and required for pathogenicity, while many others are non host-selective and toxic to many...

  20. Toward Awakening Cryptic Secondary Metabolite Gene Clusters in Filamentous Fungi

    PubMed Central

    Lim, Fang Yun; Sanchez, James F.; Wang, Clay C.C.; Keller, Nancy P.

    2013-01-01

    Mining for novel natural compounds is of eminent importance owing to the continuous need for new pharmaceuticals. Filamentous fungi are historically known to harbor the genetic capacity for an arsenal of natural compounds, both beneficial and detrimental to humans. The majority of these metabolites are still cryptic or silent under standard laboratory culture conditions. Mining for these cryptic natural products can be an excellent source for identifying new compound classes. Capitalizing on the current knowledge on how secondary metabolite gene clusters are regulated has allowed the research community to unlock many hidden fungal treasures, as described in this chapter. PMID:23084945

  1. Lichen secondary metabolites as DNA-interacting agents.

    PubMed

    Plsíkova, J; Stepankova, J; Kasparkova, J; Brabec, V; Backor, M; Kozurkova, M

    2014-03-01

    A series of lichen secondary metabolites (parietin, atranorin, usnic and gyrophoric acid) and their interactions with calf thymus DNA were investigated using molecular biophysics and biochemical methods. The binding constants K were estimated to range from 4.3×10(5) to 2.4×10(7)M(-1) and the percentage of hypochromism was found to be 16-34% (from spectral titration). The results of spectral measurement indicate that the compounds act as effective DNA-interacting agents. Electrophoretic separation studies prove that from all the metabolites tested in this study, only gyrophoric acid exhibited an inhibitory effect on Topo I (25μM). PMID:24269500

  2. Secondary metabolites from Scrophularia canina L.

    PubMed

    Venditti, A; Frezza, C; Riccardelli, M; Foddai, S; Nicoletti, M; Serafini, M; Bianco, A

    2016-07-01

    A re-examination of Scrophularia canina L. confirmed the presence of iridoid glucosides considered as chemotaxonomic markers for the Scrophulariaceae family, like aucubin, harpagide and 8-O-acetylharpagide, besides the further presence of 8-epiloganic acid, which is, indeed, considered the biogenetic precursor of iridoids normally found in Scrophulariaceae, and was recognised here for the first time in the studied species. Also verbascoside and (E)-phytol were evidenced for the first time in S. canina. The former compound is an almost ubiquitous glycosidic phenyl-ethanoid, which attains systematic importance when in co-occurrence with iridoids, and its taxonomical implications were discussed. The latter compound, even though it is omnipresent, is interestingly endowed with several biological activities, which may give an additional reason for the traditional uses of this plant. PMID:26675659

  3. Secondary metabolites and bioactivities of Albizia anthelmintica

    PubMed Central

    Mohamed, Tahia K.; Nassar, Mahmoud I.; Gaara, Ahmed H.; El-Kashak, Walaa A.; Brouard, Iñaki; El-Toumy, Sayed A.

    2013-01-01

    Background: Albizia species are rich in phenolics and terpenes in the different plant organs. They are widely used in traditional Chinese medicine. So this study investigated the phytochemical and biological activities of Albizia Anthelmintica. Materials and Methods: Column chromatography has been performed for the isolation of compounds. Bioactivity studies of A. anthelmintica leaves were carried out on aqueous ethanol extract and some pure compounds were tested for their antioxidant activities. Results: Eight compounds have been isolated for the first time from A. anthelmintica. The aqueous ethanol extract of A. anthelmintica showed moderate anti-inflammatory activity and significant for both analgesic and antioxidant activities. Quercetin-3-O-β-D-glucopyranoside, kaempferol-3-O-β-D-glucopyranoside, kaempferol-3-O-(6β-O-galloyl-β-D-glucopyranoside and quercetin-3-O-(6β-O-galloyl-β-D-glucopyranoside) exhibited potent antioxidant scavenging activity towards diphenyl-picrylhydrazine. PMID:23798881

  4. Growth under elevated air temperature alters secondary metabolites in Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils.

    PubMed

    Zhao, Y H; Jia, X; Wang, W K; Liu, T; Huang, S P; Yang, M Y

    2016-09-15

    Plant secondary metabolites play a pivotal role in growth regulation, antioxidant activity, pigment development, and other processes. As the global climate changes, increasing atmospheric temperatures and contamination of soil by heavy metals co-occur in natural ecosystems, which alters the pH of rhizosphere soil and influences the bioavailability and mobility of metals. Elevated temperatures in combination with heavy metals are expected to affect plant secondary metabolites, but this issue has not been extensively examined. Here, we investigated secondary metabolites in Robiniapseudoacacia seedlings exposed to elevated temperatures using a passive warming device in combination with Cd- and Pb-contaminated soils. Heavy metals significantly stimulated the accumulation of saponins, phenolic compounds, and flavonoids in leaves and stems; alkaloid compounds increased in leaves and decreased in stems, and condensed tannins fluctuated. Elevated temperatures, alone and in combination with Cd and Pb, caused increases in secondary metabolites in the plant tissues. Phenolic compounds showed the greatest changes among the secondary metabolites and significant interactive effects of temperature and metals were observed. These results suggest that slightly elevated temperature could enhance protective and defense mechanisms of Robinia pseudoacacia seedlings exposed to heavy metals by stimulating the production of secondary metabolites. PMID:27203519

  5. [Occurrence of indole alkaloids among secondary metabolites of soil Aspergillus].

    PubMed

    Vinokurova, N G; Khmel'nitskaia, I I; Baskunov, B P; Arinbasarov, M U

    2003-01-01

    The occurrence of indole alkaloids among secondary fungal metabolites was studied in species of the genus Aspergillus, isolated from soils that were sampled in various regions of Russia (a total of 102 isolates of the species A. niger, A. phoenicis, A. fumigatus, A. flavus, A. versicolor, A. ustus, A. clavatus, and A. ochraceus). Clavine alkaloids were represented by fumigaclavine, which was formed by A. fumigatus. alpha-Cyclopiazonic acid was formed by isolates of A. fumigatus, A. flavus, A. versicolor, A. phoenicis, and A. clavatus. The occurrence of indole-containing diketopiperazine alkaloids was documented for isolates of A. flavus, A. fumigatus, A. clavatus, and A. ochraceus. No indole-containing metabolites were found among the metabolites of A. ustus or A. niger. PMID:12722658

  6. Media and growth conditions for induction of secondary metabolite production.

    PubMed

    Frisvad, Jens C

    2012-01-01

    Growth media and incubation conditions have a very strong influence of secondary metabolite production. There is no consensus on which media are the optimal for metabolite production, but a series of useful and effective media and incubation conditions have been listed here. Chemically well-defined media are suited for biochemical studies, but in order to get chemical diversity expressed in filamentous fungi, sources rich in amino acids, vitamins, and trace metals have to be added, such as yeast extract and oatmeal. A battery of solid agar media is recommended for exploration of chemical diversity as agar plug samples are easily analyzed to get an optimal representation of the qualitative secondary metabolome. Standard incubation for a week at 25°C in darkness is recommended, but optimal conditions have to be modified depending on the ecology and physiology of different filamentous fungi. PMID:23065607

  7. Identification, quantification, spatiotemporal distribution and genetic variation of major latex secondary metabolites in the common dandelion (Taraxacum officinale agg.).

    PubMed

    Huber, Meret; Triebwasser-Freese, Daniella; Reichelt, Michael; Heiling, Sven; Paetz, Christian; Chandran, Jima N; Bartram, Stefan; Schneider, Bernd; Gershenzon, Jonathan; Erb, Matthias

    2015-07-01

    The secondary metabolites in the roots, leaves and flowers of the common dandelion (Taraxacum officinale agg.) have been studied in detail. However, little is known about the specific constituents of the plant's highly specialized laticifer cells. Using a combination of liquid and gas chromatography, mass spectrometry and nuclear magnetic resonance spectrometry, we identified and quantified the major secondary metabolites in the latex of different organs across different growth stages in three genotypes, and tested the activity of the metabolites against the generalist root herbivore Diabrotica balteata. We found that common dandelion latex is dominated by three classes of secondary metabolites: phenolic inositol esters (PIEs), triterpene acetates (TritAc) and the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G). Purification and absolute quantification revealed concentrations in the upper mgg(-1) range for all compound classes with up to 6% PIEs, 5% TritAc and 7% TA-G per gram latex fresh weight. Contrary to typical secondary metabolite patterns, concentrations of all three classes increased with plant age. The highest concentrations were measured in the main root. PIE profiles differed both quantitatively and qualitatively between plant genotypes, whereas TritAc and TA-G differed only quantitatively. Metabolite concentrations were positively correlated within and between the different compound classes, indicating tight biosynthetic co-regulation. Latex metabolite extracts strongly repelled D. balteata larvae, suggesting that the latex constituents are biologically active. PMID:25682510

  8. Secondary Metabolites from Three Florida Sponges with Antidepressant Activity

    PubMed Central

    Kochanowska, Anna J.; Rao, Karumanchi V.; Childress, Suzanne; El-Alfy, Abir; Matsumoto, Rae R.; Kelly, Michelle; Stewart, Gina S.; Sufka, Kenneth J.; Hamann, Mark T.

    2016-01-01

    Brominated indole alkaloids are a common class of metabolites reported from sponges of the order Verongida. Herein we report the isolation, structure determination, and activity of metabolites from three Florida sponges, namely, Verongula rigida (order Verongida, family Aplysinidae), Smenospongia aurea, and S. cerebriformis (order Dictyoceratida, family Thorectidae). All three species were investigated chemically, revealing similarities in secondary metabolites. Brominated compounds, as well as sesquiterpene quinones and hydroquinones, were identified from both V. rigida and S. aurea despite their apparent taxonomic differences at the ordinal level. Similar metabolites found in these distinct sponge species of two different genera provide evidence for a microbial origin of the metabolites. Isolated compounds were evaluated in the Porsolt forced swim test (FST) and the chick anxiety–depression continuum model. Among the isolated compounds, 5,6-dibromo-N,N-dimethyltryptamine (1) exhibited significant antidepressant-like action in the rodent FST model, while 5-bromo-N,N-dimethyltryptamine (2) caused significant reduction of locomotor activity indicative of a potential sedative action. The current study provides ample evidence that marine natural products with the diversity of brominated marine alkaloids will provide potential leads for antidepressant and anxiolytic drugs. PMID:18217716

  9. Prototype of an intertwined secondary-metabolite supercluster

    PubMed Central

    Wiemann, Philipp; Guo, Chun-Jun; Palmer, Jonathan M.; Sekonyela, Relebohile; Wang, Clay C. C.; Keller, Nancy P.

    2013-01-01

    The hallmark trait of fungal secondary-metabolite gene clusters is well established, consisting of contiguous enzymatic and often regulatory gene(s) devoted to the production of a metabolite of a specific chemical class. Unexpectedly, we have found a deviation from this motif in a subtelomeric region of Aspergillus fumigatus. This region, under the control of the master regulator of secondary metabolism, LaeA, contains, in its entirety, the genetic machinery for three natural products (fumitremorgin, fumagillin, and pseurotin), where genes for fumagillin and pseurotin are physically intertwined in a single supercluster. Deletions of 29 adjoining genes revealed that fumagillin and pseurotin are coregulated by the supercluster-embedded regulatory gene with biosynthetic genes belonging to one of the two metabolic pathways in a noncontiguous manner. Comparative genomics indicates the fumagillin/pseurotin supercluster is maintained in a rapidly evolving region of diverse fungal genomes. This blended design confounds predictions from established secondary-metabolite cluster search algorithms and provides an expanded view of natural product evolution. PMID:24082142

  10. Antifeedant Activity of Ginkgo biloba Secondary Metabolites against Hyphantria cunea Larvae: Mechanisms and Applications

    PubMed Central

    Ren, Lili; Chen, Fang; Feng, Yuqian

    2016-01-01

    Ginkgo biloba is a typical relic plant that rarely suffers from pest hazards. This study analyzed the pattern of G. biloba pest hazards in Beijing; tested the antifeedant activity of G. biloba extracts, including ginkgo flavonoids, ginkgolide, and bilobalide, against Hyphantria cunea larvae; determined the activities of glutathione transferase (GSTs), acetylcholinesterase (AChE), carboxylesterase (CarE) and mixed-functional oxidase (MFO), in larvae after feeding on these G. biloba secondary metabolites; and screened for effective botanical antifeedants in the field. In this study, no indicators of insect infestation were found for any of the examined leaves of G. biloba; all tested secondary metabolites showed significant antifeedant activity and affected the activity of the four larval detoxifying enzymes. Ginkgolide had the highest antifeedant activity and the most significant effect on the detoxifying enzymes (P<0.05). Spraying leaves with G. biloba extracts or ginkgolide both significantly repelled H. cunea larvae in the field (P<0.05), although the former is more economical and practical. This study investigated the antifeedant activity of G. biloba secondary metabolites against H. cunea larvae, and the results provide new insights into the mechanism of G. biloba pest resistance. This study also developed new applications of G. biloba secondary metabolites for effective pest control. PMID:27214257

  11. Antifeedant Activity of Ginkgo biloba Secondary Metabolites against Hyphantria cunea Larvae: Mechanisms and Applications.

    PubMed

    Pan, Long; Ren, Lili; Chen, Fang; Feng, Yuqian; Luo, Youqing

    2016-01-01

    Ginkgo biloba is a typical relic plant that rarely suffers from pest hazards. This study analyzed the pattern of G. biloba pest hazards in Beijing; tested the antifeedant activity of G. biloba extracts, including ginkgo flavonoids, ginkgolide, and bilobalide, against Hyphantria cunea larvae; determined the activities of glutathione transferase (GSTs), acetylcholinesterase (AChE), carboxylesterase (CarE) and mixed-functional oxidase (MFO), in larvae after feeding on these G. biloba secondary metabolites; and screened for effective botanical antifeedants in the field. In this study, no indicators of insect infestation were found for any of the examined leaves of G. biloba; all tested secondary metabolites showed significant antifeedant activity and affected the activity of the four larval detoxifying enzymes. Ginkgolide had the highest antifeedant activity and the most significant effect on the detoxifying enzymes (P<0.05). Spraying leaves with G. biloba extracts or ginkgolide both significantly repelled H. cunea larvae in the field (P<0.05), although the former is more economical and practical. This study investigated the antifeedant activity of G. biloba secondary metabolites against H. cunea larvae, and the results provide new insights into the mechanism of G. biloba pest resistance. This study also developed new applications of G. biloba secondary metabolites for effective pest control. PMID:27214257

  12. Amino Acid and Secondary Metabolite Production in Embryogenic and Non-Embryogenic Callus of Fingerroot Ginger (Boesenbergia rotunda)

    PubMed Central

    Ng, Theresa Lee Mei; Karim, Rezaul; Tan, Yew Seong; Teh, Huey Fang; Danial, Asma Dazni; Ho, Li Sim; Khalid, Norzulaani; Appleton, David Ross; Harikrishna, Jennifer Ann

    2016-01-01

    Interest in the medicinal properties of secondary metabolites of Boesenbergia rotunda (fingerroot ginger) has led to investigations into tissue culture of this plant. In this study, we profiled its primary and secondary metabolites, as well as hormones of embryogenic and non-embryogenic (dry and watery) callus and shoot base, Ultra Performance Liquid Chromatography-Mass Spectrometry together with histological characterization. Metabolite profiling showed relatively higher levels of glutamine, arginine and lysine in embryogenic callus than in dry and watery calli, while shoot base tissue showed an intermediate level of primary metabolites. For the five secondary metabolites analyzed (ie. panduratin, pinocembrin, pinostrobin, cardamonin and alpinetin), shoot base had the highest concentrations, followed by watery, dry and embryogenic calli. Furthermore, intracellular auxin levels were found to decrease from dry to watery calli, followed by shoot base and finally embryogenic calli. Our morphological observations showed the presence of fibrils on the cell surface of embryogenic callus while diphenylboric acid 2-aminoethylester staining indicated the presence of flavonoids in both dry and embryogenic calli. Periodic acid-Schiff staining showed that shoot base and dry and embryogenic calli contained starch reserves while none were found in watery callus. This study identified several primary metabolites that could be used as markers of embryogenic cells in B. rotunda, while secondary metabolite analysis indicated that biosynthesis pathways of these important metabolites may not be active in callus and embryogenic tissue. PMID:27258536

  13. Amino Acid and Secondary Metabolite Production in Embryogenic and Non-Embryogenic Callus of Fingerroot Ginger (Boesenbergia rotunda).

    PubMed

    Ng, Theresa Lee Mei; Karim, Rezaul; Tan, Yew Seong; Teh, Huey Fang; Danial, Asma Dazni; Ho, Li Sim; Khalid, Norzulaani; Appleton, David Ross; Harikrishna, Jennifer Ann

    2016-01-01

    Interest in the medicinal properties of secondary metabolites of Boesenbergia rotunda (fingerroot ginger) has led to investigations into tissue culture of this plant. In this study, we profiled its primary and secondary metabolites, as well as hormones of embryogenic and non-embryogenic (dry and watery) callus and shoot base, Ultra Performance Liquid Chromatography-Mass Spectrometry together with histological characterization. Metabolite profiling showed relatively higher levels of glutamine, arginine and lysine in embryogenic callus than in dry and watery calli, while shoot base tissue showed an intermediate level of primary metabolites. For the five secondary metabolites analyzed (ie. panduratin, pinocembrin, pinostrobin, cardamonin and alpinetin), shoot base had the highest concentrations, followed by watery, dry and embryogenic calli. Furthermore, intracellular auxin levels were found to decrease from dry to watery calli, followed by shoot base and finally embryogenic calli. Our morphological observations showed the presence of fibrils on the cell surface of embryogenic callus while diphenylboric acid 2-aminoethylester staining indicated the presence of flavonoids in both dry and embryogenic calli. Periodic acid-Schiff staining showed that shoot base and dry and embryogenic calli contained starch reserves while none were found in watery callus. This study identified several primary metabolites that could be used as markers of embryogenic cells in B. rotunda, while secondary metabolite analysis indicated that biosynthesis pathways of these important metabolites may not be active in callus and embryogenic tissue. PMID:27258536

  14. Marine Microbial Secondary Metabolites: Pathways, Evolution and Physiological Roles.

    PubMed

    Giordano, Daniela; Coppola, Daniela; Russo, Roberta; Denaro, Renata; Giuliano, Laura; Lauro, Federico M; di Prisco, Guido; Verde, Cinzia

    2015-01-01

    Microbes produce a huge array of secondary metabolites endowed with important ecological functions. These molecules, which can be catalogued as natural products, have long been exploited in medical fields as antibiotics, anticancer and anti-infective agents. Recent years have seen considerable advances in elucidating natural-product biosynthesis and many drugs used today are natural products or natural-product derivatives. The major contribution to recent knowledge came from application of genomics to secondary metabolism and was facilitated by all relevant genes being organised in a contiguous DNA segment known as gene cluster. Clustering of genes regulating biosynthesis in bacteria is virtually universal. Modular gene clusters can be mixed and matched during evolution to generate structural diversity in natural products. Biosynthesis of many natural products requires the participation of complex molecular machines known as polyketide synthases and non-ribosomal peptide synthetases. Discovery of new evolutionary links between the polyketide synthase and fatty acid synthase pathways may help to understand the selective advantages that led to evolution of secondary-metabolite biosynthesis within bacteria. Secondary metabolites confer selective advantages, either as antibiotics or by providing a chemical language that allows communication among species, with other organisms and their environment. Herewith, we discuss these aspects focusing on the most clinically relevant bioactive molecules, the thiotemplated modular systems that include polyketide synthases, non-ribosomal peptide synthetases and fatty acid synthases. We begin by describing the evolutionary and physiological role of marine natural products, their structural/functional features, mechanisms of action and biosynthesis, then turn to genomic and metagenomic approaches, highlighting how the growing body of information on microbial natural products can be used to address fundamental problems in

  15. The Fusarium graminearum Genome Reveals More Secondary Metabolite Gene Clusters and Hints of Horizontal Gene Transfer

    PubMed Central

    Wong, Philip; Münsterkötter, Martin; Mewes, Hans-Werner; Schmeitzl, Clemens; Varga, Elisabeth; Berthiller, Franz; Adam, Gerhard; Güldener, Ulrich

    2014-01-01

    Fungal secondary metabolite biosynthesis genes are of major interest due to the pharmacological properties of their products (like mycotoxins and antibiotics). The genome of the plant pathogenic fungus Fusarium graminearum codes for a large number of candidate enzymes involved in secondary metabolite biosynthesis. However, the chemical nature of most enzymatic products of proteins encoded by putative secondary metabolism biosynthetic genes is largely unknown. Based on our analysis we present 67 gene clusters with significant enrichment of predicted secondary metabolism related enzymatic functions. 20 gene clusters with unknown metabolites exhibit strong gene expression correlation in planta and presumably play a role in virulence. Furthermore, the identification of conserved and over-represented putative transcription factor binding sites serves as additional evidence for cluster co-regulation. Orthologous cluster search provided insight into the evolution of secondary metabolism clusters. Some clusters are characteristic for the Fusarium phylum while others show evidence of horizontal gene transfer as orthologs can be found in representatives of the Botrytis or Cochliobolus lineage. The presented candidate clusters provide valuable targets for experimental examination. PMID:25333987

  16. Identification of signatory secondary metabolites during mycoparasitism of Rhizoctonia solani by Stachybotrys elegans

    PubMed Central

    Chamoun, Rony; Aliferis, Konstantinos A.; Jabaji, Suha

    2015-01-01

    Stachybotrys elegans is able to parasitize the fungal plant pathogen Rhizoctonia solani AG-3 following a complex and intimate interaction, which, among others, includes the production of cell wall-degrading enzymes, intracellular colonization, and expression of pathogenic process encoding genes. However, information on the metabolome level is non-existent during mycoparasitism. Here, we performed a direct-infusion mass spectrometry (DIMS) metabolomics analysis using an LTQ Orbitrap analyzer in order to detect changes in the profiles of induced secondary metabolites of both partners during this mycoparasitic interaction 4 and 5 days following its establishment. The diketopiperazine(s) (DKPs) cyclo(S-Pro-S-Leu)/cyclo(S-Pro-S-Ile), ethyl 2-phenylacetate, and 3-nitro-4-hydroxybenzoic acid were detected as the primary response of Rhizoctonia 4 days following dual-culturing with Stachybotrys, whereas only the latter metabolite was up-regulated 1 day later. On the other hand, trichothecenes and atranones were mycoparasite-derived metabolites identified during mycoparasitism 4 and 5 days following dual-culturing. All the above secondary metabolites are known to exhibit bioactivity, including fungitoxicity, and represent key elements that determine the outcome of the interaction being studied. Results could be further exploited in programs for the evaluation of the bioactivity of these metabolites per se or their chemical analogs, and/or genetic engineering programs to obtain more efficient mycoparasite strains with improved efficacy and toxicological profiles. PMID:25972848

  17. Ecologically relevant UV-B dose combined with high PAR intensity distinctly affect plant growth and accumulation of secondary metabolites in leaves of Centella asiatica L. Urban.

    PubMed

    Müller, Viola; Albert, Andreas; Barbro Winkler, J; Lankes, Christa; Noga, Georg; Hunsche, Mauricio

    2013-10-01

    We investigated the effects of environmentally relevant dose of ultraviolet (UV)-B and photosynthetic active radiation (PAR) on saponin accumulation in leaves on the example of Centella asiatica L. Urban. For this purpose, plants were exposed to one of four light regimes i.e., two PAR intensities with or without UV-B radiation. The experiment was conducted in technically complex sun simulators under almost natural irradiance and climatic conditions. As observed, UV-B radiation increased herb and leaf production as well as the content of epidermal flavonols, which was monitored by non-destructive fluorescence measurements. Specific fluorescence indices also indicate an increase in the content of anthocyanins under high PAR; this increase was likewise observed for the saponin concentrations. In contrast, UV-B radiation had no distinct effects on saponin and sapogenin concentrations. Our findings suggest that besides flavonoids, also saponins were accumulated under high PAR protecting the plant from oxidative damage. Furthermore, glycosylation of sapogenins seems to be important either for the protective function and/or for compartmentalization of the compounds. Moreover, our study revealed that younger leaves contain higher amounts of saponins, while in older leaves the sapogenins were the most abundant constituents. Concluding, our results proof that ambient dose of UV-B and high PAR intensity distinctly affect the accumulation of flavonoids and saponins, enabling the plant tissue to adapt to the light conditions. PMID:24044900

  18. Metabolomic Tools for Secondary Metabolite Discovery from Marine Microbial Symbionts

    PubMed Central

    Macintyre, Lynsey; Zhang, Tong; Viegelmann, Christina; Juarez Martinez, Ignacio; Cheng, Cheng; Dowdells, Catherine; Abdelmohsen, Usama Ramadan; Gernert, Christine; Hentschel, Ute; Edrada-Ebel, RuAngelie

    2014-01-01

    Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA) was employed to differentiate the bacterial strains based on their chemical profiles. NMR 1H and correlation spectroscopy (COSY) were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening. PMID:24905482

  19. Targeted analysis of multiple pharmaceuticals, plant toxins and other secondary metabolites in herbal dietary supplements by ultra-high performance liquid chromatography-quadrupole-orbital ion trap mass spectrometry.

    PubMed

    Vaclavik, Lukas; Krynitsky, Alexander J; Rader, Jeanne I

    2014-01-31

    In this study, an ultra-high performance liquid chromatography-quadrupole-orbital ion trap mass spectrometry (UHPLC-Q-orbitrap MS) method was developed and validated for simultaneous determination of 96 pharmaceuticals, plant toxins, and other plant secondary metabolites in herbal dietary supplements. Target analytes were extracted from samples using the QuEChERS (quick easy cheap effective rugged safe) procedure. The instrument was operated in full MS-data dependent tandem mass spectrometry (full MS-dd-MS/MS) acquisition mode which enabled collection of quantitative high resolution (HR) full mass spectral data and confirmatory HR MS/MS data in a single run. The method provided excellent selectivity in both full MS and dd-MS/MS mode. Under optimized collision energy settings, product ion spectra containing both precursor and two or more product ions were obtained for most of the analytes. Limits of detection (LODs) and limits of quantification (LOQs) for the method differed significantly for the examined matrices. LODs≤10μg kg(-1) and LOQs≤50μg kg(-1) were obtained for 48 to 81% of target compounds across five different matrices. With the exception of highly polar analytes, the optimized QuEChERS extraction procedure provided acceptable recoveries in the range 70%-120%. The precision of the method, characterized as the relative standard deviation (RSD, n=5), was ≤25% and ≤18% at spiking concentrations of 50μg kg(-1) and 500μg kg(-1), respectively. Because of variations in matrix effects in extracts of herbal dietary supplements that differed in composition, the method of standard additions and an approach based on dilution of matrix components followed by quantification using solvent standards were applied for quantification. The procedure was used to examine commercial dietary supplements for the 96 analytes of interest. To the best of our knowledge, this is the first report of an integrated analysis and quantification of this wide range of compounds

  20. A transporter for abiotic stress and plant metabolite resistance in the ectomycorrhizal fungus Tricholoma vaccinum.

    PubMed

    Schlunk, Ines; Krause, Katrin; Wirth, Sophia; Kothe, Erika

    2015-12-01

    Fungi exposed to toxic substances including heavy metals, xenobiotics, or secondary metabolites formed by co-occurring plants or other microorganisms require a detoxification system provided by exporters of several classes of transmembrane proteins. In case of mycorrhiza, plant metabolites need to be exported at the plant interface, while the extraradical hyphae may prevent heavy metal uptake, thus acting as a biofilter to the host plant at high environmental concentrations. One major family of such transporter proteins is the multidrug and toxic compound extrusion (MATE) class, a member of which, Mte1, was studied in the ectomycorrhizal fungus Tricholoma vaccinum. Phylogenetic analyses placed the protein in a subgroup of basidiomycete MATE sequences. The gene mte1 was found to be induced during symbiotic interaction. It mediated detoxification of xenobiotics and metal ions such as Cu, Li, Al, and Ni, as well as secondary plant metabolites if heterologously expressed in Saccharomyces cerevisiae. PMID:25563836

  1. Unique metabolites protect earthworms against plant polyphenols

    PubMed Central

    Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A. John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy; Lahive, Elma; Spurgeon, David J.; McPhail, David; Takáts, Zoltán; Bundy, Jacob G.

    2015-01-01

    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term ‘drilodefensins'. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide. PMID:26241769

  2. Unique metabolites protect earthworms against plant polyphenols.

    PubMed

    Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy; Lahive, Elma; Spurgeon, David J; McPhail, David; Takáts, Zoltán; Bundy, Jacob G

    2015-01-01

    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term 'drilodefensins'. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide. PMID:26241769

  3. Understanding Boswellia papyrifera tree secondary metabolites through bark spectral analysis

    NASA Astrophysics Data System (ADS)

    Girma, Atkilt; Skidmore, Andrew K.; de Bie, C. A. J. M.; Bongers, Frans

    2015-07-01

    Decision makers are concerned whether to tap or rest Boswellia Papyrifera trees. Tapping for the production of frankincense is known to deplete carbon reserves from the tree leading to production of less viable seeds, tree carbon starvation and ultimately tree mortality. Decision makers use traditional experience without considering the amount of metabolites stored or depleted from the stem-bark of the tree. This research was designed to come up with a non-destructive B. papyrifera tree metabolite estimation technique relevant for management using spectroscopy. The concentration of biochemicals (metabolites) found in the tree bark was estimated through spectral analysis. Initially, a random sample of 33 trees was selected, the spectra of bark measured with an Analytical Spectral Device (ASD) spectrometer. Bark samples were air dried and ground. Then, 10 g of sample was soaked in Petroleum ether to extract crude metabolites. Further chemical analysis was conducted to quantify and isolate pure metabolite compounds such as incensole acetate and boswellic acid. The crude metabolites, which relate to frankincense produce, were compared to plant properties (such as diameter and crown area) and reflectance spectra of the bark. Moreover, the extract was compared to the ASD spectra using partial least square regression technique (PLSR) and continuum removed spectral analysis. The continuum removed spectral analysis were performed, on two wavelength regions (1275-1663 and 1836-2217) identified through PLSR, using absorption features such as band depth, area, position, asymmetry and the width to characterize and find relationship with the bark extracts. The results show that tree properties such as diameter at breast height (DBH) and the crown area of untapped and healthy trees were strongly correlated to the amount of stored crude metabolites. In addition, the PLSR technique applied to the first derivative transformation of the reflectance spectrum was found to estimate the

  4. [Study on secondary metabolites of endophytic fungi Penicillium dangeardii].

    PubMed

    Lv, Hai-ning; Ding, Guang-zhi; Liu, Yun-bao; Qu, Jing

    2015-05-01

    Endophytic fungi Penicillium dangeardii, isolated from Lysidice rhodostegia Hance root, was fermented and the secondary metabolites were studied. By means of Sephadex LH-20 column chromatography, ODS column chromatography and PHPLC over the fermented culture, 5 compounds were isolated. By using ESI-MS and NMR, the structures of the compounds were determined as N-[9-(β- D-ribofuranosyl)-9H-purin-6-yl]-L-aspartic acid (1), 3-caffeoylquinic acid (2), 4-caffeoylquinic acid (3), and 5-caffeoylquinic acid (4), 3-hydroxy-benzoic acid-4-O-β-D-glucopyranoside (5). PMID:26323144

  5. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    PubMed Central

    2012-01-01

    Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum). The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol) and siderophores (e.g. ferulic acid, desferroxiamines). Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites. PMID:22852578

  6. Disruption of adenosine-5'-phosphosulfate kinase in Arabidopsis reduces levels of sulfated secondary metabolites.

    PubMed

    Mugford, Sarah G; Yoshimoto, Naoko; Reichelt, Michael; Wirtz, Markus; Hill, Lionel; Mugford, Sam T; Nakazato, Yoshimi; Noji, Masaaki; Takahashi, Hideki; Kramell, Robert; Gigolashvili, Tamara; Flügge, Ulf-Ingo; Wasternack, Claus; Gershenzon, Jonathan; Hell, Rüdiger; Saito, Kazuki; Kopriva, Stanislav

    2009-03-01

    Plants can metabolize sulfate by two pathways, which branch at the level of adenosine 5'-phosphosulfate (APS). APS can be reduced to sulfide and incorporated into Cys in the primary sulfate assimilation pathway or phosphorylated by APS kinase to 3'-phosphoadenosine 5'-phosphosulfate, which is the activated sulfate form for sulfation reactions. To assess to what extent APS kinase regulates accumulation of sulfated compounds, we analyzed the corresponding gene family in Arabidopsis thaliana. Analysis of T-DNA insertion knockout lines for each of the four isoforms did not reveal any phenotypical alterations. However, when all six combinations of double mutants were compared, the apk1 apk2 plants were significantly smaller than wild-type plants. The levels of glucosinolates, a major class of sulfated secondary metabolites, and the sulfated 12-hydroxyjasmonate were reduced approximately fivefold in apk1 apk2 plants. Although auxin levels were increased in the apk1 apk2 mutants, as is the case for most plants with compromised glucosinolate synthesis, typical high auxin phenotypes were not observed. The reduction in glucosinolates resulted in increased transcript levels for genes involved in glucosinolate biosynthesis and accumulation of desulfated precursors. It also led to great alterations in sulfur metabolism: the levels of sulfate and thiols increased in the apk1 apk2 plants. The data indicate that the APK1 and APK2 isoforms of APS kinase play a major role in the synthesis of secondary sulfated metabolites and are required for normal growth rates. PMID:19304933

  7. Lichen Secondary Metabolite, Physciosporin, Inhibits Lung Cancer Cell Motility.

    PubMed

    Yang, Yi; Park, So-Yeon; Nguyen, Thanh Thi; Yu, Young Hyun; Nguyen, Tru Van; Sun, Eun Gene; Udeni, Jayalal; Jeong, Min-Hye; Pereira, Iris; Moon, Cheol; Ha, Hyung-Ho; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2015-01-01

    Lichens produce various unique chemicals that can be used for pharmaceutical purposes. To screen for novel lichen secondary metabolites showing inhibitory activity against lung cancer cell motility, we tested acetone extracts of 13 lichen samples collected in Chile. Physciosporin, isolated from Pseudocyphellaria coriacea (Hook f. & Taylor) D.J. Galloway & P. James, was identified as an effective compound and showed significant inhibitory activity in migration and invasion assays against human lung cancer cells. Physciosporin treatment reduced both protein and mRNA levels of N-cadherin with concomitant decreases in the levels of epithelial-mesenchymal transition markers such as snail and twist. Physciosporin also suppressed KITENIN (KAI1 C-terminal interacting tetraspanin)-mediated AP-1 activity in both the absence and presence of epidermal growth factor stimulation. Quantitative real-time PCR analysis showed that the expression of the metastasis suppressor gene, KAI1, was increased while that of the metastasis enhancer gene, KITENIN, was dramatically decreased by physciosporin. Particularly, the activity of 3'-untranslated region of KITENIN was decreased by physciosporin. Moreover, Cdc42 and Rac1 activities were decreased by physciosporin. These results demonstrated that the lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility through novel mechanisms of action. PMID:26371759

  8. Lichen Secondary Metabolite, Physciosporin, Inhibits Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Park, So-Yeon; Nguyen, Thanh Thi; Yu, Young Hyun; Nguyen, Tru Van; Sun, Eun Gene; Udeni, Jayalal; Jeong, Min-Hye; Pereira, Iris; Moon, Cheol; Ha, Hyung-Ho; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2015-01-01

    Lichens produce various unique chemicals that can be used for pharmaceutical purposes. To screen for novel lichen secondary metabolites showing inhibitory activity against lung cancer cell motility, we tested acetone extracts of 13 lichen samples collected in Chile. Physciosporin, isolated from Pseudocyphellaria coriacea (Hook f. & Taylor) D.J. Galloway & P. James, was identified as an effective compound and showed significant inhibitory activity in migration and invasion assays against human lung cancer cells. Physciosporin treatment reduced both protein and mRNA levels of N-cadherin with concomitant decreases in the levels of epithelial-mesenchymal transition markers such as snail and twist. Physciosporin also suppressed KITENIN (KAI1 C-terminal interacting tetraspanin)-mediated AP-1 activity in both the absence and presence of epidermal growth factor stimulation. Quantitative real-time PCR analysis showed that the expression of the metastasis suppressor gene, KAI1, was increased while that of the metastasis enhancer gene, KITENIN, was dramatically decreased by physciosporin. Particularly, the activity of 3’-untranslated region of KITENIN was decreased by physciosporin. Moreover, Cdc42 and Rac1 activities were decreased by physciosporin. These results demonstrated that the lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility through novel mechanisms of action. PMID:26371759

  9. Analysis of Polygala tenuifolia Transcriptome and Description of Secondary Metabolite Biosynthetic Pathways by Illumina Sequencing.

    PubMed

    Tian, Hongling; Xu, Xiaoshuang; Zhang, Fusheng; Wang, Yaoqin; Guo, Shuhong; Qin, Xuemei; Du, Guanhua

    2015-01-01

    Radix polygalae, the dried roots of Polygala tenuifolia and P. sibirica, is one of the most well-known traditional Chinese medicinal plants. Radix polygalae contains various saponins, xanthones, and oligosaccharide esters and these compounds are responsible for several pharmacological properties. To provide basic breeding information, enhance molecular biological analysis, and determine secondary metabolite biosynthetic pathways of P. tenuifolia, we applied Illumina sequencing technology and de novo assembly. We also applied this technique to gain an overview of P. tenuifolia transcriptome from samples with different years. Using Illumina sequencing, approximately 67.2% of unique sequences were annotated by basic local alignment search tool similarity searches against public sequence databases. We classified the annotated unigenes by using Nr, Nt, GO, COG, and KEGG databases compared with NCBI. We also obtained many candidates CYP450s and UGTs by the analysis of genes in the secondary metabolite biosynthetic pathways, including putative terpenoid backbone and phenylpropanoid biosynthesis pathway. With this transcriptome sequencing, future genetic and genomics studies related to the molecular mechanisms associated with the chemical composition of P. tenuifolia may be improved. Genes involved in the enrichment of secondary metabolite biosynthesis-related pathways could enhance the potential applications of P. tenuifolia in pharmaceutical industries. PMID:26543847

  10. Analysis of Polygala tenuifolia Transcriptome and Description of Secondary Metabolite Biosynthetic Pathways by Illumina Sequencing

    PubMed Central

    Tian, Hongling; Xu, Xiaoshuang; Zhang, Fusheng; Wang, Yaoqin; Guo, Shuhong; Qin, Xuemei; Du, Guanhua

    2015-01-01

    Radix polygalae, the dried roots of Polygala tenuifolia and P. sibirica, is one of the most well-known traditional Chinese medicinal plants. Radix polygalae contains various saponins, xanthones, and oligosaccharide esters and these compounds are responsible for several pharmacological properties. To provide basic breeding information, enhance molecular biological analysis, and determine secondary metabolite biosynthetic pathways of P. tenuifolia, we applied Illumina sequencing technology and de novo assembly. We also applied this technique to gain an overview of P. tenuifolia transcriptome from samples with different years. Using Illumina sequencing, approximately 67.2% of unique sequences were annotated by basic local alignment search tool similarity searches against public sequence databases. We classified the annotated unigenes by using Nr, Nt, GO, COG, and KEGG databases compared with NCBI. We also obtained many candidates CYP450s and UGTs by the analysis of genes in the secondary metabolite biosynthetic pathways, including putative terpenoid backbone and phenylpropanoid biosynthesis pathway. With this transcriptome sequencing, future genetic and genomics studies related to the molecular mechanisms associated with the chemical composition of P. tenuifolia may be improved. Genes involved in the enrichment of secondary metabolite biosynthesis-related pathways could enhance the potential applications of P. tenuifolia in pharmaceutical industries. PMID:26543847

  11. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites.

    PubMed

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup; Weber, Tilmann

    2016-08-27

    Covering: 2012 to 2016Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites. The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production. PMID:27072921

  12. Heterologous Expression of Fungal Secondary Metabolite Pathways in the Aspergillus nidulans Host System.

    PubMed

    van Dijk, J W A; Wang, C C C

    2016-01-01

    Heterologous expression of fungal secondary metabolite genes allows for the product formation of otherwise silent secondary metabolite biosynthesis pathways. It also allows facile expression of mutants or combinations of genes not found in nature. This capability makes model fungi an ideal platform for synthetic biology. In this chapter a detailed description is provided of how to heterologously express any fungal secondary metabolite gene(s) in a well-developed host strain of Aspergillus nidulans. It covers all the necessary steps from identifying a gene(s) of interest to culturing mutant strains to produce secondary metabolites. PMID:27417927

  13. New Benzoxazine Secondary Metabolites from an Arctic Actinomycete

    PubMed Central

    Moon, Kyuho; Ahn, Chan-Hong; Shin, Yoonho; Won, Tae Hyung; Ko, Keebeom; Lee, Sang Kook; Oh, Ki-Bong; Shin, Jongheon; Nam, Seung-Il; Oh, Dong-Chan

    2014-01-01

    Two new secondary metabolites, arcticoside (1) and C-1027 chromophore-V (2), were isolated along with C-1027 chromophore-III and fijiolides A and B (3–5) from a culture of an Arctic marine actinomycete Streptomyces strain. The chemical structures of 1 and 2 were elucidated through NMR, mass, UV, and IR spectroscopy. The hexose moieties in 1 were determined to be d-glucose from a combination of acid hydrolysis, derivatization, and gas chromatographic analyses. Arcticoside (1) and C-1027 chromophore-V (2), which have a benzoxazine ring, inhibited Candida albicans isocitrate lyase. Chromophore-V (2) exhibited significant cytotoxicity against breast carcinoma MDA-MB231 cells and colorectal carcinoma cells (line HCT-116), with IC50 values of 0.9 and 2.7 μM, respectively. PMID:24796308

  14. [Study on secondary metabolites of endophytic fungi Penicillium polonicum].

    PubMed

    Liu, Jing; Ding, Guang-Zhi; Fang, Lei; Yu, Shi-Shan

    2014-10-01

    The PDB culture medium was selected to ferment the endophyte strain, and the secondary metabolites of endophytic fungi Penicillium polonicum were studied. Combined application of Sephadex LH-20, ODS and HPLC chromatographies over the ethyl acetate extract of the fermented culture led to the isolation of 6 compounds. By spectral methods, the structures were elucidated as [3, 5-dihydroxy-2-(7-hydroxy-octanoyl)]-ethylphenylacetate (1), (3, 5-dihydroxy-2- octanoyl)-ethyl phenylacetate (2), (5, 7-di- hydroxy-9-heptyl)-isobenzo pyran-3-one (3), 3-(hydroxymethyl) 4-(1E)-1- propen-1-yl-(1R, 2S, 5R, 6S)-7-oxabicyclo [4.1.0] hept-3-ene-2, 5-diol (4), (E)-2-methoxy-3-(prop-1-enyl) phenol (5) and p-hydroxylphenylethanol (6). PMID:25751949

  15. SMURF: genomic mapping of fungal secondary metabolite clusters

    PubMed Central

    Khaldi, Nora; Seifuddin, Fayaz T.; Turner, Geoff; Haft, Daniel; Nierman, William C.; Wolfe, Kenneth H.; Fedorova, Natalie D.

    2010-01-01

    Fungi produce an impressive array of secondary metabolites (SMs) including mycotoxins, antibiotics and pharmaceuticals. The genes responsible for their biosynthesis, export, and transcriptional regulation are often found in contiguous gene clusters. To facilitate annotation of these clusters in sequenced fungal genomes, we developed the web-based software SMURF (www.jcvi.org/smurf/) to systematically predict clustered SM genes based on their genomic context and domain content. We applied SMURF to catalog putative clusters in 27 publicly available fungal genomes. Comparison with genetically characterized clusters from six fungal species showed that SMURF accurately recovered all clusters and detected additional potential clusters. Subsequent comparative analysis revealed the striking biosynthetic capacity and variability of the fungal SM pathways and the correlation between unicellularity and the absence of SMs. Further genetics studies are needed to experimentally confirm these clusters. PMID:20554054

  16. Elicitation Based Enhancement of Secondary Metabolites in Rauwolfia serpentina and Solanum khasianum Hairy Root Cultures

    PubMed Central

    Srivastava, Mrinalini; Sharma, Swati; Misra, Pratibha

    2016-01-01

    Background: Rauwolfia serpentina and Solanum khasianum are well-known medicinally important plants contained important alkaloids in their different parts. Elicitation of these alkaloids is important because of associated pharmaceutical properties. Targeted metabolites were ajmaline and ajmalicine in R. serpentina; solasodine and α-solanine in S. khasianum. Objective: Enhancement of secondary metabolites through biotic and abiotic elicitors in hairy root cultures of R. serpentina and S. khasianum. Materials and Methods: In this report, hairy root cultures of these two plants were established through Agrobacterium rhizogenes mediated transformation by optimizing various parameters as age of explants, duration of preculture, and co-cultivation period. NaCl was used as abiotic elicitors in these two plants. Cellulase from Aspergillus niger was used as biotic elicitor in S. khasianum and mannan from Saccharomyces cerevisiae was used in R. serpentina. Results: First time we have reported the effect of biotic and abiotic elicitors on the production of important metabolites in hairy root cultures of these two plants. Ajmalicine production was stimulated up to 14.8-fold at 100 mM concentration of NaCl after 1 week of treatment. Ajmaline concentration was also increased 2.9-fold at 100 mg/l dose of mannan after 1 week. Solasodine content was enhanced up to 4.0-fold and 3.6-fold at 100 mM and 200 mM NaCl, respectively, after 6 days of treatments. Conclusion: This study explored the potential of the elicitation strategy in A. rhizogenes transformed cell cultures and this potential further used for commercial production of these pharmaceutically important secondary metabolites. SUMMARY Hairy roots of Rauwolfia serpentina were subjected to salt (abiotic stress) and mannan (biotic stress) treatment for 1 week. Ajmaline and ajmalicine secondary metabolites were quantified before and after stress treatmentAjmalicine yield was enhanced up to 14.8-fold at 100 mM concentration of Na

  17. Ecotype variability in growth and secondary metabolite profile in Moringa oleifera: impact of sulfur and water availability.

    PubMed

    Förster, Nadja; Ulrichs, Christian; Schreiner, Monika; Arndt, Nick; Schmidt, Reinhard; Mewis, Inga

    2015-03-25

    Moringa oleifera is widely cultivated in plantations in the tropics and subtropics. Previous cultivation studies with M. oleifera focused primarily only on leaf yield. In the present study, the content of potentially health-promoting secondary metabolites (glucosinolates, phenolic acids, and flavonoids) were also investigated. Six different ecotypes were grown under similar environmental conditions to identify phenotypic differences that can be traced back to the genotype. The ecotypes TOT4880 (origin USA) and TOT7267 (origin India) were identified as having the best growth performance and highest secondary metabolite production, making them an ideal health-promoting food crop. Furthermore, optimal cultivation conditions-exemplarily on sulfur fertilization and water availability-for achieving high leaf and secondary metabolite yields were investigated for M. oleifera. In general, plant biomass and height decreased under water deficiency compared to normal cultivation conditions, whereas the glucosinolate content increased. The effects depended to a great extent on the ecotype. PMID:25689922

  18. Untargeted MS-based small metabolite identification from the plant leaves and stems of Impatiens balsamina.

    PubMed

    Chua, Lee Suan

    2016-09-01

    The identification of plant metabolites is very important for the understanding of plant physiology including plant growth, development and defense mechanism, particularly for herbal medicinal plants. The metabolite profile could possibly be used for future drug discovery since the pharmacological activities of the indigenous herbs have been proven for centuries. An untargeted mass spectrometric approach was used to identify metabolites from the leaves and stems of Impatiens balsamina using LC-DAD-MS/MS. The putative compounds are mostly from the groups of phenolic, organic and amino acids which are essential for plant growth and as intermediates for other compounds. Alanine appeared to be the main amino acid in the plant because many alanine derived metabolites were detected. There are also several secondary metabolites from the groups of benzopyrones, benzofuranones, naphthoquinones, alkaloids and flavonoids. The widely reported bioactive components such as kaempferol, quercetin and their glycosylated, lawsone and its derivatives were detected in this study. The results also revealed that aqueous methanol could extract flavonoids better than water, and mostly, flavonoids were detected from the leaf samples. The score plots of component analysis show that there is a minor variance in the metabolite profiles of water and aqueous methanolic extracts with 21.5 and 30.5% of the total variance for the first principal component at the positive and negative ion modes, respectively. PMID:27135814

  19. Medicinal properties, in vitro protocols and secondary metabolite analyses of scots pine.

    PubMed

    Häggman, Hely; Pirttilä, Anna Maria; Niemi, Karoliina; Sarjala, Tytti; Julkunen-Tiitto, Riitta

    2009-01-01

    Scots pine (Pinus sylvestris L.) is known as an economically important forest tree with a wide distribution throughout the Northern hemisphere. Recently, the species has also become recognized as a novel source of functional food and bioactive compounds with medicinal properties. The present paper provides up-to-date information on protocols for somatic embryogenesis (i.e., the most promising in vitro method for vegetative propagation of Scots pine). Endophyte protocols cover the topics of endophyte isolation, identification and elimination from in vitro cultures. Moreover, the protocols for secondary metabolite analyses are described in order to emphasize the emerging role of Scots pine as a medicinal plant. PMID:19521833

  20. Antimicrobial secondary metabolites from marine gastropod egg capsules and egg masses

    PubMed Central

    Kaviarasan, T; Siva, Sankar R; Yogamoorthi, A

    2012-01-01

    Marine organisms have attracted special attention in the last three decades for their ability to produce interesting pharmacological active compounds. Even though all marine organisms have the potential to produce antimicrobial secondary metabolites, the gastropod has the vital sources of secondary metabolites particularly their egg capsule which has the promising antimicrobial secondary metabolites. In the present review, we intend to focus on marine secondary metabolites from marine gastropod egg capsule. The following compounds i.e. Kabiramid C, Aplysianin E, Aplysianin A, Thisaplysianin E and Tyrian purple have been documented in egg capsule of various gastropod and most of the antimicrobial secondary metabolites have not been isolated from the egg capsule because of the odious, and complex chemical structure. Stability of the compounds is unknown. PMID:23569871

  1. [Therapeutic potential of secondary metabolites produced in the hairy roots cultures].

    PubMed

    Kowalczyk, Tomasz; Łucka, Marta; Szemraj, Janusz; Sakowicz, Tomasz

    2015-01-01

    Plants have always been a source of many valuable substances for humans. Growing advancement of methods of modern biotechnology, combined with genetic engineering techniques, gradually increase the variety of compounds obtained, the number of plant species used and the production efficiency. Consequently, there is an undebatable interest in biotechnological production of such compounds, especially those pharmacologically active, that can be used in treatment of neoplastic, viral, and many other types of diseases. Most of these compounds represent a diverse group of secondary metabolites. One of the effective ways of obtaining such molecules is the utilization of hairy roots cultures. The advantages of such systems make them an attractive method of obtaining important plant-derived compounds, creating an interesting alternative to other methods, including the cell suspension cultures or expensive chemical syntheses. PMID:25983294

  2. Nectar microbes can reduce secondary metabolites in nectar and alter effects on nectar consumption by pollinators.

    PubMed

    Vannette, Rachel L; Fukami, Tadashi

    2016-06-01

    Secondary metabolites that are present in floral nectar have been hypothesized to enhance specificity in plant-pollinator mutualism by reducing larceny by non-pollinators, including microorganisms that colonize nectar. However, few studies have tested this hypothesis. Using synthetic nectar, we conducted laboratory and field experiments to examine the effects of five chemical compounds found in nectar on the growth and metabolism of nectar-colonizing yeasts and bacteria, and the interactive effects of these compounds and nectar microbes on the consumption of nectar by pollinators. In most cases, focal compounds inhibited microbial growth, but the extent of these effects depended on compound identity, concentration, and microbial species. Moreover, most compounds did not substantially decrease sugar metabolism by microbes, and microbes reduced the concentration of some compounds in nectar. Using artificial flowers in the field, we also found that the common nectar yeast Metschnikowia reukaufii altered nectar consumption by small floral visitors, but only in nectar containing catalpol. This effect was likely mediated by a mechanism independent of catalpol metabolism. Despite strong compound-specific effects on microbial growth, our results suggest that the secondary metabolites tested here are unlikely to be an effective general defense mechanism for preserving nectar sugars for pollinators. Instead, our results indicate that microbial colonization of nectar could reduce the concentration of secondary compounds in nectar and, in some cases, reduce deterrence to pollinators. PMID:27459772

  3. Variability of Non-Polar Secondary Metabolites in the Red Alga Portieria

    PubMed Central

    Payo, Dioli Ann; Colo, Joannamel; Calumpong, Hilconida; de Clerck, Olivier

    2011-01-01

    Possible sources of variation in non-polar secondary metabolites of Portieria hornemannii, sampled from two distinct regions in the Philippines (Batanes and Visayas), resulting from different life-history stages, presence of cryptic species, and/or spatiotemporal factors, were investigated. PCA analyses demonstrated secondary metabolite variation between, as well as within, five cryptic Batanes species. Intraspecific variation was even more pronounced in the three cryptic Visayas species, which included samples from six sites. Neither species groupings, nor spatial or temporal based patterns, were observed in the PCA analysis, however, intraspecific variation in secondary metabolites was detected between life-history stages. Male gametophytes (102 metabolites detected) were strongly discriminated from the two other stages, whilst female gametophyte (202 metabolites detected) and tetrasporophyte (106 metabolites detected) samples were partially discriminated. These results suggest that life-history driven variations, and possibly other microscale factors, may influence the variation within Portieria species. PMID:22163195

  4. Antimicrobial evaluation of selected naturally occurring oxyprenylated secondary metabolites.

    PubMed

    Di Giulio, Mara; Genovese, Salvatore; Fiorito, Serena; Epifano, Francesco; Nostro, Antonia; Cellini, Luigina

    2016-08-01

    This study tested the antimicrobial activity of eight selected naturally occurring oxyprenylated secondary metabolites against Staphylococcus aureus ATCC 29213, S. epidermidis ATCC 35984, Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 9027 and Candida albicans ATCC 10231. Results showed a moderate antimicrobial activity. The most active compounds were 3-(4-geranyloxyphenyl)-1-ethanol (4) and 3-(4-isopentenyloxyphenyl)-1-propanol (5) that were tested on mature and in-formation biofilms of all micro-organisms, moreover the cytotoxic activity was evaluated. Except for S. epidermidis, both compounds reduced significantly (p < 0.05) the microbial biofilm formation at 1/2 MIC and 1/4 MIC, in particular, compounds 4 and 5 at each concentration, inhibited E. coli biofilm formation to a greater extent, the biofilm formation was never more than 44% in respect to the control, moreover both compounds showed a low cytotoxic effect. Oxyprenylated derivatives may be of great interest for the development of novel antimicrobial therapeutic strategies and the synthesis of semi-synthetic analogues with anti-biofilm efficacy. PMID:27498831

  5. Mutagenic activity of austocystins - secondary metabolites of Aspergillus ustus

    SciTech Connect

    Kfir, R.; Johannsen, E.; Vleggaar, R.

    1986-11-01

    Mycotoxins constitute a group of toxic secondary fungal metabolites. Fungi that produce these toxins frequently contaminate food and feed, creating a potential threat to human and animal health. Biological activities of mycotoxins include, amongst others: toxicity, mutagenicity and carcinogenicity, which can be expressed with or without metabolic activation. Austocystins are similar in structure to aflatoxin B/sup 1/ and are probably synthesized in a similar manner. The Ames Salmonella test, a widely accepted method employed for the detection of mutagenic activity of various chemical compounds was used for testing the mutagenic activity of different mycotoxins. As aflatoxin B/sup 1/ was found by the Ames test to be highly mutagenic, the same test was applied for the study of possible mutagenicity of the austocystins. The mutagenic activity of these compounds was studied with and without metabolic activation using two tester strains of S. typhimurium, one capable of detecting frame shift mutation (strain TA98) and the other capable of detecting base pair substitution (strain TA100).

  6. Microbial secondary metabolites in homes in association with moisture damage and asthma.

    PubMed

    Kirjavainen, P V; Täubel, M; Karvonen, A M; Sulyok, M; Tiittanen, P; Krska, R; Hyvärinen, A; Pekkanen, J

    2016-06-01

    We aimed to characterize the presence of microbial secondary metabolites in homes and their association with moisture damage, mold, and asthma development. Living room floor dust was analyzed by LC-MS/MS for 333 secondary metabolites from 93 homes of 1-year-old children. Moisture damage was present in 15 living rooms. At 6 years, 8 children had active and 15 lifetime doctor-diagnosed asthma. The median number of different metabolites per house was 17 (range 8-29) and median sum load 65 (4-865) ng/m(2) . Overall 42 different metabolites were detected. The number of metabolites present tended to be higher in homes with mold odor or moisture damage. The higher sum loads and number of metabolites with loads over 10 ng/m(2) were associated with lower prevalence of active asthma at 6 years (aOR 0.06 (95% CI <0.001-0.96) and 0.05 (<0.001-0.56), respectively). None of the individual metabolites, which presence tended (P < 0.2) to be increased by moisture damage or mold, were associated with increased risk of asthma. Microbial secondary metabolites are ubiquitously present in home floor dust. Moisture damage and mold tend to increase their numbers and amount. There was no evidence indicating that the secondary metabolites determined would explain the association between moisture damage, mold, and the development of asthma. PMID:25913237

  7. A chemical ecogenomics approach to understand the roles of secondary metabolites in fungal cereal pathogens

    PubMed Central

    Chooi, Yit-Heng; Solomon, Peter S.

    2014-01-01

    Secondary metabolites (SMs) are known to play important roles in the virulence and lifestyle of fungal plant pathogens. The increasing availability of fungal pathogen genome sequences and next-generation genomic tools have allowed us to survey the SM gene cluster inventory in individual fungi. Thus, there is immense opportunity for SM discovery in these plant pathogens. Comparative genomics and transcriptomics have been employed to obtain insights on the genetic features that enable fungal pathogens to adapt in individual ecological niches and to adopt the different pathogenic lifestyles. Here, we will discuss how we can use these tools to search for ecologically important SM gene clusters in fungi, using cereal pathogens as models. This ecological genomics approach, combined with genome mining and chemical ecology tools, is likely to advance our understanding of the natural functions of SMs and accelerate bioactive molecule discovery. PMID:25477876

  8. Gut passage and secondary metabolites alter the source of post-dispersal predation for bird-dispersed chili seeds.

    PubMed

    Fricke, Evan C; Haak, David C; Levey, Douglas J; Tewksbury, Joshua J

    2016-07-01

    Plants can influence the source and severity of seed predation through various mechanisms; the use of secondary metabolites for chemical defense, for example, is well documented. Gut passage by frugivores can also reduce mortality of animal-dispersed seeds, although this mechanism has gained far less attention than secondary metabolites. Apart from influencing the severity of seed predation, gut passage may also influence the source of seed predation. In Bolivia, we compared impacts of these two mechanisms, gut passage and secondary metabolites, on the source of seed predation in Capsicum chacoense, a wild chili species that is polymorphic for pungency (individual plants either produce fruits and seeds containing or lacking capsaicinoids). Using physical exclosures, we isolated seed removal by insects, mammals, and birds; seeds in the trials were from either pungent or non-pungent fruits and were either passed or not passed by seed-dispersing birds. Pungency had little influence on total short-term seed removal by animals, although prior work on this species indicates that capsaicin reduces mortality caused by fungi at longer time scales. Gut passage strongly reduced removal by insects, altering the relative impact of the three predator types. The weak impact of pungency on short-term predation contrasts with previous studies, highlighting the context dependence of secondary metabolites. The strong impact of gut passage demonstrates that this mechanism alone can influence which seed predators consume seeds, and that impacts of gut passage can be larger than those of secondary metabolites, which are more commonly acknowledged as a defense mechanism. PMID:27016078

  9. Secondary Metabolites from Leaves of Manilkara subsericea (Mart.) Dubard

    PubMed Central

    de Almeida, Fernanda Borges; Fernandes, Caio Pinho; Romao, Wanderson; Vanini, Gabriela; Costa, Helber Barcelos; França, Hildegardo Seibert; Santos, Marcelo Guerra; Carvalho, José Carlos Tavares; Falcão, Deborah Quintanilha; Rocha, Leandro

    2015-01-01

    Background: Manilkara subsericea (Sapotaceae) is a species widely spread in the sandbanks of Restinga de Jurubatiba National Park (Rio de Janeiro, Brazil). It is commonly known as “maçaranduba”, “maçarandubinha” and “guracica”, being used in this locality as food, and timber. However, M. subsericea remains almost unexplored regarding its chemical constituents, including secondary metabolites from the leaves. Objective: Identify the chemical constituents from the leaves of M. subsericea. Materials and Methods: Leaves were macerated with ethanol (96% v/v), and dried crude ethanolic extract was sequentially washed with the organic solvents in order to obtain an ethyl acetate fraction. Substances from this fraction were identified by different techniques, such as negative-ion electrospray ionization Fourier and 1H and 13C nuclear magnetic resonance (NMR). Fresh leaves from M. subsericea were also submitted to hydrodistillation in order to obtain volatile substances, which were identified by gas chromatograph coupled to mass spectrometer. Results: NMR1H and 13C spectra allowed for the identification of the compounds myricetin, quercetin, and kaempferol from the ethyl acetate fraction. The negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry mass spectrum also revealed the presence in this fraction of a polyhydroxytriterpene acid (pomolic acid), and some flavonoids, such as quercitrin, and myricitrin. In all 34 volatile compounds were identified by gas chromatography-mass spectrometry, including monoterpenes, sesquiterpenes, and long chain hydrocarbons. Conclusion: This study describes the first reports concerning the phytochemical information about leaves from M. subsericea. SUMMARY Manilkara subsericea fruits proved to be a rich source of triterpenes. However, no phytochemical studies were carried out with leaves. Thus, we described identification of volatile substances from its essential oils, in addition to

  10. Dereplicating and spatial mapping of secondary metabolites from fungal cultures in situ

    DOE PAGESBeta

    Kertesz, Vilmos; Van Berkel, Gary J.; Sica, Vincent P.; Raja, Huzefa A.; El-Elimat, Tamam; Oberlies, Nicholas H.; Pearce, Cedric J.

    2015-07-30

    Ambient ionization techniques coupled to mass spectrometry have recently become prevalent in natural product research due to their ability to examine secondary metabolites in situ. Identifying, mapping, and monitoring secondary metabolites directly on an organism provides invaluable spatial and temporal details that are lost through traditional extraction processes. Most ambient ionization techniques do not collect mutually supportive data, such as chromatographic retention times and/or UV/VIS spectra, and this can limit the ability to identify certain metabolites, such as differentiating isomers. To overcome this, the droplet liquid microjunction surface sampling probe (droplet LMJ SSP) was coupled with UPLC PDA HRMS MS/MS,more » thus providing separation, retention times, and UV/VIS data used in traditional dereplication protocols. By capturing these mutually supportive data, the identity of secondary metabolites could be confidently and rapidly assigned in situ. Using the droplet LMJ SSP, a protocol was constructed to analyze the secondary metabolite profile of fungal cultures directly without any sample preparation. The results demonstrate that fungal cultures can be dereplicated from the Petri dish, thus identifying secondary metabolites, including isomers, and confirming them against reference standards. As a result, heat maps, similar to mass spectrometry imaging, can be used to ascertain the location and relative concentration of secondary metabolites directly on the surface and/or surroundings of a fungal culture.« less

  11. Dereplicating and spatial mapping of secondary metabolites from fungal cultures in situ

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary J.; Sica, Vincent P.; Raja, Huzefa A.; El-Elimat, Tamam; Oberlies, Nicholas H.; Pearce, Cedric J.

    2015-07-30

    Ambient ionization techniques coupled to mass spectrometry have recently become prevalent in natural product research due to their ability to examine secondary metabolites in situ. Identifying, mapping, and monitoring secondary metabolites directly on an organism provides invaluable spatial and temporal details that are lost through traditional extraction processes. Most ambient ionization techniques do not collect mutually supportive data, such as chromatographic retention times and/or UV/VIS spectra, and this can limit the ability to identify certain metabolites, such as differentiating isomers. To overcome this, the droplet liquid microjunction surface sampling probe (droplet LMJ SSP) was coupled with UPLC PDA HRMS MS/MS, thus providing separation, retention times, and UV/VIS data used in traditional dereplication protocols. By capturing these mutually supportive data, the identity of secondary metabolites could be confidently and rapidly assigned in situ. Using the droplet LMJ SSP, a protocol was constructed to analyze the secondary metabolite profile of fungal cultures directly without any sample preparation. The results demonstrate that fungal cultures can be dereplicated from the Petri dish, thus identifying secondary metabolites, including isomers, and confirming them against reference standards. As a result, heat maps, similar to mass spectrometry imaging, can be used to ascertain the location and relative concentration of secondary metabolites directly on the surface and/or surroundings of a fungal culture.

  12. Rapid Method To Estimate the Presence of Secondary Metabolites in Microbial Extracts

    PubMed Central

    Higgs, Richard E.; Zahn, James A.; Gygi, Jeffrey D.; Hilton, Matthew D.

    2001-01-01

    Screening microbial secondary metabolites is an established method to identify novel biologically active molecules. Preparation of biological screening samples from microbial fermentation extracts requires growth conditions that promote synthesis of secondary metabolites and extraction procedures that capture the secondary metabolites produced. High-performance liquid chromatography (HPLC) analysis of fermentation extracts can be used to estimate the number of secondary metabolites produced by microorganisms under various growth conditions but is slow. In this study we report on a rapid (approximately 1 min per assay) surrogate measure of secondary metabolite production based on a metabolite productivity index computed from the electrospray mass spectra of samples injected directly into a spectrometer. This surrogate measure of productivity was shown to correlate with an HPLC measure of productivity with a coefficient of 0.78 for a test set of extracts from 43 actinomycetes. This rapid measure of secondary metabolite productivity may be used to identify improved cultivation and extraction conditions by analyzing and ranking large sets of extracts. The same methods may also be used to survey large collections of extracts to identify subsets of highly productive organisms for biological screening or additional study. PMID:11133468

  13. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth.

    PubMed

    Memon, Abdul Hakeem; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Rithwan, Fahim; Zhari, Salman; Saeed, Mohammed Ali Ahmed; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-09-01

    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%). PMID:27604860

  14. Bioactive Secondary Metabolites Produced by the Oak Pathogen Diplodia corticola.

    PubMed

    Masi, Marco; Maddau, Lucia; Linaldeddu, Benedetto Teodoro; Cimmino, Alessio; D'Amico, Wanda; Scanu, Bruno; Evidente, Marco; Tuzi, Angela; Evidente, Antonio

    2016-01-13

    Three new lactones and a new fatty acid ester, named sapinofuranones C and D, diplopyrone B, and diplobifuranylone C, respectively, were isolated from Diplodia corticola, together with sphaeropsidins A and C, diplopyrone, diplobifuranylones A and B, diplofuranone A, and the (S,S)-enantiomer of sapinofuranone B. Sapinofuranones C and D, diplopyrone B, and diplobifuranylone C were characterized as (5S)-5-((1,S-1,6-dihydroxyhexa-2,4-dienyl)-dihydrofuran-2-one, 4,5-dihydroxy-deca-6,8-dienoic acid methyl ester, (5S)-5-hydroxy-6-(penta-1,3-dienyl)-5,6-dihydro-pyran-2-one, and 5'-((1R)-1-hydroxyethyl)-2',5'-dihydro-2H-[2,2']bifuranyl-5-one by spectroscopic and chemical methods, respectively. The relative configuration of sapinofuranone C was assigned by X-ray diffraction analysis, whereas its absolute configuration was determined by applying the advanced Mosher's method to its 11-O-p-bromobenzoyl derivative. The same method was used to assign the absolute configuration to C-5 of diplopyrone B and to that of the hydroxyethyl of the side chain of diplobifuranylone C, respectively. The metabolites isolated were tested at 1 mg/mL on leaves of cork oak, grapevine cv. 'Cannonau', and tomato using the leaf puncture assay. They were also tested on tomato cuttings at 0.2, 0.1, and 0.05 mg/mL. Each compound was tested for zootoxic activity on Artemia salina L. larvae. The efficacy of sapinofuranone C and diplopyrone B on three plant pathogens, namely, Athelia rolfsii, Fusarium avenaceum, and Phytophthora nicotianae was also evaluated. In all phytotoxic assays only diplopyrone B was found to be active. It also showed strong inhibition on the vegetative growth of A. rolfsii and P. nicotianae. All metabolites were inactive in the assay performed for the zootoxic activity (A. salina) even at the highest concentration used (200 μg/mL). Diplopyrone B showed a promising antioomycete activity for the control of Phytophthora spp. also taking into account the absence of zootoxic activity

  15. More than anticipated - production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42.

    PubMed

    Chen, Xiao-Hua; Koumoutsi, Alexandra; Scholz, Romy; Borriss, Rainer

    2009-01-01

    The genome of environmental Bacillus amyloliquefaciens FZB42 harbors numerous gene clusters involved in synthesis of antifungal and antibacterial acting secondary metabolites. Five gene clusters, srf, bmy, fen, nrs, dhb, covering altogether 137 kb, direct non-ribosomal synthesis of the cyclic lipopeptides surfactin, bacillomycin, fengycin, an unknown peptide, and the iron siderophore bacillibactin. Bacillomycin and fengycin were shown to act against phytopathogenic fungi in a synergistic manner. Three gene clusters, mln, bae, and dif, with a total length of 199 kb were shown to direct synthesis of the antibacterial acting polyketides macrolactin, bacillaene, and difficidin. Both, non-ribosomal synthesis of cyclic lipopeptides and synthesis of polyketides are dependent on the presence of a functional sfp gene product, 4'-phosphopantetheinyl transferase, as evidenced by knockout mutation of the sfp gene resulting in complete absence of all those eight compounds. In addition, here we present evidence that a gene cluster encoding enzymes involved in synthesis and export of the antibacterial acting dipeptide bacilysin is also functional in FZB42. In summary, environmental FZB42 devoted about 340 kb, corresponding to 8.5% of its total genetic capacity, to synthesis of secondary metabolites useful to cope with other competing microorganisms present in the plant rhizosphere. PMID:18957859

  16. Bioreactor production of secondary metabolites from cell cultures of periwinkle and sandalwood.

    PubMed

    Valluri, Jagan V

    2009-01-01

    A bench-top bioreactor allowing continuous extraction of secondary metabolites is designed for Catharanthus roseus L. (G.) Don (periwinkle) and Santalum album L. (sandalwood) plant cell suspensions. Periwinkle cell cultures are exposed to biotic elicitors (Aspergillus niger, crude chitin) and abiotic elicitors (mannitol, methyl jasmonate) to induce alkaloid production. Whereas most of the biotic elicitors are effective when added on day 15 of culture, the abiotic elicitors are effective when added on day 20. The use of trans-cinnamic acid, an inhibitor of phenylalanine ammonia lyase (PAL) activity, results in significant increase in the alkaloid production of periwinkle cell cultures. Exposure of the cells to mannitol-induced osmotic stress produced marked increment in the total alkaloid production. When biotic and abiotic stress treatments are applied sequentially, an additive effect in alkaloid accumulation is observed. Although no essential oils are detected, secondary metabolites in the form of phenolics are produced by the sandalwood cell cultures in the bioreactor environment. The use of morphologic modification such as organ cultures and transformed cultures is believed to be required for both production and storage of essential oil constituents in sandalwood. The present chapter demonstrates that periwinkle and sandalwood cell suspensions could be developed and successfully cultured in a modified air-lift bioreactor. The exploitation of variant cell strains and biotransformation of added precursors can certainly improve the use of periwinkle and sandalwood cell cultures for the bioproduction of desired compounds. PMID:19521856

  17. Secondary effects of glyphosate on plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is a unique herbicide with interesting secondary effects. Unfortunately, some have assumed that the secondary effects that occur in glyphosate-susceptible plants treated with glyphosate, such as altered mineral nutrition, reduced phenolic compound production and pathogen resistance, also ...

  18. Effect of Competition on the Production and Activity of Secondary Metabolites in Aspergillus species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secondary metabolites are of intense interest to humans due to their pharmaceutical and/or toxic properties. Aspergillus species secrete these metabolites by themselves and in the presence of other fungal species. Here, we have performed co-cultivation competition assays among different Aspergillu...

  19. Secondary Metabolites and Toxins of Fusarium - What is Causing Disease Symptoms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium species produce a plethora of phytotoxic secondary metabolites. In the case of various races of Fusarium oxysporum f. sp. vasinfectum (F.o.v.) that attacks cotton, alfalfa, okra and other crops, many of these metabolites are derived from the polyketide biosynthetic pathway. The recent dis...

  20. Light and Nutrient Dependent Responses in Secondary Metabolites of Plantago lanceolata Offspring Are Due to Phenotypic Plasticity in Experimental Grasslands

    PubMed Central

    Miehe-Steier, Annegret; Roscher, Christiane; Reichelt, Michael; Gershenzon, Jonathan; Unsicker, Sybille B.

    2015-01-01

    A few studies in the past have shown that plant diversity in terms of species richness and functional composition can modify plant defense chemistry. However, it is not yet clear to what extent genetic differentiation of plant chemotypes or phenotypic plasticity in response to diversity-induced variation in growth conditions or a combination of both is responsible for this pattern. We collected seed families of ribwort plantain (Plantago lanceolata) from six-year old experimental grasslands of varying plant diversity (Jena Experiment). The offspring of these seed families was grown under standardized conditions with two levels of light and nutrients. The iridoid glycosides, catalpol and aucubin, and verbascoside, a caffeoyl phenylethanoid glycoside, were measured in roots and shoots. Although offspring of different seed families differed in the tissue concentrations of defensive metabolites, plant diversity in the mothers' environment did not explain the variation in the measured defensive metabolites of P. lanceolata offspring. However secondary metabolite levels in roots and shoots were strongly affected by light and nutrient availability. Highest concentrations of iridoid glycosides and verbascoside were found under high light conditions, and nutrient availability had positive effects on iridoid glycoside concentrations in plants grown under high light conditions. However, verbascoside concentrations decreased under high levels of nutrients irrespective of light. The data from our greenhouse study show that phenotypic plasticity in response to environmental variation rather than genetic differentiation in response to plant community diversity is responsible for variation in secondary metabolite concentrations of P. lanceolata in the six-year old communities of the grassland biodiversity experiment. Due to its large phenotypic plasticity P. lanceolata has the potential for a fast and efficient adjustment to varying environmental conditions in plant communities of

  1. Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications.

    PubMed

    Ludwig-Müller, Jutta; Jahn, Linda; Lippert, Annemarie; Püschel, Joachim; Walter, Antje

    2014-11-01

    A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties. PMID:24699436

  2. [Morphology, anatomy, ontogeny and chemical composition of inflorescences volatile secondary metabolites of Lippia alba (Verbenaceae) at three stages of development].

    PubMed

    Parra-Garcés, María Isabel; Caroprese-Araque, José Fernando; Arrieta-Prieto, Dagoberto; Stashenko, Elena

    2010-12-01

    There is an increased interest to know and scientifically validate traditional knowledge of medicinal plants. Lippia alba belongs to Verbenaceae family and has been of interest, not only because of its worldwide extensive distribution, but also for its variable use as antiviral, bactericide, citostatic, analgesic and sedative. To study this, the morphology and ontogeny of Lippia alba inflorescences and the chemical composition of its volatile secondary metabolites were analyzed during three different stages of development. Plants were collected at the experimental crop field in CENIVAM, Bucaramanga, Colombia. The inflorescence's morphology and ontogeny, and the chemical composition of volatile secondary metabolites were analyzed using a stereoscopic microscope and chromatographic and spectroscopic techniques. Fresh material corresponding to each stage was fixed in F.A.A (formol, acetic acid and alcohol), included in paraffin and cutted in transversal and longitudinal sections. Sections were stained with safranine-fastgreen, photographed and decribed. The chemical composition of volatile secondary metabolites at each ontogenic stage, was extracted by solid phase micro-extraction in the headspace mode and analyzed by gas chromatography coupled to mass spectrometry. Stage I showed a meristematic mass of cells in vegetative apex and bracts, with an outline of floral whorls. In Stage III. the stamens were adnate, epipetals and didynamous, bicarpelar and syncarpic gynoecium, with superior ovary and decurrent stigma. The main secondary metabolites detected were the bicyclosesquiphellandrene followed by carvone, limonene and trans-beta-farnesene, that constituted the 78% of the total relative amounts of compounds. Other metabolites such as beta-copaene, gamma-amorphene and cis-beta-guaiene, were reported for the first time in this study. When compared to other studies, morphological differences reported in this study are possibly related to adaptation to environmental

  3. Advances in Aspergillus secondary metabolite research in the post-genomic era

    PubMed Central

    Sanchez, James F.; Somoza, Amber D.; Keller, Nancy P.

    2015-01-01

    This review studies the impact of whole genome sequencing on Aspergillus secondary metabolite research. There has been a proliferation of many new, intriguing discoveries since sequencing data became widely available. What is more, the genomes disclosed the surprising finding that there are many more secondary metabolite biosynthetic pathways than laboratory research had suggested. Activating these pathways has been met with some success, but many more dormant genes remain to be awakened. PMID:22228366

  4. Multicomponent Analysis of the Differential Induction of Secondary Metabolite Profiles in Fungal Endophytes.

    PubMed

    González-Menéndez, Víctor; Pérez-Bonilla, Mercedes; Pérez-Victoria, Ignacio; Martín, Jesús; Muñoz, Francisca; Reyes, Fernando; Tormo, José R; Genilloud, Olga

    2016-01-01

    Small molecule histone deacetylase (HDAC) and DNA methyltransferase (DNMT) inhibitors are commonly used to perturb the production of fungal metabolites leading to the induction of the expression of silent biosynthetic pathways. Several reports have described the variable effects observed in natural product profiles in fungi treated with HDAC and DNMT inhibitors, such as enhanced chemical diversity and/or the induction of new molecules previously unknown to be produced by the strain. Fungal endophytes are known to produce a wide variety of secondary metabolites (SMs) involved in their adaptation and survival within higher plants. The plant-microbe interaction may influence the expression of some biosynthetic pathways, otherwise cryptic in these fungi when grown in vitro. The aim of this study was to setup a systematic approach to evaluate and identify the possible effects of HDAC and DNMT inhibitors on the metabolic profiles of wild type fungal endophytes, including the chemical identification and characterization of the most significant SMs induced by these epigenetic modifiers. PMID:26901184

  5. Antioxidant Secondary Metabolites in Cereals: Potential Involvement in Resistance to Fusarium and Mycotoxin Accumulation.

    PubMed

    Atanasova-Penichon, Vessela; Barreau, Christian; Richard-Forget, Florence

    2016-01-01

    Gibberella and Fusarium Ear Rot and Fusarium Head Blight are major diseases affecting European cereals. These diseases are mainly caused by fungi of the Fusarium genus, primarily Fusarium graminearum and Fusarium verticillioides. These Fusarium species pose a serious threat to food safety because of their ability to produce a wide range of mycotoxins, including type B trichothecenes and fumonisins. Many factors such as environmental, agronomic or genetic ones may contribute to high levels of accumulation of mycotoxins in the grain and there is an urgent need to implement efficient and sustainable management strategies to reduce mycotoxin contamination. Actually, fungicides are not fully efficient to control the mycotoxin risk. In addition, because of harmful effects on human health and environment, their use should be seriously restricted in the near future. To durably solve the problem of mycotoxin accumulation, the breeding of tolerant genotypes is one of the most promising strategies for cereals. A deeper understanding of the molecular mechanisms of plant resistance to both Fusarium and mycotoxin contamination will shed light on plant-pathogen interactions and provide relevant information for improving breeding programs. Resistance to Fusarium depends on the plant ability in preventing initial infection and containing the development of the toxigenic fungi while resistance to mycotoxin contamination is also related to the capacity of plant tissues in reducing mycotoxin accumulation. This capacity can result from two mechanisms: metabolic transformation of the toxin into less toxic compounds and inhibition of toxin biosynthesis. This last mechanism involves host metabolites able to interfere with mycotoxin biosynthesis. This review aims at gathering the latest scientific advances that support the contribution of grain antioxidant secondary metabolites to the mechanisms of plant resistance to Fusarium and mycotoxin accumulation. PMID:27148243

  6. Antioxidant Secondary Metabolites in Cereals: Potential Involvement in Resistance to Fusarium and Mycotoxin Accumulation

    PubMed Central

    Atanasova-Penichon, Vessela; Barreau, Christian; Richard-Forget, Florence

    2016-01-01

    Gibberella and Fusarium Ear Rot and Fusarium Head Blight are major diseases affecting European cereals. These diseases are mainly caused by fungi of the Fusarium genus, primarily Fusarium graminearum and Fusarium verticillioides. These Fusarium species pose a serious threat to food safety because of their ability to produce a wide range of mycotoxins, including type B trichothecenes and fumonisins. Many factors such as environmental, agronomic or genetic ones may contribute to high levels of accumulation of mycotoxins in the grain and there is an urgent need to implement efficient and sustainable management strategies to reduce mycotoxin contamination. Actually, fungicides are not fully efficient to control the mycotoxin risk. In addition, because of harmful effects on human health and environment, their use should be seriously restricted in the near future. To durably solve the problem of mycotoxin accumulation, the breeding of tolerant genotypes is one of the most promising strategies for cereals. A deeper understanding of the molecular mechanisms of plant resistance to both Fusarium and mycotoxin contamination will shed light on plant-pathogen interactions and provide relevant information for improving breeding programs. Resistance to Fusarium depends on the plant ability in preventing initial infection and containing the development of the toxigenic fungi while resistance to mycotoxin contamination is also related to the capacity of plant tissues in reducing mycotoxin accumulation. This capacity can result from two mechanisms: metabolic transformation of the toxin into less toxic compounds and inhibition of toxin biosynthesis. This last mechanism involves host metabolites able to interfere with mycotoxin biosynthesis. This review aims at gathering the latest scientific advances that support the contribution of grain antioxidant secondary metabolites to the mechanisms of plant resistance to Fusarium and mycotoxin accumulation. PMID:27148243

  7. Orthogonal Analysis Underscores the Relevance of Primary and Secondary Metabolites in Licorice.

    PubMed

    Simmler, Charlotte; Nikolić, Dejan; Lankin, David C; Yu, Yang; Friesen, J Brent; van Breemen, Richard B; Lecomte, Alicia; Le Quémener, Céline; Audo, Grégoire; Pauli, Guido F

    2014-08-22

    Licorice botanicals are produced from the roots of Glycyrrhiza species (Fabaceae), encompassing metabolites of both plant and rhizobial origin. The composition in both primary and secondary metabolites (1°/2°Ms) reflects the physiologic state of the plant at harvest. Interestingly, the relative abundance of 1°Ms vs 2°Ms in licorice extracts remains undetermined. A centrifugal partition chromatography (CPC) method was developed to purify liquiritin derivatives that represent major bioactive 2°Ms and to concentrate the polar 1°Ms from the crude extract of Glycyrrhiza uralensis. One objective was to determine the purity of the generated reference materials by orthogonal UHPLC-UV/LC-MS and qHNMR analyses. The other objectives were to evaluate the presence of 1°Ms in purified 2°Ms and define their mass balance in a crude botanical extract. Whereas most impurities could be assigned to well-known 1°Ms, p-hydroxybenzylmalonic acid, a new natural tyrosine analogue, was also identified. Additionally, in the most polar fraction, sucrose and proline represented 93% (w/w) of all qHNMR-quantified 1°Ms. Compared to the 2°Ms, accounting for 11.9% by UHPLC-UV, 1°Ms quantified by qHNMR defined an additional 74.8% of G. uralensis extract. The combined orthogonal methods enable the mass balance characterization of licorice extracts and highlight the relevance of 1°Ms, and accompanying metabolites, for botanical quality control. PMID:25080313

  8. Correlation of Deoxynivalenol Accumulation in Fusarium-Infected Winter and Spring Wheat Cultivars with Secondary Metabolites at Different Growth Stages.

    PubMed

    Etzerodt, Thomas; Gislum, Rene; Laursen, Bente B; Heinrichson, Kirsten; Gregersen, Per L; Jørgensen, Lise N; Fomsgaard, Inge S

    2016-06-01

    Fusarium infection in wheat causes Fusarium head blight, resulting in yield losses and contamination of grains with trichothecenes. Some plant secondary metabolites inhibit accumulation of trichothecenes. Eighteen Fusarium infected wheat cultivars were harvested at five time points and analyzed for the trichothecene deoxynivalenol (DON) and 38 wheat secondary metabolites (benzoxazinoids, phenolic acids, carotenoids, and flavonoids). Multivariate analysis showed that harvest time strongly impacted the content of secondary metabolites, more distinctly for winter wheat than spring wheat. The benzoxazinoid 2-β-glucopyranoside-2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA-glc), α-tocopherol, and the flavonoids homoorientin and orientin were identified as potential inhibitors of DON accumulation. Several phenolic acids, lutein and β-carotene also affected DON accumulation, but the effect varied for the two wheat types. The results could form a basis for choosing wheat cultivars using metabolite profiling as a marker for selecting wheat cultivars with improved resistance against Fusarium head blight and accumulation of trichothecene toxins in wheat heads. PMID:27195655

  9. Dereplicating and Spatial Mapping of Secondary Metabolites from Fungal Cultures in Situ

    PubMed Central

    2015-01-01

    Ambient ionization mass spectrometry techniques have recently become prevalent in natural product research due to their ability to examine secondary metabolites in situ. These techniques retain invaluable spatial and temporal details that are lost through traditional extraction processes. However, most ambient ionization techniques do not collect mutually supportive data, such as chromatographic retention times and/or UV/vis spectra, and this can limit the ability to identify certain metabolites, such as differentiating isomers. To overcome this, the droplet–liquid microjunction–surface sampling probe (droplet–LMJ–SSP) was coupled with UPLC–PDA–HRMS–MS/MS, thus providing separation, retention times, MS data, and UV/vis data used in traditional dereplication protocols. By capturing these mutually supportive data, the identity of secondary metabolites can be confidently and rapidly assigned in situ. Using the droplet–LMJ–SSP, a protocol was constructed to analyze the secondary metabolite profile of fungal cultures without any sample preparation. The results demonstrate that fungal cultures can be dereplicated from the Petri dish, thus identifying secondary metabolites, including isomers, and confirming them against reference standards. Furthermore, heat maps, similar to mass spectrometry imaging, can be used to ascertain the location and relative concentration of secondary metabolites directly on the surface and/or surroundings of a fungal culture. PMID:26192135

  10. Dereplicating and Spatial Mapping of Secondary Metabolites from Fungal Cultures in Situ.

    PubMed

    Sica, Vincent P; Raja, Huzefa A; El-Elimat, Tamam; Kertesz, Vilmos; Van Berkel, Gary J; Pearce, Cedric J; Oberlies, Nicholas H

    2015-08-28

    Ambient ionization mass spectrometry techniques have recently become prevalent in natural product research due to their ability to examine secondary metabolites in situ. These techniques retain invaluable spatial and temporal details that are lost through traditional extraction processes. However, most ambient ionization techniques do not collect mutually supportive data, such as chromatographic retention times and/or UV/vis spectra, and this can limit the ability to identify certain metabolites, such as differentiating isomers. To overcome this, the droplet-liquid microjunction-surface sampling probe (droplet-LMJ-SSP) was coupled with UPLC-PDA-HRMS-MS/MS, thus providing separation, retention times, MS data, and UV/vis data used in traditional dereplication protocols. By capturing these mutually supportive data, the identity of secondary metabolites can be confidently and rapidly assigned in situ. Using the droplet-LMJ-SSP, a protocol was constructed to analyze the secondary metabolite profile of fungal cultures without any sample preparation. The results demonstrate that fungal cultures can be dereplicated from the Petri dish, thus identifying secondary metabolites, including isomers, and confirming them against reference standards. Furthermore, heat maps, similar to mass spectrometry imaging, can be used to ascertain the location and relative concentration of secondary metabolites directly on the surface and/or surroundings of a fungal culture. PMID:26192135

  11. Accumulation of secondary metabolites in healthy and diseased barley, grown under future climate levels of CO2, ozone and temperature.

    PubMed

    Mikkelsen, B L; Olsen, C E; Lyngkjær, M F

    2015-10-01

    Plants produce secondary metabolites promoting adaptation to changes in the environment and challenges by pathogenic microorganisms. A future climate with increased temperature and CO2 and ozone levels will likely alter the chemical composition of plants and thereby plant-pathogen interactions. To investigate this, barley was grown at elevated CO2, temperature and ozone levels as single factors or in combination resembling future climatic conditions. Increased basal resistance to the powdery mildew fungus was observed when barley was grown under elevated CO2, temperature and ozone as single factors. However, this effect was neutralized in the combination treatments. Twenty-five secondary metabolites were putatively identified in healthy and diseased barley leaves, including phenylpropanoids, phenolamides and hydroxynitrile glucosides. Accumulation of the compounds was affected by the climatic growth conditions. Especially elevated temperature, but also ozone, showed a strong impact on accumulation of many compounds, suggesting that these metabolites play a role in adaptation to unfavorable growth conditions. Many compounds were found to increase in powdery mildew diseased leaves, in correlation with a strong and specific influence of the climatic growth conditions. The observed disease phenotypes could not be explained by accumulation of single compounds. However, decreased accumulation of the powdery mildew associated defense compound p-coumaroylhydroxyagmatine could be implicated in the increased disease susceptibility observed when barley was grown under combination of elevated CO2, temperature and ozone. The accumulation pattern of the compounds in both healthy and diseased leaves from barley grown in the combination treatments could not be deduced from the individual single factor treatments. This highlights the complex role and regulation of secondary metabolites in plants' adaptation to unfavorable growth conditions. PMID:26343414

  12. Secondary metabolite credentials of Evolvulus alsinoides by high performance thin layer chromatography (HPTLC).

    PubMed

    Gomathi, Duraisamy; Kalaiselvi, Manokaran; Ravikumar, Ganesan; Sophia, Dominic; Gopalakrishnan, Velliyur Kanniappan; Uma, Chandrasekar

    2012-07-01

    Plants and plant-based products are the bases of many modern pharmaceuticals that are current in use today for various diseases. The aim of the study was to investigate the biochemical constituents and high performance thin layer chromatography (HPTLC) finger printing of the ethanolic extract of Evolvulus alsinoides. Phytochemical screening was done by standard procedures and HPTLC method was also established to analyze alkaloids, flavonoids and phenolic compounds from the ethanolic extract of Evolvulus alsinoides. Preliminary phytochemical screening showed that ethanol extracted more secondary metabolites than other solvents. HPTLC fingerprinting analysis showed the presence of various alkaloids, flavonoids and phenols (quercetin) in the ethanolic extract. It can be concluded that Evolvulus alsinoides may serve as a source of potent antioxidants that may be used in the prevention of various diseases such as cancer, diabetes and cardiovascular diseases due to the presence of phenolic compounds. HPTLC finger print of Evolvulus alsinoides may be useful in the differentiation of the species from adulterants and act as a biochemical marker for this medicinally important plant in the pharmaceutical industry and plant systematic studies. PMID:23554763

  13. Secondary metabolite credentials of Evolvulus alsinoides by high performance thin layer chromatography (HPTLC)

    PubMed Central

    Gomathi, Duraisamy; Kalaiselvi, Manokaran; Ravikumar, Ganesan; Sophia, Dominic; Gopalakrishnan, Velliyur Kanniappan; Uma, Chandrasekar

    2012-01-01

    Plants and plant-based products are the bases of many modern pharmaceuticals that are current in use today for various diseases. The aim of the study was to investigate the biochemical constituents and high performance thin layer chromatography (HPTLC) finger printing of the ethanolic extract of Evolvulus alsinoides. Phytochemical screening was done by standard procedures and HPTLC method was also established to analyze alkaloids, flavonoids and phenolic compounds from the ethanolic extract of Evolvulus alsinoides. Preliminary phytochemical screening showed that ethanol extracted more secondary metabolites than other solvents. HPTLC fingerprinting analysis showed the presence of various alkaloids, flavonoids and phenols (quercetin) in the ethanolic extract. It can be concluded that Evolvulus alsinoides may serve as a source of potent antioxidants that may be used in the prevention of various diseases such as cancer, diabetes and cardiovascular diseases due to the presence of phenolic compounds. HPTLC finger print of Evolvulus alsinoides may be useful in the differentiation of the species from adulterants and act as a biochemical marker for this medicinally important plant in the pharmaceutical industry and plant systematic studies. PMID:23554763

  14. Sources of secondary metabolite variation in Dysidea avara (Porifera: Demospongiae): the importance of having good neighbors.

    PubMed

    De Caralt, Sonia; Bry, Delphine; Bontemps, Nataly; Turon, Xavier; Uriz, Maria-Jesus; Banaigs, Bernard

    2013-02-01

    Several studies report temporal, geographical, and intra-individual variation in sponge metabolite yields. However, the internal and/or external factors that regulate the metabolite production remain poorly understood. Dysidea avara is a demosponge that produces sesquiterpenoids (avarol and derivatives) with interesting medical properties, which has prompted addressed studies to obtain enough amounts of these metabolites for research on drug discovery. Within this framework, specimens of Dysidea avara from a population of the Northwest Mediterranean were sampled and their secondary metabolites quantified to assess their variability and the possible relationship with external (seasonality, interactions with neighbors) and internal (reproductive stages) factors. The results show a variation of the amount of both avarol and its monoacetate derivative with time, with no clear relationship with seawater temperature. A trade-off with sponge reproduction was not found either. However, our results showed for the first time that sponges are able to increase production or accumulation of secondary metabolites in their peripheral zone depending on the nature of their neighbors. This finding could explain part of the high variability in the amount of secondary metabolites usually found in chemical ecology studies on sponges and opens new biotechnological approaches to enhance the metabolite yield in sponge cultures. PMID:23429282

  15. Sources of Secondary Metabolite Variation in Dysidea avara (Porifera: Demospongiae): The Importance of Having Good Neighbors

    PubMed Central

    De Caralt, Sonia; Bry, Delphine; Bontemps, Nataly; Turon, Xavier; Uriz, Maria-Jesus; Banaigs, Bernard

    2013-01-01

    Several studies report temporal, geographical, and intra-individual variation in sponge metabolite yields. However, the internal and/or external factors that regulate the metabolite production remain poorly understood. Dysidea avara is a demosponge that produces sesquiterpenoids (avarol and derivatives) with interesting medical properties, which has prompted addressed studies to obtain enough amounts of these metabolites for research on drug discovery. Within this framework, specimens of Dysidea avara from apopulation of the Northwest Mediterranean were sampled and their secondary metabolites quantified to assess their variability and the possible relationship with external (seasonality, interactions with neighbors) and internal (reproductive stages) factors. The results show a variation of the amount of both avarol and its monoacetate derivative with time, with no clear relationship with seawater temperature. A trade-off with sponge reproduction was not found either. However, our results showed for the first time that sponges are able to increase production or accumulation of secondary metabolites in their peripheral zone depending on the nature of their neighbors. This finding could explain part of the high variability in the amount of secondary metabolites usually found in chemical ecology studies on sponges and opens new biotechnological approaches to enhance the metabolite yield in sponge cultures. PMID:23429282

  16. Disruption of Adenosine-5′-Phosphosulfate Kinase in Arabidopsis Reduces Levels of Sulfated Secondary Metabolites[W

    PubMed Central

    Mugford, Sarah G.; Yoshimoto, Naoko; Reichelt, Michael; Wirtz, Markus; Hill, Lionel; Mugford, Sam T.; Nakazato, Yoshimi; Noji, Masaaki; Takahashi, Hideki; Kramell, Robert; Gigolashvili, Tamara; Flügge, Ulf-Ingo; Wasternack, Claus; Gershenzon, Jonathan; Hell, Rüdiger; Saito, Kazuki; Kopriva, Stanislav

    2009-01-01

    Plants can metabolize sulfate by two pathways, which branch at the level of adenosine 5′-phosphosulfate (APS). APS can be reduced to sulfide and incorporated into Cys in the primary sulfate assimilation pathway or phosphorylated by APS kinase to 3′-phosphoadenosine 5′-phosphosulfate, which is the activated sulfate form for sulfation reactions. To assess to what extent APS kinase regulates accumulation of sulfated compounds, we analyzed the corresponding gene family in Arabidopsis thaliana. Analysis of T-DNA insertion knockout lines for each of the four isoforms did not reveal any phenotypical alterations. However, when all six combinations of double mutants were compared, the apk1 apk2 plants were significantly smaller than wild-type plants. The levels of glucosinolates, a major class of sulfated secondary metabolites, and the sulfated 12-hydroxyjasmonate were reduced approximately fivefold in apk1 apk2 plants. Although auxin levels were increased in the apk1 apk2 mutants, as is the case for most plants with compromised glucosinolate synthesis, typical high auxin phenotypes were not observed. The reduction in glucosinolates resulted in increased transcript levels for genes involved in glucosinolate biosynthesis and accumulation of desulfated precursors. It also led to great alterations in sulfur metabolism: the levels of sulfate and thiols increased in the apk1 apk2 plants. The data indicate that the APK1 and APK2 isoforms of APS kinase play a major role in the synthesis of secondary sulfated metabolites and are required for normal growth rates. PMID:19304933

  17. Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): Chemical diversity, bioactivity, and ecological function.

    PubMed

    Zidorn, Christian

    2016-04-01

    Seagrasses are the only higher plants living in fully marine environments; they play a significant role in coastal ecosystems. Seagrasses inhabit the coastal shelves of all continents except Antarctica and can grow in depths of up to 90m. Because of their eminent ecological importance, innumerous studies have been dedicated to seagrasses and their ecology. However, the phytochemistry has not been equally well investigated yet and many of the existing studies in chemical ecology are only investigating the chemistry at the level of compound classes, e.g. phenolics, and not at the level of chemically defined metabolites. In the present review, the existing literature on secondary metabolites of seagrasses, their known source seagrasses, their bioactivity, and ecological function are compiled and critically assessed. Moreover, research gaps are highlighted and avenues for future research are discussed. Currently, a total of 154 chemically defined natural products have been reported from the about 70 seagrass species known worldwide. Compounds reported include simple phenols derivatives (four compounds), phenylmethane derivatives (14 compounds), phenylethane derivatives (four compounds), phenylpropane derivatives including their esters and dimers (20 compounds), chalkones (four compounds), flavonoids including catechins (57 compounds), phenylheptanoids (four compounds), one monoterpene derivative, one sesquiterpene, diterpenoids (13 compounds), steroids (31 compounds), and one alkaloid. Most of the existing bioactivity studies of seagrass metabolites and extracts have been directed to potential cytotoxic, antimicrobial, or antimacrofouling activity. Antimicrobial studies have been performed towards panels of both human pathogens and ecologically relevant pathogens. In the antimacrofouling studies, investigations of the potential of zosteric acid from the genus Zostera are the most numerous and have yielded so far the most interesting results. Studies on the chemical

  18. Host use of a specialist lichen-feeder: dealing with lichen secondary metabolites.

    PubMed

    Pöykkö, Heikki; Backor, Martin; Bencúrová, Elena; Molcanová, Viktoria; Backorová, Miriam; Hyvärinen, Marko

    2010-10-01

    Host use by herbivores is largely determined by host properties such as nutrient content and chemical defence against foragers. The impacts of these attributes on a herbivore may largely depend on its life cycle stage. Lichen species are known to differ in nutritional quality and level of chemical defence and, consequently, vary as fodder for herbivores. The aim of this study was to explore the impact of several lichen species and the presence of their secondary metabolites on their use as hosts by a specialist lichen-feeder, Cleorodes lichenaria. This study also addressed, for the first time, how a specialist lichen-feeder deals with different lichen secondary metabolites. In the beginning of their development, larvae grew better on Xanthoria parietina than on the other host lichens, whereas older larvae grew best on Ramalina fraxinea. Lichen secondary chemicals in R. fraxinea and Parmelia sulcata hindered larval growth in the beginning but after 75 days lichen secondary chemicals had no impact on the mass of larvae. Physodic acids in Hypogymnia physodes were lethal to larvae. In general, larvae metabolized 70-95% of ingested lichen secondary chemicals and the rest of these were excreted in frass. Lichen secondary metabolites in P. sulcata restrict and in H. physodes prevent their use as a host for C. lichenaria larvae. Our main finding, the ability of larvae to metabolize several lichen secondary metabolites, indicates digestive adaptation to these chemicals. No signs of sequestration of these chemicals were found. PMID:20585810

  19. Allocation of secondary metabolites, photosynthetic capacity, and antioxidant activity of Kacip Fatimah (Labisia pumila Benth) in response to CO2 and light intensity.

    PubMed

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E; Karimi, Ehsan; Ghasemzadeh, Ali

    2014-01-01

    A split plot 3 by 4 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites, soluble sugar, phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity, leaf gas exchange, chlorophyll content, antioxidant activity (DPPH), and lipid peroxidation under three levels of CO2 (400, 800, and 1200 μ mol/mol) and four levels of light intensity (225, 500, 625, and 900 μ mol/m(2)/s) over 15 weeks in Labisia pumila. The production of plant secondary metabolites, sugar, chlorophyll content, antioxidant activity, and malondialdehyde content was influenced by the interactions between CO2 and irradiance. The highest accumulation of secondary metabolites, sugar, maliondialdehyde, and DPPH activity was observed under CO2 at 1200 μ mol/mol + light intensity at 225 μ mol/m(2)/s. Meanwhile, at 400 μ mol/mol CO2 + 900 μ mol/m(2)/s light intensity the production of chlorophyll and maliondialdehyde content was the highest. As CO2 levels increased from 400 to 1200 μ mol/mol the photosynthesis, stomatal conductance, f v /f m (maximum efficiency of photosystem II), and PAL activity were enhanced. The production of secondary metabolites displayed a significant negative relationship with maliondialdehyde indicating lowered oxidative stress under high CO2 and low irradiance improved the production of plant secondary metabolites that simultaneously enhanced the antioxidant activity (DPPH), thus improving the medicinal value of Labisia pumila under this condition. PMID:24683336

  20. Allocation of Secondary Metabolites, Photosynthetic Capacity, and Antioxidant Activity of Kacip Fatimah (Labisia pumila Benth) in Response to CO2 and Light Intensity

    PubMed Central

    Jaafar, Hawa Z. E.; Karimi, Ehsan; Ghasemzadeh, Ali

    2014-01-01

    A split plot 3 by 4 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites, soluble sugar, phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity, leaf gas exchange, chlorophyll content, antioxidant activity (DPPH), and lipid peroxidation under three levels of CO2 (400, 800, and 1200 μmol/mol) and four levels of light intensity (225, 500, 625, and 900 μmol/m2/s) over 15 weeks in Labisia pumila. The production of plant secondary metabolites, sugar, chlorophyll content, antioxidant activity, and malondialdehyde content was influenced by the interactions between CO2 and irradiance. The highest accumulation of secondary metabolites, sugar, maliondialdehyde, and DPPH activity was observed under CO2 at 1200 μmol/mol + light intensity at 225 μmol/m2/s. Meanwhile, at 400 μmol/mol CO2 + 900 μmol/m2/s light intensity the production of chlorophyll and maliondialdehyde content was the highest. As CO2 levels increased from 400 to 1200 μmol/mol the photosynthesis, stomatal conductance, fv/fm (maximum efficiency of photosystem II), and PAL activity were enhanced. The production of secondary metabolites displayed a significant negative relationship with maliondialdehyde indicating lowered oxidative stress under high CO2 and low irradiance improved the production of plant secondary metabolites that simultaneously enhanced the antioxidant activity (DPPH), thus improving the medicinal value of Labisia pumila under this condition. PMID:24683336

  1. Metabolite-based genome-wide association studies in plants.

    PubMed

    Luo, Jie

    2015-04-01

    The plant metabolome is the readout of plant physiological status and is regarded as the bridge between the genome and the phenome of plants. Unraveling the natural variation and the underlying genetic basis of plant metabolism has received increasing interest from plant biologists. Enabled by the recent advances in high-throughput profiling and genotyping technologies, metabolite-based genome-wide association study (mGWAS) has emerged as a powerful alternative forward genetics strategy to dissect the genetic and biochemical bases of metabolism in model and crop plants. In this review, recent progress and applications of mGWAS in understanding the genetic control of plant metabolism and in interactive functional genomics and metabolomics are presented. Further directions and perspectives of mGWAS in plants are also discussed. PMID:25637954

  2. Fungal secondary metabolite dynamics in fungus–grazer interactions: novel insights and unanswered questions

    PubMed Central

    Rohlfs, Marko

    2015-01-01

    In response to fungivore grazing fungi are assumed to have evolved secondary metabolite-based defense mechanisms that harm and repel grazers, and hence provide a benefit to the metabolite producer. However, since research into the ecological meaning of highly diverse fungal secondary metabolites is still in its infancy, many central questions still remain. Which components of the enormous metabolite diversity of fungi act as direct chemical defense mechanisms against grazers? Is the proposed chemical defense of fungi induced by grazer attack? Which role do volatile compounds play in communicating noxiousness to grazers? What is the relative impact of grazers and that of interactions with competing microbes on the evolution of fungal secondary metabolism? Here, I briefly summarize and discuss the results of the very few studies that have tried to tackle some of these questions by (i) using secondary metabolite mutant fungi in controlled experiments with grazers, and by (ii) investigating fungal secondary metabolism as a flexible means to adapt to grazer-rich niches. PMID:25628619

  3. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ.

    PubMed

    Sturtevant, Drew; Lee, Young-Jin; Chapman, Kent D

    2016-02-01

    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. It is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding to metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation. PMID:26613199

  4. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ

    DOE PAGESBeta

    Sturtevant, Drew; Lee, Young -Jin; Chapman, Kent D.

    2015-11-22

    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. Furthermore, it is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding tomore » metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.« less

  5. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom

    PubMed Central

    Penn, Kevin; Wang, Jia; Fernando, Samodha C; Thompson, Janelle R

    2014-01-01

    Cyanobacterial harmful algal blooms (cyanoHABs) appear to be increasing in frequency on a global scale. The Cyanobacteria in blooms can produce toxic secondary metabolites that make freshwater dangerous for drinking and recreation. To characterize microbial activities in a cyanoHAB, transcripts from a eutrophic freshwater reservoir in Singapore were sequenced for six samples collected over one day-night period. Transcripts from the Cyanobacterium Microcystis dominated all samples and were accompanied by at least 533 genera primarily from the Cyanobacteria, Proteobacteria, Bacteroidetes and Actinobacteria. Within the Microcystis population, abundant transcripts were from genes for buoyancy, photosynthesis and synthesis of the toxin microviridin, suggesting that these are necessary for competitive dominance in the Reservoir. During the day, Microcystis transcripts were enriched in photosynthesis and energy metabolism while at night enriched pathways included DNA replication and repair and toxin biosynthesis. Microcystis was the dominant source of transcripts from polyketide and non-ribosomal peptide synthase (PKS and NRPS, respectively) gene clusters. Unexpectedly, expression of all PKS/NRPS gene clusters, including for the toxins microcystin and aeruginosin, occurred throughout the day-night cycle. The most highly expressed PKS/NRPS gene cluster from Microcystis is not associated with any known product. The four most abundant phyla in the reservoir were enriched in different functions, including photosynthesis (Cyanobacteria), breakdown of complex organic molecules (Proteobacteria), glycan metabolism (Bacteroidetes) and breakdown of plant carbohydrates, such as cellobiose (Actinobacteria). These results provide the first estimate of secondary metabolite gene expression, functional partitioning and functional interplay in a freshwater cyanoHAB. PMID:24646695

  6. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom.

    PubMed

    Penn, Kevin; Wang, Jia; Fernando, Samodha C; Thompson, Janelle R

    2014-09-01

    Cyanobacterial harmful algal blooms (cyanoHABs) appear to be increasing in frequency on a global scale. The Cyanobacteria in blooms can produce toxic secondary metabolites that make freshwater dangerous for drinking and recreation. To characterize microbial activities in a cyanoHAB, transcripts from a eutrophic freshwater reservoir in Singapore were sequenced for six samples collected over one day-night period. Transcripts from the Cyanobacterium Microcystis dominated all samples and were accompanied by at least 533 genera primarily from the Cyanobacteria, Proteobacteria, Bacteroidetes and Actinobacteria. Within the Microcystis population, abundant transcripts were from genes for buoyancy, photosynthesis and synthesis of the toxin microviridin, suggesting that these are necessary for competitive dominance in the Reservoir. During the day, Microcystis transcripts were enriched in photosynthesis and energy metabolism while at night enriched pathways included DNA replication and repair and toxin biosynthesis. Microcystis was the dominant source of transcripts from polyketide and non-ribosomal peptide synthase (PKS and NRPS, respectively) gene clusters. Unexpectedly, expression of all PKS/NRPS gene clusters, including for the toxins microcystin and aeruginosin, occurred throughout the day-night cycle. The most highly expressed PKS/NRPS gene cluster from Microcystis is not associated with any known product. The four most abundant phyla in the reservoir were enriched in different functions, including photosynthesis (Cyanobacteria), breakdown of complex organic molecules (Proteobacteria), glycan metabolism (Bacteroidetes) and breakdown of plant carbohydrates, such as cellobiose (Actinobacteria). These results provide the first estimate of secondary metabolite gene expression, functional partitioning and functional interplay in a freshwater cyanoHAB. PMID:24646695

  7. Effects of seaweed extracts and secondary metabolites on feeding by the herbivorous surgeonfish Naso lituratus

    NASA Astrophysics Data System (ADS)

    Meyer, K. D.; Paul, V. J.; Sanger, H. R.; Nelson, S. G.

    1994-05-01

    We examined 22 species of algae and two species of seagrasses from coral reef habitats around Guam to determine if they possessed chemical defenses against the acanthurid Naso lituratus. Whole plants (18 species) were offered to determine whether they were preferred or avoided by N. lituratus in the laboratory. Organic extracts of 15 algae and one seagrass were applied to palatable seaweeds and offered to N. lituratus in the laboratory to determine if the seaweeds were chemically defended. Extracts that deterred feeding were further fractionated if sufficient amounts were available, and the fractions and associated pure compounds were tested in similar feeding assays. N. lituratus was significantly deterred from feeding by crude extracts from five different species of algae: Avrainvillea obscura, Bryopsis pennata, grazed Halimeda macroloba, Neomeris annulata, and Portieria (=Desmia) hornemannii. The pure compounds avrainvilleol from A. obseura, ochtodene from P. hornemannii, one fraction and one brominated sesquiterpene from N. annulata, and two fractions from T. expeditionis also deterred feeding. These results, together with previous work, suggest that tropical herbivorous fishes differ in their responses to plant chemistry, and this variability precludes broad generalization about the effects of marine plant secondary metabolites on herbivorous fishes.

  8. Plants' Metabolites as Potential Antiobesity Agents

    PubMed Central

    Gooda Sahib, Najla; Saari, Nazamid; Ismail, Amin; Khatib, Alfi; Mahomoodally, Fawzi; Abdul Hamid, Azizah

    2012-01-01

    Obesity and obesity-related complications are on the increase both in the developed and developing world. Since existing pharmaceuticals fail to come up with long-term solutions to address this issue, there is an ever-pressing need to find and develop new drugs and alternatives. Natural products, particularly medicinal plants, are believed to harbor potential antiobesity agents that can act through various mechanisms either by preventing weight gain or promoting weight loss amongst others. The inhibition of key lipid and carbohydrate hydrolyzing and metabolizing enzymes, disruption of adipogenesis, and modulation of its factors or appetite suppression are some of the plethora of targeted approaches to probe the antiobesity potential of medicinal plants. A new technology such as metabolomics, which deals with the study of the whole metabolome, has been identified to be a promising technique to probe the progression of diseases, elucidate their pathologies, and assess the effects of natural health products on certain pathological conditions. This has been applied to drug research, bone health, and to a limited extent to obesity research. This paper thus endeavors to give an overview of those plants, which have been reported to have antiobesity effects and highlight the potential and relevance of metabolomics in obesity research. PMID:22666121

  9. Secondary succession: insect-plant relationships

    SciTech Connect

    Brown, V.K.

    1984-12-01

    Botanists have dominated the study of secondary succession, and as a result, models and theories have focused on plants. Recent work, however, has revealed several complex relationships between plants and insects during succession, including adaptations of life-cycle strategies. Furthermore, insect herbivores play a key role in the course and rate of plant succession.

  10. Chromatographic methods for metabolite profiling of virus- and phytoplasma-infected plants of Echinacea purpurea.

    PubMed

    Pellati, Federica; Epifano, Francesco; Contaldo, Nicoletta; Orlandini, Giulia; Cavicchi, Lisa; Genovese, Salvatore; Bertelli, Davide; Benvenuti, Stefania; Curini, Massimo; Bertaccini, Assunta; Bellardi, Maria Grazia

    2011-10-12

    This study was focused on the effects of virus and phytoplasma infections on the production of Echinacea purpurea (L.) Moench secondary metabolites, such as caffeic acid derivatives, alkamides, and essential oil. The identification of caffeic acid derivatives and alkamides was carried out by means of high-performance liquid chromatography-diode array detection (HPLC-DAD), HPLC-electrospray ionization-mass spectrometry (ESI-MS), and MS(2). Quantitative analysis of these compounds was carried out using HPLC-DAD. The results indicated that the presence of the two pathogens significantly decreases (P < 0.05) the content of cichoric acid, the main caffeic acid derivative. Regarding the main alkamide, dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamide, a significant decrease (P < 0.05) in the content of this secondary metabolite was observed in virus-infected plants in comparison with healthy plants, while in the phytoplasma-infected sample the variation of this secondary metabolite was not appreciable. The % relative area of the E/Z isomers of this alkamide was also found to change in infected samples. The gas chromatography (GC) and GC-MS analysis of E. purpurea essential oil enabled the identification of 30 compounds. The main significant differences (P < 0.05) in the semiquantitative composition were observed for three components: limonene, cis-verbenol, and verbenone. The results indicate that the presence of virus and phytoplasma has an appreciable influence on the content of E. purpurea secondary metabolites, which is an important issue in defining the commercial quality, market value, and therapeutic efficacy of this herbal drug. PMID:21830789

  11. DoBISCUIT: a database of secondary metabolite biosynthetic gene clusters

    PubMed Central

    Ichikawa, Natsuko; Sasagawa, Machi; Yamamoto, Mika; Komaki, Hisayuki; Yoshida, Yumi; Yamazaki, Shuji; Fujita, Nobuyuki

    2013-01-01

    This article introduces DoBISCUIT (Database of BIoSynthesis clusters CUrated and InTegrated, http://www.bio.nite.go.jp/pks/), a literature-based, manually curated database of gene clusters for secondary metabolite biosynthesis. Bacterial secondary metabolites often show pharmacologically important activities and can serve as lead compounds and/or candidates for drug development. Biosynthesis of each secondary metabolite is catalyzed by a number of enzymes, usually encoded by a gene cluster. Although many scientific papers describe such gene clusters, the gene information is not always described in a comprehensive manner and the related information is rarely integrated. DoBISCUIT integrates the latest literature information and provides standardized gene/module/domain descriptions related to the gene clusters. PMID:23185043

  12. Chemosensation of bacterial secondary metabolites modulates neuroendocrine signaling and behavior of C. elegans.

    PubMed

    Meisel, Joshua D; Panda, Oishika; Mahanti, Parag; Schroeder, Frank C; Kim, Dennis H

    2014-10-01

    Discrimination between pathogenic and beneficial microbes is essential for host organism immunity and homeostasis. Here, we show that chemosensory detection of two secondary metabolites produced by Pseudomonas aeruginosa modulates a neuroendocrine signaling pathway that promotes avoidance behavior in the simple animal host Caenorhabditis elegans. Secondary metabolites phenazine-1-carboxamide and pyochelin activate a G-protein-signaling pathway in the ASJ chemosensory neuron pair that induces expression of the neuromodulator DAF-7/TGF-β. DAF-7, in turn, activates a canonical TGF-β signaling pathway in adjacent interneurons to modulate aerotaxis behavior and promote avoidance of pathogenic P. aeruginosa. Our data provide a chemical, genetic, and neuronal basis for how the behavior and physiology of a simple animal host can be modified by the microbial environment and suggest that secondary metabolites produced by microbes may provide environmental cues that contribute to pathogen recognition and host survival. PMID:25303524

  13. Evaluation of culture media for the production of secondary metabolites in a natural products screening program

    PubMed Central

    2013-01-01

    Variation in the growing environment can have significant impacts on the quantity and diversity of fungal secondary metabolites. In the industrial setting, optimization of growing conditions can lead to significantly increased production of a compound of interest. Such optimization becomes challenging in a drug-discovery screening situation, as the ideal conditions for one organism may induce poor metabolic diversity for a different organism. Here, the impact of different media types, including six liquid media and five solid media, on the secondary metabolite production of three fungal strains was examined in the context of the drug-discovery screening process. The relative production of marker compounds was used to evaluate the usefulness and reliability of each medium for the purpose of producing secondary metabolites. PMID:24342059

  14. Chemosensation of Bacterial Secondary Metabolites Modulates Neuroendocrine Signaling and Behavior of C. elegans

    PubMed Central

    Meisel, Joshua D.; Panda, Oishika; Mahanti, Parag; Schroeder, Frank C.; Kim, Dennis H.

    2014-01-01

    Summary Discrimination among pathogenic and beneficial microbes is essential for host organism immunity and homeostasis. Here, we show that chemosensory detection of two secondary metabolites produced by Pseudomonas aeruginosa modulates a neuroendocrine signaling pathway that promotes avoidance behavior in the simple animal host Caenorhabditis elegans. Secondary metabolites phenazine-1-carboxamide and pyochelin activate a G protein-signaling pathway in the ASJ chemosensory neuron pair that induces expression of the neuromodulator DAF-7/TGF-β. DAF-7, in turn, activates a canonical TGF-β signaling pathway in adjacent interneurons to modulate aerotaxis behavior and promote avoidance of pathogenic P. aeruginosa. Our data provide a chemical, genetic, and neuronal basis for how the behavior and physiology of a simple animal host can be modified by the microbial environment, and suggest that secondary metabolites produced by microbes may provide environmental cues that contribute to pathogen recognition and host survival. PMID:25303524

  15. The influence of arbuscular mycorrhizal fungi inoculation on yam (Dioscorea spp.) tuber weights and secondary metabolite content

    PubMed Central

    Lu, Fun-Chi; Wang, Chun-Li

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are widely distributed in nature. They live in the roots of higher plants, in a symbiotic relationship. In this study, five commercial species of yams (Dioscorea spp.) were inoculated with six species of AMF, Glomus clarum, G. etunicatum, G. fasciculatum, Gigaspora sp., G. mosseae, and Acaulospora sp., in field cultivation conditions to investigate the influence of AMF inoculation on tuber weights and secondary metabolite content in yam tubers. The results showed that mycorrhizae formation rates ranged from 63.33% to 90%. G. etunicatum inoculation treatment increased the tube weights of the five species of yam tubers by 39%, 35%, 20%, 56%, and 40% for Tainung 1, Tainung 2, Ercih, Zihyuxieshu, and Tainung 5, respectively. The content of secondary metabolites, such as polyphenols, flavonoids, and anthocyanin, was significantly increased by the AMF treatment in tuber flesh and peel of all the tested yam species. Specifically, the maximums exchange of secondary metabolite contents increased to 40%, 42%, and 106% for polyphenols, flavonoids, and anthocyanin, respectively, in the tuber fresh. This study revealed that different species of yam had varying degrees of affinity with various AMF species; selecting effective AMF species is necessary to facilitate yam growth and improve the quality and quantity of yam tubers. PMID:26421239

  16. Intra-Population Variation of Secondary Metabolites in Cistus ladanifer L.

    PubMed

    Valares Masa, Cristina; Alías Gallego, Juan Carlos; Chaves Lobón, Natividad; Sosa Díaz, Teresa

    2016-01-01

    In previous studies, secondary metabolites in the leaf exudate of Cistus ladanifer, specifically aglycone flavonoids and diterpenes, were demonstrated to play an ecophysiological role. They protect against ultraviolet radiation, have antiherbivore activity, and are allelopathic agents. Their synthesis in the plant was also found to vary quantitatively and qualitatively in response to various environmental factors. In view of these findings, the present work was designed to clarify whether within a single population there are differences among individuals subject to the same environmental conditions. To this end, we analyzed the leaves of 100 individuals of C. ladanifer. The results showed the existence of intrapopulational variation, since, although all the individuals had the same composition of secondary chemistry, the amounts were different. The individuals of a given population of C. ladanifer differ from each other even when growing under similar conditions. According to the ammount of flavonoids and diterpenes observed in each individual, it was possible to distinguish four different groups of individuals. Most individuals, evenly distributed within the population, had low concentrations of the studied compounds, whilst other individuals synthesized greater amounts and were randomly distributed among the former. Given the functions of flavonoids and diterpenes in this species, the quantified intra-population variation may involve greater plasticity for the species in the face of environmental changes. PMID:27455211

  17. Diversity of secondary metabolites from marine Bacillus species: chemistry and biological activity.

    PubMed

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-08-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  18. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    PubMed Central

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  19. Exploring the transport of plant metabolites using positron emitting radiotracers

    PubMed Central

    Kiser, Matthew R.; Reid, Chantal D.; Crowell, Alexander S.; Phillips, Richard P.; Howell, Calvin R.

    2008-01-01

    Short-lived positron-emitting radiotracer techniques provide time-dependent data that are critical for developing models of metabolite transport and resource distribution in plants and their microenvironments. Until recently these techniques were applied to measure radiotracer accumulation in coarse regions along transport pathways. The recent application of positron emission tomography (PET) techniques to plant research allows for detailed quantification of real-time metabolite dynamics on previously unexplored spatial scales. PET provides dynamic information with millimeter-scale resolution on labeled carbon, nitrogen, and water transport over a small plant-size field of view. Because details at the millimeter scale may not be required for all regions of interest, hybrid detection systems that combine high-resolution imaging with other radiotracer counting technologies offer the versatility needed to pursue wide-ranging plant physiological and ecological research. In this perspective we describe a recently developed hybrid detection system at Duke University that provides researchers with the flexibility required to carry out measurements of the dynamic responses of whole plants to environmental change using short-lived radiotracers. Following a brief historical development of radiotracer applications to plant research, the role of radiotracers is presented in the context of various applications at the leaf to the whole-plant level that integrates cellular and subcellular signals and∕or controls. PMID:19404430

  20. Metabolite

    MedlinePlus

    A metabolite is any substance produced during metabolism (digestion or other bodily chemical processes). The term metabolite may also refer to the product that remains after a drug is broken down (metabolized) by the body.

  1. Macroevolution of leaf defenses and secondary metabolites across the genus Helianthus.

    PubMed

    Mason, Chase M; Bowsher, Alan W; Crowell, Breanna L; Celoy, Rhodesia M; Tsai, Chung-Jui; Donovan, Lisa A

    2016-03-01

    Leaf defenses are widely recognized as key adaptations and drivers of plant evolution. Across environmentally diverse habitats, the macroevolution of leaf defenses can be predicted by the univariate trade-off model, which predicts that defenses are functionally redundant and thus trade off, and the resource availability hypothesis, which predicts that defense investment is determined by inherent growth rate and that higher defense will evolve in lower resource environments. Here, we examined the evolution of leaf physical and chemical defenses and secondary metabolites in relation to environmental characteristics and leaf economic strategy across 28 species of Helianthus (the sunflowers). Using a phylogenetic comparative approach, we found few evolutionary trade-offs among defenses and no evidence for defense syndromes. We also found that leaf defenses are strongly related to leaf economic strategy, with higher defense in more resource-conservative species, although there is little support for the evolution of higher defense in low-resource habitats. A wide variety of physical and chemical defenses predict resistance to different insect herbivores, fungal pathogens, and a parasitic plant, suggesting that most sunflower defenses are not redundant in function and that wild Helianthus represents a rich source of variation for the improvement of crop sunflower. PMID:26583880

  2. Isolation and identification of an endophytic fungus Pezicula sp. in Forsythia viridissima and its secondary metabolites.

    PubMed

    Wang, Jiaying; Wang, Guoping; Zhang, Yalei; Zheng, Biqiang; Zhang, Chulong; Wang, Liwei

    2014-10-01

    In a survey of endophytic fungal biodiversity, an antimicrobial endophytic isolate zjwcf069 was obtained from twigs of Forsythia viridissima, Zhejiang Province, Southeast China. Zjwcf069 was then identified as Pezicula sp. through combination of morphological and phylogenetic analysis based on ITS-rDNA. Zjwcf069 here represented the first endophytic fungus in Pezicula isolated from host F. viridissima. From the fermentation broth, four compounds were obtained through silica gel column chromatography and Sephadex LH-20 under the guide of bioassay. Their structures were elucidated by spectroscopic analysis as mellein (1), ramulosin (2), butanedioic acid (3), and 4-methoxy-1(3H)-isobenzofuranone (4). Compound 4 here stood for the very first time as natural product from microbes. In vitro antifungal assay showed that compound 1 displayed growth inhibition against 9 plant pathogenic fungi, especially Botrytis cinerea and Fulvia fulva with EC50 values below 50 μg/mL. Endophytic fungi in medicinal plants were good resources for bioactive secondary metabolites. PMID:24928260

  3. Investigations of fungal secondary metabolites with potential anticancer activity.

    PubMed

    Balde, ElHadj Saidou; Andolfi, Anna; Bruyère, Céline; Cimmino, Alessio; Lamoral-Theys, Delphine; Vurro, Maurizio; Damme, Marc Van; Altomare, Claudio; Mathieu, Véronique; Kiss, Robert; Evidente, Antonio

    2010-05-28

    Fourteen metabolites, isolated from phytopathogenic and toxigenic fungi, were evaluated for their in vitro antigrowth activity for six distinct cancer cell lines, using the MTT colorimetric assay. Bislongiquinolide (1) and dihydrotrichodimerol (5), which belong to the bisorbicillinoid structural class, displayed significant growth inhibitory activity against the six cancer cell lines studied, while the remaining compounds displayed weak or no activity. The data show that 1 and 5 have similar growth inhibitory activities with respect to those cancer cell lines that display certain levels of resistance to pro-apoptotic stimuli or those that are sensitive to apoptosis. Quantitative videomicroscopy analysis revealed that 1 and 5 exert their antiproliferative effect through cytostatic and not cytotoxic activity. The preliminary results from the current study have stimulated further structure-activity investigations with respect to the growth inhibitory activity of compounds belonging to the bisorbicillinoid group. PMID:20415482

  4. Sulfate Metabolites of 4-Monochlorobiphenyl in Whole Poplar Plants

    PubMed Central

    Zhai, Guangshu; Lehmler, Hans-Joachim; Schnoor, Jerald L.

    2013-01-01

    4-Monochlorobiphenyl (PCB3) has been proven to be transformed into hydroxylated metabolites of PCB3 (OH-PCB3s) in whole poplar plants in our previous work. However, hydroxylated metabolites of PCBs, including OH-PCB3s, as the substrates of sulfotransferases have not been studied in many organisms including plants in vivo. Poplar (Populus deltoides × nigra, DN34) was used to investigate the further metabolism from OH-PCB3s to PCB3 sulfates because it is a model plant and one that is frequently utilized in phytoremediation. Results showed poplar plants could metabolize PCB3 into PCB3 sulfates during 25 day exposures. Three sulfate metabolites, including 2′-PCB3 sulfate, 3′-PCB3 sulfate and 4′-PCB3 sulfate, were identified in poplar roots and their concentrations increased in the roots from day 10 to day 25. The major products were 2′-PCB3 sulfate and 4′-PCB3 sulfate. However, the concentrations of PCB3 sulfates were much lower than those of OH-PCB3s in the roots, suggesting the sequential transformation of these hydroxylated PCB3 metabolites into PCB3 sulfates in whole poplars. In addition, 2′-PCB3 sulfate or 4′-PCB3 sulfate was also found in the bottom wood samples indicating some translocation or metabolism in woody tissue. Results suggested that OH-PCB3s were the substrates of sulfotransferases which catalyzed the formation of PCB3 sulfates in the metabolic pathway of PCB3. PMID:23215248

  5. Fusarium verticillioides SGE1 is required for full virulence and regulates expression of protein effector and secondary metabolite biosynthetic genes.

    PubMed

    Brown, Daren W; Busman, Mark; Proctor, Robert H

    2014-08-01

    The transition from one lifestyle to another in some fungi is initiated by a single orthologous gene, SGE1, that regulates markedly different genes in different fungi. Despite these differences, many of the regulated genes encode effector proteins or proteins involved in the synthesis of secondary metabolites (SM), both of which can contribute to pathogenicity. Fusarium verticillioides is both an endophyte and a pathogen of maize and can grow as a saprophyte on dead plant material. During growth on live maize plants, the fungus can synthesize a number of toxic SM, including fumonisins, fusarins, and fusaric acid, that can contaminate kernels and kernel-based food and feed. In this study, the role of F. verticillioides SGE1 in pathogenicity and secondary metabolism was examined by gene deletion analysis and transcriptomics. SGE1 is not required for vegetative growth or conidiation but is required for wild-type pathogenicity and affects synthesis of multiple SM, including fumonisins and fusarins. Induced expression of SGE1 enhanced or reduced expression of hundreds of genes, including numerous putative effector genes that could contribute to growth in planta; genes encoding cell surface proteins; gene clusters required for synthesis of fusarins, bikaverin, and an unknown metabolite; as well as the gene encoding the fumonisin cluster transcriptional activator. Together, our results indicate that SGE1 has a role in global regulation of transcription in F. verticillioides that impacts but is not absolutely required for secondary metabolism and pathogenicity on maize. PMID:24742071

  6. Segregation of secondary metabolite biosynthesis in hybrids of Fusarium fujikuroi and Fusarium proliferatum.

    PubMed

    Studt, L; Troncoso, C; Gong, F; Hedden, P; Toomajian, C; Leslie, J F; Humpf, H-U; Rojas, M C; Tudzynski, B

    2012-07-01

    Fusarium fujikuroi and Fusarium proliferatum are two phylogenetically closely related species of the Gibberella fujikuroi species complex (GFC). In some cases, strains of these species can cross and produce a few ascospores. In this study, we analyzed 26 single ascospore isolates of an interspecific cross between F. fujikuroi C1995 and F. proliferatum D4854 for their ability to produce four secondary metabolites: gibberellins (GAs), the mycotoxins fusarin C and fumonisin B(1), and a family of red polyketides, the fusarubins. Both parental strains contain the biosynthetic genes for all four metabolites, but differ in their ability to produce these metabolites under certain conditions. F. fujikuroi C1995 produces GAs and fusarins, while F. proliferatum D4854 produces fumonisins and fusarubins. The segregation amongst the progeny of these traits is not the expected 1:1 Mendelian ratio. Only eight, six, three and three progeny, respectively, produce GAs, fusarins, fumonisin B(1) and fusarubins in amounts similar to those synthesized by the producing parental strain. Beside the eight highly GA(3)-producing progeny, some of the progeny produce small amounts of GAs, predominantly GA(1), although these strains contain the GA gene cluster of the non-GA-producing F. proliferatum parental strain. Some progeny had recombinant secondary metabolite profiles under the conditions examined indicating that interspecific crosses can yield secondary metabolite production profiles that are atypical of the parent species. PMID:22626844

  7. Redundant synthesis of a conidial polyketide by two distinct secondary metabolite clusters in Aspergillus fumigatus

    PubMed Central

    Throckmorton, Kurt; Lim, Fang Yun; Kontoyiannis, Dimitrios P.; Zheng, Weifa; Keller, Nancy P.

    2016-01-01

    Summary Filamentous fungi are renowned for the production of bioactive secondary metabolites. Typically, one distinct metabolite is generated from a specific secondary metabolite cluster. Here, we characterize the newly described trypacidin (tpc) cluster in the opportunistic human pathogen Aspergillus fumigatus. We find that this cluster as well as the previously characterized endocrocin (enc) cluster both contribute to the production of the spore metabolite endocrocin. Whereas trypacidin is eliminated when only tpc cluster genes are deleted, endocrocin production is only eliminated when both the tpc and enc non-reducing polyketide synthase-encoding genes, tpcC and encA, respectively, are deleted. EncC, an anthrone oxidase, converts the product released from EncA to endocrocin as a final product. In contrast, endocrocin synthesis by the tpc cluster likely results from incomplete catalysis by TpcK (a putative decarboxylase), as its deletion results in a nearly 10-fold increase in endocrocin production. We suggest endocrocin is likely a shunt product in all related non-reducing polyketide synthase clusters containing homologues of TpcK and TpcL (a putative anthrone oxidase), e.g. geodin and monodictyphenone. This finding represents an unusual example of two physically discrete secondary metabolite clusters generating the same natural product in one fungal species by distinct routes. PMID:26242966

  8. Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae?

    PubMed

    Duhamel, Marie; Pel, Roel; Ooms, Astra; Bücking, Heike; Jansa, Jan; Ellers, Jacintha; van Straalen, Nico M; Wouda, Tjalf; Vandenkoornhuyse, Philippe; Kiers, E Toby

    2013-09-01

    A key objective in ecology is to understand how cooperative strategies evolve and are maintained in species networks. Here, we focus on the tri-trophic relationship between arbuscular mycorrhizal (AM) fungi, host plants, and fungivores to ask if host plants are able to protect their mutualistic mycorrhizal partners from being grazed. Specifically, we test whether secondary metabolites are transferred from hosts to fungal partners to increase their defense against fungivores. We grew Plantago lanceolata hosts with and without mycorrhizal inoculum, and in the presence or absence of fungivorous springtails. We then measured fungivore effects on host biomass and mycorrhizal abundance (using quantitative PCR) in roots and soil. We used high-performance liquid chromatography to measure host metabolites in roots, shoots, and hyphae, focusing on catalpol, aucubin, and verbascoside. Our most striking result was that the metabolite catalpol was consistently found in AM fungal hyphae in host plants exposed to fungivores. When fungivores were absent, catalpol was undetectable in hyphae. Our results highlight the potential for plant-mediated protection of the mycorrhizal hyphal network. PMID:24279273

  9. Classification of terverticillate penicillia based on profiles of mycotoxins and other secondary metabolites.

    PubMed Central

    Frisvad, J C; Filtenborg, O

    1983-01-01

    Strains of available terverticillate penicillium species and varieties were analyzed for profiles of known mycotoxins and other secondary metabolites produced on Czapek yeast autolysate agar (intracellular metabolites) and yeast extract-sucrose agar (extracellular metabolites) by using simple thin-layer chromatography screening techniques. These strains (2,473 in all) could be classified into 29 groups based on profiles of secondary metabolites. Most of these profiles of secondary metabolites were distinct, containing several biosynthetically different mycotoxins and unknown metabolites characterized by distinct colors and retardation factors on thin-layer chromatography plates. Some species (P. italicum and P. atramentosum) only produced one or two metabolites by the simple screening methods. The 29 groups based on profiles of secondary metabolites were known species or subgroups thereof. These species and subgroups were independently identifiable by using morphological and physiological criteria. The species accepted, the number of isolates in each species investigated, and the mycotoxins they produced were: P. atramentosum, 4; P. aurantiogriseum, 510 (group I: penicillic acid and S-toxin and group II: penicillic acid, penitrem A [low frequency], terrestric acid [low frequency], viomellein, and xanthomegnin); P. brevicompactum, 81 (brevianamid A and mycophenolic acid); P. camembertii group I, 38, and group II, 114 (cyclopiazonic acid); P. chrysogenum, 87 (penicillin, roquefortine C, and PR-toxin); P. claviforme, 4 (patulin and roquefortine C); P. clavigerum, 4 (penitrem A); P. concentricum group I, 10 (griseofulvin and roquefortine C), and group II, 3 (patulin and roquefortine C); P. crustosum, 123 (penitrem A, roquefortine C, and terrestric acid); P. echinulatum, 13; P. expansum, 91 (citrinin, patulin, and roquefortine C); P. granulatum, 6 (patulin, penitrem A, and roquefortine C [traces]); P. griseofulvum, 21 (cyclopiazonic acid, griseofulvin, patulin, and

  10. In vivo anti-inflammatory activity of some naturally occurring O- and N-prenyl secondary metabolites.

    PubMed

    Epifano, Francesco; Genovese, Salvatore; Fiorito, Serena; della Loggia, Roberto; Tubaro, Aurelia; Sosa, Silvio

    2014-01-01

    A series of O- and N-prenyl secondary metabolites of insect, fungal, and plant origin have been evaluated for their topical anti-inflammatory activity using the Croton oil ear test in mice as a model of acute inflammation. Some of the tested compounds revealed an effect (ID50 = 0.31 divided by 0.56 micromol/cm2) comparable with that of the reference non-steroidal anti-inflammatory drug indomethacin (ID50 = 0.23 micromol/cm2). PMID:24660470