Science.gov

Sample records for plant technology avis

  1. Initial performance of the advanced inventory verification sample system (AVIS)

    SciTech Connect

    Marlow, Johnna B; Swinhoe, Martyn T; Menlove, Howard O; Rael, Carlos D

    2009-01-01

    This paper describes the requirements, design and initial performance of the Advanced Inventory Verification Sample System (AVIS) a non-destructive assay (NDA) system to measure small samples of bulk mixed uranium-plutonium oxide (MOX) materials (powders and pellets). The AVIS design has evolved from previously developed conceptual physics and engineering designs for the Inventory Sample Verification System (INVS), a safeguards system for nondestructive assay of small samples. The AVIS is an integrated gamma-neutron system. Jointly designed by the Nuclear Material Control Center (NMCC) and the Los Alamos National Laboratory (LANL), AVIS is intended to meet a performance specification of a total measurement uncertainty of less than 0.5% in the neutron ({sup 240}Pu{sub effective}) measurement. This will allow the AVIS to replace destructive chemical analysis for many samples, with concomitant cost, exposure and waste generation savings for the facility. Data taken to date confirming the performance of the AVIS is presented.

  2. Discovery and Early Development of AVI-7537 and AVI-7288 for the Treatment of Ebola Virus and Marburg Virus Infections

    PubMed Central

    Iversen, Patrick L.; Warren, Travis K.; Wells, Jay B.; Garza, Nicole L.; Mourich, Dan V.; Welch, Lisa S.; Panchal, Rekha G.; Bavari, Sina

    2012-01-01

    There are no currently approved treatments for filovirus infections. In this study we report the discovery process which led to the development of antisense Phosphorodiamidate Morpholino Oligomers (PMOs) AVI-6002 (composed of AVI-7357 and AVI-7539) and AVI-6003 (composed of AVI-7287 and AVI-7288) targeting Ebola virus and Marburg virus respectively. The discovery process involved identification of optimal transcript binding sites for PMO based RNA-therapeutics followed by screening for effective viral gene target in mouse and guinea pig models utilizing adapted viral isolates. An evolution of chemical modifications were tested, beginning with simple Phosphorodiamidate Morpholino Oligomers (PMO) transitioning to cell penetrating peptide conjugated PMOs (PPMO) and ending with PMOplus containing a limited number of positively charged linkages in the PMO structure. The initial lead compounds were combinations of two agents targeting separate genes. In the final analysis, a single agent for treatment of each virus was selected, AVI-7537 targeting the VP24 gene of Ebola virus and AVI-7288 targeting NP of Marburg virus, and are now progressing into late stage clinical development as the optimal therapeutic candidates. PMID:23202506

  3. Airborne Visible / Infrared Imaging Spectrometer AVIS: Design, Characterization and Calibration

    PubMed Central

    Oppelt, Natascha; Mauser, Wolfram

    2007-01-01

    The Airborne Visible / Infrared imaging Spectrometer AVIS is a hyperspectral imager designed for environmental monitoring purposes. The sensor, which was constructed entirely from commercially available components, has been successfully deployed during several experiments between 1999 and 2007. We describe the instrument design and present the results of laboratory characterization and calibration of the system's second generation, AVIS-2, which is currently being operated. The processing of the data is described and examples of remote sensing reflectance data are presented.

  4. Academic Visual Identity (AVI): An Act of Symbolic Leadership

    ERIC Educational Resources Information Center

    Masiki, Trent

    2011-01-01

    Extensive scholarship exists on both symbolic leadership and corporate visual identity (CVI), yet little scholarly attention has been focused on the intersection of these two bodies of knowledge. In the field of education, that intersection is known as academic visual identity (AVI). The purpose of this article is to demonstrate that AVI…

  5. Influence and discrimination of clouds in the detection of dust and sandstorms using AVI

    NASA Astrophysics Data System (ADS)

    Kato, Yoshinobu

    2012-11-01

    The AVI method can detect the dust and sandstorms (DSS) in satellite images both at daytime and night. The aerosol vapor index (AVI) is defined as AVI=T12-T11, where T12 and T11 are the brightness temperatures at 12μm and 11μm wave lengths, respectively. The fault of AVI method is to mistake thick clouds for DSS rarely. Iino et al. (2002, 2004) proposed the composite color images for discriminating DSS from clouds in daytime NOAA-AVHRR images. In this paper, Terra/Aqua-MODIS data are used. First, it is explained that usual clouds bring the effect of AVI<0, and the clouds with very large optical thickness and very large particle size may bring the effect of AVI<0, by using the BTD vs. T11 charts of Inoue (2006), where BTD=-AVI. Examples of the cloud images of AVI<0 are shown and interpreted using the AVI vs. T11 scatter chart. Next, the views of objects (DSS, usual ice-cloud, usual water-cloud, ice-cloud with large optical thickness, water-cloud with large optical thickness, snow field and ice, land, sea) in the single-band images (bands 1, 3, 4, 6, 7 and T11(band31), T12(band32)) and the band-difference images (band1-band3, band4-band3, band6- band1, band7-band1, AVI) are examined. The good composite color images which can discriminate DSS from clouds etc. are {R,G,B=AVI, band7-band1, T11} and {R,G,B=AVI, band4-band3, T11} for daytime images, and {R,G,B=T11, AVI, none} for nighttime images.

  6. Detection properties of dust and sandstorms by using AVI of MODIS data

    NASA Astrophysics Data System (ADS)

    Kato, Yoshinobu

    2010-10-01

    The detection properties of dust and sandstorms (DSS) by using AVI are examined. The aerosol vapor index (AVI) is defined as AVI=T12-T11, where T12 and T11 are the brightness temperatures respectively at 12μm and 11μm wave lengths. MODIS data of Terra/Aqua satellites from China to Japan in April 2006 are used. The AVI vs. T11 scatter charts in narrow regions are made. The narrow region means the region which is smaller than about 100km × 100km. Gu et al. (2003) gave a BTD vs. T11 chart which was based on the radiative transfer calculation in the case of the existence of DSS layer between the ground and the satellite, where BTD=-AVI. The AVI vs. T11 scatter charts are compared with the true-color images, the T11 images, the AVI images and the result by Gu et al. The results are as follows: (1) The larger the AVI value is, the larger the optical thickness of DSS is, in the case of narrow region on land and sea with DSS that does not include cloud. The AVI value decreases, in the case of narrow region with DSS that includes cloud. (2) When the DSS is consecutive on land and sea, the AVI value on the land near the boundary of land and sea is about 0.2-2.3K higher than that on the sea, because of the radiative characteristics of land and sea. The AVI value of a pixel (1km2) on the boundary of land and sea is changed by the ratio of land area and sea area.

  7. Pinch technology experience in plant retrofits

    SciTech Connect

    Kumana, J.D.; Spriggs, H.D.; Ashton, G.

    1987-01-01

    Pinch technology has been applied to retrofit of many plants employing a wide variety of technologies, including continuous and batch processes, and those involving solids processing. This paper reports the authors recent experience in identifying energy savings opportunities in an oil refinery, an ethylene plant, and a corn wet milling plant. The key findings are that: Pinch technology can be successfully applied to retrofits as well as new plant designs; the correct design for retrofits is not the same as that for new designs; pinch technology gives good results even in ''difficult'' processes employing the less common unit operations; and some commonly accepted practices (specifically in solids drying) are fundamentally wrong; multiple-effect drying based on a countercurrent humidity profile offers significant potential for energy savings.

  8. Plant stress analysis technology deployment

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    Monitoring vegetation is an active area of laser-induced fluorescence imaging (LIFI) research. The Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) is assisting in the transfer of the LIFI technology to the agricultural private sector through a market survey. The market survey will help identify the key eco-agricultural issues of the nations that could benefit from the use of sensor technologies developed by the Office of Science and Technology (OST). The principal region of interest is the Western Hemisphere, particularly, the rapidly growing countries of Latin America and the Caribbean. The analysis of needs will assure that the focus of present and future research will center on economically important issues facing both hemispheres. The application of the technology will be useful to the agriculture industry for airborne crop analysis as well as in the detection and characterization of contaminated sites by monitoring vegetation. LIFI airborne and close-proximity systems will be evaluated as stand-alone technologies and additions to existing sensor technologies that have been used to monitor crops in the field and in storage.

  9. Response to "Methyl donors change the germline epigenetic state of the A(vy) allele"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We appreciate the explanation offered by Cropley et al. for what they perceive is a discrepancy between their results showing an effect of methyl supplementation on the germline epigenetic state of Avy and ours showing that diet-induced hypermethylation at Avy is not inherited transgenerationally. D...

  10. Hippocampus minor, calcar avis, and the Huxley-Owen debate.

    PubMed

    Owen, Christopher M; Howard, Allyson; Binder, Devin K

    2009-12-01

    On the bicentennial of Darwin's birth, we describe the origin of the calcar avis and summarize the debate around this structure, which played a central role in the evolution debate in the mid-19th century. We performed a comprehensive review of relevant neuroanatomic literature, bibliographic sources, and 19th century primary sources. Once known as the hippocampus minor, the structure now known as the calcar avis is an involution of the ventricular wall produced by the calcarine fissure. A heated debate raged between 2 prominent scientific theorists, Sir Richard Owen and Thomas Henry Huxley, over the presence of the hippocampus minor in apes versus humans. Owen put forward the lack of an identifiable hippocampus minor in humans as part of an attempt to debunk evolution. A bitter personal and academic rivalry ensued, as Huxley conducted his own dissections to refute Owen's claims. Huxley ultimately dismantled Owen's premises, securing the epithet "Darwin's bulldog" for his defense of the theory of evolution. Thus, this relatively obscure neuroanatomic landmark served as a pivotal point of contention in the most popularized and acrimonious evolutionary debate of the 19th century. PMID:19934969

  11. rAvis: An R-Package for Downloading Information Stored in Proyecto AVIS, a Citizen Science Bird Project

    PubMed Central

    Varela, Sara; González-Hernández, Javier; Casabella, Eduardo; Barrientos, Rafael

    2014-01-01

    Citizen science projects store an enormous amount of information about species distribution, diversity and characteristics. Researchers are now beginning to make use of this rich collection of data. However, access to these databases is not always straightforward. Apart from the largest and international projects, citizen science repositories often lack specific Application Programming Interfaces (APIs) to connect them to the scientific environments. Thus, it is necessary to develop simple routines to allow researchers to take advantage of the information collected by smaller citizen science projects, for instance, programming specific packages to connect them to popular scientific environments (like R). Here, we present rAvis, an R-package to connect R-users with Proyecto AVIS (http://proyectoavis.com), a Spanish citizen science project with more than 82,000 bird observation records. We develop several functions to explore the database, to plot the geographic distribution of the species occurrences, and to generate personal queries to the database about species occurrences (number of individuals, distribution, etc.) and birdwatcher observations (number of species recorded by each collaborator, UTMs visited, etc.). This new R-package will allow scientists to access this database and to exploit the information generated by Spanish birdwatchers over the last 40 years. PMID:24626233

  12. rAvis: an R-package for downloading information stored in Proyecto AVIS, a citizen science bird project.

    PubMed

    Varela, Sara; González-Hernández, Javier; Casabella, Eduardo; Barrientos, Rafael

    2014-01-01

    Citizen science projects store an enormous amount of information about species distribution, diversity and characteristics. Researchers are now beginning to make use of this rich collection of data. However, access to these databases is not always straightforward. Apart from the largest and international projects, citizen science repositories often lack specific Application Programming Interfaces (APIs) to connect them to the scientific environments. Thus, it is necessary to develop simple routines to allow researchers to take advantage of the information collected by smaller citizen science projects, for instance, programming specific packages to connect them to popular scientific environments (like R). Here, we present rAvis, an R-package to connect R-users with Proyecto AVIS (http://proyectoavis.com), a Spanish citizen science project with more than 82,000 bird observation records. We develop several functions to explore the database, to plot the geographic distribution of the species occurrences, and to generate personal queries to the database about species occurrences (number of individuals, distribution, etc.) and birdwatcher observations (number of species recorded by each collaborator, UTMs visited, etc.). This new R-package will allow scientists to access this database and to exploit the information generated by Spanish birdwatchers over the last 40 years. PMID:24626233

  13. Water Treatment Technology - General Plant Operation.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on general plant operations provides instructional materials for seven competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: water supply regulations, water plant…

  14. 78 FR 48043 - Safety Zone; AVI Resort and Casino Labor Day Fireworks Display; Colorado River

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ...The Coast Guard will enforce a Safety Zone for the AVI Resort and Casino Labor Day Fireworks Display located on the Colorado River in Laughlin, Nevada from 8 p.m. until 9:45 p.m. on September 1, 2013. This action is necessary for the safety of spectators and participants, including all crews, vessels and persons on navigable waters during the AVI Resort and Casino Fireworks. During the......

  15. Modularization Technology in Power Plant Construction

    SciTech Connect

    Kenji Akagi; Kouichi Murayama; Miki Yoshida; Junichi Kawahata

    2002-07-01

    Since the early 1980's, Hitachi has been developing and applying modularization technology to domestic nuclear power plant construction, and has achieved great rationalization. Modularization is one of the plant construction techniques which enables us to reduce site labor by pre-assembling components like equipment, pipes, valves and platforms in congested areas and installing them using large capacity cranes for cost reduction, better quality, safety improvement and shortening of construction time. In this paper, Hitachi's modularization technologies are described especially from with respect to their sophisticated design capabilities. The application of 3D-CAD at the detailed layout design stage, concurrent design environment achieved by the computer network, module design quantity control and the management system are described. (authors)

  16. Hanford Waste Vitrification Plant applied technology plan

    SciTech Connect

    Kruger, O.L.

    1990-09-01

    This Applied Technology Plan describes the process development, verification testing, equipment adaptation, and waste form qualification technical issues and plans for resolution to support the design, permitting, and operation of the Hanford Waste Vitrification Plant. The scope of this Plan includes work to be performed by the research and development contractor, Pacific Northwest Laboratory, other organizations within Westinghouse Hanford Company, universities and companies with glass technology expertise, and other US Department of Energy sites. All work described in this Plan is funded by the Hanford Waste Vitrification Plant Project and the relationship of this Plan to other waste management documents and issues is provided for background information. Work to performed under this Plan is divided into major areas that establish a reference process, develop an acceptable glass composition envelope, and demonstrate feed processing and glass production for the range of Hanford Waste Vitrification Plant feeds. Included in this work is the evaluation and verification testing of equipment and technology obtained from the Defense Waste Processing Facility, the West Valley Demonstration Project, foreign countries, and the Hanford Site. Development and verification of product and process models and other data needed for waste form qualification documentation are also included in this Plan. 21 refs., 4 figs., 33 tabs.

  17. Approach to plant automation with evolving technology

    SciTech Connect

    White, J.D.

    1989-01-01

    The US Department of Energy has provided support to Oak Ridge National Laboratory in order to pursue research leading to advanced, automated control of new innovative liquid-metal-cooled nuclear power plants. The purpose of this effort is to conduct research that will help to ensure improved operability, reliability, and safety for advanced LMRs. The plan adopted to achieve these program goals in an efficient and timely manner consists of utilizing, and advancing where required, state-of-the-art controls technology through close interaction with other national laboratories, universities, industry and utilities. A broad range of applications for the control systems strategies and the design environment developed in the course of this program is likely. A natural evolution of automated control in nuclear power plants is envisioned by ORNL to be a phased transition from today's situation of some analog control at the subsystem level with significant operator interaction to the future capability for completely automated digital control with operator supervision. The technical accomplishments provided by this program will assist the industry to accelerate this transition and provide greater economy and safety. The development of this transition to advanced, automated control system designs is expected to have extensive benefits in reduced operating costs, fewer outages, enhanced safety, improved licensability, and improved public acceptance for commercial nuclear power plants. 24 refs.

  18. TrAVis to Enhance Online Tutoring and Learning Activities: Real-Time Visualization of Students Tracking Data

    ERIC Educational Resources Information Center

    May, Madeth; George, Sebastien; Prevot, Patrick

    2011-01-01

    Purpose: This paper presents a part of our research work that places an emphasis on Tracking Data Analysis and Visualization (TrAVis) tools, a web-based system, designed to enhance online tutoring and learning activities, supported by computer-mediated communication (CMC) tools. TrAVis is particularly dedicated to assist both tutors and students…

  19. Plant cell technologies in space: Background, strategies and prospects

    NASA Technical Reports Server (NTRS)

    Kirkorian, A. D.; Scheld, H. W.

    1987-01-01

    An attempt is made to summarize work in plant cell technologies in space. The evolution of concepts and the general principles of plant tissue culture are discussed. The potential for production of high value secondary products by plant cells and differentiated tissue in automated, precisely controlled bioreactors is discussed. The general course of the development of the literature on plant tissue culture is highlighted.

  20. 75 FR 29427 - Safety Zone; AVI May Fireworks Display, Laughlin, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... zone, on the navigable waters of the lower Colorado River, Laughlin, NV, in support of a fireworks... held at the AVI Resort and Casino on the Lower Colorado River in Laughlin, Nevada. A temporary safety... Guard is establishing a temporary safety zone on the navigable waters of the Lower Colorado...

  1. 75 FR 20799 - Safety Zone; AVI July Fireworks Display, Laughlin, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... establish a safety zone, on the navigable waters of the lower Colorado River, Laughlin, NV, in support of a... navigable waters of the Lower Colorado River in support of a fireworks show in the navigation channel of the Lower Colorado River, Laughlin, NV. The fireworks show is being sponsored by AVI Resort and Casino....

  2. Soy protein isolate reduces hepatosteatosis in yellow Avy/a mice without altering coat color phenotype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agouti (Avy/a) mice fed an AIN-93G diet containing the soy isoflavone genistein (GEN) prior to and during pregnancy were reported to shift coat color and body composition phenotypes from obese-yellow towards lean pseudoagouti, suggesting epigenetic programming. Human consumption of purified GEN is r...

  3. Advanced maintenance, inspection & repair technology for nuclear power plants

    SciTech Connect

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  4. Quantification of risks from technology for improved plant reliability

    SciTech Connect

    Rode, D.M.

    1996-12-31

    One of the least understood and therefore appreciated threats to profitability are risks from power plant technologies such as steam generators, turbines, and electrical systems. To effectively manage technological risks, business decisions need to be based on knowledge. The scope of the paper describes a quantification or risk process that combines technical knowledge and judgments with commercial consequences. The three principle alternatives to manage risks as well as risk mitigation techniques for significant equipment within a power plant are reported. The result is to equip the decision maker with a comprehensive picture of the risk exposures enabling cost effective activities to be undertaken to improve a plant`s reliability.

  5. Prediction of Technological Failures in Nuclear Power Plant Operation

    SciTech Connect

    Salnykov, A. A.

    2015-01-15

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  6. The Castor Plant: Technology and Biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of hydroxy fatty acids in plants is of current interest principally due to the novel properties, physical and chemical, that are characteristic of hydroxy fatty acids. Castor oil is currently the only major source of hydroxy fatty acids. It has a long history in medicinal applications, se...

  7. Development of Plant Control Diagnosis Technology and Increasing Its Applications

    NASA Astrophysics Data System (ADS)

    Kugemoto, Hidekazu; Yoshimura, Satoshi; Hashizume, Satoru; Kageyama, Takashi; Yamamoto, Toru

    A plant control diagnosis technology was developed to improve the performance of plant-wide control and maintain high productivity of plants. The control performance diagnosis system containing this technology picks out the poor performance loop, analyzes the cause, and outputs the result on the Web page. Meanwhile, the PID tuning tool is used to tune extracted loops from the control performance diagnosis system. It has an advantage of tuning safely without process changes. These systems are powerful tools to do Kaizen (continuous improvement efforts) step by step, coordinating with the operator. This paper describes a practical technique regarding the diagnosis system and its industrial applications.

  8. Innovative Technology Reduces Power Plant Emissions - Commercialization Success

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde

    2004-01-01

    Emission control system development includes: (1) Development of new oxidizer scrubber system to eliminate NOx waste and produce fertilizer (2) Technology licensed and a 1 to 3 MWatt-scale prototype installed on. power plant (3) Development of method to oxidize NO. to N02 (4) Experience gained from licensing NASA technology

  9. Innovative Technology Reduces Power Plant Emissions-Commercialization Success

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde; Chung, Landy

    2004-01-01

    Overview of emission control system development: (1) Development of new oxidizer scrubber system to eliminate NOx waste and produce fertilizer (2) Technology licensed and a 1 to 3 MWatt-scale prototype installed on power plant (3) Development of method to oxidize NO to NO2 (4) Experience gained from licensing NASA technology.

  10. Technology for subsystems of space-based plant growth facilities

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.; Corey, R. B.

    1990-01-01

    Technologies for different subsystems of space-based plant growth facilities are being developed at the Wisconsin Center for Space Automation and Robotics, a NASA Center for the Commercial Development of Space. The technologies include concepts for water and nutrient delivery, for nutrient composition control, and for irradiation. Effort is being concentrated on these subsystems because available technologies cannot be effectively utilized for space applications.

  11. Phosphoproteomics technologies and applications in plant biology research

    PubMed Central

    Li, Jinna; Silva-Sanchez, Cecilia; Zhang, Tong; Chen, Sixue; Li, Haiying

    2015-01-01

    Protein phosphorylation has long been recognized as an essential mechanism to regulate many important processes of plant life. However, studies on phosphorylation mediated signaling events in plants are challenged with low stoichiometry and dynamic nature of phosphorylated proteins. Significant advances in mass spectrometry based phosphoproteomics have taken place in recent decade, including phosphoprotein/phosphopeptide enrichment, detection and quantification, and phosphorylation site localization. This review describes a variety of separation and enrichment methods for phosphoproteins and phosphopeptides, the applications of technological innovations in plant phosphoproteomics, and highlights significant achievement of phosphoproteomics in the areas of plant signal transduction, growth and development. PMID:26136758

  12. Technology to the Rescue

    ERIC Educational Resources Information Center

    Percy, Bernard

    2004-01-01

    One of the most dramatic examples of how invaluable a resource technology can be occurred immediately after Sept. 11, 2001. What is not as well known is how Avi Duvdevani, who was New York City's acting commissioner for the Department of Information Technology and Telecommunications at the time of the attacks, his team, and numerous businesses and…

  13. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health

    PubMed Central

    Liew, Oi Wah; Chong, Pek Ching Jenny; Li, Bingqing; Asundi, Anand K.

    2008-01-01

    Optical technologies can be developed as practical tools for monitoring plant health by providing unique spectral signatures that can be related to specific plant stresses. Signatures from thermal and fluorescence imaging have been used successfully to track pathogen invasion before visual symptoms are observed. Another approach for non-invasive plant health monitoring involves elucidating the manner with which light interacts with the plant leaf and being able to identify changes in spectral characteristics in response to specific stresses. To achieve this, an important step is to understand the biochemical and anatomical features governing leaf reflectance, transmission and absorption. Many studies have opened up possibilities that subtle changes in leaf reflectance spectra can be analyzed in a plethora of ways for discriminating nutrient and water stress, but with limited success. There has also been interest in developing transgenic phytosensors to elucidate plant status in relation to environmental conditions. This approach involves unambiguous signal creation whereby genetic modification to generate reporter plants has resulted in distinct optical signals emitted in response to specific stressors. Most of these studies are limited to laboratory or controlled greenhouse environments at leaf level. The practical translation of spectral cues for application under field conditions at canopy and regional levels by remote aerial sensing remains a challenge. The movement towards technology development is well exemplified by the Controlled Ecological Life Support System under development by NASA which brings together technologies for monitoring plant status concomitantly with instrumentation for environmental monitoring and feedback control.

  14. Facing technological challenges of Solar Updraft Power Plants

    NASA Astrophysics Data System (ADS)

    Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.

    2015-01-01

    The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.

  15. Application of AI technology to nuclear plant operations

    SciTech Connect

    Sackett, J.I.

    1988-01-01

    In this paper, applications of Artificial Intelligence (AI) Technology to nuclear-power plant operation are reviewed. AI Technology is advancing rapidly and in the next five years is expected to enjoy widespread application to operation, maintenance, management and safety. Near term emphasis on a sensor validation, scheduling, alarm handling, and expert systems for procedural assistance. Ultimate applications are envisioned to culminate in autonomous control such as would be necessary for a power system in space, where automatic control actions are taken based upon reasoned conclusions regarding plant conditions, capability and control objectives.

  16. A methodology for evaluating ``new`` technologies in nuclear power plants

    SciTech Connect

    Korsah, K.; Clark, R.L.; Holcomb, D.E.

    1994-06-01

    As obsolescence and spare parts issues drive nuclear power plants to upgrade with new technology (such as optical fiber communication systems), the ability of the new technology to withstand stressors present where it is installed needs to be determined. In particular, new standards may be required to address qualification criteria and their application to the nuclear power plants of tomorrow. This paper discusses the failure modes and age-related degradation mechanisms of fiber optic communication systems, and suggests a methodology for identifying when accelerated aging should be performed during qualification testing.

  17. [Pilot plant for microbiological synthesis. Engineer and technological aspects].

    PubMed

    Lukanin, A V

    2007-01-01

    A biotechnological pilot plant (National Research Centre of Antibiotics) and its technical potentialities in production of various biosynthetic products are described. Some engineer and technological aspects of the fermentation equipment and particularly sterilization of the media and apparatus, fermentation broth aeration under sterile conditions and control of biosynthesis technological parameters (t degrees, pO2, P, pH, foaming, etc.) are considered. The pilot plant is designed for fermentation processes under aseptic conditions with the use practically of any object, from bacteria to tissue cultures. PMID:20583471

  18. Fieldbus technology passes beta tests at Texas plant

    SciTech Connect

    1996-05-20

    Fieldbus technology has completed beta plant testing at Monsanto Co.`s Chocolate Bayou petrochemical complex at Alvin, Texas. The trial took place in a steam condensate recovery section of the Chocolate Bayou plant, which produces acrylonitrile, linear alkylbenzene, and a number of other petrochemical derivatives. Fieldbus is a plant communications network, or bus, that enables digital instruments to communicate with one another and with supervisory control systems. The fieldbus specification, written by the nonprofit organization Fieldbus Foundation, Austin, Texas, is called Foundation fieldbus. The beta tests at Chocolate Bayou successfully demonstrated fieldbus performance in a process control application.

  19. Are Wave and Tidal Energy Plants New Green Technologies?

    PubMed

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research. PMID:27294983

  20. Scale-up of commercial PCFB boiler plant technology

    SciTech Connect

    Lamar, T.W.

    1993-10-01

    The DMEC-1 Demonstration Project will provide an 80 MWe commercial-scale demonstration of the Pressurized Circulating Fluidized Bed (PCFB) technology. Following confirmation of the PCFB design in the 80 MWe scale, the technology with be scaled to even larger commercial units. It is anticipated that the market for commercial scale PCFB plants will exist most predominantly in the utility and independent power producer (IPP) sectors. These customers will require the best possible plant efficiency and the lowest achievable emissions at competitive cost. This paper will describe the PCFB technology and the expected performance of a nominal 400 MWe PCFB power plant Illinois No. 6 coal was used as a representative fuel for the analysis. The description of the plant performance will be followed by a discussion of the scale-up of the major PCFB components such as the PCFB boiler, the pressure vessel, the ceramic filter, the coal/sorbent handling steam, the gas turbine, the heat recovery unit and the steam turbine, demonstrating the reasonableness of scale-up from demonstration plant to a nominal 400 MWe unit.

  1. New Technologies for 21st Century Plant Science

    PubMed Central

    Ehrhardt, David W.; Frommer, Wolf B.

    2012-01-01

    Plants are one of the most fascinating and important groups of organisms living on Earth. They serve as the conduit of energy into the biosphere, provide food, and shape our environment. If we want to make headway in understanding how these essential organisms function and build the foundation for a more sustainable future, then we need to apply the most advanced technologies available to the study of plant life. In 2009, a committee of the National Academy highlighted the “understanding of plant growth” as one of the big challenges for society and part of a new era which they termed “new biology.” The aim of this article is to identify how new technologies can and will transform plant science to address the challenges of new biology. We assess where we stand today regarding current technologies, with an emphasis on molecular and imaging technologies, and we try to address questions about where we may go in the future and whether we can get an idea of what is at and beyond the horizon. PMID:22366161

  2. Ergonomics aspects of tree-planting using 'multipot' technology.

    PubMed

    Giguère, D; Bélanger, R; Gauthier, J M; Larue, C

    1993-08-01

    The highlights of a descriptive study on the ergonomics and occupational health and safety aspects of tree-planting in Québec are presented. The study was planned to consider the most representative geographical sites, planting technologies, and planting organizations. Semi-directed interviews were made with a mixed group of 48 male and female tree-planters and physiological measurements were made on four male planters. Tools and other equipment were also examined. An analysis of the work identified the main elements of the planting cycle, and the high cardiac rate in the working planters was related more to his manual transportation of seedlings and travel on rough paths than to planting per se. A tree-planter will typically travel 2.4 km carrying 16.8 kg of material and equipment in order to plant an average of 1245 seedlings daily. One out of two interviewed planters reported having a work-related accident or incident during his or her lifetime planting career. The body parts reported most frequently injured were the lower extremities (knee, foot, ankle), the skin, the eyes, and the wrist. Recommendations on the development of appropriate tools and footwear for tree-planters and for further research on repetitive strain injury induced by tree-planting have been made. PMID:8365394

  3. Plant growth chamber based on space proven controlled environment technology

    SciTech Connect

    Ignatius, R.W.; Ignatius, M.H.; Imberti, H.J.

    1997-01-01

    Quantum Devices, Inc., in conjunction with Percival Scientific, Inc., and the Wisconsin Center for Space Automation and Robotics (WCSAR) have developed a controlled environment plant growth chamber for terrestrial agricultural and scientific applications. This chamber incorporates controlled environment technology used in the WCSAR ASTROCULTURE{trademark} flight unit for conducting plant research on the Space Shuttle. The new chamber, termed CERES 2010, features air humidity, temperature, and carbon dioxide control, an atmospheric contaminant removal unit, an LED lighting system, and a water and nutrient delivery system. The advanced environment control technology used in this chamber will increase the reliability and repeatability of environmental physiology data derived from plant experiments conducted in this chamber. {copyright} {ital 1997 American Institute of Physics.}

  4. Meeting report VLPNPV: Session 5: Plant based technology.

    PubMed

    Meador, Lydia R; Mor, Tsafrir S

    2014-01-01

    The VLPNPV 2014 Conference that was convened at the Salk institute was the second conference of its kind to focus on advances in production, purification, and delivery of virus-like particles (VLPs) and nanoparticles. Many exciting developments were reported and discussed in this interdisciplinary arena, but here we report specifically on the contributions of plant-based platforms to VLP vaccine technology as reported in the section of the conference devoted to the topic as well in additional presentations throughout the meeting. The increasing popularity of plant production platforms is due to their lower cost, scalability, and lack of contaminating animal pathogens seen with other systems. Reports include production of complex VLPs consisting of 4 proteins expressed at finely-tuned expression levels, a prime-boost strategy for HIV vaccination using plant-made VLPs and a live viral vector, and the characterization and development of plant viral nanoparticles for use in cancer vaccines, drug delivery, and bioimaging. PMID:25581535

  5. SnAvi--a new tandem tag for high-affinity protein-complex purification.

    PubMed

    Schäffer, Ursula; Schlosser, Andreas; Müller, Kristian M; Schäfer, Angelika; Katava, Nenad; Baumeister, Ralf; Schulze, Ekkehard

    2010-04-01

    Systematic tandem-affinity-purification (TAP) of protein complexes was tremendously successful in yeast and has changed the general concept of how we understand protein function in eukaryotic cells. The transfer of this method to other model organisms has been difficult and may require specific adaptations. We were especially interested to establish a cell-type-specific TAP system for Caenorhabditis elegans, a model animal well suited to high-throughput analysis, proteomics and systems biology. By combining the high-affinity interaction between in vivo biotinylated target-proteins and streptavidin with the usage of a newly identified epitope of the publicly shared SB1 monoclonal antibody we created a novel in vivo fluorescent tag, the SnAvi-Tag. We show the versatile application of the SnAvi-Tag in Escherichia coli, vertebrate cells and in C. elegans for tandem affinity purification of protein complexes, western blotting and also for the in vivo sub-cellular localization of labelled proteins. PMID:20047968

  6. Nuclear physics detector technology applied to plant biology research

    SciTech Connect

    Weisenberger, Andrew G.; Kross, Brian J.; Lee, Seung Joo; McKisson, John E.; Xi, Wenze; Zorn, Carl J.; Howell, Calvin; Crowell, A.S.; Reid, C.D.; Smith, Mark

    2013-08-01

    The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: {sup 11}C has been utilized as a {sup 11}CO{sub 2} tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the {sup 11}CO{sub 2} radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using {sup 11}CO{sub 2}. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for {sup 11}CO{sub 2} tracer studies in plants will be briefly outlined.

  7. The economic valuation of improved process plant decision support technology.

    PubMed

    White, Douglas C

    2007-06-01

    How can investments that would potentially improve a manufacturing plant's decision process be economically justified? What is the value of "better information," "more flexibility," or "improved integration" and the technologies that provide these effects? Technology investments such as improved process modelling, new real time historians and other databases, "smart" instrumentation, better data analysis and visualization software, and/or improved user interfaces often include these benefits as part of their valuation. How are these "soft" benefits to be converted to a quantitative economic return? Quantification is important if rational management decisions are to be made about the correct amount of money to invest in the technologies, and which technologies to choose among the many available ones. Modelling the plant operational decision cycle-detect, analyse, forecast, choose and implement--provides a basis for this economic quantification. In this paper a new economic model is proposed for estimation of the value of decision support investments based on their effect upon the uncertainty in forecasting plant financial performance. This model leads to quantitative benefit estimates that have a realistic financial basis. An example is presented demonstrating the application of the method. PMID:17434170

  8. Bioremediation of industrially contaminated soil using compost and plant technology.

    PubMed

    Taiwo, A M; Gbadebo, A M; Oyedepo, J A; Ojekunle, Z O; Alo, O M; Oyeniran, A A; Onalaja, O J; Ogunjimi, D; Taiwo, O T

    2016-03-01

    Compost technology can be utilized for bioremediation of contaminated soil using the active microorganisms present in the matrix of contaminants. This study examined bioremediation of industrially polluted soil using the compost and plant technology. Soil samples were collected at the vicinity of three industrial locations in Ogun State and a goldmine site in Iperindo, Osun State in March, 2014. The compost used was made from cow dung, water hyacinth and sawdust for a period of twelve weeks. The matured compost was mixed with contaminated soil samples in a five-ratio pot experimental design. The compost and contaminated soil samples were analyzed using the standard procedures for pH, electrical conductivity (EC), organic carbon (OC), total nitrogen (TN), phosphorus, exchangeable cations (Na, K, Ca and Mg) and heavy metals (Fe, Mn, Cu, Zn and Cr). Kenaf (Hibiscus cannabinus) seeds were also planted for co-remediation of metals. The growth parameters of Kenaf plants were observed weekly for a period of one month. Results showed that during the one-month remediation experiment, treatments with 'compost-only' removed 49 ± 8% Mn, 32 ± 7% Fe, 29 ± 11% Zn, 27 ± 6% Cu and 11 ± 5% Cr from the contaminated soil. On the other hand, treatments with 'compost+plant' remediated 71 ± 8% Mn, 63 ± 3% Fe, 59 ± 11% Zn, 40 ± 6% Cu and 5 ± 4% Cr. Enrichment factor (EF) of metals in the compost was low while that of Cu (EF=7.3) and Zn (EF=8.6) were high in the contaminated soils. Bioaccumulation factor (BF) revealed low metal uptake by Kenaf plant. The growth parameters of Kenaf plant showed steady increments from week 1 to week 4 of planting. PMID:26551220

  9. Marriage and Family Therapists Working with Family Violence: Strained Bedfellows or Compatible Partners?: A Commentary on Avis, Kaufman, and Bograd.

    ERIC Educational Resources Information Center

    Meth, Richard L.

    1992-01-01

    Responds to previous articles by Avis, Kaufman, and Bograd on role of marital and family therapists in dealing with family violence among clients. Comments on presentation style of earlier articles and then discusses points of agreement and disagreement with each of the three authors. Concludes by urging therapists to learn more so they can…

  10. The Zwilag interim storage plasma plant technology to handle operational waste from nuclear plants

    SciTech Connect

    Heep, Walter

    2007-07-01

    The first processing of low level radioactive wastes from Swiss nuclear power plants marks the successful completion of commissioning in March 2004 of a treatment facility for low and intermediate level radioactive wastes, which is operated with the help of plasma technology. The theoretical principles of this metallurgy-derived process technology are based on plasma technology, which has already been used for a considerable period outside of nuclear technology for the production of highly pure metal alloys and for the plasma synthesis of acetylene. The commercial operation of the Plasma Plant owned by Zwischenlager Wuerenlingen AG (ZWILAG) has also enabled this technology to be used successfully for the first time in the nuclear field, especially in compliance with radiation protection aspects. In addition to a brief presentation of the technology used in the plant, the melting process under operating conditions will be explained in more detail. The separation factors attained and volume reductions achieved open interesting perspectives for the further optimisation of the entire process in the future. (author)

  11. ETV REPORT - EVALUATION OF DAVIS TECHNOLOGIES INTERNATIONAL CORP. - INDUSTRIAL WASTEWATER TREATMENT PLANT

    EPA Science Inventory

    Abstract: Evaluation of Davis Technologies International Corp. Industrial Wastewater Treatment Plant

    The Davis Technologies International Corp. (DTIC) Industrial Wastewater Treatment Plant (IWTP) was tested, under actual production conditions, processing metalworking and ...

  12. Gene use restriction technologies for transgenic plant bioconfinement.

    PubMed

    Sang, Yi; Millwood, Reginald J; Neal Stewart, C

    2013-08-01

    The advances of modern plant technologies, especially genetically modified crops, are considered to be a substantial benefit to agriculture and society. However, so-called transgene escape remains and is of environmental and regulatory concern. Genetic use restriction technologies (GURTs) provide a possible solution to prevent transgene dispersal. Although GURTs were originally developed as a way for intellectual property protection (IPP), we believe their maximum benefit could be in the prevention of gene flow, that is, bioconfinement. This review describes the underlying signal transduction and components necessary to implement any GURT system. Furthermore, we review the similarities and differences between IPP- and bioconfinement-oriented GURTs, discuss the GURTs' design for impeding transgene escape and summarize recent advances. Lastly, we go beyond the state of the science to speculate on regulatory and ecological effects of implementing GURTs for bioconfinement. PMID:23730743

  13. Fieldbus: technology application in a 60Co sterilization plant

    NASA Astrophysics Data System (ADS)

    Karam, D.; Sampa, M. H. O.; Rela, P. R.

    2000-03-01

    Process instrumentation was made by pressure signals in the 1940s. In the 1960s, 4-20 mA analogue signals were introduced. The development of digital processors in the 1970s sparked the use of computers to monitor and control instruments from a central point. In the 1980s smart sensors were developed and implemented in digital control, microprocessor environments. Fieldbus is a generic-term that describes a new digital communications network. The network is a digital, bi-directional, multidrop, serial-bus, and communications network used to link isolated field devices, such as controllers, transducers, actuators and sensors. Fieldbus technology may improve quality, reduce costs and increase efficiency because information is transmitted digitally without analog to digital or digital to analog converters, which also minimizes hardware errors. Fieldbus communication is based on two-wire communication, interconnecting all the components in the system. This paper introduces Fieldbus technology in a 60Co sterilization plant.

  14. Dynamic gas bearing turbine technology in hydrogen plants

    NASA Astrophysics Data System (ADS)

    Ohlig, Klaus; Bischoff, Stefan

    2012-06-01

    Dynamic Gas Bearing Turbines - although applied for helium refrigerators and liquefiers for decades - experienced limitations for hydrogen applications due to restrictions in axial bearing capacity. With a new design concept for gas bearing turbines developed in 2004, axial bearing capacity was significantly improved enabling the transfer of this technology to hydrogen liquefiers. Prior to roll-out of the technology to industrial plants, the turbine bearing technology passed numerous tests in R&D test benches and subsequently proved industrial scale demonstration at Linde Gas' hydrogen liquefier in Leuna, Germany. Since its installation, this turbine has gathered more than 16,000 successful operating hours and has outperformed its oil bearing brother in terms of performance, maintainability as well as reliability. The present paper is based on Linde Kryotechnik AG's paper published in the proceedings of the CEC 2009 concerning the application of Dynamic Gas Bearing Turbines in hydrogen applications. In contrast to the former paper, this publication focuses on the steps towards final market launch and more specifically on the financial benefits of this turbine technology, both in terms of capital investment as well as operating expenses.

  15. Implementation of Autonomous Control Technology for Plant Growth Chambers

    NASA Technical Reports Server (NTRS)

    Costello, Thomas A.; Sager, John C.; Krumins, Valdis; Wheeler, Raymond M.

    2002-01-01

    The Kennedy Space Center has significant infrastructure for research using controlled environment plant growth chambers. Such research supports development of bioregenerative life support technology for long-term space missions. Most of the existing chambers in Hangar L and Little L will be moved to the new Space Experiment Research and Processing Laboratory (SERPL) in the summer of 2003. The impending move has created an opportunity to update the control system technologies to allow for greater flexibility, less labor for set-up and maintenance, better diagnostics, better reliability and easier data retrieval. Part of these improvements can be realized using hardware which communicates through an ethernet connection to a central computer for supervisory control but can be operated independently of the computer during routine run-time. Both the hardware and software functionality of an envisioned system were tested on a prototype plant growth chamber (CEC-4) in Hangar L. Based upon these tests, recommendations for hardware and software selection and system design for implementation in SERPL are included.

  16. Energy efficiency in municipal wastewater treatment plants: Technology assessment

    SciTech Connect

    1995-11-01

    The New York State Energy Research and Development Authority (NYSERDA) estimates that municipal wastewater treatment plants (WWTPs) in New York State consume about 1.5 billion kWh of electricity each year for sewage treatment and sludge management based on the predominant types of treatment plants, the results of an energy use survey, and recent trends in the amounts of electricity WWTPs use nationwide. Electric utilities in New York State have encouraged demand-side management (DSM) to help control or lower energy costs and make energy available for new customers without constructing additional facilities. This report describes DSM opportunities for WWTPs in New York State; discusses the costs and benefits of several DSM measures; projects energy impact statewide of the DSM technologies; identifies the barrier to implementing DSM at WWTPs; and outlines one possible incentive that could stimulate widespread adoption of DSM by WWTP operators. The DSM technologies discussed are outfall hydropower, on-site generation, aeration efficiency, time-of-day electricity pricing, and storing wastewater.

  17. Integrating New Technology Solutions to Improve Plant Operations

    SciTech Connect

    HEAVIN, ERIC

    2004-06-29

    Continuing advancements in software and hardware technology are providing facilities the opportunity for improvements in the areas of safety, regulatory compliance, administrative control, data collection, and reporting. Implementing these changes to improve plant operating efficiency can also create many challenges which include but are not limited to: justifying cost, planning for scalability, implementing applications across varied platforms, integrating multitudes of proprietary vendor applications, and creating a common vision for diverse process improvement projects. The Defense Programs (DP) facility at the Savannah River Site meets these challenges on a daily basis. Like many other plants, DP, has room for improvement when it comes to effective and clear communication, data entry, data storage, and system integration. Specific examples of areas targeted for improvement include: shift turnover meetings using system status data one to two hours old, lockouts and alarm inhibits performed on points on the Distributed Control System (DCS) and tracked in a paper logbook, disconnected systems preventing preemptive correction of regulatory compliance issues, and countless examples of additional task and data duplication on independent systems. Investment of time, money, and careful planning addressing these issues are already providing returns in the form of increased efficiency, improved plant tracking and reduced cost of implementing the next process improvement. Specific examples of improving plant operations through thoroughly planned Rapid Application Development of new applications are discussed. Integration of dissimilar and independent data sources (NovaTech D/3 DCS, SQL Server, Access, Filemaker Pro, etc.) is also explored. The tangible benefits of the implementation of the different programs to solve the operational problems previously described are analyzed in an in-depth and comparative manner.

  18. New technology tackles coal-fired power plant emissions

    SciTech Connect

    Prachi Patel-Predd

    2006-05-01

    Tests conducted at three coal-fired power plants show that a new technology can reduce mercury emissions at higher rates and lower costs than current methods, according to its developers, Chem-Mod LLC. The Chem-Mod system is able to capture Hg{sup 0} by using a liquid sorbent to oxidize it to Hg{sup 2+} or trap it on its surface. A second, powder sorbent captures SO{sub 2} and heavy metals. The two sorbents combine to trap the emissions in a ceramic-like matrix that is locked into the fly ash. The technology removed up to 98%, 90%, and 86% of the mercury in week-long tests with different bituminous and subbituminous grades of coals. In addition, the system cut SO{sub 2} emissions by 40-75% and those of arsenic, chloride, and heavy metals by 75-90%. A full-scale commercial facility using the technology is expected to start soon.

  19. Applying velocity profiling technology to flow measurement at the Orinda water treatment plant

    SciTech Connect

    Metcalf, M.A.; Kachur, S.; Lackenbauer, S.

    1998-07-01

    A new type of flow measurement technology, velocity profiling, was tested in the South Channel of the Orinda Water Treatment Plant. This new technology allowed installation in the difficult hydraulic conditions of the South Channel, without interrupting plant operation. The advanced technology of velocity profiling enables flow measurements to be obtained in sites normally unusable by more traditional methods of flow rate measurement.

  20. A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology.

    PubMed

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-09-01

    The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software. Two case studies have been evaluated to assess the model's performance: (1) modelling the energy demand of two urban wastewater treatment plants based on conventional activated sludge and submerged anaerobic membrane bioreactor (AnMBR) technologies in steady-state conditions and (2) modelling the dynamics of reactor temperature and heat requirements in an AnMBR plant in unsteady-state conditions. The results indicate that the proposed model can be used to assess the energy performance of different wastewater treatment processes and would thus be useful, for example, WWTP design or upgrading or the development of new control strategies for energy savings. PMID:26829316

  1. Advanced on-site power plant development technology program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A 30-cell, full area short stack containing advanced cell features was tested for 2900 hours. A stack acid addition approach was selected and will be evaluated on the stack at 5000 hours test time. A brassboard inverter was designed and fabrication was initiated. Evaluation of this brassboard inverter will take place in 1984. A Teflon coated commercial heat exchanger was selected as the preferred approach for the acid condenser. A reformer catalyst with significantly less pressure drop and equivalent performance relative to the 40-K baseline catalyst was selected for the development reformer. The early 40-kW field power plant history was reviewed and adjustments were made to the On-Site Technology Development Program to address critical component issues.

  2. Vitrification Technology Development Plan in Tokai Reprocessing Plant

    SciTech Connect

    Atsushi Aoshima; Kazuhiko Tanaka

    2006-07-01

    The Tokai Vitrification Facility (TVF) is the only operating vitrification plant in Japan, constructed and operated by JAEA, to vitrify concentrated high radioactive liquid waste (HALW) in the Tokai Reprocessing Plant (TRP). JAEA started TVF hot operation in 1995 and produced 218 canisters as of March, 2006. An existing melter is the second melter, which was installed from 2002 to 2004 in place of the first melter stopped its operation by damage of a main electrode. JAEA has estimated that the damage was caused by accumulation of noble metal. Therefore, melter bottom structure was improved to get better drain ability of glass containing noble metal. Completing the melter replacement, vitrification operation was restarted in October 2004 and produced 88 canisters successfully until the end of March 2006. Through these experiences, JAEA made basic strategy to achieve stable TVF operation: keeping stable operation of the existing melter preventing adverse effect by noble metal accumulation and developing a new advanced melter with long lifetime preparing for future exchange as the third melter. Based on the basic strategy, JAEA made a decade development plan of necessary key technologies and has started the development since 2005. (authors)

  3. Y-12 Plant Remedial Action technology logic diagram. Volume I: Technology evaluation

    SciTech Connect

    1994-09-01

    The Y-12 Plant Remedial Action Program addresses remediation of the contaminated groundwater, surface water and soil in the following areas located on the Oak Ridge Reservation: Chestnut Ridge, Bear Creek Valley, the Upper and Lower East Fork Popular Creek Watersheds, CAPCA 1, which includes several areas in which remediation has been completed, and CAPCA 2, which includes dense nonaqueous phase liquid wells and a storage facility. There are many facilities within these areas that are contaminated by uranium, mercury, organics, and other materials. This Technology Logic Diagram identifies possible remediation technologies that can be applied to the soil, water, and contaminants for characterization, treatment, and waste management technology options are supplemented by identification of possible robotics or automation technologies. These would facilitate the cleanup effort by improving safety, of remediation, improving the final remediation product, or decreasing the remediation cost. The Technology Logic Diagram was prepared by a diverse group of more than 35 scientists and engineers from across the Oak Ridge Reservation. Most are specialists in the areas of their contributions. 22 refs., 25 tabs.

  4. Research progress of genome editing and derivative technologies in plants.

    PubMed

    Qiwei, Shan; Caixia, Gao

    2015-10-01

    Genome editing technologies using engineered nucleases have been widely used in many model organisms. Genome editing with sequence-specific nuclease (SSN) creates DNA double-strand breaks (DSBs) in the genomic target sites that are primarily repaired by the non-homologous end joining (NHEJ) or homologous recombination (HR) pathways, which can be employed to achieve targeted genome modifications such as gene mutations, insertions, replacements or chromosome rearrangements. There are three major SSNs─zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system. In contrast to ZFN and TALEN, which require substantial protein engineering to each DNA target, the CRISPR/Cas9 system requires only a change in the guide RNA. For this reason, the CRISPR/Cas9 system is a simple, inexpensive and versatile tool for genome engineering. Furthermore, a modified version of the CRISPR/Cas9 system has been developed to recruit heterologous domains that can regulate endogenous gene expression, such as activation, depression and epigenetic regulation. In this review, we summarize the development and applications of genome editing technologies for basic research and biotechnology, as well as highlight challenges and future directions, with particular emphasis on plants. PMID:26496748

  5. Modern air protection technologies at thermal power plants (review)

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.

    2016-07-01

    Realization of the ecologically safe technologies for fuel combustion in the steam boiler furnaces and the effective ways for treatment of flue gases at modern thermal power plants have been analyzed. The administrative and legal measures to stimulate introduction of the technologies for air protection at TPPs have been considered. It has been shown that both the primary intrafurnace measures for nitrogen oxide suppression and the secondary flue gas treatment methods are needed to meet the modern ecological standards. Examples of the environmentally safe methods for flame combustion of gas-oil and solid fuels in the boiler furnaces have been provided. The effective methods and units to treat flue gases from nitrogen and sulfur oxides and flue ash have been considered. It has been demonstrated that realization of the measures for air protection should be accompanied by introduction of the systems for continuous instrumentation control of the composition of combustion products in the gas path of boiler units and for monitoring of atmospheric emissions.

  6. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    SciTech Connect

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

  7. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part B, Characterization; robotics/automation

    SciTech Connect

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate theses problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part B of Volume 3 and contains the Characterization and Robotics/Automation sections.

  8. Innovative Decontamination Technology for Use in Gaseous Diffusion Plant Decommissioning

    SciTech Connect

    Peters, M.J.; Norton, C.J.; Fraikor, G.B.; Potter, G.L.; Chang, K.C.

    2006-07-01

    The results of bench scale tests demonstrated that TechXtract{sup R} RadPro{sup TM} technology (hereinafter referred to as RadPro{sup R}) can provide 100% coverage of complex mockup gaseous diffusion plant (GDP) equipment and can decontaminate uranium (U) deposits with 98% to 99.99% efficiency. Deployment tests demonstrated RadPro{sup R} can be applied as foam, mist/fog, or steam, and fully cover the internal surfaces of complex mockup equipment, including large piping. Decontamination tests demonstrated that two formulations of RadPro{sup R}, one with neutron attenuators and one without neutron attenuators, could remove up to 99.99% of uranyl fluoride deposits, one of the most difficult to remove deposits in GDP equipment. These results were supplemented by results from previous tests conducted in 1994 that showed RadPro{sup R} could remove >97% of U and Tc-99 contamination from actual GDP components. Operational use of RadPro{sup R} at other DOE and commercial facilities also support these data. (authors)

  9. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    SciTech Connect

    Ianakiev, Kiril D; Alexandrov, Boian S.; Boyer, Brian D.; Hill, Thomas R.; Macarthur, Duncan W.; Marks, Thomas; Moss, Calvin E.; Sheppard, Gregory A.; Swinhoe, Martyn T.

    2008-06-13

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  10. Animal and plant cell technology: a critical evaluation of the technology/society interface.

    PubMed

    Spier, R E

    1998-10-27

    The rate at which technology progresses is dependent on the nature of the technology/society interface. This is a complex interaction which involves the production of people capable of making technical advances, the physical opportunities for the deployment of those trained individuals in this task as well as cultural and social factors which will motivate the innovators to produce the advances we need to maintain the momentum of our continually improving situation. One particular aspect of the social situation which may be singled out for special attention is that of the ethics of the society in which people make and use the products of the innovation process. The ethical aspects of biotechnological activities has commanded a great deal of attention recently both from the professional and societal stake-holders. This paper, therefore examines in some detail the ethical aspects of the technology/society interface as it applies, in particular, to the development of animal and plant cell biotechnology. It focuses on the role of the regulatory agency and on the need for biotechnologists to acquire professional status so that they may develop a more trustworthy relationship with society. PMID:9828457

  11. DOE/NETL's field tests of mercury control technologies for coal-fired power plants

    SciTech Connect

    Thomas Feeley; James Murphy; Lynn Brickett; Andrew O'Palko

    2005-08-01

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is conducting a comprehensive research and development program directed at advancing the performance and economics of mercury control technologies for coal-fired power plants. This article presents results from ongoing full-scale and slipstream field tests of several mercury control technologies. 15 refs., 4 figs., 3 tabs.

  12. Multiplex Detection of Plant Pathogens Using a Microsphere Immunoassay Technology

    PubMed Central

    Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Kumpoosiri, Mallika; Warin, Nuchnard; Oplatowska, Michalina; Gajanandana, Oraprapai; Grant, Irene R.; Karoonuthaisiri, Nitsara; Elliott, Christopher T.

    2013-01-01

    Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), chilli vein-banding mottle virus (CVbMV, potyvirus), watermelon silver mottle virus (WSMoV, tospovirus serogroup IV) and melon yellow spot virus (MYSV, tospovirus). An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE)-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA) when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour) was much shorter than that of ELISA (4 hours). This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection. PMID:23638044

  13. Technology-Enhanced Formative Assessment of Plant Identification

    ERIC Educational Resources Information Center

    Conejo, Ricardo; Garcia-Viñas, Juan Ignacio; Gastón, Aitor; Barros, Beatriz

    2016-01-01

    Developing plant identification skills is an important part of the curriculum of any botany course in higher education. Frequent practice with dried and fresh plants is necessary to recognize the diversity of forms, states, and details that a species can present. We have developed a web-based assessment system for mobile devices that is able to…

  14. Plant-based vaccines for animals and humans: recent advances in technology and clinical trials.

    PubMed

    Takeyama, Natsumi; Kiyono, Hiroshi; Yuki, Yoshikazu

    2015-09-01

    It has been about 30 years since the first plant engineering technology was established. Although the concept of plant-based pharmaceuticals or vaccines motivates us to develop practicable commercial products using plant engineering, there are some difficulties in reaching the final goal: to manufacture an approved product. At present, the only plant-made vaccine approved by the United States Department of Agriculture is a Newcastle disease vaccine for poultry that is produced in suspension-cultured tobacco cells. The progress toward commercialization of plant-based vaccines takes much effort and time, but several candidate vaccines for use in humans and animals are in clinical trials. This review discusses plant engineering technologies and regulations relevant to the development of plant-based vaccines and provides an overview of human and animal vaccines currently under clinical trials. PMID:26668752

  15. Plant-based vaccines for animals and humans: recent advances in technology and clinical trials

    PubMed Central

    Takeyama, Natsumi; Kiyono, Hiroshi; Yuki, Yoshikazu

    2015-01-01

    It has been about 30 years since the first plant engineering technology was established. Although the concept of plant-based pharmaceuticals or vaccines motivates us to develop practicable commercial products using plant engineering, there are some difficulties in reaching the final goal: to manufacture an approved product. At present, the only plant-made vaccine approved by the United States Department of Agriculture is a Newcastle disease vaccine for poultry that is produced in suspension-cultured tobacco cells. The progress toward commercialization of plant-based vaccines takes much effort and time, but several candidate vaccines for use in humans and animals are in clinical trials. This review discusses plant engineering technologies and regulations relevant to the development of plant-based vaccines and provides an overview of human and animal vaccines currently under clinical trials. PMID:26668752

  16. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    SciTech Connect

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  17. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    SciTech Connect

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  18. Technology-Enhanced Formative Assessment of Plant Identification

    NASA Astrophysics Data System (ADS)

    Conejo, Ricardo; Garcia-Viñas, Juan Ignacio; Gastón, Aitor; Barros, Beatriz

    2016-04-01

    Developing plant identification skills is an important part of the curriculum of any botany course in higher education. Frequent practice with dried and fresh plants is necessary to recognize the diversity of forms, states, and details that a species can present. We have developed a web-based assessment system for mobile devices that is able to pose appropriate questions according to the location of the student. A student's location can be obtained using the device position or by scanning a QR code attached to a dried plant sheet in a herbarium or to a fresh plant in an arboretum. The assessment questions are complemented with elaborated feedback that, according to the students' responses, provides indications of possible mistakes and correct answers. Three experiments were designed to measure the effectiveness of the formative assessment using dried and fresh plants. Three questionnaires were used to evaluate the system performance from the students' perspective. The results clearly indicate that formative assessment is objectively effective compared to traditional methods and that the students' attitudes towards the system were very positive.

  19. Gaseous and particulate emissions from thermal power plants operating on different technologies.

    PubMed

    Athar, Makshoof; Ali, Mahboob; Khan, Misbahul Ain

    2010-07-01

    This paper presents the assessment of gaseous and particulate emissions from thermal power plants operating on different combustion technologies. Four thermal power plants operating on heavy furnace oil were selected for the study, among which three were based on diesel engine technology, while the fourth plant was based on oil-fired steam turbine technology. The stack emissions were monitored for critical air pollutants carbon monoxide, carbon dioxide, oxides of nitrogen, sulfur dioxide, particulate matter, lead, and mercury. The pollutant emissions were measured at optimum load conditions for a period of 6 months with an interval of 1 month. The results of stack emissions were compared with National Environmental Quality Standards of Pakistan and World Bank guidelines for thermal power plants, and few parameters were found higher than the permissible limits of emissions. It was observed that the emissions carbon monoxide, oxides of nitrogen, and particulate matters from diesel engine-based power plants were comparatively higher than the turbine-based power plants. The emissions of sulfur dioxide were high in all the plants, even the plants with different technologies, which was mainly due to high sulfur contents in fuel. PMID:19533397

  20. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    SciTech Connect

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.

  1. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4: Volume 2, Technology Logic Diagram

    SciTech Connect

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D&D) problems at 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak K-25 Site technology Logic Diagram, and Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D&D and waste management activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between the cost and risk. The TLD consists of three volumes. Volume 1 presents an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among the environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets.

  2. Multispectral imaging utilizing LCTF technology for plant disease detection

    NASA Astrophysics Data System (ADS)

    Tian, Lixun; Liao, Ningfang; Chai, Ali; Tan, Boneng; Cui, Deqi; Wang, Jiajia

    2011-08-01

    The aim of this paper is to pave the way for the establishment of analysis of the lights reflected from the leaf's surface as an analytical method of plant disease. An imaging LCTF spectrometer that covers a visible light with 400-720 nm wavelength bands has been developed. This paper first outlines the structure of imaging LCTF spectrometer, including their operational principles and construction. Next, various spectral images acquired using the LCTF spectrometer in laboratory environment experiments to measure spectral characteristics of rays reflected from cucumber leaves surfaces that are infected by different germs are analyzed. Then, the results of the experiments conducted using the imaging spectrometer are shown, including the analyzed relative radiance of rays reflected from the plants, and spectral images acquired at various wavelengths. These experimental results demonstrate clearly that rays reflected from plant contaminated by different disease germs have different spectral properties.

  3. APPLICABILITY OF COKE PLANT CONTROL TECHNOLOGIES TO COAL CONVERSION

    EPA Science Inventory

    The report gives results of comparisons of process and waste stream characteristics from the Byproduct coke over process with selected gasification and liquefaction processes. It includes recommendations regarding control technologies for air, water, and solid wastes. Coke oven c...

  4. Application of NASA-developed technology to the automatic control of municipal sewage treatment plants

    NASA Technical Reports Server (NTRS)

    Hiser, L. L.; Herrera, W. R.

    1973-01-01

    A search was made of NASA developed technology and commercial technology for process control sensors and instrumentation which would be applicable to the operation of municipal sewage treatment plants. Several notable items were found from which process control concepts were formulated that incorporated these items into systems to automatically operate municipal sewage treatment plants. A preliminary design of the most promising concept was developed into a process control scheme for an activated sludge treatment plant. This design included process control mechanisms for maintaining constant food to sludge mass (F/M) ratio, and for such unit processes as primary sedimentation, sludge wastage, and underflow control from the final clarifier.

  5. Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology.

    PubMed

    Zhang, Dandan; Li, Zhenxiang; Li, Jian-Feng

    2016-05-20

    The CRISPR/Cas technology is emerging as a revolutionary genome editing tool in diverse organisms including plants, and has quickly evolved into a suite of versatile tools for sequence-specific gene manipulations beyond genome editing. Here, we review the most recent applications of the CRISPR/Cas toolkit in plants and also discuss key factors for improving CRISPR/Cas performance and strategies for reducing the off-target effects. Novel technical breakthroughs in mammalian research regarding the CRISPR/Cas toolkit will also be incorporated into this review in hope to stimulate prospective users from the plant research community to fully explore the potential of these technologies. PMID:27165865

  6. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    SciTech Connect

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  7. New coal technology to flourish at Kentucky plant

    SciTech Connect

    Blankinship, S.

    2007-08-15

    Within four years a 76 MW (net) advanced supercritical coal unit, TC2, will go into service at the Trimble County power plant on the Ohio River near Louiseville, KY, USA. The unit is designed to burn a blend of eastern bituminous and western sub-bituminous Powder River Basin coals. TC2 is one of four US power plants to receive a $125 m tax credit under the 2005 EPACT Qualifying Advanced Coal Program for high efficiency and low emission generating units. Trimble County is owned and operated by E.ON US subsidiaries Kentucky Utilities and Louiseville Gas & Electric. It was originally designed to accommodate four 500 MW coal-fired units fired by bituminous coal from the Illinois Basin. 1 photo.

  8. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    SciTech Connect

    1994-09-01

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

  9. Development of molten carbonate fuel cell power plant technology

    NASA Astrophysics Data System (ADS)

    Healy, H. C.; Sanderson, R. A.; Wertheim, F. J.; Farris, P. F.; Mientek, A. P.; Maricle, D. L.; Briggs, T. A.; Preston, J. L., Jr.; Louis, G. A.; Abrams, M. L.

    1980-08-01

    During this quarter, effort was continued in all four major task areas: system studies to define the reference power plant design; cell and stack design, development and verification; preparation for fabrication and testing of the full-scale prototype stack; and developing the capability for operation of stacks on coal-derived gas. Preliminary module and cell stack design requirements were completed. Fuel processor characterization was completed. Design approaches for full-scale stack busbars and electrical isolation of reactant manifolds and reactant piping were defined. Preliminary design requirements were completed for the anode. Conductive nickel oxide for cathode fabrication was made by oxidation and lithiation of porous nickel sheet stock. A method of mechanizing the tape casting process for increased production rates was successfully demonstrated. Theoretical calculations indicated that hydrogen cyanide and ammonia, when present as impurities in the stack fuel gas, will have no harmful effects. Laboratory experiments using higher than anticipated levels of ethylene showed no harmful effects.

  10. A possible novel black aphid control approach using plant growth regulators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), elicits localized chlorotic injury to pecan foliage in order to feed, thereby accelerating leaf senescence and defoliation. The action of certain plant growth regulators (i.e., forchlorfenuron, gibberellic acid and avi...

  11. Essential RNA-Based Technologies and Their Applications in Plant Functional Genomics.

    PubMed

    Teotia, Sachin; Singh, Deepali; Tang, Xiaoqing; Tang, Guiliang

    2016-02-01

    Genome sequencing has not only extended our understanding of the blueprints of many plant species but has also revealed the secrets of coding and non-coding genes. We present here a brief introduction to and personal account of key RNA-based technologies, as well as their development and applications for functional genomics of plant coding and non-coding genes, with a focus on short tandem target mimics (STTMs), artificial microRNAs (amiRNAs), and CRISPR/Cas9. In addition, their use in multiplex technologies for the functional dissection of gene networks is discussed. PMID:26774589

  12. Developing a Hierarchical Decision Model to Evaluate Nuclear Power Plant Alternative Siting Technologies

    NASA Astrophysics Data System (ADS)

    Lingga, Marwan Mossa

    A strong trend of returning to nuclear power is evident in different places in the world. Forty-five countries are planning to add nuclear power to their grids and more than 66 nuclear power plants are under construction. Nuclear power plants that generate electricity and steam need to improve safety to become more acceptable to governments and the public. One novel practical solution to increase nuclear power plants' safety factor is to build them away from urban areas, such as offshore or underground. To date, Land-Based siting is the dominant option for siting all commercial operational nuclear power plants. However, the literature reveals several options for building nuclear power plants in safer sitings than Land-Based sitings. The alternatives are several and each has advantages and disadvantages, and it is difficult to distinguish among them and choose the best for a specific project. In this research, we recall the old idea of using the alternatives of offshore and underground sitings for new nuclear power plants and propose a tool to help in choosing the best siting technology. This research involved the development of a decision model for evaluating several potential nuclear power plant siting technologies, both those that are currently available and future ones. The decision model was developed based on the Hierarchical Decision Modeling (HDM) methodology. The model considers five major dimensions, social, technical, economic, environmental, and political (STEEP), and their related criteria and sub-criteria. The model was designed and developed by the author, and its elements' validation and evaluation were done by a large number of experts in the field of nuclear energy. The decision model was applied in evaluating five potential siting technologies and ranked the Natural Island as the best in comparison to Land-Based, Floating Plant, Artificial Island, and Semi-Embedded plant.

  13. Success Continues: NASA-Developed Plant Health Measurement Technology is Becoming Big Business for Illinois Company

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Originally produced in 2001, sales of Spectrum Technologies' CM 1000 chlorophyll meter have now topped $290,000 on 140 units. Up-to-date sales figures for 2003 have shown an almost 50% increase over the combined sales totals of 2001 and 2002. The CM 1000 chlorophyll meter identifies the failing health of a plant based on the chlorophyll content of the plant up to 16 days before it is physically detectable by the human eye. Poor health, 'stress' in a plant, is a result of unfavorable growing conditions; lack of nutrients, insufficient water, disease or insect damage.

  14. High Efficiency Nuclear Power Plants using Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITS of 950 K and 1200 K are presented. Power plant performance data were obtained for TITS ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo -generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  15. High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITs of 950 and 1200 K are presented. Power plant performance data were obtained for TITs ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo-generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  16. Geographic, technologic, and economic analysis of using reclaimed water for thermoelectric power plant cooling.

    PubMed

    Stillwell, Ashlynn S; Webber, Michael E

    2014-04-15

    Use of reclaimed water-municipal wastewater treatment plant effluent-in nonpotable applications can be a sustainable and efficient water management strategy. One such nonpotable application is at thermoelectric power plants since these facilities require cooling, often using large volumes of freshwater. To evaluate the geographic, technologic, and economic feasibility of using reclaimed water to cool thermoelectric power plants, we developed a spatially resolved model of existing power plants. Our model integrates data on power plant and municipal wastewater treatment plant operations into a combined geographic information systems and optimization approach to evaluate the feasibility of cooling system retrofits. We applied this broadly applicable methodology to 125 power plants in Texas as a test case. Results show that sufficient reclaimed water resources exist within 25 miles of 92 power plants (representing 61% of capacity and 50% of generation in our sample), with most of these facilities meeting both short-term and long-term water conservation cost goals. This retrofit analysis indicates that reclaimed water could be a suitable cooling water source for thermoelectric power plants, thereby mitigating some of the freshwater impacts of electricity generation. PMID:24625241

  17. Technology assessment for an atmospheric fluidized-bed combustion demonstration plant

    SciTech Connect

    Siman-Tov, M; Jones, Jr, J E

    1980-01-01

    This study assesses the atmospheric fluidized-bed combustion (AFBC) technology with respect to design, construction, and operation of a demonstration power plant in the range of 150 to 250 MW(e) capacity and identifies the most critical research and development needs for the plant project. The general conclusion of these studies is that AFBC is feasible for large power plants and that it has a generally good potential for providing an economically and environmentally acceptable alternative to conventional coal-fired power plants. Several areas of technical uncertainty must, however, be resolved in order to ensure success of an AFBC demonstration plant project. Much of the existing data base for AFBC comes from small-scale test units, and much of it is still inconclusive. A number of operational and design problems exist that do not yet have conclusive answers. A focused research and development program aimed at the early resolution of these problems should be carried out to ensure successful construction and operation of the proposed AFBC demonstration plant and early commercialization of the technology. A large flexible feeding test facility designed to investigate the feeding problems and possibilities should be constructed. A materials-test facility is also needed for testing, evaluating and selecting materials, as well as demonstrating their long-term compatibility. An intermediate-size pilot plant with sufficient flexibility to test alternate solutions to the above-mentioned problems will considerably strengthen the demonstration program.

  18. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    SciTech Connect

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.

    2013-09-11

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is to use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods for

  19. Trends in plant virus epidemiology: opportunities from new or improved technologies.

    PubMed

    Jones, R A C

    2014-06-24

    This review focuses on new or improved technologies currently being applied, or likely to be applied in the future, to worldwide research on plant virus epidemiology. Recent technological advances and innovations provide many opportunities to improve understanding of the way diverse types of plant virus epidemics develop and how to manage them. The review starts at the macro level by considering how recent innovations in remote sensing and precision agriculture can provide valuable information about (i) virus epidemics occurring at continental, regional or district scales (via satellites) and within individual crops (mostly via lightweight unmanned aerial vehicles), and (ii) exactly where to target control measures. It then considers recent improvements in information systems and innovations in modelling that improve (i) understanding of virus epidemics and ability to predict them, and (ii) delivery to end-users of critical advice on control measures, such as Internet-based Decision Support Systems. The review goes on to discuss how advances in analysis of spatiotemporal virus spread patterns within crops can help to enhance understanding of how virus epidemics develop and validate potentially useful virus control measures. At the micro level, the review then considers the many insights that advances in molecular epidemiology can provide about genetic variation within plant virus populations involved in epidemics, and how this variation drives what occurs at the macro level. Next, it describes how recent innovations in virus detection technologies are providing many opportunities to collect and analyse new types, and ever increasing amounts, of data about virus epidemics, and the genetic variability of the virus populations involved. Finally, the implications for plant virus epidemiology of technologies likely to be important in the future are considered. To address looming world food insecurity and threats to plant biodiversity resulting from climate change and

  20. Virtual pilot plants: What is the goal and what technology development is needed?

    SciTech Connect

    Bryden, K.M.; O'Brien, T.J.

    2000-07-01

    Within the coal utilization industry, moving virtual reality from a visualization tool to a design tool has the potential to reduce design time and cost, improve plant design and operation, and reduce the risk associated with new technologies. The goal of developing this technology is to enable an engineering design team based in disparate geographical locations to interact simultaneously with the virtual pilot plant and to see immediately the effect on performance of their design changes. In order to promote this capability, the US Department of Energy has identified virtual demonstrations as one of the key supporting technologies needed for the development of Vision 21 plants. This will require that many computational intensive technologies be enhanced and closely integrated: computer aided design/engineering (CAD/CAE), computational fluid dynamics (CFD), finite element analysis, intelligent process control, systems analysis, information management, and advanced visualization. Virtual pilot plants will create a design environment that will be a low-cost alternative to a physical pilot plant, allowing changes in plant operation and design to be rapidly and inexpensively tested. Following construction, the virtual environment will be used as the front-end of a total information system containing all of the design, construction, operation, research scale, pilot scale, and economic information available on the system. The information will be intuitively accessible by going to the place of interest in the virtual plant and entering the dimension of interest. The goal of the virtual demonstration will be to provide easily accessible information at any level of detail to anyone who needs it from policy maker to operating engineer.

  1. Technological Change in an Auto Assembly Plant: The Impact on Workers' Tasks and Skills.

    ERIC Educational Resources Information Center

    Milkman, Ruth; Pullman, Cydney

    1991-01-01

    Worker surveys and interviews with workers, managers, and unions explored the impact of technological change and reorganization at General Motors' plant in Linden, New Jersey. Skilled trades workers experienced skill upgrading and increased responsibility, whereas production workers underwent deskilling and were increasingly subordinated to the…

  2. Assessing the Impact of Heat Rejection Technology on CSP Plant Revenue: Preprint

    SciTech Connect

    Wagner, M. J.; Kutscher, C. F.

    2010-10-01

    This paper explores the impact of cooling technology on revenue for hybrid-cooled plants with varying wet cooling penetration for four representative locations in the American Southwest. The impact of ACC design-point initial temperature difference (ITD - the difference between the condensing steam temperature and ambient dry-bulb) is also included in the analysis.

  3. Cancer Inhibitors Isolated from an African Plant | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Molecular Targets Development Program is seeking parties interested in collaborative research to further develop, evaluate, or commercialize cancer inhibitors isolated from the African plant Phyllanthus englerii. The technology is also available for exclusive or non-exclusive licensing.

  4. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    SciTech Connect

    DiNunzio, Camillo A.; Gupta, Abhinav; Golay, Michael; Luk, Vincent; Turk, Rich; Morrow, Charles; Jin, Geum-Taek

    2002-11-30

    This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  5. Nuclear Technology Series. Nuclear Reactor (Plant) Operator Trainee. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary nuclear reactor (plant) operator trainee program is designed for use with courses 1-16 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to assist planners,…

  6. Installation and evaluation of a nuclear power plant operator advisor based on artificial intelligence technology

    SciTech Connect

    Hajek, B.K.; Miller, D.W.

    1989-06-20

    This report discusses the following topics on a Nuclear Power Plant operator advisor based on artificial Intelligence Technology; Workstation conversion; Software Conversion; V V Program Development Development; Simulator Interface Development; Knowledge Base Expansion; Dynamic Testing; Database Conversion; Installation at the Perry Simulator; Evaluation of Operator Interaction; Design of Man-Machine Interface; and Design of Maintenance Facility.

  7. The pipeline oil pumping engineering based on the Plant Wide Control technology

    NASA Astrophysics Data System (ADS)

    Starikov, D. P.; Rybakov, E. A.; Gromakov, E. I.

    2015-04-01

    This article provides recommendations for the use technology Plant Wide Control to control the pumping of oil through the pipeline. The proposed engineering using pipeline management in general (Pipe Wide Control) will reduce the loss of electric power at the expense of the balance of pumping stations located along the pipeline route.

  8. Aqueous mercury treatment technology review for NPDES Outfall 49 Y-12 Plant

    SciTech Connect

    Lanning, J.M.

    1993-04-01

    During 1950 to 1955, Building 9201-2 at the Oak Ridge Y-12 Plant was used to house development facilities for processes that employed elemental mercury to separate lithium isotopes as part of the thermonuclear weapons production operations. As a result of several spills, this building area and several other areas associated with the separation process were contaminated with mercury and became a source of continuing contamination of the Y-12 Plant discharge water to East Fork Poplar Creek (EFPC). Mercury concentrations in the outfalls south of Building 9201-2 have ranged up to 80 ppb, with the highest concentrations being experienced at Outfall 49. As a result, this outfall was chosen as a test site for future mercury treatment technology evaluation and development at the Oak Ridge Y-12 Plant. A literature review and vendor survey has identified several promising materials and technologies that may be applicable to mercury removal at the Outfall 49 site. This document summarizes those findings.

  9. Non-Contact Plant Growth Measurement Method and System Based on Ubiquitous Sensor Network Technologies

    PubMed Central

    Suk, Jinweon; Kim, Seokhoon; Ryoo, Intae

    2011-01-01

    This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN) technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments. PMID:22163849

  10. New Technologies for Insect-Resistant and Herbicide-Tolerant Plants.

    PubMed

    Lombardo, Luca; Coppola, Gerardo; Zelasco, Samanta

    2016-01-01

    The advent of modern molecular biology and recombinant DNA technology has resulted in a dramatic increase in the number of insect-resistant (IR) and herbicide-tolerant (HT) plant varieties, with great economic benefits for farmers. Nevertheless, the high selection pressure generated by control strategies for weed and insect populations has led to the evolution of herbicide and pesticide resistance. In the short term, the development of new techniques or the improvement of existing ones will provide further instruments to counter the appearance of resistant weeds and insects and to reduce the use of agrochemicals. In this review, we examine some of the most promising new technologies for developing IR and HT plants, such as genome editing and antisense technologies. PMID:26620971

  11. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    DOE PAGESBeta

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; Saito, Kazuki

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR formore » metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.« less

  12. Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects.

    PubMed

    Sumner, Lloyd W; Lei, Zhentian; Nikolau, Basil J; Saito, Kazuki

    2015-02-01

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This review covers the approximate period of 2000 to 2014, and highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and X-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine. PMID:25342293

  13. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    SciTech Connect

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; Saito, Kazuki

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.

  14. Particle tower technology applied to metallurgic plants and peak-time boosting of steam power plants

    NASA Astrophysics Data System (ADS)

    Amsbeck, Lars; Buck, Reiner; Prosin, Tobias

    2016-05-01

    Using solar tower technology with ceramic particles as heat transfer and storage medium to preheat scrap for induction furnaces in foundries provides solar generated heat to save electricity. With such a system an unsubsidized payback time of only 4 years is achieved for a 70000t/a foundry in Brazil. The same system can be also used for heat treatment of metals. If electricity is used to heat inert atmospheres a favorable economic performance is also achievable for the particle system. The storage in a particle system enables solar boosting to be restricted to only peak times, enabling an interesting business case opportunity.

  15. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants

    PubMed Central

    Judd, Lesley A.; Jackson, Brian E.; Fonteno, William C.

    2015-01-01

    The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics) has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain. PMID:27135334

  16. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    SciTech Connect

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

    2012-07-17

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

  17. Trial application of reliability technology to emergency diesel generators at the Trojan Nuclear Power Plant

    SciTech Connect

    Wong, S.M.; Boccio, J.L.; Karimian, S.; Azarm, M.A.; Carbonaro, J.; DeMoss, G.

    1986-01-01

    In this paper, a trial application of reliability technology to the emergency diesel generator system at the Trojan Nuclear Power Plant is presented. An approach for formulating a reliability program plan for this system is being developed. The trial application has shown that a reliability program process, using risk- and reliability-based techniques, can be interwoven into current plant operational activities to help in controlling, analyzing, and predicting faults that can challenge safety systems. With the cooperation of the utility, Portland General Electric Co., this reliability program can eventually be implemented at Trojan to track its effectiveness.

  18. Analytical technologies for identification and characterization of the plant N-glycoproteome

    PubMed Central

    Ruiz-May, Eliel; Thannhauser, Theodore W.; Zhang, Sheng; Rose, Jocelyn K. C.

    2012-01-01

    N-glycosylation is one of the most common and complex post-translational modifications of eukaryotic proteins and one that has numerous roles, such as modulating protein stability, sorting, folding, enzyme activity, and ligand interactions. In plants, the functional significance of N-glycosylation is typically obscure, although it is a feature of most secreted proteins and so is potentially of considerable interest to plant cell wall biologists. While analytical pipelines have been established to characterize yeast, mammalian, and bacterial N-glycoproteomes, such large-scale approaches for the study of plant glycoproteins have yet to be reported. Indeed, the N-glycans that decorate plant and mammalian or yeast proteins are structurally distinct and so modification of existing analytical approaches are needed to tackle plant N-glycoproteomes. In this review, we summarize a range of existing technologies for large-scale N-glycoprotein analysis and highlight promising future approaches that may provide a better understanding of the plant N-glycoproteome, and therefore the cell wall proteome and other proteins associated with the secretory pathway. PMID:22783270

  19. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

    SciTech Connect

    Heather D. Medema; Ronald K. Farris

    2012-09-01

    This report is a guidance document prepared for the benefit of commercial nuclear power plants’ (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

  20. Site-specific recombination for precise and clean transgene integration in plant genome. In: Touraev, A., Citovsky, V., Tzfira, T., Editors of book. Plant Transformation Technologies.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant Transformation Technologies is a comprehensive, authoritative book focusing on cutting-edge plant biotechnologies, offering in-depth, forward-looking information on methods for controlled and accurate genetic engineering. In response to ever-increasing pressure for precise and efficient integr...

  1. Using game technologies to improve the safety of construction plant operations.

    PubMed

    Guo, Hongling; Li, Heng; Chan, Greg; Skitmore, Martin

    2012-09-01

    Many accidents occur world-wide in the use of construction plant and equipment, and safety training is considered by many to be one of the best approaches to their prevention. However, current safety training methods/tools are unable to provide trainees with the hands-on practice needed. Game technology-based safety training platforms have the potential to overcome this problem in a virtual environment. One such platform is described in this paper - its characteristics are analysed and its possible contribution to safety training identified. This is developed and tested by means of a case study involving three major pieces of construction plant, which successfully demonstrates that the platform can improve the process and performance of the safety training involved in their operation. This research not only presents a new and useful solution to the safety training of construction operations, but illustrates the potential use of advanced technologies in solving construction industry problems in general. PMID:22664683

  2. Advanced Reactor Licensing: Experience with Digital I&C Technology in Evolutionary Plants

    SciTech Connect

    Wood, RT

    2004-09-27

    This report presents the findings from a study of experience with digital instrumentation and controls (I&C) technology in evolutionary nuclear power plants. In particular, this study evaluated regulatory approaches employed by the international nuclear power community for licensing advanced l&C systems and identified lessons learned. The report (1) gives an overview of the modern l&C technologies employed at numerous evolutionary nuclear power plants, (2) identifies performance experience derived from those applications, (3) discusses regulatory processes employed and issues that have arisen, (4) captures lessons learned from performance and regulatory experience, (5) suggests anticipated issues that may arise from international near-term deployment of reactor concepts, and (6) offers conclusions and recommendations for potential activities to support advanced reactor licensing in the United States.

  3. Central station applications planning activities and supporting studies. [application of photovoltaic technology to power generation plants

    NASA Technical Reports Server (NTRS)

    Leonard, S. L.; Siegel, B.

    1980-01-01

    The application of photovoltaic technology in central station (utility) power generation plants is considered. A program of data collection and analysis designed to provide additional information about the subset of the utility market that was identified as the initial target for photovoltaic penetration, the oil-dependent utilities (especially muncipals) of the U.S. Sunbelt, is described along with a series of interviews designed to ascertain utility industry opinions about the National Photovoltaic Program as it relates to central station applications.

  4. Design of Plant Eco-physiology Monitoring System Based on Embedded Technology

    NASA Astrophysics Data System (ADS)

    Li, Yunbing; Wang, Cheng; Qiao, Xiaojun; Liu, Yanfei; Zhang, Xinlu

    A real time system has been developed to collect plant's growth information comprehensively. Plant eco-physiological signals can be collected and analyzed effectively. The system adopted embedded technology: wireless sensors network collect the eco-physiological information. Touch screen and ARM microprocessor make the system work independently without PC. The system is versatile and all parameters can be set by the touch screen. Sensors' intelligent compensation can be realized in this system. Information can be displayed by either graphically or in table mode. The ARM microprocessor provides the interface to connect with the internet, so the system support remote monitoring and controlling. The system has advantages of friendly interface, flexible construction and extension. It's a good tool for plant's management.

  5. Analysis of plant microbe interactions in the era of next generation sequencing technologies

    PubMed Central

    Knief, Claudia

    2014-01-01

    Next generation sequencing (NGS) technologies have impressively accelerated research in biological science during the last years by enabling the production of large volumes of sequence data to a drastically lower price per base, compared to traditional sequencing methods. The recent and ongoing developments in the field allow addressing research questions in plant-microbe biology that were not conceivable just a few years ago. The present review provides an overview of NGS technologies and their usefulness for the analysis of microorganisms that live in association with plants. Possible limitations of the different sequencing systems, in particular sources of errors and bias, are critically discussed and methods are disclosed that help to overcome these shortcomings. A focus will be on the application of NGS methods in metagenomic studies, including the analysis of microbial communities by amplicon sequencing, which can be considered as a targeted metagenomic approach. Different applications of NGS technologies are exemplified by selected research articles that address the biology of the plant associated microbiota to demonstrate the worth of the new methods. PMID:24904612

  6. Analysis of plant microbe interactions in the era of next generation sequencing technologies.

    PubMed

    Knief, Claudia

    2014-01-01

    Next generation sequencing (NGS) technologies have impressively accelerated research in biological science during the last years by enabling the production of large volumes of sequence data to a drastically lower price per base, compared to traditional sequencing methods. The recent and ongoing developments in the field allow addressing research questions in plant-microbe biology that were not conceivable just a few years ago. The present review provides an overview of NGS technologies and their usefulness for the analysis of microorganisms that live in association with plants. Possible limitations of the different sequencing systems, in particular sources of errors and bias, are critically discussed and methods are disclosed that help to overcome these shortcomings. A focus will be on the application of NGS methods in metagenomic studies, including the analysis of microbial communities by amplicon sequencing, which can be considered as a targeted metagenomic approach. Different applications of NGS technologies are exemplified by selected research articles that address the biology of the plant associated microbiota to demonstrate the worth of the new methods. PMID:24904612

  7. Rapid real-time PCR methods to distinguish Salmonella Enteritidis wildtype field isolates from vaccine strains Salmovac SE/Gallivac SE and AviPro SALMONELLA VAC E.

    PubMed

    Maurischat, Sven; Szabo, Istvan; Baumann, Beatrice; Malorny, Burkhard

    2015-05-01

    Salmonella enterica serovar Enteritidis is a major non-typhoid Salmonella serovar causing human salmonellosis mainly associated with the consumption of poultry and products thereof. To reduce infections in poultry, S. Enteritidis live vaccine strains AviPro SALMONELLA VAC E and Salmovac SE/Gallivac SE have been licensed and used in several countries worldwide. To definitively diagnose a S. Enteritidis contamination in vaccinated herds a reliable and fast method for the differentiation between vaccine and wildtype field isolates is required. In this study, we developed and validated real-time PCR (qPCR) assays to distinguish those variants genetically. Suitable target sequences were identified by whole genome sequencing (WGS) using the Illumina MiSeq system. SNP regions in kdpA and nhaA proved to be most useful for differentiation of AviPro SALMONELLA VAC E and Salmovac SE/Gallivac SE, respectively, from wildtype strains. For each vaccine strain one TaqMan-qPCR assay and one alternative approach using High Resolution Melting (HRM) analysis was designed. All 30 Salmovac SE and 7 AviPro SALMONELLA VAC E vaccine strain reisolates tested were correctly identified by both approaches (100% inclusivity). Furthermore, all 137 (TaqMan) and 97 (HRM) Salmonella non-vaccine and related Enterobacteriaceae strains tested were excluded (100% exclusivity). The analytical detection limits were determined to be approx. 10(2) genome copies/reaction for the TaqMan and 10(4) genome copies/reaction for the HRM approach. The real-time PCR assays proved to be a reliable and fast alternative to the cultural vaccine strain identification tests helping decision makers in control measurements to take action within a shorter period of time. PMID:25794902

  8. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study

    PubMed Central

    Kinali, Maria; Arechavala-Gomeza, Virginia; Feng, Lucy; Cirak, Sebahattin; Hunt, David; Adkin, Carl; Guglieri, Michela; Ashton, Emma; Abbs, Stephen; Nihoyannopoulos, Petros; Garralda, Maria Elena; Rutherford, Mary; Mcculley, Caroline; Popplewell, Linda; Graham, Ian R; Dickson, George; Wood, Matthew JA; Wells, Dominic J; Wilton, Steve D; Kole, Ryszard; Straub, Volker; Bushby, Kate; Sewry, Caroline; Morgan, Jennifer E; Muntoni, Francesco

    2009-01-01

    Summary Background Mutations that disrupt the open reading frame and prevent full translation of DMD, the gene that encodes dystrophin, underlie the fatal X-linked disease Duchenne muscular dystrophy. Oligonucleotides targeted to splicing elements (splice switching oligonucleotides) in DMD pre-mRNA can lead to exon skipping, restoration of the open reading frame, and the production of functional dystrophin in vitro and in vivo, which could benefit patients with this disorder. Methods We did a single-blind, placebo-controlled, dose-escalation study in patients with DMD recruited nationally, to assess the safety and biochemical efficacy of an intramuscular morpholino splice-switching oligonucleotide (AVI-4658) that skips exon 51 in dystrophin mRNA. Seven patients with Duchenne muscular dystrophy with deletions in the open reading frame of DMD that are responsive to exon 51 skipping were selected on the basis of the preservation of their extensor digitorum brevis (EDB) muscle seen on MRI and the response of cultured fibroblasts from a skin biopsy to AVI-4658. AVI-4658 was injected into the EDB muscle; the contralateral muscle received saline. Muscles were biopsied between 3 and 4 weeks after injection. The primary endpoint was the safety of AVI-4658 and the secondary endpoint was its biochemical efficacy. This trial is registered, number NCT00159250. Findings Two patients received 0·09 mg AVI-4658 in 900 μL (0·9%) saline and five patients received 0·9 mg AVI-4658 in 900 μL saline. No adverse events related to AVI-4658 administration were reported. Intramuscular injection of the higher-dose of AVI-4658 resulted in increased dystrophin expression in all treated EDB muscles, although the results of the immunostaining of EDB-treated muscle for dystrophin were not uniform. In the areas of the immunostained sections that were adjacent to the needle track through which AVI-4658 was given, 44–79% of myofibres had increased expression of dystrophin. In randomly chosen

  9. Identification and Evaluation of Human Factors Issues Associated with Emerging Nuclear Plant Technology

    SciTech Connect

    O'Hara,J.M.; Higgins,J.; Brown, William S.

    2009-04-01

    This study has identified human performance research issues associated with the implementation of new technology in nuclear power plants (NPPs). To identify the research issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were prioritized into four categories based on evaluations provided by 14 independent subject matter experts representing vendors, utilities, research organizations and regulators. Twenty issues were categorized into the top priority category. The study also identifies the priority of each issue and the rationale for those in the top priority category. The top priority issues were then organized into research program areas of: New Concepts of Operation using Multi-agent Teams, Human-system Interface Design, Complexity Issues in Advanced Systems, Operating Experience of New and Modernized Plants, and HFE Methods and Tools. The results can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas to support the safe operation of new NPPs.

  10. Adjustment and validation of a simulation tool for CSP plants based on parabolic trough technology

    NASA Astrophysics Data System (ADS)

    García-Barberena, Javier; Ubani, Nora

    2016-05-01

    The present work presents the validation process carried out for a simulation tool especially designed for the energy yield assessment of concentrating solar plants based on parabolic through (PT) technology. The validation has been carried out by comparing the model estimations with real data collected from a commercial CSP plant. In order to adjust the model parameters used for the simulation, 12 different days were selected among one-year of operational data measured at the real plant. The 12 days were simulated and the estimations compared with the measured data, focusing on the most important variables from the simulation point of view: temperatures, pressures and mass flow of the solar field, gross power, parasitic power, and net power delivered by the plant. Based on these 12 days, the key parameters for simulating the model were properly fixed and the simulation of a whole year performed. The results obtained for a complete year simulation showed very good agreement for the gross and net electric total production. The estimations for these magnitudes show a 1.47% and 2.02% BIAS respectively. The results proved that the simulation software describes with great accuracy the real operation of the power plant and correctly reproduces its transient behavior.

  11. An intellectual property sharing initiative in agricultural biotechnology: development of broadly accessible technologies for plant transformation.

    PubMed

    Chi-Ham, Cecilia L; Boettiger, Sara; Figueroa-Balderas, Rosa; Bird, Sara; Geoola, Josef N; Zamora, Pablo; Alandete-Saez, Monica; Bennett, Alan B

    2012-06-01

    The Public Intellectual Property Resource for Agriculture (PIPRA) was founded in 2004 by the Rockefeller Foundation in response to concerns that public investments in agricultural biotechnology benefiting developing countries were facing delays, high transaction costs and lack of access to important technologies due to intellectual property right (IPR) issues. From its inception, PIPRA has worked broadly to support a wide range of research in the public sector, in specialty and minor acreage crops as well as crops important to food security in developing countries. In this paper, we review PIPRA's work, discussing the failures, successes, and lessons learned during its years of operation. To address public sector's limited freedom-to-operate, or legal access to third-party rights, in the area of plant transformation, we describe PIPRA's patent 'pool' approach to develop open-access technologies for plant transformation which consolidate patent and tangible property rights in marker-free vector systems. The plant transformation system has been licensed and deployed for both commercial and humanitarian applications in the United States (US) and Africa, respectively. PMID:22221977

  12. Comprehensive multiphase NMR: a promising technology to study plants in their native state.

    PubMed

    Wheeler, Heather L; Soong, Ronald; Courtier-Murias, Denis; Botana, Adolfo; Fortier-Mcgill, Blythe; Maas, Werner E; Fey, Michael; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Campbell, Malcolm M; Simpson, Andre

    2015-09-01

    Nuclear magnetic resonance (NMR) spectroscopy is arguably one the most powerful tools to study the interactions and molecular structure within plants. Traditionally, however, NMR has developed as two separate fields, one dealing with liquids and the other dealing with solids. Plants in their native state contain components that are soluble, swollen, and true solids. Here, a new form of NMR spectroscopy, developed in 2012, termed comprehensive multiphase (CMP)-NMR is applied for plant analysis. The technology composes all aspects of solution, gel, and solid-state NMR into a single NMR probe such that all components in all phases in native unaltered samples can be studied and differentiated in situ. The technology is evaluated using wild-type Arabidopsis thaliana and the cellulose-deficient mutant ectopic lignification1 (eli1) as examples. Using CMP-NMR to study intact samples eliminated the bias introduced by extraction methods and enabled the acquisition of a more complete structural and metabolic profile; thus, CMP-NMR revealed molecular differences between wild type (WT) and eli1 that could be overlooked by conventional methods. Methanol, fatty acids and/or lipids, glutamine, phenylalanine, starch, and nucleic acids were more abundant in eli1 than in WT. Pentaglycine was present in A. thaliana seedlings and more abundant in eli1 than in WT. PMID:25855560

  13. Next biotech plants: new traits, crops, developers and technologies for addressing global challenges.

    PubMed

    Ricroch, Agnès E; Hénard-Damave, Marie-Cécile

    2016-08-01

    Most of the genetically modified (GM) plants currently commercialized encompass a handful of crop species (soybean, corn, cotton and canola) with agronomic characters (traits) directed against some biotic stresses (pest resistance, herbicide tolerance or both) and created by multinational companies. The same crops with agronomic traits already on the market today will continue to be commercialized, but there will be also a wider range of species with combined traits. The timeframe anticipated for market release of the next biotech plants will not only depend on science progress in research and development (R&D) in laboratories and fields, but also primarily on how demanding regulatory requirements are in countries where marketing approvals are pending. Regulatory constraints, including environmental and health impact assessments, have increased significantly in the past decades, delaying approvals and increasing their costs. This has sometimes discouraged public research entities and small and medium size plant breeding companies from using biotechnology and given preference to other technologies, not as stringently regulated. Nevertheless, R&D programs are flourishing in developing countries, boosted by the necessity to meet the global challenges that are food security of a booming world population while mitigating climate change impacts. Biotechnology is an instrument at the service of these imperatives and a wide variety of plants are currently tested for their high yield despite biotic and abiotic stresses. Many plants with higher water or nitrogen use efficiency, tolerant to cold, salinity or water submergence are being developed. Food security is not only a question of quantity but also of quality of agricultural and food products, to be available and accessible for the ones who need it the most. Many biotech plants (especially staple food) are therefore being developed with nutritional traits, such as biofortification in vitamins and metals. The main

  14. Kodak: MotorMaster+ is the Foundation for Energy Efficiency at a Chemical and Imaging Technologies Plant

    SciTech Connect

    2006-10-01

    This DOE Industrial Technologies Program spotlight describes how Kodak is saving 5.8 million kWh and $664,000 annually after upgrading or replacing inefficient motors in its Rochester, New York, plant.

  15. Kodak: MotorMaster+ Is the Foundation for Energy Efficiency at a Chemical and Imaging Technologies Plant (Revised)

    SciTech Connect

    Not Available

    2007-02-01

    This DOE Industrial Technologies Program spotlight describes how Kodak is saving 5.8 million kWh and $664,000 annually after upgrading or replacing inefficient motors in its Rochester, New York, plant.

  16. Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies

    USGS Publications Warehouse

    Ying, Guang-Guo; Kookana, Rai S.; Kolpin, Dana W.

    2009-01-01

    Occurrence of eight selected pharmaceutically active compounds (PhACs; caffeine, carbamazepine, triclosan, gemfibrozil, diclofenac, ibuprofen, ketoprofen and naproxen) were investigated in effluents from fifteen sewage treatment plants (STPs) across South Australia. In addition, a detailed investigation into the removal of these compounds was also carried out in four STPs with different technologies (Plant A: conventional activated sludge; plant B: two oxidation ditches; plant C: three bioreactors; and plant D: ten lagoons in series). The concentrations of these compounds in the effluents from the fifteen STPs showed substantial variations among the STPs, with their median concentrations ranging from 26 ng/L for caffeine to 710 ng/L for carbamazepine. Risk assessment based on the "worst case scenario" of the monitoring data from the present study suggested potential toxic risks to aquatic organisms posed by carbamazepine, triclosan and diclofenac associated with such effluent discharge. With the exception of carbamazepine and gemfibrozil, significant concentration decreases between influent and effluent were observed in the four STPs studied in more detail. Biodegradation was found to be the main mechanism for removing concentrations from the liquid waste stream for the PhACs within the four STPs, while adsorption onto sludge appeared to be a minor process for all target PhACs except for triclosan. Some compounds (e.g. gemfibrozil) exhibited variable removal efficiencies within the four STPs. Plant D (10 lagoons in series) was least efficient in the removal of the target PhACs; significant biodegradation of these compounds only occurred from the sixth or seventh lagoon.

  17. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    SciTech Connect

    Hashemian, H.M.

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  18. Novel sensor technology for monitoring and control of critical plant nutrient parameters.

    PubMed

    Waldman, F A; Davis, C R

    1994-11-01

    A novel dielectric sensor technology has been developed for monitoring and control of plant nutrient delivery systems as part of NASA's Controlled Ecological Life Support System (CELSS) program. A unique measurement phenomenon was discovered in which the electrostatic field is shunted to a third terminal of the sensor, resulting in a much greater sensitivity to changes in the complex dielectric properties of the nutrient solution. Based on this phenomenon, a small, flexible, thin-film shunting dielectric sensor (SDS) was designed to provide low-frequency, non-invasive measurement of both the thickness and nutrient concentration of the layer of solution on a plant growth surface. Test results indicate a sensitivity of +/- 0.05mm in layer thickness while characterization of the ability to measure nutrient concentration continues. The development plan for this sensor is presented and other applications are discussed. PMID:11540185

  19. Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication.

    PubMed

    Wang, Biao; Wang, Ren-Rui; Cui, Zhen-Hua; Bi, Wen-Lu; Li, Jing-Wei; Li, Bai-Quan; Ozudogru, Elif Aylin; Volk, Gayle M; Wang, Qiao-Chun

    2014-01-01

    Rapid increases in human populations provide a great challenge to ensure that adequate quantities of food are available. Sustainable development of agricultural production by breeding more productive cultivars and by increasing the productive potential of existing cultivars can help meet this demand. The present paper provides information on the potential uses of cryogenic techniques in ensuring food security, including: (1) long-term conservation of a diverse germplasm and successful establishment of cryo-banks; (2) maintenance of the regenerative ability of embryogenic tissues that are frequently the target for genetic transformation; (3) enhancement of genetic transformation and plant regeneration of transformed cells, and safe, long-term conservation for transgenic materials; (4) production and maintenance of viable protoplasts for transformation and somatic hybridization; and (5) efficient production of pathogen-free plants. These roles demonstrate that cryogenic technologies offer opportunities to ensure food security. PMID:24681087

  20. [Thermostabilities of plant phenol oxidase and peroxidase, determining the technology of their use in food industry].

    PubMed

    Mchedlishvili, N I; Omiadze, N T; Gulua, L K; Sadunishvili, T A; Zamtaradze, R K; Abutidze, M O; Bendeliani, E G; Kvesitadze, G I

    2005-01-01

    Stabilities of phenol oxidase and peroxidase from tea plant (Camellia sinensis L.) clone Kolkhida leaves, apple (Malus domestica L.) cultivar Kekhura fruits, walnut (Juglans regia L.) green pericarp, and horseradish (Armoracia lapathifolia Gilib) roots were studied using different storage temperature modes and storage duration. It was demonstrated that both enzymes retained residual activities (approximately 10%) upon 20-min incubation at 80 degrees C. Phenol oxidases from tea, walnut, and, especially, apple, as well as tea peroxidase were stable during storage. A technology for treatment of plant oxidases was proposed, based on the use of a natural inhibitor phenol oxidase and peroxidase, isolated from tea leaves, which solving the problem of residual activities of these enzymes, arising during pasteurization and storage of beverages and juices. It was demonstrated that browning of apple juice during pasteurization and beer turbidity during storage could be efficiently prevented using the natural inhibitor of these enzymes. PMID:15859458

  1. Direct Air Capture of CO2 - an Overview of Carbon Engineering's Technology and Pilot Plant Development

    NASA Astrophysics Data System (ADS)

    Holmes, G.; Corless, A.

    2014-12-01

    At Carbon Engineering, we are developing and commercializing technology to scrub CO2 directly from atmospheric air at industrial scale. By providing atmospheric CO2 for use in fuel production, we can enable production of transportation fuels with ultra-low carbon intensities, which command price premiums in the growing set of constrained fuels markets such as California's LCFS. We are a Calgary based startup founded in 2009 with 10 employees, and we are considered a global leader in the direct air capture (DAC) field. We will review CE's DAC technology, based on a wet-scrubbing "air contactor" which absorbs CO2 into aqueous solution, and a chemical looping "regeneration" component, which liberates pure CO2 from this aqueous solution while re-making the original absorption chemical. CE's DAC tecnology exports purified atmospheric CO2, combined with the combustion CO2 from plant energy usage, as the end product. We will also discuss CE's 2014-2015 end-to-end Pilot Demonstration Unit. This is a $7M technology demonstration plant that CE is building with the help of key industrial partners and equipment vendors. Vendor design and engineering requirements have been used to specify the pilot air contactor, pellet reactor, calciner, and slaker modules, as well as auxiliary systems. These modules will be run for several months to obtain the engineering and performance data needed for subsequent commercial plant design, as well as to test the residual integration risks associated with CE's process. By the time of the AGU conference, the pilot is expected to be in late stages of fabrication or early stages of site installation.

  2. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    SciTech Connect

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-22

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  3. Power conditioning subsystems for photovoltaic central-station power plants - Technology and performance

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Das, R.; Bulawka, A.

    1985-01-01

    Central-Station (CS) Photovoltaic (PV) systems have the potential of economically displacing significant amounts of centrally generated electricity. However, the technical viability and, to some extent, the economic viability of central-station PV generation technology will depend upon the availability of large power conditioners that are efficient, safe, reliable, and economical. This paper is an overview of the technical and cost requirements that must be met to develop economically viable power conditioning subsystems (PCS) for central-station power plants. The paper also examines various already commercially available PCS hardware that may be suitable for use in today's central PV power stations.

  4. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    NASA Astrophysics Data System (ADS)

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-01

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  5. Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration

    SciTech Connect

    Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V. )

    1990-10-01

    This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs.

  6. Evaluation of Effectiveness Technological Process of Water Purification Exemplified on Modernized Water Treatment Plant at Otoczna

    NASA Astrophysics Data System (ADS)

    Jordanowska, Joanna; Jakubus, Monika

    2014-12-01

    The article presents the work of the Water Treatment Plant in the town of Otoczna, located in the Wielkopolska province, before and after the modernization of the technological line. It includes the quality characteristics of the raw water and treated water with particular emphasis on changes in the quality indicators in the period 2002 -2012 in relation to the physicochemical parameters: the content of total iron and total manganese, the ammonium ion as well as organoleptic parameters(colour and turbidity). The efficiency of technological processes was analysed, including the processes of bed start up with chalcedonic sand to remove total iron and manganese and ammonium ion. Based on the survey, it was found that the applied modernization helped solve the problem of water quality, especially the removal of excessive concentrations of iron, manganese and ammonium nitrogen from groundwater. It has been shown that one year after modernization of the technological line there was a high reduction degree of most parameters, respectively for the general iron content -99%, general manganese - 93% ammonia - 93%, turbidity - 94%. It has been proved, that chalcedonic turned out to be better filter material than quartz sand previously used till 2008. The studies have confirmed that the stage of modernization was soon followed by bed start-up for removing general iron from the groundwater. The stage of manganese removal required more time, about eight months for bed start-up. Furthermore, the technological modernization contributed to the improvement of the efficiency of the nitrification process.

  7. Subtask 5.10 - Testing of an Advanced Dry Cooling Technology for Power Plants

    SciTech Connect

    Martin, Christopher; Pavlish, John

    2013-09-30

    The University of North Dakota’s Energy & Environmental Research Center (EERC) is developing a market-focused dry cooling technology that is intended to address the key shortcomings of conventional dry cooling technologies: high capital cost and degraded cooling performance during daytime temperature peaks. The unique aspect of desiccant dry cooling (DDC) is the use of a hygroscopic working fluid—a liquid desiccant—as a heat-transfer medium between a power plant’s steam condenser and the atmosphere. This configuration enables a number of beneficial features for large-scale heat dissipation to the atmosphere, without the consumptive use of cooling water. The overall goal of this project was to accurately define the performance and cost characteristics of DDC to determine if further development of the concept is warranted. A balanced approach of modeling grounded in applied experimentation was pursued to substantiate DDC-modeling efforts and outline the potential for this technology to cool full-scale power plants. The resulting analysis shows that DDC can be a lower-cost dry cooling alternative to an air-cooled condenser (ACC) and can even be competitive with conventional wet recirculating cooling under certain circumstances. This project has also highlighted the key technological steps that must be taken in order to transfer DDC into the marketplace. To address these issues and to offer an extended demonstration of DDC technology, a next-stage project should include the opportunity for outdoor ambient testing of a small DDC cooling cell. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Wyoming State Legislature under an award made through the Wyoming Clean Coal Technologies Research Program.

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: UTC FUEL CELLS' PC25C POWER PLANT - GAS PROCESSING UNIT PERFORMANCE FOR ANAEROBIC DIGESTER GAS

    EPA Science Inventory

    Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system based on the UTC Fuel Cell's PC25C Fuel Cell Power Plant was evaluated. The...

  9. Exposure to Soy Protein Isolate From Conception Fails to Induce Epigenetic Changes in Viable Yellow Agouti (Avy/a) Mice, But Partially Blocks Hepatosteatosis and Altered Body Composition in Mice and Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both beneficial and adverse health effects have been attributed to soy food consumption. Epigenetic programming through hypermethlylation of CpG sites on promoter regions may be a potential mechanism. Virgin a/a female and Avy/a male mice were fed AIN-93G diets made with either casein or soy protein...

  10. Role of advances in materials technology in optimisation of bio gas plants and its policy implications

    SciTech Connect

    Agnihotri, S.B.; Gore, V.N.; Paikrai, P.K.

    1997-12-31

    Increasing capital cost of construction has become a major limiting factor in the widespread use of bio gas as an alternative source of energy. In addition, the conventional construction material used in these plants i.e. cement, steel and bricks, is energy and cost incentive. This puts the initial investment and the O&M cost beyond the reach of most of the resource poor people. Advances in materials technology have already proved useful in reducing costs in major infra structural areas such as roads, water and buildings. It is possible to reduce significantly, the transportation and consumption of energy intensive material in these activities, without any compromise on performance. This success can, with some efforts, be brought in the field of biogas plants - both of domestic and community size. This paper describes details of proposed alternative technology and construction details for both fixed dome (Deenbandhu) and floating dome (KVIC) type models. Savings of costs up to 40% with no compromise on performance and substantially reduced construction time are achievable. Experience with actually installed and performing prototypes is also narrated.

  11. Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants.

    PubMed

    Piñeros, Miguel A; Larson, Brandon G; Shaff, Jon E; Schneider, David J; Falcão, Alexandre Xavier; Yuan, Lixing; Clark, Randy T; Craft, Eric J; Davis, Tyler W; Pradier, Pierre-Luc; Shaw, Nathanael M; Assaranurak, Ithipong; McCouch, Susan R; Sturrock, Craig; Bennett, Malcolm; Kochian, Leon V

    2016-03-01

    A plant's ability to maintain or improve its yield under limiting conditions, such as nutrient deficiency or drought, can be strongly influenced by root system architecture (RSA), the three-dimensional distribution of the different root types in the soil. The ability to image, track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyping software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimensional RSA of the plant root system, while allowing for aeration, solution replenishment and the imposition of nutrient treatments, as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modifications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity (detection of fine roots and other root details), higher efficiency, and a broad array of growing conditions for plants that more closely mimic those found under field conditions. PMID:26683583

  12. Transition Plan for the K-1203 Sewage Treatment Plant, East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect

    Hoffmeister J.

    2008-10-05

    The K-1203 Sewage Treatment Plant (STP) was previously used to treat and process all sanitary sewage waste from the East Tennessee Technology Park (ETTP). The plant was shut down on May 29, 2008 as a result of the transition of sewage treatment for ETTP to the City of Oak Ridge. The City of Oak Ridge expanded the Rarity Ridge Sewage Treatment Plant (RRSTP) to include capacity to treat the waste from the ETTP and the Community Reuse Organization of East Tennessee (CROET) constructed a new ETTP lift station and force main to RRSTP. In preparation for the shutdown of K-1203, the US Department of Energy (DOE) in conjunction with Operation Management International (OMI) developed a shut down plan to outline actions that need to occur prior to the transition of the facility to Bechtel Jacob Company, LLC (BJC) for decontamination and demolition (D and D). This plan outlines the actions, roles, and responsibilities for BJC in order to support the transition of the K-1203 STP from OMI to the BJC Surveillance and Maintenance (S and M) and D and D programs. The D and D of the K-1203 Facilities is planned under the Comprehensive Environmental Response, Compensation, and Liability Act Remaining Facilities D and D Action Memorandum in the Balance of Site-Utilities D and D Subproject in fiscal year (FY) 2014.

  13. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Galen Richards, Ph.D.; David Sloan, Ph.D.; Woodrow Fiveland, Ph.D.

    2002-08-31

    The goal of this DOE Vision-21 project work scope is to develop an integrated suite of software tools that can be used to simulate and visualize advanced plant concepts. Existing process simulation software does not meet the DOE's objective of ''virtual simulation'' which is needed to evaluate complex cycles. The overall intent of the DOE is to improve predictive tools for cycle analysis, and to improve the component models that are used in turn to simulate the cycle. Advanced component models are available; however, a generic coupling capability that will link the advanced component models to the cycle simulation software remains to be developed. In the current project, the coupling of the cycle analysis and cycle component simulation software will be based on an existing suite of programs. The challenge is to develop a general-purpose software and communications link between the cycle analysis software Aspen Plus{reg_sign} (marketed by Aspen Technology, Inc.), and specialized component modeling packages, as exemplified by industrial proprietary codes (utilized by ALSTOM Power Inc.) and the FLUENT{trademark} CFD code (provided by Fluent Inc). ALSTOM Power has a task responsibility to select and run a combined cycle test case (designated as Demonstration Case 2) to demonstrate the feasibility of the linkage concept. This report summarizes and documents the unit selected to represent Case 2, a 250 MW, natural gas-fired, combined cycle power plant. An analogous document for Demonstration Case 1 was previously submitted on April 30, 2001. Sufficient information is available from the plant to adequately benchmark the model. Hence, the proposed unit is deemed to be well suited as a demonstration case. However, as the combined cycle plant selected for this study contains recent technology, sensitivity to the commercial implications of this study prevents the release of the plant name and limits the quantity of operating/design information that can be presented. These

  14. Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants.

    PubMed

    Katoch, Rajan; Thakur, Neelam

    2013-03-01

    This review highlights the advances in the knowledge of RNA interference (RNAi) and discusses recent progress on the functionality of different components RNAi machinery operating in the organisms. The silencing of genes by RNA interference has become the technology of choice for investigation of gene functions in different organisms. The refinement in the knowledge of the endogenous RNAi pathways in plants along with the development of new strategies and applications for the improvement of nutritional value of important agricultural crops through suppression of genes in different plants have opened new vistas for nutritional security. The improvement in the nutritional status of the plants and reduction in the level of toxins or antinutrients was desired for long, but the available technology was not completely successful in achieving the tissue specific regulation of some genes. In the recent years, a number of economically important crop plants have been tested successfully for improving plant nutritional value through metabolic engineering using RNAi. The implications of this technology for crop improvement programs, including nutritional enrichment, reduction of antinutrients, disease, and insect control have been successfully tested in variety of crops with commercial considerations. The enhancement of the nutraceutical traits for the desired health benefits in common crop plants through manipulation of gene expression has been elaborated in this article. The tremendous potential with RNAi technology is expected to revolutionize the modern agriculture for meeting the growing challenges is discussed. PMID:23322250

  15. Idaho Chemical Processing Plant Spent Fuel and Waste Management Technology Development Program Plan

    SciTech Connect

    1993-09-01

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage and reprocessing since 1953. Reprocessing of SNF has resulted in an existing inventory of 1.5 million gallons of radioactive sodium-bearing liquid waste and 3800 cubic meters (m{sup 3}) of calcine, in addition to the 768 metric tons (MT) of SNF and various other fuel materials in inventory. To date, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, recent changes in world events have diminished the demand to recover and recycle this material. As a result, DOE has discontinued reprocessing SNF for uranium recovery, making the need to properly manage and dispose of these and future materials a high priority. In accordance with the Nuclear Waste Policy Act (NWPA) of 1982, as amended, disposal of SNF and high-level waste (HLW) is planned for a geological repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP Spent Fuel and Waste Management Technology Development Program (SF&WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will properly stored and prepared for final disposal. Program elements in support of acceptable interim storage and waste minimization include: developing and implementing improved radioactive waste treatment technologies; identifying and implementing enhanced decontamination and decommissioning techniques; developing radioactive scrap metal (RSM) recycle capabilities; and developing and implementing improved technologies for the interim storage of SNF.

  16. Glucose transporter levels in tissues of spontaneously diabetic Zucker fa/fa rat (ZDF/drt) and viable yellow mouse (Avy/a).

    PubMed

    Slieker, L J; Sundell, K L; Heath, W F; Osborne, H E; Bue, J; Manetta, J; Sportsman, J R

    1992-02-01

    We used antibodies to the fat/muscle glucose transporter (GLUT4) and the liver glucose transporter (GLUT2) to measure levels of these proteins in various tissues of two rodent models of non-insulin-dependent (type II) diabetes mellitus: the obese spontaneously diabetic male Zucker fa/fa rat (ZDF/drt) and the male viable yellow Avy/a obese diabetic mouse. The ZDF/drt strain generally develops overt diabetes associated with decreased plasma insulin levels. Depending on the age of the animals, the ZDF/drt rats can be arbitrarily segregated into age-matched obese, mildly diabetic (blood glucose less than 11 mM) and obese, and severely diabetic (blood glucose greater than 20 mM) groups. Avy/a mice are comparably hyperglycemic but unlike the ZDF/drt rats are severely hyperinsulinemic. In both groups of diabetic animals, GLUT4 in adipose tissue, heart, and skeletal muscle was reduced 25-55%, and GLUT2 in liver was increased 30-40%, relative to lean, age-matched controls. However, when the mildly diabetic ZDF/drt rats were compared to the lean controls, the only significant difference was a 25% reduction of GLUT4 in heart. Within all of the ZDF/drt rats (excluding the lean controls), GLUT2 in liver and GLUT4 in adipose tissue, heart, and skeletal muscle correlated significantly with glycemia. These data suggest that, in these two models of type II diabetes, glucose transporter levels in muscle, adipose tissue, and liver are regulated in a tissue-selective manner in response to changes in insulin and glucose. Furthermore, at least in the ZDF/drt rat, alterations in GLUT2 and/or GLUT4 protein levels appear not to be associated with obesity per se but appear to be secondary to the severely diabetic state.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1733808

  17. Large-scale Gene Ontology analysis of plant transcriptome-derived sequences retrieved by AFLP technology

    PubMed Central

    Botton, Alessandro; Galla, Giulio; Conesa, Ana; Bachem, Christian; Ramina, Angelo; Barcaccia, Gianni

    2008-01-01

    Background After 10-year-use of AFLP (Amplified Fragment Length Polymorphism) technology for DNA fingerprinting and mRNA profiling, large repertories of genome- and transcriptome-derived sequences are available in public databases for model, crop and tree species. AFLP marker systems have been and are being extensively exploited for genome scanning and gene mapping, as well as cDNA-AFLP for transcriptome profiling and differentially expressed gene cloning. The evaluation, annotation and classification of genomic markers and expressed transcripts would be of great utility for both functional genomics and systems biology research in plants. This may be achieved by means of the Gene Ontology (GO), consisting in three structured vocabularies (i.e. ontologies) describing genes, transcripts and proteins of any organism in terms of their associated cellular component, biological process and molecular function in a species-independent manner. In this paper, the functional annotation of about 8,000 AFLP-derived ESTs retrieved in the NCBI databases was carried out by using GO terminology. Results Descriptive statistics on the type, size and nature of gene sequences obtained by means of AFLP technology were calculated. The gene products associated with mRNA transcripts were then classified according to the three main GO vocabularies. A comparison of the functional content of cDNA-AFLP records was also performed by splitting the sequence dataset into monocots and dicots and by comparing them to all annotated ESTs of Arabidopsis and rice, respectively. On the whole, the statistical parameters adopted for the in silico AFLP-derived transcriptome-anchored sequence analysis proved to be critical for obtaining reliable GO results. Such an exhaustive annotation may offer a suitable platform for functional genomics, particularly useful in non-model species. Conclusion Reliable GO annotations of AFLP-derived sequences can be gathered through the optimization of the experimental steps

  18. U.S. program on materials technology for ultra-supercritical coal power plants

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.; Henry, J. F.; Tanzosh, J.; Stanko, G.; Shingledecker, J.; Vitalis, B.; Purgert, R.

    2005-06-01

    The efficiency of conventional fossil power plants is a strong function of the steam temperature and pressure. Research to increase both has been pursued worldwide, since the energy crisis in the 1970s. The need to reduce CO2 emissions has recently provided an additional incentive to increase efficiency. More recently, interest has been evinced in advanced combustion technologies utilizing oxygen instead of air for combustion. The main enabling technology in achieving the above goals is the development of stronger high temperature materials. Extensive research-and-development programs have resulted in numerous high-strength alloys for heavy section piping and for tubing needed to build boilers. The study reported on here is aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers that are capable of operating with steam at temperatures of 760 °C (1400 °F) and pressures of 35 MPa (5000 psi). The economic viability of such a plant has been explored. Candidate alloys applicable to various ranges of temperatures have been identified. Stress rupture tests have been completed on the base metal and on welds to a number of alloys. Steamside oxidation tests in an autoclave at 650 °C (1200 °F) and 800 °C (1475 °F) have been completed. Fireside corrosion tests have been conducted under conditions simulating those of waterwalls and superheater/reheater tubes. The weldability and fabricability of the alloys have been investigated. The capabilities of various overlay coatings and diffusion coatings have been examined. This article provides a status report on the progress achieved to date on this project.

  19. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    SciTech Connect

    BLanc, Katya Le; Powers, David; Joe, Jeffrey; Spielman, Zachary; Rice, Brandon; Fitzgerald, Kirk

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  20. Assessment of H/sub 2/S control technologies for geothermal power plants

    SciTech Connect

    Not Available

    1980-02-01

    Techniques for controlling hydrogen sulfide (H/sub 2/S) from geothermal development are analyzed. Several technologies for controlling H/sub 2/S emissions from power plants are examined. The Hydrogen Peroxide Combination System, Stretford System and possibly EIC or Coury upstream controls appear capable of compliance with the emission limitations of 100 grams per hour per gross megawatt in 1980 (and 50 q/hr/(g) MW in 1985 or 1990) at the Geysers Dry stream field in Northern California. Unresolved problems still plague all these options. Well field operations result in H/sub 2/S releases from well drilling, well venting and steam stacking. Hydrogen peroxide reduces H/sub 2/S emissions during drilling and venting can be controlled with vent gathering (condensation/reinjection) systems. Steam stacking during power plant outages emit more H/sub 2/S over shorter periods than other field operations. Potential controls for stacking are: (1) upstream abatement, (2) automated well operation, (3) computerized wellfield operation (as of PG and E's Geysers Unit No. 15), and (4) further steamfield interconnection (cross-overs).

  1. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  2. Targeting Non-Coding RNAs in Plants with the CRISPR-Cas Technology is a Challenge yet Worth Accepting

    PubMed Central

    Basak, Jolly; Nithin, Chandran

    2015-01-01

    Non-coding RNAs (ncRNAs) have emerged as versatile master regulator of biological functions in recent years. MicroRNAs (miRNAs) are small endogenous ncRNAs of 18–24 nucleotides in length that originates from long self-complementary precursors. Besides their direct involvement in developmental processes, plant miRNAs play key roles in gene regulatory networks and varied biological processes. Alternatively, long ncRNAs (lncRNAs) are a large and diverse class of transcribed ncRNAs whose length exceed that of 200 nucleotides. Plant lncRNAs are transcribed by different RNA polymerases, showing diverse structural features. Plant lncRNAs also are important regulators of gene expression in diverse biological processes. There has been a breakthrough in the technology of genome editing, the CRISPR-Cas9 (clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9) technology, in the last decade. CRISPR loci are transcribed into ncRNA and eventually form a functional complex with Cas9 and further guide the complex to cleave complementary invading DNA. The CRISPR-Cas technology has been successfully applied in model plants such as Arabidopsis and tobacco and important crops like wheat, maize, and rice. However, all these studies are focused on protein coding genes. Information about targeting non-coding genes is scarce. Hitherto, the CRISPR-Cas technology has been exclusively used in vertebrate systems to engineer miRNA/lncRNAs, but it is still relatively unexplored in plants. While briefing miRNAs, lncRNAs and applications of the CRISPR-Cas technology in human and animals, this review essentially elaborates several strategies to overcome the challenges of applying the CRISPR-Cas technology in editing ncRNAs in plants and the future perspective of this field. PMID:26635829

  3. Targeting Non-Coding RNAs in Plants with the CRISPR-Cas Technology is a Challenge yet Worth Accepting.

    PubMed

    Basak, Jolly; Nithin, Chandran

    2015-01-01

    Non-coding RNAs (ncRNAs) have emerged as versatile master regulator of biological functions in recent years. MicroRNAs (miRNAs) are small endogenous ncRNAs of 18-24 nucleotides in length that originates from long self-complementary precursors. Besides their direct involvement in developmental processes, plant miRNAs play key roles in gene regulatory networks and varied biological processes. Alternatively, long ncRNAs (lncRNAs) are a large and diverse class of transcribed ncRNAs whose length exceed that of 200 nucleotides. Plant lncRNAs are transcribed by different RNA polymerases, showing diverse structural features. Plant lncRNAs also are important regulators of gene expression in diverse biological processes. There has been a breakthrough in the technology of genome editing, the CRISPR-Cas9 (clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9) technology, in the last decade. CRISPR loci are transcribed into ncRNA and eventually form a functional complex with Cas9 and further guide the complex to cleave complementary invading DNA. The CRISPR-Cas technology has been successfully applied in model plants such as Arabidopsis and tobacco and important crops like wheat, maize, and rice. However, all these studies are focused on protein coding genes. Information about targeting non-coding genes is scarce. Hitherto, the CRISPR-Cas technology has been exclusively used in vertebrate systems to engineer miRNA/lncRNAs, but it is still relatively unexplored in plants. While briefing miRNAs, lncRNAs and applications of the CRISPR-Cas technology in human and animals, this review essentially elaborates several strategies to overcome the challenges of applying the CRISPR-Cas technology in editing ncRNAs in plants and the future perspective of this field. PMID:26635829

  4. Preliminary definition and characterization of a solar industrial process heat technology and manufacturing plant for the year 2000

    SciTech Connect

    Prythero, T.; Meyer, R. T.

    1980-09-01

    A solar industrial process heat technology and an associated solar systems manufacturing plant for the year 2000 has been projected, defined, and qualitatively characterized. The technology has been defined for process heat applications requiring temperatures of 300/sup 0/C or lower, with emphasis on the 150/sup 0/ to 300/sup 0/C range. The selected solar collector technology is a parabolic trough collector of the line-focusing class. The design, structure, and material components are based upon existing and anticipated future technological developments in the solar industry. The solar system to be manufactured and assembled within a dedicated manufacturing plant is projected to consist of the collector and the major collector components, including reflector, absorber, parabolic trough structure, support stand, tracking drive mechanism, sun-sensing device and control system, couplings, etc. Major manufacturing processes to be introduced into the year 2000 plant operations are glassmaking, silvering, electroplating and plastic-forming. These operations will generate significant environmental residuals not encountered in present-day solar manufacturing plants. Important residuals include chemical vapors, acids, toxic elements (e.g. arsenic), metallic and chemical sludges, fumes from plastics, etc. The location, design, and operations of these sophisticated solar manufacturing plants will have to provide for the management of the environmental residuals.

  5. System and method for design and optimization of grid connected photovoltaic power plant with multiple photovoltaic module technologies

    DOEpatents

    Thomas, Bex George; Elasser, Ahmed; Bollapragada, Srinivas; Galbraith, Anthony William; Agamy, Mohammed; Garifullin, Maxim Valeryevich

    2016-03-29

    A system and method of using one or more DC-DC/DC-AC converters and/or alternative devices allows strings of multiple module technologies to coexist within the same PV power plant. A computing (optimization) framework estimates the percentage allocation of PV power plant capacity to selected PV module technologies. The framework and its supporting components considers irradiation, temperature, spectral profiles, cost and other practical constraints to achieve the lowest levelized cost of electricity, maximum output and minimum system cost. The system and method can function using any device enabling distributed maximum power point tracking at the module, string or combiner level.

  6. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Madhava Syamlal; Maxwell Osawe; Stephen Zitney; Lewis Collins; David Sloan; Woodrow Fiveland; Frank Joop; Philip Simon; K. Joseph Cleetus

    2005-04-01

    To accelerate the development of advanced power plants, DOE's Vision 21 program identified the need for an integrated suite of software tools that could be used to simulate and visualize new plant concepts. Existing process simulation software did not meet this objective of virtual-plant simulation. Sophisticated models of many individual equipment items are available; however, a seamless coupling capability that would integrate the advanced equipment (component) models to the process (system) simulation software remained to be developed. The inability to use models in an integrated manner causes knowledge loss (e.g., knowledge captured in detailed equipment models is usually not available in process simulation) and modeling inconsistencies (e.g., physical properties and reaction kinetics data in different models are not the same). A team consisting of Fluent Inc., ALSTOM Power Inc., Aspen Technology Inc., Intergraph Corporation, and West Virginia University, in collaboration with the National Energy Technology Laboratory (NETL), addressed this challenge in a project performed over the period from October 2000 through December 2004. In this project the integration of the cycle analysis software was based on widely used commercial software: Aspen Plus{reg_sign} for process simulation and FLUENT{reg_sign} for computational fluid dynamics (CFD) modeling of equipment items. The integration software was designed to also include custom (in-house, proprietary, legacy) equipment models that often encapsulate the experience from the many years of designing and operating the equipment. The team adopted CAPE-OPEN (CO) interfaces, the de facto international standard for communication among process models, for exchanging information between software. The software developed in this project is the first demonstration of the use of CO interfaces to link CFD and custom equipment models with process simulators. New interface requirements identified during this project were

  7. Selection of odour removal technologies in wastewater treatment plants: a guideline based on Life Cycle Assessment.

    PubMed

    Alfonsín, Carolina; Lebrero, Raquel; Estrada, José M; Muñoz, Raúl; Kraakman, N J R Bart; Feijoo, Gumersindo; Moreira, M Teresa

    2015-02-01

    This paper aims at analysing the environmental benefits and impacts associated with the treatment of malodorous emissions from wastewater treatment plants (WWTPs). The life cycle assessment (LCA) methodology was applied to two biological treatments, namely biofilter (BF) and biotrickling filter (BTF), two physical/chemical alternatives, namely activated carbon tower (AC) and chemical scrubber (CS), and a hybrid combination of BTF + AC. The assessment provided consistent guidelines for technology selection, not only based on removal efficiencies, but also on the environmental impact associated with the treatment of emissions. The results showed that biological alternatives entailed the lowest impacts. On the contrary, the use of chemicals led to the highest impacts for CS. Energy use was the main contributor to the impact related to BF and BTF, whereas the production of glass fibre used as infrastructure material played an important role in BTF impact. Production of NaClO entailed the highest burdens among the chemicals used in CS, representing ∼ 90% of the impact associated to chemicals. The frequent replacement of packing material in AC was responsible for the highest environmental impacts, granular activated carbon (GAC) production and its final disposal representing more than 50% of the impact in most categories. Finally, the assessment of BTF + AC showed that the hybrid technology is less recommendable than BF and BTF, but friendlier to the environment than physical/chemical treatments. PMID:25463573

  8. Assessing environmental compatibility of new technologies for use in nuclear power plants

    SciTech Connect

    Korsah, K.; Turner, G.W.; Mullens, J.A.

    1994-12-31

    A microprocessor-based reactor trip channel has been assembled for environmental testing under an Instrumentation and Control (I and C) Qualification Program sponsored by the US Nuclear Regulatory Commission. The goal of this program is to establish the technical basis for the qualification of advanced I and C systems. The trip channel implemented for this study employs technologies and digital subsystems representative of those proposed for use in some advanced light-water reactors (ALWRS) such as the Simplified Boiling Water Reactor (SBWR) and AP600. It is expected that these tests will reveal any potential system vulnerabilities for technologies representative of those proposed for use in ALWRS. The experimental channel will be purposely stressed considerably beyond what it is likely to experience in a normal nuclear power plant environment, so that the tests can uncover the worst-case failure modes (i.e., failures that are likely to prevent an entire trip system from performing its safety function when required to do so). Based on information obtained from this study, it may be possible to recommend tests that are likely to indicate the presence of such failure mechanisms. Such recommendations would be helpful in augmenting current qualification guidelines.

  9. [Comprehensive fuzzy evaluation of nitrogen oxide control technologies for coal-fired power plants].

    PubMed

    Yu, Chao; Wang, Shu-xiao; Hao, Ji-ming

    2010-07-01

    A multi-level assessment index system was established to quantitatively and comprehensively evaluate the performance of typical nitrogen oxide control technologies for coal-fired power plants. Comprehensive fuzzy evaluation was conducted to assess six NO, control technologies, including low NO, burner (LNB), over the fire (OFA), flue gas reburning (Reburning), selective catalyst reduction (SCR), selective non-catalyst reduction (SNCR) and hybrid SCR/SNCR. Case studies indicated that combination of SCR and LNB are the optimal choice for wall-fired boilers combusting anthracite coal which requires NO, removal efficiency to be over 70%, however, for W-flame or tangential boilers combusting bituminous and sub-bituminous coal which requires 30% NO, removal, LNB and reburning are better choices. Therefore, we recommend that in the developed and ecological frangible regions, large units burning anthracite or meager coal should install LNB and SCR and other units should install LNB and SNCR. In the regions with environmental capacity, units burning anthracite or meager coal shall install LNB and SNCR, and other units shall apply LNB to reduce NO, emissions. PMID:20825011

  10. Transfer of infrared thermography predictive maintenance technologies to Soviet-designed nuclear power plants: experience at Chernobyl

    NASA Astrophysics Data System (ADS)

    Pugh, Ray; Huff, Roy

    1999-03-01

    The importance of infrared (IR) technology and analysis in today's world of predictive maintenance and reliability- centered maintenance cannot be understated. The use of infrared is especially important in facilities that are required to maintain a high degree of equipment reliability because of plant or public safety concerns. As with all maintenance tools, particularly those used in predictive maintenance approaches, training plays a key role in their effectiveness and the benefit gained from their use. This paper details an effort to transfer IR technology to Soviet- designed nuclear power plants in Russia, Ukraine, and Lithuania. Delivery of this technology and post-delivery training activities have been completed recently at the Chornobyl nuclear power plant in Ukraine. Many interesting challenges were encountered during this effort. Hardware procurement and delivery of IR technology to a sensitive country were complicated by United States regulations. Freight and shipping infrastructure and host-country customs policies complicated hardware transport. Training activities were complicated by special hardware, software and training material translation needs, limited communication opportunities, and site logistical concerns. These challenges and others encountered while supplying the Chornobyl plant with state-of-the-art IR technology are described in this paper.

  11. Exploring links between innovation and diffusion: adoption of NOx control technologies at U.S. coal-fired power plants

    SciTech Connect

    Popp, D.

    2006-03-15

    While many studies have looked at innovation and adoption of technologies separately, the two processes are linked. Advances (and expected advances) in a single technology should affect both its adoption rate and the adoption of alternative technologies. Moreover, advances made abroad may affect adoption differently than improvements developed domestically. This paper combines plant-level data on US coal-fired electric power plants with patent data pertaining to NOx pollution control techniques to study these links. It is shown that technological advances, particularly those made abroad, are important for the adoption of newer post-combustion treatment technologies, but have little effect on the adoption of older combustion modification techniques. Moreover, it provides evidence that adaptive R&D by US firms is necessary before foreign innovations are adopted in the US. Expectations of future technological advances delay adoption. Nonetheless, as in other studies of environmental technologies, the effect of other explanatory variables is dominated by the effect of environmental regulations, demonstrating that the mere presence of environmental technologies is not enough to encourage its usage.

  12. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    SciTech Connect

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

    2005-02-01

    The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

  13. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    SciTech Connect

    Elder, H. K.

    1981-10-01

    Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0

  14. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement

    SciTech Connect

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets.

  15. Field demonstration of remedial technologies at a former manufactured gas plant site

    SciTech Connect

    Moreau, J.P.

    1998-12-31

    From the mid 1800s until the late 1950s, the major energy source for domestic lighting, heating, and cooking was a manufactured fuel derived from the pyrolysis of coal and oil. These manufactured gas production facilities were located throughout the country; at one time more than 3000 plants may have been in operation, with 180 in New York state alone. During the 1950s, the installation of a vast interstate gas pipeline system allowed the transport of relatively inexpensive natural gas from oil production fields to the metropolitan areas. This natural gas had a BTU content of almost twice that of manufactured gas and, being inherently cheaper, resulted in the overnight demise of the MGP industry. The vast majority of the MGP facilities were demolished and the sites either converted to other uses or abandoned. In the early 1980s, utilities discovered these long abandoned production facilities during various environmental site assessments and audits. In 1990, NMPC initiated a project at a MGP byproduct disposal site (EPRI Site 24) to investigate the technologies necessary for removal of contaminated source materials and soils, treatment of the impacted soil, and evaluation of the potential for natural attenuation of a contaminated groundwater plume (EPRI, 1996). MGP-impacted soil from this site was transported to two treatment facilities: a cement Kiln in North Carolina, and an asphalt plant in Virginia. This experience generated considerable data on management of these sites, even though this site was a simple disposal area and not a former production facility. A long-term monitoring program is indicating that natural attenuation processes appear to b responsible for the decreasing levels of key constituents in the groundwater after source materials are removed. A number of key lessons learned were generated from the study, especially recognizing that transportation is a major cost component in site remediation.

  16. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  17. Enhanced-safety underground nuclear power plants based on the use of proven ship-building equipment and technology

    SciTech Connect

    Pashin, V.M.; Petrov, E.L.; Khazov, B.S.

    1995-10-01

    Investigations performed in the last few years by the State Science Center of the Russian Federation - Academician A. N. Krylov Central Scientific-Research Institute, together with specialized enterprises of the Ministry of Atomic Energy of the Russian Federation, Sudprom, and other agencies of Russia, have shown the promise of marine nuclear power plants for producing underground nuclear power plants with a higher degree of protection from external and internal actions of different intensity. The concept was developed on the basis of an analysis of the energy supply in different regions of Russia and the near-abroad using fossil fuels (lignite, oil, natural gas). The change in the international environment, which makes it possible to convert the military technology, frees the industrial potential and skilled workers in Russia for development of products for the national economy. Stricter international standards and rules for increased safety and protection of nuclear power plants made it necessary to develop a new generation of reactors for ground-based power plants, which under the modern economic conditions cannot be implemented within the time periods acceptable for economics for most of the countries surrounding Russia. In the development of a new generation of ground-based nuclear power plants, the intense improvement of the aviation and space technology must be taken into account. This is connected with the increase in the catastrophes and the threat they present to the safety of unprotected power plants. This article is an abstract of the entire report.

  18. Idaho Chemical Processing Plant spent fuel and waste management technology development program plan: 1994 Update

    SciTech Connect

    Not Available

    1994-09-01

    The Department of Energy has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until April 1992, the major activity of the ICPP was the reprocessing of SNF to recover fissile uranium and the management of the resulting high-level wastes (HLW). In 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the continued safe management and disposition of SNF and radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3,800 cubic meters of calcine waste, and 289 metric tons heavy metal of SNF are in inventory at the ICPP. Disposal of SNF and high-level waste (HLW) is planned for a repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP spent Fuel and Waste Management Technology Development Program (SF&WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will be properly stored and prepared for final disposal in accordance with regulatory drivers. This Plan presents a brief summary of each of the major elements of the SF&WMTDP; identifies key program assumptions and their bases; and outlines the key activities and decisions that must be completed to identify, develop, demonstrate, and implement a process(es) that will properly prepare the SNF and radioactive wastes stored at the ICPP for safe and efficient interim storage and final disposal.

  19. The content of macro- and microelements and the phosphatase activity of soils under a varied plant cultivation technology

    NASA Astrophysics Data System (ADS)

    Bartkowiak, A.; Lemanowicz, J.; Kobierski, M.

    2015-12-01

    The paper presents the results of the analyses of selected physicochemical properties and the activity of alkaline and acid phosphatase in the soils which differed in terms of plant cultivation technology. Profile sI represented arable land in the crop rotation with cereals dominating (medium intensive technology), without irrigation, while profile sII—represented arable land with vegetable crops cultivation (intensive technology), intensively fertilized and irrigated. The content of available phosphorus in the two soil profiles investigated ranged from 6.6 to 69.1 mg/kg. The highest contents of phosphorus available to plants were reported in the plough horizon of both soils, while the abundance of potassium and magnesium was highest in the illuvial horizon of both soils. The soil profiles investigated showed a significant variation in terms of the cultivation technologies applied. The contents of plant-available Cu and Zn in soil were low and they resulted in the inhibition of neither alkaline nor acid phosphatase. The intensive vegetable crops cultivation technology decreased the content of organic matter and increased the content of the nutrients in soil. Using the Ward method, it was found that relatively similar physicochemical and chemical properties were reported for the genetic horizons of both soil profiles, especially Ap horizon of the soil representing arable land with intensive cultivation of vegetable crops.

  20. Evaluation of emerging contaminants in a drinking water treatment plant using electrodialysis reversal technology.

    PubMed

    Gabarrón, S; Gernjak, W; Valero, F; Barceló, A; Petrovic, M; Rodríguez-Roda, I

    2016-05-15

    Emerging contaminants (EC) have gained much attention with globally increasing consumption and detection in aquatic ecosystems during the last two decades from ng/L to lower ug/L. The aim of this study was to evaluate the occurrence and removal of pharmaceutically active compounds (PhACs), endocrine disrupting chemicals (EDCs) and related compounds in a Drinking Water Treatment Plant (DWTP) treating raw water from the Mediterranean Llobregat River. The DWTP combined conventional treatment steps with the world's largest electrodialysis reversal (EDR) facility. 49 different PhACs, EDCs and related compounds were found above their limit of quantification in the influent of the DWTP, summing up to a total concentration of ECs between 1600-4200 ng/L. As expected, oxidation using chlorine dioxide and granular activated carbon filters were the most efficient technologies for EC removal. However, despite the low concentration detected in the influent of the EDR process, it was also possible to demonstrate that this process partially removed ionized compounds, thereby constituting an additional barrier against EC pollution in the product. In the product of the EDR system, only 18 out of 49 compounds were quantifiable in at least one of the four experimental campaigns, showing in all cases removals higher than 65% and often beyond 90% for the overall DWTP process. PMID:26894293

  1. Invariant Control of the Technological Plants to Compensate an Impact of Main Disturbances Preemptively

    NASA Astrophysics Data System (ADS)

    Sniders, A.; Laizans, A.; Komass, T.

    2016-06-01

    The paper considers a survey of the research procedures and results due to invariant control method application perspective for operation quality advancement in several technological plants (wastewater biological treatment tanks and water steam production boilers), which operate under influence of organised and random disturbances. A specified subject of research is the simulation model of the multi-link invariant control system for steam pressure stabilisation in a steam boiler by preemptive compensation of steam load and feed water flow impact on output parameter (steam pressure), developed in MATLAB/SIMULINK. Simulation block-diagram of the steam boiler invariant control system, containing closed loop PID control circuit and open loop DPC circuit, has been composed on the basis of the designed mathematical model of the system components, disturbance compensation algorithms, and operational equation of the invariant control system. Comparative response of the steam boiler, operating under influence of fluctuating disturbances, with conventional PID control and using PID-DPC control with disturbance compensation controller DPC, has been investigated. Simulation results of invariant PID - DPC control system show that output parameter of the steam boiler - pressure remains practically constant under fluctuating disturbances due to a high-speed response of DPC controller.

  2. Plant artificial chromosome technology and its potential application in genetic engineering.

    PubMed

    Yu, Weichang; Yau, Yuan-Yeu; Birchler, James A

    2016-05-01

    Genetic engineering with just a few genes has changed agriculture in the last 20 years. The most frequently used transgenes are the herbicide resistance genes for efficient weed control and the Bt toxin genes for insect resistance. The adoption of the first-generation genetically engineered crops has been very successful in improving farming practices, reducing the application of pesticides that are harmful to both human health and the environment, and producing more profit for farmers. However, there is more potential for genetic engineering to be realized by technical advances. The recent development of plant artificial chromosome technology provides a super vector platform, which allows the management of a large number of genes for the next generation of genetic engineering. With the development of other tools such as gene assembly, genome editing, gene targeting and chromosome delivery systems, it should become possible to engineer crops with multiple genes to produce more agricultural products with less input of natural resources to meet future demands. PMID:26369910

  3. Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants

    PubMed Central

    Unamba, Chibuikem I. N.; Nag, Akshay; Sharma, Ram K.

    2015-01-01

    Non-model plants i.e., the species which have one or all of the characters such as long life cycle, difficulty to grow in the laboratory or poor fecundity, have been schemed out of sequencing projects earlier, due to high running cost of Sanger sequencing. Consequently, the information about their genomics and key biological processes are inadequate. However, the advent of fast and cost effective next generation sequencing (NGS) platforms in the recent past has enabled the unearthing of certain characteristic gene structures unique to these species. It has also aided in gaining insight about mechanisms underlying processes of gene expression and secondary metabolism as well as facilitated development of genomic resources for diversity characterization, evolutionary analysis and marker assisted breeding even without prior availability of genomic sequence information. In this review we explore how different Next Gen Sequencing platforms, as well as recent advances in NGS based high throughput genotyping technologies are rewarding efforts on de-novo whole genome/transcriptome sequencing, development of genome wide sequence based markers resources for improvement of non-model crops that are less costly than phenotyping. PMID:26734016

  4. EVALUATION OF FIVE WASTE MINIMIZATION TECHNOLOGIES AT THE GENERAL DYNAMICS POMONA DIVISION PLANT

    EPA Science Inventory

    Five technology areas encompassing eight waste reduction technologies at the General Dynamics Pomona Division (Southern California) were technically and economically evaluated under the California/EPA Waste Reduction Innovative Technology Evaluation (WRITE) Program. valuations we...

  5. Cogeneration technology alternatives study. Volume 4: Heat Sources, balance of plant and auxiliary systems

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Data and information established for heat sources balance of plant items, thermal energy storage, and heat pumps are presented. Design case descriptions are given along with projected performance values. Capital cost estimates for representative cogeneration plants are also presented.

  6. Applications of CRISPR/Cas9 technology for targeted mutagenesis, gene replacement and stacking of genes in higher plants.

    PubMed

    Luo, Ming; Gilbert, Brian; Ayliffe, Michael

    2016-07-01

    Mutagenesis continues to play an essential role for understanding plant gene function and, in some instances, provides an opportunity for plant improvement. The development of gene editing technologies such as TALENs and zinc fingers has revolutionised the targeted mutation specificity that can now be achieved. The CRISPR/Cas9 system is the most recent addition to gene editing technologies and arguably the simplest requiring only two components; a small guide RNA molecule (sgRNA) and Cas9 endonuclease protein which complex to recognise and cleave a specific 20 bp target site present in a genome. Target specificity is determined by complementary base pairing between the sgRNA and target site sequence enabling highly specific, targeted mutation to be readily engineered. Upon target site cleavage, error-prone endogenous repair mechanisms produce small insertion/deletions at the target site usually resulting in loss of gene function. CRISPR/Cas9 gene editing has been rapidly adopted in plants and successfully undertaken in numerous species including major crop species. Its applications are not restricted to mutagenesis and target site cleavage can be exploited to promote sequence insertion or replacement by recombination. The multiple applications of this technology in plants are described. PMID:27146973

  7. Development and Application of a Single-tube Immunocapture Real-Time PCR Technology for Sensitive Detection of a Panel of Viruses in Crop Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzyme-linked immunosorbent assay (ELISA) is the most widely used technology for plant virus detection. Its sensitivity however may not be satisfactory in detecting viruses in tissues with early infection, seeds or woody plants. Recently, real-time PCR has been introduced for plant virus detection w...

  8. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2010-12-31

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  9. APPLICATION OF THE LASAGNA{trademark} SOIL REMEDIATION TECHNOLOGY AT THE DOE PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect

    Swift, Barry D.; Tarantino, Joseph J., P. E.

    2003-02-27

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the Department of Energy (DOE), has been enriching uranium since the early 1950s. The enrichment process involves electrical and mechanical components that require periodic cleaning. The primary cleaning agent was trichloroethene (TCE) until the late 1980s. Historical documentation indicates that a mixture of TCE and dry ice were used at PGDP for testing the integrity of steel cylinders, which stored depleted uranium. TCE and dry ice were contained in a below-ground pit and used during the integrity testing. TCE seeped from the pit and contaminated the surrounding soil. The Lasagna{trademark} technology was identified in the Record of Decision (ROD) as the selected alternative for remediation of the cylinder testing site. A public-private consortium formed in 1992 (including DOE, the U.S. Environmental Protection Agency, and the Kentucky Department for Environmental Protection, Monsanto, DuPont, and General Electric) developed the Lasagna{trademark} technology. This innovative technology employs electrokinetics to remediate soil contaminated with organics and is especially suited to sites with low permeability soils. This technology uses direct current to move water through the soil faster and more uniformly than hydraulic methods. Electrokinetics moves contaminants in soil pore water through treatment zones comprised of iron filings, where the contaminants are decomposed to basic chemical compounds such as ethane. After three years of development in the laboratory, the consortium field tested the Lasagna{trademark} process in several phases. CDM installed and operated Phase I, the trial installation and field test of a 150-square-foot area selected for a 120-day run in 1995. Approximately 98 percent of the TCE was removed. CDM then installed and operated the next phase (IIa), a year-long test on a 600-square-foot site. Completed in July 1997, this test removed 75 percent of the total volume of TCE down to a

  10. U.S. DOE Industrial Technologies Program – Technology Delivery Plant-Wide Assessment at PPG Industries, Natrium, WV

    SciTech Connect

    Lester, Stephen R.; Wiethe, Jeff; Green, Russell; Guice, Christina; Gopalakrishnan, Bhaskaran; Turton, Richard

    2007-09-28

    PPG and West Virginia University performed a plantwide energy assessment at the PPG’s Natrium, WV chemical plant, an energy-intensive manufacturing facility producing chlor-alkali and related products. Implementation of all the assessment recommendations contained in this report could reduce plant energy consumption by 8.7%, saving an estimated 10,023,192 kWh/yr in electricity, 6,113 MM Btu/yr in Natural Gas, 401,156 M lb/yr in steam and 23,494 tons/yr in coal and reduce carbon dioxide emissions by 241 mm lb/yr. The total cost savings would amount to approximately $2.9 mm/yr. Projects being actively implemented will save $1.7 mm/yr; the remainder are undergoing more detailed engineering study.

  11. Control of SO{sub 2} emissions from power plants: A case of induced technological innovation in the US

    SciTech Connect

    Taylor, M.R.; Rubin, E.S.; Hounshell, D.A.

    2005-07-01

    This paper investigates how the details of government actions induce innovation-the overlapping activities of invention, adoption and diffusion, and learning by doing-in 'environmental technology,' products and processes that either control pollutant emissions or prevent emissions altogether. It applies multiple quantitative and qualitative measures of innovation to a case subject to several 'technology - push' and 'demand-pull', instruments: sulfur dioxide control technology for power plants. The study employs analyses of public R&D funding, patents, expert interviews, learning curves, conference proceedings, and experience curves. Results indicate that: regulation and the anticipation of regulation stimulate invention; technology-push instruments appear to be less effective at prompting invention than demand-pull instruments; and regulatory stringency focuses inventive activity along certain technology pathways. Increased diffusion of the technology results in significant and predictable operating cost reductions in existing systems, as well as notable efficiency improvements and capital cost reductions in new systems. Government plays an important role in fostering knowledge transfer via technical conferences, as well as affecting the pattern of collaborative relationships within the technical research community via regulatory changes that affect the market for the technology. Finally, the case provides little evidence for the claim that cap-and-trade instruments induce innovation more effectively than other instruments.

  12. Environmental assessment and finding of no significant impact: Biorecycling Technologies, Inc., Noble Biogas and Fertilizer Plant, Fresno County, California

    SciTech Connect

    1997-09-01

    The US Department of Energy (DOE) is considering a proposal from the California Energy Commission for partial funding up to $1,500,000 of the construction of the biorecycling Technologies, Inc., (BTI) Noble Biogas and Fertilizer Plant in Fresno County, California. BTI along with its contractors and business partners would develop the plant, which would use manure and green waste to produce biogas and a variety of organic fertilizer products. The California Energy Commission has requested funding from the DOE Commercialization Ventures program to assist in the construction of the plant, which would produce up to one megawatt of electricity by burning biogas in a cogeneration unit. The purpose of this environmental assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with funding development of the proposed project.

  13. Biosecurity implications of new technology and discovery in plant virus research.

    PubMed

    MacDiarmid, Robin; Rodoni, Brendan; Melcher, Ulrich; Ochoa-Corona, Francisco; Roossinck, Marilyn

    2013-01-01

    Human activity is causing new encounters between viruses and plants. Anthropogenic interventions include changing land use, decreasing biodiversity, trade, the introduction of new plant and vector species to native landscapes, and changing atmospheric and climatic conditions. The discovery of thousands of new viruses, especially those associated with healthy-appearing native plants, is shifting the paradigm for their role within the ecosystem from foe to friend. The cost of new plant virus incursions can be high and result in the loss of trade and/or production for short or extended periods. We present and justify three recommendations for plant biosecurity to improve communication about plant viruses, assist with the identification of viruses and their impacts, and protect the high economic, social, environmental, and cultural value of our respective nations' unique flora: 1) As part of the burden of proof, countries and jurisdictions should identify what pests already exist in, and which pests pose a risk to, their native flora; 2) Plant virus sequences not associated with a recognized virus infection are designated as "uncultured virus" and tentatively named using the host plant species of greatest known prevalence, the word "virus," a general location identifier, and a serial number; and 3) Invest in basic research to determine the ecology of known and new viruses with existing and potential new plant hosts and vectors and develop host-virus pathogenicity prediction tools. These recommendations have implications for researchers, risk analysts, biosecurity authorities, and policy makers at both a national and an international level. PMID:23950706

  14. MULTIPOLLUTANT EMISSION CONTROL TECHNOLOGY OPTIONS FOR COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The report presents and analyzes various existing and novel control technologies designed to achieve multipollutant [sulfur dioxide (SO2), nitrogen oxide (NOX), and mercury (Hg)] emission reductions. Summary descriptions are included of 23 multipollutant control technologies that...

  15. Exploiting the small RNA deep sequencing technology for identification of viruses and viroids in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small RNAs (including miRNA and siRNA) are produced abundantly in plants and animals in regulating gene expression or in defense against virus or viroid infection. Analysis of a siRNA profile upon virus infection in plant may allow for de novo assembly of a virus genome. In the present study, four...

  16. The use of VIGS technology to study plant-herbivore interactions.

    PubMed

    Galis, Ivan; Schuman, Meredith C; Gase, Klaus; Hettenhausen, Christian; Hartl, Markus; Dinh, Son T; Wu, Jianqiang; Bonaventure, Gustavo; Baldwin, Ian T

    2013-01-01

    Plants employ a large variety of defense strategies to resist herbivores, which require transcriptional reprogramming of cells and profound changes in plant metabolism. Due to the large number of genes involved in defense processes, rapid screening strategies are essential for elucidating the contributions of individual genes in the responses of plants to herbivory. However, databases and seed banks of mutant plants which allow rapid retrieval of mutant genotypes are limited to a few model plant species, namely, Arabidopsis thaliana and Oryza sativa (rice). In other plants, virus-induced gene silencing (VIGS) offers an efficient alternative for screening the functions of individual genes in order to prioritize the allocations of the large time investments required to establish stably transformed RNAi-silenced lines. With VIGS, it is usually possible to achieve strong, specific silencing of target genes in the ecological models Nicotiana attenuata and Solanum nigrum, allowing the rapid assessment of gene silencing effects on phytohormone accumulation, signal transduction and accumulation of defense metabolites. VIGS plants are also useful in bioassays with specialist and generalist herbivores, allowing direct verification of gene function in plant resistance to herbivores. PMID:23386299

  17. PHYTOREMEDIATION OF GROUNDWATER AT AIR FORCE PLANT 4, CARSWELL, TEXAS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    Over 600 Cottonwood trees were planted over a shallow groundwater plume in an attempt to detoxify the trichloroethylene (TCE) in a groundwater plume at a former Air Force facility. Two planting techniques were used: rooted stock about two years old, and 18 inch cuttings were inst...

  18. Limitations to postfire seedling establishment: the role of seeding technology, water availability, and invasive plant abundance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeding rangeland following wildfire is a central tool managers use to stabilize soils and inhibit the spread of invasive plants. Rates of successful seeding on arid rangeland, however, are low. The objective of this study was to determine the degree to which water availability, invasive plant abund...

  19. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    SciTech Connect

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50

  20. Production of novel biopolymers in plants: recent technological advances and future prospects.

    PubMed

    Snell, Kristi D; Singh, Vijay; Brumbley, Stevens M

    2015-04-01

    The production of novel biopolymers in plants has the potential to provide renewable sources of industrial materials through agriculture. In this review we will highlight recent progress with plant-based production of polyhydroxyalkanoates (PHAs), silk, elastin, collagen, and cyanophycin with an emphasis on the synthesis of poly[(R)-3-hydroxybutyrate] (PHB), a renewable biodegradable PHA polymer with potential commercial applications in plastics, chemicals, and feed markets. Improved production of PHB has required manipulation of promoters driving expression of transgenes, reduction in activity of endogenous enzymes in competing metabolic pathways, insertion of genes to increase carbon flow to polymer, and basic plant biochemistry to understand metabolic limitations. These experiments have increased our understanding of carbon availability and partitioning in different plant organelles, cell types, and organs, information that is useful for the production of other novel molecules in plants. PMID:25437636

  1. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    SciTech Connect

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Mike J. Holmes; Jason D. Laumb; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang; Jill M. Zola

    2004-02-01

    North Dakota lignite-fired power plants have shown a limited ability to control mercury emissions in currently installed electrostatic precipitators (ESPs), dry scrubbers, and wet scrubbers (1). This low level of control can be attributed to the high proportions of Hg{sup 0} present in the flue gas. Speciation of Hg in flue gases analyzed as part of the U.S. Environmental Protection Agency (EPA) information collection request (ICR) for Hg data showed that Hg{sup 0} ranged from 56% to 96% and oxidized mercury ranged from 4% to 44%. The Hg emitted from power plants firing North Dakota lignites ranged from 45% to 91% of the total Hg, with the emitted Hg being greater than 85% elemental. The higher levels of oxidized mercury were only found in a fluidized-bed combustion system. Typically, the form of Hg in the pulverized and cyclone-fired units was dominated by Hg{sup 0} at greater than 85%, and the average amount of Hg{sup 0} emitted from North Dakota power plants was 6.7 lb/TBtu (1, 2). The overall objective of this Energy & Environmental Research Center (EERC) project is to develop and evaluate advanced and innovative concepts for controlling Hg emissions from North Dakota lignite-fired power plants by 50%-90% at costs of one-half to three-fourths of current estimated costs. The specific objectives are focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in wet and dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in ESPs and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The scientific approach to solving the problems associated with controlling Hg emissions from lignite-fired power plants involves conducting testing of the following processes and technologies that have shown promise on a bench, pilot, or field scale: (1) activated carbon injection (ACI) upstream of an ESP

  2. Biosecurity Implications of New Technology and Discovery in Plant Virus Research

    PubMed Central

    MacDiarmid, Robin; Rodoni, Brendan; Melcher, Ulrich; Ochoa-Corona, Francisco; Roossinck, Marilyn

    2013-01-01

    Human activity is causing new encounters between viruses and plants. Anthropogenic interventions include changing land use, decreasing biodiversity, trade, the introduction of new plant and vector species to native landscapes, and changing atmospheric and climatic conditions. The discovery of thousands of new viruses, especially those associated with healthy-appearing native plants, is shifting the paradigm for their role within the ecosystem from foe to friend. The cost of new plant virus incursions can be high and result in the loss of trade and/or production for short or extended periods. We present and justify three recommendations for plant biosecurity to improve communication about plant viruses, assist with the identification of viruses and their impacts, and protect the high economic, social, environmental, and cultural value of our respective nations' unique flora: 1) As part of the burden of proof, countries and jurisdictions should identify what pests already exist in, and which pests pose a risk to, their native flora; 2) Plant virus sequences not associated with a recognized virus infection are designated as “uncultured virus” and tentatively named using the host plant species of greatest known prevalence, the word “virus,” a general location identifier, and a serial number; and 3) Invest in basic research to determine the ecology of known and new viruses with existing and potential new plant hosts and vectors and develop host-virus pathogenicity prediction tools. These recommendations have implications for researchers, risk analysts, biosecurity authorities, and policy makers at both a national and an international level. PMID:23950706

  3. Dual roles of infrared imaging on a university campus: serving the physical plant while enhancing a technology-based curriculum

    NASA Astrophysics Data System (ADS)

    Miles, Jonathan J.

    2001-03-01

    The campus of a comprehensive, residential university is in many respects a small city unto itself. All the amenities and services one would expect in a typical community are readily available on a college campus, including residences, athletic and dining facilities, libraries, and stores. A large campus, therefore, requires a reliable energy plant to provide steam, hot water, chilled water, and electricity. James Madison University supports two power plants: a vintage steam plant and a modern resource recovery facility comprising two solid-waste incinerators and two gas-fired units for steam generation, three steam-driven absorption- chilling units, and a single steam-driven generator for peak electricity production. Infrared imaging, as a teaching tool, was introduced in the Program of Integrated Science and Technology at James Madison University in 1997. The Infrared Development and Thermal Testing Laboratory was established at the university later in 1997 with government and industry support, and it is presently equipped with infrared imagers and scanners, single-point detectors, and data-acquisition systems. A study was conducted between 1998 and 1999 to test the economic feasibility of implementing an IR-based predictive maintenance program in the university steam plant. This paper describes the opportunities created at James Madison University to develop IR-based predictive maintenance programs that enhance the operation of the university energy plants; to establish IR-related research and development activities that support government and industry activities; and to enhance a science- and technology-based curriculum by way of unique, IR-based laboratory experiences and demonstrations.

  4. Plant-microbe interactions: novel applications for exploitation in multipurpose remediation technologies.

    PubMed

    Abhilash, P C; Powell, Jeff R; Singh, Harikesh B; Singh, Brajesh K

    2012-08-01

    Soil remediation that revitalizes degraded or contaminated land while simultaneously contributing to biomass biofuel production and carbon sequestration is an attractive strategy to meet the food and energy requirements of the burgeoning world population. As a result, plant-based remediation approaches have been gaining in popularity. The drawbacks of phytoremediation, particularly those associated with low productivity and limitations to the use of contaminant-containing biomass, could be addressed through novel biotechnological approaches that harness recent advances in our understanding of chemical interactions between plants and microorganisms in the rhizosphere and within plant tissues. This opinion article highlights three promising approaches that provide environmental and economic benefits of bioremediation: transgenics, low-input 'designer' plants and nanotechnology. PMID:22613174

  5. Coupling Ocean Thermal Energy Conversion technology /OTEC/ with nuclear power plants

    NASA Astrophysics Data System (ADS)

    Goldstein, M. K.; Rezachek, D.; Chen, C. S.

    The use of an Ocean Thermal Energy Conversion Related Bottoming Cycle (ORBC) to recover the waste heat generated by a large nuclear or fossil power plant is considered. To take advantage of an ORBC, a plant must be located close to cold, deep ocean water, either open-ocean or shore-based. The ORBC can also be retrofitted to existing shore-based nuclear plants or it can be a part of the design of future plants. The increased efficiency of a nuclear floating system due to the ammonia bottoming cycle and ORBC systems is shown for the example of the proposed facility in Murata, Japan. It is noted that the size of the heat exchangers and the diameter of the cold water pipe would be relatively smaller for an ORBC than for a conventional ocean thermal energy conversion system.

  6. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    SciTech Connect

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  7. In-plant testing of a novel coal cleaning circuit using advanced technologies, Quarterly report, March 1 - May 31, 1996

    SciTech Connect

    Honaker, R.Q.; Reed, S.; Mohanty, M.K.

    1996-12-31

    Research conducted at Southern Illinois University at Carbondale over the past two years has identified highly efficient methods for treating fine coal (i.e., -28 mesh). In this study, a circuit comprised of the three advanced fine coal cleaning technologies is being tested in an operating preparation plant to evaluate circuit performance and to compare the performance with the current technologies used to treat -16 mesh fine coal. The circuit integrated a Floatex hydrosizer, a Falcon concentrator and a Jameson froth flotation cell. The Floatex hydrosizer is being used as a primary cleaner for the nominally -16 mesh Illinois No. 5 fine coal circuit feed. The overflow of the Floatex is screened at 48 mesh using a Sizetec vibratory screen to produce a clean coal product from the screen overflow. The screen overflow is further treated by the Falcon and Jameson Cell. During this reporting period, tests were initiated on the fine coal circuit installed at the Kerr-McGee Galatia preparation plant. The circuit was found to reduce both the ash content and the pyritic sulfur content. Additional in-plant circuitry tests are ongoing.

  8. New Approaches and Technologies to Sequence de novo Plant reference Genomes (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Schmutz, Jeremy

    2013-03-01

    Jeremy Schmutz of the HudsonAlpha Institute for Biotechnology on "New approaches and technologies to sequence de novo plant reference genomes" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  9. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.

    PubMed

    Mokhtar, Mutahharah M; Taib, Rozainee M; Hassim, Mimi H

    2014-08-01

    The Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft), which replaces the Malaysia Environmental Quality (Clean Air) 1978, specifies limits to additional pollutants from power generation using fossil fuel. The new pollutants include Hg, HCl, and HF with limits of 0.03, 100, and 15 mg/N-m3 at 6% O2, respectively. These pollutants are normally present in very small concentrations (known as trace elements [TEs]), and hence are often neglected in environmental air quality monitoring in Malaysia. Following the enactment of the new regulation, it is now imperative to understand the TEs behavior and to assess the capability of the existing abatement technologies to comply with the new emission limits. This paper presents the comparison of TEs behavior of the most volatile (Hg, Cl, F) and less volatile (As, Be, Cd, Cr, Ni, Se, Pb) elements in subbituminous and bituminous coal and coal combustion products (CCP) (i.e., fly ash and bottom ash) from separate firing of subbituminous and bituminous coal in a coal-fired power plant in Malaysia. The effect of air pollution control devices configuration in removal of TEs was also investigated to evaluate the effectiveness of abatement technologies used in the plant. This study showed that subbituminous and bituminous coals and their CCPs have different TEs behavior. It is speculated that ash content could be a factor for such diverse behavior In addition, the type of coal and the concentrations of TEs in feed coal were to some extent influenced by the emission of TEs in flue gas. The electrostatic precipitator (ESP) and seawater flue gas desulfurization (FGD) used in the studied coal-fired power plant were found effective in removing TEs in particulate and vapor form, respectively, as well as complying with the new specified emission limits. Implications: Coals used by power plants in Peninsular Malaysia come from the same supplier (Tenaga Nasional Berhad Fuel Services), which is a subsidiary of the Malaysia

  10. Human Resource Development and New Technology in the Automobile Industry: A Case Study of Ford Motor Company's Dearborn Engine Plant. The Development and Utilization of Human Resources in the Context of Technological Change and Industrial Restructuring.

    ERIC Educational Resources Information Center

    Chen, Kan; And Others

    This report centers around a plant-level study of the development and utilization of human resources in the context of technological change and industrial restructuring in the crankshaft production area of Ford Motor Company's Dearborn Engine Plant (DEP). The introductory chapter describes how the study was conducted, provides an introduction to…

  11. Oxy-fuel Combustion and Integrated Pollutant Removal as Retrofit Technologies for Removing CO2 from Coal Fired Power Plants

    SciTech Connect

    Ochs, T.L.; Oryshchyn, D.B.; Summers, C.A.; Gerdemann, S.J.

    2001-01-01

    One third of the US installed capacity is coal-fired, producing 49.7% of net electric generation in 20051. Any approach to curbing CO2 production must consider the installed capacity and provide a mechanism for preserving this resource while meeting CO2 reduction goals. One promising approach to both new generation and retrofit is oxy-fuel combustion. Using oxygen instead of air as the oxidizer in a boiler provides a concentrated CO2 combustion product for processing into a sequestration-ready fluid.... Post-combustion carbon capture and oxy-fuel combustion paired with a compression capture technology such as IPR are both candidates for retrofitting pc combustion plants to meet carbon emission limits. This paper will focus on oxy-fuel combustion as applied to existing coal power plants.

  12. Sour gas plant remediation technology research and demonstration project, Task 7.53. Topical report, January--December 1993

    SciTech Connect

    Stepan, D.J.; Kuehnel, V.; Schmit, C.R.

    1994-02-01

    Recognizing the potential impacts of sour gas plant operations on the subsurface environment, the Canadian Association of Petroleum Producers (CAPP) and Environment Canada initiated a multiphase study focusing on research related to the development and demonstration of remedial technologies for soil and groundwater contamination at these facilities. Research performed under this project was designed to supplement and be coordinated with research activities being conducted at an operational sour gas plant located in Rocky Mountain House, Alberta, Canada. These research tasks included hydrogeological site characterization, subsurface contaminant characterization, ex situ treatment of groundwater, and subsurface remediation of residual contamination in the unsaturated zone. Ex situ treatment of groundwater included evaluations of air stripping, steam stripping, advanced oxidation, and biological treatment, as well as the development of an artificial freeze crystallization process. Soil vapor extraction was evaluated as a technique to address residual contamination in the unsaturated zone.

  13. Plant Operations for Wastewater Facilities, Vol. II, Part B. An Instructor's Guide for Use of Instructional Material in Wastewater Technology Training Programs.

    ERIC Educational Resources Information Center

    Stoakes, K. C.; And Others

    This instructor's guide, designed for use with the curriculum, Plant Operations for Wastewater Facilities, represents a two-year wastewater technology instructional program based on performance objectives designed to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. This…

  14. Plant Operations for Wastewater Facilities, Vol. II, Part A. An Instructor's Guide for Use of Instructional Material in Wastewater Technology Training Programs.

    ERIC Educational Resources Information Center

    Stoakes, K. C.; And Others

    This instructor's guide, designed for use with the curriculum, Plant Operations for Wastewater Facilities, represents a two-year wastewater technology instructional program based on performance objectives designed to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. This…

  15. Plant Operations for Wastewater Facilities, Vol. II, Part E. An Instructor's Guide for Use of Instructional Material in Wastewater Technology Training Programs.

    ERIC Educational Resources Information Center

    Stoakes, K. C.; And Others

    This instructor's guide, designed for use with the curriculum, Plant Operations for Wastewater Facilities, represents a two-year wastewater technology instructional program based on performance objectives designed to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. This…

  16. Plant Operations for Wastewater Facilities, Vol. II, Part D. An Instructor's Guide for Use of Instructional Material in Wastewater Technology Training Programs.

    ERIC Educational Resources Information Center

    Stoakes, K. C.; And Others

    This instructor's guide, designed for use with the curriculum, Plant Operations for Wastewater Facilities, represents a two-year wastewater technology instructional program based on performance objectives designed to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. This…

  17. Plant Operations for Wastewater Facilities, Vol. II, Part C. An Instructor's Guide for Use of Instructional Material in Wastewater Technology Training Programs.

    ERIC Educational Resources Information Center

    Stoakes, K. C.; And Others

    This instructor's guide, designed for use with the curriculum, Plant Operations for Wastewater Facilities, represents a two-year wastewater technology instructional program based on performance objectives designed to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. This…

  18. Plant stress biomarkers from biosimulations: the Transcriptome-To-Metabolome (TTM) technology - effects of drought stress on rice.

    PubMed

    Phelix, C F; Feltus, F A

    2015-01-01

    Measuring biomarkers from plant tissue samples is challenging and expensive when the desire is to integrate transcriptomics, fluxomics, metabolomics, lipidomics, proteomics, physiomics and phenomics. We present a computational biology method where only the transcriptome needs to be measured and is used to derive a set of parameters for deterministic kinetic models of metabolic pathways. The technology is called Transcriptome-To-Metabolome (TTM) biosimulations, currently under commercial development, but available for non-commercial use by researchers. The simulated results on metabolites of 30 primary and secondary metabolic pathways in rice (Oryza sativa) were used as the biomarkers to predict whether the transcriptome was from a plant that had been under drought conditions. The rice transcriptomes were accessed from public archives and each individual plant was simulated. This unique quality of the TTM technology allows standard analyses on biomarker assessments, i.e. sensitivity, specificity, positive and negative predictive values, accuracy, receiver operator characteristics (ROC) curve and area under the ROC curve (AUC). Two validation methods were also used, the holdout and 10-fold cross validations. Initially 17 metabolites were identified as candidate biomarkers based on either statistical significance on binary phenotype when compared with control samples or recognition from the literature. The top three biomarkers based on AUC were gibberellic acid 12 (0.89), trehalose (0.80) and sn1-palmitate-sn2-oleic-phosphatidylglycerol (0.70). Neither heat map analyses of transcriptomes nor all 300 metabolites clustered the stressed and control groups effectively. The TTM technology allows the emergent properties of the integrated system to generate unique and useful 'Omics' information. PMID:24985701

  19. Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-01-31

    Revised maps and associated data show potential mercury, sulfur, and chlorine emissions for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions.

  20. The Weatherby Processing plant reaps big benefits from state-of-the-art technologies

    SciTech Connect

    Bratton, R.C.; Raines, J.

    2006-10-15

    In the fall of 2003, the Weatherby Processing plant in Kanawha County, WV, USA launched a program to evaluate the overall operation and efficiency of its two heavy-medium cyclones circuits processing 2-inch x 0 raw coal with the intention of reducing coal losses misplaced to refuse. A plant sampling program was developed and conducted that provided the basis for the plant upgrade, which included the installation of a raw coal sizing screen, the establishment of coarse and fine heavy-medium cyclones circuits, a compound spirals circuit, and a column flotation circuit. The upgraded flowsheet resulted in a major improvement in separation efficiency as well as a significant reduction in magnetite consumption. 5 refs., 4 figs., 1 tab.

  1. Row Spacing, Tillage System, and Herbicide Technology Affects Cotton Plant Growth and Yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (Gossypium hirsutum L.) producers are faced with numerous production choices including cotton varieties, herbicide technology, tillage systems, and row spacing. A study was conducted to compare cotton production across conventional, glyphosate tolerant, and glufosinate tolerant varieties in ...

  2. Gas Turbine Energy Conversion Systems for Nuclear Power Plants Applicable to LiFTR Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2014-01-01

    This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.

  3. A pilot-plant study for destruction of PCBs in contaminated soils using fluidized bed combustion technology.

    PubMed

    Desai, Dilip L; Anthony, Edward J; Wang, Jinsheng

    2007-08-01

    Destruction of polychlorinated biphenyls (PCBs) in contaminated soils and wastes using circulating fluidized bed combustion (CFBC) technology was studied using a pilot plant and simulated waste material. The results show that the technology is effective and particularly promising for treatment of PCB-containing materials like the toxic sludge from a large contaminated site. Destruction of the toxics in the gas phase appears to be very fast, and over 99.9999% destruction and removal efficiency can be achieved in the temperature range 875-880 degrees C. Heat transfer in the fluidized bed also appears adequate. Toxic residues in treated soil can be reduced to very low levels. Rate-controlling factors of the decontamination process are analyzed, and key issues for determination of the process conditions are discussed. PMID:16901621

  4. The impact of advanced wastewater treatment technologies and wastewater strength on the energy consumption of large wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Newell, Timothy

    Wastewater treatment is an energy intensive process often requiring the use of advanced treatment technologies. Stricter effluent standards have resulted in an increase in the number of wastewater treatment plants (WWTPs) with advanced treatment over time. Accordingly, associated energy consumption has also increased. Concerns about lowering operating costs for WWTPs and reducing associated greenhouse gas generation present an incentive to investigate energy use in WWTPs. This research investigated the impact of wastewater strength and the introduction of advanced treatment technologies, to replace traditional technologies on energy use to treat wastewater in WWTPs. Major unit processes were designed for a 100 MGD plant and variables controlling energy were identified and used to compute energy consumption. Except for primary clarification and plate and frame press dewatering, energy consumption computed using fundamental equations are within values in the literature. Results show that energy consumption for dissolved air flotation thickeners, centrifuges, gravity thickeners, and aeration basins are heavily influence by wastewater strength. Secondary treatment and tertiary treatment require a significant amount of energy. Secondary treatment requires 104 times the energy of preliminary treatment, 17 times the energy of solids processing, and 2.5 times the energy of tertiary treatment. Secondary treatment requires 41 times the energy of preliminary treatment, and 7 times the energy of solids processing. The results of this research provide a means of estimating energy consumption in the design and operation phase of a WWTP. By using the fundamental equations and methodology presented, alternative technologies can be compared or targeted for future energy savings implementation. Limitations of the methodology include design assumptions having to be made carefully, as well as assumptions of motor and equipment efficiencies.

  5. The Impact of Wireless Technology Feedback on Inventory Management at a Dairy Manufacturing Plant

    ERIC Educational Resources Information Center

    Goomas, David T.

    2012-01-01

    Replacing the method of counting inventory from paper count sheets to that of wireless reliably reduced the elapsed time to complete a daily inventory of the storage cooler in a dairy manufacturing plant. The handheld computers delivered immediate prompts as well as auditory and visual feedback. Reducing the time to complete the daily inventory…

  6. New technology for purging the steam generators of nuclear power plants

    SciTech Connect

    Budko, I. O.; Kutdjusov, Yu. F.; Gorburov, V. I.; Rjasnyj, S. I.

    2011-07-15

    A technology for removal of undissolved impurities from a horizontal steam generator using purge water is developed on the basis of a theoretical analysis. A purge with a maximal flow rate is drawn off from the zone with the highest accumulation of sludge in the lower part of the steam generator after the main circulation pump of the corresponding loop is shut off and the temperatures of the heat transfer medium at the inlet and outlet of the steam generator have equilibrated. An improved purge configuration is used for this technology; it employs shutoff and regulator valves, periodic purge lines separated by a cutoff fixture, and a D{sub y} 100 drain union as a connector for the periodic purge. Field tests show that the efficiency of this technology for sludge removal by purge water is several times that for the standard method.

  7. Moving forward in plant food safety and security through NanoBioSensors: Adopt or adapt biomedical technologies?

    PubMed

    Sharma, Tarun K; Ramanathan, Rajesh; Rakwal, Randeep; Agrawal, Ganesh K; Bansal, Vipul

    2015-05-01

    Plant-based foods are integral part of our day-to-day diet. Increasing world population has put forth an ever increasing demand for plant-based foods, and food security remains a major concern. Similarly, biological, chemical, and physical threats to our food and increasing regulatory demands to control the presence of foreign species in food products have made food safety a growing issue. Nanotechnology has already established its roots in diverse disciplines. However, the food industry is yet to harness the full potential of the unique capabilities offered by this next-generation technology. While there might be safety concerns in regards to integration of nanoproducts with our food products, an aspect of nanotechnology that can make remarkable contribution to different elements of the food chain is the use of nanobiosensors and diagnostic platforms for monitoring food traceability, quality, safety, and nutritional value. This brings us to an important question that whether existing diagnostic platforms that have already been well developed for biomedical and clinical application are suitable for food industry or whether the demands of the food industry are altogether different that may not allow adoption/adaptation of the existing technology. This review is an effort to raise this important "uncomfortable" yet "timely" question. PMID:25727733

  8. Cost update technology, safety, and costs of decommissioning a reference uranium hexafluoride conversion plant

    SciTech Connect

    Miles, T.L.; Liu, Y.

    1995-08-01

    The purpose of this study is to update the cost estimates developed in a previous report, NUREG/CR-1757 (Elder 1980) for decommissioning a reference uranium hexafluoride conversion plant from the original mid-1981 dollars to values representative of January 1993. The cost updates were performed by using escalation factors derived from cost index trends over the past 11.5 years. Contemporary price quotes wee used for costs that have increased drastically or for which is is difficult to find a cost trend. No changes were made in the decommissioning procedures or cost element requirements assumed in NUREG/CR-1757. This report includes only information that was changed from NUREG/CR-1757. Thus, for those interested in detailed descriptions and associated information for the reference uranium hexafluoride conversion plant, a copy of NUREG/CR-1757 will be needed.

  9. Building dismantlement and site remediation at the Apollo Fuel Plant: When is technology the answer?

    SciTech Connect

    Walton, L.

    1995-01-01

    The Apollo fuel plant was located in Pennsylvania on a site known to have been used continuously for stell production from before the Civil War until after World War II. Then the site became a nuclear fuel chemical processing plants. Finally it was used to convert uranium hexafluoride to various oxide fuel forms. After the fuel manufacturing operations were teminated, the processing equipment was partially decontaminated, removed, packaged and shipped to a licensed low-level radioactive waste burial site. The work was completed in 1984. In 1990 a detailed site characterization was initiated to establishe the extent of contamination and to plan the building dismantlement and soil remediation efforts. This article discusses the site characterization and remedial action at the site in the following subsections: characterization; criticality control; mobile containment; soil washing; in-process measurements; and the final outcome of the project.

  10. Hanford Waste Vitrification Plant technical background document for toxics best available control technology demonstration

    SciTech Connect

    1992-10-01

    This document provides information on toxic air pollutant emissions to support the Notice of Construction for the proposed Hanford Waste Vitrification Plant (HWVP) to be built at the the Department of Energy Hanford Site near Richland, Washington. Because approval must be received prior to initiating construction of the facility, state and federal Clean Air Act Notices of construction are being prepared along with necessary support documentation.

  11. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology

    PubMed Central

    Wang, Hongyan; Wang, Honglei; Shao, Hongbo; Tang, Xiaoli

    2016-01-01

    Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs) are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions. PMID:26904044

  12. The ASTROCULTURE(TM) flight experiment series, validating technologies for growing plants in space.

    PubMed

    Morrow, R C; Bula, R J; Tibbitts, T W; Dinauer, W R

    1994-11-01

    A flight experiment, ASTROCULTURE(TM)-1 (ASC-1), to evaluate the operational characteristics and hardware performance of a porous tube nutrient delivery system (PTNDS) was flown on STS-50 as part of the U.S. Microgravity Laboratory-1 mission, 25 June to 9 July, 1992. This experiment is the first in a series of planned ASTROCULTURE(TM) flights to validate the performance of subsystems required to grow plants in microgravity environments. Results indicated that the PTNDS was capable of supplying water and nutrients to plants in microgravity and that its performance was similar in microgravity to that in 1g on Earth. The data demonstrated that water transfer rates through a rooting matrix are a function of pore size of the tubes, the degree of negative pressure on the 'supply' fluid, and the pressure differential between the 'supply' and 'recovery' fluid loops. A slightly greater transfer rate was seen in microgravity than in 1g, but differences were likely related to the presence of hydrostatic pressure effects at 1g. Thus, this system can be used to support plant growth in microgravity or in partial gravity as on a lunar or Mars base. Additional subsystems to be evaluated in the ASTROCULTURE(TM) flight series of experiments include lighting, humidity control and condensate recovery, temperature control, nutrient composition control, CO2 and O2 control, and gaseous contaminant control. PMID:11540195

  13. Harnessing microbial gene pools to remediate persistent organic pollutants using genetically modified plants--a viable technology?

    PubMed

    Rylott, Elizabeth L; Johnston, Emily J; Bruce, Neil C

    2015-11-01

    It has been 14 years since the international community came together to legislate the Stockholm Convention on Persistent Organic Pollutants (POPs), restricting the production and use of specific chemicals that were found to be environmentally stable, often bioaccumulating, with long-term toxic effects. Efforts are continuing to remove these pollutants from the environment. While incineration and chemical treatment can be successful, these methods require the removal of tonnes of soil, at high cost, and are damaging to soil structure and microbial communities. The engineering of plants for in situ POP remediation has had highly promising results, and could be a more environmentally-friendly alternative. This review discusses the characterization of POP-degrading bacterial pathways, and how the genes responsible have been harnessed using genetic modification (GM) to introduce these same abilities into plants. Recent advances in multi-gene cloning, genome editing technologies and expression in monocot species are accelerating progress with remediation-applicable species. Examples include plants developed to degrade 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), trichloroethylene (TCE), and polychlorinated biphenyls (PCBs). However, the costs and timescales needed to gain regulatory approval, along with continued public opposition, are considerable. The benefits and challenges in this rapidly developing and promising field are discussed. PMID:26283045

  14. Seed enhancement technologies for restoring native plants in the Great Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The success rates on rangeland seeding projects with native species in the arid regions of the western United States are unacceptably low and predicted to further decline with climate change increasing aridity and more erratic precipitation. Seed enhancement technologies allow for the physical manip...

  15. SUMMARY REPORT: CONTROL AND TREATMENT TECHNOLOGY FOR THE METAL FINISHING INDUSTRY: IN -PLANT CHANGES

    EPA Science Inventory

    This 30 - page Technology Transfer Report ummarizes how he metal finishing industry in the United States is subject to a variety of changing business conditions. wo of the most significant factors are the increasing costs of materials, such as plating chemicals and process water,...

  16. THE CONSORTIUM FOR PLANT BIOTECHNOLOGY RESEARCH, INC., ENVIRONMENTAL RESEARCH AND TECHNOLOGY TRANSFER PROGRAM

    EPA Science Inventory

    CPBR's ERTT mission is to support basic biotechnology research and the development of new, commercially valuable technologies supportive of the long-term strategic goals of EPA. The research projects selected will address these goals. It is anticipated that the pro...

  17. Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants with Advanced Technology

    EIA Publications

    2001-01-01

    This analysis responds to a request of Senators James M. Jeffords and Joseph I. Lieberman. This report describes the impacts of technology improvements and other market-based opportunities on the costs of emissions reductions from electricity generators, including nitrogen oxides, sulfur dioxide, mercury, and carbon dioxide.

  18. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges

    NASA Astrophysics Data System (ADS)

    Stillwell, Ashlynn S.; Clayton, Mary E.; Webber, Michael E.

    2011-07-01

    Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights—a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions—a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m3—enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.

  19. A Novel, Safe, and Environmentally Friendly Technology for Water Production Through Recovery of Rejected Thermal Energy From Nuclear Power Plants

    SciTech Connect

    Khalil, Yehia F.; Elimelech, Menachem

    2006-07-01

    In this work, we describe a novel design that utilizes seawater and a portion of rejected heat from a nuclear plant's steam cycle to operate a water desalination system using forward osmosis technology. Water produced from this process is of sufficient quality to be readily used to supply plant demands for continuous makeup water. The proposed process minimizes the environmental concerns associated with thermal pollution of public waters and the resulting adverse impact on marine ecology. To demonstrate the technical feasibility of this conceptual design of a water treatment process, we discuss a case study as an example to describe how the proposed design can be implemented in a nuclear power station with a once--through cooling system that discharges rejected heat to an open sound seawater as its ultimate heat sink. In this case study, the station uses a leased (vendor owned and operated) onsite water treatment system that demineralizes and polishes up to 500-gpm of city water (at 100 ppm TDS) to supply high-quality makeup water (< 0.01 ppm TDS) to the plant steam system. The objectives of implementing the new design are three fold: 1) forego current practice of using city water as the source of plant makeup water, thereby reducing the nuclear station's impact on the region's potable water supply by roughly 100 million gallons/year, 2) minimize the adverse impact of discharging rejected heat into the open sound seawater and, hence, protect the marine ecology, and 3) eliminate the reliance on external vendor that owns and operates the onsite water treatment system, thereby saving an annual fixed cost of $600 K plus 6 cents per 1,000 gallons of pure water. The design will also eliminate the need for using two double-path reverse osmosis (RO) units that consume 425 kW/h of electric power to operate two RO pumps (480 V, 281.6 HP, and 317.4 amps). (authors)

  20. Validation of smart sensor technologies for instrument calibration reduction in nuclear power plants

    SciTech Connect

    Hashemian, H M; Mitchell, D W; Petersen, K M; Shell, C S

    1993-01-01

    This report presents the preliminary results of a research and development project on the validation of new techniques for on-line testing of calibration drift of process instrumentation channels in nuclear power plants. These techniques generally involve a computer-based data acquisition and data analysis system to trend the output of a large number of instrument channels and identify the channels that have drifted out of tolerance. This helps limit the calibration effort to those channels which need the calibration, as opposed to the current nuclear industry practice of calibrating essentially all the safety-related instrument channels at every refueling outage.

  1. An Exploration of Mercury Soils Treatment Technologies for the Y-12 Plant - 13217

    SciTech Connect

    Wrapp, John; Julius, Jonathon; Browning, Debbie; Kane, Michael; Whaley, Katherine; Estes, Chuck; Witzeman, John

    2013-07-01

    There are a number of areas at the Y-12 National Security Complex (Y-12) that have been contaminated with mercury due to historical mercury use and storage. Remediation of these areas is expected to generate large volumes of waste that are Resource Conservation and Recovery Act (RCRA) characteristically hazardous. These soils will require treatment to meet RCRA Land Disposal Restrictions (LDR) prior to disposal. URS - CH2M Oak Ridge LLC (UCOR) performed a feasibility assessment to evaluate on-site and off-site options for the treatment and disposal of mercury-contaminated soil from the Y-12 Site. The focus of the feasibility assessment was on treatment for disposal at the Environmental Management Waste Management Facility (EMWMF) located on the Oak Ridge Reservation. A two-phase approach was used in the evaluation process of treatment technologies. Phase 1 involved the selection of three vendors to perform treatability studies using their stabilization treatment technology on actual Y-12 soil. Phase II involved a team of waste management specialists performing an in-depth literature review of all available treatment technologies for treating mercury contaminated soil using the following evaluation criteria: effectiveness, feasibility of implementation, and cost. The result of the treatability study and the literature review revealed several viable on-site and off-site treatment options. This paper presents the methodology used by the team in the evaluation of technologies especially as related to EMWMF waste acceptance criteria, the results of the physical treatability studies, and a regulatory analysis for obtaining regulator approval for the treatment/disposal at the EMWMF. (authors)

  2. Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies

    NASA Astrophysics Data System (ADS)

    Ma, Zizhen; Deng, Jianguo; Li, Zhen; Li, Qing; Zhao, Ping; Wang, Liguo; Sun, Yezhu; Zheng, Hongxian; Pan, Li; Zhao, Shun; Jiang, Jingkun; Wang, Shuxiao; Duan, Lei

    2016-04-01

    Coal combustion in coal-fired power plants is one of the important anthropogenic NOx sources, especially in China. Many policies and methods aiming at reducing pollutants, such as increasing installed capacity and installing air pollution control devices (APCDs), especially selective catalytic reduction (SCR) units, could alter NOx emission characteristics (NOx concentration, NO2/NOx ratio, and NOx emission factor). This study reported the NOx characteristics of eight new coal-fired power-generating units with different boiler patterns, installed capacities, operating loads, and coal types. The results showed that larger units produced less NOx, and anthracite combustion generated more NOx than bitumite and lignite combustion. During formation, the NOx emission factors varied from 1.81 to 6.14 g/kg, much lower than those of older units at similar scales. This implies that NOx emissions of current and future units could be overestimated if they are based on outdated emission factors. In addition, APCDs, especially SCR, greatly decreased NOx emissions, but increased NO2/NOx ratios. Regardless, the NO2/NOx ratios were lower than 5%, in accordance with the guidelines and supporting the current method for calculating NOx emissions from coal-fired power plants that ignore NO2.

  3. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Madhava Syamlal, Ph.D.`

    2001-04-20

    The project management plan was finalized during a project kick off meeting held on January 16, 2001 in Lebanon, NH, which was attended by all project participants. The project management plan was submitted to DOE and was revised based on comments from DOE (Task 1.0). A survey of the potential users of the integrated software was conducted. A web-based survey form was developed and was announced in the ProcessCity discussion forum and in AspenTech's e-mail digest Aspen e-Flash. Several Fluent clients were individually contacted. A user requirements document was written (Task 2.2). As a prototype of AspenPlus-Fluent integration, the flowsheet for allyl alcohol production via the isomerization of propylene oxide was developed. A stirred tank reactor in the flowsheet for converting the byproduct acetone into n-propyl propionate was modeled with Fluent, version 5.4. The convergence of the AspenPlus-Fluent integrated model was demonstrated, and a list of data exchanges required between AspenPlus and Fluent was developed (Task 2.6). As the first demonstration case, the RP and L power plant was selected. A planning meeting was held on February 13, 2001 in Cambridge, MA to discuss this demonstration case. It was decided that the steam-side of the power plant would be modeled with AspenPlus and the gas-side, with the ALSTOM Power in-house code INDVU. A flowsheet model of the power plant was developed (Task 3.1). Three positive responses were received for the invitation to join the project Advisory Board. It was decided to expand the membership on the Advisory Board to include other industrial users interested in integrating AspenPlus and Fluent. Additional invitations were sent out (Task 5.0). Integraph's role in the project was restructured based on discussions among the project participants. Fluent hired Dr. Maxwell Osawe to work on the project. Dr. Osawe brings to the project a unique combination of skills (expertise in CFD and object-oriented design and programming

  4. Application of magnetic separation technology for the recovery of colemanite from plant tailings.

    PubMed

    Alp, Ibrahim

    2008-10-01

    In this study, colemanite was recovered from tailings produced by the Kestelek (Turkey) Processing Plant by magnetic separation. Magnetic susceptibility measurements revealed that colemanite is diamagnetic in character whereas gangue minerals are weakly paramagnetic, apparently due to the presence of the iron-bearing silicates such as smectite and, to a less extent, illite. Three-stage magnetic separation tests were performed on the size fractions coarser than 75 microm produced from the tailings (31.52% B(2)O(3)) using a high-intensity permanent magnetic separator. Under the test conditions a colemanite concentrate with a B(2)O(3) content of 43.74% at 95.06% recovery was shown to be produced from the tailings. The mineralogical composition of the tailings appears to allow the removal of gangue minerals by magnetic separation and hence the production of a concentrate of commercial grade. PMID:18927062

  5. Developing Effective Continuous On-Line Monitoring Technologies to Manage Service Degradation of Nuclear Power Plants

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Cumblidge, Stephen E.

    2011-09-30

    Recently, there has been increased interest in using prognostics (i.e, remaining useful life (RUL) prediction) for managing and mitigating aging effects in service-degraded passive nuclear power reactor components. A vital part of this philosophy is the development of tools for detecting and monitoring service-induced degradation. Experience with in-service degradation has shown that rapidly-growing cracks, including several varieties of stress corrosion cracks (SCCs), can grow through a pipe in less than one fuel outage cycle after they initiate. Periodic inspection has limited effectiveness at detecting and managing such degradation requiring a more versatile monitoring philosophy. Acoustic emission testing (AET) and guided wave ultrasonic testing (GUT) are related technologies with potential for on-line monitoring applications. However, harsh operating conditions within NPPs inhibit the widespread implementation of both technologies. For AET, another hurdle is the attenuation of passive degradation signals as they travel though large components, relegating AET to targeted applications. GUT is further hindered by the complexity of GUT signatures limiting its application to the inspection of simple components. The development of sensors that are robust and inexpensive is key to expanding the use of AET and GUT for degradation monitoring in NPPs and improving overall effectiveness. Meanwhile, the effectiveness of AET and GUT in NPPs can be enhanced through thoughtful application of tandem AET-GUT techniques.

  6. Pinch technology/process optimization. Volume 1, Case studies---multiple plants: Final report

    SciTech Connect

    Not Available

    1992-12-01

    Improved process efficiency is of great importance to electric utilities and their industrial customers. It enhances company profitability, thereby fostering load retention and strategic load growth. Moreover, the technical means of achieving improved efficiency can significantly impact utility load shapes. By understanding the energy use patterns and options in an industrial facility, the utility and industrial user can work together to define mutually beneficial investment and operating decisions and to clarify how the decisions might be impacted by existing or alternative energy prices. Efforts to achieve such understanding are facilitated by using pinch technology, an innovative and highly effective methodology for systematically analyzing total industrial sites. This report documents a series of twelve industrial process optimization case studies. The studies were carried out using ``pinch technology. `` Each study was cosponsored by the industrial site`s local electric utility. The twelve studies are follows: (1) pulp and paper, (2) refinery, (3) refinery, (4) yeast, (5) soups/sauces, (6) cellulose- acetate, (7) refinery, (8) chemicals, (9) gelatin-capsules, (10) refinery, (11) brewery, (12) cereal grains.

  7. Airborne waste management technology applicable for use in reprocessing plants for control of iodine and other off-gas constituents

    SciTech Connect

    Jubin, R.T.

    1988-02-01

    Extensive work in the area of iodine removal from reprocessing plant off-gas streams using various types of solid sorbent materials has been conducted worldwide over the past two decades. This work has focused on the use of carbon filters, primarily for power plant applications. More recently, the use of silver-containing sorbents has been the subject of considerable research. The most recent work in the United States has addressed the use of silver-exchanged faujasites and mordenites. The chemical reactions of iodine with silver on the sorbent are not well defined, but it is generally believed that chemisorbed iodides and iodates are formed. The process for iodine recovery generally involves passage of the iodine-laden gas stream through a packed bed of the adsorbent material preheated to a temperature of about 150/degree/C. Most iodine removal system designs utilizing silver-containing solid sorbents assume only a 30 to 50% silver utilization. Based on laboratory tests, potentially 60 to 70% of the silver contained in the sorbents can be reacted with iodine. To overcome the high cost of silver associated with these materials, various approaches have been explored. Among these are the regeneration of the silver-containing sorbent by stripping the iodine and trapping the iodine on a sorbent that has undergone only partial silver exchange and is capable of attaining a much higher silver utilization. This summary report describes the US work in regeneration of iodine-loaded solid sorbent material. In addition, the report discusses the broader subject of plant off-gas treatment including system design. The off-gas technologies to recovery No/sub x/ and to recover and dispose of Kr, /sup 14/C, and I are described as to their impacts on the design of an integrated off-gas system. The effect of ventilation philosophy for the reprocessing plant is discussed as an integral part of the overall treatment philosophy of the plant off-gas. 103 refs., 5 figs., 8 tabs.

  8. Analyzing the Technology of Using Ash and Slag Waste from Thermal Power Plants in the Production of Building Ceramics

    NASA Astrophysics Data System (ADS)

    Malchik, A. G.; Litovkin, S. V.; Rodionov, P. V.; Kozik, V. V.; Gaydamak, M. A.

    2016-04-01

    The work describes the problem of impounding and storing ash and slag waste at coal thermal power plants in Russia. Recovery and recycling of ash and slag waste are analyzed. Activity of radionuclides, the chemical composition and particle sizes of ash and slag waste were determined; the acidity index, the basicity and the class of material were defined. The technology for making ceramic products with the addition of ash and slag waste was proposed. The dependencies relative to the percentage of ash and slag waste and the optimal parameters for baking were established. The obtained materials were tested for physical and mechanical properties, namely for water absorption, thermal conductivity and compression strength. Based on the findings, future prospects for use of ash and slag waste were identified.

  9. A Rapid Screening Analysis of Antioxidant Compounds in Native Australian Food Plants Using Multiplexed Detection with Active Flow Technology Columns.

    PubMed

    Rupesinghe, Emmanuel Janaka Rochana; Jones, Andrew; Shalliker, Ross Andrew; Pravadali-Cekic, Sercan

    2016-01-01

    Conventional techniques for identifying antioxidant and phenolic compounds in native Australian food plants are laborious and time-consuming. Here, we present a multiplexed detection technique that reduces analysis time without compromising separation performance. This technique is achieved using Active Flow Technology-Parallel Segmented Flow (AFT-PSF) columns. Extracts from cinnamon myrtle (Backhousia myrtifolia) and lemon myrtle (Backhousia citriodora) leaves were analysed via multiplexed detection using an AFT-PSF column with underivatised UV-VIS, mass spectroscopy (MS), and the 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) derivatisation for antioxidants as detection methods. A number of antioxidant compounds were detected in the extracts of each leaf extract. PMID:26805792

  10. Mandate a Man to Fish?: Technological advance in cooling systems at U.S. thermal electric plants

    NASA Astrophysics Data System (ADS)

    Peredo-Alvarez, Victor M.; Bellas, Allen S.; Trainor-Guitton, Whitney J.; Lange, Ian

    2016-02-01

    Steam-based electrical generating plants use large quantities of water for cooling. The potential environmental impacts of water cooling systems have resulted in their inclusion in the Clean Water Act's (CWA) Sections 316(a), related to thermal discharges and 316(b), related to cooling water intake. The CWA mandates a technological standard for water cooling systems. This analysis examines how the performance-adjusted rates of thermal emissions and water withdrawals for cooling units have changed over their vintage and how these rates of change were impacted by imposition of the CWA. Results show that the rate of progress increased for cooling systems installed after the CWA whilethere was no progress previous to it.